# A note on Efremenko's Locally Decodable Codes 

Parikshit Gopalan<br>MSR-Silicon Valley<br>parik@microsoft.com

There have been three beautiful recent results on constructing short locally decodable codes or LDCs [Yek07, Rag07, Efr09], culminating in the construction of LDCs of subexponential length. The initial breakthrough was due to Yekhanin who constructed 3 -query LDCs of sub-exponential length, assuming the existence of infinitely many Mersenne primes [Yek07]. Raghavendra presented a clean formulation of Yekhanin's codes in terms of group homomorphisms [Rag07]. Building on these works, Efremenko recently gave an elegant construction of 3-query LDCs which achieve subexponential length unconditionally [Efr09].

In this note, we observe that Efremenko's construction can be viewed in the framework of ReedMuller codes: the code consists of a linear subspace of (multilinear) polynomials in $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$, evaluated at all points in $\left(\mathbb{F}_{q}^{\star}\right)^{n}$. We stress that this is not a new construction, but just a different view of [Efr09]. In this view, the decoding algorithm is similar to traditional local decoders for Reed-Muller codes, where the decoder essentially shoots a line in a random direction and decodes along it (see for instance [STV01]). The difference is that the monomials which are used are not of low-degree, they are chosen according to a suitable set-system. Further, the lines for decoding are multiplicative, a notion we will define shortly.

The Code Construction. Let $\mathbb{F}_{q}$ be a finite field with $q$ elements, $\mathbb{F}_{q}^{\star}$ its multiplicative group, and let $m=\left|\mathbb{F}_{q}^{\star}\right|$. We think of $q$ and $m$ as constants (say 7 and 6 for concreteness). Given $L \subset \mathbb{Z}_{m}$ and an integer $x$, we say $x \in L \bmod m$ if $x \bmod m \in L$.

Definition 1. Let $L \subseteq \mathbb{Z}_{m} \backslash\{0\}$. A set system $\mathcal{F}$ consisting of subsets of a universe $[n]$ is said to be $L$-intersecting if the following conditions hold:

- For every set $S \in \mathcal{F},|S| \equiv 0 \bmod m$.
- For every $S \neq T \in \mathcal{F},|S \cap T| \in L \bmod m$.

If $m$ is a prime power, then $|\mathcal{F}|$ can be at most polynomial in $n$ [Gop06]. For composite $m$ with two or more prime factors, Grolmusz shows that $|\mathcal{F}|$ can be super-polynomial in $n$ [Gro00].

Lemma 2. If $m$ has $t$ distinct prime factors, then there is an (explicit) L-intersecting family $\mathcal{F}$ of subsets of $[n]$ such that $\ell=|L| \leq 2^{t}-1$ and $f=|\mathcal{F}| \geq \exp \left(\frac{(\log n)^{t}}{(\log \log n)^{t-1}}\right)$.

We now describe the code $\mathcal{C}_{\mathcal{F}}$.

- Message Space: For each set $S \in \mathcal{F}$, define a monomial $X_{S}=\prod_{i \in S} X_{i}$. The messages in $\mathcal{C}_{\mathcal{F}}$ correspond to polynomials of the form $P(X)=\sum_{S \in \mathcal{F}} \lambda_{S} X_{S}$ where $\lambda_{S} \in \mathbb{F}_{q}$.
- Encoding: The encoding is the evaluation of the polynomial $P$ at all points in $\left(\mathbb{F}_{q}^{\star}\right)^{n}$.

It follows that $\mathcal{C}_{\mathcal{F}}$ is linear over $\mathbb{F}_{q}$, it has dimension $f$ and length $(q-1)^{n}$. We will give a local decoder for it with query complexity $\ell+1$.

The Local Decoder. Let $\gamma$ be a generator of $\mathbb{F}_{q}^{\star}$. Let $B=\left\{\gamma^{c} \mid c \in L\right\} \subset \mathbb{F}_{q}^{\star}$. Note that $1 \notin B$. For a scalar $\lambda \in \mathbb{F}_{q}$, a vector $a \in\left(\mathbb{F}_{q}^{\star}\right)^{n}$, and $T \subset[n]$ let $\lambda \odot_{S} a$ denote the vector obtained by multiplying co-ordinates of $a$ in $S$ by $\lambda$ (and leaving the rest unchanged).

The following lemma is the key to decoding.
Lemma 3. Let $S, T \in \mathcal{F}$. Then for any $i \geq 0$,

- $X_{S}\left(\gamma^{i} \odot_{S} a\right)=X_{S}(a)$
- $X_{T}\left(\gamma^{i} \odot_{S} a\right)=\mu^{i} X_{T}(a)$ where $\mu=\gamma^{|S \cap T|} \in B$.

Proof. We prove the claim when $i=1$, the case of general $i$ follows by repeated application of this claim. It is easy to see that $X_{T}\left(\gamma \odot_{S} a\right)=\gamma^{|S \cap T|} X_{S}(a)$. If $S=T$, then $|S \cap T|=|S| \equiv 0 \bmod m$, hence $\gamma^{|S \cap T|}=1$. Whereas if $S \neq T$, then $\gamma^{|S \cap T|}=\mu \in B$.

Let us define the multiplicative line through $a \in\left(\mathbb{F}_{q}^{\star}\right)^{n}$ in the direction $S \subseteq[n]$ as the set of points $\left\{a, \gamma \odot_{S} a, \gamma^{2} \odot_{S} a, \ldots\right\}$. Lemma 3 says that $X_{S}$ is the unique monomial that stays constant along this line. The decoder uses this to recover $\lambda_{S}$. We need the following claim from [Efr09]
Claim 4. There exist $c_{0}, \ldots, c_{\ell} \in \mathbb{F}_{q}$ such that $\sum_{i=0}^{\ell} c_{i}=1$ and $\sum_{i=0}^{\ell} c_{i} \mu^{i}=0$ for $\mu \in B$.
The $c_{i}$ s are the coefficients of a univariate polynomial that vanishes on $B$, suitably rescaled.
We now state the decoding algorithm. The algorithm has query access to $P$ and is given $S \in \mathcal{F}$ as input. The goal is to return $\lambda_{S}$.

1. Pick $a \in\left(\mathbb{F}_{q}^{\star}\right)^{n}$ at random, query the values $P(a), P\left(\gamma \odot_{S} a\right), \ldots, P\left(\gamma^{\ell} \odot_{S} a\right)$.
2. Return $\left(\sum_{i=0}^{\ell} c_{i} P_{i}\left(\lambda^{i} \odot_{S} a\right)\right) \cdot\left(X_{S}(a)^{-1}\right)$.

In step 2, the algorithm needs to compute $X_{S}(a)^{-1}$, which is easy given $S$ and $a$.
Theorem 5. The Decoding Algorithm returns the coefficient $\lambda_{S}$.
Proof. We have

$$
\begin{align*}
\sum_{i=0}^{\ell} c_{i} P_{i}\left(\gamma^{i} \odot_{S} a\right) & =\sum_{i=0}^{\ell} c_{i} \sum_{T \in \mathcal{F}} \lambda_{T} X_{T}\left(\gamma^{i} \odot_{S} a\right)=\sum_{T \in \mathcal{F}} \lambda_{T} \sum_{i=0}^{\ell} c_{i} X_{T}\left(\gamma^{i} \odot_{S} a\right) \\
& =\sum_{T \in \mathcal{F} ; T \neq S} \lambda_{T} \sum_{i=0}^{\ell} c_{i} \mu^{i} X_{T}(a)+\lambda_{S} \sum_{i=0}^{\ell-1} c_{i} X_{S}(a)  \tag{1}\\
& =\sum_{T \in \mathcal{F} ; T \neq S} \lambda_{T} X_{T}(a) \sum_{i=0}^{\ell} c_{i} \mu^{i}+\lambda_{S} X_{S}(a) \sum_{i=0}^{\ell} c_{i} \\
& =\lambda_{S} X_{S}(a) \tag{2}
\end{align*}
$$

where Equation 1 uses Lemma 3, and Equation 2 uses Claim 4. We note that $\mu=\gamma^{|S \cap T|}$ in Equation 1 depends on the monomial $T$, but we suppress this for notational clarity.

With Grolmusz's construction, the code $\mathcal{C}_{\mathcal{F}}$ gives encoding length $(q-1)^{n}$, dimension $f=n^{\omega}(1)$ and query complexity $2^{t}$. Put differently, messages of length $k$ are encoded by codewords of length $\exp \left(\exp \left(O\left((\log k)^{\frac{1}{t}}(\log \log k)^{1-\frac{1}{t}}\right)\right)\right)$, which can be decoded using $2^{t}$ queries.

Summary. A better construction of set-systems with restricted intersections will give LDCs with better parameters. The set-system construction due to Grolmusz in turn uses low-degree polynomials representing the OR function on $\{0,1\}^{n}$ modulo composites, which were discovered by Barrington et al. [BBR94]. These polynomials have now found diverse combinatorial applications; LDCs, set-systems and Ramsey graphs to name a few, yet there is an exponential gap in the known degree bounds for these polynomials [Gop06]. There is also no strong evidence for what the right bound should be. We pose closing this gap as a natural open question.

Acknowledgments. I thank Venkatesan Guruswami, Prasad Raghavendra, Sergey Yekhanin and Klim Efremenko for useful discussions, and Sergey again for encouraging me to write this note.

## References

[BBR94] David A. Barrington, Richard Beigel, and Steven Rudich. Representing Boolean functions as polynomials modulo composite numbers. Computational Complexity, 4:367-382, 1994. 3
[Efr09] Klim Efremenko. 3-query locally decodable codes of subexponential length. In Proceedings of the $41^{\text {st }}$ Annual ACM Symposium on Theory of Computing (STOC'09), pages 39-44, 2009. 1, 2
[Gop06] Parikshit Gopalan. Computing with Polynomials over Composites. PhD thesis, Georgia Institute of Technology, 2006. 1, 3
[Gro00] Vince Grolmusz. Superpolynomial size set-systems with restricted intersections mod 6 and explicit Ramsey graphs. Combinatorica, 20(1):71-86, 2000. 1
[Rag07] Prasad Raghavendra. A note on Yekhanin's locally decodable codes. Electronic Colloqium on Computational Complexity (ECCC), TR07-016, 2007. 1
[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the XOR lemma. J. Comput. Syst. Sci., 62(2):236-266, 2001. 1
[Yek07] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. Journal of ACM, pages 1-16, 2007. 1

