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Abstract

Recently, Dvir, Golovnev, and Weinstein have shown that sufficiently strong lower bounds
for linear data structures would imply new bounds for rigid matrices. However, their result
utilizes an algorithm that requires an NP oracle, and hence, the rigid matrices are not explicit.
In this work, we derive an equivalence between rigidity and the systematic linear model of data
structures. For the n-dimensional inner product problem with m queries, we prove that lower
bounds on the query time imply rigidity lower bounds for the query set itself. In particular,
an explicit lower bound ofω

(
n
r logm

)
for r redundant storage bits would yield better rigidity

parameters than the best bounds due to Alon, Panigrahy, and Yekhanin. We also prove a
converse result, showing that rigid matrices directly correspond to hard query sets for the
systematic linear model. As an application, we prove that the set of vectors obtained from rank
one binary matrices is rigid with parameters matching the known results for explicit sets. This
implies that the vector-matrix-vector problem requires query time Ω(n3/2/r) for redundancy
r >
√
n in the systematic linear model, improving a result of Chakraborty, Kamma, and Larsen.

Finally, we prove a cell probe lower bound for the vector-matrix-vector problem in the high
error regime, improving a result of Chattopadhyay, Koucký, Loff, and Mukhopadhyay.
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1 Introduction

A matrix is rigid if it is far in Hamming distance from low rank matrices; it is explicit if its entries
are computable in polynomial time. A classic result of Valiant proves that explicit rigid matrices
imply super-linear lower bounds for linear circuits [35], a major open problem in computational
complexity [34, 37]. Implications of new lower bounds for communication complexity and other
models are also known [24, 39]. Unfortunately, the current bounds for explicit matrices are very
far from the required parameters [16, 33], and natural candidates (e.g., Fourier and Hadamard
matrices) have been discovered to be less rigid than desired [3, 12, 14]. This motivates alternative
avenues for constructing rigid matrices. Recently, multiple connections between data structures
and circuits have arisen [7, 11, 13, 38]. The premise of these results is that hard problems for these
models may shed new light on rigid matrices and circuits. We take a similar angle, studying a
generic linear problem for a model that resembles a depth-two circuit with linear gates.

Valiant’s result concerns arithmetic circuits computing the linear map v 7→Mv for a matrixM.
In other words, the circuit computes the inner products between v and the rows ofM. We study a
related data structure problem, the inner product problem. The task is to preprocess an n-bit vector v
to compute inner products 〈q, v〉 over F2 for queries q ∈ Q, where Q ⊆ Fn2 is the query set. This
problem generalizes the prefix-sum problem [17] and vector-matrix-vector problem [8, 23].

We consider solving this problem using a restricted data structure model, the systematic linear
model. This model may only store v verbatim along with a small number r � n of redundant
bits, which are the evaluations of r linear functions of v. To compute 〈q, v〉 for q ∈ Q, the query
algorithm must output a linear function of these r bits along with any t bits of v, where t is the
query time. We motivate this model with a simple upper bound. Suppose that the query set Q
happens to be close to an r-dimensional subspaceU. More precisely, assume that dH (q,U) 6 t for
any q ∈ Q, where dH (q,U) := minu∈U dH (q,u) and dH (q,u) denotes the Hamming distance.
The systematic linear model will store r bits that correspond to inner products between v and some
r vectors that form a basis for U. The query algorithm computes 〈q, v〉 by invoking the identity
〈q, v〉 = 〈u, v〉+ 〈q− u, v〉, using any vector u ∈ U with dH (q,u) 6 t. Indeed, the r precomputed
bits suffice to determine 〈u, v〉, and at most t bits of v are needed to calculate 〈q− u, v〉.

We observe that rigidity exactly captures the complexity of the inner product problem in
the above model. This connection uses a notion of rigid sets, defined by Alon, Panigrahy and
Yekhanin [5]. Our result shows that an efficient algorithm exists in the above model if and only
if the query set is not rigid in their sense. Conversely, it is possible to derive new rigidity lower
bounds by proving lower bounds for the systematic linear model. A parameter of interest is the
size of the rigid set, which corresponds to the number of queries in the inner product problem.

Dvir, Golovnev, and Weinstein also demonstrate a connection between rigidity and a different
linear model, which is a restriction of the cell probe model [13]. This model stores s > n linear
functions, and the query algorithm outputs a linear function of t of these s bits. For the inner
product problem with query set Q, they show that a lower bound for linear data structures leads
to a semi-explicit rigid set. When |Q| = m, their result uses a poly(m) time algorithm that requires
access to anNP oracle. Compared to their work, our connection preserves explicitness and offers a
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two-way equivalence via the systematic linear model. In particular, when r = Θ(n), a lower bound
of t = ω(logm) in the systematic linear model implies thatQ is rigid with better parameters than
known results. Their work requires a lower bound of t = ω(logm logn) against the linear model,
and the resulting set is not explicit. Our results also extend to show that linear data structure
lower bounds lead to explicit rigid matrices. However, compared to the work of Dvir, Golovnev,
and Weinstein, we require stronger lower bounds to achieve new rigidity parameters.

As an application of our framework, we provide new results for the vector-matrix-vector
problem. The task is to preprocess a 0-1 matrix M to compute uᵀMv when given vectors u, v as
the query. The boolean semiring version of this problem has received much recent attention due to
connections to the online matrix-vector multiplication conjecture [18]. Moreover, this problem has
motivated the study of data structures for a super polynomial number of queries, even when the
output is binary [8, 9]. Other prior work has either studied binary output problems with poly(n)

queries (see e.g. [28, 30]) or achieved better lower bounds by looking at multi-output problems
(see e.g. [10, 20]). In general, the vector-matrix-vector problem is a good testbed for proving better
data structure lower bounds, because linear algebraic tools could provide new insights.

The F2 variant of this problem specializes the inner product problem because uᵀMv equals the
inner product of uvᵀ andM (viewed as vectors). The query set consists of

√
n×
√
nmatrices with

rank one; its sizem satisfies logm = Θ(
√
n). As another contribution, we lower bound the rigidity

of this set, and consequently, we obtain a query time lower bound of Ω(nr logm) = Ω(n3/2/r) for
the systematic linear model with redundancy r >

√
n. Any asymptotically better lower bounds

for this problem (in the systematic linear model) would directly imply that this query set is rigid
with better parameters than the currently known results for explicit matrices [4, 5].

As a final result, we prove a new cell probe lower bound for the vector-matrix-vector problem,
without restrictions on the data structure. Our result improves the current best lower bound due
to Chattopadhyay, Koucký, Loff, and Mukhopadhyay [9]. Our lower bound matches the limit of
present techniques and achieves the current best time-space trade-off in terms of query set size.

1.1 Rigid sets, systematic linear model, and the inner product partial function

Throughout, let m = m(n) and t = t(n) and r = r(n) denote positive integers, with m > n > t, r.
Alon, Panigrahy and Yekhanin defined the following notion of a rigid set [5].

Definition (Rigid Set). A set Q ⊆ Fn2 is (r, t)-rigid if for every subspace U ⊆ Fn2 with dimension at
most r, some vector q ∈ Q has Hamming distance at least t from all vectors in U, that is, dH (q,U) > t.

We define (r ′, t ′)-rigid for non-integral r ′, t ′ to mean (br ′c , dt ′e)-rigid. It will be convenient to
equate a set Q with a matrix MQ by arranging vectors in Q as rows in MQ in any order. If Q is
(r, t)-rigid and |Q| = m, then the corresponding matrix MQ ∈ Fm×n2 is rigid in the usual sense:
for any rank rmatrixA, some row in (MQ−A) contains at least t nonzero entries. Hence, we may
refer to rigid sets and rigid rectangular matrices interchangeably. A matrix in Fm×n2 (or a set of
n-dimensional vectors) is explicit if every entry can be computed in poly(n) time.

A random m× n matrix with m = poly(n) will be (εn, δn/ logn)-rigid with high probability
for some constants ε, δ ∈ (0, 1). The key challenge here is to construct explicit rigid matrices,
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because they provide circuit lower bounds for functions that can be described in polynomial
time [35]. Alon, Panigrahy and Yekhanin [5] followed by Alon and Cohen [4] exhibit multiple
examples of explicitm×nmatrices that are (r, t)-rigid with

t > min
{cn
r

log
m

r
, n
}

(1)

wherem > n and c is a constant. Note that when r = εn, the current best bound is t = Ω
(
log mn

)
.

For m = poly(n), this amounts to t = Ω(logn), exponentially far from the ideal bounds (i.e.,
matching random constructions). It is an important open problem to improve the dependence
onm in Eq. (1) and to find other candidate sets that may be rigid with better parameters.

Our connection between rigidity and data structures arises via the inner product problem.
The task is to preprocess a vector v ∈ Fn2 to compute inner products. The queries are specified by
Q ⊆ Fn2 , which is called the query set. The data structure must compute the inner product of v and
any q ∈ Q, that is, 〈q, v〉 :=

∑n
i=1 q[i] · v[i] mod 2, where q[i] denotes the ith coordinate of q.

Consider the following model for solving this problem, known as a systematic linear data
structure. During preprocessing, the data structure stores v along with the evaluations of r linear
functions 〈a1, v〉 , . . . , 〈ar, v〉, where these inner products are single bits, and a1, . . . ,ar denote
vectors in Fn2 . To compute the answer on query q, the data structure accesses these r bits in
addition to any t entries of v. That is, the r linear functions are fixed, and the t bits from v may
depend on q and the linear functions. Finally, the query algorithm must output a linear function
of these r bits and the t entries of v. In this fashion it must be able to correctly compute 〈q, v〉 for all
queries q ∈ Q. We note that a result of Jukna and Schnitger [19] shows that the {a1, . . . ,ar} vectors
do not depend on v without loss of generality. Letting T(Q, r) denote the minimum value t of the
best data structure for this problem (over worst-case v), we formalize the model as follows.

Definition (Systematic Linear Model). LetQ ⊆ Fn2 be a set. Define T(Q, r) to be the maximum over all
v ∈ Fn2 of the minimum t sufficient to compute the inner product 〈q, v〉 for every q ∈ Q when only allowed
to output a linear function of r precomputed linear functions of v along with any t bits of v.

Note that the model does not charge the query time for accessing the r precomputed bits, even
if t� r. This coincides with the systematic model studied by Chakraborty, Kamma and Larsen [8].

1.2 Equivalence between rigidity and data structures

We prove that the rigidity of a set Q corresponds to the time complexity T(Q, r) in the systematic
linear data structure model. Some aspects of this result are implicit in prior work [19, 31], but no
previous work seems to show this exact correspondence.

Theorem 1. A set Q ⊆ Fn2 is (r, t)-rigid if and only if T(Q, r) > t.

Proof. We first prove that T(Q, r) > t implies that Q is (r, t)-rigid. Assume for contradiction that
there is an r-dimensional subspace U such that dH (q,U) < t for all q ∈ Q. Let v ∈ Fn2 be the
input data. Store v along with the r bits 〈b1, v〉 , . . . , 〈br, v〉, where b1, . . . ,br form a basis for U.
For every q ∈ Q, there exists uq ∈ U such that q− uq has Hamming weight less than t. Using
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the r redundant bits, the algorithm on query q can compute 〈uq, v〉 by writing uq in terms of
the stored basis vectors. Then, it computes 〈q− uq, v〉 by accessing fewer than t coordinates of v.
Since 〈q, v〉 = 〈uq, v〉+ 〈q− uq, v〉, we have that T(Q, r) < t, which is a contradiction.

We now prove that if Q is (r, t)-rigid, then T(Q, r) > t. Let e1, . . . , en denote the standard
basis, and let k = T(Q, r) be the query time. We show that k > t. Consider a systematic linear
data structure whose redundant bits are given by 〈a1, v〉 , . . . , 〈ar, v〉. Let U denote the span of
{a1, . . . ,ar}. As Q is (r, t)-rigid, there exists q∗ ∈ Q with dH (q∗,U) > t. When q∗ is the query,
assume that the query algorithm accesses the bits vi1 , . . . , vik for indices i1, . . . , ik to compute
〈q∗, v〉. Now, defineU ′ to be the span of {a1, . . . ,ar, ei1 , . . . , eik}. Observe that all points inU ′ are at
distance at most k from U. Thus, dH (q∗,U) 6 dH (q∗,U ′) + k. We will show that dH (q∗,U ′) = 0,
which implies that k > t. We claim that if dH (q∗,U ′) > 1, then the query algorithm makes an
error. Since dH (q∗,U ′) > 1, there exists a vector y with 〈y,q∗〉 = 1. Moreover, this vector can be
taken to be orthogonal toU ′ so that 〈y, x〉 = 0 for every x ∈ U ′. In other words, for every x ∈ U ′we
have 〈y+ v, x〉 = 〈y, x〉+ 〈v, x〉 = 〈v, x〉. Hence, the query algorithm sees the same values on input
data y+ v and v because it only accesses the input via vectors in U ′, and we have x ∈ U ′. Thus,
the algorithm on query q∗ must err either on input y+ v or v because 〈q∗,y+ v〉 6= 〈q∗, v〉.

1.3 Relationship to the cell probe model and other models

The systematic linear model specializes the systematic model [8, 17]. The latter model still stores the
input data x ∈ Fn2 verbatim, and it also stores r < n bits that can be precomputed from x, where
these need not be linear functions of the input data. The query time is t if the query algorithm
reads at most t bits from x to compute a query. The output can also be an arbitrary function of
these t bits along with the r precomputed bits. The systematic linear model only makes sense for
linear queries, whereas the systematic model applies to arbitrary query functions.

Yao’s cell probe model is the most general data structure model [40]. On input data x ∈ Fn2 , the
data structure stores s cells, containing w bits that are arbitrary functions of x. Here, w is the word
size and s is the space. The query time is t if the algorithm accesses at most t cells to answer any
query about x from a set ofm possible query functions. There is a rich collection of lower bounds
for this model (see e.g. [2, 15, 20, 26, 27, 28, 29]). The best lower bounds known are of the form

t > min
{
c log mn
log swn

,
cn

w

}
, (2)

where m > n is the number of queries and c is a constant. It is a long-standing problem to prove
that t = ω(logm) for any explicit problem, even in the linear space regime s ·w = O(n).

A special case of the cell probe model is the linear model [1, 13]. The latter model stores s > n

linear functions of x (implicitly w = 1 is fixed). The query time is t if the query algorithm reads at
most t of these s bits to compute a query. The output is restricted to be a linear function of these
t bits. A distinguishing aspect between linear and systematic linear is that in the latter model, the
query algorithm is not charged for accessing the r precomputed bits. In Section 2, we compare the
linear and systematic linear models in the context of rigidity and previous work [13].
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Equivalences all the way down. We note that the systematic data structure model is identical
to the common bits model defined by Valiant [36]. Corrigan-Gibbs and Kogan [11] demonstrate
a relationship between the common bits model and a variant of the systematic model defined by
Gal and Miltersen [17]. The common bits model is nothing but a certain depth two circuit, and the
systematic linear model is simply the common bits model with the restriction that the common bits
and output gates are linear functions [31]. Hence, in language of data structures, the linearization
conjecture of Jukna and Schnitger posits that the systematic linear model is asymptotically as
powerful as the systematic model for answering linear queries [19].

1.4 The vector-matrix-vector problem

We now define the vector-matrix-vector problem, which we call “the uᵀMv problem” for short.
Let n be a perfect square. After preprocessing a matrix M ∈ F

√
n×
√
n

2 , the goal is to output the
binary value uᵀMv for vectors u, v ∈ F

√
n

2 . It will be convenient to consider a
√
n×
√
n matrix as

an n-bit vector vec(M) by concatenating consecutive rows. More formally, let x = vec(M), and for
i ∈ {1, 2, . . . ,n}, set x[i] =M[a,b], where a and b satisfy i = (a− 1)

√
n+b and a,b ∈ {1, 2, . . . ,

√
n}.

Then, uᵀMv = 〈vec(uvᵀ), vec(M)〉. In this way we consider the uᵀMv problem a special case of the
inner product problem. The query set is the collection of rank one binary matrices. Let Υ ⊆ Fn2
denote the set of vectors obtained from rank one binary matrices viaM 7→ vec(M), that is,

Υ :=
{
vec(uvᵀ)

∣∣∣ u, v ∈ F
√
n×
√
n

2

}
⊆ Fn2 . (3)

This set has size |Υ| = 22
√
n − 2

√
n+1 + 1.

A classic result of Artazarov, Dinic, Kronrod and Faradzev [6] provides a data structure with
space s = poly(n), word size w = O(logn), and time t = O(n/ logn). In fact, this algorithm
operates in the linear cell probe model. It is a central open question to determine whether t = Ω(n)

is necessary in linear space regime, that is, when s ·w = O(n).
The current best cell probe lower bound for the uᵀMv problem is due to Chattopadhyay,

Koucký, Loff, and Mukhopadhyay [9]. Moreover, their lower bound holds for a randomized
model with high error. For constants c and c ′, they prove that if for every matrix M and every
query uvᵀ, the query algorithm correctly computes uᵀMv with probability at least 1

2 +
1

2c ′
√
n

, then

t > min

{
c
√
n

log sw√
n

,
cn

w

}
(4)

Better lower bounds for the uᵀMv problem are known in the systematic model. Chakraborty,
Kamma, and Larsen [8] prove that t and rmust satisfy t · r = Ω(n3/2/ logn) as long as r >

√
n. In

the case of r 6
√
n, they prove that t = Ω(n/ logn). As the systematic model subsumes the linear

version of this model, combining their result with Theorem 1 implies that Υ is (r, t)-rigid with

t = Ω

(
n3/2

max{
√
n, r} · logn

)
. (5)
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1.5 New results on the rigidity ofΥ and the cell probe complexity of the uᵀMv problem

We lower bound the rigidity of Υ, defined in Eq. (3). This also implies a lower bound in the
systematic linear model. The proof is inspired by a result of Alon, Panigrahy, and Yekahnin [5].

Theorem 2. Let n > 1024. The set Υ ⊆ Fn2 of rank one matrices is (r, t)-rigid with t > n3/2

128·max{
√
n,r} .

We improve the prior bound in Eq. (5) by anΩ(logn) factor. For example, when r 6
√
n, then

t = Ω(n), and when r = n/2, then t = Ω
(
n1/2

)
. Theorem 2 matches Eq. (1), the current best

bound for explicit rigid sets. We do not know whether there is a subspace U of linear dimension
such that all elements of Υ are at distance o(n) from U (unlike for some set rigidity results, where
the bounds are tight). As a corollary of Theorem 1, we immediately get that

T(Υ, r) >
n3/2

128 ·max{
√
n, r}

.

In other words, we prove a lower bound for the uᵀMv problem in the systematic linear model that
improves the prior bound by anΩ(logn) factor. The proof of Theorem 2 appears in Section 3.

We also prove a general cell probe lower bound for the uMv problem in the high error regime.
Our result improves the previous lower bound in Eq. (4). For example, in the linear space regime,
when s ·w = O(n), we show that t = Ω(

√
n) while the prior result gives only t = Ω(

√
n/ logn).

Theorem 3. Let M ∈ F
√
n×
√
n

2 be a matrix. If a randomized data structure with space s, word size w,
and time t correctly computes queries for the uᵀMv problem with probability at least 1

2 +
1

2
√
n/64 , then

t > min
{
c
√
n

log sαn
,
cn

α

}
where 0 < c 6 1/36 is a universal constant and α := 2(w+ log swn ).

The prior work utilizes a general lifting result for two-way communication complexity from
parity decision trees [9]. To obtain the improved bound, we use a variant of the cell sampling
technique [21, 27] combined with a reduction to a new lower bound on one-way communication
(via discrepancy). The modifications over standard techniques are needed to handle the high error
regime for a binary output problem. We note that a recent result of Larsen, Weinstein and Yu also
uses one-way communication to prove lower bounds for binary output problems for dynamic
data structures [22]. However, their method seems limited to only handling zero error query
algorithms. The proof of Theorem 3 appears in Section 4. Specifically, see Lemma 14 in Section 4
for the variant of cell sampling and see Theorem 11 in Section 4.1 for the discrepancy argument.

2 Linear Data Structures and Rigidity

In this section, we relate linear data structures and rigidity. As linear data structures are a special
case of the cell probe model, we may obtain rigidity lower bounds from strong enough static data
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structure lower bounds (when the queries are linear). We also compare with Dvir, Golovnev, and
Weinstein, who exhibit a similar connection [13]. We first provide some notation.

Definition. Let Q ⊆ Fn2 be a set. Define LT(Q, s) to be the maximum over all v ∈ Fn2 of the minimum t

sufficient to compute the inner product 〈q, v〉 for every q ∈ Q when the query algorithm’s output is a linear
function of t bits chosen from the s precomputed linear functions of v.

Table 1 provides a glimpse of our results on linear data structures along with a comparison
to [13]. Recall that a set Q ⊆ Fn2 is explicit if each coordinate of an arbitrary element of the set
can be computed in poly(n) time. The prior work shows that sufficiently strong lower bounds
against linear data structures will imply semi-explicit rigid sets. A bit more formally, consider
a data structure query set Q ⊆ Fn2 of size m for the inner product problem. They show the
following: If LT(Q, c · n) > t for some constant c, then there is a (n ′/2, t/ logn)-rigid setQ ′ of size
at mostm contained in Fn

′
2 , where n ′ > t. However, the set Q ′ is only semi-explicit in that it is in

PNP – every element can be computed by a poly(m) time algorithm with access to an NP oracle.
We now summarize a few differences between our work and [13]. Our result proves that

polynomial lower bounds on the query time imply the existence of an explicit rigid set, which is
in contrast to semi-explicit sets obtained by [13]. On the other hand, explicitness comes with a
cost; when m = poly(n), we need much stronger data structure lower bounds to produce explicit
rigid sets. Whenm� poly(n), the algorithm of [13] takes poly(m) time with access to an NP oracle
to compute an element of the semi-explicit rigid set. For problems such as the uᵀMv problem, this
is super polynomial time. The rest of this section concerns proving the following theorem, which
implies all of our results in Table 1.

Theorem 4. Let k = LT(Q, 3n/2) and let Q ⊆ Fn2 of size m be an explicit query set. There exists a
set Q ′ ⊆ Fk2 with size at most m ·

⌈
n
k

⌉
, whose elements can be computed in poly(n) time. Moreover, if

k > 2
√
n, then Q ′ is explicit and

(
k
2 , k

2

4n

)
-rigid.

Note that for every s > 3n/2, we have that LT(Q, 3n/2) > LT(Q, s). Hence, a sufficiently
strong lower bound on LT(Q, s) for any s > 3n/2 will imply a rigidity lower bound. The following
corollary shows the consequence of Theorem 4 for specific values of k.

Corollary 5. Let k = LT(Q, 3n/2) and let Q ⊆ Fn2 of size m be an explicit query set. There exists a set
Q ′ ⊆ Fk2 with size at mostm ·

⌈
n
k

⌉
, whose elements can be computed in poly(n) time. Moreover,

(a) If k = ω
(√
n logm

)
, then Q ′ is explicit and (k/2,ω(logm))-rigid.

(b) If k = Ω
(
n(1+δ)/2

)
for some δ > 0, then Q ′ is explicit and

(
k/2,Ω

(
nδ
))

-rigid.

Corollary 5(a) explains the first and last rows in Table 1, and Corollary 5(b) explains the middle
row. Using Corollary 5(a) applied to Υwithm = 22

√
n − 2

√
n+1 + 1, we obtain that a lower bound

of LT(Υ, 3n/2) > ω(n3/4) would imply the existence of an explicit setQ ′ ⊆ Fk2 of size 2O(
√
n) that

is (k/2,ω(
√
n))-rigid. We note that it is an open question to prove LT(Υ, 3n/2) > ω(

√
n).
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m vs n k = LT(Q, 3n/2) Rigidity Bounds Explicitness Reference

m = nc
k = ω

(√
n logn

)
(k/2,ω (logn))-rigid poly(n) time This work

k = ω
(

log2 n
)

(k/2,ω (logn))-rigid poly(n) time + NP oracle calls [13]

m = nc
k = Ω

(
n(1+δ)/2

) (
k/2,Ω

(
nδ
))

-rigid poly(n) time This work

k = Ω
(
nδ logn

) (
k/2,Ω

(
nδ
))

-rigid poly(n) time + NP oracle calls [13]

m = 2c
√
n

k = ω
(
n3/4

) (
k/2,ω

(√
n
))

-rigid poly(n) time This work

k = ω
(√
n · logn

) (
k/2,ω

(√
n
))

-rigid poly
(

2
√
n
)

time + NP oracle calls [13]

Table 1: Comparison with [13, Theorem 7.1]: LetQ ⊆ Fn2 of sizem be a query set, c > 1 and δ > 0
be constants, and let k = LT(Q, 3n/2). The second column states the lower bound on LT(Q, 3n/2)
that implies existence of rigid sets whose parameters are given in the third column. All rigid sets
have size at most poly(m) and are contained in Fk2 .

2.1 Proof of Theorem 4

We already know the equivalence between systematic linear data structures and rigidity (from
Theorem 1). Therefore, it is sufficient to design a linear data structure from a systematic linear
data structure to relate the former with rigidity.

Proposition 6. Let Q ⊆ Fn2 be a query set. If T(Q, r) 6 t, then LT(Q,n+ r) 6 t+ r.

Proof. Let v ∈ Fn2 be the input data, and let 〈a1, v〉 , . . . , 〈ar, v〉 be the r redundant bits stored by the
systematic linear data structure. We now describe a linear data structure forQwith spacen+ r and
query time t+ r. The data structure stores 〈a1, v〉 , . . . , 〈ar, v〉 , 〈e1, v〉 , . . . , 〈en, v〉, where e1, . . . , en
are the standard basis vectors. The query algorithm on q ∈ Q first accesses 〈a1, v〉 , . . . , 〈ar, v〉
and then simulates the query algorithm of the systematic linear data structure on q. Since the
systematic linear data structure accesses at most t bits from 〈e1, v〉 , . . . , 〈en, v〉, we can conclude
that the query time is at most t+ r.

We prove that if a set contained in a n-dimensional space is (r, t)-rigid, then there is another
(r, tr/n)-rigid set which is contained in a 2r-dimensional space.

Lemma 7. Let r,n be positive integers. If S ⊆ Fn2 is (r, t)-rigid of size m, then there is a set S ′ ⊆ F2r
2

of size at most m ·
⌈
n
2r

⌉
that is (r, tr/n)-rigid. Moreover, if S is explicit, then each element of S ′ can be

computed in poly(n) time.

Proof. Let k =
⌊
n
2r

⌋
and define S1, . . . ,Sk ⊆ F2r

2 by

Si = {(s[2r · (i− 1) + 1], . . . , s[2r · i]) | s ∈ S}

for each i ∈ {1, 2, . . . , k}. Additionally, if n/2r is not an integer, then define

Sk+1 = {(s[2r · k+ 1], . . . , s[n], 0, . . . , 0) | s ∈ S} ⊆ F2r
2 ;
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otherwise set Sk+1 = ∅. Define S ′ =
⋃k+1
i=1 Si. We claim that S ′ is (r, tr/n)-rigid. Indeed, for the

sake of contradiction assume that there is a subspace V in F2r
2 of dimension r such that all points in

S ′ are at a distance less than tr/n from V . Consider the subspace {(v, v, . . . , v) | v ∈ V} ⊆ F
2r·(k+1)
2

and project it to the first n coordinates. Call this subspace V ′, which has dimension r. Now, the
distance of each point in S from V ′ is less than tr

n ·
⌈
n
2r

⌉
< t, which is a contradiction.

Regarding the explicitness of S ′, it is clear that all coordinates of an element of S ′ correspond
to some coordinate of a specific element of S. Since S is explicit, we can infer that each element of
S ′ can be computed in poly(n).

Proof of Theorem 4. Since LT(Q, 3n/2) = k and k 6 n, Proposition 6 implies that T(Q,k/2) > k/2.
Therefore by Theorem 1, we can conclude that Q is (k/2,k/2)-rigid. Lemma 7 implies that there
exists a setQ ′ that is

(
k
2 , k

2

4n

)
-rigid and the size ofQ ′ is at mostm ·

⌈
n
k

⌉
. Moreover, every element

of Q ′ can be computed in time poly(n). Since k/2 >
√
n, we can conclude that Q ′ is explicit.

3 Rigidity Lower Bounds for the Set of Rank One Matrices

Before proving Theorem 2, we present preliminaries. Recall two standard binomial estimates:

Proposition 8. For integers 0 6 k 6 `,

1. log
(
`
k

)
6 k · log e`k .

2. if k 6 `/16, then
∑k
i=0
(
`
i

)
6 2`/4.

We will need a useful property about the distance of a point from a subspace.

Lemma 9. Let V ⊆ F`2 be a subspace. For u1,u2 ∈ F`2, dH (u1 + u2,V) 6 dH (u1,V) + dH (u2,V) .

Proof. Let u ′1,u ′2 ∈ V be the points in V closest to u1 and u2 respectively. Since u ′1 + u
′
2 ∈ V , we

have
dH(u1 + u2,V) 6 dH(u1 + u2,u ′1 + u

′
2) = dH(u1 + u2,u ′1 + u

′
2).

Note that dH(u1 + u2,u ′1 + u
′
2) is the number of ones in u1 + u2 + u

′
1 + u

′
2, which is at most the

sum of the number of ones in u1 + u
′
1 and u2 + u

′
2. Therefore,

dH(u1 + u2,u ′1 + u
′
2) 6 dH(u1,u ′1) + dH(u2,u ′2) = dH(u1,V) + dH(u2,V).

A simple counting argument establishes the existence of a point that is far away in Hamming
distance from a collection of large sized sets.

Lemma 10. Let V1, . . . ,Vk be subsets of F`2, each of size at most 2`/2. If k < 2`/4, then there is a vector
v ∈ F`2 such that the Hamming distance of v from each Vi is at least `/16.

Proof. For every i ∈ [k], define B(Vi, `/16) =
∣∣{v ∈ F`2

∣∣ dH (v,Vi) < `/16
}∣∣ . For any u ∈ Vi, the

number of vectors in F`2 at a distance less than `/16 from u is at most
∑`/16
j=0

(
`
j

)
6 2`/4, where the
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inequality follows from Proposition 8. Hence B(Vi, `/16) 6 |Vi| · 2`/4 = 23`/4. Since

k∑
i=1

B(Vi, `/16) 6 k · 23`/4 < 2`,

there is a v ∈ F`2 such that dH (v,Vi) > `/16 for every i ∈ [k].

3.1 Proof of Theorem 2

Let V be any r ′-dimensional subspace of Fn2 , where r ′ > r is the smallest positive integer divisible
by
√
n. We first define the inverse of vec(·). For every v ∈ Fn2 , define mat(v) to be the matrix

obtained by splitting v into
√
n length consecutive blocks and stacking each of these blocks to

form a
√
n×
√
n matrix. Formally, mat(v) ∈ F

√
n×
√
n

2 is such that mat(v)[a,b] = v[(a− 1)
√
n+ j]

for every a,b ∈ [
√
n]. Note that vec(mat(v)) = v.

We provide a brief outline of the proof of Theorem 2. The first step of the proof is to produce
a vector in v that is at a distance of Ω(n) from V and mat(v) is low rank. The rank being low is
helpful as we can express mat(v) as the sum of a small number of rank one matrices. Lemma 9
will then imply the existence of a rank one matrix that is far away from V . If we only cared
about the existence of a vector that is far away from V , Lemma 10 would suffice. To ensure that
simultaneously the rank is small, we first project V on to n/2r ′ coordinates indexed by consecutive
blocks each of length 2r ′. Then we find a vector v ′ ∈ F2r ′

2 that is far away from all the projections,
which is still guaranteed by Lemma 10. Concatenating v ′ with itself 2r ′ times has the property
that its corresponding matrix is low rank.

Let k = max
{⌊

n
2r ′
⌋

, 1
}

. The goal is to find a v ∈ Fn2 such that dH (v,V) > k · r ′/8 and the rank
of mat(v) is at most 2r ′/

√
n. If

⌊
n

2r ′
⌋
> 1, then define S1, . . . ,Sk such that

Si =
{
(i− 1) · 2r ′ + 1, . . . , i · 2r ′

}
for i ∈ [k]; otherwise, define S1 = [n]. By definition, the dimension of VSi is at most r ′ = |Si|/2, for
every i ∈ [k]. Since r ′ >

√
n and n > 1024, we can infer that k 6 2r ′ and 2r ′ < 2r

′/2. Lemma 10
implies the existence of a v ′ ∈ F2r ′

2 with the property that dH (v ′,VSi) > r ′/8 for every i ∈ [k].
Now define v ∈ Fn2 by

v[i] =


v ′ [imod 2r ′] if i 6 k · 2r ′ and imod 2r ′ 6= 0,

v ′ [2r ′] if i 6 k · 2r ′ and imod 2r ′ = 0,

0 if i > 2kr ′,

for all i ∈ [n]. In words, v is the length n vector that is the concatenation of k copies of v ′ along
with the vector of zeros of length n− 2kr ′. By the choice of v, we get that,

dH (v,V) >
k∑
i=1

dH (v,VSi) > k · r
′/8.

11



Moreover, the rank of mat(v) is at most 2r ′√
n

. Therefore we can express

mat(v) =

2r ′/
√
n∑

i=1

aib
ᵀ
i ,

for some a1,b1, . . . ,a 2r ′√
n

,b 2r ′√
n

∈ F
√
n

2 . By Lemma 9, we know that

dH (v,V) 6
2r ′/
√
n∑

i=1

dH
(
vec(aib

ᵀ
i ),V

)
.

Hence there exists an i ∈
[

2r ′√
n

]
such that dH

(
vec(aib

ᵀ
i ),V

)
>
√
n·k
16 > n3/2

64r ′ . The observation that

r ′ 6 2 max{
√
n, r} completes the proof of the theorem.

Remark (Extension to strong rigidity). Alon and Cohen [4] defined the notion of strong rigidity; a
set Q ⊆ Fn2 is (r, t)-strongly rigid if for every subspace of Fn2 of dimension at most r, the average
distance of all the points to the subspace is at least t. For strong rigidity, the best lower bounds
known for explicit sets are also of the form given in Eq. (1). We can show that Υ is (r, t)-strongly
rigid with t > Ω

(
n3/2

max{
√
n,r}

)
, matching the best strong rigidity bounds known for explicit sets.

We sketch the proof here. We know that

uᵀMv+ (u+ ei)
ᵀMv+ uᵀM(v+ ej) + (u+ ei)

ᵀM(v+ ej) = b
ᵀ
iMbj,

where u, v ∈ F
√
n

2 and e1, . . . , e√n are standard basis vectors in F
√
n

2 . This fact can be used to prove
that the matrixMΥ corresponding to the set Υ is a generator matrix of a 4-query locally decodable
code that tolerates a constant fraction of errors. A result of [13, Theorem 6] shows that Theorem 2
and the locally decodable code property ofMΥ imply the strong rigidity of Υ.

4 Cell Probe Lower Bounds for the uᵀMv Problem

We know of two techniques for proving cell probe lower bounds matching Eq. (2). One is a
technique of Pǎtraşcu and Thorup [30] who combined the communication complexity simulation
of Miltersen [25] with multiple queries on the same input data. The other is the technique we use,
which is based on cell sampling. Cell sampling typically requires one to work with large sized
fields in order to handle errors. This large field size is needed to encode a large subset of the
correctly computed queries using a small subset of cells. Here, we avoid encoding the subset of
queries by a reduction to one-way communication complexity.

Proof outline for Theorem 3. By Yao’s min-max principle, it suffices to prove a lower bound on
deterministic data structures. The hard distribution on the input data M and query uvᵀ we use is
given by sampling M, (u, v) uniformly and independently at random. We prove the theorem by
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contradiction, and we start by assuming that the query time is small. The proof is carried out in
three steps. First, modify the data structure so that for every M, the fraction of queries correctly
computed is at least 1/2. This modification only increases the query time and space by 1, and it
can only increase the overall probability of the query algorithm being correct. Second, for a given
M, we use a variant of cell sampling (see Lemma 14) to obtain a small subset of cells S and a
large subset of queriesQ ′ such that all queries inQ ′ can be computed by only accessing cells in S.
Moreover,

Pr
[
query algorithm correctly computes uᵀMv

∣∣ uvᵀ ∈ Q ′]
≈ Pr [query algorithm correctly computes uᵀMv] .

Third, we show that S can be used to design an efficient protocol for the following communication
game: Alice’s input is M and Bob’s input is uvᵀ, and the goal is for Bob to correctly compute
uᵀMv on a sufficiently good fraction of the inputs after receiving a message from Alice.

We now describe the protocol (see Figure 1). Alice sends the locations and contents of S.
This ensures that Bob correctly computes uᵀMv on a large fraction of queries in Q ′. Alice also
communicates the majority value of uᵀMv for uvᵀ /∈ Q ′ so that Bob is correct on half of his
possible inputs that are not inQ ′. Overall, Bob’s output is correct on a sufficiently good fraction of
allM, (u, v). Since we have assumed that the query time is small, we are able to show that Alice’s
communication is small. This contradicts a lower bound on the communication complexity of this
game. More precisely, we prove the following lower bound.

Theorem 11. Suppose that Alice gets a uniformly random matrix M ∈ F
√
n×
√
n

2 as input and Bob
receives a uniform pair (u, v) ∈ F

√
n

2 ×F
√
n

2 as input. If Alice sends a deterministic message to Bob and
Bob computes uᵀMv such that

Pr
M,u,v

[Bob computes uᵀMv correctly] >
1
2
+

1
2
√
n/8

,

then Alice must communicate at least n/10 bits.

Previously, in the randomized two-way communication setting, Chattopadhyay, Koucký, Loff,
and Mukhopadhyay [9] proved a lower bound for the game given in Theorem 11. Their lower
bound implies the lower bound in Theorem 11 against randomized protocols. We need a lower
bound against deterministic protocols under the uniform distribution on the inputs, and we cannot
use their theorem as a black-box. We provide a straightforward proof of Theorem 11 in Section 4.1
by using the discrepancy method on a related communication game (resembling a direct sum, where
Bob receives multiple inputs).

Preliminaries. Before presenting the proof of Theorem 3, we define some notation. For a real
valued function f with a finite domain X× Y, Ex,y [f(x,y)] = 1

|X|·|Y| ·
∑
x∈X,y∈Y f(x,y). Similarly,

for X ′ ⊆ X, Ex,y [f(x,y) | x ∈ X ′] = 1
|X ′|·|Y| ·

∑
x∈X ′,y∈Y f(x,y). An argument in the proof of

13



Theorem 3 requires an upper bound on the number of bits to encode the contents and locations of
a subset of the cells, which is given by the following proposition.

Proposition 12. Let S be a subset of the cells of a data structure with word length w and size s. Then, the
contents and locations of S can be encoded in |S| ·w+ |S| · log es

|S| bits.

Proof. Since each cell stores w bits, the number of bits to encode the contents is |S| ·w. Since the
total number of cells is s, the locations can be encoded in log

(
s
|S|

)
6 |S| · log es

|S| bits, where the
inequality followed from Proposition 8.

4.1 Proof of Theorem 11

We start by discussing a slightly related problem, whose solution will lead to the proof strategy
used here. Let M ∈ F

√
n×
√
n

2 , v ∈ F
√
n

2 , and e1, . . . , e√n be the standard basis vectors in F
√
n

2 .
Consider the communication game in which Alice gets as input a uniform random M and Bob
gets as input a uniform random pair (ei, v). Bob’s goal is to compute eᵀiMv after receiving a
message from Alice. To understand how much Alice has to communicate, it is natural to look at the
problem where Bob computes

∑√n
i=1 e

ᵀ
iMvi, where v1, . . . , v√n ∈ F

√
n

2 . Now observe that this sum

is the same as the trace of
(∑√n

i=1 eiv
ᵀ
)
M, which in turn is the inner product between two n-bit

vectors. The communication complexity of the inner product between two n-bit vectors is very
well understood. Therefore, the lower bound on the amount of communication to compute the
inner product between two n-bit vectors translates to a lower bound to the problem of computing
e
ᵀ
iMv. This strategy applied to our setting gives us the following lower bound, which will be used

to prove Theorem 11. Our presentation closely follows [32, Chapter 5].

Lemma 13. Let 0 < ε 6 1/2 and let k be an integer. Alice gets a uniformly random M ∈ F
√
n×
√
n

2 as
input and Bob receives k uniform pairs (u1, v1) , . . . , (uk, vk) ∈ F

√
n

2 ×F
√
n

2 as input. Assume that Alice
communicates a deterministic message to Bob, and Bob computes

∑k
i=1 u

ᵀ
iMvi with

Pr
M,u1,v1,...,uk,vk

[
Bob computes

k∑
i=1

u
ᵀ
iMvi correctly

]
>

1
2
+ ε.

If k 6
√
n, then Alice must communicate at least 9k

√
n/40 − log(1/ε) bits.

Proof. We use the discrepancy method to prove the communication lower bound. This requires
upper bounding the discrepancy of the communication matrix under a given distribution. Let R
be a rectangle of the communication matrix, which is defined by indicator functions AR and
BR such that (M, ((u1, v1) , . . . , (uk, vk))) is in the rectangle R if and only if AR(M) = 1 and
BR ((u1, v1) , . . . , (uk, vk)) = 1.

Consider the distribution in which M, (u1, v1) , . . . , (uk, vk) are chosen at random uniformly
and independently. We upper bound the discrepancy under this distribution. In other words, we
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claim that for every rectangle R,

E
M,(u1,v1),...,(uk,vk)

[
AR(M)BR ((u1, v1) , . . . , (uk, vk)) (−1)

∑k
i=1u

ᵀ
iMvi

]
6 2 · 2−9k

√
n/40. (6)

By a standard relation in communication complexity between the number of bits communicated
and discrepancy of rectangles (see [32, Chapter 5, Theorem 5.2]), Eq. (6) implies that Alice must
communicate at least 9k

√
n/40 − log(1/ε) bits. We are left with the proof of Eq. (6).(

E
(u1,v1),...,(uk,vk)

[
BR ((u1, v1) , . . . , (uk, vk)) E

M

[
AR(M)(−1)

∑k
i=1u

ᵀ
iMvi

]])2

6 E
(u1,v1),...,(uk,vk)

[
BR ((u1, v1) , . . . , (uk, vk))

2
(

E
M

[
AR(M)(−1)

∑k
i=1u

ᵀ
iMvi

])2
]

6 E
(u1,v1),...,(uk,vk)

[(
E
M

[
AR(M)(−1)

∑k
i=1u

ᵀ
iMvi

])2
]

.

where the first inequality follows from convexity and the second one follows from the fact that
BR ((u1, v1) , . . . , (uk, vk)) 6 1. Now

E
(u1,v1),...,(uk,vk)

[(
E
M

[
AR(M)(−1)

∑k
i=1u

ᵀ
iMvi

])2
]

6 E
(u1,v1),...,(uk,vk),M,M ′

[
AR(M)AR(M

′)(−1)
∑k
i=1u

ᵀ
iMvi+

∑k
i=1u

ᵀ
iM

′vi
]

6 E
M,M ′

[∣∣∣∣∣ E
(u1,v1),...,(uk,vk)

[
(−1)

∑k
i=1u

ᵀ
i (M+M ′)vi

]∣∣∣∣∣
]

= E
M

∣∣∣∣∣ E
(u,v)

[
(−1)u

ᵀMv
]∣∣∣∣∣
k
 ,

where the last equality follows from the fact that (u1, v1), . . . , (uk, vk) are chosen independent
of each other and M +M ′ is uniformly distributed as M and M ′ are chosen uniformly and
independently at random. We are left with upper bounding EM

[∣∣E(u,v)
[
(−1)u

ᵀMv
]∣∣k]. First

note that ifM has rank r, then Eu,v
[
(−1)u

ᵀMv
]
= 2−r. This is because,

E
u,v

[
(−1)u

ᵀMv
]
=

1
2
√
n
·

( ∑
v:Mv=0

1

)
+

1
2
√
n
·

 ∑
v:Mv 6=0

E
u

[
(−1)u

ᵀMv
] =

2
√
n−r

2
√
n

+ 0 = 2−r.

In addition, PrM
[
rank ofM 6 9

√
n/20

]
6 2−9n/10. Indeed, the number of matrices in F

√
n×
√
n

2
of rank at most k is at most (

2
√
n

k

)
·
(
2k
)√n

6 22k
√
n.
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Therefore, using the law of total expectation, we have that

E
M

∣∣∣∣∣ E
(u,v)

[
(−1)u

ᵀMv
]∣∣∣∣∣
k
 6 Pr

M

[
rank ofM 6 9

√
n/20

]
+ 2−9k

√
n/20 6 2 · 2−9k

√
n/20,

where the last inequality followed from the fact that k 6
√
n.

Proof of Theorem 11. Let c be the number of bits communicated by Alice. We show that c > n/10.
Define ZM(u, v) = 1 if Bob correctly computes uᵀMv and ZM(u, v) = −1 otherwise. By the
definition of ZM(u, v) and the lower bound on the probability of Bob’s computation being correct,
we have that EM,u,v [ZM(u, v)] > 2 · 2−

√
n/8.

We note that it is without loss of generality that Eu,v [ZM(u, v)] > 0 for every M ∈ F
√
n×
√
n

2 .
This is because Alice on inputM can send an extra bit indicating whether Eu,v [ZM(u, v)] < 0 and
Bob will flip his output accordingly.

We now use the given protocol to design a protocol for a new communication game: Suppose
that Alice gets a uniformly random M ∈ F

√
n×
√
n

2 as input and Bob receives
√
n uniform pairs

(u1, v1), . . . , (u√n, v√n) ∈ F
√
n

2 ×F
√
n

2 as input. We will use Lemma 13 with k =
√
n to obtain the

desired lower bound on c.
We claim that there is a communication protocol in which Alice communicates c bits and Bob

computes
∑√n
i=1 u

ᵀ
iMvi such that

Pr
M,u1,v1,...,u√n,v√n

Bob computes

√
n∑

i=1

u
ᵀ
iMvi correctly

 >
1
2
+

2
√
n−1

2n/8 . (7)

Alice’s message is same as before, and Bob computes each of uᵀiMvi separately and outputs the
sum modulo 2. We now prove Eq. (7). For a fixed M, the probability that Bob correctly computes∑√n
i=1 u

ᵀ
iMvi is 1

2

(
1 + (Eu,v [ZM(u, v)])

√
n
)

. Therefore the overall probability that Bob correctly

computes
∑√n
i=1 u

ᵀ
iMvi is at least

1
2

(
1 +

∑
M(Eu,v [ZM(u, v)])

√
n

2n

)
>

1
2

(
1 +

(
E

M,u,v
[ZM(u, v)]

)√n)
>

1
2
+

2
√
n−1

2n/8 ,

where the first inequality follows from convexity of the function f(x) = xk with k =
√
n. Applying

Lemma 13 with k =
√
n implies that c > n/10, which completes the proof of the theorem.

4.2 Proof of Theorem 3

If n < 36, the theorem is vacuously true as c 6 1/36. For the rest of the argument we will assume
that n > 36. We prove a lower bound on the query time t against deterministic data structures
with space s and word sizew. Suppose that the input dataM and query uvᵀ is given by choosing
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M,u, v uniformly and independently at random, and the query algorithm is guaranteed to satisfy

Pr
M,u,v

[query algorithm computes uᵀMv correctly] >
1
2
+ 2−

√
n/16.

By Yao’s minmax principle, this will imply a lower bound on randomized data structures.
We first modify the given data structure to ensure that for everyM ∈ F

√
n×
√
n

2 , the probability
that uᵀMv is correctly computed is at least 1/2. Assume that we have a data structure with query
time t ′, space s ′ and word size w. The modified data structure stores an extra bit indicating
whether the Pru,v [query algorithm computes uᵀMv correctly] is less than 1/2 or not for a given
M. The query algorithm is the same as before, but accesses this extra bit to flip the output if it is
set to 1. Clearly, the new data structure has query time t = t ′ + 1, space s = s ′ + 1 and word size
w. Moreover, under this modification, we have

• PrM,u,v [query algorithm computes uᵀMv correctly] > 1/2 + 2−
√
n/16.

• Pru,v [query algorithm computes uᵀMv correctly] > 1/2 for everyM.

In the rest of the proof, we work with this modification and show that t > Ω

(
min
{
n
β ,
√
n

log sβn

})
,

where β = 2(w+ log sw/n). Observe that β 6 n/256; otherwise the lower bound is vacuous.

Assume by contradiction that t 6 min
{

n
256β ,

√
n

256 log sβn

}
. Define ZM(u, v) = 1 if the query

algorithm correctly computes uᵀMv, and −1 otherwise. We have

E
M,u,v

[ZM(u, v)] = 2 · Pr
M,u,v

[query algorithm computes uᵀMv correctly] − 1 > 2 · 2−
√
n/16. (8)

Note that EM,u,v [ZM(u, v)] captures the advantage or bias of the data structure - it is much more
convenient to work with the advantage than the probability of the query algorithm being correct.

The following lemma, a variant of cell sampling, guarantees the existence of a small subset
S of cells such that a large number of queries Q ′ can be computed by only accessing S, and
Eu,v [ZM(u, v) | uvᵀ ∈ Q ′] ≈ Eu,v [ZM(u, v)].

Lemma 14. Let M ∈ F
√
n×
√
n

2 . Define Q1 = {uvᵀ | ZM(u, v) = 1} and Q2 = {uvᵀ | ZM(u, v) = −1}.

If t 6 min
{

n
256β ,

√
n

256 log sβn

}
, then there exits a subset of cells S, and subsetsQ ′1 ⊆ Q1 andQ ′2 ⊆ Q2 such

that

1. |S| =
⌈
n

128β

⌉
,

2. Pru,v
[
uvᵀ ∈ Q ′1

]
− Pru,v

[
uvᵀ ∈ Q ′2

]
> Eu,v [ZM(u, v)] · 2−

√
n/16,

3. Q ′1 ∪Q ′2 is the set of all queries computed by accessing cells only in S.

We move on to the final step of the proof of Theorem 3. What is left is to design a one-way
protocol using the sets guaranteed by Lemma 14. The protocol is described in Figure 1. We will
show the validity of this protocol by showing that both Alice and Bob know the subset Q ′ of
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Input: Alice’s input isM and Bob’s input is (u, v)
Output: Alice communicates a deterministic message and Bob computes uᵀMv.

1 Let Q1 = {uvᵀ | ZM(u, v) = 1} and Q2 = {uvᵀ | ZM(u, v) = −1};
2 Apply Lemma 14 with Q1,Q2 to obtain a subset of cells S and subsets Q ′1 ⊆ Q1 and
Q ′2 ⊆ Q2;

3 Let b ∈ {0, 1} be such that Pru,v [u
ᵀMv = b | uvᵀ /∈ Q ′] > Pru,v [u

ᵀMv = 1 − b | uvᵀ /∈ Q ′],
where Q ′ = Q ′1 ∪Q ′2;

4 Alice communicates b followed by locations and contents of S;
5 if uvᵀ ∈ Q ′ then Bob uses the query algorithm to compute uᵀMv;
6 else Bob outputs b;

Figure 1: One-way protocol on inputsM, (u, v) computing uᵀMv.

queries. Since Alice’s input is M, she knows the contents of all the cells, which gives S. With
regard to knowing Q ′, the locations and contents of cells in S suffice. This is because the query
algorithm can be simulated on all queries to check if any cell outside of S is being accessed. We
are proving Theorem 3 by contradicting Theorem 11, which is achieved by the following.

Lemma 15. The protocol in Figure 1 has the following guarantees (a) Alice communicates fewer than n/10
bits, and (b) PrM,u,v [Bob computes uᵀMv correctly] > 1/2 + 1/2

√
n/8.

Now, we need to prove Lemmas 14 and 15 to complete the proof of Theorem 3.

Proof of Lemma 14. Let S be a uniformly random subset of the cells of size |S| =
⌈
n

128β

⌉
. Define

D(u, v,S) = ZM(u, v) if the query algorithm only accesses cells in S to compute uᵀMv; otherwise
D(u, v,S) = 0. By linearity of expectation,

E
u,v,S

[D(u, v,S)] = E
u,v

[ZM(u, v)] ·

(
s−t
|S|−t

)(
s
|S|

) = E
u,v

[ZM(u, v)] · |S| · (|S|− 1) · · · (|S|− t+ 1)
s · (s− 1) · · · (s− t+ 1)

> E
u,v

[ZM(u, v)] ·
(
|S|− t

s

)t
.

Recall that |S| > n
128β and t 6 n

256β . Moreover, β = 2(w+ log sw/n) > 2. This implies that

(
|S|− t

s

)t
> 2−t·log 256sβ

n > 2−16t·log sβn .

So we get Eu,v,S [D(u, v,S)] > Eu,v [ZM(u, v)] · 2−16·t·log sβn . Therefore, there exists an S such that

E
u,v

[D(u, v,S)] > E
u,v

[ZM(u, v)] · 2−16·t·log sβn > E
u,v

[ZM(u, v)] · 2−
√
n/16,

18



where the last inequality follows from the fact that 16 · t · log sβn 6
√
n/16. Setting

Q ′1 = {uvᵀ ∈ Q1 | D(u, v,S) = 1} and Q ′2 = {uvᵀ ∈ Q2 | D(u, v,S) = −1}

completes the proof of the lemma.

Proof of Lemma 15. We first prove part (a). Recall that β = 2
(
w+ log swn

)
. Let c be the number of

bits communicated by Alice. By Proposition 12 and the definition of β,

c 6 1 +

⌈
n

128β

⌉
·w+

⌈
n

128β

⌉
· log

128e · sβ
n

= 1 +

⌈
n

128β

⌉
·
(
w+ log

sβ

n

)
+

⌈
n

128β

⌉
· log 128e.

Since β > 2w, β > 2 log s
n and β > logβ, we get that w+ log sβn 6 2β. Moreover, using the fact

that
⌈
n

128β

⌉
6 n

128β + 1, β > 2 and β 6 n/256, we can say that

c 6 1 +
2n
128

+ 2β+
n log 128e

128β
+ log 128e

6 1 +
2n
128

+
4.5n

128(β/2)
+
n

128
+ log 128e 6 10 +

7.5n
128

<
n

10
,

where the last inequality follows from n > 36.
We now prove part (b) of the claim. Define Z ′M(u, v) = 1 if the Bob correctly computes uᵀMv

and Z ′M(u, v) = −1 otherwise. The probability with which Bob correctly computes uᵀMv is given
by
(
1 + EM,u,v

[
Z ′M(u, v)

])
/2. We will show that EM,u,v

[
Z ′M(u, v)

]
> 2 · 2−

√
n/8, which will

imply that the probability of being correct is at least 1/2 + 2−
√
n/8.

Let Q1,Q2,Q ′1,Q ′2, and Q ′ be as defined in the protocol in Figure 1. We first establish some
properties about these sets. We know that Pru,v[uv

ᵀ ∈ Q1] − Pru,v[uv
ᵀ ∈ Q2] = Eu,v [ZM(u, v)].

Moreover, the application of Lemma 14 in the protocol is valid since t 6 n
256α , and hence

Pr
u,v

[
uvᵀ ∈ Q ′1

]
− Pr
u,v

[
uvᵀ ∈ Q ′2

]
> E
u,v

[ZM(u, v)] · 2−
√
n/16. (9)

Since Bob can simulate the query algorithm on Q ′ by accessing only S, which is guaranteed by
Lemma 14, we have

E
u,v

[
Z ′M(u, v)

]
= Pr
u,v

[
uvᵀ ∈ Q ′

]
·
(

Pr
u,v

[
uvᵀ ∈ Q ′1 | uvᵀ ∈ Q ′

]
− Pr
u,v

[
uvᵀ ∈ Q ′2 | uvᵀ ∈ Q ′

])
+ Pr
u,v

[
uvᵀ /∈ Q ′

](
Pr
u,v

[
uᵀMv = b | uvᵀ /∈ Q ′

]
− Pr
u,v

[
uᵀMv = 1 − b | uvᵀ /∈ Q ′

])
>

(
Pr
u,v

[
uvᵀ ∈ Q ′1

]
− Pr
u,v

[
uvᵀ ∈ Q ′2

])
> E
u,v

[ZM(u, v)] · 2−
√
n/16,

where the first inequality follows from the choice of b and the second inequality used Eq. (9).
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To conclude,

E
M,u,v

[
Z ′M(u, v)

]
= E
M

[
E
u,v

[
Z ′M(u, v)

]]
> E
M

[
E
u,v

[ZM(u, v)] · 2−
√
n/16

]
= E
M

[
E
u,v

[ZM(u, v)]
]
· 2−
√
n/16

= E
M,u,v

[ZM(u, v)] · 2−
√
n/16 > 2 · 2−

√
n/8,

where the last inequality follows from Eq. (8).
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