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There have been three beautiful recent results on constructing short locally decodable codes or
LDCs [Yek07, Rag07, Efr09], culminating in the construction of LDCs of subexponential length.
The initial breakthrough was due to Yekhanin who constructed 3-query LDCs of sub-exponential
length, assuming the existence of infinitely many Mersenne primes [Yek07]. Raghavendra presented
a clean formulation of Yekhanin’s codes in terms of group homomorphisms [Rag07]. Building on
these works, Efremenko recently gave an elegant construction of 3-query LDCs which achieve sub-
exponential length unconditionally [Efr09].

In this note, we observe that Efremenko’s construction can be viewed in the framework of Reed-
Muller codes: the code consists of a linear subspace of (multilinear) polynomials in Fq[X1, . . . , Xn],
evaluated at all points in (F?

q)n. We stress that this is not a new construction, but just a different
view of [Efr09]. In this view, the decoding algorithm is similar to traditional local decoders for
Reed-Muller codes, where the decoder essentially shoots a line in a random direction and decodes
along it (see for instance [STV01]). The difference is that the monomials which are used are not of
low-degree, they are chosen according to a suitable set-system. Further, the lines for decoding are
multiplicative, a notion we will define shortly.

The Code Construction. Let Fq be a finite field with q elements, F?
q its multiplicative group,

and let m = |F?
q |. We think of q and m as constants (say 7 and 6 for concreteness). Given L ⊂ Zm

and an integer x, we say x ∈ L mod m if x mod m ∈ L.

Definition 1. Let L ⊆ Zm \ {0}. A set system F consisting of subsets of a universe [n] is said to
be L-intersecting if the following conditions hold:

• For every set S ∈ F , |S| ≡ 0 mod m.

• For every S 6= T ∈ F , |S ∩ T | ∈ L mod m.

If m is a prime power, then |F| can be at most polynomial in n [Gop06]. For composite m with
two or more prime factors, Grolmusz shows that |F| can be super-polynomial in n [Gro00].

Lemma 2. If m has t distinct prime factors, then there is an (explicit) L-intersecting family F of
subsets of [n] such that ` = |L| ≤ 2t − 1 and f = |F| ≥ exp

(
(log n)t

(log log n)t−1

)
.

We now describe the code CF .

• Message Space: For each set S ∈ F , define a monomial XS =
∏

i∈S Xi. The messages in
CF correspond to polynomials of the form P (X) =

∑
S∈F λSXS where λS ∈ Fq.
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• Encoding: The encoding is the evaluation of the polynomial P at all points in (F?
q)n.

It follows that CF is linear over Fq, it has dimension f and length (q − 1)n. We will give a local
decoder for it with query complexity `+ 1.

The Local Decoder. Let γ be a generator of F?
q . Let B = {γc|c ∈ L} ⊂ F?

q . Note that 1 6∈ B.
For a scalar λ ∈ Fq, a vector a ∈ (F?

q)n, and T ⊂ [n] let λ �S a denote the vector obtained by
multiplying co-ordinates of a in S by λ (and leaving the rest unchanged).

The following lemma is the key to decoding.

Lemma 3. Let S, T ∈ F . Then for any i ≥ 0,

• XS(γi �S a) = XS(a)

• XT (γi �S a) = µiXT (a) where µ = γ|S∩T | ∈ B.

Proof. We prove the claim when i = 1, the case of general i follows by repeated application of this
claim. It is easy to see that XT (γ �S a) = γ|S∩T |XS(a). If S = T , then |S ∩ T | = |S| ≡ 0 mod m,
hence γ|S∩T | = 1. Whereas if S 6= T , then γ|S∩T | = µ ∈ B.

Let us define the multiplicative line through a ∈ (F?
q)n in the direction S ⊆ [n] as the set of

points {a, γ �S a, γ
2�S a, . . .}. Lemma 3 says that XS is the unique monomial that stays constant

along this line. The decoder uses this to recover λS . We need the following claim from [Efr09]

Claim 4. There exist c0, . . . , c` ∈ Fq such that
∑`

i=0 ci = 1 and
∑`

i=0 ciµ
i = 0 for µ ∈ B.

The cis are the coefficients of a univariate polynomial that vanishes on B, suitably rescaled.
We now state the decoding algorithm. The algorithm has query access to P and is given S ∈ F

as input. The goal is to return λS .

1. Pick a ∈ (F?
q)n at random, query the values P (a), P (γ �S a), . . . , P (γ` �S a).

2. Return (
∑`

i=0 ciPi(λi �S a)) · (XS(a)−1).

In step 2, the algorithm needs to compute XS(a)−1, which is easy given S and a.

Theorem 5. The Decoding Algorithm returns the coefficient λS.

Proof. We have∑̀
i=0

ciPi(γi �S a) =
∑̀
i=0

ci
∑
T∈F

λTXT (γi �S a) =
∑
T∈F

λT

∑̀
i=0

ciXT (γi �S a)

=
∑

T∈F ;T 6=S

λT

∑̀
i=0

ciµ
iXT (a) + λS

`−1∑
i=0

ciXS(a) (1)

=
∑

T∈F ;T 6=S

λTXT (a)
∑̀
i=0

ciµ
i + λSXS(a)

∑̀
i=0

ci

= λSXS(a) (2)

where Equation 1 uses Lemma 3, and Equation 2 uses Claim 4. We note that µ = γ|S∩T | in
Equation 1 depends on the monomial T , but we suppress this for notational clarity.
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With Grolmusz’s construction, the code CF gives encoding length (q−1)n, dimension f = nω(1)
and query complexity 2t. Put differently, messages of length k are encoded by codewords of length
exp(exp(O((log k)

1
t (log log k)1−

1
t ))), which can be decoded using 2t queries.

Summary. A better construction of set-systems with restricted intersections will give LDCs with
better parameters. The set-system construction due to Grolmusz in turn uses low-degree poly-
nomials representing the OR function on {0, 1}n modulo composites, which were discovered by
Barrington et al. [BBR94]. These polynomials have now found diverse combinatorial applications;
LDCs, set-systems and Ramsey graphs to name a few, yet there is an exponential gap in the known
degree bounds for these polynomials [Gop06]. There is also no strong evidence for what the right
bound should be. We pose closing this gap as a natural open question.
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