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Abstract

We give the first exponential separation between quantum and bounded-error ran-
domized one-way communication complexity. Specifically, we define the Hidden Match-
ing Problem HMn: Alice gets as input a string x ∈ {0, 1}n and Bob gets a perfect
matching M on the n coordinates. Bob’s goal is to output a tuple 〈i, j, b〉 such that the
edge (i, j) belongs to the matching M and b = xi ⊕ xj. We prove that the quantum
one-way communication complexity of HMn is O(log n), yet any randomized one-way
protocol with bounded error must use Ω(

√
n) bits of communication. No asymptotic

gap for one-way communication was previously known. Our bounds also hold in the
model of Simultaneous Messages (SM) and hence we provide the first exponential sep-
aration between quantum SM and randomized SM with public coins.

For a Boolean decision version of HMn, we show that the quantum one-way commu-
nication complexity remains O(log n) and that the 0-error randomized one-way com-
munication complexity is Ω(n). We prove that any randomized linear one-way protocol
with bounded error for this problem requires Ω( 3

√
n log n) bits of communication.

∗Part of this work was done while the author was visiting IBM Almaden Research Center.
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1 Introduction

The investigation of the strength and limitations of quantum computing has become an

important field of study in theoretical computer science. The celebrated algorithm of Shor

[Sho97] for factoring numbers in polynomial time on a quantum computer gives strong ev-

idence that quantum computers are more powerful than classical ones. The further study

of the relationship between quantum and classical computing in models like black-box com-

putation, communication complexity, and interactive proof systems help towards a better

understanding of quantum and classical computing.

In this paper we answer an open question about the relative power of quantum one-way

communication protocols. We describe a problem which can be solved by a quantum one-way

communication protocol exponentially faster than any classical one. No asymptotic gap was

previously known. We prove a similar result in the model of Simultaneous Messages.

Communication complexity is a central model of computation with numerous applica-

tions. It has been used for proving lower bounds in many areas including Boolean circuits,

time-space tradeoffs, data structures, automata, formulae size, etc. Examples of these ap-

plications can be found in the textbook of Kushilevitz and Nisan [KN97]. A communication

complexity problem is defined by three sets X, Y, Z and a relation R⊆ X × Y × Z. The

two players, Alice and Bob, are given inputs x ∈ X and y ∈ Y respectively. Their goal

is to output an answer z ∈ Z, such that (x, y, z) ∈ R. The communication complexity of

the problem is the number of bits Alice and Bob must exchange in the best protocol that

outputs such an answer z, for the worst case inputs x, y. The two players have unlimited

computational power. The model of communication complexity for functions was introduced

by Yao [Yao79] and was generalized to relations by Karchmer and Wigderson [KW90]. One

important special case of the above model is one-way communication complexity, where Alice

is allowed to send a single message to Bob, after which Bob computes the output. Simulta-

neous Messages (SM) is a variant in which Alice and Bob cannot communicate directly with

each other; instead, each of them sends a single message to a third party, the “referee”, who

announces the output based on the two messages.

Depending on the kind of allowed protocols we can define different measures of commu-

nication complexity for a problem P. The classical deterministic communication complexity

of P is the number of bits exchanged during the execution of the optimal deterministic

protocol for P. In a bounded-error randomized protocol with error probability δ > 0, both

players have access to public random coins and the output of the protocol is required to be

correct with probability at least 1 − δ. The cost of such a protocol is the number of bits

Alice and Bob exchange on the worst-case choice of inputs and of values for the random

coins. The randomized communication complexity of P (w.r.t. δ) is the cost of the optimal
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randomized protocol for P. In a 0-error randomized protocol (a.k.a. Las Vegas protocol)

the players need to output the correct value with probability 1. The cost of such a protocol

is the expected number of bits Alice and Bob exchange on the worst-case choice of inputs.

These complexity measures can also be specialized by restricting the communication model

to be SM or one-way communication. An interesing variant for randomized protocols in the

SM model is when the random coins are restricted to be private1.

The definition of quantum communication complexity is due to Yao [Yao93]. Similarly

to the classical case, quantum communication complexity, apart from being of interest in

itself, has been used to prove bounds on quantum formulae size, automata, data structures,

etc. (e.g., [Yao93, Kla00, SV01]). In this setting, Alice and Bob hold qubits, some of

which are initialized to the input. In a communication round, each player can perform

some arbitrary unitary operation on his/her part of the qubits and send some of them to

the other player. At the end of the protocol they perform a measurement and decide on

an outcome. The output of the protocol is required to be correct with probability 1 − δ,

for some δ > 0. The quantum communication complexity of P is the number of qubits

exchanged in the optimal bounded-error quantum protocol for P. It can be shown that the

quantum communication is as powerful as bounded-error randomized communication with

private coins2, even when restricted to variants such as one-way communication and SM.

It is a natural and important question to ask whether quantum channels can significantly

reduce the amount of communication necessary to solve certain problems.

It is known that randomized one-way communication protocols can be much more efficient

than deterministic protocols. For example, the equality function can be solved by a O(1)

randomized one-way protocol, though its deterministic one-way communication complexity is

Ω(n) (cf. [KN97]). However, the question of whether quantum one-way communication could

be exponentially more efficient than the randomized one remained open. We resolve this in

the affirmative, by exhibiting a problem for which the quantum complexity is exponentially

smaller than the randomized one.

1.1 Related work

The area of quantum communication complexity was introduced by Yao [Yao93]. Since

then, a series of papers have investigated the power and limitations of quantum communi-

cation complexity. Buhrman, Cleve, and Wigderson [BCW98] described a relation R with

deterministic communication complexity of Θ(n) and 0-error quantum communication com-

1The difference in complexity between public and private coins for the other models is only
O(log n) [New91].

2As noted earlier, the distinction between public and private coins is significant only for the SM model.
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plexity of Θ(log n). However, the bounded-error randomized communication complexity of

this problem is O(1). An exponential separation with respect to bounded-error randomized

protocols was given by Ambainis et al. [AST+03] in the so called sampling model. However,

the separation does not hold in the presence of public coins. Buhrman et al. [BCWdW01]

were able to solve the equality problem in the SM model with a quantum protocol of com-

plexity O(logn) rather than the Θ(
√
n) bits necessary in any bounded-error randomized SM

protocol with private coins [NS96, BK97]. Again, if we allow the players to share random

coins, then equality can be solved classically with O(1) communication.

Ran Raz [Raz99] was the first to show an exponential gap between the quantum and the

bounded-error public-coin randomized communication complexity models. He described a

relation P1 with an efficient quantum protocol of complexity O(logn). He then proved a

lower bound of Ω(n1/4) on the classical randomized communication complexity of P1. Since

the quantum protocol given for P1 uses two rounds, the separation holds only for protocols

that use two rounds or more. The definition of P1 was motivated, in part, by another

relation P0. The latter was first introduced by Kremer [Kre95] who showed that P0 is a

complete problem for quantum one-way communication complexity (in particular, it has a

O(logn) quantum one-way protocol). However, no lower bound is given for the one-way

randomized communication complexity of P0. Proving an exponential separation of classical

and quantum one-way communication complexity has been an open question since.

Klauck [Kla00] proved that the 0-error quantum one-way communication complexity of

total functions (i.e., problems R ⊆ X × Y × Z, for which every x ∈ X and y ∈ Y have

exactly one z ∈ Z with (x, y, z) ∈ R) is equal to the classical deterministic one. It is still an

open question whether for total functions quantum and bounded-error randomized one-way

communication complexity are polynomially related.

Subsequent to our work, Aaronson [Aar04] showed that for any Boolean function f ,

the deterministic one-way communication complexity of f is O(log |Y | · Q1(f) · logQ1(f)),

where Q1(f) is the bounded-error quantum one-way communication complexity of f ; namely,

if the given communication problem is a Boolean function in which Bob’s domain is small,

then deterministic one-way communication complexity is almost as efficient as bounded-error

quantum one-way communication complexity.

1.2 Our results

Our main result is the definition and analysis of the communication complexity of the Hid-

den Matching Problem. This provides the first exponential separation between quantum and

classical one-way communication complexity.
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The Hidden Matching Problem:

Let n be a positive even integer. In the Hidden Matching Problem, denoted HMn, Alice

is given x ∈ {0, 1}n and Bob is given M ∈ Mn (Mn denotes the family of all possible

perfect matchings on n nodes). Their goal is to output a tuple 〈i, j, b〉 such that the edge

(i, j) belongs to the matching M and b = xi ⊕ xj.

This problem is new and we believe that its definition plays the major role in obtain-

ing our result. The inspiration comes from the recent work by Kerenidis and de Wolf on

Locally Decodable Codes [KdW03]. Let us give the intuition why this problem is hard for

communication complexity protocols. Suppose (to make the problem even easier) that Bob’s

matching M is restricted to be one of n fixed disjoint matchings on x. Bob’s goal is to find

the value of xi⊕xj for some (i, j) ∈M . However, since Alice has no information about which

matching Bob has, her message needs to contain information about the parity of at least one

pair from each matching. Hence, she needs to communicate parities of Ω(n) different pairs

to Bob. It can be shown that such message must be of size Ω(
√
n). In Section 5 we turn this

intuition into a proof for the randomized one-way communication complexity of HMn. We

also show that our lower bound is tight by describing a randomized one-way protocol with

communication O(
√
n). In this protocol, Alice just sends O(

√
n) random bits of her input.

By the birthday paradox, with high probability, Bob can recover the value of at least one of

his matching pairs from Alice’s message.

Remarkably, this problem remains easy for quantum one-way communication. Alice only

needs to send a uniform superposition of her string x, hence communicating only log n qubits.

Bob can perform a measurement on this superposition which depends on the matching M

and then output the parity of some pair in M . In Section 4 we describe the quantum protocol

in more detail.

In section 6 we show that HMn also provides the first exponential separation between

quantum SM and randomized SM with public coins. Previously such a bound was known

only in the private coins model.

Our main result exhibits a separation between quantum and classical one-way commu-

nication complexity for a relation. Ideally, one would like to prove such a separation for the

most basic type of problems—total Boolean functions. The best known separation between

quantum and classical communication complexity (even for an arbitrary number of rounds)

for such functions is only quadratic [BCW98]. In fact, it is very conceivable that for total

functions, the two models are polynomially related. Raz’s result [Raz99] shows an exponen-

tial gap for a partial Boolean function (i.e., a Boolean function that is defined only on a

subset of the domain X × Y) and for two-way communication protocols.
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We consider a partial Boolean function induced by the Hidden Matching Problem, de-

fined below. In the definition we view each matching M ∈ Mn as an n
2
× n edge-vertex

incidence matrix. For two Boolean vectors v,w, we denote by v⊕w the vector obtained by

xoring v and w coordinate-wise. For a bit b ∈ {0, 1}, we denote by b the vector all of whose

entries are b.

The Boolean Hidden Matching Problem:

Let n be a positive even integer. In the Boolean Hidden Matching Problem, denoted

BHMn, Alice is given x ∈ {0, 1}n and Bob is given M ∈ Mn and w ∈ {0, 1}n/2, which satisfy

the following promise: either Mx⊕w = 1 (a Yes instance) or Mx⊕w = 0 (a No instance).

The same quantum protocol that solves HMn also solves BHMn with O(logn) qubits.

We were unable to extend the randomized lower bound for HMn to a similar lower bound for

BHMn. Yet, we believe that BHMn should also exhibit an exponential gap in its quantum

and classical one-way communication complexity. We give a strong indication of that with

two lower bounds. First, we prove an Ω(n) lower bound on the 0-error randomized one-way

communication complexity of BHMn. We then show that a natural class of randomized

bounded-error protocols require Ω̃( 3
√
n) bits of communication to compute BHMn. The

protocols we refer to are linear ; that is, Alice and Bob use the public coins to choose a

random matrix A, and Alice’s message on input x is simply Ax. These protocols are

natural for our problem, because what Bob needs to compute is a linear transformation of

Alice’s input. In particular, the O(
√
n) communication protocol that we described earlier is

trivially a linear protocol. Generalizing this lower bound to the case of non-linear randomized

protocols remains an open problem. These results are described in Section 7.

2 Preliminaries

2.1 Information theory

Throughout the paper we use basic notions and facts from information theory, which we

briefly review next. We refer the reader to the textbook of Cover and Thomas [CT91] for

details and proofs.

We deal only with finite discrete probability spaces. The distribution of a random variable

X is denoted by µX , and let µX(x)
def
= Pr[X = x]. The entropy of X (or, equivalently, of µX)

is H(X)
def
=

∑

x∈X µX(x) log 1
µX (x)

, where X is the domain of X. The entropy of a Bernoulli

random variable with probability of success p is called the binary entropy function of p and is

denoted H2(p). The joint entropy of X and Y is the entropy of the joint distribution µXY of
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X and Y . The conditional entropy of X given an event A, denoted H(X|A), is the entropy

of the conditional distribution of µX given A. The conditional entropy of X given Y is

H(X|Y )
def
=

∑

y∈Y µY (y) H(X|Y = y), where Y is the domain of Y . The mutual information

between X and Y is I(X;Y )
def
= H(X) − H(X|Y ) = H(Y ) − H(Y |X). The conditional

mutual information between X and Y given Z is I(X;Y |Z) = H(X|Z) − H(X|Y, Z) =

H(Y |Z) − H(Y |X,Z).

Some basic properties of entropy and mutual information we are using in this paper are

the following.

Theorem 2.1. Let X, Y, Z be random variables.

1. H(X) ≤ log |X |, where X is the domain of X. Equality holds iff X is uniform on X .

2. Conditioning reduces entropy: H(X|Y ) ≤ H(X). Equality holds iff X, Y are indepen-

dent.

3. Data processing inequality: For any function f ,

I(X; f(Y )) ≤ I(X;Y ).

4. Chain rule for mutual information:

I(X;Y, Z) = I(X;Y ) + I(X;Z|Y ).

5. I(X;Y ) = 0 iff X, Y are independent.

6. If X, Y are jointly independent of Z, then I(X;Y |Z) = I(X;Y ).

7. For any positive integers n and m ≤ n/2,
∑m

i=0

(

n
i

)

≤ 2nH2(m/n).

We will also use the following theorems:

Theorem 2.2 (Fano’s inequality). Let X be a binary random variable, and let Y be any

random variable on a domain Y. Let f : Y → {0, 1} be a prediction function, which tries to

predict the value of X based on an observation of Y . Let δ
def
= Pr(f(Y ) 6= X) be the error

probability of the prediction function. Then, H2(δ) ≥ H(X|Y ).

Theorem 2.3. Let C ⊆ {0, 1}∗ be a finite prefix-free code (i.e., no codeword in C is a prefix

of any other codeword in C). Let X be a random variable corresponding to a uniformly

chosen codeword in C. Then, H(X) ≤ E(|X|).

7



2.2 Quantum computation

We explain the standard notation of quantum computing and describe the basic notions that

will be useful in this paper. For more details we refer the reader to the textbook of Nielsen

and Chuang [NC00].

Let H denote a 2-dimensional complex vector space, equipped with the standard inner

product. We pick an orthonormal basis for this space, label the two basis vectors |0〉 and |1〉,
and for simplicity identify them with the vectors

(

1
0

)

and

(

0
1

)

, respectively. A qubit

is a unit length vector in this space, and so can be expressed as a linear combination of the

basis states:

α0|0〉 + α1|1〉 =

(

α0

α1

)

.

Here α0, α1 are complex amplitudes, and |α0|2 + |α1|2 = 1.

An m-qubit system is a unit vector in the m-fold tensor space H⊗· · ·⊗H. The 2m basis

states of this space are the m-fold tensor products of the states |0〉 and |1〉. For example, the

basis states of a 2-qubit system are the four 4-dimensional unit vectors |0〉 ⊗ |0〉, |0〉 ⊗ |1〉,
|1〉 ⊗ |0〉, and |1〉 ⊗ |1〉. We abbreviate, e.g., |1〉 ⊗ |0〉 to |0〉|1〉, or |1, 0〉, or |10〉, or even |2〉
(since 2 is 10 in binary). With these basis states, an m-qubit state |φ〉 is a 2m-dimensional

complex unit vector

|φ〉 =
∑

i∈{0,1}m

αi|i〉.

We use 〈φ| = |φ〉∗ to denote the conjugate transpose of the vector |φ〉, and 〈φ|ψ〉 = 〈φ|·|ψ〉 for

the inner product between states |φ〉 and |ψ〉. These two states are orthogonal if 〈φ|ψ〉 = 0.

The norm of |φ〉 is ‖φ‖ =
√

〈φ|φ〉.
Let |φ〉 be an m-qubit state and B = {|b1〉, . . . , |b2m〉} an orthonormal basis of the m-

qubit space. A measurement of the state |φ〉 in the B basis means that we apply the

projection operators Pi = |bi〉〈bi| to |φ〉. The resulting quantum state is |bi〉 with probability

pi = |〈φ|bi〉|2.

3 The Hidden Matching Problem and complete prob-

lems for one-way communication

Kremer [Kre95] defined a complete problem for quantum one-way communication complex-

ity of Boolean functions. This problem was also considered by Raz [Raz99].

The Problem P0(θ): Alice gets as input a unit vector x ∈ Rn. Bob gets as input two

orthogonal vector-spaces M0,M1 ⊆ Rn of dimension n/2 each. Bob’s goal is to output 0 if x
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is of distance ≤ θ from M0 and 1 if x is of distance ≤ θ from M1, (and any answer otherwise).

This problem is complete for the class of Boolean functions whose quantum one-way

communication complexity is polylog(n).

We generalize this problem for the case of non-Boolean functions f : X × Y → [n].

The Problem Q0(θ): Alice gets as input a unit vector x ∈ Rn. Let M0,M1 ⊆ Rn be

two orthogonal vector-spaces of size n/2. Bob gets as input an orthonormal basis B =

{b1, . . . ,bn} of Rn with the property that the basis vectors bi’s can be partitioned into a

basis for M0 and a basis for M1. However, this partition is unknown to Alice and Bob. Bob’s

goal is to output a value in {i | bi ∈ M0} if x is of distance ≤ θ from M0 and a value in

{i | bi ∈M1} if x is of distance ≤ θ from M1, (and any answer otherwise).

We can prove the following:

Theorem 3.1. For any 0 ≤ θ < 1/
√

2, the problem Q0(θ) is complete for the class of

relations R ⊆ X × Y ×Z whose quantum one-way communication complexity is polylog(n).

Proof. We first show that the problem can be solved efficiently by a quantum one-way

Protocol. Alice just encodes the unit vector x ∈ Rn by logn qubits and sends this to

Bob. Bob measures in the basis B. If x is of distance ≤ θ from M0 the answer will be in

{i|bi ∈ M0} with probability ≥ 1 − θ2. If x is of distance ≤ θ from M1 the answer will be

an {i|bi ∈M1} with probability ≥ 1 − θ2.

Next, we want to reduce any problem R ⊆ X × Y × Z with one-way communication d

to the problem Q0(θ) with input size n = 2O(d) and 0 < θ < 1/
√

2. In any protocol Alice

applies some unitary operation U on the initial state |0〉 that depends on the input x and Bob

measures in some basis B of Rn. Let x′ be the unit vector U |0〉. Since the communication

is d, x′ lies in R2O(d)
(see also page 9, first comment in [Raz99]). Then, x′ and the basis B

can be used as the inputs in Q0(θ).

Hence, the lower bound we obtain for the problem HMn translates into a lower bound

for the complete problem Q0(θ). Also, the lower bounds we prove for the Boolean Hidden

Matching Problem translate into bounds for the complete Boolean problem P0(θ).

4 The quantum upper bound

We present a quantum protocol for the hidden matching problem with communication com-

plexity of logn qubits. Let x = x1 . . . xn be Alice’s input and M ∈ Mn be Bob’s input.
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Quantum protocol for HMn

1. Alice sends the state |ψ〉 = 1√
n

∑n
i=1(−1)xi|i〉.

2. Bob performs a measurement on the state |ψ〉 in the orthonormal basis

B = { 1√
2
(|k〉 ± |`〉) | (k, `) ∈M}.

The probability that the outcome of the measurement is a basis state 1√
2
(|k〉 + |`〉) is

|〈ψ| 1√
2
(|k〉 + |`〉)〉|2 =

1

2n
((−1)xk + (−1)x`)2.

This equals to 2/n if xk ⊕ x` = 0 and 0 otherwise. Similarly for the states 1√
2
(|k〉 − |`〉) we

have that |〈ψ| 1√
2
(|k〉 − |`〉)〉|2 is 0 if xk⊕x` = 0 and 2/n if xk⊕x` = 1. Hence, if the outcome

of the measurement is a state 1√
2
(|k〉+ |`〉) then Bob knows with certainty that xk ⊕ x` = 0

and outputs 〈k, `, 0〉. If the outcome is a state 1√
2
(|k〉 − |`〉) then Bob knows with certainty

that xk ⊕ x` = 1 and hence outputs 〈k, `, 1〉. Note that the measurement depends only on

Bob’s input and that the algorithm is 0-error.

Remark : As mentioned above, the inspiration for this problem comes from Locally De-

codable Codes. A 2-query Locally Decodable Code is a code C : {0, 1}n → {0, 1}m with the

property that for every index k ∈ [n] there exists a matching Mk on the coordinates of C(x),

such that for every pair (i, j) ∈ Mk, xk = fC(k, i, j, C(x)i ⊕ C(x)j); here, fC is a fixed func-

tion depending only on the code C. We can cast this problem as a communication problem,

by letting Alice have the codeword C(x) and Bob have the index k and the corresponding

matching Mk, and the goal is to output xk = fC(k, i, j, C(x)i ⊕ C(x)j) for some (i, j) ∈Mk.

This gives rise to our Hidden Matching Problem. The above mentioned quantum algorithm

is based on the fact that a uniform superposition of C(x) is sufficient to compute the parity of

some pair in the matching. The same property was used by Kerenidis and de Wolf [KdW03]

to prove a lower bound on the length of classical 2-query Locally Decodable Codes.

5 The randomized lower bound

Theorem 5.1. Any one-way randomized protocol for computing HMn with error probability

less than 1/16 requires Ω(
√
n) bits of communication.

Proof. Using Yao’s Lemma [Yao83], in order to prove the lower bound, it suffices to construct

a “hard” distribution µ over instances of HMn, and prove a distributional lower bound w.r.t.
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deterministic one-way protocols. We define µ as follows: let X be a uniformly chosen bitstring

in {0, 1}n; let M be an independent and uniformly chosen perfect matching in M, where

M is any set of m = Ω(n) pairwise edge-disjoint matchings. (For example, let m = n/2 and

M = {M1,M2, . . . ,Mm}, where Mi is defined by the edge set {(j,m + (j + i) mod m) | j =

0, . . . , m− 1}.)
In the proof we use the following simple fact, which is proved using Markov’s inequality:

Proposition 5.2. Let X be a random variable with values in the interval [0, 1]. If E[X] ≥
1 − ε, then for any t ≥ 1, Pr[X ≥ 1 − tε] ≥ 1 − 1/t.

Let Π be a deterministic protocol for this problem with (distributional) error δ < 1/16

with respect to µ.

Define the 2n ×m protocol matrix P whose rows and columns are indexed by the inputs

x to Alice and inputs M to Bob, respectively. The entry at (x,M) is the output 〈i, j, b〉 of Π

on (x,M). We will assume, without loss of generality, that (i, j) ∈ M , thus an error occurs

at (x,M) only when b 6= xi ⊕ xj. When this happens we say that the entry of P at (x,M)

is incorrect.

For any possible message τ of Alice, let Sτ denote the set of Alice’s inputs on which she

sends τ . The weight of τ is defined to be the fraction |Sτ |/2n. We call τ good, if at least

1− 2δ fraction of the entries in the submatrix Sτ ×M of P are correct. By Proposition 5.2,

the total weight of good τ ’s is at least 1/2. For any such τ , we will show that its weight is at

most 2−Ω(
√

n). It would follow that the number of good τ ’s is at least (1/2)/2−Ω(
√

n) = 2Ω(
√

n),

and therefore the communication cost of Π has to be at least Ω(
√
n). For the rest of the

proof fix such a τ .

Each entry in P consists of an edge and a bit.t Therefore, any row of P defines a graph

obtained by taking the m edges in that row, and a vector in {0, 1}m corresponding to the

bits in that row. Since Π is a one-round protocol, the output depends only on τ and Bob’s

input. It follows that the rows of P corresponding to inputs in Sτ are associated with the

same graph G = Gτ and the same vector u = uτ .

Recall that since τ is good, the fraction of correct entries in the submatrix Sτ ×M is at

least 1 − 2δ. By another application of Proposition 5.2, it follows that for at least half of

the columns in this submatrix, the fraction of correct entries in any such column is at least

1 − 4δ. Let G′ denote the set of edges associated with these columns. Thus, |G′| ≥ m/2.

We next show that G′ contains a forest with Ω(
√
m) = Ω(

√
n) edges. Let C1, C2, . . . , Cs

be the connected components of G′, and let b1, b2, ..., bs be the number of edges they have

(b1 + b2 + ... + bs = |G′|). Ci has at least Ω(
√
bi) nodes, and thus has a spanning tree with

Ω(
√
bi) edges. Therefore, G′ contains a forest F with at least

∑

i Ω(
√
bi) = Ω(

√
m) edges,

using the fact that
√
u+

√
v ≥ √

u+ v.
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Consider now the submatrix Sτ × F . Since F is a subgraph of G′, at least 1 − 4δ of the

entries in this submatrix are correct. Thus, by Proposition 5.2, at least 1/2 of the rows have

the property that at least 1 − 8δ fraction of the entries in each such row are correct. Call

these rows S ′
τ .

Let N denote the n× |F | vertex-edge incidence matrix of F , and let v ∈ {0, 1}|F | denote

the projection of u on F . For any x ∈ {0, 1}n, the vector xN taken over GF [2] is of

length |F |. If the i-th coordinate corresponds to the edge (j, k), then the value of xN at

this coordinate equals xj ⊕ xk. Any input x ∈ S ′
τ therefore satisfies h(xN,v) ≤ 8δ, where

h(·, ·) denotes the relative Hamming distance. If W = {w : h(w,v) ≤ 8δ}, it follows that

S ′
τ ⊆ ⋃

w∈W{x : xN = w}.
Since F is a forest, the columns of N are linearly independent over GF [2], implying that

the null space {z : zN = 0} has dimension n− |F |. Therefore, for any w ∈ W , the number

of solutions x such that xN = w is at most 2n−|F |. By the estimate given in Theorem

2.1, part (8), |W | ≤ 2|F |·H2(8δ), where H2(·) denotes the binary entropy function. Thus,

|S ′
τ | ≤ 2n−|F |(1−H2(8δ)).

Recall that |F | = Ω(
√
n) and that |S ′

τ | ≥ |Sτ |/2. We conclude that the weight of Sτ ,

|Sτ |/2n, is at most 2|S ′
τ |/2n ≤ 21−|F |(1−H2(8δ)) = 2−Ω(

√
n), as needed.

We next describe a public-coin randomized protocol of complexity O(
√
n) for HMn. Alice

uses the shared random string to pick
√
n locations in [n] and sends the corresponding bits

to Bob. Standard calculation shows that these bits include the end-points of at least one

edge of the matching with constant probability. This shows that our lower bound is tight

and thus:

Theorem 5.3. The randomized one-way communication complexity of HMn is Θ(
√
n).

6 An exponential separation for Simultaneous Mes-

sages

Recall that in the model of Simultaneous Messages (SM), Alice and Bob both send a single

message to a Referee, after which he computes the output. We prove an exponential separa-

tion in this model between quantum and public-coin randomized communication complexity.

To this end, we use a restricted version of the Hidden Matching problem, in which Bob’s

input is not any perfect matching on n vertices, but rather only one of m = Ω(n) fixed

matchings (Alice, Bob, and referee know this collection of m matchings a priori). We denote

this problem by HMsmall
n .

12



The lower bound we proved for HMn in the model of one-way communication (Theorem

5.1) is in fact a lower bound for HMsmall
n . This lower bound holds also in the SM model

since this model is no more powerful than one-way communication. On the other hand,

the problem is still easy in the quantum case. Bob sends the index of his matching to the

Referee using log n bits and Alice sends a superposition of her input string using log n qubits,

similarly to the one-way protocol. Since the referee knows Bob’s matching, he can perform

the same measurement Bob performed in the one-way protocol and compute the XOR of

some pair in the matching.

7 The complexity of Boolean Hidden Matching

The O(logn) qubit quantum protocol for HMn can be tweaked to solve also BHMn: after

obtaining the value 〈k, `, c〉 from that protocol, where (k, `) is the i-th pair in Bob’s input

matching M , Bob outputs wi ⊕ c. Note that if c = xk ⊕ x`, then wi ⊕ c equals the desired

bit b.

7.1 Lower bound for 0-error protocols

In order to prove the lower bound for 0-error protocols, we note the following characterization

of 0-error randomized one-way communication complexity of partial functions. Let f :

X × Y → {0, 1, ∗} be a partial Boolean function. We say that the input (x, y) is legal, if

f(x, y) 6= ∗. A protocol for f is required to be correct only on legal inputs; it is allowed to

output arbitrary answers on illegal inputs. The confusion graph Gf of f is a graph whose

vertex set is X ; (x, x′) is an edge in Gf if and only if there exists a y such that both (x, y)

and (x′, y) are legal inputs and f(x, y) 6= f(x′, y).

It is known [KN97] that the deterministic one-way communication complexity of f is

logχ(Gf) + O(1), where χ(Gf) is the chromatic number of the graph Gf . We will obtain

a lower bound on the 0-error randomized one-way communication complexity via another

measure on Gf . For any graph G = (V,E), let

θ(G) = max
W⊆V

|W |
α(GW )

,

where GW is the subgraph of G induced on W and α(GW ) is the independence number of

GW . It is easy to see that χ(G) ≥ θ(G). The following theorem shows that θ(Gf) is a lower

bound on the 0-error communication complexity of f .

Theorem 7.1. The 0-error randomized one-way communication complexity of any partial

Boolean function f is at least log θ(Gf).
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Proof. Let Gf = (V,E) and let W ⊆ V achieve the maximum for θ(Gf ). Define µ to be the

uniform distribution on W .

Suppose Π is a randomized 0-error one-way protocol for f with public randomness R,

and whose cost is c + 1 (Bob just outputs a bit which is the last bit of the transcript). Let

A(x, R) be the message sent by Alice on input x, and let B(τ, y, R) be the output of the

protocol given by Bob on input y when the message sent by Alice is τ . For any legal input

(x, y), we have E[|A(x,R)|] ≤ c, and Pr[B(A(x,R), y, R) = f(x, y)] = 1.

Let X be a random input for Alice whose distribution is µ. Then E[|A(X,R)|] ≤ c,

where the randomness is now over both X and R. Therefore, there exists a choice r∗ for

R such that E[|A(X, r∗)|] ≤ c. Define a deterministic protocol where A′(x) = A(x, r∗) and

B′(τ, y) = B(τ, y, r∗). Note that this protocol correctly computes f and E[|A′(X)|] ≤ c. Let

T be the set of messages sent by Alice in this new protocol. For any message τ ∈ T , define

Sτ = {x ∈ W : A′(x) = τ}. By the definition of Gf , it follows that Sτ is an independent set,

so |Sτ | ≤ α(GW ). Therefore, the entropy of the random variable A′(X) satisfies:

H(A′(X)) =
∑

τ∈T

|Sτ |
|W | log

( |W |
|Sτ |

)

≥
∑

τ∈T

|Sτ |
|W | log

( |W |
α(GW )

)

= log θ(Gf ), (1)

because the Sτ ’s partition W .

Finally, if we assume that the messages are prefix-free (which can be achieved with a

constant factor blow-up in the communication cost), then E[|A′(X)|] ≥ H(A′(X)) (Theorem

2.3). It follows from Equation 1 that c ≥ log θ(Gf).

We use this characterization to prove the lower bound for BHMn:

Theorem 7.2. Let n = 4p, where p is prime. Then, the 0-error randomized one-way

communication complexity of BHMn is Ω(n).

Proof. Let f denote the partial function BHMn. The vertex set of the confusion graph Gf

is {0, 1}n. We next show that (x,x′) is an edge in Gf if and only if the Hamming distance

between x and x′ is exactly n/2.

Suppose (x,x′) is an edge in Gf . Therefore, there exists a matching M and a vector w, so

that Mx⊕w = 0 and Mx′⊕w = 1, or vice versa. That means that for every edge (i, j) ∈M ,

xi ⊕ xj 6= x′i ⊕ x′j, and thus x,x′ agree on one of the position i, j and disagree on the other.

Hence, the Hamming distance between x and x′ is exactly n/2. Conversely, given two strings

x,x′ of Hamming distance n/2, let M be any matching between the positions on which x,x′

agree and the positions on which they disagree. Let w = Mx. Clearly, Mx ⊕ w = 0. For

each edge (i, j) in M we have xi ⊕xj 6= x′i ⊕x′j, and therefore Mx′⊕w = 1, implying (x,x′)

is an edge in Gf .
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If n/2 is odd, Gf is the bipartite graph between the even and odd parity vertices. There-

fore, Gf is 2-colorable, implying that f has a O(1) protocol (Alice just sends the parity of

her input). We will show that the situation changes dramatically when n is a multiple of 4.

Proposition 7.3 (Frankl and Wilson [FW81]). Let m = 4p − 1, where p is prime.

Define the graph G = (V,E) where V = {A ⊆ [m] : |A| = 2p − 1}, and (A,B) ∈ E if and

only if |A ∩ B| = p− 1. Then,

α(G) ≤
p−1
∑

i=0

(

m

i

)

.

Let m = 4p− 1 and let G be the graph defined by Proposition 7.3. We claim that G is

isomorphic to a vertex-induced subgraph of the confusion graph Gf : for every vertex A in

G, the corresponding vertex in Gf is the characteristic vector of the set A ∪ {4p}. Let V

denote the vertex set of G; it follows that θ(Gf) ≥ |V |/α(G).

We have, |V | =
(

m
2p−1

)

≈ 2m/
√
m, and by Proposition 7.3, α(G) ≤ 2mH2(γ), where H2 is

the binary entropy function and γ = (p − 1)/(4p − 1) ≤ 1/4. The result now follows from

Theorem 7.1.

7.2 Lower bound for linear randomized protocols

Theorem 7.4. Let n be a positive integer multiple of 4, and let 0 < δ < 1/2 be a constant

bounded away from 1/2. Then, any δ-error public-coin one-way linear protocol for BHMn

requires Ω( 3
√
n logn) bits of communication.

Proof. Using Yao’s Lemma [Yao83], in order to prove the lower bound, it suffices to construct

a “hard” distribution µ over instances of BHMn, and prove a distributional lower bound w.r.t.

deterministic one-way linear protocols. We define µ as follows: let X be a uniformly chosen

bitstring in {0, 1}n; let M be a uniformly chosen perfect matching in Mn; and let B be a

uniformly chosen bit. W is a random bitstring in {0, 1}n/2, defined as W
def
= MX⊕B (recall

that B is the vector all of whose entries are B).

Let Π be any deterministic one-way linear protocol that has error probability of at most

δ when solving BHMn on inputs drawn according to µ. Let c be the communication cost of

Π.

Since Π is deterministic, one-way, and linear, there exists a fixed c × n Boolean matrix

A, such that the message of Π on any input x is Ax. By adding at most one bit to the

communication cost of Π, we can assume 1 is one of the rows of A. We also assume, without

loss of generality, that A has a full row rank, because otherwise Alice sends redundant

information, which Bob can figure out by himself.
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We assume c satisfies c3/ log c ≤ 3n/4, since, otherwise, c ≥ Ω( 3
√
n log n), and we are

done.

For a matrix T , we denote by sp(T ) the span of the row vectors of T over the field GF (2).

Clearly, for any matrix T , 0 ∈ sp(T ). In particular, 0 ∈ sp(M) ∩ sp(A), for any matching

M ∈ Mn (recall that we view a matching M as an n
2
× n edge-vertex incidence matrix). By

our assumption about A, 1 ∈ sp(A). Since M is a perfect matching, the sum of its rows is

1, thus 1 ∈ sp(M). We conclude that for any M , {0, 1} ⊆ sp(M) ∩ sp(A). Let Z be an

indicator random variable of the event {sp(M)∩ sp(A) = {0, 1}}, meaning that 0 and 1 are

the only vectors in the intersection of the spans.

In the protocol Π, Bob observes values of the random variables AX,M, and W and

uses them to predict the random variable B with error probability δ. Therefore, by Fano’s

inequality (Theorem 2.2),

H2(δ) ≥ H(B | AX,M,W). (2)

Since conditioning reduces entropy,

H(B | AX,M,W) ≥ H(B | AX,M,W, Z)

= H(B | AX,M,W, Z = 1) · Pr(Z = 1) + H(B | AX,M,W, Z = 0) · Pr(Z = 0)

≥ H(B | AX,M,W, Z = 1) · Pr(Z = 1). (3)

The following two lemmas bound the two factors in the last expression:

Lemma 7.5. H(B | AX,M,W, Z = 1) = 1.

Lemma 7.6. Pr(Z = 1) ≥ 1 −O( c3

n log c
).

The proofs of the Lemma 7.5 and 7.6 are provided below. Let us first show how the two

lemmas derive the theorem. By combining Equations 2 and 3, and Lemmas 7.5 and 7.6, we

have:

H2(δ) ≥ 1 − O(
c3

n log c
).

Therefore,

c ≥ Ω( 3
√

n(1 −H2(δ)) · log(n(1 −H2(δ)))) = Ω( 3
√

n log n),

since H2(δ) is a constant bounded away from 1. This completes the proof of the theorem.

of Lemma 7.5. Recall that we assume 1 is one of the rows of A and that A has a full row

rank. Let A′ be the submatrix of A consisting of all the rows of A, except 1. Clearly,

sp(A′) ⊆ sp(A) and 1 6∈ sp(A′). It follows that the event {sp(M) ∩ sp(A) = {0, 1}} is the

same as the event {sp(M) ∩ sp(A′) = {0}}. Thus, from now on we will think of Z as an

indicator random variable of the latter.
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Observe that since n is a multiple of 4, the parity of the bits of w always equals to the

parity of the bits of x. It follows that in the pair of random variables (AX,W) the same

information (that is, the random variable 1 ·X) is repeated twice. We can therefore rewrite

H(B | AX,M,W, Z = 1) as H(B | A′X,M,W, Z = 1).

By the definition of mutual information,

H(B | A′X,M,W, Z = 1) = H(B | M,W, Z = 1) − I(B ; A′X | M,W, Z = 1).

The next proposition shows that the random variables B,M, and W are mutually indepen-

dent given the event {Z = 1}, implying that H(B | M,W, Z = 1) = H(B|Z = 1) = H(B) =

1. Thus, in order to prove the lemma it would suffice to show that I(B ; A′X | M,W, Z =

1) = 0.

Proposition 7.7. The random variables B,M, and W are mutually independent, given the

event {Z = 1}.

Proof. We will show the random variables B,M, and W are mutually independent uncon-

ditionally. This independence would then hold even given the event {Z = 1}, because this

event is a function of M only.

The random variables B and M are independent, by definition. Let M be any value

of the random variable M, and let b be any value of the random variable B. In order

to show the desired independence, we need to prove that for any possible value w of W,

Pr(W = w | M = M,B = b) = Pr(W = w).

Using conditional probability, we can rewrite Pr(W = w | M = M,B = b) as follows:

Pr(W = w | M = M,B = b) =

=
∑

x∈{0,1}n

Pr(W = w | M = M,B = b,X = x) · Pr(X = x | M = M,B = b).

Since X,M,and B are mutually independent by definition, then Pr(X = x | M = M,B =

b) = Pr(X = x) = 1/2n. Pr(W = w | M = M,B = b,X = x) = 1 only if w = Mx ⊕ b, and

it is 0 otherwise. The number of x’s that satisfy this condition is the number of solutions

to the linear system Mx = w ⊕ b over Zn
2 . Since M is an n

2
× n matrix that has a full row

rank, this number is 2n/2. Therefore, Pr(W = w | M = M,B = b) = 2n/2/2n = 1/2n/2.

Consider now the quantity Pr(W = w). Using conditional probability we can rewrite it

as:

Pr(W = w) =
∑

M,b

Pr(W = w | M = M,B = b) · Pr(M = M,B = b).

We already proved that for all M and b, Pr(W = w | M = M,B = b) = 1/2n/2. Therefore,

also Pr(W = w) = 1/2n/2, completing the proof.
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Next we prove I(B ; A′X | M,W, Z = 1) = 0. By the chain rule for mutual information,

I(B,M,W ; A′X | Z = 1) = I(M,W ; A′X | Z = 1) + I(B ; A′X | M,W, Z = 1).

Since mutual information is always a non-negative quantity, it would thus suffice to show

that I(B,M,W ; A′X | Z = 1) = 0.

The function f(b,M,w) = (b,M,w ⊕ b) is a 1-1 function. Note that f(B,M,W) =

(B,M,W⊕B) = (B,M,MX). Therefore, by the data processing inequality (applied using

both f and f−1), we have:

I(B,M,W ; A′X | Z = 1) = I(B,M,MX ; A′X | Z = 1).

Using again the chain rule for mutual information we have:

I(B,M,MX ; A′X | Z = 1) = (4)

I(B,M ; A′X | Z = 1) + I(MX ; A′X | B,M, Z = 1).

We next show that each of the above mutual information quantities is 0. By the definition

of the input distribution µ, the random variables B,M, and X are mutually independent.

This holds even given the event {Z = 1}, because the latter is a function of M only. It

follows that also B,M, A′X are mutually independent given the event {Z = 1}, and thus

I(B,M ; A′X | Z = 1) = 0.

As for the second mutual information quantity on the RHS of Equation 4, we use again

the independence of B,M, and A′X given {Z = 1} to derive I(MX ; A′X | B,M, Z =

1) = I(MX ; A′X | M, Z = 1). The following proposition proves that for any matching M

satisfying the condition indicated by the event {Z = 1}, the random variables MX and A′X

are independent. It then follows that I(MX ; A′X | M, Z = 1) = 0.

Proposition 7.8. For any matching M ∈ Mn satisfying the condition sp(M)∩sp(A′) = {0},
the random variables MX and A′X are independent.

Proof. Let z be any possible value for the random variable MX and let y be any possible

value for the random variable A′X. In order to prove the independence, we need to show

that Pr(MX = z | A′X = y) = Pr(MX = z).

M is an n
2
×n Boolean matrix that has a full row rank. Therefore, the number of solutions

to the linear system Mx = z over Zn
2 is exactly 2n/2. Recall that X was chosen uniformly

at random from Zn
2 . Therefore, Pr(MX = z) = 1/2n/2.

By the definition of conditional probability, Pr(MX = z | A′X = y) = Pr(MX =

z, A′X = y)/Pr(A′X = y). Since A′ is a (c− 1)×n Boolean matrix and has a full row rank,

the same argument as above shows that Pr(A′X = y) = 1/2n−c+1. Let D be an (n
2
+c−1)×n
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matrix, which is composed by putting M on top of A′. Since sp(M) ∩ sp(A′) = {0}, D
is has a full row rank. We thus obtain Pr(MX = z, A′X = y) = Pr(DX = (z,y)) =

1/2n/2−c+1. Hence, Pr(MX = z | A′X = y) = 2n/2−c+1/2n−c+1 = 1/2n/2 = Pr(MX = z).

The proposition follows.

This completes the proof of Lemma 7.5.

of Lemma 7.6. Denote the event {sp(M) ∩ sp(A) 6= {0, 1}} by E. We would like to prove

Pr(E) ≤ O(c3/(n log c)). For 0 ≤ k ≤ n, define spk(A) to be the vectors in sp(A) whose

Hamming weight is k. Define Ek to be the event {sp(M)∩ spk(A) 6= ∅}. Since sp0(A) = {0}
and spn(A) = {1}, the event E can be rewritten as

∨n−1
k=1 Ek. Thus, using the union bound,

we can bound the probability of E as follows:

Pr(E) ≤
n−1
∑

k=1

Pr(sp(M) ∩ spk(A) 6= ∅). (5)

Let M be any matching in Mn. Any vector v in sp(M), when viewed as a set S
v

(i.e., v is

the characteristic vector of S
v
), is a disjoint union of edges from M . We thus immediately

conclude that v has to have an even Hamming weight. This implies that for all odd 1 ≤ k ≤
n− 1,

Pr(sp(M) ∩ spk(A) 6= ∅) = 0. (6)

Consider then an even k, and let v be any vector in spk(A). If v belongs to sp(M), then M

can be partitioned into two perfect “sub-matchings”: a perfect matching on S
v

and perfect

matching on [n] \ S
v
. We conclude that the number of matchings M in Mn, for which

v ∈ sp(M), is exactly mk ·mn−k, where m` is the number of perfect matchings on ` nodes.

Note that m` = `!
(`/2)!2`/2 , and thus,

Pr(v ∈ sp(M)) =
mk ·mn−k

mn

=

(n
2
k
2

)

(

n
k

) .

It follows, by the union bound, that for any even k,

Pr(sp(M) ∩ spk(A) 6= ∅) ≤ | spk(A)| ·
(n

2
k
2

)

(

n
k

) . (7)

Since 1 ∈ sp(A), then | spk(A)| = | spn−k(A)|, for all 0 ≤ k ≤ n. Combining this and

Equations 5, 6, and 7, it would thus suffice to prove the following:

n/4
∑

j=1

| sp2j(A)| ·
(n

2
j

)

(

n
2j

) ≤ O(
c3

n log c
). (8)
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We start by bounding the ratio in each of the terms:
(n

2
j

)

(

n
2j

) =
(n

2
)! · (2j)! · (n− 2j)!

(n
2
− j)! · j! · n!

=
n
2
· · · (n

2
− j + 1) · (2j) · · · (j + 1)

n · · · (n− 2j + 1)

≤ (
1

2
)j · ( 2j

n− j
)j = (

j

n− j
)j ≤ (

4j

3n
)j. (9)

The last inequality follows from the fact j ≤ n/4. We next bound | sp2j(A)| for small values

of j:

Proposition 7.9. For every 1 ≤ j ≤ bc/2c, | sp2j(A)| ≤ ∑2j
i=1

(

c
i

)

.

Proof. Using just the elementary row operations of Gaussian Elimination, we can transform

A into a matrix A′, which has exactly the same span as A, and that has the c × c identity

matrix as a submatrix. (Recall that A has a full row rank.) It follows that any linear

combination of t rows of A′ results in a vector of Hamming weight at least t. Therefore, the

only linear combinations to give vectors in sp2j(A) are ones that use at most 2j rows of A′.

The proposition follows, since the number of the latter is
∑2j

i=1

(

c
i

)

.

We conclude that for 1 ≤ j ≤ bc/2c, | sp2j(A)| ≤ ∑2j
i=1 c

i = c2j−1
c−1

· c ≤ 2c2j (assuming

c ≥ 2). On the other hand, we have for all 1 ≤ j ≤ n/4, | sp2j(A)| ≤ | sp(A)| ≤ 2c. Note

that the quantity 2c2j exceeds 2c, when j ≥ c−1
2 log c

. We thus define `
def
= b c−1

2 log c
c and break the

sum on the RHS of Equation 8, which we need to bound, into two parts as follows:

n/4
∑

j=1

| sp2j(A)| ·
(n

2
j

)

(

n
2j

) =
∑̀

j=1

| sp2j(A)| ·
(n

2
j

)

(

n
2j

) +

n/4
∑

j=`+1

| sp2j(A)| ·
(n

2
j

)

(

n
2j

)

≤
∑̀

j=1

(2c2j) · ( 4j

3n
)j + 2c · max

`<j≤n/4
(
4j

3n
)j. (10)

The last inequality follows from Equation 9, from Proposition 7.9, and from the fact
∑n/4

j=`+1 | sp2j(A)| ≤
| sp(A)| ≤ 2c. We bound each of the terms on the RHS of Equation 10 separately. We start

with the first one:

∑̀

j=1

(2c2j) · ( 4j

3n
)j = 2 ·

∑̀

j=1

(
4c2j

3n
)j ≤ 2 ·

∑̀

j=1

(
4c2`

3n
)j

Recall that we assumed c3/ log c ≤ 3n/4. Hence, 4c2`/(3n) ≤ 2c3/(3n log c) ≤ 1/2. We can

thus bound the geometric series as follows:

2 ·
∑̀

j=1

(
4c2`

3n
)j ≤ 2 · 4c2`

3n
· 1

1 − 4c2`
3n

≤ 16c2`

3n
≤ 8c3

3n log c
. (11)

We now turn to bounding the second term on the RHS of Equation 10.
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Proposition 7.10. The function g(j) = (aj)j, where a > 0, has a local minimum at j∗ = 1
ae

in the interval (0,∞).

Proof. We rewrite g as follows: g(j) = ej ln(aj). The derivative of g is the following:

g′(j) = ej ln(aj) · (ln(aj) + 1).

Thus, g has a local extremum at j∗ = 1
ae

. We next verify it is a local minimum. The second

derivative of g is the following:

g′′(j) = g′(j) · (ln(aj) + 1) + g(j) · 1

j
= g(j) · ((ln(aj) + 1)2 +

1

j
).

Since g is positive in the interval (0,∞), then g′′(j) > 0 for all j in this interval. In particular,

g′′(j∗) > 0, implying j∗ is a local minimum.

Proposition 7.10 shows that the function g(j) = (aj)j has a local minimum at j∗ = 1
ae

in the interval (0,∞). In our case a = 4
3n

, and thus j∗ = 3n/(4e) ≥ n/4. Therefore the

maximum of ( 4j
3n

)j in the interval [`, n/4] is obtained at j = `. We conclude that:

2c · max
`<j≤n/4

(
4j

3n
)j ≤ 2c · ( 4`

3n
)` ≤ 2c · ( 2c

3n log c
)

c
2 log c ≤ (

4c

3n log c
)c

≤ (
2c

n
)c ≤ c

n
≤ c3

n log c
. (12)

In the next to the last inequality we used the fact 2 ≤ c ≤ n/4. Combining Equations 10,

11, and 12, we have

n/4
∑

j=1

| sp2j(A)| ·
(n

2
j

)

(

n
2j

) ≤ 8c3

3n log c
+

c3

n log c
≤ O(

c3

n log c
).

This completes the proof of Lemma 7.6.

8 Open problems

The main question in quantum communication complexity is to characterize its power in

relation to classical communication complexity. For partial Boolean functions it was known

that quantum two-way communication complexity could be exponentially lower than the

classical one [Raz99]. Here we prove a similar result even for one-way communication com-

plexity. The main open question is what is the relationship between quantum and classical

communication complexity for total functions. Are they polynomially related for all total
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functions? Is this relationship even tighter in the case of one-way communication complexity?

Moreover, can we show an exponential separation between quantum one-way communication

complexity and randomized two-way communication complexity?

It is also very intriguing to study the connection between quantum one-way communi-

cation complexity and quantum advice and proofs. For example, can our result be used to

prove an oracle separation between the classes BQP/poly and BQP/qpoly or between QMA

and QCMA?
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