
Autoreducibility of Complete Sets for Log-Space and

Polynomial-Time Reductions

Christian Glaßer∗ Dung T. Nguyen† Christian Reitwießner∗‡ Alan L. Selman†

Maximilian Witek∗

18th March 2013

Abstract

We investigate the autoreducibility and mitoticity of complete sets for several classes with
respect to different polynomial-time and logarithmic-space reducibility notions.

Previous work in this area focused on polynomial-time reducibility notions. Here we
obtain new mitoticity and autoreducibility results for the classes EXP and NEXP with
respect to some restricted truth-table reductions (e.g., ≤p

2-tt,≤
p
ctt,≤

p
dtt).

Moreover, we start a systematic study of logarithmic-space autoreducibility and mitotic-
ity which enables us to also consider P and smaller classes. Among others, we obtain the
following results:

• Regarding ≤log
m , ≤log

2-tt, ≤
log
dtt and ≤log

ctt , complete sets for PSPACE and EXP are mitotic,
and complete sets for NEXP are autoreducible.

• All ≤log
1-tt-complete sets for NL and P are ≤log

2-tt-autoreducible, and all ≤log
btt-complete

sets for NL, P and ∆p
k are ≤log

log-T-autoreducible.

• There is a ≤log
3-tt-complete set for PSPACE that is not even ≤log

btt-autoreducible.

Using the last result, we conclude that some of our results are hard or even impossible to
improve.

1 Introduction

A set C is called autoreducible if C can be reduced to itself by a reduction that does not query its
own input. In this way, each reducibility induces a corresponding autoreducibility notion. The
main question in connection with autoreducibility asks whether all complete sets of a certain
complexity class are autoreducible. Interestingly, answering such questions often leads to new
separations of complexity classes.

For example, consider the question of whether all polynomial-time truth-table-complete sets
for EXP are polynomial-time truth-table-autoreducible. Buhrman et al. [5] show that a positive
answer results in NL 6= NP while a negative answer implies PH 6= EXP. So the study of the
autoreducibility of complete sets is a fascinating and important topic.

Mitoticity is another structural property of complete sets that could lead to separations of
complexity classes. A set C is mitotic if it can be partioned into sets C1 and C2 such that
C, C1, and C2 are equivalent. Here again each reducibility induces a corresponding notion of
mitoticity.

∗Julius-Maximilians-Universität Würzburg, {glasser,reitwiessner,witek}@informatik.uni-wuerzburg.de
†University at Buffalo, The State University of New York, {dtn3,selman}@buffalo.edu
‡CCTVAL, Universidad Técnica Federico Santa Maŕıa, Valparáıso. Supported by Basal Project PB-821

CCTVal – Centro Cient́ıfico Tecnológico de Valparáıso

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 47 (2013)

Over the past 20 years, researchers were able to solve autoreducibility and mitoticity ques-
tions for several complexity classes and with respect to several polynomial-time reducibility
notions. With our paper we further develop this knowledge in two ways: First, we extend
techniques by Buhrman et al. [5] to show new mitoticity results for EXP and NEXP. Second,
we start a systematic investigation of autoreducibility and mitoticity for logarithmic-space re-
ductions. Since the previous research was concerned with polynomial-time reductions, it did
not produce conclusions about P or smaller classes.

With respect to polynomial-time 2-truth-table reducibility (≤p
2-tt) we show that all EXP-

complete sets are mitotic and all NEXP-complete sets are autoreducible. With respect to
logspace reducibilities (e.g., ≤log

m , ≤log
2-tt, ≤

log
btt, ≤

log
T) we obtain several autoreducibility and mi-

toticity results for complete sets of the classes NL, P, PSPACE, EXP, and NEXP. Table 1
summarizes previously known results and their references together with results newly obtained
in this paper. For example, we show:

(i) All ≤log
2-tt-complete sets for PSPACE are ≤log

2-tt-mitotic.

(ii) All ≤log
2-tt-complete sets for EXP are ≤log

2-tt-mitotic.

Note that in both cases, mitoticity implies autoreducibility.
The restriction of the reduction allows us to show stronger negative results. We prove:

(iii) There exists a ≤log
3-tt-complete set for PSPACE that is not ≤log

btt-autoreducible.

This result is particularly interesting, since it shows that statement (i) does not hold for≤log
3-tt and

that (ii) cannot be improved to ≤log
3-tt, unless one separates EXP from PSPACE. Furthermore,

for logspace bounded-truth-table reducibility we obtain that resolving the autoreducibility or
mitoticity of complete sets for classes between L and PSPACE in one or the other way implies
new separations of complexity classes:

(iv) For every C ∈ {P,NP,∆p
k,PP} it holds that

– if all ≤log
btt-complete sets for C are ≤log

btt-autoreducible, then C 6= PSPACE
– otherwise, L 6= C.

The paper is organized as follows. Section 2 contains the preliminary definitions and some
basic propositions about autoreducibility and mitoticity. In section 3 we use search techniques
in computation trees to establish autoreducibility of complete sets for NL and P. In section 4 we
use local checkability to obtain further autoreducibility results for NL, P, and ∆p

k. Moreover,
we argue that some of those results are difficult to improve, as such an improvement would
separate P or ∆p

k from PSPACE. In section 5 we consider higher complexity classes such as
PSPACE,EXP,NEXP and use diagonalization to obtain mitoticity and autoreducibility results,
some of which again are hard or even impossible to improve.

2 Preliminaries

Let log 0 = 0 and logn = dlog2 ne for n ≥ 1. A set is called trivial if it is finite or cofinite;
otherwise the set is called nontrivial. The characteristic function of a set A is denoted by cA or
simply A. If M is a machine, then M(x) denotes the computation of M on input x and L(M)
denotes the language accepted by M . Let 〈· · · 〉 be a standard pairing function computable in
logarithmic space.

The operators ∧,∨,→,←,↔ denote the usual 2-ary Boolean functions and ¬∧,¬∨, 6→, 6←,⊕
denote the negations of these functions.

2

reduction NL P ∆p
k PSPACE EXP NEXP references

≤log
m A

log
1-tt, A

log
2-dtt, A

log
2-ctt A

log
1-tt Mlog

m Mlog
m Alog

m 2.7, 3.5, 5.3, 5.6

≤log
1-tt A

log
2-tt A

log
2-tt Mlog

m Mlog
m Alog

m 3.5, 5.15

≤log
αtt A

log
btt A

log
btt 4.11

≤log
2-tt M

log
2-tt M

log
2-tt A

log
2-tt 5.7, 5.11

≤log
k-ctt A

log
k-tt, A

log
2k-ctt A

log
k-tt M

log
k-ctt M

log
k-ctt A

log
k-ctt 2.7, 3.5, 5.11

≤log
k-dtt A

log
k-tt, A

log
2k-dtt A

log
k-tt M

log
k-dtt M

log
k-dtt A

log
k-dtt 2.7, 3.5, 5.11

≤log
btt A

log
log-T A

log
log-T A

log
log-T X1 X2 4.1, 4.2, 4.8, [5]

≤log
ctt A

log
ctt M

log
ctt M

log
ctt A

log
ctt 3.5, 5.6, 5.11

≤log
dtt A

log
dtt M

log
dtt M

log
dtt A

log
dtt 3.5, 5.6, 5.11

≤log
tt A

log
tt A

log
tt A

log
tt 3.5, 4.8

≤log
T A

log
tt A

log
tt A

log
tt 3.5, 4.8

reduction NP ∆p
k PSPACE EXP NEXP references

≤p
m Mp

m Mp
m Mp

m Mp
m Mp

m [3, 6, 7, 8]

≤p
1-tt M

p
1-tt M

p
1-tt Mp

m Mp
m [4, 7, 8, 9], 5.15

≤p
2-tt M

p
2-tt A

p
2-tt [5], 5.7, 5.11

≤p
k-ctt M

p
k-ctt A

p
k-ctt 5.6, 5.11

≤p
k-dtt A

p
k-dtt A

p
k-dtt M

p
k-dtt A

p
k-dtt [7], 5.6, 5.11

≤p
btt X3 [5]

≤p
ctt M

p
ctt A

p
ctt 5.6, 5.11

≤p
dtt A

p
dtt A

p
dtt M

p
dtt A

p
dtt [7], 5.6, 5.11

≤p
tt ABPP

tt A
p
tt ABPP

tt [2, 5]

≤p
T A

p
T A

p
T A

p
T [2, 5]

Table 1: Are all complete sets for certain classes autoreducible or even mitotitc? For each
reduction ≤ in the first column and each class C in the first row, the corresponding cell shows
if all ≤-complete sets for C are autoreducible or mitotic, where Mx

y means ≤xy-mitotic, and Axy
means ≤xy-autoreducible. From the first cell in the upper table we know for instance that all

≤log
m -complete sets for NL are ≤log

1-tt-autoreducible. k ≥ 2 is a fixed integer, α is an arbitrary
binary boolean function. For the cells marked with X1, X2, and X3, negative results are known:
There is a ≤log

btt-complete set for PSPACE that is not ≤log
btt-autoreducible (Theorem 4.2) and a

≤log
btt-complete set for EXP that is not ≤p

btt-autoreducible [5]. Results implied by universal
relations between reductions are omitted. For the definitions of the reductions and the classes,
see section 2.

3

The notions of polynomial-time (resp., logspace) oracle Turing machine and polynomial-
time-computable (resp., logspace-computable) function are defined according to Ladner, Lynch,
and Selman [10, 11].

For sets A and B we say that A is polynomial-time Turing reducible to B (A ≤p
T B), if

there exists a polynomial-time oracle Turing machine that accepts A with B as its oracle. If
M on input x asks at most O(log |x|) queries, then A is polynomial-time log-Turing reducible
to B (A ≤p

log-T B). If M ’s queries are nonadaptive (i.e., independent of the oracle), then A is

polynomial-time truth-table reducible to B (A ≤p
tt B). If M asks at most k nonadaptive queries,

then A is polynomial-time k-truth-table reducible to B (A ≤p
k-tt B). A is polynomial-time

bounded-truth-table reducible to B (A ≤p
btt B), if A ≤p

k-tt B for some k. A is polynomial-time
disjunctive-truth-table reducible to B (A ≤p

dtt B), if there exists a polynomial-time-computable
function f such that for all x, f(x) = (q1, . . . , qn) for some n ≥ 1 and (x ∈ A ⇐⇒ cB(q1) ∨
· · · cB(qn)). If n is bounded by some constant k, then A is polynomial-time k-disjunctive-truth-
table reducible to B (A ≤p

k-dtt B). The polynomial-time conjunctive-truth-table reducibilities
≤p

ctt and ≤p
k-ctt are defined analogously. A is polynomial-time many-one reducible to B (A ≤p

m

B), if there exists a polynomial-time-computable function f such that (x ∈ A ⇐⇒ f(x) ∈ B).
For a k-ary Boolean function α, A is polynomial-time α-truth-table reducible to a set B (A ≤p

αtt

B), if there exists a polynomial-time-computable function f such that f(x) = (q1, . . . , qk) and
(x ∈ A ⇐⇒ α(cB(q1), . . . , cB(qk))). We also use the following logspace reducibilities which
are defined analogously in terms of logspace oracle Turing machines and logspace-computable
functions: ≤log

T , ≤log
log-T, ≤log

tt , ≤log
k-tt, ≤

log
btt, ≤

log
dtt, ≤

log
k-dtt, ≤

log
ctt , ≤

log
k-ctt, ≤

log
m , ≤log

αtt.
Consider a logspace oracle Turing machineM on input x. If we run through all configurations

and compute the next string that is queried, we obtain a list L of all strings that are possibly
queried during the computation of M on x. Now we can simulate the computation of M on x
such that each time a string q is queried, we query all strings from L and use the answer to q in
the further computation. This shows that we may assume that logspace oracle Turing machines
query nonadaptively.

Proposition 2.1 ([10]) A ≤log
tt B if and only if A ≤log

T B.

Definition 2.2 (autoreducibility) For ≤ ∈ {≤p
T, ≤p

log-T, ≤p
tt, ≤

p
k-tt, ≤

p
btt, ≤

log
T , ≤log

log-T, ≤log
tt ,

≤log
k-tt, ≤

log
btt}, a set A is ≤-autoreducible, if A ≤ A via an oracle Turing machine that on input

x does not query x.
For ≤ ∈ {≤p

dtt, ≤
p
k-dtt, ≤

p
ctt, ≤

p
k-ctt, ≤

p
m, ≤p

αtt, ≤
log
dtt, ≤

log
k-dtt, ≤

log
ctt, ≤

log
k-ctt, ≤

log
m , ≤log

αtt}, a
set A is ≤-autoreducible, if A ≤ A via a function f such that if f(x) = (q1, . . . , qn), then
x /∈ {q1, . . . , qn}.

Definition 2.3 (mitoticity) For any polynomial-time reducibility ≤p, a set A is ≤p-mitotic,
if there exists a separator S ∈ P such that A ≡p A ∩ S ≡p A ∩ S. Analogously we define
mitoticity for logspace reducibilities at which the separator is chosen from L.

Proposition 2.4 For every reduction ≤ and every non-trivial set A, if A is ≤-mitotic, then A
is ≤-autoreducible.

Proposition 2.5 Let C be a complexity class and k ≥ 1.

1. For all reducibility notions ≤ ∈ {≤log
m ,≤log

k-tt,≤
log
k-T,≤

log
btt,≤

log
tt ,≤

log
log-T,≤

log
T }, if A is ≤-

complete for C, then A is ≤-complete for coC.
2. If A is ≤log

k-ctt-complete for C, then A is ≤log
k-dtt-complete for coC.

3. If A is ≤log
ctt-complete for C, then A is ≤log

dtt-complete for coC.

4

4. If A is ≤log
k-dtt-complete for C, then A is ≤log

k-ctt-complete for coC.

5. If A is ≤log
dtt-complete for C, then A is ≤log

ctt-complete for coC.

Proposition 2.6 The following holds for k ≥ 1.

1. For all reducibility notions ≤ ∈ {≤log
m ,≤log

k-tt,≤
log
k-T,≤

log
btt,≤

log
tt ,≤

log
log-T,≤

log
T }, if A is ≤-

autoreducible, then A is ≤-autoreducible.
2. A is ≤log

k-ctt-autoreducible ⇒ A is ≤log
k-dtt-autoreducible.

3. A is ≤log
ctt-autoreducible ⇒ A is ≤log

dtt-autoreducible.

4. A is ≤log
k-dtt-autoreducible ⇒ A is ≤log

k-ctt-autoreducible.

5. A is ≤log
dtt-autoreducible ⇒ A is ≤log

ctt-autoreducible.

Proposition 2.7 Let k ≥ 1 and let C be a complexity class closed under complementation.

1. All ≤log
m -complete sets for C are ≤log

1-tt-autoreducible.

2. All ≤log
k-dtt-complete sets for C are ≤log

k-tt-autoreducible.

3. All ≤log
k-ctt-complete sets for C are ≤log

k-tt-autoreducible.

Proof We first show item 2, so let A be ≤log
k-dtt-complete for C and some k ≥ 1. C is closed under

complementation, hence A ∈ C and thus A ≤log
k-dtt A via some f , i.e., x /∈ A ⇐⇒

∨k
i=1 yi ∈ A,

where f(x) = (y1, . . . , yk). If x /∈ {y1, . . . , yk}, this yields a ≤log
k-tt-autoreduction for A. If

x ∈ f(x), then x /∈ A, since otherwise the reduction shows a contradiction.

To show item 3, let A be ≤log
k-ctt-complete for C. By Proposition 2.5, A is ≤log

k-dtt-complete for

coC = C. So A is ≤log
k-tt-autoreducible by the argument above. From Proposition 2.6 we obtain

that A is ≤log
k-tt-autoreducible.

Finally, item 1 follows from item 2 and item 3 for k = 1. 2

Proposition 2.8 Let C be a complexity class that is closed under complementation. For every
Boolean function α, if A is ≤log

αtt-complete for C, then A is ≤log
(¬α)tt-complete for C.

Proof Let A be ≤log
αtt-complete for C and B ∈ C, where α is a k-ary Boolean function. We have

to show that B ≤log
(¬α)tt A. Since B ∈ C, there is a function f that shows B ≤log

αtt A. On input x,

consider 〈y1, y2, . . . , yk〉 = f(x). We now have x ∈ B ⇐⇒ α(cA(y1), cA(y2), . . . , cA(yk)). This

means that x ∈ B ⇐⇒ (¬α)(cA(y1), cA(y2), . . . , cA(yk)) and thus f also shows B ≤log
(¬α)tt A. 2

3 Autoreducibility by Self-Reducibility

We use the notion of self-reducibility to show the autoreducibility of complete sets. Observe
that for NL and P there exist self-reducible, ≤log

m -complete sets, which follows from the char-
acterizations in terms of nondeterministic and alternating logspace machines. In this section
we argue that this implies that all complete sets for NL and P are autoreducible (not only

for ≤log
m , but also several other logspace reducibility notions). For example, we obtain that all

≤log
tt -complete sets for NL and P are ≤log

tt -autoreducible.

The following notion of ≤log
T -self-reducibility is a restriction of ≤log

T -autoreducibility which
demands that oracle queries have a certain structure.

5

Definition 3.1 ([1]) A is ≤log
T -self-reducible if there is a logspace oracle Turing machine M

that accepts A with oracle A such that on input x, the queries asked by M are of the same length
as x, lexicographically smaller than x, and differ from x at most in the last log |x| symbols.

The notions of ≤log
tt -self-reducibility and ≤log

k-tt-self-reducibility are defined analogously. By

Proposition 2.1, a set is ≤log
T -self-reducible if and only if it is ≤log

tt -self-reducible.
There is a technical difficulty in defining self-reducibility for disjunctive and conjunctive

truth-table reducibilities. In these cases, the reduction cannot simply accept or reject, but must
generate queries that represent the answer. However, a self-reduction on input x = y0|y| is
not allowed to make any query, since the last log |x| symbols of x already reached the minimal
possible value. Therefore, in the definition below the self-reduction may accept or reject without
asking any queries.

Definition 3.2 A set A is ≤log
dtt-self-reducible if there is a logspace-computable function f whose

values can be 0, 1, or a list of words (y1, . . . yn) where n ≥ 1 such that the following holds: If
f(x) ∈ {0, 1}, then cA(x) = f(x). Otherwise, it holds that f(x) = (y1, . . . yn) such that the yi
are of the same length as x, are lexicographically smaller than x, differ from x at most in the
last log |x| symbols, and x ∈ A ⇔ (cA(y1) ∨ · · · ∨ cA(yn)). If n is bounded by some constant k,

then A is ≤log
k-dtt-self-reducible. The notions of ≤log

ctt-self-reducibility and ≤log
k-ctt-self-reducibility

are defined analogously. A is ≤log
m -self-reducible if it is ≤log

1-dtt-self-reducibile.

Each nontrivial self-reducible set B is autoreducible. The lemma below says that if a set A
is in some sense equivalent to a self-reducible set B, then also A is autoreducible. The proof for
the easiest case of ≤log

dtt works by first executing the reduction A ≤log
m B and then it iteratively

follows exactly one of the self-reducibility-queries of B. For each of these queries, the ≤log
dtt-

reduction to A is computed. If x does not occur among the queries of this reduction, we can
complete the reduction. Otherwise, we continue the self-reduction on this path, as it positively
depends on whether x ∈ A.

Lemma 3.3 Let l ≥ 1 and A,B be sets.

1. A ≤log
m B ≤log

tt A and B is ≤log
tt -self-reducible =⇒ A is ≤log

tt -autoreducible.

2. A ≤log
m B ≤log

1-tt A and B is ≤log
2-tt-self-reducible =⇒ A is ≤log

2-tt-autoreducible.

3. A ≤log
m B ≤log

dtt A and B is ≤log
dtt-self-reducible =⇒ A is ≤log

dtt-autoreducible.

4. A ≤log
m B ≤log

l-dtt A, B is ≤log
2-dtt-self-reducible =⇒ A is ≤log

2l-dtt-autoreducible.

Proof 1. Let A ≤log
m B via f . Let hqx be the unary Boolean function that results from the

reduction B ≤log
tt A on input q, when all queries r 6= x are substituted by their answers cA(r).

Hence hqx is the unary Boolean function with the property cB(q) = hqx(cA(x)). Moreover, let

M be the oracle Turing machine performing the ≤log
tt -self-reduction of B. The following oracle

machine computes a ≤log
T -autoreduction for A on input x:

1. s := f(x), β := id
2. let q1, . . . , qk be the words queried by M on input s
3. if hq1x , . . . , hqkx are all constants then
4. return the result of M on s, where queries are answered according to hq1x , . . . , h

qk
x

5. choose i such that hqix is not constant
6. let s := qi and β := hqix
7. goto 2

6

Observe that this computation can be executed in logarithmic space without querying the input
x. The machine only needs logarithmic space, since the queries qi differ from f(x) only in the
last log |x| symbols. Note that the computation eventually stops in line 4, since s is always
replaced by a lexicographically smaller string.

For the correctness note that in line 2 we always have cA(x) = β(cB(s)): It is true at the
beginning of the computation and in line 5 it holds that cB(qi) = hqix (cA(x)) and since hqix is

either non or id, we obtain cA(x) = hqix (cB(qi)). This shows that A is ≤log
T -autoreducible and

hence ≤log
tt -autoreducible by Proposition 2.1.

2. We argue analogously. Note that in this case k ≤ 2 and we can check whether the
functions hqix are constants without asking any queries (since we consider ≤log

1-tt-reductions).

3. Let h(q) be the set of words queried by the reduction B ≤log
dtt A on input q. In line 3 of the

above algorithm, it suffices to check whether x belongs to at least one of the sets h(q1), . . . , h(qk).
If so, say x ∈ h(qi), then we continue with s := qi. Otherwise, we return h(q1) ∪ · · · ∪ h(qk).

For the correctness of the modified algorithm note that in line 2 we always have cA(x) =
cB(s): This is true at the beginning of the computation and in line 5 it holds that cA(x) =
cB(s) = cB(q1) ∨ · · · ∨ cB(qk) ≥ cB(qi) ≥ cA(x) and thus cA(x) = cB(qi).

4. We argue similar to 3., while observing that in this case k ≤ 2 and |h(q1)∪h(q2)| ≤ 2l. 2

Proposition 3.4 Let k ≥ 1.

1. There is a ≤log
m -complete set for NL that is ≤log

2-dtt-self-reducible.

2. There is a ≤log
m -complete set for NL that is ≤log

2-ctt-self-reducible.

3. There is a ≤log
m -complete set for P that is ≤log

2-tt-self-reducible.

4. There is a ≤log
m -complete set for ACk (resp., SACk, NCk) that is ≤log

tt -self-reducible.

Proof The evaluation of Boolean circuits over binary OR (resp., AND) is ≤log
m -complete for NL

and ≤log
2-dtt-self-reducible (resp., ≤log

2-ctt-self-reducible). The evaluation of Boolean circuits over

binary OR and AND is ≤log
m -complete for P and is ≤log

2-tt-self-reducible.
For the classes ACk, SACk, and NCk, the following problem has the desired properties: For

a given circuit C and a given number i determine whether the i-th gate of C has value 1. 2

With Lemma 3.3 and Proposition 3.4 we show the autoreducibility of logspace complete sets.

Theorem 3.5 Let k ≥ 1.

1. All ≤log
tt -complete sets for NL, P, ACk, SACk, or NCk are ≤log

tt -autoreducible.

2. All ≤log
1-tt-complete sets for NL or P are ≤log

2-tt-autoreducible.

3. All ≤log
dtt-complete sets for NL are ≤log

dtt-autoreducible.

4. All ≤log
ctt-complete sets for NL are ≤log

ctt-autoreducible.

5. All ≤log
k-dtt-complete sets for NL are ≤log

2k-dtt-autoreducible.

6. All ≤log
k-ctt-complete sets for NL are ≤log

2k-ctt-autoreducible.

7. All ≤log
m -complete sets for NL are ≤log

2-dtt- and ≤log
2-ctt-autoreducible.

Proof Let A be ≤log
tt -complete for NL (resp., P). By Proposition 3.4, there exists a ≤log

2-tt-self-

reducible set B that is ≤log
m -complete for NL (resp., P). By Lemma 3.3, A is ≤log

tt -autoreducible.
The remaining statements are shown analogously. The statements about conjunctive au-

toreducibility are obtained by the Propositions 2.5 and 2.6 and the fact that NL is closed under
complement. 2

We now use self-reducibility to show that for restricted ≤log
2-tt reducibility it holds that com-

plete sets for NL and P are autoreducible.

7

Theorem 3.6 All sets that are ≤log
(→)tt-complete for NL (resp., P) are ≤log

btt-autoreducible.

Proof We argue for P (the case of NL is shown analogously). Let α = (→), let A be ≤log
αtt-

complete for P, and let M be some alternating machine that accepts A. Consider the set

R = {〈x,C〉 | configuration C is the root of an accepting subtree in M(x)}

and observe that R,R ∈ P. Hence there are logspace-computable functions f, g that show
R,R ≤log

αtt A. Let C0 denote the start configuration of M on input x. We may assume:

• f(〈x,C0〉) queries (a→ x) for some fixed a ∈ A
• for every stop configuration Cs, neither f(〈x,Cs〉) nor g(〈x,Cs〉) queries x

The following algorithm traverses M(x) and keeps the invariant x ∈ A ⇐⇒ 〈x,C〉 ∈ R.

1. C := C0

2. (C1, C2) := successor configurations of C in M(x)
3. β := type of node C in M(x)
4. if β = ∨ then:
5. let f(〈x,C1〉) = (y1 → y2) and f(〈x,C2〉) = (y3 → y4)
6. if x /∈ {y1, y2, y3, y4} then return ((y1 → y2) ∨ (y3 → y4))
7. else if x ∈ {y1, y3} then return some fixed value a ∈ A
8. else set C := Ci, where y2i = x, and continue with step 2
9. else (β = ∧):

10. let g(〈x,C1〉) = (y1 → y2) and g(〈x,C2〉) = (y3 → y4)
11. if x /∈ {y1, y2, y3, y4} then return (¬(y1 → y2) ∧ ¬(y3 → y4))
12. else if x ∈ {y2, y4} then return some fixed value b /∈ A
13. else set C := Ci, where y2i−1 = x, and continue with step 2

After line 1, the invariant clearly holds. Assume that we reach line 8, so β = ∨ and f(〈x,Ci〉) =
(y2i−1 → x). If x /∈ A, then 〈x,C〉 /∈ R and hence 〈x,Ci〉 /∈ R. If x ∈ A, then cA(y2i−1)→ cA(x)
is true and hence 〈x,Ci〉 ∈ R. So after setting C := Ci, the invariant still holds. Assume now
that we reach line 13. so β = ∧ and g(〈x,Ci〉) = (x→ y2i). If x ∈ A, then 〈x,C〉 ∈ R and hence
〈x,Ci〉 ∈ R. If x /∈ A, then cA(x) → cA(y2i) is true and hence 〈x,Ci〉 ∈ R. So after setting
C := Ci, the invariant still holds.

Since the invariant always holds, the return statements in line 6 and line 11 are obviously
correct. So suppose we stop in line 7 and it holds that x ∈ {y1, y3}, hence f(〈x,Ci〉) = (x→ y2i).
Then x /∈ A leads to the following contradiction: if x /∈ A, then (x → y2i) is true, hence
〈x,Ci〉 ∈ R, which implies 〈x,C〉 ∈ R, which implies x ∈ A. Suppose now that we stop in line
12 and it holds that x ∈ {y2, y4}, hence g(〈x,Ci〉) = (y2i−1 → x). Then x ∈ A leads to the
following contradiction: if x ∈ A, then (y2i−1 → x) is true, hence 〈x,Ci〉 ∈ R, which implies
〈x,C〉 /∈ R, which implies x /∈ A.

Observe that the algorithm will eventually return, because we assumed that stop configura-
tions do not query x. 2

4 Autoreducibility by Local Checkability of Computations

If we represent computations of NL, P, and ∆p
k machines in tableaus or configuration graphs,

we can locally check the consistency of these computations. This technique allows us to show

(i) the ≤log
log-T-autoreducibility of all ≤log

btt-complete sets for NL, P, and ∆p
k, and

8

(ii) the ≤log
btt-autoreducibility of all ≤log

αtt-complete sets for NL and P, for all 2-ary Boolean α.

Using techniques by Buhrman et al. [5] we show that not all ≤log
btt-complete sets for PSPACE are

≤log
btt-autoreducible. Hence certain improvements of (i) and (ii) are difficult to obtain: Improving

(i) to ≤log
btt-autoreducibility for P (resp., ∆p

k) implies P 6= PSPACE (resp., ∆p
k 6= PSPACE), and

improving (ii) to 3-ary Boolean α for P implies P 6= PSPACE.

Moreover, we obtain that resolving the ≤log
btt-autoreducibility of ≤log

btt-complete sets for P,
NP, PP, ∆p

k, Σp
k, or Πp

k leads to unknown separations of complexity classes.

Theorem 4.1 1. All ≤log
btt-complete sets for NL are ≤log

log-T-autoreducible.

2. All ≤log
btt-complete sets for P are ≤log

log-T-autoreducible.

Proof We show item 2 (the proof of 1 is analoguous), so let A be ≤log
btt-complete for P. Recall

that P = AL and let M be an alternating logspace TM with L(M) = A. Consider the set

R = {〈x,C〉 | configuration C is the root of an accepting subtree

in the configuration graph of M on input x}.

Note that the configuration graph of M on input x also contains those configurations of M on
input x of length O(log |x|) that are not reachable from the start configuration of M on input

x. Observe that R ∈ AL, hence R ≤log
btt A via some logspace oracle Turing machine. Let hCx be

the unary Boolean function that results from the reduction R ≤log
btt A on input 〈x,C〉 when all

queries q 6= x are substituted by their answers cA(q). Hence cR(〈x,C〉) = hCx (cA(x)). We may
assume that for every input x:

• hC0
x = id, where C0 is the start configuration of M on input x

• hCs
x is constant for every stop configuration Cs of M on input x

So for every x, there exists a configuration C in the configuration graph of M on input x with
successors C1 and C2 such that hCx is not constant, while hC1

x and hC2
x are constant. Let C(x) be

the smallest such configuration and let B = {〈x, i〉 | the i-th bit of C(x) is one}. Observe that

B ∈ AL and hence B ≤log
btt A. Thus the function g(x)

df
=C(x) can be computed by a logspace

oracle Turing machine with oracle A such that on input x, the machine queries O(log |x|) words.

We describe the ≤log
log-T-autoreduction on input x:

1. compute C(x) using g’s machine with oracle A ∪ {x}
2. verify that C is a configuration with successors C1, C2 of M on input x such that

• hCx is not constant and
• hC1

x and hC2
x are constant

otherwise return 0
3. if C is an existential configuration, then return hCx (hC1

x ∨ hC2
x)

if C is a universal configuration, then return hCx (hC1
x ∧ hC2

x)

Note that in the case x /∈ A, it could be that in step 1, the algorithm does not correctly
compute the configuration C(x). However, the algorithm never rejects erroneously in step 2,
since the verification in step 2 always passes for the correct configuration C(x).

If the algorithm reaches step 3, then hCx is not constant while hC1
x and hC2

x are constant.
Hence for an existential (resp., universal) C it holds that hC1

x ∨ hC2
x = cR(〈x,C〉) = hCx (cA(x))

(resp., hC1
x ∧ hC2

x = cR(〈x,C〉) = hCx (cA(x))). So the algorithm accepts if and only if x ∈ A
(which follows from the fact that either hCx = id or hCx = non).

9

The algorithm works in logspace and queries O(log |x|) words. Hence A is ≤log
log-T-

autoreducible. 2

Theorem 4.1 raises the question of whether one can improve this result to obtain a non-
adaptive autoreduction. The next theorem and its corollary show that at least in the case of
P (Theorem 4.1.2) such an improvement is difficult to obtain as it separates P from PSPACE.
The proof is based on an idea by Buhrman et al. [5] who show that not all ≤p

btt-complete sets
for EXP are ≤p

btt-autoreducible.

Theorem 4.2 For every k there is a ≤log
2-T-complete set for PSPACE that is not ≤log

nk-tt
-

autoreducible. In particular, not all ≤log
btt-complete sets for PSPACE are ≤log

btt-autoreducible.

Proof We construct a set A ∈ PSPACE that contains two tracks, one track encodes a ≤log
m -

complete set K and the other one diagonalizes against all ≤log

nk-tt
-reductions. Because these

reductions are able to ask polynomially large queries, a straightforward encoding of K into A
fails, since the diagonalization would have to decide K in the simulation of the reduction. The
trick by Buhrman et al. is to include switch points that swap the tracks and always send the
reduction onto the track that contains barriers.

Let Σ = {0, 1} and let {Mi}i be an enumeration of all ≤log

nk-tt
-autoreductions such that the

computation of Mi on x can be simulated in space i log |x| and asks queries of length at most
|x|i. Furthermore, we may assume that Mi on inputs of length n queries exactly nk distinct

words. The diagonalization against Mi will be done on input 0t(i) for t(i) = 22
22

i

. This ensures
that the length of the largest query on this input is (t(i))i < t(i+ 1).

Let K ⊆ {0, 1}∗ be ≤log
m -complete for PSPACE such that K ∩ Σt(i)−1 = ∅ for all i ∈ N.

Furthermore, we assume that K ∈ DSPACE(n).
We define A−1 = ∅ and iteratively construct the stages A0 ⊆ A1 ⊆ A2 ⊆ . . . such that

A =
⋃
i∈NAi.

Stage i: Let n = t(i) and Q = {q1, . . . , qnk} be the words queried by Mi(0
n). Let L =

Q∩ 1Σ≥n and R = Q∩ 0Σ≥n be the “left” and “right” queries and subdivide them further into
blocks according to their length as follows: Lj = L ∩ {x | n2j−1

< |x| ≤ n2
j}, Rj = R ∩ {x |

n2
j−1

< |x| ≤ n2j} for 1 ≤ j ≤ dlog ie. We claim that at least one of the following holds:

X) ∀l1 ⊆ L1∃r1 ⊆ R1∀l2 ⊆ L2∃r2 ⊆ R2 . . . ∀ldlog ie ⊆ Ldlog ie∃rdlog ie ⊆ Rdlog ie :
M

Ai−1∪l1∪···∪ldlog ie∪r1∪···∪rdlog ie
i (0n) rejects

Y) ∀r1 ⊆ R1∃l1 ⊆ L1∀r2 ⊆ R2∃l2 ⊆ L2 . . . ∀rdlog ie ⊆ Rdlog ie∃ldlog ie ⊆ Ldlog ie :
M

Ai−1∪l1∪···∪ldlog ie∪r1∪···∪rdlog ie
i (0n) accepts

This follows by basic logic: ¬X has the structure ∃l1∀r1 · · · : M ·i(0
n) accepts. From this we

obtain Y , since ∃li∀riH implies ∀ri∃liH for all H.
If X holds, then we define Ai = {0n}∪{1x | x ∈ K∧t(i) ≤ |x| < t(i+1)−1}∪r1∪· · ·∪rdlog ie,

where the lj result from K and the rj are chosen in the order r1, . . . , rdlog ie as the lexico-
graphically minimal rj ⊆ Rj such that

∀lj+1 ⊆ Lj+1∃rj+1 ⊆ Rj+1∀lj+2 ⊆ Lj+2 · · · : M
Ai−1∪l1∪···∪ldlog ie∪r1∪···∪rdlog ie
i (0n) rejects.

If X does not hold, then Y holds and we analogously define Ai = {0x | x ∈ K ∧ t(i) ≤ |x| <
t(i+ 1)− 1} ∪ l1 ∪ · · · ∪ ldlog ie. We show following:

1. K ≤log
2-T A

2. A ∈ PSPACE

10

3. A is not ≤log

nk-tt
-autoreducible

1.: Let x be some input and i ∈ N such that t(i) ≤ |x| < t(i + 1) − 1 (all other inputs are
trivial). First we query 0t(i) ∈ A. If the answer is “yes”, then we return the answer to the query
1x ∈ A. Otherwise, we return the answer to the query 0x ∈ A.

2.: By induction on i we show that A ∈ DSPACE(nk+1). The induction base is trivial, since
it is a finite case. For the induction step, we first show that we can decide inputs of the form
0t(i) in DSPACE(nk+1) and then we show it for inputs of length between t(i) and t(i+ 1).

For inputs of the form 0n where n = t(i) we only have to decide whether situation X holds
or not. Note that we cannot write down all queries of Mi(0

n), as some may be too large. We
can, though, record the first symbol and the length of each query and thus determine the set
Rj or Lj it lies in or whether it is shorter than n. Queries that are shorter than n can even be
answered by the induction hypothesis. Furthermore, queries can be identified by their sequence
number, since all queries are distinct and the reduction is non-adaptive. This means that we
can find out whether situation X holds or not by a depth-first-search of the expression tree:
Each node in the tree can be encoded as a string of answers to the at most nk queries that are
larger than n and thus takes space nk. The value of a leaf can be determined by simulating
Mi(0

n) on this set of answers, which uses only i log n space. In total, we can decide 0n at least
in space nk+1.

Now let x be an input such that t(i) < |x| < t(i+1). Without loss of generality, assume that
X holds (we can again determine that). If x ∈ 1Σ∗ just simulate the algorithm that decides K
in linear space. If x starts with 0, but is not a query of Mi(0

t(i)), we can reject. Otherwise,
there is some j such that x ∈ Rj . We now recursively compute all sets r1, . . . , rj−1 and l1, . . . , lj ,

which is possible in DSPACE(nk+1), since n > t(i)2
j−1

is now large enough. We again search
the expression tree for X in depth-first-manner, but now only for the given values of r1, . . . , rj−1
and l1, . . . , lj and we search for the lexicographically smallest value of rj for which X holds. We
can find out the sequence number of the query x, since our input x is large enough and accept
if and only if x ∈ rj .

3.: For every i we ensured that MA
i (0t(i)) accepts if and only if 0t(i) /∈ A, and thus A is not

≤log

nk-tt
-autoreducible. 2

It follows that improving Theorem 4.1.2 to ≤log
log-tt-autoreducibility or ≤log

nc-tt-autoreducibility
separates P from PSPACE. At this point we also observe two similar statements (4.3.2 and
4.3.3) which will explain the difficulty of improving the Theorems 4.8 and 4.11 below.

Corollary 4.3 Let c ≥ 1 and k ≥ 2.

1. If all ≤log
btt-complete sets for P are ≤log

nc-tt-autoreducible, then P 6= PSPACE.

2. If all ≤log
3-tt-complete sets for P are ≤log

btt-autoreducible, then P 6= PSPACE.

3. If all ≤log
btt-complete sets for ∆p

k are ≤log
nc-tt-autoreducible, then ∆p

k 6= PSPACE.

Trivially, all ≤log
btt-complete sets for L are ≤log

btt-autoreducible and ≤log
btt-mitotic. This shows

that proving or refuting Theorem 4.2 for class like P, NP, or ∆p
k leads to unknown separations

of complexity classes.

Corollary 4.4 Let k ≥ 1 and C ∈ {P,NP,PP,∆p
k,Σ

p
k,Π

p
k}.

1. If all ≤log
btt-complete sets for C are ≤log

btt-autoreducible, then C 6= PSPACE, otherwise C 6= L.

2. If all ≤log
btt-complete sets for C are ≤log

btt-mitotic, then C 6= PSPACE, otherwise C 6= L.

11

Using another technique by Buhrman at al. [5] we generalize the proof of Theorem 4.1
and obtain similar results for the classes ∆p

k. By Corollary 4.3.3, improving the theorem to

≤log
nc-tt-autoreducibility or even ≤log

btt-autoreducibility separates ∆p
k from PSPACE.

For z = z1 · · · zm∈{0, 1}m and an (m+n)-ary Boolean formula ϕ with variables y1, . . . , ym+n,
ϕ(z) denotes the n-ary Boolean formula obtained by substituting yi for zi where i ∈ {1, . . . ,m}.

Definition 4.5 Let k ≥ 0. If k is even, let Q := ∀, R := ∃, and Q := ∃, R := ∀ otherwise.

1. Σk-3SAT := {ϕ | ϕ is a Boolean formula in 3-DNF if k is even and in 3-CNF otherwise,
has km variables, and ∃zk ∈ {0, 1}m∀zk−1 ∈ {0, 1}m · · ·Qz1 ∈ {0, 1}m ϕ(zk, . . . , z1) = 1}

2. Πk-3SAT := {ϕ | ϕ is a Boolean formula in 3-CNF if k is even and in 3-DNF otherwise,
has km variables, and ∀zk ∈ {0, 1}m∃zk−1 ∈ {0, 1}m · · ·Rz1 ∈ {0, 1}m ϕ(zk, . . . , z1) = 1}

3. Σk-EMW := {ϕ ∈ Σk-3SAT | if k ≥ 1 and ϕ has km variables, then the minimal zk ∈
{0, 1}m such that ϕ(zk) ∈ Πk−1-3SAT is even}

Note that Σ0-EMW = Σ0-3SAT = {ϕ | ϕ is a true Boolean sentence in 3-DNF}.

Theorem 4.6 ([13]) For k ≥ 1 and L ∈ Σp
k there exists an f ∈ FL such that for all n, f(2n) =

ϕn is an (n+km)-ary Boolean formula such that for all x ∈ {0, 1}n, x ∈ L ⇔ ϕn(x) ∈ Σk-3SAT.

Theorem 4.7 For k ≥ 1, Σk-EMW is ≤log
m -complete for ∆p

k+1.

Proof Wagner [12] shows that the problem of whether the minimal satisfying assignment of
a given Boolean formula is even is ≤p

m-complete for ∆p
2 . The same technique combined with

Theorem 4.6 shows that Σk-EMW is ≤log
m -complete for ∆p

k+1. 2

Theorem 4.8 For k ≥ 1, all sets A that are ≤log
btt-complete for ∆p

k+1 are ≤log
log-T-autoreducible.

Proof For every h ∈ F∆p
k+1 we define a ≤log

btt-reduction Rh and functions h+, h− ∈ F∆p
k+1

as follows: Choose the smallest c ∈ N such that |h(x)| ≤ |x|c + c. Let Bh be the set of pairs

(x, i) such that bit i in h(x)’s binary representation is 1. Bh ∈ ∆p
k+1 and hence ≤log

btt-reduces
to A via a machine Rh, where Rh is the lexicographically first such machine. So the values
RAh (x, i) for i < |x|c + c tell us the binary representation of h(x). If the query x is not allowed,

we can only compute the following candidates for h(x): h+(x)
df
=
∑

i<|x|c+c 2i ·RA∪{x}h (x, i) and

h−(x)
df
=
∑

i<|x|c+c 2i ·RA−{x}h (x, i). If x ∈ A, then h+(x) = h(x). If x /∈ A, then h−(x) = h(x).
By Theorem 4.7, there is an f ∈ FL and a polynomial r such that |f(x)| < r(|x|) and

x ∈ A ⇐⇒ f(x) ∈ Σk-EMW for all x. Let ϕx := f(x). We may assume that ϕx has the right
format (3-DNF if k is even, 3-CNF otherwise), has the m-bit variables yk, . . . , y1, and for all i
and all zk, . . . , z1 < 2m, the value ϕ(zk, . . . , z1) is independent of zi’s highest bit. For every i,
let ϕx,i := ϕx if (k − i) is even, and ϕx,i := ¬ϕx otherwise. For i = k, . . . , 1, we define:

zi(x) := min({z < 2m | ϕx,i(zk, . . . , zi+1, z) ∈ Πi−1-3SAT} ∪ {2m−1})
si(x) := max({j ≤ m | z+i (x) and z−i (x) differ at the j-th bit from right} ∪ {0})
zi(x) := min(z+i (x), z−i (x))

For fixed i, ϕx,i can be computed in space O(log(|x|)) and zi, si, zi ∈ F∆p
k+1.

Fi := {x | ϕx,i(zk(x), . . . , zi+1(x)) ∈ Σi-3SAT}
Ei := {x | ϕx,i(zk(x), . . . , zi+1(x)) ∈ Σi-EMW}

12

Observe that Fi, Ei ∈ ∆p
k+1 and x ∈ A ⇐⇒ ϕx ∈ Σk-EMW ⇐⇒ x ∈ Ek. So the theorem is

implied by the following statement, which we show by induction.

Fi, Ei ≤log
log-T A for i = 0, . . . , k, where on input x the reduction does not query x.

First, let i = 0. Since E0 = F0, it suffices to argue for F0. If k is even, then ϕx,0 = ϕx, and
ϕx is in 3-DNF. If k is odd, then ϕx,0 = ¬ϕx, and ϕx is in 3-CNF. Hence in both cases, after
moving the negation to the literals, ϕx,0 is in 3-DNF. Define

s(x) := min({j < r(|x|) | conjunction j in ϕx,0(zk, . . . , z1) is satisfied} ∪ {r(|x|)})

and note that s ∈ F∆p
k+1, hence s+(x) and s−(x) are computable in logarithmic space with

O(log |x|) queries to A− {x}. So x ∈ F0 ⇐⇒ ϕx,0(zk, . . . , z1) = 1 ⇐⇒ s+(x) or s−(x) point
to a conjunction in ϕx,0(zk, . . . , z1) that is satisfied. We argue that the right-hand side of this
equivalence can be tested with O(log |x|) queries to A − {x}: Both conjunctions consist of 3
literals. The value of each such literal is determined by one bit of some zj(x). The index j
and the position of these bits can be determined in logarithmic space (without oracle queries),
since ϕx is computable in logarithmic space. Using s+j (x), s−j (x), and the reduction Rsj we can
determine the value of each bit in zj(x) with O(log |x|) queries to A− {x}.

For the induction step, suppose the claim holds for some i < k. We show the claim for i+ 1.
On input x, we determine s+i+1(x) and s−i+1(x) with O(log |x|) queries to A− {x}.

Case 1: s+i+1(x) 6= s−i+1(x).
Without loss of generality we assume s+i+1(x) > s−i+1(x). Using Rzi+1 we can test with O(log |x|)
queries to A ∪ {x} whether z+i+1(x) and z−i+1(x) differ at the s+i+1(x)-th bit from right. If this
holds, then si+1(x) 6= s−i+1(x) and x ∈ A. Otherwise, si+1(x) 6= s+i+1(x) and hence x /∈ A. Since
Fi+1, Ei+1 ∈ ∆p

k+1 and we know cA(x), we can determine with O(1) queries to A−{x} whether
x ∈ Fi+1 and whether x ∈ Ei+1.

Case 2: s+i+1(x) = s−i+1(x) = si+1(x) = 0.
In this case, zi+1(x) = z+i+1(x) = z−i+1(x), hence

x ∈ Fi+1 ⇐⇒ ϕx,i+1(zk(x), . . . , zi+2(x)) ∈ Σi+1-3SAT ⇐⇒ z−i+1(x) < 2m−1, and

x ∈ Ei+1 ⇐⇒ ϕx,i+1(zk(x), . . . , zi+2(x)) ∈ Σi+1-EMW ⇐⇒ z−i+1(x) is even and < 2m−1.

The right-hand sides correspond to bit m− 1 and bit 0 of z−i+1(x), which can be determined via
Rzi+1 with a constant number of queries to A− {x}.

Case 3: s+i+1(x) = s−i+1(x) = si+1(x) > 0.
With Rzi+1 we test with O(log |x|) queries to A ∪ {x} whether z+i+1(x), z−i+1(x) ≥ 2m−1. If so,
then zi+1(x) = 2m−1, ϕx,i+1(zk, . . . , zi+2) /∈ Σi+1-3SAT, and ϕx,i+1(zk, . . . , zi+2) /∈ Σi+1-EMW,
which means x /∈ Fi+1 and x /∈ Ei+1. Otherwise, z+i+1(x) < 2m−1 or z−i+1(x) < 2m−1.

x∈A ∧ z+i+1(x)<z−i+1(x) =⇒ zi+1(x)=z+i+1(x)=zi+1(x) < 2m−1, ϕx,i+1(zk, . . . , zi+1)∈Πi-3SAT

x∈A ∧ z+i+1(x)>z−i+1(x) =⇒ zi+1(x)=z+i+1(x), zi+1(x)=z−i+1(x), ϕx,i+1(zk, . . . , zi+1) /∈Πi-3SAT

x /∈A ∧ z+i+1(x)<z−i+1(x) =⇒ zi+1(x)=z−i+1(x), zi+1(x)=z+i+1(x), ϕx,i+1(zk, . . . , zi+1) /∈Πi-3SAT

x /∈A ∧ z+i+1(x)>z−i+1(x) =⇒ zi+1(x)=z−i+1(x)=zi+1(x) < 2m−1, ϕx,i+1(zk, . . . , zi+1)∈Πi-3SAT

If z+i+1(x) < z−i+1(x) then let v(x) := 1 else let v(x) := 0. We obtain

x ∈ A ⇐⇒ ¬v(x) ⊕ ϕx,i+1(zk, . . . , zi+1) ∈ Πi-3SAT

⇐⇒ v(x) ⊕ ϕx,i(zk, . . . , zi+1) ∈ Σi-3SAT ⇐⇒ v(x) ⊕ x ∈ Fi.

13

Note that v(x) = R
A−{x}
zi+1 (x, si+1(x)). Together with the induction hypothesis, we can test the

right-hand side of the equivalence with O(log |x|) queries to A−{x}. So we obtain cA(x) which
allows us to determine with O(1) queries to A−{x} whether x ∈ Fi+1 and whether x ∈ Ei+1. 2

Corollary 4.9 All ≤log
tt -complete sets for ∆p

k+1 are ≤log
tt -autoreducible.

Proof The proof of the ≤log
btt-case also works for the ≤log

tt -case, as the bounded number of
queries is only used when we count the number of queries in the autoreduction. 2

In the proof of the next lemma we locally check configuration graphs of nondeterministic
(resp., alternating) logspace machines to obtain the ≤log

btt-autoreducibility of ≤log
(↔)tt-complete

sets for NL and P. Together with the results from previous sections this shows Theorem 4.11,
which states that for every fixed 2-ary Boolean function α, all ≤log

αtt-complete sets for NL and

P are ≤log
btt-autoreducible. By Theorem 4.2, improving the theorem to 3-ary Boolean functions

separates P from PSPACE.

Lemma 4.10 All sets ≤log
(↔)tt-complete for NL or ≤log

(↔)tt-complete for P are ≤log
btt-autoreducible.

Proof We will argue for P (the case of NL is shown analogously). Let A be ≤log
(↔)tt-complete

for P and let M be some alternating machine that shows A ∈ P. Consider the set R = {〈x,C〉 |
C is the root of an accepting subtree in M(x)} and observe that R ∈ P, hence R ≤log

(↔)tt A via
some logspace-computable function f . We assume:

• for every configuration C of M(x), f(〈x,C〉) queries two distinct words
• for the start configuration C0 of M(x), f(〈x,C0〉) queries x
• for every stop configuration Cs of M(x), f(〈x,Cs〉) does not query x

Hence there must be a configuration C in the configuration graph of M on input x with suc-
cessors C1, C2 such that f(〈x,C〉) queries x, and both f(〈x,C1〉) and f(〈x,C2〉) do not query
x. We loop over all configurations until we find such a configuration C. Now we can determine
x ∈ A by at most five queries different from x. 2

Theorem 4.11 For every α : {0, 1}2 → {0, 1}, all ≤log
αtt-complete sets for NL and all ≤log

αtt-

complete sets for P are ≤log
btt-autoreducible.

Proof Let α : {0, 1}2 → {0, 1}, C ∈ {NL,P}, and let A be ≤log
αtt-complete for C. We have the

following cases:

• α is constant: there are no ≤log
αtt-complete sets for C.

• α(x, y) = x, α(x, y) = y, α(x, y) = ¬x, or α(x, y) = ¬y: Theorem 3.5.2 shows that A is

≤log
2-tt-autoreducible.

• α ∈ {∧,∨, (¬∧), (¬∨)}: Proposition 2.7 shows that ≤log
αtt-complete sets for C are ≤log

2-tt-
autoreducible for α ∈ {∧,∨}. Since C is closed under complementation, the remaining
functions follow by Proposition 2.8.
• α ∈ {↔,⊕}: Lemma 4.10 shows that for α =↔, ≤log

αtt-complete sets for C are ≤log
btt-

autoreducible. Since C is closed under complementation, the case of α = ⊕ follows again
by Proposition 2.8.
• α ∈ {→,←, (¬ →), (¬ ←)}: Theorem 3.6 shows that for α =→, ≤log

αtt-complete sets for C
are ≤log

btt-autoreducible. By symmetry, this also holds for α =←. Since C is closed under
complementation, the case of the remaining functions follows again by Proposition 2.8.

2

14

5 Mitoticity and Autoreducibility by Diagonalization

We use diagonalization to obtain logspace mitoticity and autoreducibility results. Generally
speaking, the diagonalization prevents difficult cases that could not be handled. Buhrman et
al. [5] use this technique to show for EXP and other classes that all ≤p

2-tt-complete sets are
≤p

2-tt-autoreducible. We extend this technique and show the statement for NEXP.
Moreover, we consider several logspace reducibilities and obtain results for PSPACE, EXP,

and NEXP, as those classes are powerful enough to diagonalize against logspace reductions.
Since PSPACE and EXP are closed under complementation, we obtain that their many-one
complete sets are mitotic. For NEXP we can only show that many-one complete sets are
autoreducible.

5.1 Complete Sets for Classes closed under Complementation

We will first show mitoticity and autoreducibility results for ≤log
m -complete sets and for ≤log

2-tt-
complete sets, that generally apply to classes that have certain closure properties. For this
purpose, we first define length-restricted reductions computable in space log2.

Definition 5.1 Let A and B be sets.

1. We define A ≤log2-lin
m B similarly to A ≤log

m B, except that, on input x, the computation
of f(x) is allowed to use (log |x|)2 space, but it must hold that |f(x)| ≤ c · |x|, where c > 0
is some constant.

2. We define A ≤log2-lin
1-tt B similarly to A ≤log

1-tt B, except that, on input x, the oracle machine
is allowed to use (log |x|)2 space, but may only ask one oracle question of length at most
c · |x|, where c > 0 is some constant.

We obtain the following results.

Theorem 5.2 If a class C is closed under union, complement, and ≤log2-lin
m -reducibility, then

all ≤log
m -complete sets in C are ≤log

m -mitotic.

Proof Let A be ≤log
m -complete, we show that A is ≤log

m -mitotic. Let f1, f2, . . . be an enumeration
of logarithmic-space-bounded Turing transducers such that the computation of fi on x can be
simulated in space log i · (1 + log |x|) using a binary alphabet.

B1
df
= {y | y = 〈0i, x, 0|x|2〉, |fi(y)| ≤ |y|, and fi(y) /∈ A}

B2
df
= {y | y = 〈0i, x, 0|x|2〉, |fi(y)| > |y|, and x ∈ A}

B
df
= B1 ∪B2

B1 ∈ C, since B1 ≤log2-lin
m A ∈ C. B2 ∈ C, since B2 ≤log2-lin

m A ∈ C. Hence B ∈ C and there
exists some j such that B ≤log

m A via fj . If there exists a y = 〈0i, x, 0|x|2〉 such that |fj(y)| ≤ |y|,
then y ∈ B ⇔ fj(y) /∈ A ⇔ y /∈ B, which is a contradiction. Therefore, |fj(y)| > |y| for all y.

This shows that A ≤log
m B via g(x)

df
=〈0j , x, 0|x|2〉 and A ≤log

m A via h(x) = fj(g(x)). Note that
|h(x)| ≥ |x|2 for all x. Since h ∈ FL, there exists a c ≥ 3 such that for all x ∈ Σ≥2,

|x|2 ≤ |h(x)| < |x|c. (1)

Let
S

df
={x | min{i ∈ N | |x| ≤ 2c

i} is even}

15

and note that S ∈ L. From (1) it follows that for every x ∈ Σ≥2 there exists an i ∈
{1, . . . , blog cc} such that x ∈ S ⇔ hi(x) /∈ S (where hi is the i-th superposition of h). Let

r(x)
df
=

hi(x), if |x| ≥ 2
a, if |x| < 2 and x ∈ A
a′, if |x| < 2 and x /∈ A

where i = min{1, . . . , blog cc | x ∈ S ⇔ hi(x) /∈ S}, a is a fixed element in A, and a′ is a
fixed element in A. Note that r ∈ FL, since c is constant. Moreover, for all x it holds that
(x ∈ S ⇔ r(x) /∈ S) and (x ∈ A ⇔ r(x) ∈ A). Therefore, A∩S ≤log

m A∩S and A∩S ≤log
m A∩S

both via r. Moreover A ≡log
m A ∩ S, since S ∈ L. This shows that A is ≤log

m -mitotic. 2

Corollary 5.3 All ≤log
m -complete sets for the following classes are ≤log

m -mitotic: QP =
DTIME(2polylog(n)), PSPACE, EXP, REC, DSPACE(s) and NSPACE(s) for all space-
constructible s ≥ log2.

Proof The classes satisfy the requirements in Theorem 5.2. 2

We adapt a technique by Buhrman et al. [5] to the logspace setting and obtain the following
result.

Theorem 5.4 If a class C is closed under ≤log2-lin
1-tt -reducibility, then all ≤log

2-tt-complete sets for

C are ≤log
2-tt-autoreducible.

Proof Let {Mi}i be an enumeration of all ≤log
2-tt-reductions such that the truth-table used by Mi

on input x and the number of queries different from x can be obtained in space log i ·(1+log |x|)
using a binary alphabet. Without loss of generality, we assume that all reductions always query
exactly two distinct values.
Let A be ≤log

2-tt-complete for C and let D be the set of words accepted by the following algorithm.

1. If the input is not of the form (0i, x), then reject.
2. Determine v := A(x) with one query to the oracle A.
3. Simulate Mi(0

i, x) and let t be the truth-table that is obtained if we replace the query x
with the value v (if applicable).

4. If t is constant:
accept if and only if t ≡ false.

5. If t is of the form y /∈ A (for y 6= x):
accept if and only if v ≡ false.

6. If t is of the form y ∈ A (for y 6= x):
accept if and only if v ≡ true.

7. If the value of t depends on two queries different from x:
accept if and only if v ≡ true.

The algorithm describes a ≤log2-lin
1-tt -reduction to A and so D ∈ C. Hence, D ≤log

2-tt A via some
machine Mj . We describe an autoreduction for A on input x: If Mj(0

j , x) does not query x,
then act just as Mj . Otherwise, accept if and only if the other query belongs to A.

Note that the reduction can be computed in logarithmic space and does not query its own
input. If Mj does not query x, the autoreduction is obviously correct. If Mj has a truth-table t
that is constant once the value of x ∈ A is substituted, then by line 4, (0j , x) ∈ D ⇐⇒ t ≡ false

which contradicts the fact that D ≤log
2-tt A via Mj . Therefore, Mj accepts if and only if the query

different from x lies in A and thus the autoreduction is correct. 2

16

Corollary 5.5 All ≤log
2-tt-complete sets for the following classes are ≤log

2-tt-autoreducible: QP =
DTIME(2polylog(n)), PSPACE, EXP, REC, DSPACE(s) and NSPACE(s) for all space-
constructible s ≥ log2.

Proof Follows from Theorem 5.4. 2

5.2 Complete Sets for NEXP

It is unknown whether the above results apply to NEXP, so here we cannot conclude mitoticity.
We can, however, show that sets complete for NEXP are at least autoreducible.

Theorem 5.6 1. For every k ≥ 1 and ≤ ∈ {≤p
k-dtt,≤

p
k-ctt,≤

p
dtt,≤

p
ctt}, every ≤-complete set

for NEXP is ≤-autoreducible.
2. For every k ≥ 1 and ≤ ∈ {≤log

k-dtt,≤
log
k-ctt,≤

log
dtt,≤

log
ctt}, every ≤-complete set for NEXP is

≤-autoreducible.

Proof We first show the first statement of the theorem. Here, we argue for ≤p
dtt, as the

other cases are shown analogously. Let A be a ≤p
dtt-complete set for NEXP. Recall that

A ≤p
dtt B ⇐⇒ there exists a polynomial-time computable function f such that for all x,

f(x) = 〈q1, . . . , qn〉 and (x ∈ A ⇐⇒ B(q1) ∨ · · ·B(qn)). Let {fi}i≥1 be an enumeration of
all polynomial-time Turing transducers such that the computation of fi on x can be simulated
in time |x|i + i. Let B be the set of inputs 〈0i, x〉 accepted by the following nondeterministic
algorithm in exponential time.

• Q := set of all queries of fi on input 〈0i, x〉.
• If x /∈ Q, then accept 〈0i, x〉 ⇐⇒ x ∈ A.
• Otherwise, reject 〈0i, x〉.

Obviously B ∈ NEXP. So B ≤p
dtt A via some disjunctive truth-table reduction fj .

For every x, if x is one of the queries of fj(〈0j , x〉), then, by the above algorithm, 〈0j , x〉 /∈ B.
Hence for each query q of fj(〈0j , x〉) we have q /∈ A. In particular x /∈ A. On the other hand, if
fj(〈0j , x〉) = 〈q1, . . . , qm〉 and x 6= qi for all i, then x ∈ A ⇔〈0j , x〉 ∈ B ⇔ cA(q1)∨· · ·∨ cA(qm).
Based on this observation, we obtain the following autoreduction for A, where x is the input.

• Q := set of all queries of fj on input 〈0j , x〉.
• If x /∈ Q, then return fj(〈0j , x〉).
• Otherwise, return some fixed value y ∈ A− {x}.

Hence A is ≤p
dtt-autoreducible.

In order to show the second statement for ≤log
dtt, suppose that A is ≤log

dtt-complete for NEXP.

Observe that the above enumeration {fi}i≥1 includes all ≤log
dtt-reductions. If B ≤log

dtt A via the

≤log
dtt reduction fj , then fj is logspace computable, and hence the described autoreduction of A

on input x can be computed in logspace. The other cases for logspace are shown analogously.
2

Note that every non-trivial ≤log
1-dtt-autoreducible set is also ≤log

m -autoreducible, and similarly
every non-trivial ≤p

1-dtt-autoreducible set is also ≤p
m-autoreducible, hence Theorem 5.6 covers

≤log
m and ≤p

m as a special case.

Theorem 5.7 1. Every ≤p
2-tt-complete set for NEXP is ≤p

2-tt-autoreducible.

17

2. Every ≤log
2-tt-complete set for NEXP is ≤log

2-tt-autoreducible.

Proof We first show that ≤p
2-tt-complete sets for NEXP are ≤p

2-tt-autoreducible. Let A be a
≤p

2-tt-complete set for NEXP. Let {Mi}i≥1 be an enumeration of all ≤p
2-tt reductions such that

the computation of Mi on x can be simulated in time |x|i+i. Observe that L1 ≤p
2-tt L2 if and only

if there exist polynomial-time computable functions f : Σ∗ → (Σ∗)2 and g : Σ∗×{0, 1}2 → {0, 1}
such that for all x, f(x) = 〈q1, q2〉 and x ∈ L1 ⇔ g(x, L2(q1), L2(q2)) = 1. In this sense, let
fi and gi be the functions that correspond to the reduction Mi. Without loss of generality we
assume that if fi(x) = 〈q1, q2〉, then q1 6= q2. Let B be the set of inputs 〈0i, x〉 accepted by the
following nondeterministic algorithm N in exponential time.

• Compute fi(〈0i, x〉) = 〈q1, q2〉 and let Q = {q1, q2}.
• If x /∈ Q then: accept 〈0i, x〉 ⇐⇒ x ∈ A.
• Otherwise x ∈ Q and without loss of generality we assume x = q1. Let gxi be the 2-ary

Boolean function defined by gxi (α, β)
df
= gi(x, α, β) and consider all possible cases for gxi :

1. gxi is constant 0 or constant 1: accept 〈0i, x〉 ⇐⇒ gxi = 0
2. gxi (α, β) = β or gxi (α, β) = ¬β: accept 〈0i, x〉 ⇐⇒ x ∈ A
3. gxi (α, β) = α or gxi (α, β) = ¬α: reject 〈0i, x〉
4. gxi ∈ {∧, 6→, 6←,¬∨,↔}: accept 〈0i, x〉
5. gxi ∈ {¬∧,→,←,∨,⊕}: reject 〈0i, x〉

Observe that B ∈ NEXP. So B ≤p
2-tt A via some ≤p

2-tt reduction Mj . Compute fj(〈0j , x〉) =
〈q1, q2〉 and let Q = {q1, q2}. Before we describe a ≤p

2-tt autoreduction for A, we have to observe
some facts. Suppose q1 = x and consider the following cases:

1. gxj is constant 0 or constant 1: 〈0j , x〉 ∈ B ⇐⇒ gxj = 0, contradicting B ≤p
2-tt A via Mj .

2. gxj (α, β) = β or gxj (α, β) = ¬β: If gxj (α, β) = β, we obtain x ∈ A ⇐⇒ 〈0j , x〉 ∈ B ⇐⇒
gxj (A(x), A(q2)) = 1 ⇐⇒ A(q2) = 1 ⇐⇒ q2 ∈ A. Similarly, if gxj (α, β) = ¬β, we obtain

x ∈ A ⇐⇒ 〈0j , x〉 ∈ B ⇐⇒ gxj (A(x), A(q2)) = 1 ⇐⇒ ¬A(q2) = 1 ⇐⇒ q2 /∈ A.

3. gxj (α, β) = α or gxj (α, β) = ¬α: In both cases 〈0j , x〉 /∈ B, hence gxj (A(x), A(q2)) = 0.
Thus if gxj (α, β) = α, then x /∈ A, and if gxj (α, β) = ¬α, then x ∈ A.

4. gxj ∈ {∧, 6→, 6←,¬∨,↔}: Here 〈0j , x〉 ∈ B, hence gxj (A(x), A(q2)) = 1. If gxj ∈ {∧, 6→},
then x ∈ A. If gxj ∈ {6←,¬∨}, then x /∈ A. If gxj = ↔, then x ∈ A ⇐⇒ q2 ∈ A.

5. gxj ∈ {¬∧,→,←,∨,⊕}: Here 〈0j , x〉 /∈ B, hence gxj (A(x), A(q2)) = 0. If gxj ∈ {¬∧,→},
then x ∈ A. If gxj ∈ {←,∨}, then x /∈ A. If gxj = ⊕, then x ∈ A ⇐⇒ q2 ∈ A.

We describe a ≤p
2-tt autoreduction of A on input x:

• Compute fj(〈0j , x〉) = 〈q1, q2〉 and let Q = {q1, q2}.
• If x /∈ Q: accept iff MA

j accepts 〈0j , x〉.
• Otherwise, suppose x = q1 (the case x = q2 is analogous). By the above arguments, gxj

cannot be constant and we have the following cases:

– gxj (α, β) = β: accept ⇐⇒ q2 ∈ A
– gxj (α, β) = ¬β: accept ⇐⇒ q2 /∈ A
– gxj (α, β) = α: reject
– gxj (α, β) = ¬α: accept
– gxj ∈ {∧,¬∧,→, 6→}: accept
– gxj ∈ {∨,¬∨,←, 6←}: reject
– gxj ∈ {↔,⊕}: accept ⇐⇒ q2 ∈ A

18

Hence A is ≤p
2-tt-autoreducible.

In order to show the second statement, suppose that A is ≤log
2-tt-complete for NEXP. Observe

that the above enumeration {Mi}i≥1 includes all ≤log
2-tt-reductions. If B ≤log

2-tt A via the ≤log
2-tt

reduction Mj , then fj and gj are logspace computable, and hence the described autoreduction
of A on input x can be computed in logspace. 2

Note that by Theorem 4.2 (resp., [5]), there exist ≤log
3-tt-complete sets for PSPACE (resp.,

≤p
3-tt-complete sets for EXP) that are not ≤log

btt-autoreducible (resp., ≤p
btt-autoreducible), hence

improving Theorem 5.7.1 to ≤p
3-tt separates NEXP from EXP, and improving Theorem 5.7.2 to

≤log
3-tt separates NEXP from PSPACE.

5.3 Complete Sets for PSPACE and EXP

We show that for some restricted polynomial-time truth-table reductions, complete sets for
EXP are complete under length-increasing reductions, and the same holds considering logspace
reductions for PSPACE and EXP. By carefully repeating the length-increasing reductions in
such a way that we switch between stages defined by a separator set we obtain mitoticity for
PSPACE and EXP.

Definition 5.8 Given two sets A and B, we define A ≤p
T-li B if there is a Turing machine M

such that A = L(MB) and all queries made by MB(x) are of length strictly greater than |x|.
The notions ≤p

2-tt-li, ≤
p
k-ctt-li, ≤

p
k-dtt-li, ≤

p
dtt-li, ≤

p
ctt-li, ≤

p
m-li and ≤log

T-li, ≤
log
2-tt-li, ≤

log
k-ctt-li, ≤

log
k-dtt-li,

≤log
dtt-li, ≤

log
ctt-li, ≤

log
m-li are defined similarly.

Berman [3] and Ganesan and Homer [6] show that all many-one complete sets for EXP are
many-one length-increasing equivalent. In the following lemma, we generalize to show that it
also holds for some certain polynomial-time reductions and logspace reductions under EXP and
PSPACE.

Lemma 5.9 1. For every k ≥ 2 and ≤ ∈ {≤p
2-tt,≤

p
k-ctt,≤

p
k-dtt,≤

p
ctt,≤

p
dtt}, all ≤-complete

sets for EXP are ≤-li equivalent.
2. For every k ≥ 2 and ≤ ∈ {≤log

2-tt,≤
log
k-ctt,≤

log
k-dtt,≤

log
ctt ,≤

log
dtt}, all ≤-complete sets for EXP

(resp., PSPACE) are ≤-li equivalent.

Proof We show the lemma for ≤p
2-tt, the other cases are shown analogously. Let A be any

≤p
2-tt-complete set for EXP and K be the canonical ≤p

m-complete set for EXP. Observe that
A ≤p

m-li K, so it suffices to show K ≤p
2-tt-li A.

Let {Mi}i≥1 be an enumeration of all ≤p
2-tt reductions such that the computation of Mi on

x can be simulated in time |x|i + i. Note that L1 ≤p
2-tt L2 if and only if there exist polynomial-

time computable functions f : Σ∗ → (Σ∗)2 and g : Σ∗×{0, 1}2 → {0, 1} such that for all x,
f(x) = 〈q1, q2〉 and x ∈ L1 ⇔ g(x, L2(q1), L2(q2)) = 1. Let fi and gi be the functions that
correspond to the reduction Mi. Without loss of generality we assume that if fi(x) = 〈q1, q2〉,
then |q1| ≤ |q2|. This is not a restriction, because we can always switch q1 with q2 and modify gi
on x accordingly. Let B be the set of inputs 〈0i, x〉 accepted by the following nondeterministic
algorithm N in exponential time.

1. compute fi(〈0i, x〉) = 〈q1, q2〉
2. if |〈0i, x〉| < |q1| ≤ |q2|, then accept ⇐⇒ x ∈ K
3. if |q1| ≤ |q2| ≤ |〈0i, x〉|, then accept ⇐⇒ gi(x,A(q1), A(q2)) = 0
4. if |q1| ≤ |〈0i, x〉| < |q2|, then consider the following cases:

19

(a) gi(x,A(q1), 0) = gi(x,A(q1), 1): accept ⇐⇒ gi(x,A(q1), 0) = 0.
(b) gi(x,A(q1), β) = β for all β: accept ⇐⇒ x ∈ K.
(c) gi(x,A(q1), β) = ¬β for all β: accept ⇐⇒ x /∈ K.

Claim 5.10 B ∈ EXP.

Proof We analyze the running time of the above algorithm on input 〈0i, x〉 where n = |〈0i, x〉|.

• Mi on input x can be simulated in time |x|i + i, hence computing fi(〈0i, x〉) in step 1 and
gi(x, α, β) in step 3 and step 4 is possible in exponential time in n.

• K ∈ EXP, so deciding x ∈ K in step 2 and step 4 takes exponential time in n.
• A ∈ EXP and in step 3 we have |q1| ≤ |q2| ≤ n. Hence computing A(q1) and A(q2) in

step 3 takes time exponential in n.
• Analogously, computing A(q1) in step 3 takes time exponential in n.

2

Because B ∈ EXP and A is ≤p
2-tt-complete for EXP, we have B ≤p

2-tt A by some reduction
Mj . Let fj(〈0j , x〉) = 〈q1, q2〉. Observe the following for B’s algorithm on input 〈0j , x〉:

1. If |〈0j , x〉| < |q1| ≤ |q2|, then x ∈ K ⇐⇒ 〈0j , x〉 ∈ B ⇐⇒ gj(x,A(q1), A(q2)) = 1.
Notice that in this case, both q1 and q2 are longer than x.

2. If |q1| ≤ |q2| ≤ |〈0i, x〉|, we have 〈0j , x〉 ∈ B ⇐⇒ gj(x,A(q1), A(q2)) = 0, which
contradicts the fact that Mj reduces B to A. Hence this case cannot occur.

3. If |q1| ≤ |〈0i, x〉| < |q2|, consider each case in the algorithm:

(a) If gj(x,A(q1), 0) = gj(x,A(q1), 1), we have 〈0j , x〉 ∈ B ⇐⇒ gj(x,A(q1), A(q2)) = 0,
which contradicts the fact that Mj reduces B to A. Hence this case cannot occur.

(b) If gj(x,A(q1), β) = β for all β, we obtain x ∈ K ⇐⇒ 〈0j , x〉 ∈ B ⇐⇒
gj(A(q1), A(q2)) = A(q2) = 1 ⇐⇒ q2 ∈ A.

(c) If gj(x,A(q1), β) = ¬β for all β, we obtain x ∈ K ⇐⇒ 〈0j , x〉 /∈ B ⇐⇒
gj(A(q1), A(q2)) = 1−A(q2) = 0 ⇐⇒ q2 ∈ A.

So, in this case we have x ∈ K ⇐⇒ q2 ∈ A with |x| < |〈0j , x〉| < |q2|.

We describe a ≤p
2-tt-li reduction from K to A on input x:

1. compute fj(〈0j , x〉) = 〈q1, q2〉
2. if |〈0j , x〉| < |q1| ≤ |q2|, then accept ⇐⇒ gj(x,A(q1), A(q2)) = 1
3. if |q1| ≤ |〈0j , x〉| < |q2|, then accept ⇐⇒ A(q2) = 1.

Hence K ≤p
2-tt-li A. 2

Theorem 5.11 1. For every k ≥ 2 and ≤ ∈ {≤p
2-tt,≤

p
k-ctt,≤

p
k-dtt,≤

p
ctt,≤

p
dtt}, every ≤-

complete set for EXP is ≤-mitotic.
2. For every k ≥ 2 and ≤ ∈ {≤log

2-tt,≤
log
k-ctt,≤

log
k-dtt,≤

log
ctt ,≤

log
dtt}, every ≤-complete set for EXP

(resp., PSPACE) is ≤-mitotic.

Proof We prove the theorem for ≤p
2-ctt, other cases will follow similarly. Let A be ≤p

2-ctt-
complete for EXP. By Lemma 5.9, A × Σ∗ ≤p

2-ctt-li A. Hence there exist polynomial-time
computable functions f and g such that x ∈ A×Σ∗ ⇐⇒ (f(x) ∈ A∧ g(x) ∈ A). Since f, g are
polynomial-time computable, there is an l > 0 such that |x|1/l < |f(x)|, |g(x)| < |x|l for all x.

Define t1 = 2 and ti+1 = (ti)
2l2 , and let S = {x| for some odd i, ti ≤ |x| < ti+1}. Note that

S ∈ P. We show that A, A ∩ S, and A ∩ S are ≤p
2-ctt-equivalent.

20

Claim 5.12 A ≡p
2-ctt A ∩ S and A ≡p

2-ctt A ∩ S.

Proof Since S ∈ P, A∩S ≤p
2-ctt A and A∩S ≤p

2-ctt A. We describe the reduction A ≤p
2-ctt A∩S,

the reduction A ≤p
2-ctt A ∩ S is similar.

On input x with |x| ≥ 2, compute i such that ti ≤ |x| < ti+1. Consider the following cases:

Case 1: i is odd, i.e., x ∈ S. Choose y sufficiently large such that (ti+2)
l < |〈x, y〉| < (ti+2)

2l.
This is possible in polynomial time, since (ti+2)

l = (((ti)
2l2)2l

2
)l = (ti)

4l5 ≤ |x|4l5 .
Let F (x) = f(〈x, y〉) and G(x) = g(〈x, y〉). So |F (x)| = |f(〈x, y〉)| > |〈x, y〉|1/l > ti+2 and

|F (x)| = |f(〈x, y〉)| < |〈x, y〉|l < (ti+2)
2l2 = ti+3. Hence ti+2 < |F (x)| < ti+3, i.e., F (x) ∈ S.

Similarly we have G(x) ∈ S. Therefore, x ∈ A ⇐⇒ 〈x, y〉 ∈ A× Σ∗ ⇐⇒ F (x) = f(〈x, y〉) ∈
A ∧ G(x) = g(〈x, y〉) ∈ A ⇐⇒ F (x) ∈ A ∩ S ∧ G(x) ∈ A ∩ S.

Case 2: i is even, i.e., x /∈ S. Similar to case 1, we choose y such that (ti+1)
l < |〈x, y〉| <

(ti+1)
2l.

Let F (x)=f(〈x, y〉) and G(x)=g(〈x, y〉). So ti+1 < |F (x)|, |G(x)| < ti+2 and F (x), G(x)∈S.
Therefore, x ∈ A ⇐⇒ 〈x, y〉 ∈ A × Σ∗ ⇐⇒ F (x) = f(〈x, y〉) ∈ A ∧ G(x) = g(〈x, y〉) ∈
A ⇐⇒ F (x) ∈ A ∩ S ∧ G(x) ∈ A ∩ S.

Combining the two cases, we obtain that A ≤p
2-ctt A ∩ S. 2

Claim 5.13 A ∩ S ≤p
2-ctt A ∩ S and A ∩ S ≤p

2-ctt A ∩ S.

Proof We show A∩S ≤p
2-ctt A∩S, the other reduction is similar. Let a1, a2 be fixed elements

from A. On input x, compute i such that ti ≤ |x| < ti+1 and consider the following cases:

Case 1: i is odd, i.e., x ∈ S. Similar to Claim 5.12, we choose y such that (ti+1)
l <

|〈x, y〉| < (ti+1)
2l.

Let F (x) = f(〈x, y〉) and G(x) = g(〈x, y〉). By similar reasoning, ti+1 < |F (x)|, |G(x)| <
ti+2. Since i is odd, F (x) ∈ S and G(x) ∈ S. So x ∈ A ∩ S ⇐⇒ x ∈ A ⇐⇒ 〈x, y〉 ∈
A×Σ∗ ⇐⇒ F (x) = f(〈x, y〉) ∈ A ∧ G(x) = g(〈x, y〉) ∈ A ⇐⇒ F (x) ∈ A∩S ∧ G(x) ∈ A∩S.

Case 2: i is even, i.e., x /∈ S. Hence x /∈ A ∩ S. Let F (x) = a1 and G(x) = a2. It holds
that x ∈ A ∩ S ⇐⇒ F (x) ∈ A ∩ S ∧ G(x) ∈ A ∩ S.

This shows A ∩ S ≤p
2-ctt A ∩ S by the functions F and G. 2

We conclude that A is ≤p
2-ctt-mitotic. 2

Note that by Theorem 4.2 (resp., [5]), there exist ≤log
3-tt-complete sets for PSPACE (resp.,

≤p
3-tt-complete sets for EXP) that are not ≤log

btt-autoreducible (resp., ≤p
btt-autoreducible), hence

Theorem 5.11 cannot be improved to ≤log
3-tt or ≤p

3-tt.

5.4 Complete Sets for 1-Truth-Table Reductions

Homer, Kurtz, and Royer [9] and Buhrman [4] showed that for EXP and NEXP, every ≤p
1-tt-

complete set is also ≤p
m-complete. Their approach also applies to ≤log

1-tt-complete sets for
PSPACE,EXP and NEXP, so we have the following theorem.

Theorem 5.14 ([4, 9]) 1. All ≤log
1-tt-complete sets for PSPACE (resp., EXP,NEXP) are

≤log
m -complete for PSPACE (resp., EXP, NEXP).

2. All ≤p
1-tt-complete sets for EXP (resp., NEXP) are ≤p

m-complete for EXP (resp., NEXP).

21

Proof Similar to [4, Theorem 3.2 and Theorem 3.4]. 2

This means that most of the obtained results for many-one complete sets also hold for
1-truth-table complete sets. We obtain the following corollary.

Corollary 5.15 1. All ≤log
1-tt-complete sets for PSPACE,EXP are ≤log

m -mitotic.

2. All ≤log
1-tt-complete sets for NEXP are ≤log

m -autoreducible.
3. All ≤p

1-tt-complete sets for EXP,NEXP are ≤p
m-mitotic.

Proof Recall that:

• every ≤log
m -complete set for PSPACE,EXP is ≤log

m -mitotic (see Corollary 5.3)

• every ≤log
m -complete set for NEXP is ≤log

m -autoreducible (see Theorem 5.6)
• every ≤p

m-complete set for EXP,NEXP is ≤p
m-mitotic [7, 8]

Applying Theorem 5.14 we obtain:

• every ≤log
1-tt-complete set for PSPACE,EXP is ≤log

m -mitotic

• every ≤log
1-tt-complete set for NEXP is ≤log

m -autoreducible
• every ≤p

1-tt-complete set for EXP,NEXP is ≤p
m-mitotic

2

References

[1] J. L. Balcázar. Self-reducibility. Journal of Computer and System Sciences, 41(3):367–388,
1990.

[2] R. Beigel and J. Feigenbaum. On being incoherent without being very hard. Computational
Complexity, 2:1–17, 1992.

[3] L. Berman. Polynomial Reducibilities and Complete Sets. PhD thesis, Cornell University,
Ithaca, NY, 1977.

[4] H. Buhrman. Resource Bounded Reductions. PhD thesis, University of Amsterdam, 1993.

[5] H. Buhrman, L. Fortnow, D. van Melkebeek, and L. Torenvliet. Separating complexity
classes using autoreducibility. SIAM Journal on Computing, 29(5):1497–1520, 2000.

[6] K. Ganesan and S. Homer. Complete problems and strong polynomial reducibilities. SIAM
Journal on Computing, 21:733–742, 1992.

[7] C. Glaßer, M. Ogihara, A. Pavan, A. L. Selman, and L. Zhang. Autoreducibility, mitoticity,
and immunity. Journal of Computer and System Sciences, 73(5):735–754, 2007.

[8] C. Glaßer, A. Pavan, A. L. Selman, and L. Zhang. Splitting NP-complete sets. SIAM
Journal on Computing, 2008.

[9] S. Homer, S. A. Kurtz, and J. S. Royer. On 1-truth-table-hard languages. Theoretical
Computer Science, 115(2):383–389, 1993.

[10] R. E. Ladner and N. A. Lynch. Relativization of questions about log space computability.
Mathematical Systems Theory, 10:19–32, 1976.

22

[11] R. E. Ladner, N. A. Lynch, and A. L. Selman. A comparison of polynomial time reducibil-
ities. Theoretical Computer Science, 1:103–123, 1975.

[12] K. W. Wagner. More complicated questions about maxima and minima, and some closures
of NP. Theoretical Computer Science, 51:53–80, 1987.

[13] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer
Science, 3:23–33, 1977.

23

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

