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Abstract. Advice is supplementary information that enhances the computational power of an underlying
computation. This paper focuses on advice that is given in the form of a pure quantum state. The notion of
advised quantum computation has a direct connection to non-uniform quantum circuits and tally languages.
The paper examines the influence of such advice on the behaviors of an underlying polynomial-time quantum
computation with bounded-error probability and shows a power and a limitation of advice.
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1 Prologue

Quantum computations have emerged to shape a future computational paradigm based on quantum physics.
To carry out a given task faster and more precisely, it is also feasible to supplement quantum computations
with a small piece of information beside an original input. Ideally, such information should be succinct and
given to all inputs of equal size. The notion of such supplemental information, under the name of “advice,”
was first sought in a classical setting by Karp and Lipton [14] in the early 1980s. Originally, Karp and Lipton
introduced the notion of advice to characterize non-uniform models of computations, following the early work
of Savage [20] and Adleman [1] on non-uniform Boolean circuits.

In this paper, we consider polynomial-time bounded-error quantum computations that take advice, which
is given in the form of a pure quantum state (referred to as quantum advice). Of particular interest are the
languages computed by polynomial-time quantum computation with quantum advice under the condition that
quantum computation should not err with probability more than 1/3, provided that the given advice is correct.
The major difference from the original definition of Karp and Lipton is that we do not impose any condition on
the acceptance probability of an underlying quantum computation whenever advice is supplied incorrectly, since
such languages, when advice is limited to classical states (specially called classical advice), establish a direct
correspondence to non-uniform quantum circuits as well as tally languages. We use the special notation BQP/∗F
for the collection of aforementioned languages with classical advice whose size is described by a function in F
(in contrast with the Karp-Lipton style notation BQP/F) and we write BQP/∗QF for the quantum advice
case, where prefix “Q” represents “quantum advice.”

A central question of advised computation is how to hide meaningful information into advice and how
to recover this information from the advice with high accuracy. The key issue in this paper is an efficient
use of quantum advice, from which the strengths and limitations of advised quantum computations follows.
Using quantum fingerprinting [8], we demonstrate that subpolynomial-size quantum advice is more useful than
classical advice of the same size. In contrast, quantum information theory draws a clear limitation on how
efficiently we can hide information into quantum advice. Using quantum random access coding [3], we show
that quantum advice cannot be made shorter than the 8 per cent of the size of classical advice. Moreover,
by combining quantum random access coding with the quantum-circuit characterization, we construct a set in
EESPACE that does not belong to BQP/∗Qpoly. This result is in clear contrast with Kannan’s earlier result
ESPACE * P/poly [13].

The use of quantum amplitudes is another way to enhance computational power. We can hide information
in amplitudes and use quantum computation to access such information. Adleman, DeMarrais, and Huang [2]
were the first to show that quantum computation can benefit more from complex amplitudes than from rational
amplitudes by showing BQPQ 6= BQPC. This clearly contrasts the recent result NQPQ = NQPC [23]. To some
extent, we can view such complex amplitudes as advice to an underlying quantum computation having rational
amplitudes. We show that a finite set of complex amplitudes are roughly equivalent to polylogarithmic advice.

∗This work was in part supported by the Natural Sciences and Engineering Research Council of Canada.

1

Electronic Colloquium on Computational Complexity, Report No. 59 (2003)

ISSN 1433-8092




We assume the reader’s familiarity with the fundamental concepts in the theory of computational complexity
(see, e.g., [11]) and quantum computation (see, e.g., [17]). In this paper, all logarithms have base 2 and a
polynomial means a multi-variate polynomial with nonnegative coefficients. We fix our alphabet Σ to be {0, 1}
unless otherwise stated. A pairing function 〈·, ·〉 is a map from Σ∗ × Σ∗ to Σ∗, assumed to be one-to-one and
polynomial-time computable with polynomial-time computable inverses. We also use the same notation 〈·, ·〉
for a standard bijection from N×N to N. A quantum string (qustring, for short) of length n is a pure quantum
state of n qubits (i.e., an element of a Hilbert space of dimension 2n). For any qustring |φ〉, `(|φ〉) denotes
the size of |φ〉. Let Φn be the collection of all qustrings of length n and define Φ≤m =

⋃

1≤i≤m Φi.The union
⋃

n∈N+ Φn is denoted Φ∞.

2 Advice for Quantum Computation

We focus on a polynomial-time quantum computation with bounded-error probability as an underlying compu-
tation that takes advice. We model a quantum computation by a multi-tape quantum Turing machine (QTM,
for short) whose heads are allowed to stay still [7, 9, 19, 22]. Hereafter, the term “QTM” refers to a QTM whose
time-evolution is precisely described by a certain unitary operator over the space spanned by all configurations
of M . For convenience, we often use QTMs equipped with multiple input tapes and assume that, whenever we
write M(x, y), x is given in the first input tape and y is given in the second input tape. For any QTM M ,
any qustring |φ〉, and any binary string s, the notation ProbM [M(|φ〉) = s] denotes the probability that s is
observed on the designated output tape of M after M on input |φ〉 halts. When amplitudes are concerned, we
say that M has K-amplitudes if all amplitudes of M are chosen from a subset K of C.

Now, we want to define our central notion of a quantum advice complexity class. To cope with the quantum
nature of underlying computations, we give the following definition to our advice class. The justification of our
definition will be given in Section 3. For simplicity, we identify a set A with its characteristic function; namely,
A(x) = 1 if x ∈ A and A(x) = 0 otherwise.

Definition 2.1 Let f be any function from N to N and let F be any set of functions mapping from N to N.
Let K be any nonempty subset of C.

1. A set A is in BQPK/
∗f (or BQPK/

∗f(n)) if there exist a polynomial-time QTM M with K-amplitudes
and a function h from N to Σ∗ such that ProbM [M(x, h(|x|)) = A(x)] ≥ 2/3 for every x ∈ Σ∗, where |h(n)| =
f(n). This function h is called a classical advice function and f is the length function. Let BQPK/

∗F =
⋃

f∈F BQPK/
∗f .

2. A set A is in BQPK/
∗Qf (or BQPK/

∗Q(f(n))) if there exist a polynomial-time QTM M with K-
amplitudes and a function h from N to Σ∗ such that `(h(|x|)) = f(|x|) and ProbM [M(x, h(|x|)) = A(x)] ≥ 2/3
for every x ∈ Σ∗, where h is called a quantum advice function. Let BQPK/

∗QF =
⋃

f∈F BQPK/
∗Qf .

The prefix “BQPK” in BQPK/
∗F and BQPK/

∗QF is an abbreviation of “bounded-error quantum polynomial-
time with K-amplitudes.” Similar notions can be introduced to other types of quantum computations: for
example, EQPK/

∗F and QMAK/
∗F . The succinct term “advice functions” hereafter refers to both classical

advice and quantum advice functions. For readability, we suppress the subscript “K” if K is the set of all
polynomial-time computable complex numbers (that is, their real and imaginary parts are both deterministically
approximated to within 2−k in time polynomial in k).

We are particularly interested in the sets of polynomial length functions and of logarithmic length functions.
Conventionally, write poly for the collection of all functions f from N to N satisfying that f(n) ≤ p(n) for all
n ∈ N, where p is a certain polynomial. Similarly, write log for the collection of f ’s satisfying that f(n) ≤
c logn+ c for a certain nonnegative constant c.

Earlier, Karp and Lipton [14] defined a general advice complexity class† C/F for any class C of languages
and any set F of length functions. This Karp-Lipton style definition naturally introduces another advice class
BQP/F , where BQP is the language class of Bernstein and Vazirani [7]. Clearly, BQP/F is included in BQP/∗F
for any set F of length functions. The major difference between BQP/∗F and BQP/F is that the definition of
BQP/∗F lacks the robustness of underlying QTMs, where a QTMM is called robust if, for every pair (x, s), either
ProbM [M(x, s) = 0] ≥ 2/3 or ProbM [M(x, s) = 1] ≥ 2/3. Such a difference seems, nonetheless, insignificant in
the classical setting since the corresponding two definitions BPP/∗poly and BPP/poly coincide. This collapse

†The advice class C/F is the collection of all sets A for which there exist a set B ∈ C, a function f ∈ F , and a function h from
N to Σ∗ such that A = {x | 〈x, h(|x|)〉 ∈ B} provided that |h(n)| = f(n) for all n ∈ N.
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results partly from the fact that any two computation paths of a randomized Turing machine never interfere.
We note that there is no known proof for the collapse between BQP/∗poly and BQP/poly. Their separation
on the contrary seems difficult to prove since Promise-P = Promise-BQP implies P/F = BQP/F = BQP/∗F ,
where Promise-C is the promise version of complexity class C [12].

The following fundamental properties hold for advice classes BQP/∗F and BQP/∗QF . The power set of Σ∗

is denoted 2Σ∗

in the lemma below.

Lemma 2.2 Let f and g be any functions from N to N and let F and G be any sets of functions from N to N.

1. BQP/∗0 = BQP/∗Q(0) = BQP.

2. BQP/∗2n = BQP/∗Q(2n) = 2Σ∗

.

3. BQP/∗F ⊆ BQP/∗QF .

4. If F ⊆ G then BQP/∗F ⊆ BQP/∗G and BQP/∗QF ⊆ BQP/∗QG.

5. If g(n) < f(n) ≤ 2n for infinitely-many n, then P/∗f * BQP/∗g.

The complexity class BQP is known to enjoy a strong form of the so-called amplification property, for which
we can amplify the success probability of any underlying QTM from 2/3 to 1−2−p(n) for an arbitrary polynomial
p. This form of the amplification property can be easily extended into any classical advice class BQP/∗F by
running an underlying QTM a polynomial number of times and taking a majority vote of machine’s outcomes.
The quantum advice class BQP/∗QF , however, demands a more delicate attention since quantum advice in
general cannot be copied due to the no-cloning theorem. For the following lemma, we say that a set F of length
functions is closed under logarithmic multiplication if, for every f ∈ F and every ` ∈ log, there exists a function
g ∈ F such that f(n) · `(n) ≤ g(n) for all n ∈ N.

Lemma 2.3 (Amplification Lemma) Let F be any set of length functions.

1. A set A is in BQP/∗F if and only if, for every polynomial q, there exist a polynomial-time QTM M and

a classical advice function h whose length function is in F such that ProbM [M(x, h(|x|)) = A(x)] ≥ 1− 2−q(|x|)

for every x.
2. Assume that F is closed under logarithmic multiplication. A set A is in BQP/∗QF if and only if, for

every positive polynomial q, there exist a polynomial-time QTM M and a quantum advice function h whose

length function is in F such that ProbM [M(x, h(|x|)) = A(x)] ≥ 1 − 1/q(|x|) for every x.

3 Non-Uniform Quantum Circuits and Tally Sets

Our definition BQP/∗F is preferable to the Karp-Lipton style definition BQP/F because, as shown in Lemma
3.1, our definition can precisely characterize non-uniform polynomial-size quantum circuits, where a quantum

circuit [10, 24] is assumed to be built from a finite universal set of quantum gates and the size of a quantum
circuit is the number of quantum gates in use.

Throughout this paper, we fix a universal set U of quantum gates consisting of a Controlled-NOT gate and
a finite number of single-qubit gates dense in SU(2) with their inverses. Without loss of generality, we may
assume that all entries of these quantum gates are polynomial-time computable complex numbers. We say that
a set A has non-uniform polynomial-size quantum circuits with error probability ε if there exist a polynomial p
and a non-uniform family {Cn}n∈N of quantum circuits such that, for every string x, (i) C|x| on input |x〉|0m〉
outputs A(x) with probability 1− ε, where |0m〉 is an auxiliary input and (ii) C|x| uses at most p(|x|) quantum
gates chosen from U . The notation ProbC [C(x, y) = b] expresses the probability that C, taking x and y as a
pair of inputs with an auxiliary input |0m〉, outputs b to the first qubit of C.

Lemma 3.1 1. A set A is in BQP/∗poly if and only if A has non-uniform polynomial-size quantum circuits

with error probability at most 1/3.
2. A set A in BQP/∗Qpoly if and only if there exist a polynomial p, a non-uniform family {Cn}n∈N of

polynomial-size quantum circuits, and a series {Un}n∈N of unitary operators on p(n) qubits such that, for every

n and every string x of length n, ProbCn [Cn(x, Un|0p(n)〉) = A(x)] ≥ 2/3.

The proof of Lemma 3.1 needs an effective binary encoding of a quantum circuit, provided that the length of
such an encoding is not less than the size of the circuit. We use the notation Code(C) to describe this encoding
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of a quantum circuit C.

Proof of Lemma 3.1. We prove only 2) since 1) is a special case of 2). (Only If – part) Assume that A
is any set in BQP/∗h for a polynomial quantum advice function h. Using the explicit simulation of QTMs
by quantum circuits [18, 24], we can build a family {Cn}n∈N of polynomial-size quantum circuits such that
ProbCn [Cn(x, h(n)) = A(x)] ≥ 2/3 for every x of length n. Define Un to be any unitary operator that satisfies
Un|0p(n)〉 = h(n).

(If – part) Let p be any polynomial, {Cn}n∈N be any family of polynomial-size quantum circuits, and
{Un}n∈N be any series of unitary operators acting on p(n) qubits. Assume that, for every x of length n,
ProbCn [Cn(x, Un|0p(n)〉) = A(x)] ≥ 2/3. Define h(n) to be the encoding Code(Cn) tensored with the qustring
Un|0p(n)〉. Clearly, the size of h(n) is bounded above by a certain polynomial in n. It is easy to build a QTM M
that, on input (x, h(n)), simulates Cn on input (x, U |0p(n)〉). We thus obtain ProbM [M(x, h(|x|)) = A(x)] ≥ 2/3
for every x. This puts A into BQP/∗Qpoly. 2

The lemma below allows us to replace the unitary operator Un in Lemma 3.1(2) by any exponential-size
quantum circuit with no ancillary qubit. This lemma can be obtained directly from the Solovay-Kitaev theorem
[15, 17] following a standard decomposition of a unitary matrix (see, e.g., [17]). For a complex square matrix
A, let ‖A‖ = sup|φ〉6=0 ‖A|φ〉‖/‖|φ〉‖.

Lemma 3.2 1. For every sufficiently large k ∈ N+, every |φ〉 ∈ Φk, and every ε > 0, there exists a quantum

circuit C acting on k qubits such that C has size at most 22k log3 (1/ε) and ‖C|0k〉 − |φ〉‖ < ε.
2. For every sufficiently large k ∈ N+, every k-qubit unitary operator Uk, and every ε > 0, there exists a

quantum circuit C acting on k qubits such that C has size at most 23k log3 (1/ε) and ‖U(C) − Uk‖ < ε, where

U(C) is the unitary operator associating with C.

Another way to characterize BQP/∗Qpoly may be the use of the mathematical notion of a “supercircuit” —
a superposition of quantum circuits — which can be obtained from Cn incorporated with Un given in Lemma
3.1(2). We leave the details to the avid reader.

The quantum-circuit characterization of BQP/∗poly yields the following non-trivial containment.

Proposition 3.3 BQP/∗Qlog ⊆ BQP/∗poly.

Proof. Assume that A ∈ BQP/∗Qlog. There exist a polynomial-time QTM M and a series {|ψn〉}n∈N of
qustrings of length logarithmic in n such that ProbM [M(|x〉, |ψ|x|〉) 6= A(x)] ≤ 1/6 for every string x. There
exists a family {Cn}n∈N of polynomial-size quantum circuits that simulates M . By Lemma 3.2(1), each |ψn〉
can be approximated to within 1/6 by a certain quantum circuit Dn of size polynomial in n. Combining Cn

with Dn produces a new quantum circuit of polynomial size that recognizes A ∩ Σn. This implies that A
has polynomial-size quantum circuits with error probability at most 1

6 + 1
6 = 1

3 . By Lemma 3.1(1), A is in
BQP/∗poly. 2

Non-uniform quantum circuits also characterize polylogarithmic advice classes. For each positive integer k,
let logk be the collection of all functions f from N to N such that f(n) ≤ c(logn)k + c for any n ∈ N, where
c is a certain nonnegative constant. In early 1990s, Balcázar, Hermo, and Mayordomo [5] showed that P/logk

can be expressed in terms of Boolean circuits whose encodings belong to the resource-bounded Kolmogorov
complexity class K[logk, poly], which is the collection of all languages A such that any string x in A can be
produced deterministically in time polynomial in |x| from a certain string w (called a program) of length at most
f(|x|) for a certain function f ∈ logk. The following lemma naturally expands their result into BQP/∗logk.

Lemma 3.4 Let k ∈ N+. A set A is in BQP/∗logk if and only if there is a non-uniform family {Cn}n∈N of

polynomial-size quantum circuits that recognizes A with probability ≥ 2/3 and satisfies {Code(Cn) | n ∈ N} ∈
K[logk, poly].

Notice that a polynomial-size quantum circuit can be encoded into a string of polynomial length over a
single-letter alphabet. Hence, there is a strong connection between polynomial-size quantum circuits and tally
sets, where a tally set is a subset of {0}∗ or {1}∗. In particular, the collection of all tally sets is represented
as TALLY. Using Lemma 3.1(1), we can establish the following tally characterization of BQP/∗poly, which
expands the classical result P/poly = PTALLY [6]. This lemma also supports the legitimacy of our definition
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BQP/∗F .

Lemma 3.5 BQP/∗poly = BQPTALLY.

The tally characterization of a logarithmic advice class draws special attention. Unlike BQP/∗poly, BQP/∗log
is not closed under even polynomial-time Turing reductions (P-T-reductions, for short) since PBQP/∗log =
BQP/∗poly but BQP/∗poly 6= BQP/∗log. Because of a similar problem on P/log, Ko [16] gave an alternative
definition‡ to a logarithmic advice class, which is now known as Full-P/log [4, 5]. Similarly, we introduce the
new advice class Full-BQP/∗log.

Definition 3.6 Let f be any length function. A set A is in Full-BQP/∗f if there exist a polynomial-time QTM
M and a function h from N to Σ∗ such that, for all n, |h(n)| = f(n) and ProbM [M(x, h(n)) = A(x)] ≥ 2/3
for any string x of length at most n. For a class F of length functions, let Full-BQP/∗F denote the union
⋃

f∈F Full-BQP/∗f .

It is clear from Definition 3.6 that Full-BQP/∗F ⊆ BQP/∗F for any set F of length functions. Now, the
following lemma gives the desired tally characterization of Full-BQP/∗log. Let TALLY2 denote the collection

of all subsets of {02k | k ∈ N} [4].

Lemma 3.7 Full-BQP/∗log = BQPTALLY2.

The proof of Lemma 3.7 is a straightforward modification of the proof for Full-P/log = PTALLY2 [4, 5]. It
immediately follows from the lemma that Full-BQP/∗log is closed under P-T-reductions. Lemma 3.7 will be
used later in Section 6.

4 Power of Quantum Advice

For the efficient use of quantum advice, we want to embed classical information schematically into shorter
quantum advice and retrieve the information using quantum computation with small errors. The following
theorem implies that subpolynomial quantum advice is more useful than classical advice of the same size.
For the theorem, we introduce the following terminology: a function f from N to N is called infinitely-often

polynomially bounded if there is a polynomial p such that f(n) ≤ p(n) for infinitely-many numbers n in N.

Theorem 4.1 Let f be any positive length function. If f is infinitely-often polynomially bounded, then

BQP/∗Q(O(f(n) logn)) * BQP/∗f(n) · n.

By choosing an appropriate f in Theorem 4.1, we obtain the following consequence. Let lin be the collection
of all functions such that f(n) ≤ cn+ c for all n, where c is a certain nonnegative constant. Moreover, the union
of logk for all k ∈ N+ is denoted polylog.

Corollary 4.2 1. BQP/∗log 6= BQP/∗Qlog.
2. BQP/∗Qlog * BQP/∗polylog and hence, BQP/∗polylog 6= BQP/∗Qpolylog.
3. BQP/∗lin 6= BQP/∗Qlin.

To prove Theorem 4.1, we use the notion of quantum fingerprinting introduced by Buhrman, Cleve, Watrous,
and de Wolf [8]. Fingerprinting is a tool in determining the identity of a string with a relatively small error. The
following simple quantum fingerprint given by de Wolf [21] suffices for our proof. Fix n and ε > 0. Let Fn,ε be a
field of size pw(n/ε), where pw(m) is the least prime power larger than m. Note that pw(n/ε) ≤ 2n/ε. For any
string x = x1 · · ·xn of length n, the fingerprint of x is the qustring |φn(x)〉 of length 2dlog(pw(n/ε))e defined by
|φn(x)〉 = 1√

|Fn,ε|

∑

z∈Fn,ε
|z〉|px(z)〉, where px(z) denotes the polynomial px(z) = x1 +x2z+x3z

2 + . . .+xnz
n−1

over Fn,ε.

Proof of Theorem 4.1. Fix an arbitrary polynomial p such that f(n) ≤ p(n) for infinitely-many n in N.
We assume an effective enumeration of polynomial-time QTMs, say M1,M2, . . . We construct by stages the
language L that separates BQP/∗Q(O(f(n) logn)) from BQP/∗f(n)n. At stage 0, let n0 = 0. At stage i ≥ 1,
choose the minimal integer ni such that ni > ni−1, f(ni) ≤ p(ni), and ni > 2(1 + log p(ni)). Consider the

‡Ko [16] originally used the notation Strong-P/log for this advice class.

5



collection Cni of all sets A ⊆ Σni that satisfy the following criteria: there exists a string s ∈ Σf(ni)ni such
that ProbMi [Mi(x, s) = A(x)] ≥ 2/3 for all x ∈ Σni . Note that there are at most 2f(ni)ni such sets. By

contrast, there are exactly
∑2f(ni)

j=0

(

2ni

j

)

subsets of Σni of cardinality at most 2f(ni). Since
∑2f(ni)

j=0

(

2ni

j

)

>
(

2ni

2f(ni)

)2f(ni)

> 2f(ni)ni ≥ |Cni |, we can find a set Lni ⊆ Σni of cardinality at most 2f(ni) that does not belong

to Cni . Choose such a set Lni for each i ∈ N+ and define L =
⋃

i≥1 Lni . Since Lni 6∈ Cni for all i ∈ N+, L is
located outside BQP/∗f(n)n.

To complete the proof, we show that L is within BQP/∗Q(f(n) logn). Write k(n) for 2f(n)n. Fix i and
write n for ni for readability. Take a field Fk(n),1/4 and define g(n) = |0m1〉|φk(n)(y1)〉|φk(n)(y2)〉 · · · |φk(n)(ym)〉
if Ln = {y1, y2, . . . , ym} for a certain number m ≤ 2f(n). Recall that |Fk(n),1/4| ≥ 8nf(n). Consider the
following algorithm A:

Given input (x, g(|x|)), if, for some i ∈ {1, 2, . . . ,m}, the first half part of |φk(n)(yi)〉 is z and px(z)
equals the second half part of |φk(n)(yi)〉, then accept the input. If there is no such i, then reject the
input.

Take any string x of length n. Clearly, if x ∈ Ln, then A always accepts the input in time polynomial in n+g(n).
If x 6∈ Ln, then px 6= pyj for any j ∈ {1, . . . ,m}. Since px and pyj have degree at most n − 1, they agree on
at most n − 1 elements in Fk(n),1/4. Thus, the probability that A erroneously accepts the input is at most

m · n−1
|Fk(n),1/4|

< 1/4. Overall, we can recognizes L with error probability at most 1/4 in polynomial time. Since

f(n) ≤ p(n), the length of quantum advice g(n) is at most f(n)+1+2df(n) log(pw(4f(n)n))e ≤ cf(n) logn+c,
where c is an appropriate constant independent of n. Therefore, we have L ∈ BQP/∗Q(O(f(n) logn)). 2

5 Limitation of Quantum Advice

Quantum fingerprinting demonstrates in Section 4 an efficient way to compress a large volume of classical infor-
mation into relatively-short quantum advice. There is, however, a quantum information theoretical limitation
on such quantum compression. In the following theorem, we claim that quantum advice cannot be made shorter
than classical advice with the multiplicative factor of at least 0.08.

Theorem 5.1 For any positive length function f , P/f * BQP/∗Q(0.08f(n)).

Theorem 5.1 contrasts the result P/f * BQP/∗(f(n) − 1) obtained from Lemma 2.2(5). As a consequence
of Theorem 5.1, we can show the following corollary.

Corollary 5.2 1. P/lin * BQP/∗Qlog
2. P/poly * BQP/∗Qlin and hence BQP/∗Qlog 6= BQP/∗poly.
3. BQP/∗Qlog ( BQP/∗Qlin ( BQP/∗Qpoly.

The proof of Theorem 5.1 requires a lower bound of quantum random access encodings, which were in-
troduced by Ambainis, Nayak, Ta-shma, and Vazirani [3] as a powerful primitive in quantum information
processing. An (n,m, p)-quantum random access encoding is a function f that maps n-bit strings to (pure or
mixed) quantum states over m qubits satisfying the following: for every i ∈ {1, . . . , n}, there is a measurement
Oi with outcome 0 or 1 such that Prob[Oi(f(x)) = xi] ≥ p for all x ∈ Σn. The following lower bound was shown
in [3]. Let H(p) be the binary entropy function defined by H(p) = −p log p− (1 − p) log(1 − p).

Lemma 5.3 [3] Any (n,m, p)-quantum random access encoding satisfies that m ≥ (1 −H(p))n.

We return to the proof of Theorem 5.1.

Proof of Theorem 5.1. Let M1,M2, . . . be an enumeration of polynomial-time QTMs. We build the set
L =

⋃

n∈N Ln by stages. At stage n, consider the set An of all subsets of {x ∈ Σn | x ≤ sf(n)}, where si is
lexicographically the ith string in Σn. Note that An can be viewed as the set of all strings of length f(n): for
each s ∈ Σf(n), let Bs be such that s = B(s1)B(s2) · · ·B(sf(n)). Consider any number m ≥ 1 satisfying the

following: for every s ∈ Σf(n), there exists a qustring |φs〉 ∈ Φm such that ProbMn [Mn(x, |φs〉) = Bs(x)] ≥ 2/3
for all x ∈ Σn. The function g defined as g(s) = |φs〉 for all s ∈ Σf(n) is an (f(n),m, 2/3)-quantum random
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access encoding. Lemma 5.3 yields m ≥ (1−H(1/3))f(n) > 0.08f(n) for all n since f(n) ≥ 1. Therefore, there
exists a string s ∈ Σf(n) such that no qustring |φ〉 in Φm, where m ≤ 0.08f(n), satisfies ProbMn [Mn(x, |φ〉) =
Bs(x)] ≥ 2/3 for all x ∈ Σn. Choose such s and define Ln = Bs. The above construction guarantees that
L 6∈ BQP/∗Q(0.08f(n)). Moreover, since |Ln| ≤ f(n) for all n, it follows that L ∈ P/f . 2

Another application of quantum random access coding yields the existence of a set in EESPACE that does
not belong to BQP/∗Qpoly, where EESPACE is the class of all sets computed by deterministic Turing machines

using 22O(n)

space. Similarly, ESPACE is defined using 2O(n) space.

Theorem 5.4 1. ESPACE * BQP/∗poly.
2. EESPACE * BQP/∗Qpoly.

Theorem 5.4(1) expands Kannan’s result [13] on the existence of a set in the difference ESPACE− P/poly.
The proof of Theorem 5.4(2) combines a diagonalization argument with a lower bound of quantum random
access encodings.

Proof of Theorem 5.4. We first show 2) and later mention how to amend the proof to show 1). LetM1,M2, . . .
be any effective enumeration of all polynomial-time QTMs and let p1, p2, . . . be that of all polynomials. Note
from Lemma 3.2(1) that any qustring of length m can be approximated to within 1/6 by a certain quantum
circuit with input |0m〉 of size at most 22m+6. Consider the following algorithm A that starts with the empty
input and proceeds by stages.

At stage 0, set Q = Ø. At stage n ≥ 1, first enumerate all numbers in {1, 2, . . . , n}\Q in the increasing
order. For each of such numbers m, we carry out the following procedure. At round m = 〈i, j〉, for

each quantum circuit D of size at most 22pi(n)+6 acting on pi(n) qubits, compute z
(m)
D = z1 · · · z2n as

follows. For each k (1 ≤ k ≤ 2n), let zk be the outcome of Mj on input (sk, D|0pi(n)〉) with probability

at least 5/6, where sk is lexicographically the kth string in Σn. If some zk does not exist, then let z
(m)
D

be undefined and go to next D. After all D’s are examined, consider the set Z of all z
(m)
D ’s (which are

defined). If both Z = Σn and m < n, then go to next round m+ 1. Assume otherwise. If m = n then
output ⊥, or else output the minimal z not in Z and let Q = Q ∪ {m}. Go to next stage n+ 1.

Now, we show that Q eventually equals N. Assume otherwise. Let m = 〈i, j〉 be the minimal number not in Q.
Take any sufficiently large number n0 and assume that, at any stage n ≥ n0, A always checks Mj at its first

round. This happens when Σn equals the set of all z
(m)
D ’s for all n ≥ n0. Hence, for every length n ≥ n0 and

every set A ⊆ Σn, there exists a qustring |φn,A〉 of length pi(n) such that ProbMi [Mi(x, |φn,A〉) = A(x)] ≥ 2/3
for all x ∈ Σn. Letting A[n] = A(0n)A(0n−11) · · ·A(1n) for each n, we define f(A[n]) = |φn,A〉. Since f is a
(2n, pi(n), 2/3)-quantum random access encoding, Lemma 5.3 implies that pi(n) ≥ (1 −H(1/3))2n > 0.08 · 2n

for all n ≥ n0, a contradiction. Therefore, Q = N.
The desired language L is defined as follows: x ∈ L if and only if A outputs a binary string whose kth bit is

1 at stage |x|, assuming that x is the kth string in Σ|x|. The algorithm A ensures that L is not in BQP/∗Qpoly.
It is easy to show that L is computed using space 2O(2n).

1) We modify the above proof in the following way. Since advice is classical, we need to consider only strings
of length pi(n) instead of quantum circuits of size 22pi(n)+6. This makes the whole construction done using
computation space at most 2O(n). In addition, a simple counting argument suffices for the proof for Q = N. 2

6 Roles of Amplitudes as Advice

Amplitudes can be viewed as a resource given to quantum computation. We can hide meaningful information
within amplitudes and recover it using a certain type of quantum computation. Adleman, DeMarrais, and
Huang [2] first demonstrated how to hide such information and proved that BQPC properly includes BQP,
which equals BQPQ. We further claim that amplitudes may play a role of logarithmic advice. What we actually
prove is that BQPC is located between Full-BQP/∗log and BQP/∗log3.

Theorem 6.1 Full-BQP/∗log ⊆ BQPC ⊆ BQP/∗log3.
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Proof. The first inclusion is shown in the following fashion. It is sufficient to prove that TALLY2 ⊆ BQPC

since Full-BQP/∗log = BQPTALLY2 ⊆ BQPBQP
C = BQPC by Lemma 3.7. Assume that L is any set in TALLY2.

We encode L into the real number θL = 2π(
∑∞

n=1
h(n)
8n ), where h(n) = (−1)1−L(02n

). Consider the QTM M
that carries out the following algorithm.

Given input x, reject x if x 6= 02k

for all k ∈ N. If x = 02k

, then prepare the state |0〉 and conduct
the transformation |0〉 7→ cos(8kθL + π/4)|0〉 + sin(8kθL + π/4)|1〉. Note that k = log |x|. After the
measurement of this qubit, if the result is 1 then accept x or else reject x.

A similar argument as in the proof of Theorem 5.1 in [2] shows that, on any input x, M outputs L(x) in
polynomial time with probability at least 2/3. This concludes that L is indeed in BQPC.

Next, we show the second inclusion. Let L be any set in BQPC recognized by a polynomial-time QTMM with
error probability at most 2−n together with its amplitudes chosen from C. Let p be any polynomial that bounds
the running time of M . Since the transition function of M is a finite function, it induces the corresponding
unitary operator acting over a finite-dimensional Hilbert space. Let U(M) denote this unitary operator. By
choosing k = dim(U(M)) and ε = 2−n in Lemma 3.2(2), we obtain a family of quantum circuits {Cn | n ∈ N}
of size O(log3 n) such that each Cn implements a unitary matrix U(Cn) satisfying ||U(Cn)−U(M)|| ≤ 1/3p(n).
Note that all single-qubit gates in Cn have polynomial-time computable numbers as their components. With
the help of the encoding Code(Cn) as an advice string, we can simulate M with error probability at most
p(n) · 1

3p(n) ≤ 1/3 in polynomial time. This implies that L is in BQP/∗log3. 2

Theorem 6.1 leads to the following direct consequence.

Corollary 6.2 Let F ∈ {polylog, lin, poly}.
1. BQPC ( BQP/∗polylog.
2. BQPQ/

∗F = BQPC/
∗F and BQPQ/

∗QF = BQPC/
∗QF .

The proof of Corollary 6.2(2) needs the fact that BQPQ/
∗F = BQP/∗F and BQPQ/

∗QF = BQP/∗QF for
any set F . In Theorem 6.1, however, we cannot replace Full-BQP/∗log by BQP/∗log or even BQP/∗1.

Proposition 6.3 BQP/∗1 * BQPC and thus, BQP/∗log * BQPC.

Proof. Assume that BQP/∗1 ⊆ BQPC. Recall from Lemma 3.5 that BQP/∗poly = BQPTALLY. Since

TALLY ⊆ BQP/∗1, it follows that BQP/∗poly = BQPTALLY ⊆ BQPBQP/∗1 ⊆ BQPBQP
C = BQPC. Hence, we

obtain BQPC = BQP/∗poly, which contradicts Corollary 6.2(1). 2

7 Epilogue

We have proven four main theorems, Theorems 4.1, 5.1, 5.4, and 6.1, each of which yields the separations
among advice complexity classes BQP/∗F and BQP/∗QF , where F ⊆ poly, and space complexity classes.
The following diagram summarizes relationships among BQP/∗F , BQP/∗QF , and P/F . The arrow A → B
indicates that B includes A. The broken arrow A 6→ B means that B does not include A.

C

BQP
Full-BQP/  log

BQP/  log

BQP/  lin

BQP/  poly

BQP/  Qpoly

BQP/  Qlog*

*

*

*

*

BQP/  Qlin*

*

P/poly

P/lin

P/log

BQP

ESPACE

EESPACE
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