
Accelerated Slide- and LLL-Reduction

Claus Peter Schnorr

Fachbereich Informatik und Mathematik,
Goethe-Universität Frankfurt, PSF 111932,

D-60054 Frankfurt am Main, Germany.
schnorr@cs.uni-frankfurt.de

April 13, 2011

Abstract. Given an LLL-basis B of dimension n = hk we accelerate slide-reduction with blocksize
k to run under a reasonable assumption in 1

6
n2h log1+ε α local SVP-computations in dimension k,

where α ≥ 4
3

measures the quality of the given LLL-basis and ε is the quality of slide-reduction. If the
given basis B is already slide-reduced for blocksize k/2 then the number of local SVP-computations
for slide-reduction with blocksize k reduces to 2

3
h3(1+log1+ε γk/2). This bound is polynomial for ar-

bitrary bit-length of B, it improves previous bounds considerably. We also accelerate LLL-reduction.

Keywords. Block reduction, LLL-reduction, slide reduction.

Introduction. Lattices are discrete subgroups of the Rn. A basis B = [b1, ...,bn] ∈ Rm×n of
n linear independent vectors b1, ...,bn generates the lattice L(B) = {Bx |x ∈ Zn} of dimension
n. Lattice reduction algorithms transform a given basis into a basis consisting of short vectors.
λ1(L) = minb∈L,b 6=0(btb)1/2 is the minimal length of nonzero b ∈ L. The determinant of L
is detL = (det BtB)1/2. The Hermite bound λ1(L)2 ≤ γn(detL)2/n holds for all lattices L of
dimension n and the Hermite constant γn.

The LLL-algorithm of H.W. Lenstra Jr., A.K. Lenstra and L. Lovász [LLL82] transforms a

given basis B in polynomial time into a basis B such that ‖b1‖ ≤ α
n−1

2 λ1, where α > 4/3. It is
important to minimize the proven bound on ‖b1‖/λ1 for polynomial time reduction algorithms and
to optimize the polynomial time.

The best known algorithms perform blockwise basis reduction for blocksize k ≥ 2 generalising
the blocksize 2 of LLL-reduction. Schnorr [S87] introduced blockwise HKZ-reduction. The al-
gorithm of [GHKN06] improves blockwise HKZ-reduction by blockwise primal-dual reduction. So

far slide-reduction of [GN08b] yields the smallest approximation factor ‖b1‖/λ1 ≤ (1 + ε)γk)
n−k
k−1

of polynomial time reduction algorithms. The algorithm for slide-reduction of [GN08b] performs
O(nh · size(B)/ε) local SVP-computations, where size(B) is the bit-length of B and ε is the quality
of slide-reduction. This bound is polynomial in n if and only if size(B) is polynomial in n. The
workload of the local SVP-computations dominates all the other workload. [NSV10] show that the
bit complexity of LLL-reduction is quasi-linear in size(B). To obtain this quasi-linear bit-complexity
the LLL-reduction is performed on the leading bits of the entries of the basis matrix (similar to
Lehmer’s gcd-algorithm) using fast arithmetic for the multiplication of integers and fast algorithms
for matrix multiplication.

Our results. We improve the O(nh · size(B)/ε) bound of [GN08b] in two ways. We concentrate the
required conditions for slide-reduced bases in the concept of almost slide-reduced bases which enables
faster reduction. We study the algorithm for slide-reduction on input bases that are LLL-bases. As
LLL-reduction takes a minor part of the workload of slide-reduction this better characterizes the
intrinsic workload of slide-reduction. Theorem 1 studies the number of local SVP-computations for
slide-reduction with blocksize k of an input LLL-basis B ∈ Zm×n for δ, α and dimension n = hk.
It shows under a reasonable assumption that this number is at most 1

6
n2h log1+ε α. This bound

holds for arbitrary bit-length of B. Corollary 1 shows that if the given basis is already slide-reduced
for blocksize k/2 the number of local SVP-computations for slide-reduction with blocksize k further
decreases to 1

3
1

1−2/k
h3(1 + log1+ε γk/2), reducing the number by a factor 2k−2 ln γk/2/ ln α. For

the first time this qualifies the advantage of first performing slide-reduction with half the blocksize.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 50 (2011)

Theorem 2 shows that the bounds proven in [GN08b] on ‖b1‖/λ1 and ‖b1‖/(detL)1/n still hold
for almost slide-reduced bases even with a minor improvement.

We also accelerate LLL-reduction. Corollary 3 shows, under a reasonable assumption, that

accelerated LLL-reduction computes an LLL-basis within n3

12
log2 size(B) local LLL-reductions in

dimension 2. The number of local LLL-reductions in dimension 2 is polynomial in n if the bit-length

of B is at most exponential in n, i.e., size(B) = 2nO(1)
. Lemma 2 shows that every LLL-basis for δ

such that 1−δ ≤ 2−n−22−size(B) satisfies the property max` ‖b∗`‖2/‖b∗`+1‖2 ≤ 4
3

of ideal LLL-bases
for δ = 1.

Notation. Let B = QR, n = hk be the QR-decomposition of B ∈ Rm×n. Let R` = [ri,j]k`−k+1≤i,j≤k`

∈ Rk×k be the submatrix of R = [ri,j] ∈ Rn×n for the `-th block, D` = (det R`)
2, and R′

` =
[ri,j]k`−k+2≤i,j≤k`+1 ∈ Rk×k for the `-th block slided by one unit. R′∗

` = (R′
`)
∗ is the dual

of R′
`. (R∗

k = UkR−t
k Uk for Rk ∈ Rk×k, where R−t

k is the inverse transpose of Rk and Uk ∈
{0, 1}k×k is the reversed identity matrix with non-zero entries ui,k−i+1 = 1 for i = 1, ..., k.) Let
maxR′

`
T rk`+1,k`+1 denote the maximum of r̄k`+1,k`+1, [r̄i,j] := GNF(R′

`T) for all T ∈ GLk(Z)

with QR-decomposition R′
`T = Q′ ·GNF(R′

`T). Note that maxR′
`
T rk`+1,k`+1 = 1/λ1(L(R′∗

`)). Let

πi : Rn → span(b1, ...,bi−1)
⊥ be the orthogonal projection, and b∗i := πi(bi) thus ‖b∗i ‖ = ri,i.

LLL-bases. [LLL82] A basis B = QR ∈ Rm×n is LLL-basis for δ, 1
4

< δ ≤ 1 if

• |ri,j | ≤ 1
2
ri,i holds for all j > i, • δr2

i,i ≤ r2
i,i+1 + r2

i+1,i+1 holds for i = 1, ..., n− 1.

An LLL-basis B for δ satisfies ‖b∗`‖2/‖b∗`+1‖2 ≤ α for all ` = 1, ..., n− 1

‖b1‖ ≤ α
n−1

4 (detL)1/n, ‖b1‖ ≤ α
n−1

2 λ1.

Definition 1. [GN08] An LLL-basis B = QR ∈ Rm×n, n = kh is slide-reduced for ε ≥ 0 if

1. rk`−k+1,k`−k+1 = λ1(L(R`)) for ` = 1, ..., h,

2. maxR′
`
T rk`+1,k`+1 ≤

√
1 + ε · rk`+1,k`+1 holds for ` = 1, ..., h− 1.

1 slightly relaxes the condition of [GN08] that all bases R` are HKZ-reduced. The following bounds
have been proved by Gama and Nguyen in [GN08, Theorem 1] for slide-reduced bases:

3. ‖b1‖ ≤ ((1 + ε)γk)
1
2

n−1
k−1 (det L)1/n, 4. ‖b1‖ ≤ ((1 + ε)γk)

n−k
k−1 λ1.

Almost slide-reduced bases. We call an LLL-basis B = QR ∈ Rm×n, n = hk, almost slide-
reduced for ε ≥ 0 if for some ` = `max that maximizes D`/D`+1,

1. rk`−k+1,k`−k+1 = λ1(L(R`)) for ` = 1 and ` = `max,

2. maxR′
`
T rk`+1,k`+1 ≤

√
1 + ε · rk`+1,k`+1 holds for ` = `max and ` = h− 1.

Theorem 2 shows that the bounds 3, 4 hold for almost slide-reduced bases.

Accelerated slide-reduction (ASR). In each round find some ` = `max that maximizes D`/D`+1.
Compute a shortest vector of L(R`+1) and transform R`+1 and B such that rk`+1,k`+1 = λ1(L(R`+1)).
By an SVP-computation for L(R′∗

`) check that 2 holds for ` and if 2 does not hold transform R′
`

and B such that 2 holds for ε = 0 (this decreases D` by a factor ≤ (1 + ε)−1) otherwise terminate.
On termination continue with this transform on R`, R`+1, B for ` = `max and ` = h− 1 until 2

holds for both ` = `max and ` = h− 1. Finally make sure that 1 holds for ` = 1 and size-reduce B.

Theorem 1. Accelerated slide-reduction transforms a given LLL-basis B ∈ Zm×n for δ ≤ 1,
α = 1/(δ − 1/4), n = hk, within 1

12
n2h log1+ε α = n2h 1+O(ε)

12·ε ln α rounds of 2 local SVP-
computations either into an almost slide-reduced basis for ε > 0, or else arrives at D(B) < 1,

where D(B) =def

Qh−1
`=1 (D`/D`+1)

h`−`2 = (detL)2h/
Qh

i=1

Qh
j=i D

2
j .

Proof. We use the novel version D(B) of the Lovász invariant to measure B’s reduction. Note that
h2/4− (`− h/2)2 = h`− `2 is symmetric to ` = h/2 with maximal point ` = dh/2c.
The input LLL-basis B(in) for δ ≤ 1 satisfies for α = 1/(δ − 1/4) that D`/D`+1 ≤ αk2

and thus

2

D(B(in)) ≤ αk2s for s :=
Ph−1

`=1 h`− `2 = h3−h
6

.

Fact. Each round that does not lead to termination results in

Dnew
` ≤ D`/(1 + ε) D(Bnew) ≤ D(B)/(1 + ε)2.

This is because the round changes merely the factor
Q

t=`−1,`,`+1

(Dt/Dt+1)
t(h−t) = (D`D`+1)D2

` of

of D(B), where D`D`+1 does not change. Hence, after at most

1
2

log1+ε D(B(in)) ≤ 1
2

log1+ε(α
k2s) = 1

2
k2 h3−h

6
log1+ε α < n2h

12
log1+ε α

rounds either B is almost slide-reduced for ε or else D(B) ≤ 1. The n2h
12

log1+ε α bound includes

the rounds on termination. Clearly log1+ε α = ln α/ ln(1 + ε) and 1/ ln(1 + ε) = 1+O(ε)
ε

. �

Conjecture. We conjecture that D(B) < 1 does not appear for output bases obtained after a
maximal number of rounds. If D(B) < 1 then E[ln(D`/D`+1] < 0 holds for the expectation E for

random ` with Pr(`) = 6 `h−`2

h3−h
. (We have

Ph−1
`=1 Pr(`) = 1.) In this sense D` < D`+1 would hold

”on the average” if D(B) < 1 whereas such D`,D`+1 are extremely unlikely in practice.

Time bound compared to [GN08]. The algorithm for slide-reduction of [GN08] is shown to per-
form O(nh size(B)/ε) local SVP-computations, where size(B) is the bit-length of B. The number
of rounds of Theorem 1 is polynomial in n even if size(B) is exponential in n.
However, ASR can accelerate the [GN08] algorithm at best by a factor h − 1 because the [GN08]
algorithm iterates all rounds for ` = 1, ..., h which also covers `max, whereas ASR iterates all
rounds for the current `max. Thus Theorem 1 shows that the [GN08] algorithm performs at most
n2h2

6
log1+ε α local SVP-computations if the input basis is an LLL-basis for δ and the algorithm

terminates with a basis B such that D(B) ≥ 1. Theorem 1 eliminates from the O(nh size(B)/ε)
time bound of [GN08] the bitlength of B and requires only minor conditions on the input and out-

put basis. As size(B) ≈
Pn

i=1 log2 ‖bi‖ our n2h2

6
log1+ε α bound is better than the O(nh size(B)/ε)

bound of [GN08] if h
6

ln α < 1
n

Pn
i=1 log2 ‖bi‖. The latter holds in most cases.

Iterative slide-reduction with increasing blocksize. Consider the blocksize k = 2j . We trans-
form the given LLL-basis B ∈ Zm×n for δ, α, n = hk iteratively as folllows:

FOR i = 1, ..., j DO transform B by calling ASR with blocksize 2i and ε.

We bound the number #It of rounds of the last ASR-call with blocksize k = 2j . The input B of this

final ASR-call satisfies D`/D`+1 ≤ ((1 + ε)γk/2)
k/2

k/2−1 4
as follows from (3) with blocksize

k/2. Hence D(B) ≤ ((1 + ε)γk/2)
2k

k/2−1
h3−h

6 .

As each round decreases D(B) by a factor (1 + ε)−2 we see that

#It ≤ 1
2

log1+ε D(B) ≤ k
k/2−1

h3−h
6

log1+ε((1 + ε)γk/2) = h3−h
1−2/k

1+O(ε)
3·ε ln γk/2

provided that D(B) ≥ 1 holds on termination. Here log1+ε γk/2 = ln γk/2/ ln(1 + ε) = 1+O(ε)
ε

γk/2.
For k = 4, resp. k = 8 this is less than a 0.603, resp. 0.201 fraction of the number of rounds
n2h
12

log1+ε α of Theorem 1, where the input is an LLL-basis for δ, α. The final ASR-call dominates
the workload of all other calls together, including the workload for the LLL-reduction of the input
basis. We see that iterative slide-reduction for k = 2j requires only an O(k−2 ln γk/2)-fraction of the
workload of the direct ASR-call as in Theorem 1. In particular we have proved

Corollary 1. Given an almost slide-reduced basis B ∈ Zm×n for ε > 0 and blocksize k/2, n = hk,

ASR finds within 1
3

h3−h
(1−2/k)

log1+ε((1 + ε)γk/2) rounds of two local SVP-computations either an

almost slide-reduced basis for blocksize k and ε or else arrives at D(B) < 1.

Theorem 2. The bounds 3, 4 hold for every almost slide-reduced basis B ∈ Zm×n and the exponent
of (1 + ε) in 3, 4 can roughly be halved, multiplying it by 1+1/k

2
.

Proof. We see from 2 and the Hermite bound on λ1(L(R′
`)
∗) = 1/rk`+1,k`+1 that

3

D′
`/r2

k`+1,k`+1 ≤ ((1 + ε)γk)k r
2(k−1)
k`+1,k`+1 (1)

holds for ` = `max and ` = h−1, where D′
` := (det R′

`)
2. Moreover, the Hermite bound for R` yields

r
2(k−1)
k`−k+1,k`−k+1 ≤ γk

k D`/r2
k`−k+1,k`−k+1.

Combining these two inequalities with D′
`/r2

k`+1,k`+1 = D`/r2
k`−k+1,k`−k+1 yields

rk`−k+1,k`−k+1 ≤ ((1 + ε)γk)
k

k−1 rk`+1,k`+1 for ` = `max and ` = h− 1. (2)

Next we prove

D`/D`+1 ≤ ((1 + ε)
1+1/k

2 γk)
2k2
k−1 for ` = 0, ..., h− 1. (3)

Proof. As (1) holds for ` = `max and 1 holds for ` + 1 the Hermite bound on λ1(L(R`+1)) yields

D′
` ≤ (1 + ε)kγk

kr2k
k`+1,k`+1 ≤ (1 + ε)kγ2k

k D`+1.

We see from (2) that D` = r2
k`−k+1,k`−k+1D′

`/r2
k`+1,k`+1 ≤ ((1 + ε) γk)

2k
k−1D′

`. (4)

Combining the two previous inequalities yields for ` = `max

D` ≤ ((1 + ε) γk)
2k

k−1 (1 + ε)kγ2k
k D`+1 = ((1 + ε)

1+1/k
2 γk)

2k2
k−1D`+1.

Moreover if (3) holds for `max it clearly holds for all ` = 1, ..., h− 1.

3. The Hermite bound for R1 and (3) imply for ` = 1, ..., h that

‖b1‖2 ≤ γkD1/k
1 ≤ γk((1 + ε)

1+1/k
2 γk)

2k(`−1)
k−1 D1/k

` . (5)

The product of these h inequalities for ` = 1, ..., h yields

‖b1‖2h ≤ γh
k ((1 + ε)

1+1/k
2 γk)

kh(h−1)
k−1 (detL)2/k.

This proves and improves 3 to (without using that 2 holds for ` = h− 1.)

‖b1‖2/(detL)2/n ≤ γk((1 + ε)
1+1/k

2 γk)
n−k
k−1 = (1 + ε)

1+1/k
2

n−k
k−1 γ

n−1
k−1
k .

4. (5) for ` = h− 1 shows that ‖b1‖2 ≤ γk((1 + ε)
1+1/k

2 γk)
2k(h−2)

k−1 D1/k
h−1.

Clearly 2 for ` = h− 1 implies (2) and (4) for ` = h− 1, and thus we get

‖b1‖2 ≤ γk((1 + ε)
1+1/k

2 γk)
2k(h−2)

k−1 + 2
k−1 (D′

h−1)
1/k (by (4) for ` = h− 1)

≤ γk((1 + ε)
1+1/k

2 γk)
2kh−4k+2

k−1 (1 + ε)γkr2
n−k+1,n−k+1. (by 2 for ` = h− 1)

(we also used that r−2
n−k+1,n−k+1 = λ2

1(L(R′∗
h−1)) ≤ γk/D′

h−1 holds by the Hermite bound for R′∗
h−1.)

< ((1 + ε)
1+1/k

2 γk)2
n−k
k−1 r2

n−k+1,n−k+1.

W.l.o.g πn−k+1(b) 6= 0 holds for some b ∈ L with ‖b‖ = λ1, otherwise we remove the last k vectors
of the basis. Hence rn−k+1,n−k+1 ≤ ‖πn−k+1(b)‖ ≤ λ1. The latter inequalities yield the claim

‖b1‖ ≤ ((1 + ε)
1+1/k

2 γk)
n−k
k−1 λ1.

We have roughly halved the exponent of (1 + ε) in 3 and 4 multiplying it by at most 1+1/k
2

. �

Time bounds for extremely small ε. We measure the reducedness of a basis B by the integer
m defined by

22m−1
< max`(D`/D`+1) γ

− 2k2
k−1

k ≤ 22m

. (6)

This integer m exists if and only if max`(D`/D`+1) > γ
2k2
k−1
k

Next we show that every round of ASR with initial value m decreases D(B) by a factor 2−2m−1
. The

transform of R`, R`+1, B for ` = `max results in (2), (3) holding f or ε = 0, i.e., Dnew
` /Dnew

`+1 ≤ γ
2k2
k−1
k .

Multiplying this inequality with 22m−1
γ

2k2
k−1
k < Dold

` /Dold
`+1 and Dnew

` Dnew
`+1 = Dold

` Dold
`+1 yields

4

22m−2
Dnew

` ≤ Dold
` hence D(Bnew) ≤ D(Bold) 2−2m−1

. (7)

We denote M0 := max(‖b1‖2, ..., ‖bn‖2) for the input basis B.

Lemma 1. If B is almost slide-reduced for ε < k−1
6k2 /(2nM0) then max`(D`/D`+1) ≤ γ

2k2
k−1
k .

Proof. Let ε > 0 be minimal such that B is almost slide-reduced for ε. It follows from the proof of

Theorem 1 that D`/D`+1 = ((1 + ε)γk)
2k2
k−1 holds for some `. Then (6) implies (1 + ε)

k2
k−1 ≤ 22m

,

thus ε < k−1
k2 2m. (8)

If B = QR is not almost slide-reduced for some 0 < ε′ < ε then any nearly maximal such ε′ satisfies

maxR′
`
T rk`+1,k`+1 ≈ (1 + ε′)rk`+1,k`+1 for some `.

It follows from [LLL82, (1.28)] for the integer matrix B that rk`+1,k`+1M
n
0 ≥ 1 and thus

ε′ & (maxR′
`
T rk`+1,k`+1 − rk`+1,k`+1)/rk`+1,k`+1 ≥ 1/Mn

0 .

This contradicts (8) if k−1
k2 2m < 1/Mn

0 , and thus excludes that −m > n log2 M0.

(3) and (6) imply 22m−1
< (1 + ε)

2k2
k−1 , and thus 2m−1 < 2k2

k−1
log2(1 + ε) < 2k2

k−1
ε

ln 2
.

Hence −m > n log2 M0 which is impossible. This implies by (6) that max` D`/D`+1 ≤ γ
2k2
k−1
k . �

Next we bound the number #Itm of rounds until the current m either decreases to m−1 or arrives
at D(B) < 1. During this reduction the m defined by (6) implies that (7) holds for each round.

Moreover, initially max` D`/D`+1 ≤ γ
2k2
k−1
k 22m

. This shows for the initial and final bases for the
reduction of m to m− 1:

#Itm ≤ log2(D(B(in))/D(B(fin)))/2m−1

≤ h3−h
3

(2m/2m−1 + 2−m+1 2k2

k−1
log2 γk).

Thus within O(nh2 log2 k) rounds ASR either decreases m ≥ 0 to m− 1 or arrives at D(B) < 1.

Open problem. Can ASR perform for m � 0 more than O(nh2 log2 k) rounds until either the
current m decreases to m− 1 or that D(B) < 1 ? We can exclude this by the following rule of

Early Termination (ET). Terminate as soon as D(B) < γ
2k2
k−1

h3−h
6

k .

D(B) < γ
2k2
k−1

h3−h
6

k implies that E[ln(D`/D`+1)] < 2k2

k−1
ln γk holds for random `, where Pr(`) =

6 `h=`2

h3−h
. In this sense (3), (4) and 3 hold for ε = 0 ”on the average”.

Corollary 2. ASR terminates under ET for arbitrary ε ≥ 0 in h3−h
3

(m + |m0|) rounds, where
m, m0 are the m-value of the input and final basis. Moreover |m0| ≤ n log2 M0.

Proof. Consider #Itm the number of rounds until the current m decreases to m − 1. During this

reduction the m of (6) satisfies max` D`/D`+1 > 22m−1
γ

2k2
k−1
k . This implies by (7) and ET for the

initial and final bases for the reduction of m to m− 1:

#Itm ≤ log2(D(B(in))/D(B(fin)))/2m−1 ≤ log2(2
2m h3−h

6)/2m−1 = h3−h
3

.

Thus within h3−h
3

rounds ASR either decreases m to m− 1 or arrives at D(B) < γ
2k2
k−1

h3−h
3

k .

Hence ASR terminates within h3−h
3

(m + |m0|) rounds, where |m0| ≤ n log2 M0 holds by the proof
of Lemma 1. �

Accelerated LLL-reduction (ALR). We accelerate LLL-reduction by performing either Gauß-
reductions or LLL-swaps on b`,b`+1 for an ` that maximizes the resulting reduction progress.

We associate to a basis B satisfying max` ‖b∗`‖2/‖b∗`+1‖2 > 4
3

the integer m defined by

5

22m−1
< max` ‖b∗`‖2/‖b∗`+1‖2/ 4

3
≤ 22m

. (9)

If m ≥ 0 we transform in the current round b`,b`+1 for an ` that maximizes ‖b∗`‖2/‖b∗`+1‖2 by
Gauß-reducing the basis π`(b`), π`(b`+1) of dimension 2. (Gauß-reducing the basis π`(b`), π`(b`+1)
means to LLL-reduce π`(b`), π`(b`+1) with δ = 1.) This decreases ‖b∗`‖2 by a factor less than
2−2m

< 1
2
.

If m < 0 or m does not exist, we transform in the current round b`,b`+1 for an ` that maximizes
‖b∗`‖2/‖π`(b

∗
`+1)‖2 after size-reducing b`+1 against b` by setting b`+1 := b`+1−dr`,`+1/r`/`cb`. If

‖π`(b
∗
`+1)‖2 ≤ δ‖b∗`‖2 we swap b`, b`+1 and otherwise terminate.

On termination we size-reduce the basis B.

Theorem 3. Given an LLL-basis B ∈ Zm×n for δ′ < 1, α′ = 1/(δ′ − 1/4) ALR with δ satisfying

1 > δ > max(δ′, 1
2
) arrives within n3

12
log1/δ α′ rounds of Gauß-reductions, resp. LLL-swaps either

at an LLL-basis for δ, or else arrives at D(B) :=
Qn−1

`=1 (‖b∗`‖2/‖b∗`+1‖2)`(n−`) < 1.

Proof. We use D(B) for blocksize 1, D(B) :=
Qn−1

`=1 (‖b∗`‖2/‖b∗`+1‖2)`(n−`). Each round decreases
‖b∗`‖2 by a factor δ, and both ‖b∗`‖2/‖b∗`+1‖2, D(B) by a factor δ2. Then the number of rounds
until either an LLL-basis for δ appears or else D(B) ≤ 1 is at most

1
2

log1/δ D(B) ≤ 1
2

log1/δ(α
′)

n3−n
6 ≤ n3

12
log1/δ α′. �

The workload per round. If each round completely size-reduces b`,b`+1 against b1, ...,b`−1 it
requires O(n2) arithmetic steps. If we only size-reduce b`+1 against b` then a round costs merely
O(n) arithmetic steps but the length of the integers explodes. This explosion can be prevented at
low costs by doing size-redction in segments, see [S06], [KS01].

Lemma 2. If B is LLL-basis for δ and 1− δ < 2−n−2/M0 then max` ‖b∗`‖2/‖b∗`+1‖2 ≤ 4
3
.

Proof. The LLL-basis B satisfies ‖b∗`‖2 ≤ 1
δ−1/4

‖b∗`+1‖2. Therefore (9) implies 22m−1
< 1

δ−1/4
3
4
.

Setting δ = 1− ε this shows that

2m−1 < log2
3

4δ−1
< log2

1

1− 4
3 ε

= ln(1− 4
3
ε)/ ln 2

< −1.45 4
3
ε < 2−n−1/M0.

This implies m < −n log2 M0 which is impossible (by the proof of Lemma 1). This shows that
m is undefined and thus max` ‖b∗`‖2/|b∗`+1‖2 ≤ 4

3
. �

Corollary 3. Let m be the m-value of the input basis and c ∈ Z c ≥ 0 be constant. Within
n3

12
(m+2.22 · 2c) rounds ALR either decreases the initial m to m ≤ −c or else arrives at D(B) < 1.

Moreover m ≤ log2 n + log2 log2 M0.

Surprisingly, the number of rounds in Cor. 3 is polynomial in n if log2 log2 M0 ≤ nO(1).

Proof. We have shown that ASR with k = 2 either decreases within at most

(n/2)3

3
(2m/2m−1 + 2−m+18 log2

p
4/3)

rounds either the current m to m− 1 or arrives at D(B) < 1. Therefore ALR either decreases the
m of the input-basis within at most

n3

24
(2m + 24 log2

p
4/3

Pm
i=−c 2−i) < n3

12
(m + 2c+4 log2

p
4/3) < n3

12
(m + 2.22 · 2c)

rounds to m = −|c| or else arrives at D(B) < 1
The bound m ≤ log2 n + log2 log2 M0 follows from (9) and ‖b∗`+1‖2 ≥ 1/Mn

0 . �

Comparison with previous algorithms for LLL-reduction. The LLL was originally proved
[LLL82] to be of bit-complexity O(n5+ε(log2 M0)

2+ε) performing O(n2 log1/δ M0) rounds, each

round size-reduces some b` in n2 arithmetic steps on integers of bit-length n log2 M0; ε in the expo-
nent comes from the fast FFT-multiplication of integers. The large bit-length of integers n log2 M0

has been reduced to n + log2 M0 by orthogonalizing the basis in floating point arithmetic.

6

The number of rounds in Cor. 3 is independent of M0. This is becauseALR maximizes the reduction
progress per round. To minimize the workload of size-reduction ALR should be organized according
to segment reduction of [KS01], [S06] doing most of the size-reductions locally on segments of k
basis vectors. The bit-complexity of Gauß-reduction of π`(b`), π`(b`+1) is quasi-linear in size(B)
[NSV10]. Therefore we do not split up this Gauss-reduction into LLL-swaps. If the current m is
large then Gauß-reduction of π`(b`), π`(b`+1) for ` = `max decreases D(B) be the factor 2−m while
LLL-swaps guarantee only a decrease by the factor 3

4
.

A result that is very close to Cor. 3 and Cor. 4 has been proved independently in Lemma 12 of
[HPS11]: max` ‖b∗`‖2/‖b∗`+1‖2 ≤ 4

3
+ ε can be achieved in polynomial time for arbitrary ε > 0.

Early Termination (ET). Terminate as soon as D(B) < (4
3
)

n3−n
6 .

D(B) < 4
3
)

n3−n
6 implies that E[ln(‖b∗`‖2/‖b∗`+1‖2)] < ln(4/3) holds for random ` and Pr(`) =

6 `h=`2

h3−h
. In this sense the output basis approximates ”on the average” the logarithm of the inequality

‖b1‖/(detL)1/n ≤ (4
3
)

n−1
4 that holds for ideal LLL-bases with δ = 1.

Corollary 4. ALR terminates under ET in n3(m+|m0|)/3 rounds, where m, m0 are the m-values
of the input and output basis. Moreover |m0| ≤ n log2 M0 and m ≤ log2 n + log2 log2 M0.

Proof. Consider the number #Itm of rounds until either the current m decreases to m− 1 or else

D(B) becomes less than (4/3)
n3−n

6 . As in the proof of Corollary 2 each round with m results in

Gauß-reduction under π` if m ≥ 0, resp. an LLL-swap if m < 0, results in

‖b∗new
` ‖2 < ‖b∗old

` ‖22−2m−2
hence D(Bnew) < D(Bold)2−2m−1

.

Under ET this shows as in the proof of Cor. 1 that

#Itm < log2(D(B(in))/(D(B(fin)))/2m−1 ≤ (2m n3−n
6

)/2m−1 = n3−n
3

.

Hence m decreases to m−1 under ET in less than n3−n
3

rounds. The proof of Lemma 1 shows that
|m0| ≤ n log2 M0. �

Open problem. Does ALR realize max`‖b`‖2/‖b`+1‖2 ≤ 4
3

in a polynomial number of rounds ?
Can ALR perform for m � 0 without ET more than O(n3) rounds until either the current m
decreases to m−1 or that D(B) ≤ 1 ? We can exclude this for m ≥ 0 and under ET also for m < 0.

References

[NSV10] A. Novocia, D. Stehlé and G. Villard An LLL-reduction algorithm with quasilinear time
complexity. Technical Report, version 1, Nov. 2010.

[GHKN] N. Gama, N. Howgrave-Graham, H. Koy and P, Q. Nguyen, Rankin’s constant and block-
wise lattice reduction. In Proc. of CRYPTO’06, LNCS 4117, Springer, pp. 112–130, 2006.

[HPS10] G. Hanrot, X. Pujol and D. Stehlé, Terminating BKZ. Preprint, submitted for publication,
personal communication, 21.2.2011.

[GN08] N. Gama and P. Nguyen, Finding Short Lattice Vectors within Mordell’s Inequality, In
Proc. of the ACM Symposium on Theory of Computing STOC’08, pp. 208–216, 2008.

[GN08b] N. Gama and P.Q. Nguyen, Predicting lattice reduction, in Proc. EUROCRYPT 2008,
LNCS 4965, Springer-Verlag, pp. 31–51, 2008.

[KS01] H. Koy and C.P. Schnorr Segment LLL-reduction of lattice bases, In Proceedings of the
2001 Cryptography and Lattice Conference (CACL’01), LNCS 2146, Springer-Verlag, pp.
67-80, 2001.

[LLL82] H.W. Lenstra Jr., A.K. Lenstra and L. Lovász, Factoring polynomials with rational coef-
ficients, Mathematische Annalen 261, pp. 515–534, 1982.

[S87] C.P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms. Theoret.
Comput. Sci., 53, pp. 201–224, 1987.

[S06] C.P. Schnorr, Fast LLL-type lattice reduction, Onformation and Computation 204, pp.
1–25, 2006.

7

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

