
Algebraic Hardness versus Randomness in Low Characteristic

Robert Andrews∗

May 21, 2020

Abstract

We show that lower bounds for explicit constant-variate polynomials over fields of characteristic
p > 0 are sufficient to derandomize polynomial identity testing over fields of characteristic p.
In this setting, existing work on hardness-randomness tradeoffs for polynomial identity testing
requires either the characteristic to be sufficiently large or the notion of hardness to be stronger
than the standard syntactic notion of hardness used in algebraic complexity. Our results make
no restriction on the characteristic of the field and use standard notions of hardness.

We do this by combining the Kabanets-Impagliazzo generator with a white-box procedure to
take pth roots of circuits computing a pth power over fields of characteristic p. When the number
of variables appearing in the circuit is bounded by some constant, this procedure turns out to be
efficient, which allows us to bypass difficulties related to factoring circuits in characteristic p.

We also combine the Kabanets-Impagliazzo generator with recent “bootstrapping” results in
polynomial identity testing to show that a sufficiently-hard family of explicit constant-variate
polynomials yields a near-complete derandomization of polynomial identity testing. This result
holds over fields of both zero and positive characteristic and complements a recent work of Guo,
Kumar, Saptharishi, and Solomon, who obtained a slightly stronger statement over fields of
characteristic zero.

1 Introduction

The interaction between computational hardness and pseudorandomness is a central theme of
computational complexity. The goal of this vein of work is to show that a class C of problems
that are solvable by randomized algorithms can in fact be solved by deterministic algorithms which
are not much slower than the known randomized algorithm, assuming lower bounds for a related
class D. When trying to derandomize BPP, the class of problems solvable in polynomial time by a
randomized Turing machine with failure probability at most 1/3, we understand this problem quite
well. A series of works culminated in that of Impagliazzo and Wigderson [IW97], which showed that
BPP = P if there are problems in E which require boolean circuits of exponential size. Subsequent
work by Shaltiel and Umans [SU05] and Umans [Uma03] further tightened the quantitative tradeoffs
obtainable for derandomizing BPP.

In this work, we focus on the question of hardness versus randomness in the more restricted
computational model of algebraic circuits, which naturally compute multivariate polynomials over
a specified base field F. Here, the algorithmic problem of interest is polynomial identity testing
(PIT), which is the problem of determining if a given algebraic circuit computes the identically zero
polynomial. We typically consider identity testing of circuits whose size and degree are bounded by
a polynomial function in the number of variables. This low-degree regime captures polynomials of
∗Department of Computer Science, University of Illinois at Urbana-Champaign. Email: rgandre2@illinois.edu.

Supported by NSF grant CCF-1755921.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 81 (2020)

interest to computer scientists, such as the determinant and permanent, and corresponds to typical
algorithmic applications of PIT. In this regime, the problem of PIT is easily solved with randomness
by evaluating the circuit at a randomly chosen point of a large enough grid. The correctness
of this algorithm follows from the Schwartz-Zippel lemma, which roughly says that a low-degree
multivariate polynomial cannot vanish at many points of a sufficiently large grid. To date, no
deterministic algorithm for PIT is known that substantially improves on the naïve derandomization
of the Schwartz-Zippel lemma.

Polynomial identity testing has widespread applications in theoretical computer science and has
led to randomized algorithms for perfect matching [Lov79; KUW86; MVV87], primality testing
[AB03; AKS04], and equivalence testing of read-once branching programs [BCW80], among other
problems. In light of the utility of PIT as an algorithmic primitive, it is worth understanding to
what extent PIT can be derandomized. There is a large body of work concerned with unconditional
derandomization of PIT for various sub-classes of algebraic circuits. For more on this, we refer the
reader to the surveys of Shpilka and Yehudayoff [SY10] and Saxena [Sax09; Sax14]. In this work, we
will focus on conditional derandomization of PIT under suitable hardness assumptions.

1.1 Prior Work

The first instantiation of the hardness-randomness paradigm for polynomial identity testing was
given by Kabanets and Impagliazzo [KI04]. Their work implemented the design-based approach of
Nisan and Wigderson [NW94] in the algebraic setting, showing that lower bounds for an explicit
family of multivariate polynomials can be used to derandomize PIT.

Subsequent work by Dvir, Shpilka, and Yehudayoff [DSY09] and Chou, Kumar, and Solomon
[CKS18] extended this to the setting of bounded-depth circuits, roughly showing that lower bounds
against depth-(∆ +O(1)) circuits suffice to derandomize identity testing of depth-∆ circuits, for any
constant ∆. The result of Dvir, Shpilka, and Yehudayoff [DSY09] works with any hard polynomial,
but scales poorly with the individual degree of the circuit being tested. Chou, Kumar, and Solomon
[CKS18] refined the approach of Dvir, Shpilka, and Yehudayoff [DSY09] and showed that if the
family of hard polynomials has sufficiently low degree, then this dependence on the individual degree
of the circuit being tested can be avoided. Implementing the hardness-randomness paradigm in
low-depth is motivated in part by a host of depth-reduction results in algebraic complexity [AV08;
Koi12; Tav15; GKKS16] which show that polynomials computable by small circuits can be computed
by non-trivially small low-depth circuits.

Returning to the setting of unrestricted circuits, recent work of Guo, Kumar, Saptharishi, and
Solomon [GKSS19] uses a stronger hardness assumption than that of Kabanets and Impagliazzo
[KI04] and obtains a stronger derandomization of PIT. Specifically, Guo, Kumar, Saptharishi, and
Solomon [GKSS19] obtain a polynomial-time derandomization of PIT using lower bounds against an
explicit family of constant-variate polynomials. For comparison, Kabanets and Impagliazzo [KI04]
only obtain quasipolynomial-time algorithms for PIT under multivariate hardness assumptions. In
Section 6 of this work, we further discuss the relationship between these hardness assumptions and
provide evidence for the strength of constant-variate hardness compared to multivariate hardness.

A separate line of work by Agrawal, Ghosh, and Saxena [AGS19] and Kumar, Saptharishi, and
Tengse [KST19] shows that PIT exhibits a “bootstrapping” phenomenon. That is, if one can obtain
a barely non-trivial derandomization of PIT for circuits of size and degree which are unbounded in
the number of variables, then it follows that there is a near-complete derandomization of PIT for
circuits of polynomial size and degree.

From these works, we have a relatively good understanding of what derandomization of PIT
is possible under hardness assumptions. However, excluding the bootstrapping results of Agrawal,

2

Ghosh, and Saxena [AGS19] and Kumar, Saptharishi, and Tengse [KST19], all previous work on
hardness-randomness tradeoffs for PIT requires the underlying field to be of zero or large characteristic
(for the definition of the characteristic of a field, see Section 2). That is, we can derandomize PIT
under hardness assumptions over the complex numbers C or the finite field of pm elements Fpm when
p is sufficiently large, but we do not know how to do the same over a field of low characteristic like
F2m .

A partial exception to this deficiency is the work of Kabanets and Impagliazzo [KI04]. Their
results yield derandomization of PIT over a finite field Fpm assuming an explicit polynomial which is
hard to compute as a function over Fpm . Over infinite fields, two polynomials are equal if and only
if they compute the same function. However, this no longer holds over finite fields. For example,
over F2, the polynomial x2 − x computes the zero function but is decidedly not the zero polynomial.
It is more common in the study of algebraic circuits to prove lower bounds on the task of computing
a polynomial as a syntactic object, not as a function. Functional lower bounds imply syntactic lower
bounds, but the reverse direction does not hold, which makes proving functional lower bounds a
harder task.

If one inspects the proof of Kabanets and Impagliazzo [KI04], the functional hardness assumption
can be replaced with a slightly weaker, albeit non-standard, syntactic hardness assumption. Namely,
it suffices to assume the existence of an explicit family of n-variate polynomials {fn : n ∈ N} such
that fp

k

n is hard in the syntactic sense for 1 6 pk 6 2O(n). Over characteristic zero fields, the
factoring algorithm of Kaltofen [Kal89] implies that if f is hard to compute, then fd is comparably
hard to compute as long as d is not too large. Over fields of characteristic p, it is not clear if hardness
of fp is implied by hardness of f . For example, it is consistent with our current state of knowledge
that the n × n permanent permn(x) is 2Ω(n)-hard over F3, but that permn(x)3 is computable by
circuits of size O(n2) over F3. Understanding the relationship between the complexity of f and fp

over fields of characteristic p > 0 in general remains a challenging open problem.
For further exposition on hardness-randomness tradeoffs for PIT, see the recent survey of Kumar

and Saptharishi [KS19].

1.2 Identity Testing in Low Characteristic

Before describing our contributions, we take a detour to look more closely at the question of
derandomizing PIT over fields of low characteristic. Known techniques for derandomizing PIT
over fields of small characteristic under hardness assumptions fail due to the fact that over a field
of positive characteristic, the derivative of a non-constant polynomial may be zero. For example,
over F2, we have ∂

∂x(x2) = 2x = 0, since 2 = 0 in F2. Thus, techniques which are in some sense
“analytic” break in low characteristic. Given that the problem of polynomial identity testing is
entirely algebraic, it would be nice to find an “algebraic” approach that does not succumb to this flaw.
Indeed, derandomizing PIT in low characteristic fields under hardness assumptions is listed as an
open problem in the recent survey of Kumar and Saptharishi [KS19] on algebraic derandomization.

The problem of derandomizing PIT in low characteristic fields also has interesting algorithmic
applications. Consider, for example, the randomized algorithm of Lovász [Lov79] to detect whether
a bipartite graph has a perfect matching. Let G = (V1 t V2, E) be a balanced bipartite graph on 2n
vertices with partite sets V1 and V2. We form the n× n symbolic matrix A given by

Ai,j =

{
xi,j {i, j} ∈ E
0 otherwise.

It is not hard to see that det(A) 6= 0 if and only if G has a perfect matching. We can then check if

3

G has a perfect matching by evaluating A at a random point chosen from a suitably large grid of
integers.

In evaluating det(A), we may encounter large numbers of size Ω(n!). Arithmetic on such numbers
is expensive, requiring at least Ω(n log n) time. We could instead implement this algorithm over a
finite field of size poly(n). As the determinant is a polynomial of degree n, the Schwartz-Zippel
lemma guarantees that this modification yields an algorithm with low error probability. What
we have gained is the fact that elements of such a finite field can be represented in O(log n) bits,
so our arithmetic becomes more efficient. In principle, one could choose the field so that the
characteristic is large enough for the the hardness-randomness paradigm to apply, but there may be
other considerations which motivate picking, say, an extension field of F2. Derandomizing such an
algorithm (under hardness assumptions) requires extending the hardness-randomness paradigm to
fields of low characteristic.

Alternatively, one can reduce the bit complexity by using a derandomized polynomial identity
testing algorithm over the rational numbers, but with the arithmetic performed modulo a small
prime number. This approach also achieves logarithmic bit complexity. However, we are now in the
position of having to derandomize the selection of the prime number. It is not obvious how to do
this much faster than brute force, so the benefits of reducing the bit complexity are negated by the
need to try many different primes.

While the previous example may seem somewhat artificial, we remark that there are instances
of algorithms which explicitly rely on polynomial identity testing over fields of low characteristic.
For example, the randomized algorithm of Williams [Wil09] for the k-path problem makes use
of polynomial identity testing over fields of characteristic 2. If one wanted to derandomize this
algorithm under a hardness assumption, prior work on hardness-randomness tradeoffs for PIT would
not suffice.

1.3 Our Results

In this work, we instantiate the hardness-randomness paradigm for PIT over fields of low characteristic
under standard syntactic hardness assumptions. That is, we obtain derandomization of PIT from
the existence of an explicit family of hard polynomials {fn : n ∈ N} without assuming hardness of
pth powers of fn. At the heart of our results is a new technique for computing the map fp 7→ f over
F[x] when the polynomial fp is given by an algebraic circuit. When f depends on a small number of
variables, the circuit computing f is not too much larger than the circuit which computes fp.

Lemma 1.1 (informal version of Corollary 3.6). Suppose f(x)p is a polynomial on O(1) variables
and can be computed by a circuit of size s over a field of characteristic p > 0. Then f(x) can be
computed by a circuit of size O(s).

Using this, we are able to extend the techniques of Kabanets and Impagliazzo [KI04] to fields of
low characteristic. To do so, we need stronger hardness assumptions than those made by Kabanets
and Impagliazzo [KI04] for the case of zero characteristic fields. In algebraic complexity, lower
bounds are typically proved for families of polynomials parameterized by the number of variables, as
this captures the regime of interest for algorithmic applications. To prove our results, we assume
lower bounds against a family of constant-variate polynomials which are parameterized by degree.

For the sake of exposition, we focus on the case of lower bounds for univariate polynomials. A
univariate polynomial of degree d can easily be computed by circuits of size O(d) using Horner’s rule.
It is not hard to show that every such polynomial also requires size Ω(log d) to compute. However,
improving on this Ω(log d) lower bound for an explicit family of polynomials is a long-standing open

4

problem. Standard dimension arguments show that most univariate polynomials of degree d require
circuits of size dΩ(1) to compute.

When comparing statements regarding degree d univariates and degree nO(1) multivariate
polynomials on n variables, it is instructive to think of n and log d as comparable. In this sense,
our results achieve the same hardness-randomness tradeoffs as those of Kabanets and Impagliazzo
[KI04], but require translating their hardness assumptions to the comparable statement for univariate
polynomials.

Using Lemma 1.1, we can extend the analysis of Kabanets and Impagliazzo to work over fields of
low characteristic. We now give two concrete examples of the derandomization we can obtain using
this extension.

Theorem 1.2 (informal version of Theorem 4.3 and Corollary 4.5). Let F be a field of characteristic
p > 0. Let {fd(x) : d ∈ N} be an explicit family of univariate polynomials which cannot be computed
by circuits of size less than s(d) over F.

1. If s(d) = logω(1) d, then there is a deterministic algorithm for identity testing of polynomial-size,
polynomial-degree circuits over F in n variables which runs in time 2n

o(1) .

2. If s(d) = 2logΩ(1) d, then there is a deterministic algorithm for identity testing of polynomial-size,
polynomial-degree circuits over F in n variables which runs in time 2logO(1) n.

For comparison, from an nω(1) lower bound against a family of explicit multilinear polynomials,
Kabanets and Impagliazzo [KI04] give a deterministic algorithm for PIT over fields of characteristic
zero which runs in time 2n

o(1) . If instead one has a 2n
Ω(1) lower bound, then their techniques yield a

deterministic algorithm which runs in time 2logO(1) n. Viewing log d and n as (roughly) equivalent,
we see that our derandomization obtains the same tradeoff between hardness and pseudorandomness
as Kabanets and Impagliazzo [KI04], modulo the difference between univariate and multivariate
lower bounds.

It is not hard to show that lower bounds in the constant-variate regime imply comparable lower
bounds in the multivariate regime (see Lemma 2.6), but the reverse implication is not known. In
Section 6, we investigate the possibility of using known techniques to prove univariate lower bounds
from multivariate lower bounds.

As the assumption of a hard univariate family seems strong, it raises the question of whether or
not one can obtain a stronger derandomization of PIT over fields of positive characteristic under a
univariate hardness assumption. There is evidence this can be done, as Guo, Kumar, Saptharishi, and
Solomon [GKSS19] use univariate lower bounds to obtain a complete derandomization of PIT over
fields of characteristic zero. With a more careful instantiation of the Kabanets-Impagliazzo result, we
are able to derandomize PIT in a way that suffices for the bootstrapping results of Agrawal, Ghosh,
and Saxena [AGS19] and Kumar, Saptharishi, and Tengse [KST19] to take effect. This allows us to
prove nearly-optimal hardness-randomness tradeoffs for PIT over fields of positive characteristic,
which comes close to matching the characteristic zero result of Guo, Kumar, Saptharishi, and
Solomon [GKSS19]. More concretely, we prove the following.

Theorem 1.3 (informal version of Theorem 5.3). Let F be a field of characteristic p > 0. Let
{fd(x) : d ∈ N} be an explicit family of univariate polynomials which cannot be computed by circuits
of size less than dδ for some constant δ > 0. Then there is a deterministic algorithm for identity
testing of polynomial-size, polynomial-degree algebraic circuits in n variables over F which runs in
time nexp ◦ exp(O(log? n)).

5

The rest of this work is organized as follows. In Section 2, we establish notation, definitions,
and relevant background necessary to state and prove our results. In Section 3, we prove our
main technical lemma on computing pth roots of algebraic circuits over fields of characteristic
p > 0. We then use this in Section 4 to extend the work of Kabanets and Impagliazzo to the
low characteristic setting. We combine our techniques with the bootstrapping results to obtain
near-complete derandomization of PIT over fields of positive characteristic in Section 5. Section 6
investigates the relationship between univariate and multivariate circuit lower bounds. We conclude
in Section 7 with a collection of problems left open by this work.

2 Preliminaries

For n ∈ N, we write [n] := {1, . . . , n} and JnK := {0, . . . , n− 1}. If A is an n×m matrix, we write
Ai,• and A•,j for the ith row and jth column of A, respectively. We abbreviate a vector of variables
(x1, . . . , xn), numbers (a1, . . . , an), or field elements (α1, . . . , αn) by x, a, and α, respectively, where
the length is usually clear from context. We also abbreviate the product

∏n
i=1 x

ai
i =: xa. Given

a polynomial f(x) =
∑

a αax
a, we write deg(f) and ideg(f) for the total degree and individual

degree of f , respectively. The total degree of f is given by deg(f) := max{‖a‖1 : αa 6= 0}, while the
individual degree of f is given by ideg(f) := max{‖a‖∞ : αa 6= 0}.

For a field F, the characteristic of F, denoted charF, is the smallest positive integer p such that
p · 1 = 0 in F. In the case that there is no such p, we say that F has characteristic zero. Alternatively,
charF is the number p such that the ring homomorphism Z → F induced by 1 7→ 1 has kernel
pZ. The set CF(s, n, d) ⊆ F[x] denotes the set of all n-variate degree d polynomials which can be
computed by an algebraic circuit of size at most s over F.

2.1 Algebraic Computation and Polynomial Identity Testing

We assume familiarity with the models of algebraic circuits, formulae, and branching programs.
When we refer to the size of a circuit, formula, or branching program, we mean the number of nodes
in the computational device. An introduction to this area can be found in the survey of Shpilka and
Yehudayoff [SY10]. Throughout this work, we analyze our algorithms under the assumption that
arithmetic over the base field F can be performed in constant time.

We now collect basic definitions and results needed for the study of deterministic black-box
algorithms for polynomial identity testing. More in-depth exposition is available in the recent survey
of Kumar and Saptharishi [KS19].

We start with the notion of a hitting set, the basic object used to construct deterministic
black-box algorithms for polynomial identity testing.

Definition 2.1. Let C ⊆ F[x] be a set of n-variate polynomials. We say that a set H ⊆ Fn is a
hitting set for C if for every non-zero f(x) ∈ C, there is a point α ∈ H such that f(α) 6= 0. If H can
be computed in t(n) time, then we say that H is t(n)-explicit. ♦

We now introduce hitting set generators, the analogue of pseudorandom generators in the context
of algebraic derandomization.

Definition 2.2. Let C ⊆ F[x] be a set of n-variate polynomials. Let G : Fm → Fn be a mapping
given by

G(y) = (G1(y), . . . ,Gn(y)),

where Gi ∈ F[y]. We say that G is a hitting set generator for C if for every non-zero f(x) ∈ C, we
have f(G(y)) 6= 0. The seed length of G is m. The degree of G is maxi∈[n] deg(Gi). We say G is
t(n)-explicit if, given α ∈ Fm, we can compute G(α) in t(n) time. ♦

6

It is a well-known result that an explicit, low-degree hitting set generator for C with small seed
length yields an explicit hitting set for C of small size. The hitting set is constructed by evaluating
the generator on a grid of large enough size. Correctness follows from the Schwartz-Zippel lemma.

Lemma 2.3. Let C be a set of n-variate degree d polynomials. Let G : Fm → Fn be a t(n)-explicit
hitting set generator for C of degree D. Then there is a (dD+ 1)mt(n)-explicit hitting set H for C of
size (dD + 1)m.

We also need a notion of explicitness for a family of polynomials. In previous works on
hardness-randomness tradeoffs for polynomial identity testing, a family of n-variate polynomials
{fn ∈ F[x] : n ∈ N} is considered explicit if fn is computable in exp(O(n)) time. However, we will
need a slightly different notion of explicitness. Instead of an exponential-time algorithm to compute
fn, we require an exponential-time algorithm to compute the coefficient of a given monomial in
fn. This different notion of explicitness will be used to transition between the constant-variate and
multivariate regimes later on in Section 4 and Section 5.

Definition 2.4. Let {fn,d(x) ∈ F[x] : n, d ∈ N} be a family of n-variate degree d polynomials. We
say that this family is strongly t(n, d)-explicit if there is an algorithm which on input (n, d, a) outputs
the coefficient of xa in fn,d(x) in t(n, d) time. ♦

Remark 2.5. The preceding definition is reminiscent of Valiant’s criterion for membership in VNP.
Briefly, Valiant’s criterion says that if the coefficient of xa can be computed in #P/poly, then the
polynomial f(x) is in VNP, an algebraic analogue of NP. We refer the reader to Bürgisser [Bür00,
Chapters 1 and 2] for further exposition on VNP and Valiant’s criterion. ♦

We will repeatedly build explicit families of hard multivariate polynomials out of explicit families of
hard constant-variate polynomials. By “a family of hard multivariate polynomials,” we mean a family
of polynomials {fn(x) ∈ F[x] : n ∈ N}, where fn is an n-variate polynomial of degree nO(1). When
we say “a family of hard constant-variate polynomials,” we mean a family {fd(x) ∈ F[x] : d ∈ N},
where fd is a degree d polynomial on k = O(1) variables. That is, when we consider multivariate
polynomials, we parameterize the family by the number of variables and primarily consider families
of small degree; when we look at constant-variate polynomials, we fix the number of variables in all
polynomials and parameterize the family by the degree of the polynomial.

To illustrate how we can obtain hard multivariate polynomials from hard constant-variate
polynomials, suppose gd(x) =

∑d
i=0 αix

i is a hard degree d univariate polynomial. We will define
a new polynomial fn(y) on n := blog dc + 1 variables, where the monomials of fn correspond to
writing each term of gd “in base 2.” More precisely, for each e ∈ {0, 1}n, let j(e) be the number
whose representation in binary corresponds to e. We assign the coefficient αj(e) to the monomial ye

in fn. To show that fn is hard, we show the contrapositive: a small circuit for fn implies a small
circuit for gd, which contradicts the hardness of gd. The proof of this is relatively straightforward, as
we simply find a way to substitute powers of x for each yi so that the monomial ye is mapped to
xj(e).

In the case where gd is a polynomial in multiple variables, we simultaneously write each variable
appearing in gd “in base 2.” We remark that there is nothing a priori special about our use of base
2. However, doing so yields polynomials which are multilinear, a fact which will be useful later on.

We now make the preceding sketch precise, showing that lower bounds in the constant-variate
regime imply comparable lower bounds in the multivariate regime.

Lemma 2.6. Let gm,d(x) =
∑

a αax
a be a strongly t(m, d)-explicit m-variate degree d polynomial

which requires circuits of size s to compute. Let j : {0, 1}blog dc+1 → J2blog dc+1K be given by

7

j(e) =
∑blog dc+1

i=1 ei2
i−1, that is, j(e) is the number whose binary representation corresponds to e.

Let y = (y1,1, . . . , y1,blog dc+1, . . . , ym,1, . . . , ym,blog dc+1) and define

fm,d(y) =
∑

e∈{0,1}m×blog dc+1

α(j(e1,•),...,j(em,•))y
e.

Then fm,d is a strongly t(m, d)-explicit multilinear polynomial on m(blog dc + 1) variables which
requires circuits of size s−Θ(m log d) to compute.

Proof. The fact that fm,d is multilinear is clear from the definition.
To see that fm,d is hard to compute, suppose Φ is a circuit of size t which computes fm,d. By

applying the Kronecker substitution yi,j 7→ x2j
i , we can recover a circuit which computes gm,d(x).

This mapping can be computed in size Θ(m log d) by repeated squaring, so we obtain a circuit for
gm,d of size t+ Θ(m log d). By assumption, t+ Θ(m log d) > s, so t > s−Θ(m log d), which proves
the lower bound on the circuit complexity of fm,d.

Finally, remark that the binary description of a monomial in fm,d is exactly the same as the
binary description of a monomial in gm,d. This implies we can use the t(m, d)-time algorithm to
compute the coefficients of fm,d, so fm,d inherits the explicitness of gm,d.

Whether lower bounds in the multivariate regime imply lower bounds in the constant-variate
regime is an open question. In Section 6, we give complexity-theoretic evidence that suggests the
technique used to prove the preceding lemma does not suffice to prove constant-variate lower bounds
from multivariate lower bounds.

In Section 5, we will run into some technical issues concerning circuits which are defined over a
low-degree extension of the base field F. The next lemma says that whenever a circuit Φ is defined
over an extension K ⊇ F of low degree, such a circuit can in fact be defined over F without increasing
its size too much. A related result was proved in Bürgisser, Clausen, and Shokrollahi [BCS97,
§4.3], where the authors considered extensions K ⊇ F such that circuits defined over K have no
computational advantage compared to circuits defined over F when computing a polynomial in F[x].

Lemma 2.7 ([Bür00, Proposition 4.1(iii); HY11], see also [BCS97, §4.3]). Let F be a field and let
K ⊇ F be an extension of degree k. Suppose f(x) can be computed by a circuit of size s over K.
Then there is a circuit of size O(k3s) which computes f over F.

We conclude our preliminaries on algebraic complexity by quoting a celebrated result of Kaltofen
which shows that algebraic circuits may be factored without a large increase in size.

Theorem 2.8 ([Kal89]). Let f(x) ∈ F[x] be a polynomial of degree d computable by an algebraic
circuit of size s. Let g(x) ∈ F[x] be a factor of f(x). Then there is an algebraic circuit of size
s′ 6 O((snd)4) which computes

1. g(x), in the case that charF = 0, and

2. g(x)p
k where k > 0 is the largest integer such that g(x)p

k divides f(x), in the case that
charF = p > 0.

2.2 Combinatorial Designs

We will make use of the designs of Nisan and Wigderson [NW94], specifically as they are used by
Kabanets and Impagliazzo [KI04] to prove hardness-randomness tradeoffs for polynomial identity
testing. Nisan and Wigderson [NW94] gave two constructions of designs: one via Reed-Solomon
codes, and one via a greedy algorithm. We first quote their construction using Reed-Solomon codes,
which was also recently described in work by Kumar, Saptharishi, and Tengse [KST19].

8

Lemma 2.9 ([NW94], see also [KST19]). Let c > 2 be a positive integer, and let n,m, `, r ∈ N be
such that (i) ` = mc, (ii) r 6 m, (iii) m is a prime power, and (iv) n 6 m(c−1)r. Then there is a
collection of sets S1, . . . , Sn ⊆ [`] such that

• for each i ∈ [n], we have |Si| = m; and

• for all distinct i, j ∈ [n], we have |Si ∩ Sj | 6 r.

Additionally, such a family can be deterministically constructed in poly(n) time.

We now cite the designs obtained by Nisan and Wigderson [NW94] via a greedy algorithm. In
the regime where m = O(log n), this improves on the previous construction by taking the size ` of
the ground set to be O(log n) as opposed to O(log2 n).

Lemma 2.10 ([NW94]). Let n and m be integers such that n < 2m. There exists a family of sets
S1, . . . , Sn ⊆ [`] such that

1. ` = O(m2/ log(n)),

2. for each i ∈ [n], we have |Si| = m; and

3. for all distinct i, j ∈ [n], we have |Si ∩ Sj | 6 log(n).

Such a family of sets can be deterministically constructed in time poly(n, 2`).

In extending the analysis of the Kabanets-Impagliazzo generator to low characteristic fields, we
will make use of Lemma 2.10. Our use of Lemma 2.9 will arise when we combine the hardness
versus randomness paradigm with the bootstrapping phenomenon. In that setting, we will apply
Lemma 2.9 with c = O(1) and r = O(1). Compared to Lemma 2.10, this yields sets with much
smaller intersection size, though the number of sets is only mO(1) as opposed to 2m.

2.3 Field Theory

To cleanly state some of our results, we need the notion of a perfect field. Namely, given a circuit Φ
which computes f(x)p ∈ F[x], we will construct in Section 3 a circuit Ψ which computes f(x). This
construction takes pth roots of field elements α ∈ F, which are not always guaranteed to exist in
F. To ensure Ψ is defined over the base field F, we require that F is closed under taking pth roots,
which is equivalent to requiring that F is perfect.

Definition 2.11. A field F is called perfect if either F has characteristic 0 or F has characteristic
p > 0 and the map α 7→ αp is an automorphism of F. If F has characteristic p > 0, then the
perfect closure of F, denoted Fp−∞ , is the smallest field containing F which is closed under taking
pth roots. ♦

It is a basic fact that perfect closures exist.

Fact 2.12. Every field F of characteristic p > 0 has a perfect closure Fp−∞ . ♦

Informally, one can prove this by adjoining “enough” pth roots to the field F. That is, for each
α ∈ F, we introduce a countable collection of new field elements denoted by (α, n) for n ∈ N, where
the element (α, n) is meant to represent αp−n . We then take a quotient by a suitable equivalence
relation; for example, if αp = β, then we regard (α, n) and (β, n+ 1) as equivalent for all n ∈ N. One
must then verify that the resulting object is in fact a field and is (up to isomorphism) the perfect

9

closure of F. More formally, the perfect closure can be constructed as the direct limit of a particular
direct system of fields. We refer the reader to Bourbaki [Bou90, Chapter 5, §1] for the details of this
construction.

Examples of perfect fields of positive characteristic include all finite fields and all algebraically
closed fields of positive characteristic. A non-example is given by Fpm(x), the field of rational
functions in n variables with coefficients in Fpm , where Fpm is the finite field of size pm. The field
Fpm(x) fails to be perfect due to the fact that x1/p

1 /∈ Fpm(x), so x1 is not in the image of the map
α 7→ αp.

For more details on perfect fields, we refer the reader to any text on field theory, e.g., Roman
[Rom06, Chapter 3].

3 pth Roots of Algebraic Computation

Suppose F is a field of characteristic p > 0 and Φ is a circuit which computes f(x)p for a polynomial
f(x). If we want to obtain a circuit which computes f(x), then Theorem 2.8 does not suffice. In this
section, we will describe a simple transformation of Φ which yields a circuit computing f(x). This is
the main technical step that will allow us to obtain hardness-randomness tradeoffs over fields of low
characteristic.

In general, this transformation will incur an exponential blow-up in the size of Φ. If the original
circuit computes a polynomial on n variables, then the new circuit we build will be larger in size by a
factor of about p2n. In particular, if our input is a circuit on a constant number of variables, then we
only increase the size of the circuit by a constant factor. The fact that this transformation is efficient
in the constant-variate regime is exactly the reason we need to use hardness of constant-variate
families of polynomials as opposed to a family of hard multilinear polynomials.

Before describing the construction for circuits on an arbitrary number of variables, we first
examine the case of univariate polynomials. Let F be a field of characteristic p > 0 and let
f(x) ∈ F[x] be a univariate polynomial. We start by grouping the monomials of f by their degree
modulo p, which allows us to write

f(x) =

p−1∑
i=0

f̃i(x)xi,

where each f̃i(x) is a univariate polynomial in x which is only supported on pth powers of x. That
is, the term f̃i(x)xi corresponds exactly to the monomials in f(x) whose degree in x is congruent to
i modulo p. Recall that over a field of characteristic p > 0, we have the identity (a+ b)p = ap + bp.
Since f̃i(x) is a sum of pth powers of x, we can write

f̃i(x) =

di∑
j=0

αi,jx
jp =

 di∑
j=0

α
1/p
i,j x

j

p

.

This expresses f̃i(x) as a pth power of the polynomial fi(x) :=
∑di

j=0 α
1/p
i,j x

j . In general, fi may not

be well-defined over F, as the coefficients α1/p
i,j may not exist in F. However, α1/p

i,j ∈ Fp−∞ , the perfect
closure of F, so fi is well-defined over Fp−∞ .

With this, we can write

f(x) =

p−1∑
i=0

fi(x)pxi.

10

We refer to such an expression as the mod-p decomposition of f . This motivates the following
definition, which generalizes this decomposition to the case of multivariate polynomials.

Definition 3.1. Let f(x) ∈ F[x]. The mod-p decomposition of f(x) is the collection of polynomials
{fa(x) : a ∈ JpKn} such that

f(x) =
∑
a∈JpKn

fa(x)pxa. ♦

Over a perfect field F of characteristic p > 0, the existence of the mod-p decomposition follows
from the fact that any polynomial of the form

∑
a αax

p·a has a pth root, given by
∑

a α
1/p
a xa. Here,

we use the fact that F is perfect to guarantee the constants α1/p
a exist in F. Uniqueness of the

decomposition follows from the fact that the monomials {xa : a ∈ Nn} form a basis for F[x]. We
record this observation as a lemma.

Lemma 3.2. Let F be a field of characteristic p > 0 and let f, g ∈ F[x]. Let {fa : a ∈ JpKn} and
{ga : a ∈ JpKn} be the mod-p decompositions of f and g, respectively. Then f = g if and only if
fa = ga for all a ∈ JpKn.

The utility of the mod-p decomposition becomes apparent when f(x) is itself a pth power. In
this case, f itself is a sum of pth powers of monomials in the variables x1, . . . , xn, so we have
f(x) = f0(x)p. Given a circuit Φ which computes f , suppose we could transform Φ into a new circuit
Ψ which computes the mod-p decomposition of f . Then to compute f(x)1/p, we simply construct
the circuit Ψ and set f0(x) = f(x)1/p to be the output.

Before continuing on, we record a straightforward lemma about how the mod-p decomposition
behaves with respect to addition and multiplication.

Lemma 3.3. Let F be a perfect field of characteristic p > 0. Let f, g ∈ F[x], and let {fa : a ∈ JpKn}
and {ga : a ∈ JpKn} be the mod-p decompositions of f and g, respectively. Let h = αf + βg and
q = γfg for α, β, γ ∈ F. Let {ha : a ∈ JpKn} and {qa : a ∈ JpKn} be the mod-p decompositions of h
and q. Then for all a ∈ JpKn, we have

ha = α1/pfa + β1/pga

and
qa = γ1/p

∑
b,c∈JpKn

b+c≡a mod p

fbgcx
b+c−a
p ,

where the sum and congruence b+ c ≡ a mod p are performed component-wise.

Proof. By expanding the equality h = αf + βg in the mod-p decomposition and using the fact that
(a+ b)p = ap + bp, we obtain∑

a∈JpKn
ha(x)pxa = α

∑
a∈JpKn

fa(x)pxa + β
∑
a∈JpKn

ga(x)pxa

=
∑
a∈JpKn

(α1/pfa(x) + β1/pga(x))pxa.

Lemma 3.2 implies that ha = α1/pfa + β1/pga as claimed.

11

For q(x), we again expand the equality q = γfg in the mod-p decomposition to obtain

∑
a∈JpKn

qa(x)pxa = γ

 ∑
a∈JpKn

fa(x)pxa

 ∑
a∈JpKn

ga(x)pxa

= γ

∑
b,c∈JpKn

fb(x)pgc(x)pxb+c

=
∑
a∈JpKn

γ1/p
∑

b,c∈JpKn

b+c≡a mod p

fb(x)gc(x)x
b+c−a
p

p

xa.

Once more, Lemma 3.2 implies that

qa = γ1/p
∑

b,c∈JpKn

b+c≡a mod p

fbgcx
b+c−a
p

as claimed.

3.1 Circuits

We start by implementing the strategy outlined above in the case of algebraic circuits. Throughout
this and subsequent sections, Φ and Ψ will denote algebraic circuits, formulae, or branching programs,
and v, u, and w will denote gates in these circuits. We will frequently refer to the polynomial
computed at a gate v, which we denote by v̂. For a ∈ JpKn, we write v̂a for the part of the mod-p
decomposition of v̂ indexed by a.

Lemma 3.4. Let F be a field of characteristic p > 0. Let Φ be an algebraic circuit of size s which
computes a polynomial f(x) ∈ F[x] and let {fa : a ∈ JpKn} be the mod-p decomposition of f . Then
there is a circuit Ψ of size 3sp2n + 2n which simultaneously computes {fa : a ∈ JpKn} over Fp−∞ , the
perfect closure of F.

Proof. To construct the desired circuit Ψ, we will split each gate v of Φ into pieces {(v, a) : a ∈ JpKn}
and wire Ψ so that (v, a) computes v̂a. As Φ computes f(x), this implies that Ψ will contain gates
computing fa(x) for all a ∈ JpKn. To wire each gate (v, a) in Ψ, we consider the type of the gate v
in Φ.

• First, suppose v is an input gate in Φ labeled by a constant α ∈ F. In this case, we set
(v, 0) = α1/p and (v, a) = 0 for a 6= 0. By definition, Fp−∞ contains α1/p, so this is valid over
Fp−∞ .
It follows from the definition of v̂a that (v, a) correctly computes v̂a.

• If v is an input gate labeled by the variable xi, let ei denote the vector with a 1 in the ith slot
and zero elsewhere. We set (v, ei) = 1 and (v, a) = 0 for a 6= ei.

Again, it follows immediately from the definition of v̂a that (v, a) correctly computes v̂a.

• Suppose now that v is an addition gate in Φ with children u and w with incoming edges labeled
αu and αw. For each a ∈ JpKp, we set (v, a) = α

1/p
u · (u, a) + α

1/p
w · (w, a).

By induction, (u, a) and (w, a) correctly compute ûa and ŵa, respectively. Lemma 3.3 then
implies that (v, a) correctly computes v̂a.

12

• Finally, we consider the case where v is a multiplication gate in Φ with children u and w with
incoming edges labeled αu and αw. For a ∈ JpKn, we set

(v, a) = α1/p
u α1/p

w

∑
b,c∈JpKn

b+c≡a (mod p)

(u, b) · (w, c) · x
b+c−a
p ,

where vector addition and congruence of vectors is performed coordinate-wise. Note that
since b + c ≡ a mod p, the vector 1

p(b + c − a) is in fact an integer vector. Moreover, since
b + c ∈ {0, . . . , 2(p − 1)}n, it follows that b + c − a ∈ {0, p}n, so 1

p(b + c − a) ∈ {0, 1}n is a
zero-one vector.

Via induction, (u, b) and (w, c) correctly compute ûb and ŵc, respectively. From this and
Lemma 3.3, it follows that (v, a) correctly computes v̂a.

As previously remarked, since Φ computes f(x), for every a ∈ JpKn there is a gate in Ψ which
computes fa(x), so Ψ correctly computes all components of the mod-p decomposition of f . It remains
to bound the size of Ψ.

For every gate in Φ, we construct pn gates of the form (v, a) in Ψ. In the case that v is
a multiplication gate, we need extra intermediate hardware to compute the summation (v, a) =∑

b+c≡a (mod p)(u, b)·(w, c)·x
b+c−a
p . This can be done with pn summation gates and 2pn multiplication

gates. We also need 2n gates to compute the products xe for e ∈ {0, 1}n. Since Ψ is a circuit, we
only need to pay for these gates once, as we can reuse them for all the multiplication computations.
In total, each multiplication gate incurs an extra cost of 3pn gates.

This implies each gate in Φ gives rise to at most 3p2n gates in Ψ. As there are s gates in Φ, there
are at most 3sp2n + 2n gates in Ψ.

Remark 3.5. In the above construction, rather than using the perfect closure, the resulting circuit
can be defined over an extension K ⊇ F of finite degree. This can be done by adjoining to F all pth

roots of constants which appear in Φ. The degree of this extension may be exponential in s in the
worst case. ♦

We can now use the construction of Lemma 3.4 to take pth roots of circuits which compute a pth

power over a field of characteristic p.

Corollary 3.6. Let F be a field of characteristic p > 0. Let Φ be an algebraic circuit of size s which
computes a polynomial f(x)p ∈ F[x]. Then there is a circuit Ψ of size 3sp2n + 2n which computes
f(x) over Fp−∞ , the perfect closure of F.

Proof. By Lemma 3.4, there is a circuit Ψ of the claimed size which computes (f(x)p)0. It follows
from the definition of the mod-p decomposition that f(x) = (f(x)p)0, so Ψ computes f(x) as
desired.

Remark 3.7. If n = O(logp s), then Corollary 3.6 shows that if fp is computable in size s, then
f is computable in size sO(1). While the log-variate regime may appear as a somewhat artificial
intermediary between the constant-variate and full multivariate regimes, it is a meaningful setting to
study due to various corollaries of the bootstrapping results. For example, Forbes, Ghosh, and Saxena
[FGS18] recently studied the problem of designing explicit hitting sets for log-variate depth-three
diagonal circuits. ♦

13

3.2 Formulae

It is natural to ask if the mod-p decomposition allows us to efficiently take pth roots in other
models of algebraic computation. We address this question first in the case of algebraic formulae,
and subsequently for algebraic branching programs. For the reader who is solely interested in the
application of the mod-p decomposition and Corollary 3.6 to hardness-randomness tradeoffs, it is
safe to skip ahead to Section 4. Before continuing on, we make an important remark regarding
formulae and branching programs for univariate polynomials.

Remark 3.8. In the univariate regime, our results (as stated) for formulae and branching programs
are not as meaningful as the result for circuits. A formula or ABP of size s can only compute a
polynomial of degree d 6 s, so any formula or ABP computing a degree d univariate polynomial
must have size at least d. For univariate polynomials, Horner’s rule supplies a matching O(d) upper
bound. Thus, the pth root of a univariate polynomial which has complexity s can be computed
by a device of size s/p, which is much stronger than what we will obtain in Corollary 3.10 and
Corollary 3.12.

However, if one modifies the model of formulae (or branching programs) to allow leaves (or
edges) labeled by a power of a variable xji , then the trivial Ω(d) lower bound no longer holds. Our
techniques can be adapted to this stronger model with little modification, where the upper bounds
we obtain are less trivial. ♦

We now show how one can compute the mod-p decomposition of an algebraic formula. We
essentially do this by applying the transformation of Lemma 3.4 and arguing that we can convert
the resulting circuit into a formula without increasing its size too much. To do this, we need some
additional bookkeeping to ensure that the underlying graph of the resulting computation is a tree.
We borrow this style of bookkeeping from Raz [Raz13], who used it for improved homogenization
and multilinearization of formulae. Alternatively, one can use the fact that formulae of size s can be
rebalanced to have depth O(log s) and then analyze the increase in depth incurred in the proof of
Lemma 3.4.

Lemma 3.9. Let F be a field of characteristic p > 0. Let Φ be an algebraic formula of size s and
product depth d which computes a polynomial f(x) ∈ F[x] and let {fa : a ∈ JpKn} be the mod-p
decomposition of f . Then there is a formula Ψ of size 3snpn(d+3) and product depth d + dlog ne
which simultaneously computes {fa : a ∈ JpKn} over Fp−∞, the perfect closure of F.

Proof. As in Lemma 3.4, we will split each gate v of Φ into pieces which compute components of the
mod-p decomposition of v̂. However, we will need a much larger number of copies of v to ensure
that the resulting circuit Ψ is in fact a formula.

We first set up some notation, borrowing heavily from Raz [Raz13]. For a gate v in Φ, let path(v)
denote the set of all vertices on the path from v to the root of Φ, including v itself. Let Nv denote
the set of all functions T : path(v) → JpKn such that for all u,w ∈ path(v) where u is a sum gate
with child w, we have T (u) = T (w). Informally, the map T encodes the progression of types in the
mod-p decomposition seen as the computation progresses through the formula.

For each gate v in Φ, we create a collection of gates {(v, a, T) : a ∈ JpKn, T ∈ Nv, T (v) = a}. We
will wire the gates of Ψ so that (v, a, T) computes v̂a. As before, to wire the gates of Ψ correctly,
we consider what type of gate v is in Φ. The construction only differs meaningfully from that of
Lemma 3.4 in the case of multiplication gates.

• If v is an input gate in Φ labeled by α ∈ F, then we set (v, 0, T) = α1/p and (v, a, T) = 0 for
a 6= 0. As α1/p ∈ Fp−∞ , this produces a valid circuit over Fp−∞ .
It is immediate from the definition that (v, a, T) correctly computes v̂a.

14

• If v is an input gate labeled by the variable xi, let ei denote the vector with a 1 in the ith slot
and zero elsewhere. We set (v, ei, T) = 1 and (v, a, T) = 0 for a 6= ei.

Once more, it is an immediate consequence of the definition that (v, a, T) correctly computes
v̂a.

• Suppose now that v is an addition gate with children u and w with incoming edges labeled αu and
αw. For each a ∈ {0, . . . , p−1}n and T ∈ Nv, we set (v, a, T) = α

1/p
u ·(u, a, Tu)+α

1/p
w ·(w, a, Tw),

where Tu ∈ Nu and Tw ∈ Nw extend T and satisfy T (v) = Tu(u) = Tw(w).

By induction, (u, a, Tu) and (w, a, Tw) correctly compute ûa and ŵa, respectively. By Lemma 3.3,
it follows that (v, a, T) correctly computes v̂a.

• Finally, consider the case when v is a multiplication gate with children u and w with incoming
edges labeled αu and αw. We set

(v, a, T) = α1/p
u α1/p

w

∑
b+c≡a (mod p)

(u, b, Tu,b) · (w, c, Tw,c) · x
b+c−a
p ,

where Tu,b (respectively Tw,c) extends T and satisfies Tu,b(u) = b (respectively Tw,c(w) = c).

By induction, (u, b, Tu,b) and (w, c, Tw,c) compute ûb and ŵc, respectively. Lemma 3.3 implies
that (v, a, T) correctly computes v̂a.

By construction, Ψ correctly computes {fa : a ∈ JpKn}. It remains to bound the size and product
depth of Ψ and show that Ψ is indeed a formula.

Each gate v in Φ yields pn|Nv| gates of the form (v, a, T) in Ψ. If v is a multiplication gate with
children u and w, we need to implement the sum over the children (u, b, Tu) and (w, c, Tw). For a
given e ∈ {0, 1}n, we can compute xe using a subformula of size at most n. To compute (v, a, T), we
need pn summation gates and 2pn multiplication gates in addition to the gates computing (u, b, Tu),
(w, c, Tw), and xe. This implies that we can compute (v, a, T) using at most 3npn extra gates. Thus,
for every gate v in Φ, we create at most 3np2n|Nv| gates in Ψ.

To bound the size of Nv, note that a function T ∈ Nv can only change values along path(v) at
multiplication gates. Since there are at most d multiplication gates along path(v), we can specify T
by a (d+ 1)-tuple of elements of JpKn, corresponding to the values taken by T between successive
multiplication gates. This implies |Nv| 6 pn(d+1). Thus Ψ contains at most 3snpn(d+3) gates.

It follows from the definition of Ψ that the product depth of Ψ is d+ dlog ne, as the number of
product gates on any path from a leaf to the root increases by at most an additive dlog ne. This
arises from the need to implement a product of the form xe at gates of Ψ which correspond to
multiplication gates in Φ. As we need to compute a product of this form at most once along every
path from the root to a leaf, we only incur an additive dlog ne increase in product depth as opposed
to a multiplicative increase.

To see that Ψ is a formula, consider the edges leaving the gate (u, a, T). Let v denote the parent
of u in Ψ. If v is an addition gate, then only (v, a, Tv) receives an edge from (u, a, T) where Tv ∈ Nv

agrees with T on path(v). If v is a multiplication gate, then only (v, T (v), Tv) receives an edge from
(u, a, T) where Tv ∈ Nv agrees with T on path(v). In both cases, the fan-out of the gate u is 1, so Ψ
is in fact a formula.

As with circuits, we can use Lemma 3.9 to compute pth roots of formulae which compute a pth

power over a field of characteristic p > 0.

15

Corollary 3.10. Let F be a field of characteristic p > 0. Let Φ be an algebraic formula of size s
and product depth d which computes a polynomial f(x)p ∈ F[x]. Then there is a formula Ψ of size
3snpn(d+3) and product depth d+ dlog ne which computes f(x) over Fp−∞ , the perfect closure of F.

Proof. Analogous to the proof of Corollary 3.6.

3.3 Algebraic Branching Programs

We now consider the task of taking pth roots of algebraic branching programs. We consider the
model of branching programs where edges may only be labeled by a constant α ∈ F or a multiple of
a variable αxi. Some authors allow the edges of a branching program to be labeled by an affine form
`(x) = α0 +

∑n
i=1 αixi. Such a branching program can be converted to one whose edges are labeled

by field constants or multiples of a variable. This transformation increases the number of vertices by
a factor of O(n), which is small compared to the increase in size we will incur by taking a pth root.
We begin by computing the mod-p decomposition of an algebraic branching program.

Lemma 3.11. Let F be a field of characteristic p > 0. Let Φ be an algebraic branching program on
s vertices with edges labeled by variables or field constants which computes a polynomial f(x) ∈ F[x]
and let {fa : a ∈ JpKn} be the mod-p decomposition of f . Then there is an algebraic branching
program Ψ on spn vertices which simultaneously computes {fa : a ∈ JpKn} over Fp−∞, the perfect
closure of F.

Proof. For each node v in Φ, we create a collection of nodes {(v, a) : a ∈ JpKn} in Ψ. We will wire
the nodes of Ψ so that (v, a) computes v̂a.

For a pair of vertices u and v, let `(u, v) denote the label of the edge between u and v. Let
N in(v) denote the set of vertices w such that the edge (w, v) is present in Φ.

Let u and v be two nodes in Φ and suppose there is an edge from u to v in Φ. We consider two
cases, depending on whether this edge is labeled by a constant α ∈ F or a multiple of a variable αxi.

• Suppose the edge from u to v is labeled by α ∈ F. For all a ∈ JpKn, we add an edge between
(u, a) and (v, a) labeled by α1/p. Since α1/p ∈ Fp−∞ , this construction is valid over the perfect
closure Fp−∞ of F.

• Suppose the edge from u to v is labeled by αxi, where α ∈ F. Denote by ei the vector which
has a 1 in the ith slot and zeroes elsewhere. For all a ∈ JpKn, we add an edge between (u, a)
and (v, a+ ei), where the addition a+ ei is performed modulo p. If ai < p− 1, we label this
edge with α1/p. If ai = p− 1, we label this edge with α1/pxi. Again, α1/p ∈ Fp−∞ by definition,
so this construction is valid.

To see that this construction is correct, let v be a node in Φ. By the definition of an algebraic
branching program, we have

v̂ =
∑

u∈N in(v)

`(u, v) · û.

Repeatedly applying the addition case of Lemma 3.3 yields, for each a ∈ JpKn,

v̂a =
∑

u∈N in(v)

(`(u, v) · û)a.

If `(u, v) = α ∈ F, then we have (`(u, v) · û)a = α1/pûa. If `(u, v) = αxi, then if ai > 0, we have
(`(u, v) · û)a = α1/pûa−ei . Otherwise, ai = 0, so (`(u, v) · û)a = α1/pûa−eixi, where the subtraction
a− ei is done modulo p.

16

By induction, (u, a) correctly computes ûa. From our construction of Ψ, if (u, v) is an edge in Φ,
then (v, a) has an incoming edge which computes (`(u, v) · û)a. This implies that (v, a) computes
the polynomial

∑
u∈N in(v)(`(u, v) · û)a = v̂a, which is what we want.

Thus, Ψ simultaneously computes {fa : a ∈ JpKn}. Every node in Φ corresponds to pn nodes in Ψ.
Unlike the cases of circuits and formulae, we do not need extra hardware to implement intermediate
calculations, so Ψ consists of spn nodes as claimed.

Again, as in the case of circuits and formulae, this immediately yields a way to compute pth

roots of algebraic branching programs which compute a pth power over a field of characteristic p > 0.

Corollary 3.12. Let F be a field of characteristic p > 0. Let Φ be an algebraic branching program on
s vertices with edges labeled by variables or field constants which computes a polynomial f(x)p ∈ F[x].
Then there is an algebraic branching program Ψ on spn vertices which computes f(x) over Fp−∞ , the
perfect closure of F.

Proof. Analogous to the proof of Corollary 3.6.

4 Extending the Kabanets-Impagliazzo Generator

With our main technical tool in hand, we move on to our first application. The hitting set generator
of Kabanets and Impagliazzo [KI04] was the first to provide hardness-randomness tradeoffs for
polynomial identity testing over fields of characteristic zero. Over fields of characteristic p > 0,
Kabanets and Impagliazzo obtain hardness-randomness tradeoffs under non-standard hardness
assumptions. Namely, they require an explicit family of polynomials {fn : n ∈ N} such that fp

k

n is
hard to compute for 1 6 pk 6 2O(n), though they do not state their results in this way. Rather, they
use the assumption of a family of polynomials which are hard to compute as functions, which implies
hardness of pth powers over finite fields.

It is more common in algebraic complexity to prove lower bounds on the task of computing
polynomials as syntactic objects. Over infinite fields, this is equivalent to computing a polynomial
as a function. However, the two notions differ over finite fields. For example, the polynomial x2 − x
is non-zero as a polynomial over F2, but computes the zero function over F2. It is interesting to
note that examples of functional lower bounds over finite fields are known. The works of Grigoriev
and Karpinski [GK98], Grigoriev and Razborov [GR00], and Kumar and Saptharishi [KS17] prove
lower bounds against constant-depth circuits over finite fields which functionally compute an explicit
polynomial.

In this section, we will extend the Kabanets-Impagliazzo generator to all perfect fields of
characteristic p > 0 under syntactic hardness assumptions for a single family of polynomials. The
perfect fields of characteristic p include all finite fields and all algebraically closed fields of positive
characteristic. To do this, we need a stronger (but still syntactic) hardness assumption. In their work,
Kabanets and Impagliazzo use the existence of an explicit family of hard multilinear polynomials to
derandomize polynomial identity testing. Here, we need lower bounds against an explicit family of
constant-variate polynomials of arbitrarily high degree. Such an assumption appears to be stronger
than the assumption of a hard family of multilinear polynomials. We discuss the relationship between
these hypotheses in more detail in Section 6.

4.1 The Kabanets-Impagliazzo Generator

We first describe the construction of the Kabanets-Impagliazzo generator.

17

Construction 4.1 ([KI04]). Let n and m be integers satisfying n < 2m. Let g ∈ F[x] be a
polynomial on m variables. Let S1, . . . , Sn ⊆ [`] be a Nisan-Wigderson design as in Lemma 2.10.
The Kabanets-Impagliazzo generator GKI,g(z) : F` → Fn is the polynomial map given by

GKI,g(z) := (g(z|S1), . . . , g(z|Sn)),

where z|Si denotes the restriction of z to the variables with indices in Si.

We now quote the main lemma used by Kabanets and Impagliazzo in the analysis of their
generator.

Lemma 4.2 ([KI04]). Let F be any field and n,m ∈ N such that n < 2m. Let f ∈ F[y1, . . . , yn] and
g ∈ F[x1, . . . , xm] be non-zero polynomials of degree df and dg, respectively. Let f(y) be computable
by an algebraic circuit of size s. Let S ⊆ F be any set of size at least dfdg+1 and let ` = O(m2/ log n)
be as in Lemma 2.10. Let GKI,g be as in Construction 4.1.

Suppose that f(GKI,g(α)) = 0 for all α ∈ S`. Then there is an algebraic circuit Φ of size
s′ 6 poly(n,m, df , dg, s, (1 + ideg g)logn) which computes the following. If F has characteristic zero,
then Φ computes g(x). If F has characteristic p > 0, then Φ computes g(x)p

k for some k ∈ N such
that pk 6 df .

If f(GKI,g(z)) = 0, then using Lemma 4.2, we can reconstruct a circuit for g using the circuit for
f . By taking g from a family of hard polynomials, we obtain a contradiction if there is a small circuit
which computes f . This proves that GKI,g is a hitting set generator for the class of small circuits.
The explicitness of GKI,g follows from the explicitness of the family from which g is taken. The
hardness-randomness tradeoffs of Kabanets and Impagliazzo [KI04] then follow by setting parameters
according to the hardness of g.

Over a field of characteristic p > 0, Lemma 4.2 provides a circuit computing g(x)p
k . Suppose we

are working over Fq, the finite field of q = pa elements. By taking pth powers of g(x)p
k if necessary,

we can obtain a circuit which computes g(x)p
ar

= g(x)q
r for some r ∈ N. The map α 7→ αq is the

identity over Fq, so the circuit which computes g(x)q
r in fact computes the same function as g(x).

This is why, without further work, we need a polynomial which is hard to compute as a function to
obtain hardness-randomness tradeoffs over finite fields.

If we could factor the circuit for g(x)p
k to obtain a not-too-much-larger circuit for g(x), then we

could derive hardness-randomness tradeoffs from the assumption of an explicit family of multilinear
polynomials which are hard to compute. It remains an open problem to show that if g(x)p has a
small circuit, then g(x) has a small circuit. However, in the constant-variate regime, Corollary 3.6
resolves this problem in the affirmative. This is the main fact which drives our extension of the
Kabanets-Impagliazzo generator.

4.2 Extension to Fields of Low Characteristic

We now show how to use the Kabanets-Impagliazzo generator to obtain hardness-randomness
tradeoffs over all perfect fields of characteristic p > 0. Recall that CF(s, n, d) denotes the set of
n-variate degree d polynomials computable by circuits of size at most s.

Theorem 4.3. Let F be a field of characteristic p > 0 and let c, k ∈ N be positive constants. Let
{gd(x) : d ∈ N} be a strongly t(k, d)-explicit family of k-variate degree d polynomials. Let s : N→ N
be a function such that gd cannot be computed by algebraic circuits of size smaller than s(d) over
Fp−∞ . Then there is a hitting set generator G : F` → Fn for CF(nc, n, nc) which

1. is
(
poly(n, 2`) + t(k, n3ck+Ω(c)) · s−1(n3ck+Ω(c))O(k)

)
-explicit,

18

2. has seed length ` = O
(
k2 log2(s−1(n3ck+O(c)))

logn

)
, and

3. has degree O(k log(s−1(n3ck+O(c)))).

Proof. We will obtain our generator by using {gd : d ∈ N} to construct a family of hard multilinear
polynomials. We then set parameters and instantiate the Kabanets-Impagliazzo generator with this
hard multilinear family.

By Lemma 2.6, there is a strongly t(k, d)-explicit family of multilinear polynomials hd(y) on
m := k(blog dc+1) variables such that any circuit which computes hd must be of size s(d)−O(k log d).
The construction of hd also yields the identity

gd(x) = hd(x
20

1 , x
21

1 , . . . , x
2blog dc
1 , . . . , x20

k , x
21

k , . . . , x
2blog dc
k),

which allows us to obtain a circuit for gd from a circuit for hd. As hd is multilinear, we have
deg(hd) 6 m and ideg(hd) = 1.

Set d = s−1(ne) for a large enough constant e > 1 to be specified later. Since gd is a k-variate
degree d polynomial, we trivially have s(d) 6 dO(k), so s−1(d) > dΩ(1/k). This gives us

2m > dk = s−1(ne)k > (nΩ(e/k))k = nΩ(e).

Taking e to be large enough guarantees 2m > n. Let S1, . . . , Sn ⊆ [`] be the Nisan-Wigderson
design guaranteed by Lemma 2.10. Our generator G : F` → Fn is given by instantiating the
Kabanets-Impagliazzo generator with hd. That is,

G(z) := GKI,hd(z) = (hd(z|S1), . . . , hd(z|Sn)).

We now verify the claimed properties of G.
Correctness. To see that G is indeed a hitting set generator for CF(nc, n, nc), suppose there is

some non-zero f ∈ CF(nc, n, nc) such that f(G(z)) = 0. Then by Lemma 4.2, there is a circuit of size

s′ 6 poly(n,m, nc, 2logn) 6 nO(c)

which computes hd(y)p
a for pa 6 deg(f) 6 nc. Via the Kronecker substitution yi,j 7→ x2j

i , we obtain
a circuit of size s′ + O(k log d) 6 nO(c) which computes gd(x)p

a . We now apply Corollary 3.6 a
total of a times to obtain a circuit which computes gd(x) and has size s′′ 6 (3 · 2k · p2k)anO(c).
Since pa 6 nc and 2 6 p, we obtain s′′ 6 n3kc+O(c). By setting e = 3ck + Θ(c) where the hidden
constant on the Θ(c) term is large enough, we obtain a contradiction as follows. By assumption,
any circuit which computes gd must be of size at least s(d) = ne. However, we have a circuit of
size n3ck+O(c) � ne = s(d) which computes gd, a contradiction. Thus, it must be the case that
f(G(z)) 6= 0. Hence G is a hitting set generator for CF(nc, n, nc).

Explicitness. Given a point α ∈ F`, we can evaluate G as follows. First, we construct the
Nisan-Wigderson design S1, . . . , Sn ⊆ [`] in time poly(n, 2`). We then compute all dO(k) coefficients
of hd, each in t(k, d) time. Finally, for each i ∈ [`], we evaluate hd on α|Si in time dO(k). Using the
fact that d = s−1(n3ck+O(c)), we can evaluate G in poly(n, 2`) + t(k, n3ck+O(c)) · s−1(n3ck+O(c))O(k)

time as claimed.
Seed length. It follows from Lemma 2.10 that G has seed length ` = O(m2/ log n) = O

(
k2 log2 d

logn

)
.

By our choice of d = s−1(n3ck+O(c)), we obtain the claimed seed length of O
(
k2 log2(s−1(n3ck+O(c)))

logn

)
.

Degree. By construction, G is a map of degree deg(hd) 6 m = k(blog dc + 1). Once more,
plugging in our choice of d yields the claimed bound of O(k log(s−1(n3ck+O(c)))).

19

By applying Lemma 2.3, we obtain the following construction of explicit hitting sets for
CF(nc, n, nc).

Corollary 4.4. Assume the setup of Theorem 4.3. Let T , `, and ∆ be the explicitness, seed length,
and degree of the generator of Theorem 4.3, respectively. Then there is a hitting set H for CF(nc, n, nc)
which

1. has size |H| = (nc∆ + 1)`, and

2. has explicitness |H| · T = (nc∆ + 1)` · T .

Proof. This is Lemma 2.3 applied to Theorem 4.3.

We conclude this section with some concrete hardness-randomness tradeoffs obtainable via
Theorem 4.3 and Corollary 4.4. Recall that for constant k, a k-variate polynomial of degree d consists
of at most

(
k+d
k

)
6 dO(k) monomials. In this regime, a polynomial which is strongly dO(k)-explicit is

“exponential time explicit,” as the description of a single monomial consists of O(k log d) bits.

Corollary 4.5. Let F be a field of characteristic p > 0. Let c, k ∈ N be fixed constants. Let
{gd(x) : d ∈ N} be a strongly dO(k)-explicit family of k-variate degree d polynomials which cannot be
computed by circuits of size smaller than s(d) over Fp−∞ . Then the following results hold regarding
hitting sets for CF(nc, n, nc).

1. If s(d) = logω(1) d, then there is a 2n
o(1)-explicit hitting set for CF(nc, n, nc) of size 2n

o(1).

2. If s(d) = 2logΩ(1) d, then there is a 2logO(1) n-explicit hitting set for CF(nc, n, nc) of size 2logO(1) n.

3. If s(d) = dΩ(1), then there is a nO(logn)-explicit hitting set for CF(nc, n, nc) of size nO(logn).

Proof. Each statement follows by setting parameters in Theorem 4.3 and Corollary 4.4 and using
the fact that c and k are fixed constants independent of n and d. We omit the straightforward
calculations.

5 Bootstrapping from Constant-Variate Hardness

Given that we use the seemingly stronger assumption of constant-variate hardness in our extension
of the Kabanets-Impagliazzo generator, one may wonder if we can push the hardness-randomness
connection further and obtain a better derandomization of identity testing for CF(nc, n, nc). Perhaps
surprisingly, this is possible by going through the recent development of “bootstrapping” for hitting
sets.

5.1 A Non-Trivial Hitting Set from Constant-Variate Hardness

Let n be a constant and let s be arbitrarily large. Suppose we have an explicit, slightly non-trivial
hitting set for CF(s, n, s). Then we can “bootstrap” the advantage this hitting set has over the trivial
one in order to obtain an explicit hitting set of very small size for CF(s, s, s). That is, in order to
almost completely derandomize polynomial identity testing for the class of polynomials of polynomial
degree computed by polynomial-size circuits, it suffices to find a non-trivial derandomization of
polynomial identity testing for circuits on a constant number of variables but of arbitrary size and
degree.

20

We remark that, throughout this section, one should read CF(s, s, s) as a stand-in for CF(nc, n, nc),
where c is a fixed constant. This follows by taking s = nc and noting that CF(nc, n, nc) ⊆
CF(nc, nc, nc) = CF(s, s, s). While the following results are stated for CF(s, s, s), changing s by
at most a polynomial factor will not qualitatively affect the results we obtain.

We now formally state the bootstrapping result. Let log? s denote the iterated logarithm of s.
That is,

log? s :=

{
1 + log?(log s) s > 1

0 s 6 1.

This version of the bootstrapping theorem is due to Kumar, Saptharishi, and Tengse [KST19] and
improves upon the initial work of Agrawal, Ghosh, and Saxena [AGS19]. Note that this theorem
holds over all fields, including those of positive characteristic.

Theorem 5.1 ([KST19]). Let F be any field and let ε > 0 and n > 2 be constants. Suppose that for
all sufficiently large s, there is an sO(n)-explicit hitting set of size sn−ε for CF(s, n, s). Then there is
an sexp ◦ exp(O(log? s))-explicit hitting set of size sexp ◦ exp(O(log? s)) for CF(s, s, s).

In this section, we will use Theorem 5.1 to obtain a stronger derandomization of polynomial
identity testing over fields of characteristic p > 0 under appropriate hardness assumptions. Suppose
{gd(x) : d ∈ N} is a family of strongly dO(k)-explicit k-variate degree d polynomials which require
algebraic circuits of size dΩ(k). Using Corollary 4.5, we can obtain a sO(log s)-explicit hitting set for
CF(s, s, s) of size sO(log s). By a more careful instantiation of the Kabanets-Impagliazzo generator, we
can use the hardness assumption on gd to design an explicit hitting set which satisfies the hypotheses
of Theorem 5.1. This yields an explicit hitting set for CF(s, s, s) of size sexp ◦ exp(O(log? s)), which
greatly improves upon the size sO(log s) hitting set of Corollary 4.5.

Our argument also works for fields of characteristic zero, giving us a general theorem which
converts near-optimal constant-variate hardness into near-optimal derandomization of polynomial
identity testing for CF(s, s, s).

First, we need a technical lemma regarding lower bounds against constant-variate polynomials.
Roughly, we will show that dδ lower bounds against degree d constant-variate polynomials can be
magnified to dc lower bounds against constant-variate polynomials for arbitrary δ, c > 0.

Lemma 5.2. Let F be any field. Let k ∈ N and c, δ > 0 be fixed constants. Let {gd(x) : d ∈ N} be
a strongly dO(k)-explicit family of k-variate polynomials of degree d. Suppose that for d sufficiently
large, gd cannot be computed by algebraic circuits of size smaller than dδ over F. Then there is
a constant m ∈ N and a family {h∆(y) : ∆ ∈ N} of strongly ∆O(m)-explicit m-variate degree ∆
polynomials such that for ∆ sufficiently large, h∆ cannot be computed by algebraic circuits of size
smaller than ∆c over F.

Proof. We follow the approach of Lemma 2.6, but in base dδ/2c + 1 as opposed to base 2.
Without loss of generality, assume that δ 6 1 6 c. Let m := 2ck

δ and let y = (y1,1, . . . , yk,2c/δ).

Let σ(yi,j) = x
(dδ/2c+1)j

i . We will take h∆(y) to be the polynomial of individual degree dδ/2c which
satisfies the equation h(σ(y)) = gd(x). More explicitly, let gd(x) =

∑
a∈Nk αax

a be the expression of
gd as a sum of monomials. Let ϕ : Jdδ/2c+1K2c/δ → Jd+1K be the map which takes the base-(dδ/2c+1)
expansion of a number t ∈ Jd+ 1K and returns t. Then we define h∆(y) as

h∆(y) =
∑

A∈Jdδ/2c+1Kk×2c/δ

αϕ(A1,•),...,ϕ(Ak,•)

∏
i,j∈Jdδ/2c+1K

y
Ai,j
i,j .

21

It is clear from the construction of h∆ that h∆(σ(y)) = gd(x). The polynomial h∆ is of individual
degree at most dδ/2c, so ∆ := deg(h∆) can be bounded as

∆ 6 mdδ/2c =
2ckdδ/2c

δ
.

Since k and δ are fixed constants, for d large enough, we obtain ∆ 6 d2δ/3c.
To show that h∆ has the claimed hardness, suppose we are given a circuit of size s which computes

h∆. By repeated squaring, we may compute the map σ(y) using a circuit of size O(k log d) =
O(m log ∆) = O(log ∆). This yields a circuit of size s′ 6 s+O(log ∆) which computes gd. By the
assumed hardness of gd, we have s′ > dδ. Putting things together gives us

s > dδ −O(log ∆).

Since ∆ 6 d2δ/3c for d large enough, we obtain

s > ∆3c/2 −O(log ∆).

For ∆ (and hence d) large enough, we have s > ∆c, which yields the desired lower bound on h∆.
It remains to verify the explicitness of h∆. We can compute a coefficient of h∆ by computing

the corresponding coefficient of gd, so h∆ inherits the strong dO(k)-explicitness of gd. We need to
show that dO(k) 6 ∆O(m) in order to conclude that h∆ is strongly ∆O(m)-explicit. By writing h∆

as a sum of monomials, there is a circuit of size ∆O(m) which computes h∆. Combined with the
argument above, this yields a circuit of size ∆O(m) +O(log ∆) = ∆O(m) which computes gd. Since
any circuit which computes gd must have size dδ, we obtain ∆O(m) > dδ. As c, k, δ, and m are all
fixed constants, this yields dO(k) 6 ∆O(m) as desired.

Now we are ready to state and prove our hardness-randomness tradeoff.

Theorem 5.3. Let F be any field and let k ∈ N and δ > 0 be fixed constants. Let K = Fp−∞ if
charF = p > 0 and K = F otherwise. Let {gd(x) ∈ F[x] : d ∈ N} be a family of strongly dO(k)-explicit
k-variate degree d polynomials. Suppose that for all d sufficiently large, gd cannot be computed
by algebraic circuits of size smaller than dδ over K. Then for all sufficiently large s, there is an
sexp ◦ exp(O(log? s))-explicit hitting set of size sexp ◦ exp(O(log? s)) for CF(s, s, s).

Proof. Using Lemma 5.2, we may assume without loss of generality that δ > 30.
By Theorem 5.1, it suffices to provide an explicit hitting set of size sn−ε for CF(s, n, s) for

constants ε, n and all s sufficiently large. We will instantiate the Kabanets-Impagliazzo generator
with gd as the hard polynomial, using the finer-grained designs of Lemma 2.9.

Let s be given. By adding auxiliary variables if necessary, we may assume that k is a prime
power. Note there is always a power of 2 between k and 2k, so this at most doubles the number of
variables in gd. We set parameters as follows:

• c := 3,

• n := 2kc+1 = 2k4,

• r := 2, and

• d := sk.

22

By Lemma 2.9, we can construct in poly(n) time a collection of sets S1, . . . , Sn ⊆ [kc] such that
|Si| = k and |Si ∩ Sj | 6 r.

Consider the generator G : Fkc → Fn given by

G(z) = (gd(z|S1), . . . , gd(z|Sn)).

By construction, G has seed length kc and degree d = sk. Since gd is strongly dO(k)-explicit, we can
evaluate G by constructing the design S1, . . . , Sn, computing the coefficients of gd, and evaluating
each of the n copies of gd. Constructing the design takes nO(1) time and computing the coefficients
of gd takes dO(k) time. To evaluate gd, we use the expression of gd as a sum of monomials, which
requires dO(k) time for each of the n evaluations. In total, we can evaluate G in time

nO(1) · dO(k) = nO(1) · sO(k2) = nO(1) · sO(
√
n),

so G is sO(
√
n)-explicit for s sufficiently large.

If G is in fact a hitting set generator for CF(s, n, s), then using Lemma 2.3, we obtain a hitting
set H for CF(s, n, s) of size

(s · d)k
c

= (sk+1)k
3

= sk
4+k3

6 s2k4−ε = sn−ε

for some ε > 0 when s is large enough. Moreover, H is sO(
√
n) · |H| 6 sO(n)-explicit. We now

apply Theorem 5.1 to obtain the claimed sexp ◦ exp(O(log? s))-explicit hitting set for CF(s, s, s) of size
sexp ◦ exp(O(log? s)). It remains to show that G is indeed a hitting set generator for CF(s, n, s).

To show this, suppose for the sake of contradiction that G is not a hitting set generator for
CF(s, n, s). Then there is some f(y) ∈ CF(s, n, s) such that f(y) 6= 0 and f(G(z)) = 0. We define the
hybrid polynomials f0, . . . , fn by

f0(y, z) = f(y1, . . . , yn)

f1(y, z) = f(gd(z|S1), y2, . . . , yn)

...

fn−1(y, z) = f(gd(z|S1), . . . , gd(z|Sn−1), yn)

fn(y, z) = f(gd(z|S1), . . . , gd(z|Sn)) = f(G(z)).

Since f0 6= 0 and fn = 0, there is some i ∈ [n] such that fi−1 6= 0 and fi = 0. Assuming
|F| > sd > deg(fi), we can find an assignment to the variables {yj : j 6= i} and {zj : j /∈ Si} such
that fi remains non-zero under this partial evaluation. If F is too small, we may find such an
assignment using values from some finite extension F′ ⊇ F of size at least sd+ 1 (and hence degree
O(log(sd))). After renaming variables, denote this non-zero restriction of fi by f(z1, . . . , zk, y).

We can compute f by composing the circuit for f with at most n − 1 copies of the partial
evaluation of gd(z|Sj) for j < i. By assumption, we can compute f with a circuit of size s. Since
|Sj ∩ Si| 6 2 for j 6= i, at most 2 variables in z|Sj are unset. This implies each restriction of gd(z|Sj)
is a polynomial of degree d on 2 variables and thus can be computed by a depth-two circuit of size
at most d · (d+ 1)2. This yields a circuit for f of size at most s+ nd · (d+ 1)2. Note that the degree
of f is bounded by sd, since f is the composition of two polynomials of degrees at most s and d.

By assumption, we have that f(z1, . . . , zk, y) 6= 0 and f(z1, . . . , zk, gd(z)) = 0. This implies that
y − gd(z) is a factor of f . We now apply Theorem 2.8 to factor the circuit for f .

• If charF = p > 0, we obtain a circuit for (y − gd(z))p
t

= yp
t − gd(z)p

t for some t ∈ N. Since
yp

t − gd(z)p
t is a factor of f(z1, . . . , zk, y), we must have

dpt = deg(yp
t − gd(z)p

t
) 6 deg(f) 6 sd.

23

This implies pt 6 s. Since f has degree sd and is computable in size s+O(nd3), the circuit
computing ypt − gd(z)p

t has size at most O((nsd)12). By setting y = 0 and negating the output
of the circuit, we obtain a circuit for gd(z)p

t of size O((nsd)12).

We now apply Corollary 3.6 a total of t times. This produces a circuit which computes gd(z)
and has size O((nsd)12p2kt2kt3t) = O((nsd)12s3k+2). Here we use the fact that p > 2, so
2kt 6 pkt 6 sk and 3t 6 4t 6 p2t 6 s2.

In the case where |F| > sd, the circuit for f was defined over F, so the circuit for gd is defined
over K = Fp−∞ . If instead |F| 6 sd, the circuit for f was defined over a finite extension
F′ ⊇ F of degree O(log(sd)). As F′ is a finite field, F′ is perfect, so the circuit obtained from
Corollary 3.6 is defined over F′. We apply Lemma 2.7 to simulate this circuit over F, incurring
an extra O(log3(sd)) factor in the circuit size.

In total, we now have a circuit which computes gd over K = Fp−∞ and has size bounded by
O((nsd)12s3k+2 log3(sd)).

• If charF = 0, the previous case applies, but without the need to take a pth root or simulate a
field extension. This yields a circuit which computes gd(z) over K = F and has size O((nsd)12).

In both cases, we obtain a circuit which computes gd(z) overK and has size at mostO((nsd)12s3k+2 log3(sd)).
Restating in terms of k and d, we have a circuit for gd of size

O((nsd)12s3k+2 log3(sd)) = O(k48s14+3kd12 log3(d)) = O(k48d15+14/k log3(d)).

Since k > 1 and k is a constant, we can bound the size of the circuit computing gd by O(d29 log3(d)).
This contradicts the fact that gd requires circuits over K of size dδ > d30 for sufficiently large d.
Hence G is in fact a hitting set generator for CF(s, n, s).

5.2 Comparison to Characteristic Zero

Over fields of characteristic zero, the recent work of Guo, Kumar, Saptharishi, and Solomon
[GKSS19] obtained what is currently the best-known derandomization of polynomial identity testing
for CF(s, s, s) under a hardness assumption. From an explicit family of k-variate degree d polynomials
of hardness dΩ(1), they obtain an explicit hitting set for CF(s, s, s) of size sO(1). Specifically, they
prove the following theorem.

Theorem 5.4 ([GKSS19]). Let F be a field of characteristic zero. Let k ∈ N be large enough and
let δ > 0 be a fixed constant. Suppose {Pk,d ∈ F[x] : d ∈ N} is a family of dO(k)-explicit k-variate
polynomials of degree d such that Pk,d cannot be computed by algebraic circuits of size smaller than
dδ. Then there is an s(k/δ)O(1)-explicit hitting set for CF(s, s, s) of size sO(k2/δ2).

We remark that Guo, Kumar, Saptharishi, and Solomon [GKSS19] do not define the notion
of explicitness they use in their result, but it is enough for Pk,d to be computable by a uniform
algorithm which runs in time dO(k). This is slightly different from our notion of strong explicitness,
where we require the coefficients of Pk,d to be computable in dO(k) time. It is clear that one can
pass from strong explicitness to the standard notion of explicitness by computing a polynomial
as a sum of monomials. Via polynomial interpolation, one can show that polynomials which are
“evaluation-explicit” are strongly explicit. In both cases, the explicitness parameter may degrade
considerably, as the number of terms in a polynomial may be exponentially larger than the amount
of time required to compute the polynomial or one of its coefficients. In general, one cannot hope to
do better than this: in one direction, the coefficients of the permanent are easy to compute, but the

24

permanent is widely conjectured to be hard to compute; in the other direction, there are examples of
polynomials which are easy to compute but which have the permanent of a large matrix embedded
in their coefficients (see, for example, Bürgisser [Bür00, §2.3]).

In the context of Theorem 5.3 and Theorem 5.4, however, the two notions of explicitness coincide.
When working with k-variate polynomials of degree d, we incur an overhead of dO(k) in passing
between the two notions of explicitness. As the hypotheses of these theorems are already in the
regime of (strong) dO(k)-explicitness, the explicitness parameter changes by a polynomial factor,
which is small enough to not affect the asymptotics of the results obtained.

The fact that the underlying field has characteristic zero is used in a key part of the proof of
Theorem 5.4, and it is not clear how to adapt the proof to fields of positive characteristic. The
generator used to design the hitting set in the conclusion of Theorem 5.4 is notably not a variation
on the Kabanets-Impagliazzo generator, but instead a new generator whose construction is more
algebraic than combinatorial in flavor.

Note that Theorem 5.3 and Theorem 5.4 require the same hardness assumption. This gives
a second proof of derandomization of polynomial identity testing from an explicit family of hard
constant-variate polynomials, although the derandomization we obtain is slightly weaker compared
to Theorem 5.4. However, our construction does not require the characteristic of the underlying
field to be zero. It is tempting to conjecture that one can recover the conclusion of Theorem 5.4
in positive characteristic by improving the bootstrapping process used to prove Theorem 5.1. It is
unclear whether such a result is possible.

6 Relating Constant-Variate and Multivariate Lower Bounds

This work and the work of Guo, Kumar, Saptharishi, and Solomon [GKSS19] have shown that lower
bounds against (strongly) explicit constant-variate polynomials yield very strong derandomizations
of polynomial identity testing. We are able to give an explicit hitting set of size sexp ◦ exp(O(log? s))

for CF(s, s, s) for any field F (this is Theorem 5.3), while Guo, Kumar, Saptharishi, and Solomon
[GKSS19] obtain explicit hitting sets of size sO(1) for the same class when charF = 0. However, if
one instead assumes the existence of a (strongly) explicit family of maximally-hard multivariate
polynomials of low degree (specifically, degree nO(1) where n is the number of variables), it is not clear
how to obtain similar derandomization results. The best-known derandomization from multivariate
lower bounds is that of Kabanets and Impagliazzo [KI04], who gave an explicit hitting set of size
sO(log s) for CF(s, s, s).

The fact that we can obtain strong derandomizations of polynomial identity testing from
constant-variate hardness raises the question of whether or not such derandomization is possible
under multivariate hardness assumptions. A natural first approach to this would be to show that
lower bounds for a (strongly) explicit family of multivariate polynomials imply comparable lower
bounds against a (strongly) explicit family of constant-variate polynomials. Such an implication is
known in the setting of non-commutative circuits and is due to Carmosino, Impagliazzo, Lovett, and
Mihajlin [CILM18].

It is not hard to show a connection in the other direction; that is, lower bounds against strongly
explicit families of constant-variate polynomials can be translated into comparable lower bounds
against strongly explicit families of multivariate polynomials. An easy way to do this is via the
approach of Lemma 2.6.

In this section, we investigate to what extent a converse to Lemma 2.6 may hold. Unconditionally
refuting the converse of Lemma 2.6 requires proving circuit lower bounds that seem far out of reach,
so we have little hope to fully resolve this question. However, we can give some complexity-theoretic

25

evidence which shows a converse to Lemma 2.6 is unlikely to hold. To do this, we take a detour into
the arithmetic complexity of integers.

6.1 Complexity of Computing Integers

We start by defining the model we use to compute sequences of integers.

Definition 6.1. For a natural number n ∈ N, let τ(n) denote the size of the smallest circuit which
computes n using the constant 1 and the operations of addition, subtraction, and multiplication.
Let (an)n∈N be a sequence of natural numbers. If τ(an) 6 logO(1) n, then we say (an)n∈N is easy to
compute. Otherwise, we say (an)n∈N is hard to compute. ♦

As an example, the sequence (2n)n∈N is easy to compute, as we can compute 2n in O(log n)
arithmetic steps by repeated squaring. A major open problem in this area is to understand τ(n!),
the complexity of the sequence of factorials. The following conjecture regarding τ(n!) appears to be
folklore.

Conjecture 6.2. The sequence of factorials (n!)n∈N is hard to compute. ♦

Prior work has established relationships between Conjecture 6.2 and other prominent conjectures
in computational complexity. Blum, Cucker, Shub, and Smale [BCSS98, page 126] gave an argument
that shows if τ(n!) 6 logO(1) n, then there are circuits of logO(1) n size to factor n. A related work
by Shamir [Sha79] reduces factorization to computing factorials, albeit in a slightly different model.
Bürgisser [Bür09] showed that Conjecture 6.2 implies that the n× n permanent cannot be computed
by constant-free division-free algebraic circuits of size nO(1). Work by Lipton [Lip94] shows that
average-case hardness of factoring implies a slightly weaker form of Conjecture 6.2; namely, that the
polynomial

∏n
i=1(x− i) is hard to compute by constant-free algebraic circuits.

Before moving on to address the question of a converse to Lemma 2.6, we present a reduction
due to Shamir [Sha79] which reduces the task of computing n! to the task of computing

(
2n
n

)
.

Lemma 6.3 ([Sha79]). If (
(

2n
n

)
)n∈N is easy to compute, then (n!)n∈N is easy to compute.

Proof. Suppose τ
((

2n
n

))
6 O(logc n). Recall the identity

n! =

{
((n/2)!)2 ·

(
n
n/2

)
n is even

n · ((n−1
2)!)2 ·

(
n−1

(n−1)/2

)
n is odd.

This implies

τ(n!) 6 τ(n) + τ((bn/2c!)2) + τ

((
2 · bn/2c
bn/2c

))
.

Expanding out the recurrence and using the fact that τ((bn/2c!)2) 6 τ(bn/2c!) + 1, we get

τ(n!) 6
logn∑
i=1

[
τ(bn/2ic) + τ

((
2 · bn/2i+1c
bn/2i+1c

))
+ 1

]
6 log n · (O(log n) +O(logc n) + 1)

6 O(logc+1 n).

Hence (n!)n∈N is easy to compute.

26

6.2 The Inverse Kronecker Map and Constant-Free Circuits

Here, we show that two forms of a converse to Lemma 2.6 refute Conjecture 6.2 to varying degrees.
Our first argument shows that a straightforward converse of Lemma 2.6 implies that Conjecture 6.2
fails infinitely often. That is, suppose g(x) is a univariate degree d polynomial and f(y) is a
multilinear polynomial which simplifies to g(x) under the mapping yi 7→ x2i . Lemma 2.6 says that
hardness of g(x) implies hardness of f(y). The following conjecture, which we wish to conditionally
refute, says that hardness of f(y) implies hardness of g(x).

Conjecture 6.4. Let gm,d(x) =
∑

a αax
a be anm-variate degree d polynomial. Let j : {0, 1}blog dc+1 →

J2blog dc+1K be given by j(e) =
∑blog dc+1

i=1 ei2
i−1. That is, j(e) is the number whose binary represen-

tation corresponds to e. Let y = (y1,1, . . . , y1,blog dc+1, . . . , ym,1, . . . , ym,blog dc+1) and define

fm,d(y) =
∑

e∈{0,1}m×blog dc+1

α(j(e1,•),...,j(em,•))y
e.

Suppose fm,d requires constant-free circuits of size s to compute. Then gm,d requires constant-free
circuits of size sΩ(1) −Θ(m log d) to compute. ♦

We now show that Conjecture 6.4 implies the factorials are easy to compute infinitely often.

Theorem 6.5. Suppose Conjecture 6.4 holds over Q. Then the sequence of factorials (n!)n∈N is
easy to compute infinitely often.

Proof. It is easy to see that
∑2n

i=0

(
2n

i

)
xi = (x + 1)2n is computable by a constant-free algebraic

circuit of size O(n) via repeated squaring. Let

fn(y) =
∑

e∈{0,1}n+1

(
2n

j(e)

)
ye.

The contrapositive of Conjecture 6.4 yields a constant-free circuit of size O(nc) which computes fn
for some absolute constant c. Let an−1 = 1 and a0 = · · · = an−2 = an = 0. Then fn(a) =

(
2n

2n−1

)
+ 1.

By evaluating the circuit for fn at a and subtracting 1, we obtain a circuit of size O(nc) which
computes

(
2n

2n−1

)
.

We now follow the argument of Lemma 6.3 to construct circuits of size O(nc+1) to compute
(2n!)n∈N. By definition, we have

2n! =

(
2n

2n−1

)
(2n−1!)2

=

(
2n

2n−1

)(
2n−1

2n−2

)2

(2n−2!)4

...

=

n−1∏
i=0

(
2n−i

2n−i−1

)2i

.

Using the fact that we fact that we can compute
(

2n

2n−1

)
by a circuit of size O(nc), we obtain

τ(2n!) 6
n−1∑
i=0

τ

((
2n−i

2n−i−1

)2i
)
6

n−1∑
i=0

O(nc+1) 6 O(nc+2).

Hence the factorials are easy to compute infinitely often.

27

It is unclear whether there is meaningful evidence to suggest that the factorials are not easy to
compute at numbers of the form 2n. Because of this, Theorem 6.5 may be best viewed as evidence
that if Conjecture 6.4 is true, the proof will not be straightforward.

Conjecture 6.4 can be seen as a base-two converse to Lemma 2.6. Instead, we might consider the
following strengthening of Conjecture 6.4 to all number bases.

Conjecture 6.6. Let gm,d(x) =
∑

a αax
a be an m-variate degree d polynomial. Let k ∈ N and let

j : JkKblogk dc+1 → Jkblogk dc+1K be given by j(e) =
∑blogk dc+1

i=1 eik
i−1, that is, j(e) is the number whose

base-k representation corresponds to e. Let y = (y1,1, . . . , y1,blogk dc+1, . . . , ym,1, . . . , ym,blogk dc+1)
and define

fm,d(y) =
∑

e∈JkKm×blogk dc+1

α(j(e1,•),...,j(em,•))y
e.

Suppose fm,d requires constant-free circuits of size s to compute. Then gm,d requires constant-free
circuits of size sΩ(1) −Θ(m log d) to compute. ♦

We can show that this stronger conjecture is less likely to hold than Conjecture 6.4.

Theorem 6.7. Suppose Conjecture 6.6 holds over Q. Then (n!)n∈N is easy to compute.

Proof. By Lemma 6.3, it suffices to show that the central binomial coefficients
(

2n
n

)
n∈N are easy

to compute. Let n ∈ N be given. There is constant-free circuit of size O(log n) which computes
g(x) = (x+ 1)2n. Consider the polynomial

f(y1, yn) =
n−1∑
i=0

n−1∑
j=0

(
2n

i+ jn

)
yi1y

j
n,

where by convention
(
n
k

)
= 0 when n < k. Note that

f(x, xn) =

n−1∑
i=0

n−1∑
j=0

(
2n

i+ jn

)
xi+jn =

n2−1∑
k=0

(
2n

k

)
xk =

2n∑
k=0

(
2n

k

)
xk = (x+ 1)2n.

The contrapositive of Conjecture 6.6 implies that f is computable by a constant-free circuit of size
O(logc n) for some absolute constant c. We now evaluate f(0, 1) to obtain

f(0, 1) =

n−1∑
j=0

(
2n

jn

)
=

(
2n

0

)
+

(
2n

n

)
+

(
2n

2n

)
=

(
2n

n

)
+ 2.

By computing f(0, 1)− 2, we obtain a constant-free circuit of size O(logc n) which computes
(

2n
n

)
.

Hence the central binomial coefficients are easy to compute.

Note that the results of this section only give evidence that Conjecture 6.4 and Conjecture 6.6 do
not hold over fields of characteristic zero. Over fields of positive characteristic, it is unclear whether
these conjectures are likely to be true or false. This is somewhat interesting, as if Conjecture 6.4 holds
over fields of positive characteristic, then we can replace constant-variate hardness with multivariate
hardness in our extension of the Kabanets-Impagliazzo generator to fields of small characteristic.

28

7 Conclusion and Open Problems

In this work, we gave the first instantiation of the algebraic hardness-randomness paradigm over fields
of small characteristic. Our main tool was the mod-p decomposition, which we used to efficiently
compute pth roots of circuits which depend on a small number of variables. This allowed us to extend
known hardness-randomness tradeoffs due to Kabanets and Impagliazzo [KI04] to fields of small
characteristic under seemingly stronger hardness assumptions. We also constructed a hitting set
generator which, under suitable hardness assumptions, provides a near-complete derandomization of
polynomial identity testing. As our hardness assumptions are somewhat atypical, we compared them
to more standard hardness assumptions and gave a conditional result which says that our hardness
assumptions are not implied by standard ones.

A number of problems in low-characteristic derandomization remain open, some of which we
have pointed out earlier in this work. Here, we mention some challenges which our techniques are
not able to resolve.

1. Is it possible to obtain hardness-randomness tradeoffs over fields of small characteristic using
a strongly explicit family of hard multilinear polynomials as opposed to constant-variate
polynomials?

2. Let F be a field of characteristic p > 0, where p is some fixed constant. Suppose f(x)p ∈ F[x]
is an n-variate polynomial which can be computed by a circuit of size s over F. Is there a
circuit of size sO(1) which computes f(x) in the case that n = ω(log s)?

3. In the conclusion of Theorem 5.1, is it possible to obtain a hitting set of size sO(1)? If so,
this would give a construction of a hitting set generator over low characteristic fields which
qualitatively matches the parameters of the generator of Guo, Kumar, Saptharishi, and Solomon
[GKSS19].

4. Is it possible to lift lower bounds from the multivariate regime to the constant-variate regime?
It seems like the answer may be “no,” but our evidence thus far only applies to constant-free
circuits over fields of characteristic zero. What can we say if we remove the constant-free
restriction? What about fields of positive characteristic?

Acknowledgements. We would like to thank Michael A. Forbes for many useful comments
which helped improve the presentation of this work.

References

[AB03] Manindra Agrawal and Somenath Biswas. “Primality and identity testing via Chinese
remaindering”. In: J. ACM 50.4 (2003), pp. 429–443. Preliminary version in the 40th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 1999) (cit. on
p. 2).

[AGS19] Manindra Agrawal, Sumanta Ghosh, and Nitin Saxena. “Bootstrapping variables in
algebraic circuits”. In: Proc. Natl. Acad. Sci. USA 116.17 (2019), pp. 8107–8118. Pre-
liminary version in the 50th Annual ACM Symposium on Theory of Computing (STOC
2018) (cit. on pp. 2, 5, 21).

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. “PRIMES is in P”. In: Ann. of
Math. (2) 160.2 (2004), pp. 781–793 (cit. on p. 2).

29

http://dx.doi.org/10.1145/792538.792540
http://dx.doi.org/10.1145/792538.792540
http://dx.doi.org/10.1073/pnas.1901272116
http://dx.doi.org/10.1073/pnas.1901272116
http://dx.doi.org/10.4007/annals.2004.160.781

[AV08] Manindra Agrawal and V. Vinay. “Arithmetic Circuits: A Chasm at Depth Four”. In:
Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2008). 2008, pp. 67–75 (cit. on p. 2).

[BCS97] Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. “Algebraic complexity the-
ory”. Vol. 315. Grundlehren der MathematischenWissenschaften [Fundamental Principles
of Mathematical Sciences]. With the collaboration of Thomas Lickteig. Springer-Verlag,
Berlin, 1997, pp. xxiv+618 (cit. on p. 8).

[BCSS98] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. “Complexity and real
computation”. With a foreword by Richard M. Karp. Springer-Verlag, New York, 1998,
pp. xvi+453 (cit. on p. 26).

[BCW80] Manuel Blum, Ashok K. Chandra, and Mark N. Wegman. “Equivalence of free Boolean
graphs can be decided probabilistically in polynomial time”. In: Inform. Process. Lett.
10.2 (1980), pp. 80–82 (cit. on p. 2).

[Bou90] Nicolas Bourbaki. “Algebra. II. Chapters 4–7”. Elements of Mathematics (Berlin). Trans-
lated from the French by P. M. Cohn and J. Howie. Springer-Verlag, Berlin, 1990,
pp. vii+461 (cit. on p. 10).

[Bür00] Peter Bürgisser. “Completeness and reduction in algebraic complexity theory”. Vol. 7.
Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 2000, pp. xii+168
(cit. on pp. 7, 8, 25).

[Bür09] Peter Bürgisser. “On defining integers and proving arithmetic circuit lower bounds”. In:
Comput. Complexity 18.1 (2009), pp. 81–103. Preliminary version in the 24th Symposium
on Theoretical Aspects of Computer Science (STACS 2007) (cit. on p. 26).

[CILM18] Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan Mihajlin. “Hardness
amplification for non-commutative arithmetic circuits”. In: Proceedings of the 33rd An-
nual Computational Complexity Conference (CCC 2018). Vol. 102. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2018, 12:1–12:16 (cit. on p. 25).

[CKS18] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. “Hardness vs randomness for
bounded depth arithmetic circuits”. In: Proceedings of the 33rd Annual Computational
Complexity Conference (CCC 2018). Vol. 102. Leibniz International Proceedings in
Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 13:1–
13:17 (cit. on p. 2).

[DSY09] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. “Hardness-randomness tradeoffs for
bounded depth arithmetic circuits”. In: SIAM J. Comput. 39.4 (2009), pp. 1279–1293.
Preliminary version in the 40th Annual ACM Symposium on Theory of Computing
(STOC 2008) (cit. on p. 2).

[FGS18] Michael A. Forbes, Sumanta Ghosh, and Nitin Saxena. “Towards blackbox identity
testing of log-variate circuits”. In: Proceedings of the 45th International Colloquium on
Automata, Languages and Programming (ICALP 2018). Vol. 107. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2018, 54:1–54:16 (cit. on p. 13).

[GK98] Dima Grigoriev and Marek Karpinski. “An exponential lower bound for depth 3 arith-
metic circuits”. In: Proceedings of the 30th Annual ACM Symposium on Theory of
Computing (STOC 1998). ACM, New York, 1998, pp. 577–582 (cit. on p. 17).

30

http://dx.doi.org/10.1109/FOCS.2008.32
http://dx.doi.org/10.1007/978-3-662-03338-8
http://dx.doi.org/10.1007/978-3-662-03338-8
http://dx.doi.org/10.1007/978-1-4612-0701-6
http://dx.doi.org/10.1007/978-1-4612-0701-6
http://dx.doi.org/10.1016/S0020-0190(80)90078-2
http://dx.doi.org/10.1016/S0020-0190(80)90078-2
http://dx.doi.org/10.1007/978-3-662-04179-6
http://dx.doi.org/10.1007/s00037-009-0260-x
http://dx.doi.org/10.4230/LIPIcs.CCC.2018.12
http://dx.doi.org/10.4230/LIPIcs.CCC.2018.12
http://dx.doi.org/10.4230/LIPIcs.CCC.2018.13
http://dx.doi.org/10.4230/LIPIcs.CCC.2018.13
http://dx.doi.org/10.1137/080735850
http://dx.doi.org/10.1137/080735850
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.54
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.54

[GKKS16] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. “Arithmetic
circuits: a chasm at depth 3”. In: SIAM J. Comput. 45.3 (2016), pp. 1064–1079. Prelimi-
nary version in the 54th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2013) (cit. on p. 2).

[GKSS19] Zeyu Guo, Mrinal Kumar, Ramprasad Saptharishi, and Noam Solomon. “Derandom-
ization from Algebraic Hardness: Treading the Borders”. In: Proceedings of the 60th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2019). 2019,
pp. 147–157 (cit. on pp. 2, 5, 24, 25, 29).

[GR00] Dima Grigoriev and Alexander Razborov. “Exponential lower bounds for depth 3
arithmetic circuits in algebras of functions over finite fields”. In: Appl. Algebra Engrg.
Comm. Comput. 10.6 (2000), pp. 465–487. Preliminary version in the 39th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 1998) (cit. on p. 17).

[HY11] Pavel Hrubeš and Amir Yehudayoff. “Arithmetic Complexity in Ring Extensions”. In:
Theory of Computing 7.8 (2011), pp. 119–129 (cit. on p. 8).

[IW97] Russell Impagliazzo and Avi Wigderson. “P = BPP if E requires exponential circuits:
derandomizing the XOR lemma”. In: Proceedings of the 29th Annual ACM Symposium
on Theory of Computing (STOC 1997). ACM, New York, 1997, pp. 220–229 (cit. on
p. 1).

[Kal89] Erich Kaltofen. “Factorization of Polynomials Given by Straight-Line Programs”. In:
Advances in Computing Research 5 (1989) (cit. on pp. 3, 8).

[KI04] Valentine Kabanets and Russell Impagliazzo. “Derandomizing polynomial identity tests
means proving circuit lower bounds”. In: Comput. Complexity 13.1-2 (2004), pp. 1–46.
Preliminary version in the 35th Annual ACM Symposium on Theory of Computing
(STOC 2003) (cit. on pp. 2–6, 8, 17, 18, 25, 29).

[Koi12] Pascal Koiran. “Arithmetic circuits: the chasm at depth four gets wider”. In: Theoret.
Comput. Sci. 448 (2012), pp. 56–65 (cit. on p. 2).

[KS17] Mrinal Kumar and Ramprasad Saptharishi. “An exponential lower bound for homoge-
neous depth-5 circuits over finite fields”. In: Proceedings of the 32nd Annual Computa-
tional Complexity Conference (CCC 2017). Vol. 79. Leibniz International Proceedings
in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, 31:1–
30:30 (cit. on p. 17).

[KS19] Mrinal Kumar and Ramprasad Saptharishi. “Hardness-Randomness Tradeoffs for Alge-
braic Computation”. In: Bull. Eur. Assoc. Theor. Comput. Sci. 129 (2019), pp. 56–87
(cit. on pp. 3, 6).

[KST19] Mrinal Kumar, Ramprasad Saptharishi, and Anamay Tengse. “Near-optimal boot-
strapping of hitting sets for algebraic circuits”. In: Proceedings of the 30th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2019). SIAM, Philadelphia, PA,
2019, pp. 639–646 (cit. on pp. 2, 3, 5, 8, 9, 21).

[KUW86] Richard M. Karp, Eli Upfal, and Avi Wigderson. “Constructing a perfect matching is in
Random NC”. In: Combinatorica 6.1 (1986), pp. 35–48. Preliminary version in the 17th
Annual ACM Symposium on Theory of Computing (STOC 1985) (cit. on p. 2).

[Lip94] Richard J. Lipton. “Straight-line complexity and integer factorization”. In: Algorithmic
number theory (Ithaca, NY, 1994). Vol. 877. Lecture Notes in Comput. Sci. Springer,
Berlin, 1994, pp. 71–79 (cit. on p. 26).

31

http://dx.doi.org/10.1137/140957123
http://dx.doi.org/10.1137/140957123
http://dx.doi.org/10.1109/FOCS.2019.00018
http://dx.doi.org/10.1109/FOCS.2019.00018
http://dx.doi.org/10.1007/s002009900021
http://dx.doi.org/10.1007/s002009900021
http://dx.doi.org/10.4086/toc.2011.v007a008
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1016/j.tcs.2012.03.041
http://dx.doi.org/10.4230/LIPIcs.CCC.2017.31
http://dx.doi.org/10.4230/LIPIcs.CCC.2017.31
http://dx.doi.org/10.1137/1.9781611975482.40
http://dx.doi.org/10.1137/1.9781611975482.40
http://dx.doi.org/10.1007/BF02579407
http://dx.doi.org/10.1007/BF02579407
http://dx.doi.org/10.1007/3-540-58691-1_45

[Lov79] László Lovász. “On determinants, matchings, and random algorithms”. In: Fundamentals
of computation theory (Proc. Conf. Algebraic, Arith. and Categorical Methods in Comput.
Theory, Berlin/Wendisch-Rietz, 1979). Vol. 2. Math. Res. Akademie-Verlag, Berlin, 1979,
pp. 565–574 (cit. on pp. 2, 3).

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. “Matching is as easy as
matrix inversion”. In: Combinatorica 7.1 (1987), pp. 105–113. Preliminary version in
the 19th Annual ACM Symposium on Theory of Computing (STOC 1987) (cit. on p. 2).

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs. randomness”. In: J. Comput. System
Sci. 49.2 (1994), pp. 149–167 (cit. on pp. 2, 8, 9).

[Raz13] Ran Raz. “Tensor-rank and lower bounds for arithmetic formulas”. In: J. ACM 60.6
(2013), Art. 40, 15. Preliminary version in the 42nd Annual ACM Symposium on Theory
of Computing (STOC 2010) (cit. on p. 14).

[Rom06] Steven Roman. “Field theory”. 2nd ed. Vol. 158. Graduate Texts in Mathematics.
Springer, New York, 2006, pp. xii+332 (cit. on p. 10).

[Sax09] Nitin Saxena. “Progress on polynomial identity testing”. In: Bull. Eur. Assoc. Theor.
Comput. Sci. 99 (2009), pp. 49–79 (cit. on p. 2).

[Sax14] Nitin Saxena. “Progress on Polynomial Identity Testing II”. In: Proceedings of the
Workshop celebrating Somenath Biswas’ 60th Birthday. 2014, pp. 131–146 (cit. on p. 2).

[Sha79] Adi Shamir. “Factoring numbers in O(log n) arithmetic steps”. In: Inform. Process. Lett.
8.1 (1979), pp. 28–31 (cit. on p. 26).

[SU05] Ronen Shaltiel and Christopher Umans. “Simple extractors for all min-entropies and
a new pseudorandom generator”. In: J. ACM 52.2 (2005), pp. 172–216. Preliminary
version in the 42nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2001) (cit. on p. 1).

[SY10] Amir Shpilka and Amir Yehudayoff. “Arithmetic circuits: a survey of recent results and
questions”. In: Found. Trends Theor. Comput. Sci. 5.3-4 (2010), pp. 207–388 (cit. on
pp. 2, 6).

[Tav15] Sébastien Tavenas. “Improved bounds for reduction to depth 4 and depth 3”. In: Inform.
and Comput. 240 (2015), pp. 2–11 (cit. on p. 2).

[Uma03] Christopher Umans. “Pseudo-random generators for all hardnesses”. In: J. Comput.
System Sci. 67.2 (2003), pp. 419–440. Preliminary version in the 34th Annual ACM
Symposium on Theory of Computing (STOC 2002) (cit. on p. 1).

[Wil09] Ryan Williams. “Finding paths of length k in O∗(2k) time”. In: Inform. Process. Lett.
109.6 (2009), pp. 315–318 (cit. on p. 4).

32
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

http://dx.doi.org/10.1007/BF02579206
http://dx.doi.org/10.1007/BF02579206
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://dx.doi.org/10.1145/2535928
http://dx.doi.org/10.1016/0020-0190(79)90087-5
http://dx.doi.org/10.1145/1059513.1059516
http://dx.doi.org/10.1145/1059513.1059516
http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1016/j.ic.2014.09.004
http://dx.doi.org/10.1016/S0022-0000(03)00046-1
http://dx.doi.org/10.1016/j.ipl.2008.11.004

