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Abstract

Suppose Alice and Bob each start with private randomness and no other input, and they
wish to engage in a protocol in which Alice ends up with a set x ⊆ [n] and Bob ends up with
a set y ⊆ [n], such that (x, y) is uniformly distributed over all pairs of disjoint sets. We prove
that for some constant β < 1, this requires Ω(n) communication even to get within statistical
distance 1− βn of the target distribution. Previously, Ambainis, Schulman, Ta-Shma, Vazirani,
and Wigderson (FOCS 1998) proved that Ω(

√
n) communication is required to get within some

constant statistical distance ε > 0 of the uniform distribution over all pairs of disjoint sets of
size

√
n.

1 Introduction

In most traditional computational problems, the goal is to take an input and produce the “correct”
output, or produce one of a set of acceptable outputs. In a sampling problem, on the other hand,
the goal is to generate a random sample from a specified probability distribution D, or at least from
a distribution that is close to D. There has been a surge of interest in studying sampling problems
from a complexity theory perspective [ASTS+03, GGN10, Vio12a, Aar14, LV12, DW12, Vio14,
BIL12, Vio12b, JSWZ13, Wat14, BCS14, Wat16, Vio16, Wat18, Vio20]. Unlike more traditional
computational problems, sampling problems do not necessarily need to have any real input, besides
the uniformly random bits fed into a sampling algorithm.

One commonly studied type of target distribution is “input–output pairs” of a function f , i.e.,
(D, f(D)) where D is perhaps the uniform distribution over inputs to f . This means an outcome
should be (x, z) where x is distributed according to D, and z = f(x). Using an algorithm for
computing f , one can sample (D, f(D)) by first sampling from D, then evaluating f on that input.
However, for some functions f , generating an input jointly with the corresponding output may
be computationally easier than evaluating f on an adversarially-chosen input. Thus in general,
sampling lower bounds tend to be more challenging to prove than lower bounds for functions.

Many of the above-cited works focus on concrete computational models such as low-depth cir-
cuits. We consider the model of 2-party communication complexity, for which comparatively less is
known about sampling. Which problem should we study? Well, the single most important function
in communication complexity is Set-Disjointness, in which Alice gets a set x ⊆ [n], Bob gets a set
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y ⊆ [n], and the goal is to determine whether x∩y = ∅. Identifying the sets with their characteristic
bit strings, this can be viewed as Disj : {0, 1}n×{0, 1}n → {0, 1} where Disj(x, y) = 1 iff x∧y = 0n.
The applications of communication bounds for Set-Disjointness are far too numerous to list, but they
span areas such as streaming, circuit complexity, proof complexity, data structures, property testing,
combinatorial optimization, fine-grained complexity, cryptography, and game theory. Because of its
central role, Set-Disjointness has become the de facto testbed for proving new types of communica-
tion bounds. This function has been studied in the contexts of randomized [BFS86, KS92, Raz92,
BYJKS04, BGK15] and quantum [BCW98, HdW02, Raz03, AA05, She11, SZ09] protocols; multi-
party number-in-hand [AMS99, BYJKS04, CKS03, Gro09, Jay09, BEO+13, BO15] and number-on-
forehead [Gro94, Tes03, BPSW06, She11, CA08, LS09, BH09, She16, She14, RY15, PS17] models;
Merlin–Arthur and related models [Kla03, AW09, GS10, GW16, GPW16, ARW17, Rub18, Che18];
with a bounded number of rounds of interaction [KNTZ07, JRS03, WW15, BGK+18, BO17];
with bounds on the sizes of the sets [HW07, KW09, Pat11, DKS12, BGMdW13, ST13, HPZZ20];
very precise relationships between communication and error probability [BGPW13, BM13, GW16,
FHLY17, DFHL18]; when the goal is to find the intersection [BCK+14, Gav16, Wat18, ACK19];
in space-bounded, online, and streaming models [KP14, BKM18, AWY18]; and direct product the-
orems [KSdW07, BPSW06, BRdW08, JKN08, Kla10, She12, She16, She14]. We contribute one
more result to this thorough assault on Set-Disjointness.

Here is the definition of our 2-party sampling model: Let D be a probability distribution over
{0, 1}n × {0, 1}n; we also think of D as a matrix with rows and columns both indexed by {0, 1}n
whereDx,y is the probability of outcome (x, y). We define Samp(D) as the minimum communication
cost of any protocol where Alice and Bob each start with private randomness and no other input,
and at the end Alice outputs some x ∈ {0, 1}n and Bob outputs some y ∈ {0, 1}n such that (x, y)
is distributed according to D. Note that Samp(D) = 0 iff D is a product distribution (x and y
are independent), and Samp(D) ≤ n for all D (since Alice can privately sample (x, y) and send
y to Bob). Allowing public randomness would not make sense since Alice and Bob could read a
properly-distributed (x, y) off of the randomness without communicating. We define Sampε(D) as
the minimum of Samp(D′) over all distributions D′ with ∆(D,D′) ≤ ε, where ∆ denotes statistical
(total variation) distance, defined as

∆(D,D′) := max
event E

∣∣PD[E]− PD′ [E]
∣∣ = 1

2

∑
outcome o

∣∣PD[o]− PD′ [o]
∣∣.

1.1 A story

Our story begins with [ASTS+03], which proved that Sampε
(
(D,Disj(D))

)
≥ Ω(

√
n) for some

constant ε > 0, where D is uniform over the set of all pairs of sets of size
√
n (note that this D

is a product distribution and is approximately balanced between 0-inputs and 1-inputs of Disj);
here it does not matter which party is responsible for outputting the bit Disj(D). The main tool
in the proof was a lemma that was originally employed in [BFS86] to prove an Ω(

√
n) bound on

the randomized communication complexity of computing Disj. The latter bound was improved to
Ω(n) via several different proofs [KS92, Raz92, BYJKS04], which leads to a natural question: Can
we improve the sampling bound of [ASTS+03] to Ω(n) by using the techniques of [KS92, Raz92,
BYJKS04] instead of [BFS86]?

For starters, the answer is “no” for the particular D considered in [ASTS+03]—there is a trivial
exact protocol with O(

√
n log n) communication since it only takes that many bits to specify a set

of size
√
n. What about other interesting distributions D? The following illuminates the situation.
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Observation 1. For any D and constants ε > δ > 0, if Sampε
(
(D,Disj(D))

)
≥ ω(

√
n) then

Sampδ(D) ≥ Ω
(
Sampε

(
(D,Disj(D))

))
.

Proof. It suffices to show Sampε
(
(D,Disj(D))

)
≤ Sampδ(D) + O(

√
n). First, note that for any

sampling protocol, if we condition on a particular transcript then the output distribution becomes
product (Alice and Bob are independent after they stop communicating). Second, [BGK15] proved
that for every product distribution and every constant γ > 0, there exists a deterministic protocol
that uses O(

√
n) bits of communication and computes Disj with error probability ≤ γ on a random

input from the distribution. Now to ε-sample (D,Disj(D)), Alice and Bob can δ-sampleD to obtain
(x, y), and then conditioned on that sampler’s transcript, they can run the average-case protocol
from [BGK15] for the corresponding product distribution with error ε − δ. A simple calculation
shows this indeed gives statistical distance ε.

The upshot is that to get an improved bound, the hardness of sampling (D,Disj(D)) would
come entirely from the hardness of just sampling D. Thus such a result would not really be “about”
the Set-Disjointness function, it would be about the distribution on inputs. Instead of abandoning
this line of inquiry, we realize that if D itself is somehow defined in terms of Disj, then a bound for
sampling D would still be saying something about the complexity of Set-Disjointness. In fact, the
proof in [ASTS+03] actually shows something stronger than the previously-stated result: If D is
instead defined as the uniform distribution over pairs of disjoint sets of size

√
n (which are 1-inputs

of Disj), then Sampε(D) ≥ Ω(
√
n). After this pivot, we are now facing a direction in which we can

hope for an improvement. We prove that by removing the restriction on the sizes of the sets, the
sampling problem becomes maximally hard. Our result holds for error ε < 1 that is exponentially
close to 1, but the result is already new and interesting for constant ε > 0.

Theorem 1. Let U be the uniform distribution over the set of all (x, y) ∈ {0, 1}n × {0, 1}n with
x ∧ y = 0n. There exists a constant β < 1 such that Samp1−βn(U) = Ω(n).

The proof from [ASTS+03] was a relatively short application of the technique from [BFS86],
but for Theorem 1, harnessing known techniques for proving linear communication lower bounds
turns out to be more involved.

For calibration, the uniform distribution over all (x, y) achieves statistical distance 1 − 0.75n

from U since there are 4n inputs and 3n disjoint inputs (for a disjoint input, each coordinate i ∈ [n]
has 3 possibilities xiyi ∈ {00, 01, 10}). We can do a little better: Suppose for each coordinate
independently, Alice picks 0 with probability

√
1/3 and picks 1 with probability 1 −

√
1/3, and

Bob does the same. This again involves no communication, and it achieves statistical distance
1 −

(
2
√

1/3 − 1/3
)n ≤ 1 − 0.82n from U . Theorem 1 shows that the constant 0.82 cannot be

improved arbitrarily close to 1 without a lot of communication. (In the setting of lower bounds for
circuit samplers, significant effort has gone into handling statistical distances exponentially close
to the maximum possible [DW12, BIL12, Vio20].)

1.2 Interpreting the result

As an important step in the proof of Theorem 1, we first observe that our sampling model is
equivalent to two other models. One of these we call (for lack of a better word) “synthesizing” the
distribution D: Alice and Bob get inputs x, y ∈ {0, 1}n respectively, in addition to their private
randomness, and their goal is to accept with probability exactly Dx,y. We let Synth(D) denote
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the minimum communication cost of any synthesizing protocol for D, and Synthε(D) denote the
minimum of Synth(D′) over all D′ with ∆(D,D′) ≤ ε. The other model is the nonnegative rank of
a matrix: rank+(D) is defined as the minimum k for which D (viewed as a 2n × 2n matrix) can be
written as a sum of k many nonnegative rank-1 matrices.

Observation 2. For every distribution D, the following are all within ±O(1) of each other:

Samp(D), Synth(D), log rank+(D).

Proof. Synth(D) ≤ Samp(D)+2 since a synthesizing protocol can just run a sampling protocol and
accept iff the result equals the given input (x, y). (Only this part of Observation 2 is needed in the
proof of Theorem 1.)

log rank+(D) ≤ Synth(D) since for each transcript of a synthesizing protocol, the matrix that
records the probability of getting that transcript on each particular input has rank 1 (since Al-
ice’s private randomness being consistent with the transcript, and Bob’s private randomness being
consistent with the transcript, are independent events); summing these matrices over all accepting
transcripts yields a nonnegative rank decomposition of D.

To see that Samp(D) ≤ ⌈log rank+(D)⌉, suppose D = M (1) + M (2) + · · · + M (k) is a sum

of nonnegative rank-1 matrices. For each i, by scaling we can write M
(i)
x,y = pi u

(i)
x v

(i)
y for some

distributions u(i) and v(i) over {0, 1}n, where pi is the sum of all entries of M (i). Since D is a
distribution, p := (p1, . . . , pk) is a distribution over [k]. To sample from D, Alice can privately
sample i ∼ p and send it to Bob using ⌈log k⌉ bits, then Alice can sample x ∼ u(i) and Bob can
independently sample y ∼ v(i) with no further communication.

By this characterization, Theorem 1 can be viewed as a lower bound on the approximate non-
negative rank of the Disj matrix, where the approximation is in ℓ1 (which has an average-case
flavor). In the recent literature, “approximate nonnegative rank” generally refers to approximation
in ℓ∞ (which is a worst-case requirement), and this model is equivalent to the so-called smooth
rectangle bound and WAPP communication complexity [JK10, KMSY19, GLM+16].

Observation 2 combined with a result of [LS93] shows that the deterministic communication
complexity of any total two-party boolean function f is quadratically related to the communication
complexity of exactly sampling the uniform distribution over f−1(1).

2 Proof

2.1 Overview

Our proof of Theorem 1 is by a black-box reduction to the well-known corruption lemma for Set-
Disjointness due to Razborov [Raz92]. We start with a high-level overview.

For notation: Let |z| denote the Hamming weight of a string z ∈ {0, 1}n. For ℓ ∈ N, let U ℓ be
the uniform distribution over all (x, y) ∈ {0, 1}n × {0, 1}n with |x ∧ y| = ℓ. Note that U = U0. For
a distribution D over {0, 1}n×{0, 1}n and an event E ⊆ {0, 1}n×{0, 1}n, let DE :=

∑
(x,y)∈E Dx,y.

For a randomized protocol Π, let accΠ(x, y) denote the probability that Π accepts (x, y).

Step I: Uniform corruption. The corruption lemma states that if a rectangle R ⊆ {0, 1}n ×
{0, 1}n contains a noticeable fraction of disjoint pairs, then it must contain about as large a fraction
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of uniquely intersecting pairs. More quantitatively, there exist a constant C > 0 and two distribu-
tions Dℓ, ℓ = 0, 1, defined over disjoint (ℓ = 0) and uniquely intersecting pairs (ℓ = 1) such that
for every rectangle R,

if D0
R ≥ 2−o(n) then D1

R ≥ C ·D0
R.

The original proof [Raz92] defined Dℓ as the uniform distribution over all pairs (x, y) with fixed
sizes |x| = |y| = ⌈n/4⌉ and |x ∧ y| = ℓ. For our purpose, we need the corruption lemma to hold
relative to the aforementioned distributions U ℓ, ℓ = 0, 1, which have no restrictions on set sizes. We
derive in § 2.2 a corruption lemma for U ℓ from the original lemma for Dℓ. To do this, we exhibit a
reduction that uses public randomness and no communication to transform a sample from Dℓ into
a sample from a distribution that is close to U ℓ in a suitable sense, for ℓ = 0, 1.

Step II: Truncate and scale. For simplicity, let us think about proving Theorem 1 for a small
error ε > 0. Assume for contradiction there is some distribution D, ∆(U,D) ≤ ε, such that
Synth(D) ≤ o(n) as witnessed by a private-randomness synthesizing protocol Π′ with accΠ′(x, y) =
Dx,y. Note that the total acceptance probability over disjoint inputs is close to 1:

∑
x,y : |x∧y|=0 accΠ′(x, y) ≥ 1− ε and thus E(x,y)∼U0 [accΠ′(x, y)] ≥ (1− ε)3−n.

Our eventual goal (in Step III) is to apply our corruption lemma to the transcript rectangles, but
the above threshold (1 − ε)3−n is too low for this. To raise the threshold to 2−o(n) as needed for
corruption, we would like to scale up all the acceptance probabilities accordingly. To “make room”
for the scaling, we first carry out a certain truncation step. Specifically, in § 2.3 we transform Π′

into a public-randomness protocol Π:

1. First, we truncate (using a truncation lemma [GLM+16]) the values accΠ′(x, y), which
has the effect of decreasing some of them, but any accΠ′(x, y) that is under 3−n remains
approximately the same. This results in an intermediate protocol Π′′ that still satisfies
E(x,y)∼U0 [accΠ′′(x, y))] ≥ Ω((1− ε)3−n) (using the assumption that ∆(U,D) ≤ ε).

2. Second, we scale (using the low cost of Π′′) the truncated probabilities up by a large fac-
tor 3n2−o(n). This results in a protocol Π with large typical acceptance probabilities:

E(x,y)∼U0 [accΠ(x, y)] ≥ 2−o(n). (1)

Step III: Iterate corruption. Because Π has such large acceptance probabilities (1), our cor-
ruption lemma can be applied: there is some constant C ′ > 0 such that

E(x,y)∼U1 [accΠ(x, y)] ≥ C ′ · E(x,y)∼U0 [accΠ(x, y)]. (2)

Since Π is a truncated-and-scaled version of Π′, this allows us to infer that

E(x,y)∼U1 [accΠ′(x, y)] ≥ Ω((1− ε)3−n) and thus
∑

x,y : |x∧y|=1 accΠ′(x, y) ≥ Ω((1− ε)n)

using the fact that |supp(U1)| = n3n−1 = (n/3) · |supp(U0)|. Thus for ε = 1− ω(1/n), this means
Π′ must have placed a total probability mass > 1 on uniquely intersecting inputs, which is the
sought contradiction.

To prove Theorem 1 for very large error ε = 1 − βn, in § 2.4 we iterate the above argument
for U ℓ over 0 ≤ ℓ ≤ o(n). Namely, analogously to (2), we show that the average acceptance
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probability of Π over U ℓ+1 is at least a constant times the average over U ℓ. Meanwhile, the support
sizes increase as |supp(U ℓ+1)| ≥ ω(1) · |supp(U ℓ)| for ℓ ≤ o(n). These facts together imply a large
constant factor increase in the total probability mass that Π′ places on supp(U ℓ+1) as compared to
supp(U ℓ). Starting with even a tiny probability mass over supp(U0), this iteration will eventually
lead to a contradiction.

2.2 Step I: Uniform corruption

The goal of this step is to derive Lemma 2 from Lemma 1.

Lemma 1 (Corruption [Raz92]). For every rectangle R ⊆ {0, 1}n × {0, 1}n we have D1
R ≥

1
45D

0
R − 2−0.017n where, assuming n = 4k − 1, Dℓ is the uniform distribution over all (x, y) with

|x| = |y| = k and |x ∧ y| = ℓ.

Lemma 2 (Uniform Corruption). For every rectangle R ⊆ {0, 1}n × {0, 1}n we have U1
R ≥

1
765U

0
R − 2−0.008n.

Proof. Assume for convenience that n/2 has the form 4k − 1 (otherwise use the nearest such
number instead of n/2 throughout). We prove that Lemma 1 for n/2 implies Lemma 2 for n by
the contrapositive. Thus, D0 and D1 are distributions over {0, 1}n/2 × {0, 1}n/2 while U0 and U1

are distributions over {0, 1}n × {0, 1}n. Assume there exists a rectangle R ⊆ {0, 1}n ×{0, 1}n such
that U1

R < 1
765U

0
R − 2−0.008n. We exhibit a distribution over rectangles Q ⊆ {0, 1}n/2 × {0, 1}n/2

such that E[D1
Q] <

1
45E[D

0
Q] − 2−0.017n/2; by linearity of expectation this implies that there exists

such a Q with D1
Q < 1

45D
0
Q − 2−0.017n/2.

To this end, we define a distribution F over functions f : {0, 1}n/2×{0, 1}n/2 → {0, 1}n×{0, 1}n
of the form f(x, y) = (f1(x), f2(y)) and then let Qf be the rectangle f−1(R) := {(x, y) : f(x, y) ∈
R}. Let H be the distribution over {(v,w) ∈ N×N : v+w ≤ n} obtained by sampling (x, y) ∼ U0

and outputting (|x|, |y|); i.e., Hv,w := n!
v!w! (n−v−w)! · 3−n. To sample f ∼ F :

1. Sample (v,w) from H conditioned on v ≥ k, w ≥ k, and v + w ≤ 2k + n/2.
2. Sample a uniformly random permutation π of [n].
3. Given (x, y) ∈ {0, 1}n/2 × {0, 1}n/2, define (x′, y′) ∈ {0, 1}n × {0, 1}n by letting

x′iy
′
i :=





xiyi for the first n/2 coordinates i;

10 for the next v − k coordinates i;

01 for the next w − k coordinates i;

00 for the remaining n/2− (v − k)− (w − k) ≥ 0 coordinates i.

4. Let f(x, y) := (π(x′), π(y′)) (i.e., permute the coordinates according to π).

For ℓ ∈ {0, 1} let F (Dℓ) denote the distribution obtained by sampling (x, y) ∼ Dℓ and f ∼ F and
outputting f(x, y), and note that F (Dℓ)R = EF [D

ℓ
QF

]. Now we claim that F (Dℓ) and U ℓ are close,
in the following senses:

(1) For every event E, F (D0)E ≥ U0
E − 2−0.01n.

(2) For every event E, F (D1)E ≤ U1
E · 17.
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Using R as the event E, we have

F (D1)R ≤ U1
R · 17

< 17
(

1
765U

0
R − 2−0.008n

)

≤ 17
(

1
765(F (D0)R + 2−0.01n)− 2−0.008n

)

≤ 1
45F (D0)R − 2−0.017n/2

as desired. To see (1), note that F (D0) is precisely U0 conditioned on v ≥ k, w ≥ k, and
v +w ≤ 2k + n/2, and this conditioning event has probability ≥ 1− 2−0.01n by Chernoff bounds:

P[v < k] = P[w < k] = P[Bin(n, 1/3) < n/8 + 1/4] ≤ 2−0.12n

P[v + w > 2k + n/2] = P[Bin(n, 2/3) > 3n/4 + 1/2] ≤ 2−0.02n.

Thus letting C be the complement of the conditioning event, we have F (D0)E ≥ U0
ErC ≥ U0

E−U0
C ≥

U0
E − 2−0.01n. To see (2), consider any outcome (x, y) ∈ {0, 1}n ×{0, 1}n with |x∧ y| = 1. We have

U1
x,y = 1/(n3n−1). Abbreviating a := |x| and b := |y|, assume a ≥ k, b ≥ k, and a+b ≤ 2k+n/2 since

otherwise F (D1)x,y = 0 and there would be nothing to prove. Henceforth consider the probability
space with the randomness of D1 and of F . Let I be the event that F1(D

1) ∧ F2(D
1) = x ∧ y, i.e.,

that the intersecting coordinate of F (D1) is the same as for (x, y). We have

F (D1)x,y = P[I]︸︷︷︸
(∗)

·P[v = a and w = b]︸ ︷︷ ︸
(∗∗)

·P
[
F (D1) = (x, y)

∣∣ I and v = a and w = b
]

︸ ︷︷ ︸
(∗∗∗)

.

For the three terms on the right side, we have

(∗) = 1
n , (∗∗) ≤ Ha,b/(1−2−0.01n) ≤ n!

a! b! (n−a−b)! ·3−n·1.01, (∗∗∗) = 1/ (n−1)!
(a−1)! (b−1)! (n−a−b+1)! .

We have

n!
a! b! (n−a−b)! /

(n−1)!
(a−1)! (b−1)! (n−a−b+1)! = n·(n−a−b+1)

a·b ≤ n·(n−2k+1)
k·k ≤ n·(n−2n/8+1)

(n/8)·(n/8) = (34 + 1
n) · 64.

Combining, we get

F (D1)x,y /U
1
x,y = (∗) · (∗∗) · (∗∗∗) · n3n−1 ≤ 1.01

3 · (34 + 1
n) · 64 ≤ 17.

2.3 Step II: Truncate and scale

The goal of this step is to construct a truncated-and-scaled protocol Π from any given low-cost Π′

that synthesizes a distribution close to U .
For a nonnegative matrix M , we define its truncation M to be the same matrix but where each

entry > 1 is replaced with 1.

Lemma 3 (Truncation Lemma [GLM+16]). For every 2n × 2n nonnegative rank-1 matrix M
and every natural number d, there exists a O(d+ log n)-communication public-randomness protocol
Π such that for every (x, y) we have accΠ(x, y) ∈ Mx,y ± 2−d.
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Let c ≥ 1 be the hidden constant in the big O in Lemma 3, and let δ := 0.00005/c. To-
ward proving Theorem 1, suppose for contradiction Samp(D) ≤ δn for some distribution D with
∆(U,D) ≤ 1− 2−δn (so β := 2−δ in Theorem 1) and thus

∑
x,y : |x∧y|=0min(3−n,Dx,y) =

∑
x,y min(Ux,y,Dx,y)

=
∑

x,y Ux,y −
∑

x,y :Ux,y>Dx,y
(Ux,y −Dx,y)

= 1−∆(U,D)

≥ 2−δn.

By Observation 2, Synth(D) ≤ δn + 2, so consider a synthesizing protocol Π′ for D with commu-
nication cost ≤ δn + 2. Let A be the set of all accepting transcripts of Π′. For each τ ∈ A let
N τ be the nonnegative rank-1 matrix such that N τ

x,y is the probability Π′ generates τ on input
(x, y); thus Dx,y =

∑
τ∈AN τ

x,y. Let Πτ be the public-randomness protocol from Lemma 3 applied
to M τ := 3nN τ and d := 15δn. Let Π be the public-randomness protocol that picks a uniformly
random τ ∈ A and then runs Πτ . The communication cost of Π is ≤ c · (d+ log n) ≤ 0.001n.

Claim 1. For every input (x, y) we have 3n

|A| min(3−n,Dx,y)− 2−d ≤ accΠ(x, y) ≤ 3n

|A|Dx,y + 2−d.

Proof. We have

accΠ(x, y) = 1
|A|

∑
τ∈A accΠτ (x, y)

∈ 1
|A|

∑
τ∈A(M

τ
x,y ± 2−d)

⊆ 1
|A|

∑
τ∈Amin(1, 3nN τ

x,y)± 2−d

= 3n

|A|

∑
τ∈Amin(3−n, N τ

x,y)± 2−d.

From this it follows that:

accΠ(x, y) ≥ 3n

|A| min
(
3−n,

∑
τ∈AN τ

x,y

)
− 2−d = 3n

|A| min(3−n,Dx,y)− 2−d

accΠ(x, y) ≤ 3n

|A|

∑
τ∈AN τ

x,y + 2−d = 3n

|A|Dx,y + 2−d.

We can now formally state the large typical acceptance probability property (equation (1) from
the overview): writing UΠ := E(x,y)∼U [accΠ(x, y)] (and similarly for other input distributions),

UΠ ≥ 1
3n

∑
x,y : |x∧y|=0

(
3n

|A| min(3−n,Dx,y)− 2−d
)

(by Claim 1)

= 1
|A|

∑
x,y : |x∧y|=0min(3−n,Dx,y)− 2−d

≥ 1
|A|2

−δn − 2−15δn

≥ 1
|A|2

−δn−1 (3)

where the last line follows because |A| ≤ 2δn+2 and 2−2δn−2 is at least twice 2−15δn.

2.4 Step III: Iterate corruption

Here we derive the final contradiction: Π′ places an acceptance probability mass exceeding 1 on
supp(U δn). This is achieved by iterating our corruption lemma, starting with (3) as the base case.
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For z ∈ {0, 1}n let U z be the uniform distribution over all (x, y) ∈ {0, 1}n×{0, 1}n with x∧y = z
(so U ℓ is the uniform mixture of all U z with |z| = ℓ; in particular, U0 = U0n), and if |z| < n then
let Û z be the uniform mixture of U z′ over all z′ that can be obtained from z by flipping a single 0
to 1 (so U ℓ+1 is the uniform mixture of all Û z with |z| = ℓ; in particular, U1 = Û0n).

Claim 2. For every z ∈ {0, 1}n with |z| ≤ n/2 we have Û z
Π ≥ 1

765U
z
Π − 2−0.003n.

Proof. Since all relevant inputs (x, y) have xiyi = 11 for all i such that zi = 1, we can ignore
those coordinates and think of Û z and U z as U1 and U0 respectively, but defined on the remaining
n− |z| ≥ n/2 coordinates (instead of on all n coordinates). Thus by Lemma 2, for every outcome
of the public randomness of Π and every accepting transcript, say corresponding to rectangle
R, we have Û z

R ≥ 1
765U

z
R − 2−0.008n/2. Summing over all the (at most 20.001n many) accepting

transcripts, and then taking the expectation over the public randomness, yields the claim since
20.001n · 2−0.008n/2 ≤ 2−0.003n.

Claim 3. For every ℓ = 0, . . . , δn we have U ℓ
Π ≥ 1

|A|2
−δn−1−11ℓ.

Proof. We prove this by induction on ℓ. The base case ℓ = 0 is (3). For the inductive step, assume
the claim is true for ℓ. Since U ℓ+1 and U ℓ are the uniform mixtures of Û z and U z respectively over
all z with |z| = ℓ (so U ℓ+1

Π = Ez[Û
z
Π] and U ℓ

Π = Ez[U
z
Π]), by linearity of expectation Claim 2 implies

U ℓ+1
Π ≥ 1

765U
ℓ
Π − 2−0.003n ≥ 1

|A|2
−δn−1−11ℓ−log2(765) − 2−0.003n ≥ 1

|A|2
−δn−1−11(ℓ+1)

where the last inequality follows because |A| ≤ 2δn+2 and 2−δn−2−δn−1−11δn−log
2
(765) ≥ 2−14δn is at

least twice 2−0.003n, which gives U ℓ+1
Π ≥ 1

|A|2
−δn−1−11ℓ−log2(765)−1, and log2(765) + 1 ≤ 11.

Choosing ℓ = δn we have

U ℓ
Π − 2−d ≥ 1

|A|2
−δn−1−11ℓ − 2−15δn ≥ 1

|A|2
−δn−2−11ℓ (4)

because |A| ≤ 2δn+2 and 2−δn−2−δn−1−11δn ≥ 2−14δn is at least twice 2−15δn. Thus, for ℓ = δn,

∑
x,y Dx,y ≥ ∑

x,y : |x∧y|=ℓDx,y

≥ ∑
x,y : |x∧y|=ℓ

|A|
3n (accΠ(x, y)− 2−d) (by Claim 1)

= |A|
3n

(
n
ℓ

)
3n−ℓ(U ℓ

Π − 2−d)

≥ |A|
3n (

n
ℓ )

ℓ3n−ℓ 1
|A|2

−δn−2−11ℓ (using (4))

= ( n
ℓ·3·211

)ℓ2−δn−2

= ( 1
δ·3·211·2

)δn/4

≥ 1.6δn

> 1,

contradicting the fact that D is a distribution.
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A Information complexity proof

In this appendix we provide an alternative proof of a weaker version of Theorem 1 that only handles
statistical distance 0.01 instead of 1 − βn. This proof may be of independent interest, and it is
somewhat more self-contained than the proof of Theorem 1 since it does not rely on corruption.

Theorem 2 (Weaker version of Theorem 1). Let U be the uniform distribution over the set
of all (x, y) ∈ {0, 1}n × {0, 1}n with x ∧ y = 0n. Then Samp0.01(U) = Ω(n).

A.1 Overview

We use the Synth characterization from Observation 2 in our proof of Theorem 2. We also use
the information complexity method that was pioneered in [CSWY01, BYJKS04] for proving the
randomized Ω(n) bound for computing Disj. At a high level, the information complexity approach
is to consider a probability space with a random input (from a distribution of our choosing) and
with the random transcript generated by a protocol on that input, and to use the fact that the
communication cost is lower bounded by the Shannon entropy of the transcript, which in turn
is lower bounded by the “information cost”: the mutual information between the transcript and
the input. The key is that as long as the n input coordinates are independent of each other, the
information cost obeys a direct sum property: It is at least the sum of the contributions of the
n coordinates. Thus an Ω(n) bound follows by showing that the mutual information between the
transcript and a typical coordinate is Ω(1).

How shall we implement this approach, given a synthesizing protocol for a distribution that
is close to the U from Theorem 2? First we should decide which input distribution to measure
information cost with respect to. For this we use U itself, but the reason is not only because the
aim is to prove a lower bound for approximately synthesizing U . We use U also because statistical
(or ℓ1) distance is a certain sum—rather than a weighted sum—over inputs.

When looking at an individual coordinate’s contribution to the information cost, we need the
input to come from a product distribution, in order to exploit the fact that each transcript corre-
sponds to a combinatorial rectangle. The standard technique is to decompose the input distribution
into a mixture of product distributions (like what a sampling protocol does—but now this is purely
for analysis purposes) and consider a typical component of this mixture. Then, we can use a
standard lemma (from [BYJKS04]) for relating the mutual information to the statistical distance
between transcript distributions on different inputs; however, we need to somewhat generalize this
tool to handle the input distributions that arise from decomposing our U .

The next issue to tackle is that a synthesizing protocol rejects most inputs with extremely
high probability, so the rejecting transcripts may not carry much information about the input (the
information cost could be very low if we measure w.r.t. a random transcript in the naive way).
Most of the “action” happens within the approximately 3−n probability of acceptance on a typical
1-input. For this reason, our probability space will use a random transcript conditioned on the
protocol accepting. This introduces two related sources of difficulties: It distorts the “product
structure” we usually rely on for analyzing the behavior of a transcript across different inputs, and
it interferes with the standard trick of “absorbing” the other n − 1 coordinates of the randomly
chosen input into the protocol’s private randomness (specifically, sampling an input and then a
random accepting transcript on that input, is not the same as sampling an input, running the
protocol, then conditioning the whole experiment on acceptance). A substantial portion of the
technical effort goes into alleviating these issues.
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Anyway, to give the gist of the overall structure of the argument, let us visualize a single
“representative” transcript and ignore the complications mentioned in the previous paragraph.
Focusing on a single input coordinate (Disj with n = 1 is just Nand), we think of the lower-right
cell as a 0-input and the other three cells as 1-inputs. The area within each cell represents the
protocol’s private randomness along with “the rest” of the random input (besides the coordinate
under the spotlight). If the transcript’s rectangle occupies too much area in the upper-left cell (as
shown on the left), it would be contributing to the protocol accepting 1-inputs with too high of
probability. Otherwise, the rectangle is forced to occupy a relatively not-too-small area in the lower-
right cell (as shown on the right). Accepting on some 0-inputs can be OK, but here is the catch:
There are n/3 times as many uniquely-intersecting inputs as there are disjoint inputs (for the full
Disj function), and it turns out this not-too-small acceptance probability would get “replicated”
across many of these intersecting inputs. The sum of the acceptance probabilities would then be
too great for the protocol to be synthesizing any distribution at all, much less one close to U .

0

1

0 1

0

1

0 1

A.2 Preliminaries

We assume familiarity with the basics of communication complexity [KN97] and information theory
[CT06]. A protocol Π is assumed to have private randomness, and we let CC(Π) denote the worst-
case communication cost. We use P for probability, E for expectation, H for Shannon entropy, I
for mutual information, D for relative entropy, and ∆ for statistical distance. We use bold letters
to denote random variables, and non-bold letters for particular outcomes.

Fact 1. Mutual information and relative entropy satisfy the following standard properties:

r Direct sum: I(a ; b1 · · · bn) ≥ I(a ; b1) + · · ·+ I(a ; bn) if b1 · · · bn are fully independent.
r Alternative definition: I(a ; b) = Eb∼bD

(
(a | b = b)

∥∥a
)
.

r Pinsker’s inequality: D(a ‖ b) ≥ 2
ln 2 ∆(a, b)2.

Here is the quick proof of the direct sum property: H(b1 · · · bn) = H(b1) + · · · + H(bn) by full
independence, and H(b1 · · · bn |a) ≤ H(b1 |a) + · · ·+H(bn |a) by subadditivity of entropy. Thus

I(a ; b1 · · · bn) = H(b1 · · · bn)−H(b1 · · · bn |a) ≥ ∑
i

(
H(bi)−H(bi |a)

)
=

∑
i I(a ; bi).

Pinsker’s inequality has several proofs available in several sources, such as [DP09].
We also need the following tool relating statistical distance and mutual information. The special

case where b is uniform over {0, 1} was known, dating back to [BYJKS04] (using [Lin91]). For the
general case, we provide a simple proof that was suggested by an anonymous reviewer.
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Lemma 4. Let a, b be jointly distributed, with b having support {0, 1}. Then

∆
(
(a | b = 0), (a | b = 1)

)
≤

√
I(a ; b) / min(P[b = 0],P[b = 1]).

Proof. By the alternative definition in Fact 1, we have

I(a ; b) = Eb∼bD
(
(a | b = b)

∥∥a
)

≥ min(P[b = 0],P[b = 1]) ·∑b∈{0,1} D
(
(a | b = b)

∥∥a
)
.

By Pinsker’s inequality in Fact 1 and Cauchy–Schwarz, we have

∑
b∈{0,1} D

(
(a | b = b)

∥∥a
)

≥ 2
ln 2

∑
b∈{0,1} ∆

(
(a | b = b),a

)2

≥ 2
ln 2

(∑
b∈{0,1} ∆

(
(a | b = b),a

))2
/2

= 1
ln 2∆

(
(a | b = 0), (a | b = 1)

)2
.

Combining and using ln 2 ≤ 1 yields the lemma.

A.3 Proof of Theorem 2

Letting U be as in Theorem 2, suppose for contradiction Samp(D) ≤ 0.0001n − 2 for some distri-
bution D with ∆(U,D) ≤ 0.01. By Observation 2, Synth(D) ≤ 0.0001n, so consider a synthesizing
protocol Π for D with CC(Π) ≤ 0.0001n. As a technical convenience, we may assume Π has been
infinitesimally perturbed to ensure the acceptance probability is positive on each input;1 this allows
us to avoid special cases for handling conditioning on 0-probability events.

We build a probability space by decomposing U into a mixture of product distributions. For
each j ∈ [n] independently: Let wj be uniform over {left,right}.

Conditioned on wj = left, let Conditioned on wj = right, let

xjyj :=

{
00 with probability 1/3

10 with probability 2/3
. xjyj :=

{
00 with probability 1/3

01 with probability 2/3
.

Note that the marginal distribution of (x,y) is U , but x and y are independent conditioned on w.
Conditioned on (x,y) = (x, y), let τ be a random transcript of Π(x, y) conditioned on acceptance.
Finally, let i be uniform over [n] and independent of the other random variables. In summary,
(w,x,y, τ , i) are jointly distributed over {left,right}n × {0, 1}n × {0, 1}n × {0, 1}CC(Π) × [n].

Definition 1. An outcome (i, w−i) ∈ [n]× {left,right}[n]r{i} is called good iff both:

(1) I
(
τ ; xiyi

∣∣ i = i, w = w
)
≤ 0.0008 (“cost”)

for each wi ∈ {left,right}, and
(2) E

[
max(3−n −Dx,y, 0)

∣∣ i = i, w−i = w−i, xiyi = xiyi
]
≤ 0.12 · 3−n (“correctness”)

for each xiyi ∈ {00, 01, 10}.

Claim 4. (i, w−i) ∼ (i,w−i) is good with probability at least 0.5.

1For an infinitesimal ι > 0, accept with probability 4−n
ι, reject with probability (1 − 4−n)ι, and otherwise run

the original synthesizing protocol. This adds only 2 bits of communication, and it affects the statistical distance to
the target distribution by at most ι.
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Proof. By a union bound, it suffices to show that (1) and (2) individually hold with probability at
least 0.75 each.

For fixed i and w, abbreviate I
(
τ ; xiyi

∣∣ i = i, w = w
)
as Ii,w ≥ 0. For each w,

Ei∼i[Ii,w] ≤ 1
n I

(
τ ; xy

∣∣w = w
)

≤ 1
n H(τ |w = w) ≤ 1

n CC(Π) ≤ 0.0001

by the first bullet from Fact 1 using a := (τ |w = w) and bi := (xiyi |w = w). Now

E(i,w−i)∼(i,w−i) Ewi∼wi
[Ii,w] = Ew∼w Ei∼i[Ii,w] ≤ 0.0001.

By Markov’s inequality, with probability at least 0.75 over (i, w−i) ∼ (i,w−i) we have that
Ewi∼wi

[Ii,w] ≤ 0.0004, in which case maxwi
(Ii,w) ≤ 2Ewi∼wi

[Ii,w] ≤ 0.0008 and thus (1) holds.
For fixed i, w−i, and xiyi, abbreviate E

[
max(3−n −Dx,y, 0)

∣∣ i = i, w−i = w−i, xiyi = xiyi
]
as

δi,w−i,xiyi ≥ 0. Now

E(i,w−i)∼(i,w−i) Exiyi∼xiyi
[δi,w−i,xiyi ] = E

[
max(3−n −Dx,y, 0)

]
= 3−n ∑

x,y max(Ux,y −Dx,y, 0)

= 3−n ∆(U,D) ≤ 0.01 · 3−n.

By Markov’s inequality, with probability at least 0.75 over (i, w−i) ∼ (i,w−i) we have that
Exiyi∼xiyi

[δi,w−i,xiyi ] ≤ 0.04 · 3−n, in which case maxxiyi [δi,w−i,xiyi ] ≤ 3Exiyi∼xiyi
[δi,w−i,xiyi ] ≤

0.12 · 3−n and thus (2) holds.

Lemma 5. For each good (i, w−i), either:

(i) E
[
Dx,y

∣∣ i = i, w−i = w−i

]
≥ 5 · 3−n, or

(ii) E
[
Dx̂,ŷ

∣∣ i = i, w−i = w−i

]
≥ 0.000001 · 3−n

where the random variables x̂, ŷ are the same as x,y except x̂iŷi is fixed to 11.

Lemma 5 is the technical heart of the argument; we prove it in §A.4. Note that the marginal
distribution of (x̂, ŷ) is uniform over the set of all (x, y) ∈ {0, 1}n × {0, 1}n with |x∧ y| = 1, where
| · | denotes Hamming weight (i.e., x and y represent uniquely intersecting sets).

Combining Claim 4 and Lemma 5 shows that over (i, w−i) ∼ (i,w−i), either (i) holds with
probability at least 0.25 or (ii) holds with probability at least 0.25. In the former case,

E[Dx,y] ≥ P[(i) holds] · E
[
Dx,y

∣∣ (i) holds
]

≥ 0.25 · 5 · 3−n > 3−n

and thus
∑

x,y : |x∧y|=0Dx,y = 3n E[Dx,y] > 1. In the latter case,

E[Dx̂,ŷ] ≥ P[(ii) holds] · E
[
Dx̂,ŷ

∣∣ (ii) holds
]

≥ 0.25 · 0.000001 · 3−n > 1/(n3n−1)

and thus
∑

x,y : |x∧y|=1Dx,y = n3n−1
E[Dx̂,ŷ] > 1. Either case contradicts the assumption that D is

a distribution. This finishes the proof of Theorem 2, except for the proof of Lemma 5.

A.4 Proof of Lemma 5

Fix a good (i, w−i). For convenience, we henceforth assume i = 1 and we elide the conditioning on
i = 1, w−1 = w−1 in the notation. Thus our whole probability space now consists of (w1,x,y, τ )
which is actually distributed as

(
w1,x,y, τ

∣∣ i = 1, w−1 = w−1

)
in the original notation. Also,

(x̂, ŷ) := (1x−1, 1y−1).
With this convention, the definition of good becomes
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(1) I
(
τ ; x1y1

∣∣w1 = w1

)
≤ 0.0008 (“cost”)

for each w1 ∈ {left,right}, and
(2) E

[
max(3−n −Dx,y, 0)

∣∣x1y1 = x1y1
]
≤ 0.12 · 3−n (“correctness”)

for each x1y1 ∈ {00, 01, 10}

and the statement of Lemma 5 becomes

(i) E[Dx,y] ≥ 5 · 3−n, or

(ii) E[Dx̂,ŷ] ≥ 0.000001 · 3−n.

Claim 5. If (1) holds then ∆
(
(τ |x1y1 = 00), (τ |x1y1 = x1y1)

)
≤ 0.05

for each x1y1 ∈ {01, 10}.

Proof. First, (1) tells us I
(
τ ; x1

∣∣w1 = left
)
≤ 0.0008 (since y1 is always 0 conditioned on

w1 = left), and applying Lemma 4 with (a, b) :=
(
τ ,x1

∣∣w1 = left
)
gives

∆
(
(τ |x1y1 = 00), (τ |x1y1 = 10)

)
≤

√
I
(
τ ; x1

∣∣w1 = left
)
/ 1

3 ≤
√
0.0008 · 3 ≤ 0.05.

Similarly, (1) tells us I
(
τ ; y1

∣∣w1 = right
)
≤ 0.0008 (since x1 is always 0 conditioned on w1 =

right), and applying Lemma 4 with (a, b) :=
(
τ ,y1

∣∣w1 = right
)
gives

∆
(
(τ |x1y1 = 00), (τ |x1y1 = 01)

)
≤

√
I
(
τ ; y1

∣∣w1 = right
)
/ 1

3 ≤
√
0.0008 · 3 ≤ 0.05.

This proves the claim.

Let A be the set of all accepting transcripts of Π. For τ ∈ A and (x, y) ∈ {0, 1}n × {0, 1}n and
x1y1 ∈ {0, 1}2, define

px,y(τ) := P
[
Π(x, y) generates τ

]
px1y1(τ) := Ex−1y−1∼x−1y−1

[px,y(τ)]

qx,y(τ) := P
[
Π(x, y) generates τ

∣∣Π(x, y) accepts
]

qx1y1(τ) := Ex−1y−1∼x−1y−1
[qx,y(τ)]

where the probabilities in the left column are over the private randomness of Alice and Bob; in
particular,

∑
τ∈A px,y(τ) = P[Π(x, y) accepts] = Dx,y and px,y(τ) = Dx,y · qx,y(τ). In terms of our

probability space (w1,x,y, τ ), we have:

for each x1y1 ∈ {00, 01, 10}: for x1y1 = 11:

px1y1(τ) = E
[
px,y(τ)

∣∣x1y1 = x1y1
]

p11(τ) = E[px̂,ŷ(τ)]∑
τ∈A px1y1(τ) = E

[
Dx,y

∣∣x1y1 = x1y1
] ∑

τ∈A p11(τ) = E[Dx̂,ŷ]

qx1y1(τ) = E
[
qx,y(τ)

∣∣x1y1 = x1y1
]

= P
[
τ = τ

∣∣x1y1 = x1y1
]

We postpone the proofs of the following two claims to the end of this subsection.

Claim 6. If (2) holds then P
[
px1y1(τ )/qx1y1(τ ) ≥ 0.03 · 3−n

∣∣x1y1 = x1y1
]
≥ 0.8

for each x1y1 ∈ {01, 10}.

Claim 7. If (i) does not hold then P
[
p00(τ )/q00(τ ) ≤ 75 · 3−n

∣∣x1y1 = 00
]
≥ 0.8.
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We now show how to combine Claim 5, Claim 6, and Claim 7 to prove that if (1) and (2) hold
and (i) does not hold, then (ii) holds. Defining

Tx1y1 :=
{
τ ∈ A : px1y1(τ)/qx1y1(τ) ≥ 0.03 · 3−n

}
for each x1y1 ∈ {01, 10}

T00 :=
{
τ ∈ A : p00(τ)/q00(τ) ≤ 75 · 3−n

}
for x1y1 = 00

T := T00 ∩ T01 ∩ T10

we have for each x1y1 ∈ {01, 10},

P
[
τ ∈ Tx1y1

∣∣x1y1 = 00
]

≥ P
[
τ ∈ Tx1y1

∣∣x1y1 = x1y1
]
− 0.05 ≥ 0.75

by Claim 5 and Claim 6, and P
[
τ ∈ T00

∣∣x1y1 = 00
]
≥ 0.8 by Claim 7, so by a union bound,

∑
τ∈T q00(τ) = P

[
τ ∈ T

∣∣x1y1 = 00
]

≥ 0.3. (†)

For each x1y1 ∈ {01, 10} we define dx1y1(τ) :=
∣∣q00(τ)− qx1y1(τ)

∣∣ so that by Claim 5,

∑
τ∈A dx1y1(τ) = 2∆

(
(τ |x1y1 = 00), (τ |x1y1 = x1y1)

)
≤ 0.1. (‡)

Since x−1,y−1 are independent (implicitly conditioned on w−1 = w−1), we have p00(τ)·p11(τ) =
p01(τ) · p10(τ) by the rectangular nature of any transcript τ . We would like to rewrite this as
p11(τ) = p01(τ)·p10(τ) / p00(τ) but we must be careful about division by 0. Adopting the convention
0/0 := 0, we can write

p11(τ) ≥ p01(τ) · p10(τ) / p00(τ). (∗)
We also note that for each x1y1, px1y1(τ) = 0 iff qx1y1(τ) = 0. To convert between the “multiplica-
tive” structure of transcripts as in (∗) and the “additive” structure of statistical distance, we appeal
to the following basic fact, which has been used several times in recent works [GW16, GPW16,
GJW18]. For completeness, we reproduce the argument at the end of this subsection.

Fact 2. For every τ ∈ A, q01(τ) · q10(τ) / q00(τ) ≥ q00(τ)− d01(τ)− d10(τ).

At last we come to the punchline:

E[Dx̂,ŷ] =
∑

τ∈A

p11(τ) ≥
∑

τ∈T

p11(τ) ≥
∑

τ∈T

p01(τ) · p10(τ)
p00(τ)

=
∑

τ∈T

p01(τ)
q01(τ)

· p10(τ)
q10(τ)

p00(τ)
q00(τ)

· q01(τ) · q10(τ)
q00(τ)

≥
∑

τ∈T

(0.03 · 3−n) · (0.03 · 3−n)

75 · 3−n
·
(
q00(τ)− d01(τ)− d10(τ)

)

≥ 0.00001 · 3−n ·
(∑

τ∈T

q00(τ)−
∑

τ∈A

d01(τ)−
∑

τ∈A

d10(τ)

)

≥ 0.00001 · 3−n ·
(
0.3− 0.1− 0.1

)
= 0.000001 · 3−n

where the third line uses Fact 2, and the last line follows by (†) and (‡). Thus (ii) holds. This
finishes the proof of Lemma 5, except for the proofs of Claim 6, Claim 7, and Lemma 4.
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Proof of Claim 6. To slightly declutter notation, we write the argument for x1y1 = 01 (nothing
is different for x1y1 = 10). Assuming (2) holds, we have E

[
max(3−n − Dx,y, 0)

∣∣x1y1 = 01
]
≤

0.12 · 3−n. We define S as the set of all (x, y) in the support of (x,y) conditioned on x1y1 = 01
(and implicitly on w−1 = w−1) such that Dx,y ≤ 0.16 ·3−n (“bad inputs”). By Markov’s inequality,

P
[
(x,y) ∈ S

∣∣x1y1 = 01
]

= P
[
max(3−n −Dx,y, 0) ≥ 0.84 · 3−n

∣∣x1y1 = 01
]

≤ 1/7 ≤ 0.15.

We define B as the set of all τ ∈ A such that P
[
(x,y) ∈ S

∣∣ τ = τ, x1y1 = 01
]
≥ 0.8 (“bad

transcripts”). We must have P
[
τ ∈ B

∣∣x1y1 = 01
]
≤ 0.2 since otherwise

P
[
(x,y) ∈ S

∣∣x1y1 = 01
]

≥ P
[
(x,y) ∈ S and τ ∈ B

∣∣x1y1 = 01
]

= P
[
τ ∈ B

∣∣x1y1 = 01
]
· P

[
(x,y) ∈ S

∣∣ τ ∈ B, x1y1 = 01
]

≥ 0.2 · 0.8 = 0.16 > 0.15.

Let χx,y be the indicator for (x, y) 6∈ S, so Dx,y ≥ 0.16 · 3−n · χx,y. For each τ ∈ ArB we have

E
[
χx,y · qx,y(τ)

∣∣x1y1 = 01
]

=
∑

(x,y)6∈S P
[
xy = xy

∣∣x1y1 = 01
]
· P

[
τ = τ

∣∣xy = xy
]

= P
[
(x,y) 6∈ S and τ = τ

∣∣x1y1 = 01
]

= P
[
(x,y) 6∈ S

∣∣ τ = τ, x1y1 = 01
]
· P

[
τ = τ

∣∣x1y1 = 01
]

≥ 0.2 · q01(τ)
and thus

p01(τ) = E
[
px,y(τ)

∣∣x1y1 = 01
]

= E
[
Dx,y · qx,y(τ)

∣∣x1y1 = 01
]

≥ 0.16 · 3−n · E
[
χx,y · qx,y(τ)

∣∣x1y1 = 01
]

≥ 0.16 · 3−n · 0.2 · q01(τ) ≥ 0.03 · 3−n · q01(τ).
In summary, P

[
p01(τ )/q01(τ ) ≥ 0.03 · 3−n

∣∣x1y1 = 01
]
≥ P

[
τ 6∈ B

∣∣x1y1 = 01
]
≥ 0.8.

Proof of Claim 7. Assume E
[
Dx,y

∣∣x1y1 = 00
]
≤ 15 · 3−n since otherwise (i) would hold because

E[Dx,y] = Ex1y1∼x1y1
E
[
Dx,y

∣∣x1y1 = x1y1
]

≥ 1
3 E

[
Dx,y

∣∣x1y1 = 00
]

≥ 5 · 3−n.

Now

E

[
p00(τ )

q00(τ )

∣∣∣∣x1y1 = 00

]
=

∑

τ∈A

q00(τ) ·
p00(τ)

q00(τ)
=

∑

τ∈A

p00(τ) = E
[
Dx,y

∣∣x1y1 = 00
]

≤ 15 · 3−n.

Thus P
[
p00(τ )/q00(τ ) ≤ 75 · 3−n

∣∣x1y1 = 00
]
≥ 0.8 follows by Markov’s inequality.

Proof of Fact 2. It suffices to show that

q01(τ) · q10(τ) ≥ q00(τ)
2 − q00(τ)

(
d01(τ) + d10(τ)

)
. (5)

(If q00(τ) 6= 0 then the desired inequality follows by dividing (5) by q00(τ), and if q00(τ) = 0 then it
follows since its right side is ≤ 0 and its left side is 0; recall our convention that 0/0 := 0.) For some
signs σx1y1(τ) ∈ {1,−1}, the left side of (5) equals

(
q00(τ)+σ01(τ)d01(τ)

)
·
(
q00(τ)+σ10(τ)d10(τ)

)
,

which expands to

q00(τ)
2 + σ01(τ)q00(τ)d01(τ) + σ10(τ)q00(τ)d10(τ) + σ01(τ)σ10(τ)d01(τ)d10(τ). (6)

If σ01(τ) = σ10(τ) then (6) is at least the right side of (5) since the last term of (6) is nonnegative.
If σ01(τ) 6= σ10(τ), say σ01(τ) = −1 and σ10(τ) = 1, then (6) is at least the right side of (5) since
the sum of the last two terms in (6) is q00(τ)d10(τ)− d01(τ)d10(τ) = q01(τ)d10(τ) ≥ 0.
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[GPW16] Mika Göös, Toniann Pitassi, and Thomas Watson. Zero-information protocols and
unambiguity in Arthur–Merlin communication. Algorithmica, 76(3):684–719, 2016.
doi:10.1007/s00453-015-0104-9.

[Gro94] Vince Grolmusz. The BNS lower bound for multi-party protocols is nearly optimal.
Information and Computation, 112(1):51–54, 1994. doi:10.1006/inco.1994.1051.
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