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Abstract. We obtain a strong direct product theorem for two-party bounded round communica-
tion complexity. Let sucr(µ, f, C) denote the maximum success probability of an r-round communi-
cation protocol that uses at most C bits of communication in computing f(x, y) when (x, y) ∼ µ.
Jain et al. [12] have recently showed that if sucr(µ, f, C) ≤ 2

3
and T � (C − Ω(r2)) · n

r
, then

sucr(µ
n, fn, T ) ≤ exp(−Ω(n/r2)). Here we prove that if suc7r(µ, f, C) ≤ 2

3
and T � (C−Ω(r log r)) ·n

then sucr(µ
n, fn, T ) ≤ exp(−Ω(n)). Up to a log r factor, our result asymptotically matches the upper

bound on suc7r(µ
n, fn, T ) given by the trivial solution which applies the per-copy optimal protocol

independently to each coordinate. The proof relies on a compression scheme that improves the tradeoff
between the number of rounds and the communication complexity over known compression schemes.

1 Introduction

We study the direct sum and the direct product problem for bounded-round randomized communication
complexity. The direct sum problem studies the amount of resources needed to solve n independent copies of
a task in terms of the cost of solving one copy. It is the case that if one copy costs C resources, then n copies
can be solved using Cn ≤ n · C resources. Can one do better? Direct sum theorems answer this question
by giving lower bounds for Cn in terms of C and n — aiming to give a tight Ω(n · C) bound whenever
possible. If the task is solved in a randomized model, with some error allowed, the performance of a solution
for a single copy of the task is characterized by its cost C and its success probability ρ. Clearly, with n · C
resources a success probability of at least ρn is attainable, but is it optimal? A direct product theorem is
stronger than a direct sum theorem in that in addition to asserting that a certain amount of resources is
necessary to compute the n copies, it also shows that using a smaller amount of resources will lead to a very
low (possibly exponentially small) success probability.

Direct product theorems have a long history in complexity theory, and in communication complexity in
particular [19,16,21,11,12,6]. See [12] for a particularly nice discussion of the various direct product theorems.
In the context of communication complexity, direct product results for specific lower-bound techniques were
given by a number of papers: for discrepancy in the two party case by Shaltiel [21] and Lee, Shraibman and
Spalek [17], by Sherstov for generalized discrepancy [22], and by Viola and Wigderson for the multiparty case
[23]. More recently, a direct product theorem was given by Jain and Yao in terms of the smooth rectangle
bound [13]. Direct product results for specific communication problems such as set disjointness include [15,2].
Famous examples for direct product theorems for other models of computation include Yao’s XOR lemma [25]
and Raz’s parallel repetition theorem [20]. For (unbounded-round) communication complexity, the current
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state-of-the-art results are given by [6], which shows that n copies of a function cost Ω(
√
n) times the cost

of one copy, and any computation using less communication will fail except with an exponentially small
probability. [13], building on [14], obtains a strong direct product theorem in terms of the smooth rectangle
bound – showing that a strong direct product theorem holds for the communication complexity of a large
number of commonly studied functions.

In this paper we focus on the bounded-round, distributional, two party communication complexity model.
Bounded-round communication complexity is used extensively in streaming and sketching lower bounds (see
e.g. [8,9,18] and references therein). We prove a tight direct sum and direct product theorem for this model.
The two players are given inputs according to a distribution (x, y) ∼ µ and need to compute a function
f(x, y). The players perform the computation using a communication protocol π. In the bounded-round
model, the players are allowed a total of at most r messages in their protocol π. The communication cost ‖π‖
of a protocol π is the (worst-case) number of bits the players send when running π. If π has r rounds then
‖π‖ ≥ r. The success probability of π, denoted suc(µ, f, π), is the probability it outputs the correct value of
f (for a formal definition see Section 3.3). The probability that any r-round protocol of communication cost
C succeeds at computing f is denoted by

sucr(µ, f, C) := max
π is r-round and ‖π‖ ≤ C

suc(µ, f, π).

The unbounded round success probability suc(µ, f, C) is defined as sucC(µ, f, C) (the trivial bound of C does
not limit interaction, as r ≤ C by definition).

The function fn((x1, . . . , xn), (y1, . . . , yn)) is just the concatenation of n copies of f . In other words,
it outputs (f(x1, y1), . . . , f(xn, yn)). Assume that sucr(µ, f, C) < 2/3. Both the direct sum and the direct
product question ask what can be said about the cost, and the success probability of solving fn. A strong
direct sum theorem for bounded-round computation would assert that sucαr(µ

n, fn, αn · C) < 3/4, for
some constant α > 0. A direct product theorem would further assert that sucαr(µ

n, fn, αn · C) < (2/3)αn.
Clearly, the latter statement is the best one can hope for up to constants, since trivially sucr(µ

n, fn, n ·C) ≥
sucr(µ, f, C)n.

Prior to the present work, several general direct sum and direct product results for bounded-round
communication complexity were given. The work [10] by Harsha, Jain, McAllester and Radhakrishnan gives
a strong direct sum result for bounded-round communication, but it only works for product distributions
(i.e. when µ is of the form µ = µx × µy). The paper [5] by Braverman and Rao gives a direct sum result for
bounded-round communication of the following form: if suc(µ, f, C) < 2/3, then sucr(µ

n, fn, n·C ·(1−o(1))) <
3/4, for n sufficiently large. This result gives a tight dependence on the communication complexity, but
assumes a lower bound on the communication complexity of a single copy of f without restriction on the
number of rounds. Therefore, strictly speaking, it is not a direct sum result for bounded-round communication
complexity. The only general direct product result for bounded-round communication complexity was recently
given by a Jain, Pereszlenyi, and Yao [12], who showed that if sucr(µ, f, C) ≤ 2

3 and T � (C−Ω(r2))· nr , then
sucr(µ

n, fn, T ) ≤ exp(−Ω(n/r2)). This result is indeed a proper direct product theorem for bounded-round
communication. Its parameters are sub-optimal in two respects: (1) there is no reason for the direct product
theorem to not hold all the way to T = Ω(C · n), and (2) in a tight direct product theorem the success
probability sucr(µ

n, fn, T ) would be exp(−Ω(n))� exp(−Ω(n/r2)).

Our results. Our main result is an optimal (up to constants and a log r factor) direct product theorem for
bounded-round communication complexity. Specifically, we show4:

Theorem 1 (simplified). Let f be a 2-party Boolean function. There is a universal constant α > 0 such

that if suc7r(µ, f, C) < 2/3, T ≥ 2, and T < αn ·
(
C − r log(4r)

α

)
, then sucr(µ

n, fn, T ) ≤ exp (−αn) .

The theorem improves over the parameters in [12], with the exception of the dependence on the number
of rounds: we require a lower bound for protocols using 7r rounds of communication for one copy to get a
lower bound for an r-round protocol for n copies. Using Yao’s minimax principle [24], our result also applies
to the randomized (non-distributional) bounded-round communication complexity.

4 Here we state the main results in a simplified fashion. For a full version of the theorems see Section 3.3.
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Our techniques. Our general strategy is similar to other recent direct sum and direct product results
[10,1,12,6]. The first main ingredient is the notion of information cost of protocols. The information cost of
a two-party protocol π over a distribution µ of inputs (x, y) ∼ µ is defined as the amount of information
the parties learn about each other’s inputs from the messages of the protocol. More formally, if we define
X,Y to be the random variables representing the inputs, and M to be the random variable representing the
messages or transcript, then the information cost of π with respect to µ is given by

IC(π, µ) := I(X;M |Y ) + I(Y ;M |X),

where I(A;B|C) is the mutual information between A and B conditioned on C.
In general, direct sum and direct product proofs proceed in two steps: As a first step, it is shown that if

fn can be solved using fewer than T resources, then one copy of f can be solved using a protocol π, that while
having high communication complexity, has low information complexity: IC(π, µ) = O(T/n).5 The second
step is to convert the protocol π into a protocol π′ that has low communication cost, such as O(IC(π, µ))).
This is done through protocol compression: the process of converting a low-information interactive protocol
into a low communication protocol. If successful, this step leads to a low-communication protocol for one
copy of f , which contradicts the initial lower bound assumption on one copy of f .

The process of obtaining new direct sum results in communication complexity has been tightly linked
to the process of obtaining new protocol compression results. In fact, the question of whether the general
(unbounded-round) direct sum for communication complexity holds is equivalent to the question of whether
all protocols can be compressed [5,4]. In the case of bounded-round protocols the problem of compressing
protocols reduces to the problem of compressing individual messages in the protocol. The problem of message
compression can be rephrased as follows: player 1 has a distribution P of the message M ∼ P he wants to
send to player 2. Player 2 has some prior belief Q about the distribution of M . How much communication is
needed to ensure that both players jointly sample M ∼ P? The natural information-theoretic lower bound

for this problem is the KL-divergence D

(
P

Q

)
. More specifically, if the element being sampled is a, we should

expect player 1 to communicate at least log(P (a)/Q(a)) bits to player 2.
If we start off with the assumption that it is hard to solve one copy of f using a bounded-round protocol,

then to obtain a contradiction our compression scheme should preserve (or at least not blow-up) the number of
rounds in the protocol. This means, ideally, that compression of one round should take only a constant number
of rounds. The round-compression scheme of [5], in fact, manages to attain near-optimal compression in terms

of communication cost. The communication cost of the problem described above is reduced to D

(
P

Q

)
· (1 +

o(1)) + O(log 1/ε), where ε is an error parameter. There is a price to be paid for such communication
performance: there is no good bound on the number of rounds such compression would take. Thus the
resulting compressed protocol is no longer bounded-round. Therefore, [5] only obtains a lower bound on the
bounded-round communication complexity of fn in terms of the unbounded-round communication complexity
of f .

The recent works [11,12] devise a different compression scheme that does not increase the number of
rounds at all: each message in the original protocol is compressed into one message in the compressed protocol.
As a result, these works obtain direct product theorems for bounded-round communication complexity.
These compressions, however, end up paying a high price in the communication overhead. Specifically, due
to an application of Markov inequality, sending a message a, on average, takes r · log(P (a)/Q(a)) bits – a
multiplicative loss by an r factor, which leads to a factor-r loss in the ultimate result.

Our main technical contribution is a new family of compression protocols for compressing one round of
communication. These protocols are parameterized by two parameters (d, `). They give a tradeoff between
the communication overhead and the resulting number of rounds. Specifically:

Theorem 2 (simplified). Suppose that player 1 is given a distribution P , and player 2 is given a distribution
Q, both over a universe U . Then, for every 0 < ε < 1/2, d ≥ 1 and integer ` ≥ 2, there is a protocol

5 In the case of direct product, what is shown is that π is statistically close to being a low information protocol.
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that in which both players sample an element a that is ε-close to P , and conditioned on sampling a, the
communication used is at most O(` · log+

2 (P (a)/Q(a)) + log(1/ε) + d), and the number of rounds required is
at most O(log+

` [(1/d) log+
2 (P (a)/Q(a))] + 1).

One can see that setting d and ` to be large in Theorem 2 will result in few rounds but long communication,
and vice versa. The compression scheme in Theorem 2 may be of independent interest. It is possible to
view both compression schemes from [5] and from [11,12] as special cases of Theorem 2. The scheme in
[5] approximately corresponds to (d, `) = (2, 1). The scheme in [11,12] corresponds to d = Θ(IC(π, µ)).
By carefully choosing the parameters in Theorem 2, and analyzing the resulting number of rounds and
communication cost over all rounds simultaneously, we obtain a compression scheme that at the same time
increases the communication cost and the number of rounds of communication by only a constant. This
scheme, together with direct product reductions from [6], allows us to complete the proof of Theorem 1.

Discussion and open problems. Our work essentially closes the direct product question in the regime where the
number of rounds r is small compared to C, and sucr(µ, f, C) is constant in (0, 1). The general direct product
problem (and even the weaker direct sum problem) remains wide open. The key compression challenge one
needs to overcome is the problem of compressing protocols when r � I, that is, when the amount of
information π conveys in a typical round is o(1). Further discussion on this problem can be found in [4,3].

An important area of tradeoff – both in terms of direct sum/product results and in terms of compression
is the relationship between error, communication complexity, and the number of rounds. When performing
compression to a bounded number of rounds r, we inevitably have to abort the protocol if the rounds “quota”
is exceeded. What is the effect this has on error incurred? A very recent work by Brody, Chakrabarti, and
Kondapally [7] suggests the general tradeoff may take an interesting form. Understanding these tradeoffs
is crucial for getting tight parameters for bounded-round direct sum and product in the regime where
sucr(µ, f, C) is very close to 1.

2 Results

Let sucr(µ, f, C) denote the maximum success probability of an r-round communication protocol that uses
at most C bits of communication to compute f(x, y) when x, y ∼ µ. Denote by fn(x1, . . . , xn, y1, . . . , yn)
the function that maps its inputs to the tuple (f(x1, y1), f(x2, y2), . . . , f(xn, yn)) and µn denote the product
distribution on n pairs of inputs, where each pair is sampled independently according to µ. We prove the
the following direct product result6.

Theorem 1 (Main Theorem). Let f be a 2-party Boolean function. There is a universal constant α > 0
such that if γ = 1− suc7r(µ, f, C), T ≥ 2, and

T < αnγ2
(
C − r log(r/2γ)

αγ
− r

αγ2

)
,

then
sucr(µ

n, fn, T ) ≤ exp
(
−αγ2n

)
.

When sucr(µ, f, C) ≤ 2
3 and r log r � C, Theorem 1 ensures that the success probability of any protocol

attempting to compute fn under µn using � Cn communication and r/7 rounds must be exponentially
small in n.

Our main technical contribution is showing how to compress bounded-round protocols without introduc-
ing (too many) additional rounds. The first step is a sampling protocol, which shows how to jointly and
efficiently sample from a desired distribution in an oblivious manner. Suppose player 1 knows a distribution
P , player 2 knows a distribution Q, and the players wish to jointly sample from P without knowing the

6 Though we state Theorem 1 only for Boolean functions, it holds for general 2-party functions (See Remark 2 in
the end of this paper).
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distribution of the other player. It is an extension of a protocol from [5]. The protocol is interactive and the
requires multiple rounds. The number of rounds required for the simulation in [5] is Θ(

√
∆), where ∆ is the

KL divergence between the distributions P and Q. While this suffices for the particular objective in [5], this
is more than we can afford here: the compression scheme implies that an r-round protocol which reveals I
bits of information can be simulated by an O(r

√
I)-round protocol that has I + o(I) communication. The

resulting compressed protocol is no longer bounded-round, requiring us to assume a stronger lower bound
on the hardness of one copy of f to reach a contradiction. Our new compression protocol ensures that at
most 7r rounds of communication are used with high probability, which means that assuming that f cannot
be efficiently solved by a 7r-round protocol suffices.

The following protocol shows how to arbitrarily reduce the number of rounds of the simulation, with
a mild tradeoff in the overall communication (the single-round case can be also obtained using similar
techniques7, but we do not discuss it since it is not used in our applications). For any a, ` > 0, we denote
log+

` (a) = max{0, log`(a)}.

Theorem 2. Suppose that player 1 is given a distribution P , and player 2 is given a distribution Q, both
over a universe U . Then, for every 0 < ε < 1/2, d ≥ 1 and integer ` ≥ 2, there is a protocol such that at the
end of the protocol:

– player 1 outputs an element a distributed according to P ,
– player 2 outputs an element b such that for each x ∈ U , Pr[b = a|a = x] > 1− ε,
– the communication is at most (2`+ 1) · log+

2 (P (a)/Q(a)) + 2 log(1/ε) + 2d+ 5, and
– the number of rounds is at most 2 log+

` [(1/d) log+
2 (P (a)/Q(a))] + 2.

The second condition implies in particular that player 2 outputs an element b such that b = a with
probability at least 1− ε. The protocol requires no prior knowledge or assumptions on P,Q.

The second step in the proof is showing how to use the sampling protocol from Theorem 2 to simulate
communication protocols, with communication comparable to the amount of information they convey, while
keeping the number of rounds comparable to the original number. To prove our main result, we actually need
to analyze protocols that are merely close to having low information cost. As noticed in [6], such protocols
need not have low information themselves. E.g., consider the protocol π in which player 1 sends her n-bit
uniformly random input x with probability ε, and otherwise sends a random string. Then π is ε-close to
a 0-information protocol, but IC(π) = εn. Nevertheless, truncation of protocols (as in [6]) implies that
compression is possible even in this more general setting. This is formalized by the next theorem.

Theorem 3. Suppose θ is an r-round protocol with inputs x, y and messages m, and q is another distribution

on these variables such that θ(xym)
ε
≈ q(xym). Let I = Iq(X;M |Y ) + Iq(Y ;M |X). Then there exists a 7r-

round protocol τ that 11ε-simulates θ such that

‖τ‖ ≤ 7
I

ε2
+ 2

r log(r/ε)

ε
+ 30

r

ε2
.

The compression protocol in Theorem 3 is obtained by sequential applications of Theorem 2. However, in
order to prevent a blowup in the number of simulating rounds, we cannot use the guarantees of Theorem 2 on
a per-round basis. We analyze the protocol in a global manner, which yields the desirable tradeoff between
the number of rounds and the communication complexity.

3 Preliminaries

3.1 Notation

Unless otherwise stated, logarithms in this text are computed in base two. Random variables are denoted
by capital letters and values they attain are denoted by lower-case letters. For example, A may be a random

7 See e.g [12].
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variable and then a denotes a value A may attain and we may consider the event A = a. Given a =
a1, a2, . . . , an, we write a≤i to denote a1, . . . , ai. We define a>i and a≤i similarly. For an event E, define 1E
to be the indicator random variable of the event E.

We use the notation p(a) to denote both the distribution on the variable a, and the number Prp[A = a].
The meaning will typically be clear from context, but in cases where there may be confusion we shall be
more explicit about which meaning is being used. We write p(a|b) to denote either the distribution of A
conditioned on the event B = b, or the number Pr[A = a|B = b]. For an event W , we write p(W ) to denote
the probability of its occurrence according to p. We denote by Ep(a) [g(a)] the expected value of g(a) when
a is distributed according to p.

For two distributions p, q, we write |p(a) − q(a)| to denote the `1 distance between the distributions p

and q. We write p
ε
≈ q if |p− q| ≤ ε.

The divergence between p, q is defined to be

D

(
p(a)

q(a)

)
=
∑
a

p(a) log
p(a)

q(a)
.

For three random variables A,B,C jointly distributed according to p(a, b, c), the mutual information between
A,B conditioned on C is defined as

Ip(A;B|C) = E
p(cb)

[
D

(
p(a|bc)
p(a|c)

)]
= E
p(ca)

[
D

(
p(b|ac)
p(b|c)

)]
=
∑
a,b,c

p(abc) log
p(a|bc)
p(a|c)

.

We sometimes use the shorthand “communication” as a quantity (e.g, “a protocol with low communica-
tion”), when the actual meaning is communication complexity.

3.2 Properties of divergence

Lemma 1 (Chain Rule). If a = a1, . . . , as, then D

(
p(a)

q(a)

)
=
∑s
i=1 Ep(a<i)

[
D

(
p(ai|a<i)
q(ai|a<i)

)]
.

The following lemmas describe basic properties of divergence (for proofs see [6]).

Lemma 2. Let S = {a : p(a) < q(a)}. Then,
∑
a∈S p(a) log p(a)

q(a) ≥ −1/(e ln 2).

Lemma 3 (Truncation Lemma [6]). Let p(a, b, c)
ε
≈ q(a, b, c) where a = a1, . . . , as. For every a, b, c,

define k to be the minimum number j in [s] such that

log
p(a≤j |bc)
p(a≤j |c)

> β.

If no such index exists, set k = s+ 1. Then,

p(k < s+ 1) <
Iq(A;B|C) + log(s+ 1) + 1/(e ln 2)

β − 2
+ 9ε/2.

3.3 Communication complexity

Given a protocol π that operates on inputs X,Y drawn from a distribution µ and (possibley) using public
randomness S and messages M , we write π(xyms) to denote the joint distribution of these variables. We
write ‖π‖ to denote the communication complexity of π, namely the maximum number of bits that may be
exchanged by the protocol.
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A central measure in this paper is the information complexity of a communication protocol (see [1,4]
and references within for a more detailed overview). The internal information cost of π is defined to be
IC(π) := Iπ(X;M |Y S) + Iπ(Y ;M |XS). It is well known (e.g, [4]) that for any protocol π, IC(π) ≤ ‖π‖.

Let q(x, y, a) be an arbitrary distribution. We say that π δ-simulates q, if there is a function g and a
function h such that

π(x, y, g(x, s,m), h(y, s,m))
δ
≈ q(x, y, a, a),

where q(x, y, a, a) is the distribution on 4-tuples (x, y, a, a) where (x, y, a) are distributed according to q.
Thus if π δ-simulates q, the protocol allows the parties to sample a according to q(a|xy). If in addition
g(x, s,m) does not depend on x, we say that π strongly δ-simulates q. Thus if π strongly simulates q, then
the outcome of the simulation is apparent even to an observer that does not know x or y.

If λ is a protocol with inputs x, y, public randomness s′ and messages m′, we say that π δ-simulates
λ if π δ-simulates λ(x, y, (s′,m′)). Similarly, we say that π strongly δ-simulates λ if π strongly δ-simulates
λ(x, y, (s′,m′)). We say that π computesf with success probability 1−δ, if π strongly δ-simulates π(x, y, f(x, y)).
We denote this by suc(µ, f, π) = 1− δ.

Proposition 1. Let f : X ×Y −→ Z and let π be such that suc(µ, f, π) = 1− δ. Then if λ is a protocol that
ε-simulates π, there is a protocol τ such that suc(µ, f, τ) ≥ 1− (δ + ε) and ‖τ‖ = ‖λ‖+ log |Z|. The number
of rounds in τ is the same as in π.

Proof. There is a map g such that π(x, y, g(s,m))
δ
≈ π(x, y, f(x, y)). Let τ be the following two-step protocol.

First, the players execute λ with public randomness s′ to obtain a message m′. Second, the player who sent the
last message also sends b = g(s′,m′) (as long as b ∈ Z, otherwise she sends an arbitrary element of Z). The
public randomness of τ is s′ and the messages of τ are of the form m′′ = (m′, b). Clearly, ‖τ‖ ≤ ‖λ‖+log |Z|.
Define the map g′ on the messages of τ by g′(m′′) = b. By the union bound, the probability that either
(s′,m′) 6= (s,m) or g(s,m) 6= f(x, y) is at most ε+ δ. So, suc(f, µ, τ) ≥ 1− (δ + ε).

4 Proof of Theorem 2

Proof (of Theorem 2). We start by describing the content of the shared random tape. Both parties inter-
pret part of the shared random tape as a sequence of independent uniformly selected elements {ei}∞i=1 =
{(xi, pi)}∞i=1 from the set E := U × [0, 1]. There is also a part of the shared random tape that contains
random independent hash functions {hi}∞i=1, that is, for every i, the function hi : U → {0, 1} is so that
Pr[hi(x) = hi(y)] = 1/2 for every x 6= y in U .

The players use the following definitions: Define

EP := {(x, p) ∈ E : P (x) > p},

the set of points under the histogram of P . Similarly, define

EQ := {(y, q) ∈ E : Q(y) > q}.

For a constant C ≥ 1, define the C-multiple of EQ as

C · EQ := {(y, q) ∈ E : (y, q/C) ∈ EQ}.

For a non-negative integer t, set

Ct := 2d`
t

and st := 2d`t + dlog(1/ε)e+ 1.
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The protocol. The protocol runs as follows:

1. Player 1 selects the first index i such that ei = (xi, pi) ∈ EP , and outputs xi.
2. Player 1 uses 1 + dlog log(1/ε)e bits to send player 2 the binary encoding of

k := di/|U|e.

If k > di/|U|e, player 1 sends the all-zero string and the players abort.
3. Repeat, until player 2 produces an output, starting with t = 0:

(a) Player 1 sends the values of all hash functions hj(xi) for 1 ≤ j ≤ st, that have not been previously
sent.

(b) If there is an ar = (yr, qr) with r ∈ {(k− 1) · |U|+ 1, . . . , k · |U|} in Ct · EQ such that hj(yr) = hj(xi)
for some 1 ≤ j ≤ st, then player 2 says “success” and outputs yr (if there is more than one such ar,
player 2 selects the first one).

(c) Otherwise, player 2 responds “failure” and the parties increment t to t+ 1 and repeat.

Analysis. First proposition: Player 1 outputs an element distributed according to P , so the first proposition
of the lemma is satisfied.

Fourth proposition (number of rounds): If step 3 is never reached the number of rounds is one, so we
assume that k < di/|U|e. Set T to be the value of t at the termination of the protocol. Since xi belongs to
(P (xi)/Q(xi)) · EQ, step 3 of the protocol is guaranteed to terminate by iteration t so that

Ct ≥ P (xi)/Q(xi), (1)

which means
T ≤ 1 + log+

` [(1/d) log+
2 (P (xi)/Q(xi))].

In each iteration t, there is a 2-round protocol between the players. The number of rounds of the protocol is
therefore upper bounded by 2(T + 1), as claimed in the fourth proposition of the lemma.

Third proposition (communication): When P (xi)/Q(xi) < 1, it holds that T = 0 and player 1 sends
1 + dlog log 1/εe+ s0 bits, while player 2 sends a single bit. The total communication is then at most

1 + dlog log(1/ε)e+ 2d+ dlog(1/ε)e+ 1 + 1 ≤ 2 log(1/ε) + 2d+ 5. (2)

Otherwise, in step 3, player 1 sends sT bits, and player 2 sends T + 1 bits. The amount of communication
in step 3 is at most

sT + T + 1 ≤ (2`+ 1) · log(P (xi)/Q(xi)) + log(1/ε) + 3.

Together with the communication in previous steps, the total communication is at most

(2`+ 1) · log(P (xi)/Q(xi)) + 2 log(1/ε) + 4. (3)

Combining (2) and (3) proves the third proposition of the lemma.
Second proposition (player 2 outputs the same xi with probability more than 1 − ε): Since for every

integer n,
Pr[k > n] = Pr[ai /∈ EP for all i ∈ {1, . . . , n · |U|}] = (1− 1/|U|)n·|U| < e−n,

the probability that the binary encoding of k exceeds 1 + dlog log 1/εe bits is less than ε/2.
We say that an element e = (x, p) survives iteration t if (i) e ∈ Ct ·EQ, (ii) xj 6= xi and (iii) hj(x) = hj(xi)

for all j ∈ {1, . . . , st}. Denote by Ei the event that player 1 selected ei and that the bit-length description
of k is at most 1 + dlog log(1/ε)e. Denote by Ft the event that for some j 6= i in {(k− 1) · |U|+ 1, . . . , k · |U|}
the element ej survives iteration t.

Claim (4). For all t ≥ 0, Pr[Ft|Ei] ≤ ε/2t+2.
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5 Proof of Claim 4

Proof. Conditioned on Ei, the elements a(k−1)·|U|+1 . . . , ai−1 are distributed uniformly on E \ EP , and
ai+1, . . . , ak·|U| are distributed uniformly on E . Without loss of generality, assume that |U| ≥ 2, since for
a universe of size one the protocol triWe obtain a strong direct product theorem for two-party bounded
round communication complexity. Let sucr(µ, f, C) denote the maximum success probability of an r-round
communication protocol that uses at most C bits of communication to compute f(x, y) when (x, y) ∼ µ. Jain
et al. [12] have recently showed that if sucr(µ, f, C) ≤ 2

3 and T � (C − Ω(r2)) · nr , then sucr(µ
n, fn, T ) ≤

exp(−Ω(n/r2)). Here we prove that if suc7r(µ, f, C) ≤ 2
3 and T � (C−Ω(r log r)) ·n then sucr(µ

n, fn, T ) ≤
exp(−Ω(n)). Our result asymptotically matches the upper bound on suc7r(µ

n, fn, T ) given by the trivial
solution which applies the per-copy optimal protocol independently to each coordinate. The proof relies on
a compression scheme that improves the tradeoff between the number of rounds and the communication
complexity over known compression schemes.lly succeeds. For every j ∈ {(k− 1) · |U|+ 1, . . . , i− 1}, and for
any C ≥ 1, therefore,

Pr[ej ∈ C · EQ|Ei] ≤
Pr[ej ∈ C · EQ]

Pr[ej /∈ EP ]
≤ 2 Pr[ej ∈ C · EQ] ≤ 2C

|U|
,

where in the second transition we used the assumption that |U| ≥ 2. The same bound holds for every
j ∈ {i + 1, . . . , k · |U|}. For every j 6= i, surviving round t also means that xj 6= xi agrees with xi on st
random hashes h1, . . . , hst . The probability of this event can be bounded by

Pr[ej survives round t|Ei] ≤ Pr[ej ∈ Ct · EQ|Ei] · 2−st ≤
21+d`

t−2d`t−dlog(1/ε)e−1

|U|
≤ 2−t−2ε

|U|
.

A union bound over the |U| − 1 possible values for j completes the proof.

By Claim 4,

Pr[yr 6= xi] <
ε

2
+

k·|U|∑
i=1

∞∑
t=1

Pr[Ei] Pr[Ft|Ei] ≤ ε.

6 Round preserving compression

Proof (of Theorem 3). Consider the protocol σ described in Figure 1 (The final protocol τ will be defined
as a truncation of σ). By Theorem 2 and our choice of error parameter (ε/r), there exists an event G1 such
for every x, y,m1,

σ(M ′1 = m1,M
′′
1 = m1, xy|G1) = θ(M1 = m1, xy) and σ(G1) > 1− ε/r.

Similarly, one can define events Gj for each round j ∈ [r]. Let G =
⋂
j∈[r]Gj . Then

σ(G) > 1− ε and σ|G = θ,

that is, σ(M ′ = m,M ′′ = m,xy|G) = θ(M = m,xy) for every x, y,m.
We first argue about Rounds(σ), the number of rounds in σ.

Claim (5). Prσ|G [Rounds(σ) > 7r] < 7ε.

Proof. Since σ|G = θ, we may work with θ instead of σ|G. We use the random variables {Tj} and k defined
as follows. As in the proof of Theorem 2, let Tj be the minimum integer t satisfying equation (1) with
P,Q that are chosen at round j of σ with a message m<j chosen before round j (for example, if j is odd,
P = θ(mj |m<jx) and Q = θ(mj |m<jy)). Let k be the smallest round j ∈ [r] such that either

log
θ(m≤j |xy)

θ(m≤j |x)
> β or log

θ(m≤j |xy)

θ(m≤j |y)
> β. (4)

9



Protocol σ for simulating θ

Player 1 repeatedly computes a message m′ = m′
1, . . . ,m

′
r and player 2 repeatedly computes a message

m′′ = m′′
1 , . . . ,m

′′
r as follows.

– For odd j, player 1 sets P = θ(mj |m′
<jx) and player 2 sets Q = θ(mj |m′′

<jy).
– For even j, player 1 sets Q = θ(mj |m′

<jx) and player 2 sets P = θ(mj |m′′
<jy).

– In each round j, the players run the protocol from Theorem 2 with error parameter ε/r, with ` = 2,
and with d = β

rε
+ 1

ε
where

β =
I + 1/(e ln 2) + log(r + 1)

ε
+ 2.

This leaves player 1 with m′
j and player 2 with m′′

j .

Fig. 1. Compression according to internal information cost.

If no such round exists, define k = r + 1.
For every j ∈ [r], minimality of Tj implies that almost surely8,

Tj ≤ 1Tj>0 · 2Tj−1 ≤ 1

d
·
(

log+

(
θ(mj |m<jxy)

θ(mj |m<jy)

)
+ log+

(
θ(mj |m<jxy)

θ(mj |m<jx)

))
.

Thus, almost surely,∑
j∈[r]

1j≤k · Tj ≤
∑
j∈[r]

1j≤k ·
1

d
·
(

log+

(
θ(mj |m<jxy)

θ(mj |m<jy)

)
+ log+

(
θ(mj |m<jxy)

θ(mj |m<jx)

))
. (5)

For x, y,m<j , denote by Sxym<j
the set of mj so that θ(mj |m<jxy) < θ(mj |m<jy). Taking expectation over

θ(xym), similarly to the proof of Lemma 2 in [6], for every j ∈ [r],

Eθ
[
1j≤k ·

(
log

(
θ(mj |m<jxy)

θ(mj |m<jy)

)
− log+

(
θ(mj |m<jxy)

θ(mj |m<jy)

))]
=

∑
x,y,m<j

θ(xym<j)θ(Sxym<j |m<jxy)
∑

mj∈Sxym<j

θ(mj |m<jxy)

θ(Sxym<j |m<jxy)
(− log)

(
θ(mj |m<jy)

θ(mj |m<jxy)

)

≥
∑

x,y,m<j

θ(xym<j)θ(Sxym<j
|m<jxy)(− log)

 ∑
mj∈Sxym<j

θ(mj |m<jy)

θ(Sxym<j
|m<jxy)


≥

∑
x,y,m<j

θ(xym<j)θ(Sxym<j |m<jxy) log
(
θ(Sxym<j |m<jxy)

)
≥ −1,

where the first transition follows from the fact that log+
(
θ(mj |m<jxy)
θ(mj |m<jy)

)
= 0 for x, y,m<j ∈ Sxym<j

, and the

second transition is by concavity of log(·). Hence, taking expectation over both sides of (5), we have

Eθ

∑
j∈[r]

1j≤k · Tj

 ≤ 1

d
· Eθ

∑
j∈[r]

(
1j≤k ·

(
log

(
θ(mj |m<jxy)

θ(mj |m<jy)

)
+ log

(
θ(mj |m<jxy)

θ(mj |m<jx)

))
+ 2

)
=

1

d
· Eθ

[
log

(
θ(m≤k|xy)

θ(m≤k|y)

)
+ log

(
θ(m≤k|xy)

θ(m≤k|x)

)
+ 2r

]
≤ 2(β + r)

d
,

8 To emphasize that this is a stochastic inequality of random variables.
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where the last inequality is by (4). Markov’s inequality and choice of d therefore imply

Pr
θ

∑
j∈[r]

1j≤k · Tj > 3r

 ≤ Pr
θ

∑
j∈[r]

1j≤k · Tj >
2(β + r)

dε

 < ε.

By Lemma 3,
Pr
θ

[k ≤ r] < 6ε.

The union bound implies

Pr
θ

∑
j∈[r]

Tj ≤ 3r

 > 1− 7ε.

Finally, Theorem 2 tells us that the number of rounds required for simulating round j in σ is 2(Tj + 1). The
claim follows.

Next, we need to argue about the communication of σ.

Claim (6). Prσ|G

[
‖σ‖ > 7 I

ε2 + 2 r log(r/ε)ε + 30 r
ε2

]
< ε.

Proof. By the third proposition of Lemma 2 and since σ|G = θ,

Eσ|G
[
‖σ‖

]
≤
∑
j∈[r]

(
(2`+ 1) · Eθ

[
log+ θ(mj |m<jxy)

θ(mj |m<jy)
+ log+ θ(mj |m<jxy)

θ(mj |m<jx)

]
+ 2 log(r/ε) + 2d+ 5

)
.

Applying Lemma 2 for each j to bound the contribution of the negative terms,

≤
∑
j∈[r]

(
(2`+ 1) · Eθ

[
log

θ(mj |m<jxy)

θ(mj |m<jy)
+ log

θ(mj |m<jxy)

θ(mj |m<jx)

]
+

2`+ 1

e ln 2
+ 2 log(r/ε) + 2d+ 5

)

= 5

(
Eθ
[
log

θ(m|xy)

θ(m|y)
+ log

θ(m|xy)

θ(m|x)

])
+ r

(
5

e ln 2
+ 2 log(r/ε) + 2

β

εr
+ 2

1

ε
+ 5

)
< 7

β

ε
+ 2r log(r/ε) + 10

r

ε
≤ 7

I

ε
+ 2r log(r/ε) + 30

r

ε
.

Markov’s inequality completes the proof of the claim.

We may now conclude the following: Define τ as the protocol σ when the parties abort if there are more

than 7r rounds or if the communication is more than 7 I
ε2 + 2 r log(r/ε)ε + 30 r

ε2 . The claims above imply that
τ is an 11ε-simulation of θ, with the desired properties as claimed.

Remark 1. In [5], the authors prove a direct sum theorem for bounded round communication complexity,
namely, that if suc(µ, f, C) = 1−ρ and T < Ω(n(C−r log(1/ε)−O(

√
C · r))), then sucr(µ

n, fn, T ) < 1−ρ+ε.
Note that suc(µ, f, C) has no restrictions on the number of rounds. This is because the compression scheme
in [5] has a large blowup in the number of rounds. Theorem 3 implies that if suc7r(µ, f, C) = 1 − ρ and
T < Ω (εn(C − (r log(r/ε))/(αε)− r/(αε))), then sucr(µ

n, fn, T ) < 1 − ρ + ε. (The proof is exactly as in
Corollary 2.5 in [5], with their compression scheme replaced by Theorem 3).

7 Direct product for bounded round protocols

Let π be a (deterministic) r-round protocol for computing fn with inputs x = x1, . . . , xn and y = y1, . . . , yn
drawn from µn. To prove Theorem 1, we follow the approach of [6] which itself resembles the proof of the
parallel repetition theorem [20]. Let W be the event that π correctly computes fn. For i ∈ [n], let Wi denote

11



the event that the protocol π correctly computes the i’th copy f(xi, yi). Let π(W ) denote the probability
of W , and π(Wi|W ) denote the conditional probability of the event Wi given W (clearly, π(Wi|W ) = 1).
We shall prove that if π(W ) is not very small and ‖π‖ � Cn, then (1/n)

∑n
i=1 π(Wi|W ) < 1, which is

a contradiction. In fact, the proof holds for an arbitrary event W , as long as it occurs with large enough
probability:

Lemma 4 (Main Lemma). Let f be a 2-party Boolean function. There is a universal constant α > 0 so

that the following holds. For every γ > 0, and event W such that π(W ) ≥ 2−γ
2n, if ‖π‖ ≥ 2, and

‖π‖ < αnγ2
(
C − r log(r/2γ)

αγ
− r

αγ2

)
,

then
1

n

∑
i∈[n]

π(Wi|W ) ≤ suc7r(µ, f, C) + γ/α.

First let us see how Lemma 4 implies Theorem 1. As outlined above, let W denote the event that π
computes f correctly in all n coordinates. So, (1/n)

∑
i∈[n] π(Wi|W ) = 1. Set γ = α(1− suc7r(µ, f, C))/2 so

that suc7r(µ, f, C) + γ/α < 1. Then by Lemma 4, either ‖π‖ < 2, ‖π‖ ≥ αnγ2
(
C − r log(r/2γ)

αγ − r
αγ2

)
, or

π(W ) < 2−γ
2n. It therefore remains to prove Lemma 4.

The overall idea is to use π to produce a 7r-round protocol with communication complexity < C
that computes f correctly with probability at least (1/n)

∑n
i=1 π(Wi|W ) − O(γ). This would imply that

(1/n)
∑
i∈[n] π(Wi|W ) ≤ suc7r(µ, f, C) +O(γ), as desired. The first step is to show that there exists a good

simulating protocol for a random coordinate of π|W , whose average information cost is low (roughly ‖π‖/n)
and still uses only r rounds. The existence of such protocol was proven in [6], except their protocol is not
guaranteed to actually have low information cost, but to merely be statistically close to a low-information
protocol. This will suffices for our purpose 9 :

Lemma 5 (Claims 26 and 27 from [6], restated). There is a protocol σ taking inputs x, y ∼ µ so that
the following holds.

– The protocol σ publicly chooses a uniform i ∈ [n] independent of x, y, and Si which is part of the input
to π.

– Ex,y,m,i,si |σ(xysim)− π(xiyisim|W )| ≤ 2γ.
– Rounds(σ) = Rounds(π).
– Ei [Iπ(Xi;M |YiSiiW ) + Iπ(Yi;M |XiSiiW )] ≤ 4‖π‖/n.

The second step of the proof of Lemma 4 is to compress the simulating protocol σ so that it actually
has low communication, without introducing many additional rounds in the compression process. Since
the second and fourth propositions of Lemma 5 imply that σ is 2γ-close to a low-information distribution
q = π(xiyisim|W ), this is precisely the setting of Theorem 3. A formal proof follows.

Proof (Proof of Lemma 4). Let α = 1/22. Assume π is so that

‖π‖ ≤ αnγ2
(
C − r log(r/2γ)

αγ
− r

αγ2

)
.

As usual, let m denote the messages of π. Let σ be the r-round protocol given by Lemma 5. Then Theorem
3 (with ε = 2γ, Iq = 4‖π‖/n) implies that there exists a 7r-round protocol τ that 22γ-simulates σ such that

‖τ‖ ≤ 7
‖π‖
nγ2

+
r log(r/2γ)

γ
+ 30

r

4γ2
.

9 The main difficulty in Lemma 5 comes from the fact that π|W is no longer distributed like a communication
protocol, since conditioning on W correlates the sender’s message with the receiver’s input. We also note that
Lemma 5 requires the notion of strong simulation. For more, see [6].
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Since f is assumed to be Boolean, Proposition 1 implies that there is a protocol τ ′ such that

‖τ ′‖ = ‖τ‖+ 1 ≤ 7
‖π‖
nγ2

+
r log(r/2γ)

γ
+ 30

r

4γ2
+ 1 <

‖π‖
nαγ2

+
r log(r/2γ)

αγ
+

r

αγ2
< C,

and such that suc(µ, f, τ ′) ≥ suc(µ, f, σ)− 22γ. We therefore conclude that

suc7r(µ, f, C) ≥ suc(µ, f, τ ′) ≥ suc(µ, f, σ)− 22γ ≥ 1

n

∑
i∈[n]

π(Wi|W )− 22γ =
1

n

∑
i∈[n]

π(Wi|W )− γ/α.

Remark 2. Theorem 1 holds for general discrete functions f : X×Y −→ Z. The only place in the proof where
we used the assumption on the range of f is when applying Proposition 1 in the proof of Lemma 4. When
the range of f is Z, Proposition 1 incurs an additive loss of log |Z| and therefore results in a slightly weaker
quantitative statement of Theorem 1 (i.e. the premise about the communication of π is slightly stronger).
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