
On One-way Functions and Sparse Languages

Yanyi Liu
Cornell Tech

yl2866@cornell.edu

Rafael Pass∗

Cornell Tech and Tel-Aviv University
rafael@cs.cornell.edu

February 10, 2023

Abstract

We show equivalence between the existence of one-way functions and the existence of a sparse
language that is hard-on-average w.r.t. some efficiently samplable “high-entropy” distribution.
In more detail, the following are equivalent:

• The existence of a S(·)-sparse language L that is hard-on-average with respect to some
samplable distribution with Shannon entropy h(·) such that h(n)− log(S(n)) ≥ 4 log n;

• The existence of a S(·)-sparse language L ∈ NP, that is hard-on-average with respect to
some samplable distribution with Shannon entropy h(·) such that h(n)− log(S(n)) ≥ n/3;

• The existence of one-way functions.

Our results are inspired by, and generalize, results from the elegant recent paper by Ilango, Ren
and Santhanam (IRS, STOC’22), which presents similar connections for specific sparse languages.

As a result of independent interest, we also (slightly) generalize the central characterization
of IRS and demonstrate that one-way functions exist if and only if there exists some efficiently
sampleable distribution D such that it is average-case hard to compute a ω(log n)-additive ap-
proximation of Kolmogorov complexity w.r.t. D.
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1 Introduction

A one-way function [DH76] (OWF) is a function f that can be efficiently computed (in polynomial
time), yet no probabilistic polynomial-time (PPT) algorithm can invert f with inverse polynomial
probability for infinitely many input lengths n. Whether one-way functions exist is unequivocally
the most important open problem in Cryptography (and arguably the most importantly open prob-
lem in the theory of computation, see e.g., [Lev03]): OWFs are both necessary [IL89] and sufficient
for many of the most central cryptographic primitives and protocols (e.g., pseudorandom gener-
ators [BM84, HILL99], pseudorandom functions [GGM84], private-key encryption [GM84], digital
signatures [Rom90], commitment schemes [Nao91], identification protocols [FS90], coin-flipping pro-
tocols [Blu82], and more). These primitives and protocols are often referred to as private-key prim-
itives, or “Minicrypt” primitives [Imp95] as they exclude the notable task of public-key encryption
[DH76, RSA83]. Additionally, as observed by Impagliazzo [Gur89, Imp95], the existence of a OWF
is equivalent to the existence of polynomial-time method for sampling hard solved instances for an
NP language (i.e., hard instances together with their witnesses).

A central open question at the intersection of Cryptography and Complexity-theory, however,
is whether the existence of just an average-case hard problem in NP suffices to get the existence of
OWFs:

Does the existence of a language in NP that is hard-on-average imply the existence of
OWFs?

(In Impagliazzo’s language, can we rule out “Pessiland”—a world where NP is hard on average but
OWFs do not exist.) There has been some recent progress towards this question. Most notably, Liu
and Pass [LP20] recently showed that (mild) average-case hardness, w.r.t. the uniform distribution
of instances, of a particular natural problem in NP—the time-bounded Kolmogorov Complexity
problem [Kol68, Tra84, Sip83, Ko86, Har83]—characterizes the existence of OWFs. This problem,
however is not average-case complete for NP so it does not resolve the above question.

In this work, our goal is to identify properties of languages such that their average-case hardness
implies OWFs:

Can we identify simple/natural properties of a distribution-language pair (D, L) such that
average-case hardness of L with respect to distribution D implies the existence of OWFs?

Our starting point towards answering this problem is an elegant recent work by Ilango, Ren and
Santhanam [IRS21] (IRS). IRS first show that the existence of OWFs is equivalent to average-case
hardness of a Gap version of the Kolmogorov complexity problem w.r.t. any efficiently computable
distribution. In a second step, they next show that average-case hardness of some specific sparse
languages implies average-case hardness of this Gap problem.

In more detail, their first step shows that OWFs exist iff there exists some samplable distribution
D and efficiently computable thresholds t0, t1, t1(n) − t0(n) > ω(log n), so that it is hard to decide
whether K(x) > t1(|x|) or K(x) < t0(|x|). Let us highlight that this characterization differs from the
one in [LP20] in three aspects: (1) it considers unbounded, as opposed to time-bounded Kolmogorov
complexity, (2) hardness holds w.r.t. to a gap problem, as opposed to a decisional problem, and
(3) it considers hardness w.r.t. any efficient distribution, as opposed to the uniform distribution
considered in [LP20]. (In particular, this result does not provide a candidate distribution for which
the Gap problem may be hard—and it is provably easy with respect to the uniform distribution.)
In the second step, they present some concrete languages (k-SAT and t-Clique) such that average-
case hardness of these languages with respect to high-entropy distributions implies (but does not
characterize) the existence of OWFs.
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In this work, we show how to generalize the results obtained in the second step and to demonstrate
that the existence of OWFs is equivalent to the existence of a sparse language that is hard-on-average
w.r.t. some efficiently samplable “high-entropy” distribution. In more details, the Shannon entropy
of the sampler needs to be just slightly bigger than the logarithm of the density of the language.

As a result of independent interest, we additionally show how to generalize the results of IRS in
their Step 1 with respect to K-complexity (but note that the results with respect to sparse languages
no longer pass through this result).

1.1 Our Results

To formalize the statements of our results, let us briefly state some preliminaries.

Preliminaries We say that a language L ⊂ {0, 1}∗ is S(·)-sparse if for all n ∈ N, |Ln| ≤ S(n),
where Ln = |L ∩ {0, 1}n|. Given a language L, we abuse the notation and let L(x) = 1 iff x ∈ L.
For a random variable X, let H(X) = E[log 1

Pr[X=x] ] denote the Shannon entropy of X. A function

µ is said to be negligible if for every polynomial p(·) there exists some n0 such that for all n > n0,
µ(n) ≤ 1

p(n) .

We say that D = {Dn}n∈N is an ensemble if for all n ∈ N, Dn is a probability distribution
over {0, 1}n. We say that an ensemble D = {Dn}n∈N is samplable if there exists a probabilistic
polynomial-time Turing machine S such that S(1n) samples Dn; we use the notation S(1n; r) to
denote the algorithm S with randomness fixed to r. We say that an ensemble D has entropy h(·) if
for all sufficiently large n ∈ N, H(Dn) ≥ h(n).

We say that a language L ⊂ {0, 1}∗ is α(·) hard-on-average (α-HoA) on an ensemble D =
{Dn}n∈N if for all probabilistic polynomial-time heuristics H, for all sufficiently large n ∈ N,

Pr[x← Dn : H(x) = L(x)] < 1− α(n).

We simply say that L is hard-on-average (HoA) on D if for every c, α(n) = 1
2 −

1
nc , L is α-HoA.

Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. f is said to be a one-way
function (OWF) if for every PPT algorithm A, there exists a negligible function µ such that for all
n ∈ N,

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ µ(n)

Main Theorem We are now ready to state our main theorem.

Theorem 1.1. The following are equivalent:

1. The existence of a S(·)-sparse language L that is (1
2 −

1
4n)-HoA with respect to some samplable

distribution with Shannon entropy h(·) such that h(n)− log(S(n)) ≥ 4 log n;

2. The existence of a S(·)-sparse language L ∈ NP, that is HoA with respect to some samplable
distribution with Shannon entropy h(·) such that h(n)− log(S(n)) ≥ n/3;

3. The existence of one-way functions.

Theorem 1.1 is proven by, in Section 2 showing that (1) implies (3), and in Section 3 showing that
(3) implies (2); the fact that (2) implies (1) is trivial. We present some corollaries of Theorem 1.1 in
Section 4. In Section 5, we finally present some result of independent interest that generalize the result
in [IRS21] with respect to the particular K-complexity problem—in particular, we strengthen the
result from [IRS21] to show that that it suffices to assume hardness of approximating K-complexity
(as opposed to assuming hardness of deciding a threshold version of a Gap-K problem).

2



1.2 Proof Overview

To explain the proof of our results, and to put it in context, let us start by reviewing the results of
Ilango, Ren and Santhanam (IRS) [IRS21].

IRS Part 1: OWFs from Hardness of Gap-K. As mentioned, IRS first show that OWFs
exist iff there exists some samplable distribution D and efficiently computable thresholds t0, t1 where
t1(n)− t0(n) > ω(log n) so that it is hard to decide whether K(x) > t1(|x|) or K(x) < t0(|x|) when
sampling x from D. We here focus only on the “if” direction which will be most relevant to us.1 On
a high level, the IRS result is obtained by showing that any sampler that makes this Gap problem
hard must itself be a OWF. In more detail, they first appeal to the result of [IL89, IL90] showing
that if OWFs do not exist, then approximate counting is possible on average. They next show how
to use an approximate counter to solve the Gap-K problem: Given an instance x, approximately
count the number of random strings r that lead the sampler D (given randomness r) to generate x.
If the number is “small”—we refer to such strings x as rare, where “small” is appropriately defined
as a function of t1(|x|) (which, recall, is required to be efficiently computable), then output NO (i.e.,
that the K-complexity is large), and otherwise (i.e., if x is common) output YES.

It remains to analyze that this deciding algorithm works (on average). The key observation
is that common instances x must be YES-instances: their K-complexity must be small simply by
enumerating all common strings (since there can only be a small number of them!). Thus (whenever
the approximate counter is correct), the decider always gives the right answer on NO-instances.
On the other hand, since YES-instances are sparse, it directly follows by a Union bound, that the
probability that we sample a YES-instance that is rare must be small. Consequently, the decider will
also give the right answer on YES-instances with high probability. This concludes the existence of
OWFs assuming the hardness of the Gap-K problem.

IRS Part 2: OWF from Specific Sparse Languages. In the second part of their paper, IRS
next present some concrete languages—k-SAT and t-Clique—and show that average-case hardness
with respect to high-entropy distributions of these concrete languages imply hardness of Gap-K
(which in turn by the first result implies OWFs). This argument relies on the following three steps:

• Step 1 (Language-specific): Proving—using language specific structures—that YES instances
have small K-complexity.

• Step 2 (Generic): Rely on a generic counting argument (following a similar statement in
[LP20]) to show that elements sampled from any high-entropy distribution need to have high
K-complexity with reasonable (roughly 1/n) probability.

• Step 3 (Language-specific): Finally, to argue that average-case hardness of these languages
w.r.t. any high-entropy distribution implies average-case hardness of Gap-K, we additionally
need to argue that the thresholds t0, t1 for the K-complexity problem are efficiently computable.
Another language specific argument is used to show that the number of YES-instances in these
languages can be efficiently estimated and this can be used to give the thresholds.

Towards Sparse Languages: A Warm-Up We start by observing that Step 1, in fact, holds for
any sparse language that is decideable, or even recursively enumerable: If the language is sparse and
recursively enumerable, then we can simply compress an instance by writing down its index, so YES-
instances need to have small K-complexity. We additionally note that if the sparsity threshold is

1The only-if direction is a direct consequence of [HILL99].
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efficiently computable, the thresholds t0, t1 for the Gap-K problem also become efficiently computable
and we can also carry out Step 3 (and Step 2 is obviously generic). Thus, relying on these observation,
we can directly obtain a weaker version of Theorem 1.1 by appealing to the results of [IRS21]. Let
us highlight, however, that this version is weaker in two important ways:

1. We require the sparse language to be recursively enumerable (to deal with Step 1).

2. We require the sparsity threshold to be efficiently computable (to deal with Step 3).

Proving the Full Result To remove the above two restrictions, our key observation is that
passing through K-complexity may not be the right approach. Rather, we can directly redo Part 1
of IRS (i.e., decide the language using an approximate counter) for any sparse language w.r.t. to a
high-entropy distribution. Our decider proceeds as follows given an instance x:

• Just as IRS, use the approximate counter to check if the string x is rare (i.e., that there is a
small number of random coins r for D that generate x).

• If x is deemed rare, then output NO, and otherwise output a random guess (as opposed to
outputting YES as in IRS).

In the above approach, we still need to define the threshold for what counts as rare. To do this,
we note that we can use approximate counting to estimate the Shannon entropy of any efficiently
sampleable distribution (see Lemma 2.4), and we can use the (estimated) Shannon entropy as the
threshold for determining when to deem a string rare. More precisely, we call a string x rare if it is
sampled by D with probability ≤ 2−h+3, where h is the Shannon entropy of D.

To argue that this approach works, we proceed as follows:

• We first note that any distribution D needs to output strings that are rare (where recall, rare
is defined w.r.t. the the Shannon-entropy of D) with probability 1/n (See Lemma 2.1). (This
statement is a stronger version of a result shown in [LP20], and relies on essentially the same
proof as used in [IRS21] to argue that high-entropy distributions output strings with high
K-complexity with reasonable probability.)

• We next argue that conditioned on D sampling a rare instance, our decider succeeds with
high probability. First, note that the decider always outputs NO on rare instances (unless the
approximate counter fails, which happens with small probability so we can ignore this event).
Next, by the sparsity of the language and the Union bound, we have that the probability that
D samples a YES-instance that is rare is tiny (technically, ≤ 1/n2) (see Lemma 2.2). But since
the probability that D samples a rare instance is a lot larger, we have that our decider succeeds
with high probability conditioned on rare instances.

• On common instances, our decider succeeds with probability 1/2 (again, as long as the approx-
imate counter does not fail, which happens with tiny probability). So, we conclude that the
decider succeeds with probability roughy 1/2 + 1/(2n).

This concludes that (1) implies (3) in Theorem 1.1. To show that (3) implies (2) we simply note
that one-way functions imply pseudo-random generators (PRG) by [HILL99], and by considering
the language of images of the PRG (which is extremely sparse) and the distribution that with
probability 1/2 samples a random string and with probability 1/2 samples an image of the PRG
(which has Shannon-entropy entropy 1/2n); this language is hard-on-average on this distribution by
the security of the PRG.
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Concluding Corollaries for Concrete Languages We finally observe—using standard arguments—
that the languages considered in [IRS21] (k-SAT and t-Clique) are sparse, and so is the language of
strings with small K-complexity. See Section 4 for more details.

In our view, these results show that for many of the corollaries of [IRS21], K-complexity was
perhaps a mirage, and in our eyes, sparsity is the central feature. We note that a similar phenomena
actually happened also with respect to the vein of work on “hardness magnification”, as shown in
the elegant work by Chen, Jin, Williams [CJW19].

Musings on the Relevance of our Results The reader may wonder why it matters to deal
with non-recursively enumerable languages and with non-efficiently computable sparsity. After all,
the natural sparse languages we consider in Section 4 are both recursively enumerable and have
efficiently computable sparsity. In our opinion, the difference is significant. In particular, removing
these restriction opens up for the possibility of using a probabilistic argument to define a candidate
language that is hard-on-average. Probabilistic arguments are typically used for proving lower-bounds
and our hope is that our result opens up the avenue for using such techniques.

Back to K-complexity Motivated by the above results, one may wonder whether the efficient
computability condition in the results of [IRS21] w.r.t. K-complexity is inherent (i.e., whether the
efficient computability of the thresholds t0, t1 in the Gap-K problem is inherent). As a result of
independent interest, we show how to strengthen the result of IRS to show that it suffices to assume
average-case hardness of approximately computing K-complexity within an additive term of ω(log n)
to deduce the existence of one-way function (i.e., that hardness of the search version suffices, and
thus we no longer need to consider any thresholds).

Theorem 1.2. The following are equivalent:

• One-way functions exist;

• There exists some efficiently samplable distribution D such that K-complexity is mildly hard to
approximate within an additive term of ω(log n).

• There exists some efficiently samplable distribution D such that K-complexity is hard to ap-
proximate within an additive term of n− no(1).

Let us first compare this result to IRS; the result is strictly stronger as our hardness of ap-
proximating K-complexity assumption is trivially implied the decisional Gap-K hardness condition
considered in IRS. In fact, as a corollary of this result (of independent interest), we get a decision-to-
search reduction for K-complexity (for efficiently computable thresholds); See Theorem 5.1 for more
details.

It is also worthwhile to compare it to the results of [LP20]; here the results is incomparable.
[LP20] shows that mild average-case hardness of time-bounded Kolmogorov complexity (even to ap-
proximate) with respect to the uniform distribution characterizes OWF. We note that K-complexity
(and also time-bounded K-complexity) is easy to approximate within an additive factor of ω(log n)
with overwhelming probability with respect to the uniform distribution so it was crucial for [LP20]
that an approximate factor of O(log n) was employed. Theorem 1.2 thus cannot hold w.r.t. the uni-
form distribution, and just as the result in IRS, it gives no indication of what the hard distribution
may be—in fact, as mentioned before, the distribution D gives the OWF.
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2 OWFs from Avg-case Hardness of Sparse Languages

Theorem 2.1. Let S(·) be a function, let h(n) ≥ logS(n) + 4 log n, and let L be a S(·)-sparse
language. Assume there exists some samplable ensemble D with entropy h(·) such that L is (1

2 −
1

4n)-
HoA on D. Then, one-way functions exist.

Before proving the theorem, we will state some useful lemmas.

Lemma 2.1 (Implicit in [LP20, IRS21]). Let Dn be a distribution over {0, 1}n with entropy at least
h. Then, with probability at least 1

n over x← Dn, it holds that

Pr[Dn = x] ≤ 2−h+3

Proof: Assume for contradiction that with probability less than 1
n over x ← Dn, Pr[Dn = x] ≤

2−h+3. Let Freq denote the set of strings x ⊆ {0, 1}n such that Pr[Dn = x] > 2−h+3, and let Rare
denote the set of strings ⊆ {0, 1}n such that Pr[Dn = x] ≤ 2−h+3. Let flag be a binary random
variable such that flag = 0 if Dn ∈ Freq and 1 otherwise (i.e. if Dn ∈ Rare). Let pFreq be the
probability that Dn ∈ Freq and pRare be the probability that Dn ∈ Rare. By the chain rule for
entropy, it holds that

H(Dn) ≤ H(Dn, flag) = H(flag) + pFreqH(Dn | Dn ∈ Freq) + pRareH(Dn | Dn ∈ Rare)

In the RHS, the first term is at most 1 (since flag is a binary variable). The second term is at
most h − 3 since |Freq| ≤ 2h−3. Recall that by assumption, we have that pRare <

1
n ; furthermore,

H(Dn | Dn ∈ Rare) ≤ n (since |Rare| ≤ 2n) and thus the last term of the RHS is at most 1. Therefore,
H(Dn) ≤ 1 + (h− 3) + 1 < h, which is a contradiction.

Lemma 2.2. Let Ln ⊂ {0, 1}n be a set of strings such that |Ln| ≤ S(n). Let Dn be a distribution
over {0, 1}n. Let ε be any number satisfying ε ≤ 1

S(n)n2 . Then, the following holds:

Pr
x←Dn

[Ln(x) = 1 ∧ Pr[Dn = x] ≤ ε] ≤ 1

n2

Proof: By the union bound, it follows that Prx←Dn [Ln(x) = 1 ∧ Pr[Dn = x] ≤ ε] is bounded by
S(n)× 1

S(n)n2 = 1
n2 .

We will rely on the following important lemma showing that approximate counting can be effi-
ciently done if one-way functions do not exist.

Lemma 2.3 ([IL90, IL89, IRS21]). Assume that one-way functions do not exist. Then, for any
samplable ensemble D = {Dn}n∈N and any constant q ≥ 1, there exist a PPT algorithm A and a
constant δ > 0 such that for infinitely many n,

Pr
x←Dn

[δ · px ≤ A(x) ≤ px] ≥ 1− 1

nq

where px = Pr[Dn = x].

In addition, we observe that if approximate counting can be done, the Shannon entropy of any
samplable distribution D can be estimated efficiently.
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Lemma 2.4. Let D = {Dn}n∈N be a samplable ensemble, let Samp be the corresponding sampler,
and let m(·) be a polynomial such that m(n) is greater than the number of random coins used by
Samp(1n). Assume that there exist a PPT algorithm A, a constant δ, and an infinite set I ⊆ N such
that for all n ∈ I,

Pr
x←Dn

[δ · px ≤ A(x) ≤ px] ≥ 1− 1

m(n)

where px = Pr[Dn = x]. Then, there exist a PPT algorithm est and a constant δ′ such that for all
n ∈ I, with probability at least 1− 1

n2 ,

|est(1n)−H(Dn)| ≤ δ′

Proof: Let n ∈ I be a sufficiently large input length on which A succeeds, and let m = m(n). Let
px denote Pr[Dn = x]. Let A′ be an algorithm such that A′(x) = max(2−m,min(1,A(x))). A′ will
have the same property that A has in the assumption since for all x in the support of Dn, it holds
that 2−m ≤ px ≤ 1. We first claim that

|Ex←Dn [− logA′(x)]−H(Dn)| ≤ − log δ + 1 (1)

If this holds, note that D is samplable and A′ runs in PPT, it follows that we can empirically estimate
Ex←Dn [− logA′(x)] in polynomial time by collecting at least polynomially samples and taking the
average. By Hoeffding’s inequality, the difference between this estimation and the real expectation
value is at most 1 with very high probability (≥ 1− 1

n2 ).
Thus, it remains to show that inequality 1 holds. Notice that

|Ex←Dn [− logA′(x)]−H(Dn)|
=|Ex←Dn [− logA′(x)]− Ex←Dn [− log px]|
≤Ex←Dn [| − logA′(x)− (− log px)|]
= Pr
x←Dn

[A′ succeeds] · Ex←Dn [| − logA′(x)− (− log px)| | A′ succeeds]

+ Pr
x←Dn

[A′ fails] · Ex←Dn [| logA′(x)− (− log px)| | A′ fails]

≤Ex←Dn [| log
px
A′(x)

| | A′ succeeds] +
1

m
·m

≤Ex←Dn [− log δ | A′ succeeds] + 1

≤− log δ + 1

Now we are ready to prove Theorem 2.1.
Proof: [Proof of Theorem 2.1] Assume for contradiction that one-way functions do not exist. Then,
by Lemma 2.3, there exist a PPT algorithm A and a constant δ such that for infinitely many n,

Pr
x←Dn

[δ · px ≤ A(x) ≤ px] ≥ 1− 1

n2

where px = Pr[Dn = x]. By Lemma 2.4, there exist a PPT algorithm est and a constant δ′ such that
for all n on which A succeeds, with probability at least 1− 1

n2 ,

|est(1n)−H(Dn)| ≤ δ′ (2)

Consider some sufficiently large input length n on which A succeeds. Let

ε = 2−est(1
n)+logn

7



We are now ready to describe our heuristic H for L. On input x← Dn, H computes ε and outputs
0 if A(x) ≤ ε; otherwise, H outputs a random guess b ∈ {0, 1}. We will show that H solves L with
probability 1

2 + 1
4n on the input length n (whenever n is sufficiently large).

Towards this, let us first assume we have access to a “perfect” approximate-counter algorithm
O such that δ · px ≤ O(x) ≤ px with probability 1 when x sampled from Dn; let us also assume
we have access to a “perfect” entropy-estimator algorithm est∗ such that |est∗(1n) − H(Dn)| ≤ δ′

with probability 1; consider the heuristic H′ that behaves just as H except that H′ uses O and est∗

instead of A and est.
We first show that H′ solves L with high probability on Dn. Note that

Pr
x←Dn

[H′(x) = L(x)]

= Pr
x←Dn

[H′(x) = L(x) | O(x) > ε] Pr[O(x) > ε] + Pr
x←Dn

[H′(x) = L(x) | O(x) ≤ ε] Pr[O(x) ≤ ε]

=
1

2
(1− Pr[O(x) ≤ ε]) +

(
1− Pr

x←Dn

[H′(x) 6= L(x) | O(x) ≤ ε]
)

Pr[O(x) ≤ ε]

=
1

2
(1− Pr[O(x) ≤ ε]) +

(
1− Pr

x←Dn

[L(x) = 1 | O(x) ≤ ε]
)

Pr[O(x) ≤ ε]

=
1

2
+

1

2
Pr[O(x) ≤ ε]− Pr

x←Dn

[L(x) = 1 | O(x) ≤ ε] Pr[O(x) ≤ ε]

=
1

2
+

1

2
Pr[O(x) ≤ ε]− Pr

x←Dn

[L(x) = 1 ∧ O(x) ≤ ε]

Note that px ≤ ε implies O(x) ≤ ε (since O is a prefect approximate-counter). In addition, for
sufficiently large n, px ≤ 2−H(Dn)+3 implies px ≤ ε since

2−H(Dn)+3 ≤ 2−est
∗(1n)+δ′+3 ≤ 2−est

∗(1n)+logn = ε.

Thus,

Pr[O(x) ≤ ε] ≥ Pr
x←Dn

[px ≤ ε] ≥ Pr
x←Dn

[px ≤ 2−H(Dn)+3] ≥ 1

n

where the last inequality follows from by Lemma 2.1.
Next, observe that ε/δ ≤ 1

S(n)n2 (for sufficiently large n). This follows since if n is sufficiently

large, we have:

ε = 2−est
∗(1n)+logn ≤2−H(Dn)+δ′+logn = 2−H(Dn)+logn · 2δ′ ≤ 2−H(Dn)+logn · δn

=2−H(Dn)+2 lognδ ≤ 2−h(n)+2 lognδ ≤ 2− logS(n)−4 logn+2 lognδ =
δ

S(n)n2

Finally, since px ≤ O(x)/δ holds with probability 1, it follows that

Pr
x←Dn

[L(x) = 1 ∧ O(x) ≤ ε] ≤ Pr
x←Dn

[L(x) = 1 ∧ px ≤ ε/δ] ≤
1

n2

where the last inequality follows from Lemma 2.2 and the fact that ε/δ ≤ 1
S(n)n2 . Thus, we conclude

that

Pr
x←Dn

[H′(x) = L(x)] ≥ 1

2
+

1

2
· 1

n
− 1

n2

We now turn to analyzing H as opposed to H′ and note that H and H′ work identically the same
except when either A or est “fail”. Observe that the probability that A(x) 6= O(x) on x sampled
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from Dn is at most 1
n2 . Additionally, the probability that |est(1n) − H(Dn)| > δ′ is at most 1

n2 .
Thus, by a union bound, we have that

Pr
x←Dn

[H(x) = L(x)] ≥ 1

2
+

1

2n
− 3

n2
≥ 1

2
+

1

4n

on infinitely many n ∈ N, which is a contradiction.

3 Avg-case Hardness of Sparse Languages from OWFs

Theorem 3.1. Assume the existence of one-way functions. Let S(n) = 2n/10 and h(n) = n/2. Then
there exists a S(·)-sparse language L ∈ NP and a samplable ensemble D with entropy h(·) such that
L is HoA on D.

Proof: Assume the existence of OWFs. By [HILL99], there exists some pseudorandom generator
g : {0, 1}n/10 → {0, 1}n. Consider the NP-language L = {g(s) | s ∈ {0, 1}∗}. Note that L is S(·)-
sparse for S(n) = 2n/10. Let D = {Dn}n∈N be an ensemble such that Dn samples from g(Un/10) with
probability 1/2 and from Un with probability 1/2. Note that D has entropy at least h(n) = n/2
(since with probability 1/2, we sample from Un). Finally, it follows from the pseudorandomness
property of g (using a standard argument) that L is HoA over D.

4 Corollaries

In this section, we present some direct corollaries that follow by applying our main theorem to known
sparse languages. For convenience of the reader, we recall the (standard) proofs that these languages
are sparse.

4.1 Kolmogorov Complexity

The Kolmogorov complexity (K-complexity) of a string x ∈ {0, 1}∗ is defined to be the length of
the shortest program Π that outputs the string x. More formally, let U be a fixed Universal Turing
machine, for any string x ∈ {0, 1}∗, we define K(x) = minΠ∈{0,1}∗{|Π| : U(Π) = x}. Let MINK[s]
denote the language of strings x having the property that K(x) ≤ s(|x|). We observes that MINK[s]
is a sparse language when s(n) is slightly below n.

Lemma 4.1. For all n ∈ N, |MINK[s] ∩ {0, 1}n| ≤ 2s(n)+1.

Proof: The lemma directly follows from the fact that the number of strings with length ≤ s(n) is
at most 2s(n)+1.

Combining Lemma 4.1, we get:

Corollary 4.1. Let s(n) ≤ n − 4 log n − 1 be a function. Assume that there exists some samplable
ensemble D with entropy h(n) ≥ s(n) + 4 log n+ 1 such that MINK[s] is (1

2 −
1

4n)-HoA on D. Then,
one-way functions exist.

Proof: By Lemma 4.1, the number of n-bit YES instances is at most S(n) = 2s(n)+1. Since Dn has
entropy h(n) ≥ s(n) + 1 + 4 log n, the corollary follows directly from Theorem 1.1.

9



4.2 k-SAT

Let k, c be two positive integers. The language k-SAT(m, cm) is defined to consist of all satisfiable
k-CNF formulas on m variables with cm clauses. We recall the well-known fact that k-SAT(m, cm)
is a sparse language when c ≥ 2k+1.

Lemma 4.2. The number of satisfiable k-CNF formulas on m variables with cm clauses is at most
2m
(
(2k − 1)

(
m
k

))cm
, and the number of all such k-CNF formulas is

(
(2k)

(
m
k

))cm
.

Proof: We first show that there are ((2k)
(
m
k

)
)cm k-CNF formulas on m variables with cm clauses.

Note that are are 2k
(
m
k

)
choices for a single k-clause; therefore, the number of cm k-clauses is

((2k)
(
m
k

)
)cm.

We then show that there are at most 2m((2k−1)
(
m
k

)
)cm satisfiable k-CNF formulas on m variables

with cm clauses. Consider any possible assignment x; the number of k-clauses that is satisfied by x
is at most (2k − 1)

(
m
k

)
since given the choice of k variables, there are at most 2k − 1 possible choices

of the polarities. Finally, since there are cm such k-clauses with m variables, we have that the total
number of satisfiable formulas is at most 2m((2k − 1)

(
m
k

)
)cm

To consider average-case hardness of this problem, we need to have a way to encode formulas
as strings. We use the following standard encoding scheme for k-SAT from [IRS21]: a m-variable
cm-clause k-CNF is represented by using n(m, k, c) = cm(kdlogme+ k) bits to describe a sequence
of cm clauses (and here n denotes the length of the input bit string encoding the instance). In each
clause, we specify k literals one-by-one, and each of them takes dlogme bits to specify the index of
a variable and 1 bit to fix the polarity. When n is not of the form n(m, k, c), for an input of length
n, we ignore as few bits as possible in the end of the input such that the prefix of the input is of
length n(m, k, c) for some m. Following [IRS21], let the entropy deficiency of a distribution Dn over
n bits denote the difference between n and H(Dn). The following corollary implies [IRS21, Theorem
4, Term 1].

Corollary 4.2. Let k, c be two integers such that c ≥ 2k+2. Let m = m(n) be a polynomial. Assume
that there exists some samplable ensemble D = {Dn}n∈N with entropy deficiency at most cm(n)/2k+1

distributed over k-CNF formulas on m(n) variables and cm(n) clauses such that k-SAT is (1
2 −

1
4n)-

HoA on D. Then, one-way functions exist.

Proof: Recall that k-CNF formulas are represented by binary strings using the standard encoding
scheme. Let n′ = n(m(n), k, c) (be the length of the input without padding); by the encoding
scheme, it follows that every m(n)-variable cm(n)-clause k-CNF formula will be encoded by 2n−n

′

n-bit strings. By Lemma 4.2, it follows that n′ is at least

log

((
(2k)

(
m

k

))cm)
= cm log 2k + cm log

(
m

k

)
Since Dn has entropy deficiency at most cm/2k+1, it follows that Dn has entropy lower bounded by:

n′ + (n− n′)− cm/2k+1 ≥ cm
(

log 2k − 1

2k+1
+ log

(
m

k

))
+ (n− n′)

By Lemma 4.2, the number of n-bit YES instances is at most

S(n) = 2m
(

(2k − 1)

(
m

k

))cm
× 2n−n

′
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It follows that

H(Dn)− logS(n) ≥ cm
(

log 2k − 1

2k+1
+ log

(
m

k

))
+ (n− n′)− log

(
2m
(

(2k − 1)

(
m

k

))cm
× 2n−n

′
)

= m(c log 2k − c log(2k − 1)− c

2k+1
− 1)

≥ m(
c

2k
− c

2k+1
− 1)

≥ m
≥ 4 log n.

where the second inequality follows from the standard inequality that log x− log(x− 1) ≥ 1
x for all

x ≥ 2, the third one from the fact that, by assumption, c ≥ 2k+2, and the fourth one inequality
follows from the fact that due to the encoding scheme, m ≥ Ω(

√
n).

4.3 t-Clique

Let t : N→ N be a function and let t-Clique(m) be the set of graphs on m vertices having a clique of
size at least t(m). We recall the well-known fact that t-Clique(m) is sparse when t(·) is large enough.

Lemma 4.3. The number of m-vertex graphs with at least a t-size clique is at most
(
m
t

)
2(m2 )−(t

2).

However, the number of m-vertex graphs is 2(m2 ).

Proof: There are
(
m
2

)
edges in a m-vertex graph, and thus the number of possible graphs is 2(m2 ).

There are
(
m
t

)
choices of cliques in a graph, and after fixing a clique, there are

(
m
2

)
−
(
t
2

)
edges in the

rest of the graph and therefore the number of graphs with at least 1 clique is at most
(
m
t

)
2(m2 )−(t

2).

We use the standard encoding scheme for t-Clique from [IRS21]. A m-vertex graph is encoded
by a (n = n(m) =

(
m
2

)
)-bit string where the i-th bit is 1 iff the i-th edge appears in the graph. For

input lengths n that are not of the form n(m), we ignore as few bits as possible at the end of the
input such that the prefix of the input is of length n(m) for some m.

Corollary 4.3. Let m(n), t(n) ∈ ω(logm) be two polynomials. Assume that there exists some
samplable ensemble D = {Dn}n∈N with entropy deficiency at most 0.99

(
t(n)

2

)
distributed over m(n)-

vertex graphs such that t-Clique(m) is (1
2 −

1
4n)-HoA on D. Then, one-way functions exist.

Proof: Recall that graphs are represented by binary strings using the standard encoding scheme.
Let n′ = n(m(n)) (be the length of the input without padding); by the encoding scheme, it follows
that every m(n)-vertex graph will be encoded by at least 2n−n

′
n-bit strings. By Lemma 4.3, it

follows that n′ is at least

log 2(m2 ) =

(
m

2

)
Since Dn has entropy deficiency 0.99

(
t
2

)
, it follows that Dn has entropy lower bounded by:

n′ + (n− n′)− 0.99

(
t

2

)
≥
(
m

2

)
− 0.99

(
t

2

)
+ (n− n′)

By Lemma 4.3, the number of n-bit YES instances is at most

S(n) =

(
m

t

)
2(m2 )−(t

2) × 2n−n
′
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It follows that

H(Dn)− logS(n) ≥
(
m

2

)
− 0.99

(
t

2

)
+ (n− n′)− log

((
m

t

)
2(m2 )−(t

2) × 2n−n
′
)

≥
(
m

2

)
− 0.99

(
t

2

)
− log

(
m

t

)
−
((

m

2

)
−
(
t

2

))
≥
(
t

2

)
− 0.99

(
t

2

)
− t logm

≥ 4 log n

since t(n) = ω(logm).

5 OWF from Hardness of Approximating K-complexity

We turn to showing how to strengthen the result in [IRS21] with respect to K-complexity, and
show that the hardness of approximating K-complexity (even with respect to unknown thresholds)
is equivalent to the existence of OWFs. We refer the reader to Section 4.1 for a formal definition of
the notion of K-complexity.

We start by recalling what it means for a function to be hard on average to approximate. We say
that a function f : {0, 1}∗ → N is α(·) hard-on-average (α-HoA) to β(·)-approximate on an ensemble
D = {Dn}n∈N if for all probabilistic polynomial-time heuristics H, for all sufficiently large n ∈ N,

Pr[x← Dn : |H(x)− f(x)| ≤ β(n)] < 1− α(n).

We simply say that f is mildly hard-on-average (mildly HoA) to approximate on D if there exists a
polynomial p(·) such that f is 1

p -HoA to approximate; We say that f is hard-on-average (HoA) to

approximate on D if for every c, α(n) = 1
2 −

1
nc , L is α-HoA to approximate.

The hardness notion above is defined with respect to the search version of approximating the
function f and when considering K-complexity, it asserts that approximating the value of the K-
complexity is hard. We can also consider its decisional version, parametrized by two efficiently
computable thresholds t0(·), t1(·), where we aim at deciding whether the input string x is of K-
complexity below t0(|x|) or above t1(|x|). Let GapK[t0, t1] be a promise problem where YES-instances
are strings x ∈ ΠYES such that K(x) ≤ t0(|x|), and NO-instances are strings x ∈ ΠNO such that
K(x) ≥ t1(|x|). We say that GapK[t0, t1] is mildly hard on average (mildly HoA) on an ensemble D =
{Dn}n∈N if there exists a polynomial p(·) such that for all probabilistic polynomial-time heuristics
H, for all sufficiently large n ∈ N,

Pr[x← Dn : (x ∈ ΠYES ∧H(x) = 0) ∨ (x ∈ ΠNO ∧H(x) = 1)] ≥ 1/p(n).

The result in [IRS21] showed that the existence of a samplable distribution D and efficiently com-
putable t0, t1, t1(n) − t0(n) ∈ ω(log n) such that GapK[t0, t1] is mildly HoA on D is equivalent to
the existence of OWFs. We show in the following Theorem that it suffices to assume hardness with
respect to the search version (with an additive factor ω(log n)) to obtain OWFs, therefore giving a
search to decision reduction for this problem by going through the notion of OWFs.

We are not aware of any “direct” way of showing such a decision-to-search reduction. While
one direction is trivial (hardness of decision—with respect to efficiently computable thresholds—to
hardness of search), it is not clear how to show the converse direction.2

2The naive approach to try to prove such a result would be to simply try running the decision heuristic on different
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Theorem 5.1 (Theorem 1.2, restated). The following are equivalent:

1. One-way functions exist;

2. There exists some efficiently samplable distribution such that K-complexity is mildly hard to
approximate within an additive term of ω(log n).

3. There exists some efficiently samplable distribution such that K-complexity is hard to approxi-
mate within an additive term of n− no(1).

4. There exist some efficiently samplable distribution and efficiently computable thresholds t0, t1, t1(n)−
t0(n) = ω(log n) such that GapK[t0, t1] is mildly HoA.

Proof: [of Theorem 1.2] (2) ⇒ (1) follows from Theorem 5.2 (stated and proved below). The
implications (1) ⇒ (3) and (1) ⇒ (4) essentially follow from the argument proving Theorem 3.1
(and see also [IRS21]). (3) ⇒ (2) trivially holds. (4) ⇒ (2) follows from the following argument.
Assume that there exists a heuristic H for approximating K-complexity within (t1 − t0)/2. To solve
GapK[t0, t1] on input x, we simply output 1 if H(x) ≤ t0(|x|) + (t1(|x|) − t0(|x|))/2. Note that if H
succeeds on x (with some probability), our algorithm also succeeds in solving GapK[t0, t1] on x (with
the same probability). This concludes our proof.

Theorem 5.2. For any constant γ ≥ 3, there exists a polynomial p such that if there exists a
samplable ensemble D on which K-complexity is 1

p -HoA to (γ log n)-approximate, then OWFs exist.

Proof: Consider some fixed constant γ ≥ 3 and let p(n) = nγ−2. We assume for contradiction that
OWFs do not exist. Then, by Lemma 2.3, there exist a constant δ and an approximate counter A
for D = {Dn} with an (multiplicative) approximate factor δ and an error probability ≤ 1

2p(n) . We
will use A to compute the K-complexity of strings sampled by D.

On input x ← Dn, our heuristic H simply outputs −blogA(x)c as (our estimate of) K(x). H
runs in polynomial time since A is a PPT machine. We next show that H(x) approximates K(x)
with probability at least 1− 1

p(n) (over x ∼ Dn). Fix some input length n on which A succeeds (and

there are infinitely many such input lengths). Let us first assume that A is a “perfect” approximate
counter and δ · px ≤ A(x) ≤ px with probability 1 (where px is defined to be Pr[Dn = x]). The
following two claims will show that H approximate K with high probability.

Claim 1. K(x) ≤ H(x) + γ log n holds with probability 1.

Proof: We will show that K(x) ≤ −blog pxc + 2 log(n) + O(1) with probability 1. Note that
H(x) = −blogA(x)c ≥ −blog pxc (due to the correctness of A) and γ ≥ 3, the claim follows. For
any string x ∈ {0, 1}n, let S = {y ∈ {0, 1}n : −blog pyc = −blog pxc}. Note that for each y ∈ S, it
holds that Pr[Dn = y] = py ≥ 2blog pxc. So S is of size at most 2−blog pxc. Membership of S can be
checked by using an exponential time algorithm computing py (enumerating all randomness used in
Dn) with the values −blog pxc and n. Therefore, we can compress each element in S (including x)
into −blog pxc+ 2 log(n) +O(1) bits by hardwiring its index and running an exhaustive search with
the membership checker, which shows that K(x) ≤ −blog pxc+ 2 log(n) +O(1).

Claim 2. K(x) ≥ H(x)− γ log n holds with probability at least 1− 1
2p(n)

thresholds. There are several problems with this approach. First, for every threshold t = (t0, t1), there may exist
a different heuristic Ht that solves the decision problem for that threshold, so it’s not clear how to get a uniform
search heuristic. Next, its not even clear how to define efficient threshold functions as we require n/Gap thresholds
to approximate within an additive term of Gap. Finally, it is not a-priori clear how to use a Gap-K heuristic to
approximate K given that the Gap-K heuristic only works on average.
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Proof: Towards this, we show that H(x) > K(x) + γ log n with probability at most 1
2p(n) . This

follows from a union bound.

Pr
x←Dn

[H(x) > K(x) + γ log n]

=

n+O(1)∑
w=1

Pr
x←Dn

[K(x) = w ∧H(x) > w + γ log n]

≤
n+O(1)∑
w=1

Pr
x←Dn

[K(x) = w ∧ Pr[Dn = x] <
1

δ
· 2−w−γ logn]

≤
n+O(1)∑
w=1

2w · 1

δ
· 2−w−γ logn

≤ 1

2p(n)
.

where the second to last line follows from a union bound.

Finally, we note that A is not necessarily a perfect approximate counter and A fails with proba-
bility 1

2p(n) . By a union bound, it follows that

Pr
x←Dn

[|H(x)−K(x)| ≤ γ log n] ≥ 1− 1

2p(n)
− 1

2p(n)
≥ 1− 1

p(n)

on infinitely many n.
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