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Abstract

Consider a systematic linear code where some (local) parity symbols depend on few prescribed sym-
bols, while other (heavy) parity symbols may depend on all data symbols. Local parities allow to quickly
recover any single symbol when it is erased, while heavy parities provide tolerance to a large number
of simultaneous erasures. A code as above is maximally-recoverable, if it corrects all erasure patterns
which are information theoretically recoverable given the code topology. In this paper we present ex-
plicit families of maximally-recoverable codes with locality. We also initiate the study of the trade-off
between maximal recoverability and alphabet size.

1 Introduction

We say that a certain coordinate of an error-correcting code has locality r if, when erased, the value at
this coordinate can be recovered by accessing at most r other coordinates. Recently there has been two
lines of work on codes with locality.

In [10] motivated by applications to distributed storage [12] the authors studied systematic linear
[n, k] codes that tolerate up to h+ 1 erasures, but also have locality r for all information coordinates. In
canonical codes of [10], r divides k and n = k

r
+h. Data symbols are partitioned into k

r
groups of size r.

For each data group there is a local parity storing the XOR of respective data symbols. There also are h
heavy parities where each heavy parity depends on all k data symbols. In what follows we refer to codes
above as data-local (k, r, h)-codes.

In [4] motivated by applications to data storage on SSDs the authors studied systematic linear [n, k]
codes with two extra parameters r and h, where r | (k + h). In codes of [4] there are k data symbols
and h heavy parity symbols. These (k + h) symbols are partitioned into k+h

r
groups of size r. For each

group there is a local parity storing the XOR of respective symbols. Thus n = k + h + k+h
r
. Unlike the

codes of [10], codes of [4] provide locality for all symbols data or parity. In what follows we refer to
codes above as local (k, r, h)-codes.
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Observe that our descriptions of code families above are so far incomplete. For every parity symbol
we specified other symbols that it depends on, i.e., we have fixed codes’ topology. To complete defining
the codes we need to set coefficients in the heavy parity symbols. Different choices of coefficients lead
to codes with different erasure correcting capabilities. Ideally, we would like our codes to correct all
patterns of erasures that are correctable for some setting of coefficients in heavy parities. Such codes
exist and are called Maximally Recoverable (MR) [5].

An important problem left open by earlier work has been to come up with explicit maximally-
recoverable data-local and local codes over small finite fields.

1.1 Our results and related work

In this paper we make progress on the problem above. We present the first explicit families of
maximally-recoverable data-local and local codes for all values of k, r and h. Prior to our work infi-
nite explicit families of maximally-recoverable local codes were known only for h = 1 and h = 2.
There have also been few constructions that involved computer search for coefficients [4, 3]. Our codes
improve upon the earlier constructions both in concrete settings and asymptotically.

In the asymptotic setting of h = O(1), r = O(1), and growing k our codes use alphabet of size
O
(
kh−1

)
. In the case of h > 2r the alphabet size can be reduced O

(
kd(h−1)(1−

1
2r )e

)
. We also obtain

further improvements in the special cases of h = 3 and h = 4. The only lower bound for the alphabet size
known currently comes from results on the main conjecture for MDS codes [14] and is Ω(k). One way
to construct maximally-recoverable local codes is by picking coefficients in heavy parities at random
from a large enough finite field. In order to compare our constructions with random codes we show that
random codes are not maximally recoverable (except with probability o(1)) unless the size of the finite
field from which the coefficients are drawn exceeds Ω

(
kh−1

)
.

Similarly to [4, 3] we construct our explicit codes via parity check matrices. As in [4] columns of
our parity check matrices have the shape (αi, α

2
i , . . . , α

2h−1

i ). The key difference from the work of [4, 3]
however is that we explicitly specify the sets {αi} used in our constructions.

There are several other models of codes with locality in the literature. The ones most closely related
to our work include SD codes [3, 17], locally decodable codes [20], and regenerating codes [6].

1.2 Organization

In section 2 we formally define data-local and local (k, r, h)-codes. We introduce the notion of maxi-
mal recoverability, and show that maximally-recoverable local codes yield maximally-recoverable data-
local codes. In section 3 we give our two main code constructions. In section 4 we analyze the asymptotic
behavior of alphabet size in our codes for large message lengths. We also establish a simple lower bound
on the alphabet size of maximally-recoverable local codes. Finally, we compare asymptotic parameters
of our codes to asymptotic parameters of random codes. In section 5 we conclude with open questions.

2 Preliminaries

We use the following notation

• For an integer n, [n] = {1, . . . , n};



• An [n, k] code is a linear code encoding k-dimensional messages to n-dimensional codewords.
Equivalently, one can think of an [n, k] code as a k-dimensional subspace of an n-dimensional
space over a finite field;

• An [n, k, d] code is an [n, k] code whose minimal distance is at least d;

• Let C be an [n, k] code and S ⊆ [n]. Puncturing C in coordinates in S means restricting C to
coordinates in [n] \ S. It yields a [k′, n− |S|] code C ′, where k′ 6 k.

We proceed to formally introduce the notion of locality [10].

Definition 1. Let C be a linear [n, k] code. We say that the i-th coordinate of C has locality r, if there
exists a set S ⊆ [n] \ {i}, |S| 6 r, such that across all codewords c ∈ C, the value of the coordinate
c(i) is determined by values of coordinates {c(j)}, j ∈ S. Equivalently, the i-th coordinate has locality
r, if the dual code C⊥ contains a codeword c of Hamming weight at most r+ 1, where coordinate i is in
the support of c.

Definition 2. Let C be a linear systematic [n, k] code. We say that C is a (k, r, h) data-local code if the
following conditions are satisfied:

• r | k and n = k
r

+ h;

• Data symbols are partitioned into k
r

groups of size r. For each such group there is one (local)
parity symbol that stores the XOR of respective data symbols;

• Remaining h (heavy) parity symbols, may depend on all k data symbols.

In what follows we refer to a group of r data symbols and their local parity defined above as a local
group. Data-local codes have been studied in [11, 10, 16, 18, 19, 9]. The importance of this topology was
partially explained in [10, Theorem 9]. There it has been shown that in case h < r + 1, any systematic
[n, k] code that corrects all patterns of (h + 1) erasures, provides locality r for all data symbols, and
has the lowest possible redundancy has to be a data-local (k, r, h)-code. The class of data local-codes
is fairly broad as there is a lot of flexibility is choosing coefficients in heavy parities. Below we define
data-local codes that maximize reliability.

Definition 3. Let C be a data-local (k, r, h)-code. We say that C is maximally-recoverable if for any set
E ⊆ [n], where E is obtained by picking one coordinate from each of k

r
local groups, puncturing C in

coordinates in E yields a maximum distance separable [k + h, k] code.

A [k+h, k] MDS code obviously corrects all patterns of h erasures. Therefore a maximally-recoverable
data-local (k, r, h)-code corrects all erasure patterns E ⊆ [n] that involve erasing one coordinate per lo-
cal group, and h additional coordinates. We now argue that any erasure pattern that is not dominated by
a pattern above has to be uncorrectable.

Lemma 4. Let C be an arbitrary data-local (k, r, h)-code. Let E ⊆ [n] be an erasure pattern. Suppose
E affects t local groups and |E| > t+ h; then E is not correctable.



Proof. Suppose E is correctable. We extend E to a larger pattern of erasures E ′ erasing one arbitrary
coordinate in each of k

r
− t local groups that are not affected by E. Observe that E ′ is correctable if E is

correctable since each local group has a local parity. Note that the size of E ′ exceeds redundancy of the
code C, |E ′| > k

r
+ h. Thus the dimension of C restricted to coordinates outside of E ′ is below k, and

there are codewords in C with identical projections on [n] \ E ′. Therefore E ′ is not correctable.

We now proceed to define local codes.

Definition 5. Let C be a linear systematic [n, k] code. We say that C is a (k, r, h) local code if the
following conditions are satisfied:

• r | (k + h) and n = k + h+ k+h
r

;

• There are k data symbols and h heavy parity symbols, where each heavy parity may depend on all
data symbols;

• These k + h symbols are partitioned into k+h
r

groups of size r. For each such group there is one
(local) parity symbol that stores the XOR of respective symbols.

We refer to a group of r symbols and their local parity as a local group. As above we now introduce
local codes that maximize reliability.

Definition 6. Let C be a local (k, r, h)-code. We say that C is maximally-recoverable if for any set
E ⊆ [n], where E is obtained by picking one coordinate from each of k+h

r
local groups, puncturing C

in coordinates in E yields a maximum distance separable [k + h, k] code.

Maximally recoverable local (k, r, h)-codes have been originally introduced in [4] under the name
of partial-MDS codes. Similarly to the discussion following definition 3 it is easy to see that these
codes correct all erasure patterns that involve erasing one coordinate per local group, and h additional
coordinates. Erasure patterns that are not dominated by such patterns are not correctable by any local
(k, r, h)-code. The next lemma gives a simple reduction from local MR codes to data-local MR codes.

Lemma 7. Suppose there exists a local maximally-recoverable (k, r, h)-code C over a finite field F; then
there exists a data-local maximally-recoverable (k′, r, h)-code C ′ over the same field, where k′ 6 k is
the largest integer that is divisible by r.

Proof. Let t = k+h
r
. Let G1, . . . , Gt ⊆ [n] be the local groups. ∪iGi = [n]. We refer to data symbols

and heavy parity symbols of C as primary symbols. Altogether primary symbols form a [k+ h, k] MDS
code. Note that any k symbols of an MDS code can be treated as information symbols. Next we consider
two cases:

• r | k. We treat k primary symbols of C that belong to local groups {Gi}, i 6 k
r

as data symbols of
C ′. The code C ′ is obtained form the code C by dropping local parity symbols from groups Gi for
i > k

r
. The code C ′ clearly satisfies definition 2. Observe that C ′ also satisfies definition 3 as any

code that can be obtained by dropping one coordinate per local group in C ′ can also be obtained
by dropping one coordinate per local group in C.



• r - k. Let s = bk
r
c. We refer to local groups {Gi}, i 6 s as data groups. We refer to group Gs+1 as

special. We treat k′ primary symbols of C that belong to data groups {Gi}, i 6 s as data symbols
of C ′. We fix some arbitrary k − k′ primary symbols in the special group, and refer to them as
special symbols. We denote the collection of special symbols by S.

The code C ′ is obtained from the code C by dropping all special symbols and t− s local parities
in groups other than data groups. Given an assignment of values to k′ data symbols of C ′, we
determine the values of heavy parities using the code C assuming that all special symbols are set
to zero.

The code C ′ clearly satisfies definition 2. It also satisfies definition 3 as any codeword that can be
obtained by dropping one coordinate per local group in C ′(x′) can also be obtained by dropping
one coordinate per local group in C(x′ ◦ 0k−k′) restricted to [n] \ S. The latter restriction does
not affect the erasure correcting capability of the code as we are dropping coordinates that are
identically zero.

This concludes the proof.

3 Code constructions

In this section we give our two main constructions of local codes. We restrict our attention to finite
fields of characteristic two. Let F be such a field. Let S = {α1, . . . , αn} ⊆ F be a multi-set of n
elements. Let A(S, h) = [aij] denote the h× n matrix where

aij = α2i−1

j

Let C(α, h) ⊂ Fn be the linear code whose parity check matrix is A. Equivalently, C(α, h) contains all
vectors x = (x1, . . . , xn) which satisfy the equations

n∑
i=1

α2j−1

i xi = 0 for j = 1, . . . , h. (1)

Let C(α, h) be an [n, k, d] code. It is easy to see that k > n − h, hence by the Singleton bound,
d 6 h+1. We are interested in sets {αi} where d = h+1, so that the code C(α, h) is maximum distance
separable. The following lemma characterizes such sets.

Definition 8. We say that the multi-set S ⊆ F is t-wise independent over a field F′ ⊆ F if every T ⊆ S
such that |T | 6 t is linearly independent over F′.

Lemma 9. The code C(S, h) has distance h+ 1 if and only if the multi-set S is h-wise independent over
the field F2.

Proof. Let x = (x1, . . . , xn) ∈ C(S, h) be a codeword. The code C(S, h) has distance h + 1 iff every
pattern of h erasures is correctable. In other words, for anyE ⊆ [n], the values {xi}i∈E can be recovered
if we know the values of all {xi}i∈[n]\E . This requires solving the following system of equations:∑

i∈E

α2j−1

i xi = bj, 1 6 j 6 h (2)



which in turn requires inverting the h× h matrix AE which is the the minor of A obtained by taking the
columns in E. It is easy to see (e.g., [13, Lemma 3.51]) that AE is invertible if and only if the multi-set
{αi}i∈E is linearly independent over F2.

Lemma 9 describes the effect of adding parity check constraints to n otherwise independent variables.
We now consider the effect of adding such constraints to symbols that already satisfy some dependencies.
We work with the following setup. The n coordinates of the code are partitioned into ` = n

r+1
local

groups, with group i containing r + 1 symbols xi,1, . . . , xi,r+1. Variables in each local group satisfies a
parity check constraint

∑r+1
s=1 xi,s = 0. Thus all code coordinates have locality r. Let

S = {αi,s}i∈[`],s∈[r+1] ∈ Fn

We define the code C(S, r, h) by the parity check equations∑̀
i=1

r+1∑
s=1

α2j−1

i,s xi,s = 0 for j ∈ {1, . . . , h}, (3)

r+1∑
s=1

xi,s = 0 for i ∈ {1, . . . , `} (4)

We refer to Equations (3) as global constraints and (4) as local constraints. The following proposition is
central to our method:

Proposition 10. Let C(S, r, h) be the code defined above. Let e ∈ [r + 1]` be a vector. Let C−e =
C−e(S, r, h) be the code obtained by puncturing C(S, r, h) in positions {i, e(i)}`i=1. Then C−e is an MDS
code if and only if the multi-set

T (S, e) = {αi,s + αi,e(i)}i∈[`],s∈[r+1]\{e(i)}

is h-wise independent.

Proof. Note that C−e is a [k+h, k] code. To prove that it is MDS, we will use the local parity constraints
to eliminate the punctured locations and then use Lemma 9. Firstly, by renumbering variables (and
coefficients {αi,s}) in each local group, we may assume e(i) = r+1. By the local parity check equations,

xi,r+1 =
r∑

s=1

xi,s.

We use these to eliminate xi,r+1 from the global parity check equations for j ∈ [h] :

0 =
∑̀
i=1

(
r+1∑
s=1

α2j−1

i,s xi,s

)

=
∑̀
i=1

((
r∑

s=1

α2j−1

i,s xi,s

)
+ α2j−1

i,r+1

(
r∑

s=1

xi,s

))

=
∑̀
i=1

(
r∑

s=1

(α2j−1

i,s + α2j−1

i,r+1)xi,s

)

=
∑̀
i=1

(
r∑

s=1

(αi,s + αi,r+1)
2j−1

xl,i

)
.



Let T = {αi,s + αi,r+1}i∈[`],s∈[r]. By Lemma 9, the code C−e is MDS if and only if T is h-wise indepen-
dent.

Proposition 10 reduces constructing local MR codes to obtaining multi-sets S ⊆ F such that all sets
T (S, e) are h-wise independent. In what follows we give two constructions of such multi-sets.

3.1 Basic construction

Lemma 11. Let S ⊆ F, |S| = n be a set that is 2h-wise independent over as subfield F′. Let r be
arbitrary such that ` = n

r+1
is an integer. Then for all e ∈ [r + 1]` the set T (S, e) is h-wise independent

over F′.

Proof. Assume the contrary. To simplify the notation we relabel variables and assume that e(i) = r+ 1
for every i ∈ [`]. Let D = {ij, sj}dj=1 be a set of d 6 h indices of T such that

d∑
j=1

(
αij ,sj + αij ,r+1

)
= 0

We can rewrite this as

d∑
j=1

αij ,sj +
d∑

j=1

αij ,r+1 = 0

We claim that this gives a non-trivial relation between the coefficients {αi,s}. The relation is non-trivial
because the terms in the first summation occur exactly once (whereas terms in the second summation
can occur multiple times depending on the set D and could cancel).

Observe that the task of constructing n-sized subsets of F2t that are 2h-wise independent over F2 is
equivalent to the task of constructing [n, n − t, 2h + 1] binary linear codes, as elements of a 2h-wise
independent set can be used as columns of a t × n parity check matrix of such a code, and vice versa.
Therefore any family of binary linear codes can be used to obtain maximally-recoverable local codes via
Lemma 11 and Proposition 10. The next theorem gives local MR codes that one gets by instantiating the
approach above with columns of the parity check matrix of a binary BCH code.

Theorem 12. Let positive integers k, r, h be such that r | (k + h). Let m be the smallest integer such
that n = k+ h+ k+h

r
6 2m− 1. There exists a maximally recoverable local (k, r, h)-code over the field

F2hm .

Proof. Let S ′ = {β1, . . . , βn} be an arbitrary subset of non-zero elements of F2m . Consider S =
{α1, . . . , αn} ⊆ F2mh where for all i ∈ [n], αi = (βi, β

3
i , . . . , β

2h−1
i ) when we treat F2mh as an h-

dimensional linear space over F2m . It is not hard to see that the set S is 2h-wise independent over F2.
Thus by Lemma 11 and Proposition 10 the code C(S, r, h) is a maximally recoverable local (k, r, h)-
code.



3.2 Optimized construction

In the previous section we used 2h-wise independence of the set S to ensure h-independence of sets
T (S, e). In some cases this is on overkill, and one can ensure h-independence of sets T (S, e) more
economically.

Definition 13. We say that the set S ⊆ F is t-wise weakly independent over F2 ⊆ F if no set T ⊆ S
where 2 6 |T | 6 t has the sum of its elements equal to zero.

Unlike independent sets, weakly independent sets may include the zero element. The following propo-
sition presents our approach is a general form.

Proposition 14. Let positive integers k, r, h be such that ` = k+h
r

is an integer. Suppose there exists an
(r + 1)-sized set S1 ⊆ F2a . If h is even we require S1 to be h-weakly independent over F2; otherwise
we require S1 to be (h+ 1)-weakly independent over F2. Further suppose that there exists an `-sized set
S2 ⊆ F2b that is h-independent over F2a ; then the code C(S1 · S2, r, h) is a maximally recoverable local
(k, r, h)-code over the field F2b .

Proof. Let S1 = {ξ1, . . . , ξr+1}. Let S2 = {λ1, . . . , λ`}. For i ∈ [`], s ∈ [r + 1], we set αi,s = λiξs. By
Proposition 10 it suffices to show that for all e ∈ [r + 1]`, the set T (S1 · S2, e) is h-independent over
F2. Assume the contrary. To simplify the notation we relabel variables and assume that e(i) = r + 1 for
every i ∈ [`]. Let D = {ij, sj}dj=1 be a set of d 6 h indices of T such that

d∑
j=1

(
αij ,sj + αij ,r+1

)
= 0

We can rewrite this as ∑
t∈[`]

λt ·
∑

j : ij=t

(
ξt,sj + ξt,r+1

)
= 0.

Observe that after cancelations each non-empty inner sum above involves at least 2 terms. When h is
even it involves at most h terms; when h is odd it involves at most h + 1 terms. Therefore each inner
sum is non-zero by the properties of the set S1. Also note that the outer sum involves at most h terms λt
with non-zero coefficients from F2a and thus is also non-zero by the properties of the set S2.

We now instantiate Proposition 14 with a certain particular choice of independent sets. Our sets come
from columns of a parity check matrix of an extended BCH code.

Theorem 15. Let positive integers k, r, h be such that ` = k+h
r

is an integer. Let m be the smallest
integer such that r | m and ` 6 2m; then there exists a maximally recoverable local (k, r, h)-code over
the field F2t for t = r +m

⌈
(h− 1)

(
1− 1

2r

)⌉
.

Proof. Let {ξ1, . . . , ξr} be an arbitrary basis of F2r over F2. We set ξr+1 = 0 and S1 = {ξ1, . . . , ξr+1}.
Clearly, S1 is (h+1)-weakly independent over F2 for all h. Let S ′2 = {β1, . . . , β`} be an arbitrary subset
of F2m . Consider S2 = {λ1, . . . , λ`} ⊆ F2t where for all i ∈ [`],

λi = (1, βi, β
2
i , . . . , β

h−1
i ) (5)



when we treat F2t as a linear space over F2r . The first coordinate in (5) is a single value in F2r , while
every other coordinate is an m

r
-dimensional vector. In formula (5) we also omit every non-zero power

βj
i whenever 2r | j. We claim that the set S2 is h-independent over F2r . Assume the contrary. Then for

some non-empty set S ⊆ [`], |S| 6 h for all 0 6 j 6 h− 1 whenever 2r - j we have∑
i∈S

γiλ
j
i , (6)

where we assume 00 = 1 and all {γi} ∈ F2r . By standard properties of Frobenius automorphisms (6)
implies ∑

i∈S

γiλ
j
i ,

for all 0 6 j 6 h− 1 which contradicts the proprieties of the Vandermonde determinant.

Example 16. Instantiating Theorem 15 with k = 60, r = h = 4, we obtain a [80, 60, 7] maximally
recoverable (60, 4, 4) local code over the field F216 . Prior to our work [4, Theorem 4.2] a code with such
parameters was not known to exist over any field of size below 280.

In the proof of Theorem 15 we set S1 to be a basis of F2r augmented with a zero. After that we
could use columns of a parity check matrix of any linear

[
`, `− t

r
, h+ 1

]
code over F2r to define the

set S2 ⊆ F2t and obtain a MR local (k, r, h)-code over F2t . While we used columns of the parity check
matrix of an extended BCH code, other choices sometimes yield local MR codes over smaller alphabets.

3.3 Further improvements for h = 3 and h = 4

In this section we carry out the steps outlined above and present codes that improve upon the codes of
Theorem 15 for h = 3 or 4 and large k. We replace BCH codes in the construction of Theorem 15 with
better codes. The codes we use are not new [7, 21].

Theorem 17. Let positive integers k, r, h = 3 be such that ` = k+h
r

is an integer. Let m be the smallest
even integer such that ` 6 2rm; then there exists a maximally recoverable local (k, r, 3)-code over the
field F2t for t = r(3m

2
+ 1).

Proof. Let {ξ1, . . . , ξr} be an arbitrary basis of F2r over F2. We set ξr+1 = 0 and S1 = {ξ1, . . . , ξr+1}.
Clearly, S1 is (h + 1)-weakly independent over F2 for all h. Let S ′2 ⊆ F

3
2
m+1

2r be an arbitrary collection
of ` columns of the parity check matrix of the code C ′ from [21, Theorem 5], where we set q = 2r and
d = 4. S ′2 naturally defines a set S2 ⊆ F2t that is 3-independent over F2r .

We remark that using results in [8] one can get further small improvements upon the theorem above.

Theorem 18. Let positive integers k, r, h = 4 be such that ` = k+h
r

is an integer. Let m be the smallest
integer such that 3 | (m− 1) and ` 6 2r(m−1); then there exists a maximally recoverable local (k, r, 4)-
code over the field F2t for t = r(2m+ m−1

3
).

Proof. As before let {ξ1, . . . , ξr} be an arbitrary basis of F2r over F2. We set ξr+1 = 0 and S1 =

{ξ1, . . . , ξr+1}. Clearly, S1 is (h + 1)-weakly independent over F2 for all h. Let S ′2 ⊆ F2m+m−1
3

2r be an
arbitrary collection of ` columns of the parity check matrix of the code U ′ from [7, Theorem 6], where
we set q = 2r. S ′2 naturally defines a set S2 ⊆ F2t that is 4-independent over F2r .



4 Asymptotic parameters

Unlike data transmission applications, in data storage applications one typically does not need to scale
the number of heavy parities linearly with the number of data fragments k to ensure the same level of
reliability [12], as the likelihood p a fragment failure during a certain period of time is usually much
smaller than 1

k
. Much slower growth in the number of heavy parities suffices. Therefore we find the

asymptotic setting of fixed r, h and growing k relevant for practice and analyze the growth rate of the
alphabet size in different families of local MR (k, r, h)-codes in this regime.

It is not hard to see that in codes of Theorem 12 the alphabet size grows as O
(
kh
)
. In codes of

Theorem 15 the alphabet size grows as O
(
kd(h−1)(1−

1
2r )e
)
. For small values of h one can get some

further improvements. MR local (k, r, h = 3)-codes of Theorem 17 use alphabet of size O
(
k

3
2

)
. MR

local (k, r, h = 4)-codes of Theorem 18 use alphabet of size O
(
k

7
3

)
.

Obtaining constructions with reduced alphabet size remains a major challenge. The only lower bound
we currently have comes from results on the main conjecture for MDS codes and is Ω(k). In particular
the asymptotic lower bound does not depend on h.

Theorem 19. Let C be a maximally recoverable local (k, r, h)-code with h > 2. Assume C is defined
over the finite field Fq; then q > k + 1.

Proof. Consider the code C ′ that is obtained from C by deleting all local parities. Clearly, C ′ is a
[k+ h, k, h+ 1] MDS code. Consider the h× (k+ h) parity check matrix of the code C ′ with entries in
Fq. By [1, Lemma 1.2], k + h 6 q + h− 1.

Details regarding the recent progress on the main conjecture for MDS codes can be found in [1, 2]. In
particular, results there allow one to get small non-asymptotic improvements upon Theorem 19.

4.1 Random codes

One way to construct maximally-recoverable local codes is by picking coefficients in heavy parities
at random from a large enough finite field. In order to compare our constructions in Section 3 with
random local codes in this section we show that random codes are not maximally recoverable (except
with probability o(1)) unless the size of the finite field from which the coefficients are drawn exceeds
Ω
(
kh−1

)
. The following theorem is due to Swastik Kopparty and Raghu Meka [15].

Theorem 20. Let positive integers k, r, h be such that ` = k+h
r

is an integer. Consider a local (k, r, h)-
code C, where the coefficients in heavy parities are drawn at random uniformly and independently from
a finite field Fq. Suppose q 6

(
b k
2
c

h−1

)
; then the probability that C is maximally-recoverable is at most(

1− 1
2heh−1

) k
2 .

Proof. Let t 6 bk
2
c be the largest integer such that

(
t

h−1

)
6 q. Note that for all positive integers x we

have (
x+ 1

h− 1

)
/

(
x

h− 1

)
6

(
e(x+ 1)

h− 1

)h−1

/

(
x

h− 1

)h−1

6 (2e)h−1. (7)



Let ε = 1
(2e)h−1 . By (7) and the definition of t we have

εq 6

(
t

h− 1

)
6 q. (8)

Consider the [k + h, k] code C ′ that is obtained from C by deleting all ` local parities. Let M be the
h× (k + h) parity check matrix of C ′. Columns of M that correspond to heavy parities form the h× h
identity matrix. Other k columns m1, . . . ,mk are drawn from Fh

q uniformly at random. In what follows
for S ⊆ [k] we denote the span of vectors {mi}i∈S by L(S). The code C is maximally recoverable only
if C ′ is MDS. The code C ′ is MDS only if any h vectors in {m1, . . . ,mt} are linearly independent and
for all S ⊆ [t], |S| = h− 1 and i ∈ [k] \ [t],mi 6∈ L(S). In what follows we assume that any h vectors
in {mi}i∈[t] are indeed independent. Let U ⊆ Fh

q denote the union of L(S) over all S ⊆ [t], |S| = h− 1.
By inclusion-exclusion we have

|U | >
(

t

h− 1

)
qh−1 −

(( t
h−1

)
2

)
qh−2 >

(
t

h− 1

)
qh−1

(
1−

(
t

h−1

)
2q

)
. (9)

By the discussion above

Pr [C ′ is MDS ] 6
k∏

i=t+1

Pr[mi 6∈ U ]

=

(
qh − |U |

qh

)k−t

6

(
1−

(
t

h−1

)
q

(
1−

(
t

h−1

)
2q

))k−t

6

(
1−

(
t

h−1

)
2q

)k−t

,

where the last bound follows by using the RHS of (8) inside the inner brackets. Finally, using the LHS
of (8) in the formula above we obtain

Pr [C is MR ] 6
(

1− ε

2

)k−t
6

(
1− 1

2heh−1

) k
2

.

This concludes the proof.

One way to interpret Theorem 20 is as saying that random codes cannot offer an asymptotic improve-
ment upon the construction of Theorem 15.

5 Open questions

We studied the trade-off between maximal recoverability and alphabet size in local codes. Most ques-
tions in this area remain open. The main challenge is to reduce the field in constructions of Theorems 12
and 15 or to prove that such a reduction is not possible.



1. We are particularly interested in the asymptotic setting of constant r and h and growing k. In this
setting can one get local MR codes over a field of size O(k) or local MR codes inherently require
a larger field than then their MDS counterparts?

2. In the setting of h = O(1), r = Θ(k), and growing k, can one get a lower bound of ω(k) for the
field size of local MR codes?

3. While data-local and local codes present two important practically motivated code topologies,
constructing MR codes over other topologies is also of interest. Below we sketch the general
definitions of code topology and maximal recoverability.

Assume there are two kinds of characters {xi}i∈[k] and {αj}j∈[t]. Characters {xi} represent data
symbols and characters {αj} represent free coefficients. An [n, k] systematic code topology is a
collection of n expressions {E`}`∈[n] in {xi} and {αj}. Such a collection includes all individual
characters x1, . . . , xk. Every other expression has the form

Es =
∑
i

Li,s(α1, . . . , αt)xi,

where Li,s’s are arbitrary linear functions of {αj} over a field F′. Specifying code topology allows
one to formally capture locality constraints that one wants to impose on the code. Fixing values
of coefficients {αj} in a field F extending F′ turns a code topology into a systematic [n, k] code
over F.
We say that a sub-collection S of expressions implies an expression Ei if Ei can obtained as a
linear combination of expressions in S, where the coefficients are rational functions in {αj}. We
say that an instantiation of a topology is maximally recoverable if every implication as above still
holds after we instantiate {αj}’s. In other words, instantiating the corresponding rational functions
does not cause a division by zero.
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