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Abstract

Information complexity is the interactive analogue of Shannon’s classical information theory.
In recent years this field has emerged as a powerful tool for proving strong communication lower
bounds, and for addressing some of the major open problems in communication complexity
and circuit complexity. A notable achievement of information complexity is the breakthrough
in understanding of the fundamental direct sum and direct product conjectures, which aim
to quantify the power of parallel computation. This survey provides a brief introduction to
information complexity, and overviews some of the recent progress on these conjectures and
their tight relationship with the fascinating problem of compressing interactive protocols.

1 Introduction

The holy grail of complexity theory is proving lower bounds on different computational models,
thereby delimiting computational problems according to the resources they require for solving. One
of the most useful abstractions for proving such lower bounds is communication complexity ; Since
its introduction [Yao79], this model has had a profound impact on nearly every field of theoretical
computer science, including VLSI chip design, data structures, mechanism design, property testing
and streaming algorithms [Wac90, PW10, DN11, BBM12] to mention a few, and constitutes one
of the few known tools for proving unconditional lower bounds. As such, developing new tools in
communication complexity is a promising approaches for making progress within computational
complexity, and in particular, for proving strong circuit lower bounds that appear viable (such as
Karchmer-Wigderson games and ACC lower bounds [KW88, BT91]).

Of particular interest are “black box” techniques for proving lower bounds, also known as “hard-
ness amplification” methods (which morally enable strong lower bounds on composite problems via
lower bounds on a simpler primitive problem). Classical examples of such results are the Parallel
Repetition theorem [Raz98, Rao08] and Yao’s XOR Lemma [Yao82], both of which are cornerstones
of complexity theory. This is the principal motivation for studying the direct sum and direct product
conjectures, which are at the core of this survey.

Perhaps the most notable tool for studying communication problems is information theory,
introduced by Shannon in the late 1940s in the context of (one-way) data transmission problems
[Sha48]. Shannon’s noiseless coding theorem revealed the tight connection between communication
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and information, namely, that the amortized description length of a random one-way message (M)
is equivalent to the amount of information it contains

lim
n−→∞

C(Mn)

n
= H(M), (1)

where Mn denotes n i.i.d observations from M , C is the minimum number of bits of a string from
which Mn can be recovered (w.h.p), and H(·) is Shannon’s Entropy function. In the 65 years that
elapsed since then, information theory has been widely applied and developed, and has become the
primary mathematical tool for analyzing communication problems.

Although classical information theory provides a complete understanding of the one-way trans-
mission setup (where only one party communicates), it does not readily convert to the interactive
setup, such as the (two-party) communication complexity model. In this model, two players (Alice
and Bob) receive inputs x and y respectively, which are jointly distributed according to some prior
distribution µ, and wish to compute some function f(x, y) while communicating as little as possible.
To do so, they engage in a communication protocol, and are allowed to use both public and private
randomness. A natural extension of Shannon’s entropy to the interactive setting is the Information
Complexity of a function ICµ(f, ε), which informally measures the average amount of information
the players need to disclose each other about their inputs in order to solve f with some prescribed
error under the input distribution µ. From this perspective, communication complexity can be
viewed as the extension of transmission problems to general tasks performed by two parties over a
noiseless channel (the noisy case recently received a lot of attention as well [Bra14]). Interestingly,
it turns out that an analogue of Shannon’s theorem does in fact hold for interactive computation,
asserting that the amortized communication cost of computing many independent copies of any
function f is precisely equal to its single-copy information complexity:

Theorem 1.1 (“Information = Amortized Communication”, [BR11]). For any ε > 0 and any
two-party communication function f(x, y),

lim
n−→∞

Dµn(fn, ε)

n
= ICµ(f, ε).

Here Dµn(fn, ε) denotes the minimum communication required for solving n independent instances
of f with error at most ε on each copy.1 The above theorem assigns an operational meaning to
information complexity, namely, one which is grounded in reality (in fact, it was recently shown
that this characterization is a “sharp threshold”, see Theorem 4.8).

Theorem 1.1 and some of the additional results mentioned in this survey, provide a strong evi-
dence that information theory is the “right” tool for studying interactive communication problems.
One general benefits of information theory in addressing communication problems is that it pro-
vides a set of simple yet powerful tools for reasoning about transmission problems and more broadly
about quantifying relationships between interdependent random variables and conditional events.
Tools that include mutual information, the chain rule, and the data processing inequality [CT91].
Another, arguably most important benefit, is the additivity of information complexity under com-
position of independent tasks (Lemma 3.1 below). This is the main reason that information theory,
unlike other analytic or combinatorial methods, is apt to give exact bounds on rates and capacities

1Indeed, the “≤” direction of this proof gives a protocol with overall success only ≈ (1 − ε)n on all n copies, see
[BR11].



(such as Shannon’s noiseless coding theorem and Theorem 1.1). It is this benefit that has been
primarily used in prior works (which are beyond the scope of this survey) involving information-
theoretic applications in communication complexity, circuit complexity, streaming, machine learn-
ing and privacy ([CSWY01, LS10, CKS03, BYJKS04, JKR09, BGPW13, ZDJW13, WZ14] to men-
tion a few).

One caveat is that mathematically striking characterizations such as the noiseless coding the-
orem only become possible in the limit, where the number of independent samples transmitted
over the channel (i.e., the block-length) grows to infinity. One exception is Huffman’s “one-shot”
compression scheme (aka Huffman coding, [Huf52]), which shows that the expected number of bits
C(M) needed to transmit a single sample from M , is very close (but not equal!) to the optimal
rate

H(M) ≤ C(M) ≤ H(M) + 1. (2)

Huffman’s theorem of course implies Shannon’s theorem (since entropy is additive over independent
variables), but is in fact much stronger, as it asserts that the optimal transmission rate can be
(essentially) achieved using much a smaller block length. Indeed, what happens for small block
lengths is of importance for both practical and theoretical reasons, and it will be even more so in the
interactive regime. While Theorem 1.1 provides an interactive analogue of Shannon’s theorem, an
intriguing question is whether an interactive analogue of Huffman’s “one-shot” compression scheme
exists. When the number of communication rounds of a protocol is small (constant), compressing
it can morally2 be done by applying Huffman’s compression scheme to each round of the protocol,
since (2) would entail at most a constant overhead in communication. However, when the number
of rounds is huge compared to the overall information revealed by the protocol (e.g., when each
round reveals � 1 bits of information), this approach is doomed to fail, as it would “spend” at
least 1 bit of communication per round. Circumventing this major obstacle and the important
implications of this (unsettled) question to the direct sum and product conjectures are extensively
discussed in Sections 4 and 5.

Due to space constraints, this survey is primarily focused on the above relationship between
information and communication complexity. As mentioned above, information complexity has
recently found many more exciting applications in complexity theory – to interactive coding,
streaming lower bounds, extension complexity and multiparty communication complexity (e.g.,
[BYJKS04, BM12, BP13, BEO+13]). Such applications are beyond the scope of this survey.

Organization We begin with a brief introduction to information complexity and some of its
main properties (Section 2). In Section 4 we give an overview of the direct sum and direct product
conjectures and their relationship to interactive compression, in light of recent developments in
the field. Section 5 describes state-of-the-art interactive compression schemes. We conclude with
several natural open problems in Section 6. In an effort to keep this survey as readable and self-
contained as possible, we shall sometimes be loose on technical formulations, often ignoring constant
and technical details which are not essential to the reader.

2This is not accurate, since unlike the one-way transmission setting, in this setting the receiver has “side infor-
mation” about the transmitted message, e.g., when Bob sends the second message of the protocol, Alice has a prior
distribution on this message conditioned on her input X and the first message of the protocol M1 which she sent
before. Nevertheless, using ideas from rejection sampling, such simulation is possible in the “one-shot” regime with
O(1) communication overhead per message [HJMR07, BR11].



2 Model and Preliminaries

The following background contains basic definitions and notations used throughout this survey. For
a more detailed overview of communication and information complexity, we refer the reader to an
excellent monograph by Braverman [Bra12].

For a function f : X × Y → Z, a distribution µ overX × Y, and a parameter ε > 0, Dµ(f, ε)
denotes the communication complexity of the cheapest deterministic protocol computing f on
inputs sampled according to µ with error ε. R(f, ε) denotes the cost of the best randomized public
coin protocol which computes f with error at most ε, for all possible inputs (x, y) ∈ X ×Y. When
measuring the communication cost of a particular protocol π, we sometimes use the notation ‖π‖ for
brevity. Essentially all results in this survey are proven in the former distributional communication
model (since information complexity is meaningless without a prior distribution on inputs), but
most lower bounds below can be extended to the randomized model via Yao’s minimax theorem.
For the sake of concreteness, all of the results in this article are stated for (total) functions, though
most of them apply to partial functions and relations as well.

2.1 Information Theory

Proofs of the claims below and a broader introduction to information theory can be found in [CT91].
The most basic concept in information theory is Shannon’s entropy, which informally captures how
predictable a random variable is:

Definition 2.1 (Entropy). The entropy of a random variable A is H(A) :=
∑

a Pr[A =
a] log(1/Pr[A = a]). The conditional entropy H(A|B) is defined as Eb∼B [H(A|B = b)].

A key measure in this article is the Mutual Information between two random variables, which
quantifies the amount of correlation between them:

Definition 2.2 (Mutual Information). The mutual information between two random variables A,B,
denoted I(A;B) is defined to be the quantity H(A)−H(A|B) = H(B)−H(B|A). The conditional
mutual information I(A;B|C) is H(A|C)−H(A|BC).

A related distance measure between distributions is the Kullback-Leibler (KL) divergence

D (p‖q) :=
∑
x

p(x) log
p(x)

q(x)
= Ex∼p

[
log

p(x)

q(x)

]
.

We shall sometimes abuse the notation and write D (A|c‖B|c) to denote the KL divergence
between the associated distributions of the random variables (A|C = c) and (B|C = c). The
following connection between divergence and mutual information is well known:

Lemma 2.3 (Mutual information in terms of Divergence).

I(A;B|C) = Eb,c [D (A|bc‖A|c)] = Ea,c [D (B|ac‖B|c)] .

Intuitively, the above equation asserts that, if the mutual information between A and B (con-
ditioned on C) is large, then the distribution of (A|c) is “far” from (A|bc) for average values of b, c
(this captures the fact that the “additional information” B provides on A given C is large). One
of the most useful properties of Mutual Information and KL Divergence is the chain rule:



Lemma 2.4 (Chain Rule). Let A,B,C,D be four random variables in the same probability space.
Then

I(AB;C|D) = I(A;C|D) + I(B;C|AD)

= Ec,d [D (A|cd‖A|d)] + Ea,c,d [D (B|acd‖A|ad)] .

Lemma 2.5 (Conditioning on independent variables does not decrease information). Let A,B,C,D
be four random variables in the same probability space. If A and D are conditionally independent
given C, then it holds that I(A;B|C) ≤ I(A;B|CD).

Proof. We apply the chain rule for mutual information twice. On one hand, we have I(A;BD|C) =
I(A;B|C)+I(A;D|CB) ≥ I(A;B|C) since mutual information is nonnegative. On the other hand,
I(A;BD|C) = I(A;D|C) + I(A;B|CD) = I(A;B|CD) since I(A;D|C) = 0 by the independence
assumption on A and D. Combining both equations completes the proof.

Throughout this article, we denote by |p− q| the total variation distance between the distribu-
tions p and q. Pinsker’s inequality bounds statistical distance in terms of the KL divergence. It
will be useful for analysis of the interactive compression schemes in Section 5.

Lemma 2.6 (Pinsker’s inequality). |p− q|2 ≤ 1
2 · D (p‖q).

2.2 Interactive Information complexity

Given a communication protocol π, π(x, y) denotes the concatenation of the public randomness
with all the messages that are sent during the execution of π (for information purposes, this is
without loss of generality, since the public string R conveys no information about the inputs).
We call this the transcript of the protocol. When referring to the random variable denoting the
transcript, rather than a specific transcript, we will use the notation Π(x, y) — or simply Π when
x and y are clear from the context.

Definition 2.7 (Internal Information Cost [CSWY01, BBCR10]). The (internal) information cost
of a protocol over inputs drawn from a distribution µ on X × Y, is given by:

ICµ(π) := I(Π;X|Y ) + I(Π;Y |X). (3)

Intuitively, the definition in (3) captures how much additional information the two parties learn
about each other’s inputs by observing the protocol’s transcript. For example, the information cost
of the trivial protocol in which Alice and Bob simply exchange their inputs, is simply the sum of
their conditional marginal entropiesH(X|Y )+H(Y |X) (notice that, in contrast, the communication
cost of this protocol is |X|+ |Y | which can be arbitrarily larger than the former quantity).

Another information measure which makes sense at certain contexts is the external information
cost of a protocol, ICext

µ (π) := I(Π;XY ), which captures what an external observer learns on average
about both player’s inputs by observing the transcript of π. This quantity will be of minor interest
in this survey (though it playes a central role in many applications). The external information cost
of a protocol is always at least as large as its (internal) information cost, since intuitively an external
observer is “more ignorant” to begin with. We remark that when µ is a product distribution, then
ICext
µ (π) = ICµ(π) (see, e.g., [Bra12]).

One can now define the information complexity of a function f with respect to µ and error ε
as the least amount of information the players need to reveal to each other in order to compute f
with error at most ε:



Definition 2.8. The Information Complexity of f with respect to µ (and error ε) is

ICµ(f, ε) := inf
π: Prµ[π(x,y)6=f(x,y)]≤ε

ICµ(π).

What is the relationship between the information and communication complexity of f? This
question is at the core of this survey. The answer to one direction is easy: Since one bit of
communication can never reveal more than one bit of information, the communication cost of any
protocol is always an upper bound on its information cost over any distribution µ:

Lemma 2.9 ([BR11]). For any distribution µ, ICµ(π) ≤ ‖π‖.

The answer to the other direction, namely, whether any protocol can be compressed to roughly
its information cost, will be partially given in the remainder of this article.

2.3 The role of private randomness in information complexity

A subtle but vital issue when dealing with information complexity, is understanding the role of
private vs. public randomness. In public-coin communication complexity, one often ignores the
usage of private coins in a protocol, as they can always be simulated by public coins. When dealing
with information complexity, the situation is somewhat the opposite: Public coins are essentially a
redundant resource (as it can be easily shown via the chain rule that ICµ(π) = ER[ICµ(πR)]), while
the usage of private coins is crucial for minimizing the information cost, and fixing these coins is
prohibitive (once again, for communication purposes in the distributional model, one may always fix
the entire randomness of the protocol, via the averaging principle). To illustrate this point, consider
the simple example where in the protocol π, Alice sends Bob her 1-bit input X ∼ Ber(1/2), XORed
with some random bit Z. If Z is private, Alice’s message clearly reveals 0 bits of information to
Bob about X. However, for any fixing of Z, this message would reveal an entire bit(!). The general
intuition is that a protocol with low information cost would reveal information about the player’s
inputs in a “careful manner”, and the usage of private coins serves to “conceal” parts of their inputs.
Indeed, it was recently shown that the restriction to public coins may cause an exponential blowup
in the information revealed compared to private-coin protocols ([GKR14, BMY14]). In fact, we
shall see in Section 4 that quantifying this gap between public-coin and private-coin information
complexity is tightly related to the question of interactive compression.

For the remainder of this article, communication protocols π are therefore assumed to use
private coins (and therefore such protocols are randomized even conditioned on the inputs x, y and
R), and it is crucial that the information cost ICµ(π) = I(Π;X|Y R) + I(Π;Y |XR) is measured
conditioned on the public randomness R, but never on the private coins of π.

3 Additivity of Information Complexity

Perhaps the single most remarkable property of information complexity is that it is a fully ad-
ditive measure over composition of tasks. This property is what primarily makes information
complexity a natural “relaxation” for addressing direct sum and product theorems. The main
ingredient of the following lemma appeared first in the works of [Raz08, Raz98] and more explic-
itly in [BBCR10, BR11, Bra12]. In the following, fn denotes the function that maps the tuple
((x1, . . . , xn), (y1, . . . , yn)) to (f(x1, y1), . . . , f(xn, yn))).



Lemma 3.1 (Additivity of Information Complexity). ICµn(fn, ε) = n · ICµ(f, ε).

Proof. The (≤) direction of the lemma is easy, and follows from a simple argument that applies
the single-copy optimal protocol independently to each copy of fn, with independent randomness.
We leave the simple analysis of this protocol as an exercise to the reader.

The (≥) direction is the main challenge. Will will prove it in a contra-positive fashion: Let
Π be an ε-error protocol for fn, such that ICµn(Π) = I (recall that here ε denotes the per-copy
error of Π in computing f(xi, yi)). We shall use Π to produce a single-copy protocol for f whose
information cost is ≤ I/n, which would complete the proof. The guiding intuition for this is that
Π should reveal I/n bits of information about an average coordinate.

To formalize this intuition, let (x, y) ∼ µ, and denote X := X1 . . . Xn , X≤i := X1 . . . Xi and
X−i := X1 . . . Xi−1, Xi+1, . . . , Xn, and similarly for Y, Y≤i, Y−i. A natural idea is for Alice and Bob
to “embed” their respective inputs (x, y) to a (publicly chosen) random coordinate i ∈ [n] of Π, and
execute Π. However, Π is defined over n input copies, so in order to execute it, the players need to
somehow “fill in” the rest (n− 1) coordinates, each according to µ. How should this step be done?
The first attempt is for Alice and Bob to try and complete X−i, Y−i privately. This approach fails
if µ is a non-product distribution, since there’s no way the players can sample X and Y privately,
such that (X,Y ) ∼ µ if µ correlates the inputs. The other extreme – sampling X−i, Y−i using
public randomness only – would resolve the aforementioned correctness issue, but might leak too
much information: An instructive example to consider is where, in the first message of Π, Alice
sends Bob the XOR of the n bits of her uniform input X: M = X1 ⊕X2 ⊕ . . .⊕Xn. Conditioned
on X−i, Y−i, M reveals 1 bit of information about Xi to Bob, while we want to argue that in this
case, only 1/n bits are revealed about Xi. So this approach reveals too much information.

It turns out that the “right” way of breaking the dependence across the coordinates is to use a
combination of public and private randomness. Let us define, for each i ∈ [n], the public random
variable

Ri := X<i, Y>i.

Note that given Ri, Alice can complete all her missing inputs X>i privately according to µ, and
Bob can do the same for Y<i. Let us denote by θ(x, y, i, Ri) the protocol transcript produced by
running Π(X1, ..., Xi−1, x,Xi+1, ..., Xn , Y1, ..., Yi−1, y, Yi+1, ..., Yn) and outputting its answer on
the i’th coordinate. Let Θ(x, y) be the protocol obtained by running θ(x, y, i, Ri) on a uniformly
selected i ∈ [n].

By definition, Π computes fn with a per-copy error of ε, and thus in particular Θ(x, y) = f(x, y)
with probability ≥ 1− ε. To analyze the information cost of Θ, we write:

I(Θ;x|y) = Ei,Ri [I(θ;x|y,Ri)] =

n∑
i=1

1

n
· I(Π;Xi | Yi, Ri)

=
1

n

n∑
i=1

I(Π;Xi | Yi, X<iY>i) =
1

n

n∑
i=1

I(Π;Xi | X<iY≥i)

≤ 1

n

n∑
i=1

I(Π;Xi | X<iY) =
1

n
· I(Π; X | Y),

where the inequality follows from Lemma 2.5, since I(Y<i;Xi|X<i) = 0 by construction, and the last
transition is by the chain rule for mutual information. By symmetry of construction, an analogous



argument shows that I(Θ; y|x) ≤ I(Π; Y | X)/n, and combining these facts gives

ICµ(Θ) ≤ 1

n
(I(Π; X | Y) + I(Π; Y | X)) =

I

n
. (4)

4 Direct Sum, Product, and the Interactive Compression Problem

Direct sum and direct product theorems assert a lower bound on the complexity of solving n copies
of a problem in parallel, in terms of the cost of a single copy. Let fn denote the problem of
computing n simultaneous instances of the function f (in some arbitrary computational model for
now), and C(f) denote the cost of solving a single copy of f . The obvious solution to fn is to
apply the single-copy optimal solution n times sequentially and independently to each coordinate,
yielding a linear scaling of the resources, so clearly C(fn) ≤ n · C(f). The strong direct sum
conjecture postulates that this naive solution is essentially optimal. In the context of randomized
communication complexity, the strong direct sum conjecture informally asks whether it is true that
for any function f and input distribution µ,

Dµn(fn, ε) =? Ω(n) · Dµ(f, ε). (5)

More generally, direct sum theorems aim to give an (ideally linear in n, but possibly weaker) lower
bound on the communication required for computing fn with some constant overall error ε > 0 in
terms of the cost of computing a single copy of f with the same (or comparable) fixed error.

A direct product theorem further asserts that unless sufficient resources are provided, the prob-
ability of successfully computing all n copies of f will be exponentially small, potentially as low as
(1 − ε)Ω(n). This is intuitively plausible, since the naive solution which applies the best (ε-error)
protocol for one copy of f independently to each of the n coordinates, would indeed succeed in
solving fn with probability (1− ε)n. Is this naive solution optimal?

To make this more precise, let us denote by suc(µ, f, C) the maximum success probability of a
protocol with communication complexity ≤ C in computing f under input distribution µ. A direct
product theorem asserts that any protocol attempting to solve fn (under µn) using some number T
of communication bits (ideally T = Ω(n·C)), will succeed only with exponentially small probability:
suc(µn, fn, T ) . (1− ε)Ω(n). Informally, the strong direct product question asks whether

suc(µn, fn, o(n · C)) .? (suc(µ, f, C))Ω(n). (6)

Note that (6) in particular implies (5) when setting C = Dµ(f, ε). Classic examples of direct
product results in complexity theory are Raz’s Parallel Repetition Theorem [Raz98, Rao08] and
Yao’s XOR Lemma [Yao82] (For more examples and a broader overview of the rich history of
direct sum and product theorems see [JPY12] and references therein). The value of such results to
computational complexity is clear: direct sum and product theorems, together with a lower bound
on the (easier-to-reason-about) “primitive” problem, yield a lower bound on the composite problem
in a “black-box” fashion (a method also known as hardness amplification). For example, the
Karchmer-Raz-Wigderson approach for separating P from NC1 can be completed via a (still open)
direct sum conjecture for Boolean formulas [KRW95] (after more than a decade, some progress on
this conjecture was recently made using information-complexity machinery [GMWW14]). Other



fields in which direct sums and products have played a central role in proving tight lower bounds
are streaming [BYJKS04, ST13, MWY13, GO13] and distributed computing [HRVZ13].

Can we always hope for such strong lower bounds to hold? It turns out that the validity of these
conjectures highly depends on the underlying computational model, and the short answer is no.3

In the communication complexity model, this question has had a long history and was answered
positively for several restricted models of communication [Kla10, Sha03, LSS08, She12, JPY12,
MWY13, PRW97]. Interestingly, in the determistic communication complexity model, Feder et al.
[FKNN95] showed that

D(fn) ≥ n · Ω
(√

D(f)
)

for any two-party Boolean function f (where D(f) stands for the deterministic communication
complexity of f), but this proof completely breaks when protocols are allowed to err. Indeed, in the
randomized communication model, there is a tight connection between the direct sum question for
the function f and its information complexity. By now, this should come as no surprise: Theorem
1.1 asserts that, for large enough n, the communication complexity of fn scales linearly with the
(single-copy) information cost of f , i.e. Dµn(fn, ε) = Θ (n · ICµ(f, ε)), and hence the strong direct
sum question (5) boils down to understanding the relationship between the single-copy measures
Dµ(f, ε) and ICµ(f, ε). Indeed, it can be formally shown ([BR11]) that the direct sum problem is
equivalent 4 to the following problem of “one-shot” compression of interactive protocols:

Problem 4.1 (Interactive compression problem, [BBCR10]). Given a protocol π over inputs x, y ∼
µ, with ‖π‖ = C, ICµ(π) = I, what is the smallest amount of communication of a protocol τ which
(approximately) simulates π (i.e., ∃ g s.t |g(τ(x, y))− π(x, y)|1 ≤ δ for a small constant δ)?

In particular, if one could compress any protocol into O(I) bits, this would have shown that
Dµ(f, ε) = O (ICµ(f, ε)) which would in turn imply the strong direct sum conjecture. In fact, the
additivity of information cost (Lemma 3.1 from Section 3) implies the following general quantitative
relationship between (possibly weaker) interactive compression results and direct sum theorems in
communication complexity:

Proposition 4.2 (One-Shot Compression implies Direct Sum). Suppose that for any δ > 0 and any
given protocol π for which ICµ(π) = I , ‖π‖ = C, there is a compression scheme that δ-simulates5

π using gδ(I, C) bits of communication. Then

gδ

(
Dµn(fn, ε)

n
,Dµn(fn, ε)

)
≥ Dµ(f, ε+ δ).

3In the context of circuit complexity, for example, this conjecture fails (at least in its strongest form): Multiplying
an n × n matrix by a (worst case) n-dimensional vector requires n2 operations, while (deterministic) multiplication
of n different vectors by the same matrix amounts to matrix-multiplication of two n×n matrices, which can be done
in n2.37 � n3 operations [Wil12].

4The exact equivalence of the direct sum conjecture and Problem 4.1 holds for relations (Theorem 6.6 in [BR11]).
For total functions, one could argue that the requirement in Problem 4.1 is too harsh as it requires simulation of the
entire transcript of the protocol, while in the direct sum context for functions we are merely interested in the output
of f . However, all known compression protocols satisfy the stronger requirement and no separation is known between
those techniques.

5The simulation here is in an internal sense, namely, Alice and Bob should be able to reconstruct the transcript of
the original protocol (up to a small error), based on public randomness and their own private inputs. See [BRWY12]
for the precise definition and the (subtle) role it plays in context of direct product theorems.



Proof. Let Π be an optimal n-fold protocol for fn under µn with per-copy error ε, i.e., ‖Π‖ =
Dµn(fn, ε) := Cn. By Lemma 3.1 (equation (4)), there is a single-copy ε-error protocol θ for com-
puting f(x, y) under µ, whose information cost is at most ICµn(Π)/n ≤ Cn/n (since communication
always upper bounds information). By assumption of the claim, θ can now be δ-simulated using
gδ(Cn/n,Cn) communication, so as to produce a single-copy protocol with error ≤ ε+ δ for f , and
therefore Dµ(f, ε+ δ) ≤ gδ(Cn/n , Cn).

The first general interactive compression result was proposed in the seminal work of Barak,
Braverman, Chen and Rao [BBCR10], who showed that any protocol π can be δ-simulated us-
ing gδ(I, C) = Õδ(

√
C · I) communication (we prove this result in Section 5.1). Plugging this

compression result into Proposition 4.2, this yields the following weaker direct sum theorem:

Theorem 4.3 (Weak Direct Sum, [BBCR10]). For every Boolean function f , distribution µ, and
any positive constant δ > 0,

Dµn(fn, ε) ≥ Ω̃(
√
n · Dµ(f, ε+ δ)).

Later, Braverman [Bra12] showed that it is always possible to simulate π using 2Oδ(I) bits of
communication. This result is still far from ideal compression (O(I) bits), but it is nevertheless
appealing as it show that any protocol can be simulated using amount of communication which
depends solely on its information cost, but independent of its original communication which may
have been arbitrarily larger (we prove this result in Section 5.2). Notice that the last two compres-
sion results are indeed incomparable, since the communication of π could be much larger than its

information complexity (e.g., C ≥ 222
I

). The current state of the art for the general interactive
compression problem can be therefore summarized as follows: Any protocol with communication
C and information cost I can be compressed to

gδ(I, C) ≤ min
{

2Oδ(I) , Õδ(
√
I · C)

}
(7)

bits of communication.

The above results may seem as a plausible evidence that it is in fact possible to compress general
interactive protocols all the way down to O(I) bits. Unfortunately, this task turns out to be too
ambitious: In a recent breakthrough result, Ganor, Kol and Raz [GKR14] proved the following
lower bound on the communication of any compression scheme:

gδ(I, C) ≥ max
{

2Ω(I) , Ω̃(I · logC)
}
. (8)

More specifically, they exhibit a Boolean function f which can be solved using a protocol with
information cost I, but cannot be simulated by a protocol π′ with communication cost < 2Ω(I)

(a simplified construction and proof was very recently obtained by Rao and Sinha [RS15]). Since

the communication of the low information protocol they exhibit is ∼ 22I , this also rules out a
compression to I · o(logC), or else such compression would have produced a too good to be true
(2o(I) communication) protocol. The margin of this text is too narrow to contain the proof of
this separation result, but it is noteworthy that proving it was particularly challenging: It was
shown that essentially all previously known techniques for proving communication lower bounds
apply to information complexity as well [BW12, KLL+12], and hence could not be used to separate



information complexity and communication complexity. Using (the reverse direction of) Proposition
4.2 (see Theorem 6.6 in [BR11]), the compression lower bound in (8) refutes the strongest possible
direct sum (5), but leaves open the following gap

Ω̃δ

(√
n
)
≤ min

f

Dµn(fn, ε)

Dµ(f, ε+ δ)
≤ O

(
n

log n

)
. (9)

Notice that this still leaves the direct sum conjecture for randomized communication complexity
wide open: It is still conceivable that improved compression to gδ(I, C) = I ·Co(1) is in fact possible,
and the quest to beat the compression scheme of [BBCR10] remains unsettled.6

Despite the lack of progress in the general regime, several works showed that it is in fact possible
to obtain near-optimal compression results in restricted models of communication: When the input
distribution µ is a product distribution (x and y are independent), [BBCR10] show a near-optimal
compression result, namely that π can be compressed into O(I · polylog(C)) bits.7 Once again,
using Proposition 4.2 this yields the following direct sum theorem:

Theorem 4.4 ([BBCR10]). For every product distribution µ and any δ > 0,

Dµn(fn, ε) = Ω̃(n · Dµ(f, ε+ δ)).

Improved compression results were also proven for public-coin protocols (under arbitrary distri-
butions) [BBK+13, BMY14], and for bounded-round protocols, leading to near-optimal direct sum
theorems in corresponding communication models. We summarize these results in Table 1.

Reference Regime Communication Complexity

[HJMR07] r-round protocols, I +O(r)
product distributions7

[BR11, BRWY13] r-round protocols I +O
(√

r · I
)

+O(r log 1/δ)

[BMY14] (improved [BBK+13]) Public coin protocols O(I2 · log log(C)/δ2)
[BBCR10] Product distributions7 O(I · poly log(C)/δ)

[Bra12, BBCR10] General protocols min{2O(I/δ) , O(
√
I · C · log(C)/δ)}

[GKR14, RS15] Best lower bound max{2Ω(I) , Ω(I · log(C))

Table 1: Best to date compression schemes, for various regimes. Notice that in the general regime
(last two columns), in terms of dependence on the original communication C, the gap is still very
large (Ω(logC) vs. Õ(C1/2)).

4.1 Harder, better, stronger: From direct sum to direct product

As noted above, direct sum theorems such as Theorems 1.1, 4.3 and 4.4 are weak in that they
merely assert that attempting to solve n independent copies of f using less than some number T of
resources, would fail with some constant overall probability ((suc(µn, fn, o(

√
n · C)) ≤ ε in the gen-

eral case, and suc(µn, fn, o(n ·C)) ≤ ε in the product case, where C = Dµ(f, ε)). This is somewhat

6Ramamoorthy and Rao [RR15] recently showed that BBCR’s compression scheme can be improved when the
underlying communication protocol is asymmetric, i,e., when Alice reveals much more information than Bob.

7 These compression results in fact hold for general (non-product) distributions as well, when compression is with
respect to Iext, the external information cost of the original protocol π (which may be significantly larger than I).



unsatisfactory, since the naive solution that applies the single-copy optimal protocol independently
to each copy has only exponentially small success probability in solving all copies correctly. Indeed,
some of the most important applications of hardness amplification require amplifying the error
parameter (e.g., the usage of parallel repetition in the context of the PCP theorem).

As mentioned before, many direct product theorems were proven in limited communication
models (e.g. Shaltiel’s Discrepancy bound [Sha03, LSS08] which was extended to the generalized
discrepancy bound [She12], Parnafes, Raz, and Wigderson’s theorem for communication forests
[PRW97], Jain’s theorem [Jai11] for simultaneous communication and [JY12]’s direct product in
terms of the “smooth rectangle bound” to mention a few), but none of them applied to general
functions and communication protocols. In a recent breakthrough work, Jain, Pereszlényi and Yao
used an information-complexity based approach to prove a strong direct product theorem for any
function (relation) in the bounded-round communication model.

Theorem 4.5 ([JPY12]). Let sucr(µ, f, C) denote the largest success probability of an r-round
protocol with communication at most C, and suppose that sucr(µ, f, C) ≤ 2

3 . If T = o
((

C
r − r

)
· n
)
,

then sucr(µ
n, fn, T ) ≤ exp(−Ω(n/r2)).

This theorem can be essentially viewed as a sharpening of the direct sum theorem of Braverman
and Rao for bounded-round communication [BR11]. This bound was later improved by Braverman
et. al who showed that sucr/7(µn, fn, o((C − r log r) · n)) ≤ exp(−Ω(n)), thus settling the strong
direct product conjecture in the bounded round regime. The followup work of [BRWY12] took
this approach one step further, obtaining the first direct product theorem for unbounded-round
randomized communication complexity, thus sharpening the direct sum results of [BBCR10].

Theorem 4.6 ([BRWY12], informally stated). For any two-party function f and distribution µ
such that suc(µ, f, C) ≤ 2

3 , the following holds:

• If T log3/2 T = o(C ·
√
n), then suc(µn, fn, T ) ≤ exp (−Ω(n)).

• If µ is a product distribution, and T log2 T = o(C · n), then suc(µn, fn, T ) ≤ exp(−Ω(n)).

One appealing corollary of the second proposition is that, under the uniform distribution,
two-party interactive computation cannot be “parallelized”, in the sense that the best protocol
for solving fn (up to polylogarithmic factors), is to apply the single-coordinate optimal protocol
independently to each copy, which almost matches the above parameters.

The high-level intuition behind the proofs of Theorems 4.5 and 4.6 follows the direct sum
approach of [BBCR10] (Proposition 4.2 above): Suppose, towards contradiction, that the success
probability of an n-fold protocol using T bits of communication in computing fn under µn is
larger than, say, exp(−n/100). We would like to “embed” a single-copy (x, y) ∼ µ into this
n-fold protocol, thereby producing a low information protocol (≤ T/n bits), and then use known
compression schemes to compress this protocol, eventually obtaining a protocol with communication
(< C), and a too-good-to-be-true success probability (> 2/3), contradicting the assumption that
suc(µ, f, C) ≤ 2

3 . The main problem with employing the [BBCR10] approach and embedding a
single-copy (x, y) into π using the sampling argument in Lemma 3.1, is that it would produce a
single-copy protocol θ(x, y) whose success probability is no better than that of π (exp(−n/100))
while we need to produce a single-copy protocol with success > 2/3 in order to achieve the above
contradiction.



Circumventing this major obstacle is inspired by the idea of repeated conditioning which first
appeared the parallel repetition theorem [Raz98]: Let W be the event that π correctly computes
fn, and Wi denote the event that the protocol correctly computes the i’th copy f(xi, yi). Let
π(W) denote the probability of W, and π(Wi|W) denote the conditional probability of the event
Wi given W (clearly, π(Wi|W) = 1). The idea is to show that if π(W) ≥ exp(−n/100) and
‖π‖ � T (for the appropriate choice of T which is determined by the best compression scheme),
then (1/n)

∑n
i=1 π(Wi|W) < 1, which is a contradiction. In other words, if one could simulate

the message distribution of the conditional distribution (π|W)i (rather than the distribution of
π(xi, yi)) using a low information protocol, then (via compression) one would obtain a protocol
θ(xi, yi) with constant success probability, as desired.

The guiding intuition for why this approach makes sense, is that conditioning a random variable
on a “large” event W does not change its original distribution too much:

D (X1Y1, X2Y2, . . . , XnYn |W‖X1Y1, X2Y2, . . . , XnYn) = D (XY|W‖XY)

=E
[
log

π(XY|W)

π(XY)

]
≤ E

[
log

π(XY)

π(XY)π(W)

]
=

1

log(π(W))
≤ n

100

since π(W) ≥ exp(−n/100), which means (by the chain rule and independence of the n copies)
that the distribution of an average input pair (Xi, Yi) conditioned on W is (1/100)-close to its
original distribution µ, and thus implies that at least the inputs to the “protocol” (π|W)i can be
approximately sampled correctly (using correlated sampling [Hol07]). The heart of the problem,
however, is that (π|W)i is no longer a communication protocol. To see why, consider the simple
protocol π in which Alice simply “guesses” Bob’s bit x, and W being the event that her guess
is correct. Then simulating (π|W) requires Alice to know Bob’s input y, which Alice doesn’t
have! This example shows that it is impossible to simulate the message distribution of (π|W)i
exactly. The main contribution of Theorem 4.6 (and Theorem 4.5 in the bounded-round regime) is
showing that it is nevertheless possible to approximate this conditional distribution using an actual
communication protocol, which is statistically close to a low-information protocol:

Lemma 4.7 (Claims 26 and 27 from [BRWY12], informally stated). There is a protocol θ taking
inputs x, y ∼ µ so that the following holds:

• θ publicly chooses a uniform i ∈ [n] independent of x, y, and Ri which is part of the input to
π (intuitively, Ri determines the “missing” inputs x−i, y−i of π as in Lemma 3.1).

• Ei [|(θ|Ri)− (π|RiW)i|] ≤ 1/10 (that is, θ is close to the distribution (π|W)i for average i).

• Ei
[
Iπ|W(Xi; Π|YiRi) + Iπ|W(Yi; Π|XiRi)

]
≤ 4‖π‖/n (that is, the information cost of the dis-

tribution (π|W)i is low).

The main challenge in proving this theorem is in the choice of the public random variable
Ri, which enables relating the information of the protocol θ to that of (π|W) even under the
conditioning on W. This technically-involved argument is a “conditional” analogue of Lemma 3.1
(for details see [BRWY12]). Note that the last proposition of Lemma 4.7 only guarantees that the
information cost of the transcript under the distribution (π|W) is low (on an average coordinate),
while we need this property to hold for the simulating protocol θ, in order to apply the compression
schemes of [BBCR10] which would finish the proof. Unfortunately, a protocol π that is statistically
close to a low-information distribution needs not be a low-information protocol itself: Consider, for



example, a protocol π where with probability δ Alice sends her input X ∈ {0, 1}n to Bob, and with
probability 1− δ she sends a random string. Then π is δ-close to a 0-information protocol, but has
information complexity of ≈ δ · n, which could be arbitrarily high. [BRWY12] circumvented this
problem by showing that the necessary compression schemes of [BBCR10] are “smooth” in the sense
that they also work for protocols that are merely close to having low-information. In a followup
work, Braverman and Weinstein exhibited a general technique for converting protocol which are
statistically-close to having low information into actual low-information protocols (see Theorem
3 in [BW14]), which combining Lemma 4.7 also led to a strong direct product theorem in terms
of information complexity, sharpening the “Information=Amortized Communication” Theorem of
Braverman and Rao:

Theorem 4.8 ([BW14], informally stated). Suppose that ICµ(f, 2/3) = I, i.e., solving a single
copy of f with probability 2/3 under µ requires I bits of information. If T log(T ) = o(n · I), then
suc(µn, fn, T ) ≤ exp (−Ω(n)) .

In fact, this theorem shows that the direct sum and product conjectures in randomized commu-
nication complexity are equivalent (up to polylogarithmic factors), and they are both equivalent to
one-shot interactive compression, in the quantitative sense of Proposition 4.2 (we refer the reader
to [BW14] for the formal details).

5 State of the Art Interactive Compression Schemes

In this section we present the two state-of-the-art compression schemes for unbounded-round
communication protocols, the first due to Barak et al., and the second due to Braverman
[BBCR10, Bra12]. As mentioned in the introduction, a natural idea for compressing a multi-round
protocol is to try and compress each round separately, using ideas from the transmission (one-way)
setup [Huf52, HJMR07, BR11]. Such compression suffers from one fatal flaw: It would inevitably
require sending at least 1 bit of communication at each round, while the information revealed in
each round may be � 1 (an instructive example is the protocol in which Alice sends Bob, at each
round of the protocol, an independent coin flip which is ε-biased towards her input X ∼ Ber(1/2),
for ε� 1). Thus any attempt to implement the compression on a round- by-round basis is hopeful
only when the number of rounds is bounded but is doomed to fail in general (indeed, this is the
essence of the bounded-round compression schemes of [BR11, BRWY13]).

The main feature of the compression results we present below is that they do not depend
on the number of rounds of the underlying protocol, but only on the overall communication and
information cost.

5.1 Barak et al.’s compression scheme

Theorem 5.1 ([BBCR10]). Let π be a protocol executed over inputs x, y ∼ µ, and suppose ICµ(π) =
I and ‖π‖ = C. Then for every ε > 0, there is a protocol τ which ε-simulates π, where

‖τ‖ = O
(√

C · I · (log(C/ε)/ε)
)
. (10)

Proof. The conceptual idea underlying this compression result is using public randomness to avoid
communication by trying to guess what the other player is about to say. Informally speaking, the



players will use shared randomness to sample (correlated) full paths of the protocol tree, according
to their private knowledge: Alice has the “correct” distribution on nodes that she owns in the tree
(since conditioned on reaching these nodes, the next messages only depend on her input x), and
will use her “best guess” (i.e., her prior distribution on Bob’s next message, under µ, her input x
and the history of messages) to sample messages at nodes owned by Bob. Bob will do the same on
nodes owned by Alice. This “guessing” is done in a correlated way using public randomness (and
no communication whatsoever (!)), in a way that guarantees that if the player’s guesses are close
to the correct distribution, then the probability that they sample the same bit is large.

The above step gives rise to two paths, PA and PB respectively. In the the next step, the players
will use (mild) communication to find all inconsistencies among PA and PB and correct them one
by one (according to the “correct” speaker). By the end of this process, the players obtain a
consistent path which has the correct distribution Π(x, y). Therefore, the overall communication of
the simulating protocol would be comparable to the number of mistakes between PA and PB (times
the communication cost of fixing each mistake). Intuitively, the fact that π has low information will
imply that the number of inconsistencies is small, as inconsistent samples on a given node typically
occur when the “receiver’s” prior distribution is far from the “speaker’s” correct distributions,
which will in turn imply that this bit conveyed a lot of information to the receiver (Alas, we will see
that if the information revealed by the i’th bit of π is ε, then the probability of making a mistake
on the i’th node is ≈

√
ε, and this is the source of sub-optimality of the above result. We discuss

this bottleneck at the end of the proof).
We now sketch the proof more formally (yet still leaving out some minor technicalities). Let

Π = M1, . . . ,MC denote the transcript of π. Each node w at depth i of the protocol tree of π is
associated with two numbers, px,w and py,w, describing the probability (according to each player’s
respective “belief”) that conditioned on reaching w, the next bit sent in π is “1” (the right child of
w). That is,

px,w := Pr[Mi = 1 | xrM<i = w] , and py,w := Pr[Mi = 1 | yr,M<i = w]. (11)

Note that if w is owned by the Alice, then px,w is exactly the correct probability with which the
i-th bit is transmitted in π, conditioned that π has reached w.

In the simulating protocol τ , the players first sample, without communication and using public
randomness, a uniformly random number ρw in the interval [0, 1], for every node w of the protocol
tree8. For simplicity of analysis, in the rest of the proof we assume the public randomness is fixed
to the vale R = r. Alice and Bob now privately construct the following respective trees TA, TB:
For each node w, Alice includes the right child of w in TA iff pw,x < ρw, and the left child (“0”)
otherwise. Bob does the same by including the right child of w in TB iff pw,y < ρw.

The trees TA and TB define a unique path ` = m1, . . . ,mC of π, by combining outgoing edges
from TA in nodes owned by Alice, and edges from TB in nodes owned by Bob. Note that `
has precisely the desired distribution of Π(X,Y ). To identify `, the players will now find the
inconsistencies among TA and TB and correct them one by one.

We say that a mistake occurs in level i if the outgoing edges of mi−1 in TA and TB are inconsis-
tent. Finding the (first) mistake of τ amounts to finding the first differing index among two C-bit
strings (corresponding to the paths PA and PB induced by TA and TB). Luckily, there is a random-
ized protocol which accomplishes this task with high probability (1 − γ) using only O(log(C/γ))

8Note that there are exponentially many nodes, but the communication model does not charge for local compu-
tations or the amount of shared randomness, so these resources are indeed “for free”.



bits of communication, using a clever “noisy” binary search due to Feige et al. [FPRU94]. Since
errors accumulate over C rounds and we are aiming for an overall simulation error of ε, we will
set γ ≈ ε/C, thus the cost of fixing each inconsistency remains O(log(C/ε)) bits. The expected
communication complexity of τ (over X,Y,R) is therefore

E[‖τ‖] = E[# mistakes of τ ] ·O(log(C/ε)). (12)

Though we are not quite done, one should appreciate the simplicity of analysis of the cost of
this protocol. The next lemma completes the proof, asserting that the expected number of mistakes
τ makes is not too large:

Lemma 5.2. E[# mistakes of τ ] ≤
√
C · I.

Indeed, substituting the assertion of Lemma 5.2 into (12), we conclude that the expected com-
munication complexity of τ is O(

√
C · I · poly log(C/ε)), and a standard Markov bound yields the

bound in (10) and therefore finishes the proof of Theorem 5.1.

Proof of Lemma 5.2. Let Ei be the indicator random variable denoting whether a mistake has
occurred in step i of the protocol tree of π. Hence the expected number of mistakes is

∑C
i=1 Ei.

We shall bound each term E[Ei] separately. By construction, a mistake at node w in level i occurs
exactly when either px,w < ρw < py,w or py,w < ρw < px,w. Since ρw was uniform in [0, 1], the
probability of a mistake is

|px,w − py,w| = |(Mi|x, r,M<i = w)− (Mi|y, r,M<i = w)|,

where the last transition is by definition of px,w and py,w. Note that, by definition of a protocol,
if w := m<i is owned by Alice, then Mi|xyrm<i] = Mi|xyrm<i and if it is owned by Bob, then
Mi|y, r,m<i = Mi|x, y, r,m<i. We therefore have

E[Ei] = Exym<i∼π[|(Mi|xrm<i)− (Mi|yrm<i)|]
≤ Exym<i∼π [max{|(Mi|xyrm<i)− (Mi|xrm<i)| , |(Mi|xyrm<i)− (Mi|yrm<i)|}]

≤ Exym<i∼π
[√

D (Mi|xyrm<i‖Mi|xrm<i) + D (Mi|xyrm<i‖Mi|yrm<i)
]

(13)

≤
√

Exym<i∼π [D (Mi|xyrm<i‖Mi|xrm<i) + D (Mi|xyrm<i‖Mi|yrm<i)] (14)

=
√
I(Mi;X|M<iRY ) + I(Mi;Y |M<iRX) (15)

where transition (13) follows from Pinsker’s inequality (Lemma 2.6), transition (14) follows from
the convexity of

√
·, and the last transition is by Proposition 2.3.

Finally, by linearity of expectation and the Cauchy-Schwartz inequality, we conclude that

E

[
C∑
i=1

Ei

]
≤

C∑
i=1

√
I(Mi;X|M<iRY ) + I(Mi;Y |M<iRX)

≤

√√√√( C∑
i=1

1

)
·

(
C∑
i=1

I(Mi;X|M<iRY ) + I(Mi;Y |M<iRX)

)
=
√
C · I

where the last transition is by the chain rule for mutual information.



A natural question arising from the above compression scheme is whether the analysis in Lemma
5.2 is tight. Unfortunately, the answer is yes, as demonstrated by the following example: Suppose
Alice has a uniform C-bit string X1 . . . XC where Xi ∼ Ber(1/2), and consider the C-bit protocol
in which Alice sends, at each round i, an independent sample Mi such that

Mi ∼
{
Ber(1/2 + ε) if Xi = 1
Ber(1/2− ε) if Xi = 0

for ε = 1/
√
C. Since Bob has a perfectly uniform prior on X, a direct calculation shows that in

this case I(Mi;X|M<i) = I(Mi;X) = D (Ber(1/2 + ε)‖Ber(1/2)) = O(ε2), so the total information
cost of the protocol is O(C ·ε2) = O(1). On the other hand, the probability of making a “mistake” at
step i of the simulation above is the total variation distance |Ber(1/2+ε)−Ber(1/2)| ≈ ε. Therefore,
the expected number of mistakes conditioned on, say, X1 = . . . = XC = 1, is C · ε =

√
C, by choice

of ε = 1/
√
C. I.e., this example shows that both Pinsker’s and the Cauchy-Schwartz inequalities

are tight in the extreme case where each of the C bit of π reveals ≈ I/C bits of information. In
the next section we present a different compression scheme which can do better in this regime, at
least when I is much smaller than C.

5.2 Braverman’s compression scheme

Theorem 5.3 ([Bra12]). Let π be a protocol executed over inputs x, y ∼ µ, and suppose ICµ(π) = I.
Then for every ε > 0, there is a protocol τ which ε-simulates π, where ‖τ‖ = 2O(I/ε).

Proof. To understand this result, it will be useful to view the interactive compression problem as
the following correlated sampling task: Denote by πxy the distribution of the transcript Π(x, y),
and by πx (resp. πy) the conditional marginal distribution Π|x (Π|y) of the transcript from Alice’s
(Bob’s) point of view (for notational ease, the conditioning on the public randomness r of the
protocol is included here implicitly. Note that in general π is still randomized even conditioned on
x, y, since it may have private randomness). By the product structure of communication protocols,
the probability of reaching a leaf (path) ` ∈ {0, 1}C of π is

πxy(`) = px(`) · py(`) (16)

where px(`) =
∏
w⊆`,w odd px,w is the product of the transition probabilities defined in (11) on the

nodes owned by Alice along the path from the root to `, and πy(`) is analogously defined on the even
nodes. Thus, the desirable distribution from which the players wish to jointly sample, decomposes
to a natural product distribution 9. Similarly,

πx(`) = px(`) · qx(`) and πx(`) = qy(`) · py(`) (17)

where qx(`) =
∏
w⊆`,w even px,w is Alice’s prior “belief” on the even nodes owned by Bob along the

path to ` (see (11)), and qy(`) =
∏
w⊆`,w odd px,w is Bob’s prior belief on the odd nodes owned by

Alice. Thus, the player’s goal is to sample ` ∼ πx,y, where Alice has the correct distribution on

9As we shall see, the rejection sampling approach of the compression protocol below crucially exploits this product
structure of the target distribution, and it is curious to note this simplifying feature of interactive compression as
opposed to general correlated sampling tasks.



odd nodes (and only an estimate on the odd ones), and Bob has the correct distribution on even
nodes (and an estimate on the even ones).

We claim that the information cost of π being low (I) implies that Alice’s prior “belief” qx
on the even nodes owned by Bob, is “close” to the true distribution py on these nodes (and vice
versa for qy and px on the odd nodes). To see this, recall the equivalent interpretation of mutual
information in terms of KL-divergence:

I = I(Π;X|Y ) + I(Π;Y |X) = E(x,y)∼µ [D (πxy‖πy) + D (πxy‖πx)]

= Ex,y,`∼πx,y
[
log

πxy(`)

πy(`)
+ log

πxy(`)

πx(`)

]
= Ex,y,`∼πx,y

[
log

px(`)

qy(`)
+ log

py(`)

qx(`)

]
, (18)

where the last transition follows from substituting the terms according to (16) and (17). The above
equation asserts that the typical log-ratio px/qy is at most I, and the same holds for py/qx. The
following simple corollary essentially follows from Markov’s inequality10, so we state it without a
proof.

Corollary 5.4. Define the set of transcripts Bε := {` : px(`) > 2(I+1)/ε · qy(`) or py(`) >
2(I+1)/ε · qx(`) }. Then πx,y(Bε) < ε.

The intuitive operational interpretation of the above claim is that, for almost all transcripts `,
the following holds: If a uniformly random point ∈ [0, 1] falls below py(`), then the probability it falls
below qx as well is & 2−I . This intuition gives rise to the following rejection sampling approach: The
players interpret the public random tape as a sequence of points (`i, αi, βi), uniformly distributed
in U × [0, 1]× [0, 1], where U = {0, 1}C is the set of all possible transcripts of π. Their goal will be
to discover the first index i∗ such that αi∗ ≤ px(`i∗) and βi∗ ≤ py(`i∗). Note that, by design, the
probability that a random point `i satisfies these conditions is precisely px(`i) · py(`i) = πxy(`i),
and therefore `i∗ has the correct distribution.

The players consider only the first t := 2|U| ln(1/ε) points of the public tape, as the probability
that a single node satisfies the desirable condition is exactly 1/|U|, and thus by independence of
the points, the probability that i∗ > t is at most (1− 1/|U|)t = ε2 < ε/16).

To do so, each player defines his own set of “potential candidates” for the index i∗. Alice defines
the set

A := {i < T : αi ≤ px(`i) and βi ≤ 28I/ε · qx(`i)}.

Thus A is the set of transcript which have the correct distribution on the odd nodes (which Alice
can verify by herself), and “approximately” satisfies the desirable condition on the even nodes, on
which Alice only has a prior estimate (qx). Similarly, Bob defines

B := {i < t : βi ≤ py(`i) and αi ≤ 28I/ε · qy(`i)}.

By Corollary 5.4, Pr[`∗ /∈ A ∩ B] ≤ ε/8, so for the rest of the proof we assume that `∗ ∈ A ∩ B. In
fact, `∗ is the first element of A∩B. Note that for each point (`i, αi, βi), Pr[`i ∈ A∩B] ≤ 28I/ε/|U|.

10One needs to be slightly careful, since the log ratios can in fact be negative, while Markov’s inequality applies
only to non-negative random variables. However, it is well known that the contribution of the negative summands is
bounded, see [Bra12] for a complete proof.



Since we consider only the first t = 2|U| ln(1/ε) points, this implies E[|A|] ≤ 28I/ε · 2 ln(1/ε), and
Chernoff bound further asserts that

Pr[|A| > 210I/ε]� ε/16.

Thus, if we let E1 denote the event that `∗ /∈ A∩B, and E2 := {i∗ > t or |A| > 210I/ε or|B| > 210I/ε },
then by a union bound Pr[E1 ∪E2] ≤ 2ε/8 + 3ε/16 < ε/2. Thus, letting τx,y denote the distribution
of `i∗ |¬(E1 ∪ E2), the above implies

|τx,y − πx,y| ≤ ε/2,

as desired. We will now show a (2-round) protocol τ in which Alice and Bob output a leaf ` ∼ τx,y,
thereby completing the proof. To this end, note we have reduced the simulation task to the problem
of finding and outputting the first element in A∩B, where |A| ≤ 210I/ε and |B| ≤ 210I/ε. The idea
is simple: Alice wishes to send her entire set A to Bob, who can then check for intersection with his
set B. Alas, explicitly sending each element ` ∈ A may be too expensive (requires log |U| bits), so
instead Alice will send Bob sufficiently many (O(I/ε)) random hashes of the elements in A, using
a publicly chosen sequence of hash functions. Since for a ∈ A and b ∈ B such that a 6= b, the
probability (over the choice of the hash functions) that hj(a) = hj(b) for all j ∈ O(I/ε) is bounded
by 2−O(I/ε) < ε

4|A|·|B| , a union bound ensures that the probability there is an a ∈ A, b ∈ B such

that a 6= b but the hashes happen to match, is bounded by ε/4, which completes the proof. For
completeness, the protocol τ is described in Figure 1.

The simulation protocol τ

1. Alice computes the set A. If |A| > 210I/ε the protocol fails.

2. Bob computes the set B. If |B| > 210I/ε the protocol fails.

3. For each a ∈ A, Alice computes d = d20I/ε + log 1/ε + 2e random hash values
h1(a), . . . , hd(a), where the hash functions are evaluated using public randomness.

4. Alice sends the values {hj(ai)}ai∈A, 1≤j≤d to Bob.

5. Bob finds the first index i such that there is a b ∈ B for which hj(b) = hj(ai) for j = 1..d
(if such an i exists). Bob outputs `b and sends the index i to Alice.

6. Alice outputs `i.

Figure 1: A simulating protocol for sampling a transcript of π(x, y) using 2O(I/ε) communication.

6 Concluding Remarks and Open Problems

We have seen that direct sum and product theorems in communication complexity are essentially
equivalent to determining the best possible interactive compression scheme. Despite the exciting
progress described in this survey, this question is still far from settled, and the natural open problem



is closing the gap in (9). The current frontier is trying to improve the dependence on C over the
scheme of [BBCR10], even at a possible expense of increased dependence on the information cost:

Open Problem 6.1 (Improving compression for internal information). Given a protocol π over
inputs x, y ∼ µ, with ‖π‖ = C, ICµ(π) = I, is there a communication protocol τ which (0.01)-
simulates π such that ‖τ‖ ≤ poly(I) · C1/2−ε, for some absolute positive constant 0 < ε < 1/2?

In fact, by a recent result of Braverman and Weinstein [BW14], even a much weaker compression
scheme in terms of I, namely g(I, C) ≤ 2o(I) · C1/2−ε would already improve over the the state of
the art compression scheme (Õ(

√
C · I)) and would imply new direct sum and product theorems.

Another interesting direction which was unexplored in this survey, is closing the (much smaller)
gap in (4.4), i.e, determining whether a logarithmic dependence on C is essential for interactive
compression with respect to the external information cost measure.

Open Problem 6.2 (Closing the gap for external compression). Given a protocol π over inputs
x, y ∼ µ, with ‖π‖ = C, ICext

µ (π) = I, is there a communication protocol τ which δ-simulates π such
that ‖τ‖ ≤ poly(I) · o(log(C))?

It is believed that the (logC) factor is in fact necessary (see e.g., that candidate separation
sampling problem suggested in [Bra13]), but this conjecture remains to be proved.

Recall that in Section 4.1 we saw direct product theorems for randomized communication com-
plexity, asserting a lower bound on the success rate of computing n independent copies of f in terms
of the success of a single copy. When n is very large, such theorems can be superseded by trivial
arguments, since fn must require at least n bits of communication just to describe the output.
One could hope to achieve hardness amplification without blowing up the output size – a classical
example is Yao’s XOR lemma in circuit complexity. In light of the state-of-the-art direct product
result, we state the following conjecture:

Open Problem 6.3 (A XOR Lemma for communication complexity). Is it true that for any
2-party function f and any distribution µ on X × Y,

Dµn(f⊕n, 1/2 + e−Ω(n)) = Ω̃(
√
n) · Dµ(f, 2/3)?

(here f⊕n((x1, y1), . . . , (xn, yn)) := f(x1, y1)⊕ ....⊕ f(xn, yn)).

We remark that the “direct-sum” analogue of this conjecture is true: [BBCR10] proved that
their direct sum result for fn can be easily extended to the computation of f⊕n, showing (roughly)
that Dµn(f⊕n, 3/4) = Ω̃(

√
n) · Dµ(f, 2/3). However, this conversion technique does not apply to

the direct product setting.
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[FKNN95] Tomàs Feder, Eyal Kushilevitz, Moni Naor, and Noam Nisan. Amortized communi-
cation complexity. SIAM Journal on Computing, 24(4):736–750, 1995. Prelim version
by Feder, Kushilevitz, Naor FOCS 1991.

[FPRU94] Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Computing with noisy
information. SIAM Journal on Computing, 23(5):1001–1018, 1994.

[GKR14] Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of information and
communication. Electronic Colloquium on Computational Complexity (ECCC), 21:49,
2014.

[GMWW14] Dmitry Gavinsky, Or Meir, Omri Weinstein, and Avi Wigderson. Toward better
formula lower bounds: An information complexity approach to the krw composition
conjecture. In Proceedings of the 46th Annual ACM Symposium on Theory of Com-
puting, STOC ’14, pages 213–222, New York, NY, USA, 2014. ACM.

[GO13] Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass
graph processing. In IEEE Conference on Computational Complexity, pages 287–298,
2013.



[HJMR07] Prahladh Harsha, Rahul Jain, David A. McAllester, and Jaikumar Radhakrishnan.
The communication complexity of correlation. In IEEE Conference on Computational
Complexity, pages 10–23. IEEE Computer Society, 2007.

[Hol07] Thomas Holenstein. Parallel repetition: Simplifications and the no-signaling case. In
Proceedings of the 39th Annual ACM Symposium on Theory of Computing, 2007.

[HRVZ13] Zengfeng Huang, Bozidar Radunovic, Milan Vojnovic, and Qin Zhang. Communica-
tion complexity of approximate maximum matching in distributed graph data. Tech-
nical Report MSR-TR-2013-35, April 2013.

[Huf52] D.A. Huffman. A method for the construction of minimum-redundancy codes. Pro-
ceedings of the IRE, 40(9):1098–1101, 1952.

[Jai11] Rahul Jain. New strong direct product results in communication complexity. 2011.

[JKR09] T. S. Jayram, Swastik Kopparty, and Prasad Raghavendra. On the communication
complexity of read-once ac0 formulae. In IEEE Conference on Computational Com-
plexity, pages 329–340, 2009.

[JPY12] Rahul Jain, Attila Pereszlenyi, and Penghui Yao. A direct product theorem for the
two-party bounded-round public-coin communication complexity. In Foundations of
Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages 167–176.
IEEE, 2012.

[JY12] Rahul Jain and Penghui Yao. A strong direct product theorem in terms of the smooth
rectangle bound. CoRR, abs/1209.0263, 2012.

[Kla10] Hartmut Klauck. A strong direct product theorem for disjointness. In STOC, pages
77–86, 2010.

[KLL+12] Iordanis Kerenidis, Sophie Laplante, Virginie Lerays, Jérémie Roland, and David
Xiao. Lower bounds on information complexity via zero-communication protocols
and applications. CoRR, abs/1204.1505, 2012.

[KRW95] Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth lower
bounds via the direct sum in communication complexity. Computational Complexity,
5(3/4):191–204, 1995. Prelim version CCC 1991.

[KW88] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require
super-logarithmic depth. In STOC, pages 539–550, 1988.

[LS10] Nikos Leonardos and Michael Saks. Lower bounds on the randomized communication
complexity of read-once functions. Computational Complexity, 19(2):153–181, 2010.

[LSS08] Troy Lee, Adi Shraibman, and Robert Spalek. A direct product theorem for discrep-
ancy. In CCC, pages 71–80, 2008.

[MWY13] Marco Molinaro, David Woodruff, and Grigory Yaroslavtsev. Beating the direct sum
theorem in communication complexity with implications for sketching. In SODA, page
to appear, 2013.



[PRW97] Itzhak Parnafes, Ran Raz, and Avi Wigderson. Direct product results and the GCD
problem, in old and new communication models. In Proceedings of the 29th Annual
ACM Symposium on the Theory of Computing (STOC ’97), pages 363–372, New York,
May 1997. Association for Computing Machinery.

[PW10] Mihai Patrascu and Ryan Williams. On the possibility of faster sat algorithms. In
Moses Charikar, editor, SODA, pages 1065–1075. SIAM, 2010.

[Rao08] Anup Rao. Parallel repetition in projection games and a concentration bound. In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, 2008.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803,
June 1998. Prelim version in STOC ’95.

[Raz08] Alexander Razborov. A simple proof of bazzi’s theorem. Technical Report TR08-081,
ECCC: Electronic Colloquium on Computational Complexity, 2008.

[RR15] Anup Rao and Sivaramakrishnan Natarajan Ramamoorthy. How to compress asym-
metric communication. Electronic Colloquium on Computational Complexity (ECCC),
2015., 2015.

[RS15] Anup Rao and Makrand Sinha. Simplified separation of information and communica-
tion. Electronic Colloquium on Computational Complexity (ECCC), 2015., 2015.

[Sha48] Claude E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27, 1948. Monograph B-1598.

[Sha03] Ronen Shaltiel. Towards proving strong direct product theorems. Computational
Complexity, 12(1-2):1–22, 2003. Prelim version CCC 2001.

[She12] Alexander A. Sherstov. Strong direct product theorems for quantum communication
and query complexity. SIAM J. Comput., 41(5):1122–1165, 2012.
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