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Abstract

Let TISP[T, S], BPTISP[T, S], NTISP[T, S], and CoNTISP[T, S]
be the set of languages recognized by deterministic, randomized, nonde-
terminsitic, and co-nondeterministic algorithms, respectively, running in
time T and space S. Let ITIME[TV ] be the set of languages recognized
by an interactive protocol where the verifier runs in time TV . We prove:

TISP[T, S] ∪BPTISP[T, S] ⊆ITIME[Õ(log(T )S + n)] (1)

NTISP[T, S] ∪CoNTISP[T, S] ⊆ITIME[Õ(log(T )2S + n)]. (2)

The prior most verifier time efficient interactive protocol for TISP uses
ideas from Goldwasser, Kalai and Rothblum [GKR15], which gives

NTISP[T, S] ⊆ ITIME[Õ(log(T )S2 + n)].

1 Introduction

One of the most celebrated results of computer science is the proof that IP =
PSPACE [Sha92; Lun+90]. Any language computable in polynomial space can
be verified in polynomial time by a verifier with access to randomness and an
untrusted, computationally unbounded prover.

Interactive proofs were used to prove circuit lower bounds forMA/1 [San07],
and for NQP [MW18]. More verifier time efficient PCPs [MC22] improved the
results of [San07]. Some pseudo random generators [CT22] use interactive proofs
[GKR15] as an important component.

The previous best interactive proof for an algorithm running in time T and
space S has a verifier running in time Õ(log(T )S2). We improve this by making
the quadratic dependence on S linear. If T = poly(S), our protocol improves
the verifier time from Õ(S2) to Õ(S). If T = 2O(S), our protocol improves the
verifier time from Õ(S3) to Õ(S2).
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based upon work supported by the National Science Foundation under grant number 1705028.
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Our results prove a more direct, more efficient, and (in our opinion) simpler
protocol than that given in [Sha92] using many of the same ideas from [Lun+90].
We then apply this protocol to the special cases of deterministic, randomized,
and nondeterministic algorithms.

1.1 Results

Let ITIME[TV , TP ] be the class of languages computed by an interactive proto-
col where the verifier runs in time TV and the prover runs in time TP . Similarly,
let ITIME1[TV , TP ] be the same with perfect completeness. Let TISP[T, S]
be the class of languages computable in simultaneous time T and space S. Our
first result is:

Theorem 1 (Efficient Interactive Protocol For TISP). Let S and T be com-
putable in time Õ(log(T )S + n). Then

TISP[T, S] ⊆ ITIME1[Õ(log(T )S + n), 2O(S)].

Our protocol has several other desirable properties. The verifier only needs
space Õ(S). This protocol is also public coin, non adaptive, and unambiguous
(as described in [RRR16]). This protocol can also verify an O(S) bit output,
not just membership in a language.

We note that L ∈ ITIME[TV , TP ] implies that L ∈ SPACE[TV ], since a
prover can find an optimal prover strategy in a space efficient way. Thus our
dependence on S is essentially optimal. It is still open whether one can remove
the log(T ) factor.

A corollary of Theorem 1 is that

ITIME[T ] ⊆ SPACE[O(T )] ⊆ ITIME[Õ(T 2)].

This gives a hierarchy theorem: ITIME[Õ(T 2)] ̸⊂ ITIME[O(T )] by using the
space hierarchy theorem. Not many hierarchies for semantic complexity classes
are known. For instance, there isn’t a time hierarchy theorem known for BPP.
This improves the polynomial gaps in the interactive time hierarchy to only
quadratic gaps.

Using Nisan’s PRG for bounded space [Nis90], we extend Theorem 1 to get
a similar result for randomized bounded space algorithms. Let BPTISP[T, S]
be the class of languages computable in simultaneous randomized time T and
space S.

Theorem 2 (Efficient Interactive Protocol For BPTISP). Let S and T be
computable in time Õ(log(T )S + n). Then

BPTISP[T, S] ⊆ ITIME[Õ(log(T )S + n), 2O(S)].

A conventional way to get interactive protocols for BPSPACE is to use
Saks and Zhou’s result [SZ99] to put BPSPACE[S] ⊆ SPACE[O(S3/2)], then
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use Theorem 1 to get BPSPACE[S] ⊆ ITIME[Õ(S3), 2O(S3/2)]. We show
directly that BPSPACE[S] ⊆ ITIME[Õ(S2), 2O(S)].

The protocol used for Theorem 1 internally counts the number of accept-
ing paths in a nondeterministic algorithm, modulo a prime. By appropriately
sampling a prime, we can get an efficient interactive protocol for NTISP and
CoNTISP.

Theorem 3 (Efficient Interactive Verifier Protocol For NTISP). Let S and T
be computable in time Õ(log(T )2S + n). Then

NTISP[T, S] ∪CoNTISP[T, S] ⊆ ITIME1[Õ(log(T )2S + n), 2O(S)].

1.2 Proof Idea

1.2.1 Number Of Paths Mod Prime

We use a sum check from LFKN [Lun+90], similar to Shamir [Sha92], but
without reducing to a quantified boolean formula first. We focus on computation
graphs. For an algorithm A running in space S on input x, it’s computation
graph, G, has as vertices S bit states and as edges the state transitions for A
on input x. That is, there is an edge from state s0 to s1 if and only if when A
on input x is in state s0, after one step, A can have state s1.

Consider G’s adjacency matrix, M . If A runs in T steps starting at state
ss, then A halts at state se if and only if (MT )ss,se is non zero. A sum check
reduces a statement aboutM2 to a statement aboutM in O(S) field operations.
By repeated squaring, we perform this reduction O(log(T )) times to convert a
statement about (MT )ss,se to one about M .

Since we consider nondeterministic algorithms, (MT )ss,se will contain the
number of computation paths ending in se. Since we work in a finite field with
characteristic p, entry (MT )ss,se will contain the number of computation paths
mod p.

For a space S and time T non deterministic algorithm A with input x, and
a field F with characteristic p, we define a function ϕ : {0, 1}S × {0, 1}S ×
[T ] → F that takes two states, s0 and s1, and a time, t, and outputs how many
computation paths of length t in A on input x start at state s0 and end at state
s1, mod p. We define ϕ̂ : FS × FS × [T ] → F to be the multilinear extension of
ϕ in the two states. Then we get the recursive relationship that

ϕ̂(s0, s1, t0 + t1) =
∑

s′{0,1}S

ϕ̂(s0, s
′, t0) · ϕ̂(s′, s1, t1).

See the RHS is degree 1 in variables from s0 and s1, and is consistent with
ϕ, so actually is ϕ̂. Note ϕ̂(s0, s

′, t0) · ϕ̂(s′, s1, t1) only has degree 2 in variables
from s′, allowing us to perform a sum check efficiently.
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Let T = 2t. We recursively define ϕ̂(s0, s1, T ) with only log(T ) steps like

ϕ̂0(s0, s1) =ϕ̂(s0, s1, 1)

ϕ̂i(s0, s1) =ϕ̂(s0, s1, 2
i) =

∑
s′{0,1}S

ϕ̂i−1(s0, s
′) · ϕ̂i−1(s

′, s1).

Suppose that A starts at state ss and ends at state se if it accepts. Now we
want to know ϕt(ss, se). We first use a sum check to reduce this to a claim that

v′ = ϕ̂t−1(ss, s
′) · ϕ̂t−1(s

′, se) for some s′ and v′. Now we need to convert this
to a claim about a product of a univariate polynomial evaluated at few points.
Define ϕ′i : F → F by

ϕ′i(x) =ϕ̂i((1− x)ss + xs′, (1− x)s′ + xse).

Then our new claim becomes v′ = ϕ′t−1(0) · ϕ′t−1(1), which we can reduce to
a claim that v = ϕ′t−1(x) for some v and x in the standard way. Note ϕ′t−1(x)

is just ϕ̂t−1 evaluated at some point. By performing this operation t times,
our verifier reduces to a statement about ϕ̂0, which the verifier can directly
calculate.

1.2.2 Randomized and Non Deterministic Algorithms

To handle randomized algorithms, we use Nissan’s Pseudo Random Generator
(PRG) for bounded space computation. This PRG has seed length O(log(T )S)
and can be calculated in time poly(S) and space O(S). After choosing a seed,
this PRG gives us a length n+O(log(T )S) input for a deterministic algorithm
running in space O(S) and time poly(T ) which agrees with the randomized
algorithm with high probability. Now we can run our deterministic protocol on
this input.

To handle nondeterministic algorithms, we choose a random prime p. The
protocol works if p does not divide the number of accepting computation paths.
Let Q be the set of primes between m = 100T and 2m = 200T . If w ≤ 2T is
the number of accepting paths, then the number of prime factors of w in Q is at
most T

log(m) . By the prime number theorem, for large enough T , set Q should

contain at least 0.5m
ln(m) elements. If we can randomly sample one p from Q and

w ̸= 0, the probability w mod p = 0 is at most 1
10 .

1.3 Related Work

This work builds on techniques used by Lund, Fortnow, Karloff and Nisan
[Lun+90] to prove that #P ∈ IP and extended by Shamir [Sha92] to show
that PSPACE = IP. Shamir proved:

Theorem 4 (Shamir’s Protocol). Let S and T be time Õ(log(T )2S2 + n) com-
putable. Then

NTISP [T, S] ⊆ ITIME1[Õ(log(T )2S2 + n), 2O(log(T )S)].
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Shamir used Savitch’s theorem [Sav70] to reduce space bounded computation
to a totally quantified boolean formula, and then gave a sum check similar to
[Lun+90] to verify it.

Similar techniques were also used by Babai, Fortnow and Lund [BFL90] to
prove that MIP = NEXP. This line of work is foundational to many PCP
results [AS98; Aro+98].

In a very influential paper, Goldwasser, Kalai and Rothblum gave doubly
efficient interactive proofs for depth bounded computation [GKR15]. Doubly
efficient proofs are proofs where the prover runs in time polynomial in the al-
gorithm it wishes to prove.

Theorem 5 (GKR For Depth). Let L be a language computed by a family of
O(log(w))-space uniform boolean circuits of width w and depth d where w and
d are computable in time (n+ d)polylog(w). Then

L ∈ ITIME1[(n+ d)polylog(w),poly(wd)].

Similar to what we do in this paper, a space S and a time T non-deterministic
algorithm, A, can be converted to a width 2O(S) and depth O(log(T )S) circuit,
C, using repeated squaring on the adjacency matrix of A’s computation graph.
Using Theorem 5 with our circuit above, we get a protocol for bounded space.
The circuit is very uniform, so the polylog(w) = poly(S) term can be made
Õ(S).

Theorem 6 (GKR for NSPACE ). Let S and T be time Õ(log(T )S2 + n)
computable. Then

NTISP[T, S] ⊆ ITIME1[Õ(log(T )S2 + n), 2O(S)].

The GKR protocol, as well as ours in this paper, only have polynomial
time provers when T = 2Ω(S). Reingold, Rothblum and Rothblum [RRR16]
gave a doubly efficient protocol for any time T with constantly many rounds of
communication, but is only efficient for the verifier when T is polynomial.

Theorem 7 (RRR Protocol). For any constant δ > 0, and integers S and T
computable in time TO(δ)S2, and T = Ω(n) we have

TISP[T, S] ⊆ ITIME1[O(npolylog(T ) + TO(δ)S2), T 1+O(δ)poly(S)].

Further the prover only sends
(
1
δ

)O(1/δ)
messages to the verifier.

The specific, S2 power in the verifier time comes from a note by Goldreich
[Gol18], confirmed by the authors of [RRR16]. Our result gives a more efficient
verifier (log(T )S vs T δS2), but a less efficient prover (2O(S) vs poly(T ) ). We
note the result in the [RRR16] paper allows sub constant δ, but is complex and
can not give a verifier with time poly(log(T )S).

There has been work on other notions of verifier efficiency in interactive
protocols. Goldwasser, Gutfreund, Healy, Kaufman and Rothblum [Gol+07]
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studied the computation depth required by verifiers. They showed that for any
k round interactive proof, there is a k+O(1) round interactive proof where the
computation of the verifier during each round is in NC0. But the total time to
evaluate the new verifier (or the total verifier circuit size) is greater than the
verifier time of the original protocol.

2 Preliminaries

We use RAM algorithms as our model of computation, although these results
should still hold for many other common models of computation, like multi-tape
Turing machines. We may assume that on accepting or rejecting, our machines
instantly clear their states to some canonical accept or reject state. We also
assume that S = Ω(log(n)), otherwise our algorithm can’t read it’s entire input.

We use Õ to suppress poly logarithmic factors.

Definition 8 (Õ). For f, g : N → N, we say f(n) = Õ(g(n)) if and only if for
some constant k, f(n) = O(g(n) log(g(n))k).

We focus on languages with simultaneous time and space constraints.

Definition 9 (TISP). For functions T, S : N → N, we say language L is in
TISP[T, S] if there is an algorithm, A, running in time T and space S that
recognizes L.

Since we are working with space bounded computation, we define access to
randomness or nondeterminism through a read once input.

Definition 10 (Read Once Input). We say algorithm A uses read once input
W if there is a special instruction in A that, for all i, on the ith time being
called returns the ith symbol of W .

If A uses an input x and a read once input W , we define A(x,W ) as the
output of A when run with input x and read once input W . Note: the read once
input W is not considered part of the input when discussing nondeterministic or
randomized algorithms and loading any input from W on a special instruction
is considered a valid transition.

Note if A runs in time T , we can upper bound the size of W as |W | ≤ T .
Now we define BPTISP and NTISP.

Definition 11 (BPTISP). Let L be a language, A be an algorithm with read
once input, and c > 0. If for all x we have Pr[A(x, U) = 1x∈L] ≥ 2

3 , where U is
the uniform distribution, then we say A is a randomized algorithm for L.

If for T, S : N → N algorithm A runs in time T and space S, then L ∈
BPTISP[T, S].

Definition 12 (NTISP and CoNTISP). For language L and RAM algorithm
A, if

∀x ∈ L : ∃W : A(x,W ) = 1

∀x /∈ L : ∀W : A(x,W ) = 0
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then we say A is a nondeterministic algorithm for L.
If for T, S : N → N algorithm A runs in time T and space S, then L ∈

NTISP[T, S]. We say L ∈ CoNTISP[T, S] if the complement of L is in
NTISP[T, S].

In an interactive protocol for some function f , we want our verifier to output
f(x) with high probability if the prover is honest, and output the wrong answer
with low probability regardless of the prover. Our verifier can either reject, or
output some value. This is a more general formulation of interactive proofs than
is standard.

Let us formally define the interaction of a protocol.

Definition 13 (Interaction Between Verifier and Prover (Int)). Let Σ be a
alphabet and ⊥ be a symbol not in Σ. Let V be a RAM machine with access to
randomness, that can make oracle queries, and V outputs one of Σ ∪ {⊥}. Let
P ′ be any function, and x be an input.

Now we define the interaction of V and P ′ on input x. For all i, define
yi to be V ’s ith oracle query given its first i − 1 queries were answered with
z1, . . . , zi−1 and define zi = P (x, y1, . . . , yi).

Define the output of V when interacting with P ′, Int(V, P, x), as the output
of V on input x when it’s oracle queries are answered by z1, z2, . . ..

Now we define interactive time.

Definition 14 (Interactive Time (ITIME)). Let Σ be an alphabet. If for func-
tion f : {0, 1}∗ → Σ, soundness s ∈ [0, 1], completeness c ∈ [0, 1], verifier V
and prover P we have

Completeness: Pr[Int(V, P, x) = f(x)] ≥ c, and

Soundness: for any function P ′ we have Pr[Int(V, P ′, x) /∈ {f(x),⊥}] ≤ s,

then we say V and P are an interactive protocol for f with soundness s and
completeness c.

If in addition L is a language with f(x) = 1x∈L, verifier V runs in time TV ,
soundness s < 1

3 , and completeness c > 2
3 , then

L ∈ ITIME[TV ].

If P is also computable by an algorithm running in time TP , we say

L ∈ ITIME[TV , TP ].

Finally, if completeness c = 1, then we say the protocol has perfect completeness
and

L ∈ ITIME1[TV , TP ].

We assume the reader is familiar with low degree polynomials. For any func-
tion f : {0, 1}n → F, its multilinear extension is the unique degree 1 polynomial

f̂ : Fn → F such that for any x ∈ {0, 1}n, we have f(x) = f̂(x).

7



Our interactive protocol crucially uses that for any RAM algorithm A on any
input x, if ϕ is the function that checks if A changes from one state to another
in one step, then the multilinear extension of ϕ can be computed efficiently.

Lemma 15 (Algorithm Arithmetization). For any nondeterministic RAM al-
gorithm A running in space S and time T on length n inputs, let ϕ0 : {0, 1}n ×
{0, 1}S × {0, 1}S → {0, 1} be the function that takes an input x and two states,
s0 and s1, and outputs whether A running on input x starting with state s0 has
s1 as a valid transition.

Then for any finite field F the multilinear polynomial ϕ̂0 : {0, 1}n×FS×FS →
F consistent on boolean inputs with ϕ0 that can be computed in Õ(log(|F|)(n+S))
time.

Proof. (Sketch) Sum over all potential locations of the instruction pointer in the
program of the multilinear polynomial identifying that unique instruction being
the current instruction, times the multilinear polynomial of that instruction be-
ing performed. Since A is constant, there are only constantly many instructions
we could be on.

For load and store, just sum over the locations in memory of the multilinear
polynomial of that being the address to load or store from, times the equality
polynomial of the register being changed with that value in memory. There
are only S + n locations in memory plus the input, so this only takes time
Õ(log(|F|)(n+ S)).

For standard register register operations like moves, addition, bit shifts,
conditionals, these only act on O(log(S + n)) bits and are generally straight
forward to find efficient enough ways to calculate their multilinear extensions.

For primality, we use the Rabin-Miller [Mil75; Rab80] primality test. It is
well known using the fast fourier transform for multiplication we can get the
following result:

Theorem 16 (Miller-Rabin Primality Test). There is a randomized algorithm,
A, that given an n bit number a and ϵ > 0 runs in time Õ(log( 1ϵ )n

2) such that
if a is prime, A outputs 1, and if a is not prime, A outputs 1 with probability
at most ϵ.

Then by choosing n = O(log(m)) random numbers between m and 2m, by
the prime number theorem, we select a prime number with high probability.

Theorem 17 (Miller-Rabin Probably Prime Generation). There is a random-
ized algorithm, A, that when given a number m (with n = log(m)) and ϵ > 0,
algorithm A runs in time Õ(polylog( 1ϵ )n

3) and with probability 1− ϵ outputs a
uniform prime between m and 2m.

We use Nissan’s PRG for space bounded computation [Nis90]. First, we
define a PRG.
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Definition 18 (Pseudo Random Generator (PRG)). For integers n and s,
we say that a function G : {0, 1}s → {0, 1}n, is a Pseudo Random Generator
(PRG) with seed length s that ϵ fools function F : {0, 1}n → {0.1} if

|E[F (G(Us))− F (Un)]| ≤ ϵ

where Us and Un are the uniform distribution over s and n bits respectively.
Specifically, we say G fools randomized algorithm A if for all x we have

|E[A(x,G(Us))−A(x, Un)]| ≤ ϵ.

Then Nissan gives an efficient PRG which fools algorithms that use small
space.

Theorem 19 (Nissan’s PRG). For any space S, time T and error ϵ > 0, there
exists a PRG with seed length O(S log(T/ϵ)) computed by an algorithm running
in time poly(S) and space O(S) that ϵ fools randomized algorithms running in
time T and space S.

3 Efficient IP for TISP

We first give a protocol that outputs the number of accepting paths in a non
deterministic algorithm, mod a prime. We start with a protocol to reduce
a statement about a matrix squared to a statement about the matrix itself.
Applying this many times gives our protocol.

Lemma 20 (Matrix Squared to Matrix Protocol). Let S be an integer and p
be a prime. Suppose ϕ0 : {0, 1}S × {0, 1}S → Fp encodes a 2S × 2S matrix, M ,
containing values in Fp given by Mi,j = ϕ(i, j) where i and j are encoded in
binary. Similarly, let ϕ1 : {0, 1}S × {0, 1}S → Fp encode M2 so that for any
ss, se ∈ {0, 1}S

ϕ1(ss, se) =
∑

s′∈{0,1}S

ϕ0(ss, s
′)ϕ0(s

′, se).

Let F be a field with characteristic p and |F| > max{3, 2S + 1}. Let ϕ̂0 :

FS × FS → F be a multilinear extension of ϕ0, and ϕ̂1 : FS × FS → F be a
multilinear extension of ϕ1.

There is a interactive protocol with verifier V and prover P such that on
input ss, se ∈ FS and v ∈ F behaves in the following way:

Completeness: If ϕ̂1(ss, se) = v, then when V interacts with P , verifier V

outputs some s′s, s
′
e ∈ FS and v′ ∈ F such that ϕ̂0(s

′
s, s

′
e) = v′.

Soundness: If ϕ̂1(ss, se) ̸= v, then for any prover P ′, when V interacts with
P ′, with probability at most 4S

|F| will V output s′s, s
′
e ∈ FS and v′ ∈ F such

that ϕ̂0(s
′
s, s

′
e) = v′.

Verifier Time: V runs in time Õ(log(|F|))O(S).
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Verifier Space: V runs in space O(log(|F|)S).

Prover Time: P runs in time Õ(log(|F|))2S when given oracle access to ϕ̂0.

Proof. We start by explaining the protocol. The verifier starts with the claim
that ϕ̂1(ss, se) = v. We claim that

ϕ̂1(ss, se) =
∑

s′∈{0,1}S

ϕ̂0(ss, s
′)ϕ̂0(s

′, se).

See that the right hand side of the above equation is linear in every variable,
thus is multilinear. And when restricted to boolean inputs, are equal. Since the
multilinear extension is unique, the right hand side is the multilinear extension
of ϕ1, thus is ϕ̂1.

Now we define a sequence of low degree polynomials between ϕ̂1 and ϕ̂0.
Define ψ0 : FS × FS × FS → F by ψ0(ss, se, s

′) = ϕ̂0(ss, s
′)ϕ̂0(s

′, se). Then for
each i ∈ [S], define ψi : FS × FS × FS−i → F by

ψi(ss, se, sl) =
∑

sr∈{0,1}i

ϕ̂0(ss, (sl, sr))ϕ̂0((sl, sr), se)

=
∑

j∈{0,1}

ψi−1(ss, se, (sl, j)).

See that ψS = ϕ̂1. Since ψ0 is degree at most 2 in every variable, so is every ψi.
The idea is for every i ∈ [S] to reduce a statement about ψi to a statement

about ψi−1. Then to reduce a statement about ψ0 to one about ϕ̂0. Since
|F| > 3, let a ∈ F3 be any arbitrary, distinct 3 elements of F. Then the verifier
protocol is:

1. Set s′S = (), the empty tuple.

2. Set vS = v.

3. For i from S to 1:

(a) For k ∈ [3], ask the prover for ψi−1(ss, se, (s
′, ak)). Let w ∈ F3 be

the prover’s response. Let gi : F → F be the degree 2 polynomial so
that for each k ∈ [3], we have gi(ak) = wk.

(b) If gi(0) + gi(1) ̸= vi, then reject.

(c) Choose some si−1 ∈ F and send it to the prover.

(d) Set s′i−1 = (s′i, si−1).

(e) Set vi−1 = gi(si−1).

4. Define ψ′
0 : F → F so that ψ0(ss, se, s

′
0) = ψ′

0(0)ψ
′
0(1). Specifically, let

ψ′
0(x) = ϕ̂0((1− x)ss + xs′0, (1− x)s′0 + xse).
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5. Let b ∈ F2S+1 be any arbitrary, distinct elements of F. Then for k ∈
[2S + 1], ask the prover for ψ′

0(bk). Let w ∈ FS be the prover’s response.
Let g0 : F → F be the degree 2S polynomial so that for each k ∈ [2S + 1],
we have g0(bk) = wk.

6. If v0 ̸= g0(0) · g0(1), then reject.

7. Choose x ∈ F and send it to the prover.

8. Output s′s = (1− x)ss + xs′0 and s′e = (1− x)s′0 + xse with claimed value
v′ = g0(x).

The honest prover responds with the value the verifier requests.

Completeness: Suppose ϕ̂1(ss, se) = v. Then for i ∈ [S], define ψ′
i : F → F to

be

ψ′
i(x) =ψi−1(ss, se, (s

′
i, x))

=
∑

sr∈{0,1}i−1

ϕ̂0(ss, (s
′
i, x, sr))ϕ̂0((s

′
i, x, sr), se).

See that ψ′
i is a degree 2 polynomial since ϕ̂0 is multilinear. Then for each

k ∈ [3], ψ′
i(ak) = gi(ak). Since gi and ψ

′
i are degree 2 and agree in three

places, they are equal. By assumption,

vS =v

=ϕ̂1(ss, se)

=ψS(ss, se)

=ψS(ss, se, s
′
S).

Now by induction we get for all i from S to 0:

gi(0) + gi(1) =ψ
′
i(0) + ψ′

i(1)

=ψi−1(ss, se, (s
′
i, 0)) + ψi−1(ss, se, (s

′
i, 1))

=ψi(ss, se, s
′
i)

=vi

and

vi−1 =ψ′
i(si−1)

=ψi−1(ss, se, s
′
i−1),

so we don’t reject on the rest of the loop. Further: v0 = ψ0(ss, se, s
′
0).

See that ψ′
0 is degree 2S, since ϕ̂0 is degree 2S and ψ′

0 is just a degree
one function composed with ψ′

0. For an honest prover, since ψ′
0 agrees

11



with g0 on 2S + 1 places, and both are degree 2S, they are equal. Since
ψ0(ss, se, s

′
0) = ψ′

0(0)ψ
′
0(1), we have

v0 =ψ0(ss, se, s
′
0)

=ψ′
0(0)ψ

′
0(1)

=g0(0)g0(1).

So the verifier does not reject. Finally

v′ =g0(x)

=ψ′
0(x)

=ϕ̂0((1− x)ss + xs′0, (1− x)s′0 + xse)

=ϕ̂0(s
′
s, s

′
e)

as we wanted.

Soundness: Suppose ϕ̂2(ss, se) ̸= v.

For any i ∈ [S], We claim if vi ̸= ψi(ss, se, s
′
i), then with probability at

most 2
|F| will the verifier not reject and vi−1 = ψi−1(ss, se, s

′
i−1). To show

this, suppose vi ̸= ψi(ss, se, s
′
i). See that if gi = ψ′

i, and the verifier doesn’t
reject in step i, then vi = ψ′

i(0)+ψ
′
i(1) = ψi(ss, se, s

′
i), a contradiction. So

consider when gi ̸= ψ′
i. Then since both are degree 2, the probability they

agree at si is at most 2
|F| by the Schwartz-Zippel lemma. If gi(si) ̸= ψ′

i(si),

then vi−1 ̸= ψi−1(ss, se, s
′
i−1).

Then by a union bound, the probability the verifier does not reject and
v0 = ψ0(ss, se, s

′
0) is at most 2S

|F| . So suppose v0 ̸= ψ0(ss, se, s
′
0). See

that ψ′
0 is degree at most 2S. Then if ψ′

0 = g0, we will reject, since
ψ′
0(0)ψ

′
0(1) = ψ0(ss, se, s

′
0) ̸= v0. Otherwise, the probability that we

choose an x such that ψ′
0(x) = g0(x) is at most 2S

|F| . If g0(x) ̸= ψ′
0(x), then

v′ ̸= ϕ(s′s, s
′
e).

So by a union bound, the probability that the verifier does not reject and
v′ = ϕ(s′s, s

′
e) is at most 4S

|F| .

Verifier Time: See that each iteration on the inside of the first loop only takes
a constant number of field operations. Since there are S iterations of the
loop, the first loop takes time O(S) field operations. Then the verifier must
receive O(S) values from the prover, and calculate a polynomial going
through all these points. This can also be done in O(S) field operations.
Finally, the verifier uses O(S) field operations to calculate s′s and s

′
e. Since

a field operation only takes time Õ(log(|F|)), the verifier only takes time
Õ(log(|F|))O(S) overall.

Verifier Space: The algorithm only requires storing O(S) field elements, and
each field element only has size O(log(|F|)). So the verifier only uses space
O(log(|F|)S).

12



Prover Time: See each ψ0 can be computed in one field operation and two
oracle queries to ϕ̂0. Every other ψi is just a sum of up to 2S terms of
ψ0, so can be calculated in O(2S) field operations. Function ψ′

0 is a single

valuation of ϕ̂0, and its argument only takes O(S) field operations to
compute. So any prover query only takes time Õ(log(|F|))2S to compute,

given oracle access to ϕ̂0.

Now we give our protocol for counting the number of accepting paths in a
computation.

Theorem 21 (Number of Accepting Paths Mod P ). Suppose A is a nonde-
terministic algorithm running in space S, and time T where S and T are time
O(log(T )S) computable. Then there is an interactive protocol with verifier V
and prover P such that, when given input x, state se, error bound ϵ > 0 and
prime p behaves the following:

Completeness: When V interacts with prover P on input x, V outputs the
number of computation paths of A on input x ending at se, mod p.

Soundness: Given any prover P ′, when V interacts with prover P ′, V outputs
the incorrect number of computation paths of A on input x ending at se,
mod p, with probability at most ϵ.

Verifier Time: V runs in time Õ (log(pS/ϵ))O(log(T )S).

Verifier Space: V runs in space O (log(pS/ϵ)S).

Prover Time: P runs in time polylog(pS/ϵ)2O(S).

Proof. We start by outlining how to convert this number of computation paths
to a matrix problem, then we show how to apply Lemma 20 to solve that.

Take T to be a power of two so that T = 2t. If T is not a power of 2, we can
just take T to be the smallest power of two greater than the original T . Let k

be the smallest integer so that pk > 4 log(T )S
ϵ and pk ≥ 5. Let q = pk and F be

the field with q elements.
Let ϕ0 : {0, 1}S × {0, 1}S → F be the function that takes two states, s0 and

s1, and outputs 1 if A on input x starting at state s0 can be s1 after one step,
and 0 otherwise. That is, if M is the adjacency matrix for the computation
graph of A on input x, then Mi,j = ϕ0(i, j) if i and j are memory states.

Similarly, for i ∈ [t], we define ϕi : {0, 1}S ×{0, 1}S → F so that ϕi(ss, se) =

(M2i)ss,se . Since all the elements of M are 0 or 1, they are in Fp. Since Fp is
closed under addition and multiplication, ϕi also only contains elmenents in Fp.

Observe that M2i

ss,se is just the number of computation paths of length 2i

from ss to se, mod p, sinceM is an adjacency matrix with entries in Fp. Thus our
verifier just needs to output ϕt(ss, se). Next we show how to apply Lemma 20.

13



For i ∈ [0, t], define ϕ̂i : FS × FS → F to be the multilinear extension of ϕi.

By Lemma 15, the multilinear extension of ϕ0, function ϕ̂0 : FS × FS → F, can
be computed in time Õ(log(|F|)(n+S)). For each i ∈ [t], functions ϕ̂i and ϕ̂i−1

satisfy the assumptions of Lemma 20. So we apply it t times then the verifier
checks ϕ̂0 itself.

Now we more formally describe the protocol. Let ss be the starting state of
A. The verifier starts by asking the prover for the number of computation paths
from ss to se, and the prover responds with vt. The honest prover responds with
vt = ϕ̂t(ss, se).

Let sts = ss and s
t
e = se. Then for any i ∈ [t], see that ϕ̂i and ϕ̂i−1 satisfy the

requirements of Lemma 20. So we use it to reduce the claim that vi = ϕ̂i(s
i
s, s

i
e)

to the claim that vi−1 = ϕ̂i−1(s
i−1
s , si−1

e ).

Finally, since the verifier can calculate ϕ̂0 directly, it performs the final
check whether v0 = ϕ̂0(s

0
s, s

0
e). If every step succeeds, the verifier outputs vt.

Otherwise, it rejects.

Completeness: For an honest prover, indeed vt = ϕ̂t(ss, se). By induction

and completeness of Lemma 20, for every i ∈ [0, t] we have vi = ϕ̂i(s
i
s, s

i
e).

Thus v0 = ϕ̂0(s
0
s, s

0
e). Thus the verifier check whether v0 = ϕ̂0(s

0
s, s

0
e)

succeeds, and the verifier outputs vt.

Soundness: If vt = ϕ̂t(ss, se), the verifier either outputs vt or rejects, either

satisfies our assumption. So suppose vt ̸= ϕ̂t(ss, se). Then for any i ∈
[t], by the soundness of Lemma 20, if the verifier hasn’t rejected and

vi ̸= ϕ̂i(s
i
s, s

i
e), the probability the verifier does not reject and vt−1 =

ϕ̂t−1(s
t−1
s , st−1

e ) is at most 4S
|F| . By a union bound, the probability that

the verifier does not reject and for any i we have vi = ϕ̂i(s
i
s, s

i
e) is at most

4S log(T )

|F|
≤ ϵ.

In particular, the probability the verifier does not reject and v0 = ϕ̂0(s
0
s, s

0
e)

is at most ϵ. See that if v0 ̸= ϕ̂0(s
0
s, s

0
e), then the verifier rejects. So the

probability the verifier does not reject is at most ϵ.

Verifier Time: This verifier takes time Õ(log(|F|))S log(T ) to run Lemma 20

t times plus Õ(log(|F|))O(S) to calculate ϕ̂0(s
0
s, s

0
e) (using Lemma 15), so

in total takes time

Õ(log(|F|))S log(T ) = Õ(log(pS/ϵ))O(log(T )S).

Verifier Space: Between subsequent applications of Lemma 20, the verifier
only needs to store i, sis, s

i
e, and vi, which only takes space O(log(|F|)S).

Each call to Lemma 20 also only needs space O(log(|F|)S). Finally, the

verifier only needs space O(log(|F|)S) to calculate ϕ̂0(s0s, s0e). So the overall
verifier only requires space

O(log(|F|)S) = O(log(pS/ϵ) log(T )S).
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Prover Time: First, the prover calculates M2i in time Õ(log(|F|))S23S for
every i ∈ [t]. This is equivalent to calculating each input to each ϕi. Then
we can calculate the multilinear extension of any individual ϕi, which is
ϕ̂i, in time Õ(log(|F|))22S . Finally, given these, the prover in Lemma 20
only takes time Õ(log(|F|))2S .
By just checking the transitions of algorithm A for each of the 22S entries,
matrix M = M20 can be calculated in time O(S22S) = O(23S). Matrix
multiplication can be performed with O(23S) field operations. So by in-

duction, for each i, matrix M2i can be calculated with (1+ i)O(23S) field
operations. Thus in O(S23S) field operations, or time Õ(log(|F|))S23S ,
for each i ∈ [0, t], matrix M2i can be calculated.

Now for any ss, se ∈ FS , our prover can calculate ϕ̂i(ss, se) in O(22S) field

operations by computing the multilinear extension of M2i . This takes
time Õ(log(|F|))22S .
On the first query to get vt, the prover just returns the already computed
ϕt(ss, se) = (MT )ss,se . To answer the prover queries during the ith call to
Lemma 20 just takes the time of that protocol, times the time to compute
ϕ̂i. This is

Õ(log(|F|))22SÕ(log(|F|))22S = poly
(
log(pS/ϵ)2

)
23S .

Thus the prover runs in time poly
(
log(pS/ϵ)2

)
2O(S)

As an immediate corollary, since deterministic algorithms always have either
one accepting computation path or zero, by using p = 2, and setting se to be
some canonical end state, we have Theorem 1. We can extend this into multi
bit outputs by storing the output in the final end state and asking the prover
for the end state first.

4 Efficient IP for BPTISP

Our protocol for randomized algorithms first uses a PRG for bounded space to
convert our randomized algorithm into a deterministic algorithm, then applies
our deterministic protocol. Note our PRG uses O(log(T )S) random bits, so
these can’t be stored in the algorithms state without incurring an extra log(T )
factor in the verifier run time. This is fine since our PRG only uses O(S) bits
of working space and our protocol works for small space.

Theorem 2 (Efficient Interactive Protocol For BPTISP). Let S and T be
computable in time Õ(log(T )S + n). Then

BPTISP[T, S] ⊆ ITIME[Õ(log(T )S + n), 2O(S)].
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Proof. Suppose L ∈ BPTISP[T, S] is computed by randomized algorithm A
running in space S and time T . For x of length n, we want to verify if x ∈ L
or not. We will construct a new input, x′, of length n+O(S log(T )) decided by
deterministic algorithm A′ running in time poly(T ) and space O(S) such that
if x ∈ L, then with high probability A′(x′) = 1, and if x /∈ L, then with high
probability A′(x′) = 0. Then we use Theorem 1 on A′ and x′ to verify whether
A′(x′) = 1, which with high probability is equivalent to whether x ∈ L.

As a technical detail, to maintain soundness and completeness, we will first
need to amplify A to get a new protocol, A∗, by repeating it a constant number
of times and taking the majority output. Similarly, we repeat the interactive
protocol.

Since A is a randomized algorithm, Pr[M(x, U) = 1x∈L] ≥ 2
3 . Let A

∗ be the
algorithm which runs A three times and outputs the majority. Algorithm A∗

runs in time O(T ), uses space S +O(1), and Pr[A′(x, U) = 1x∈L] ≥ 20
27 .

Recall that Nissan’s PRG (Theorem 19) gives a function G with seed length
l = O(log(T )S) computable in space O(S) and time poly(S) that 1

27 fools A∗.
That is, |E[A∗(x,G(U))−A∗(x, U)]| < 1

27 . Let A′(x, s) = A∗(x,G(s)) and L′

be the language accepted by A′. Then by a triangle inequality,

Pr
s
[A′(x, s) ̸= 1x∈L] =

∣∣∣E
s
[A′(x, s)−A∗(x, U) +A∗(x, U)− 1x∈L]

∣∣∣
<

1

27
+

7

27

<
8

27
.

See that A′ runs in time T ′ = poly(T ) and space S′ = O(S).
In our interactive protocol, the verifier first chooses l = O(log(T )S) bits, s,

for our PRG and sends them to the prover. Let x′ = (x, s), so our new input
length is m = n + l = O(log(T )S + n). By Theorem 1, there is an interactive
protocol for whether x′ ∈ L′ with perfect completeness and soundness 1

3 where

the verifier, V ′, runs in time Õ(log(T )S + n) and the prover, P ′, runs in time
2O(S).

Our final protocol repeats the above protocol three times, and outputs that
x ∈ L if the prover proves x′ ∈ L′ three times, or outputs that x /∈ L if the
prover proves x′ /∈ L′ three times, and rejects otherwise.

Completeness If x ∈ L, with probability 19
27 >

2
3 we have x′ ∈ L′. If x′ ∈ L′,

by completeness of our deterministic IP, our prover will convince our
verifier x′ ∈ L. Thus the verifier outputs x ∈ L with probability at least
2
3 . Similarly for x /∈ L.

Soundness If x ∈ L, then with probability at most 8
27 will we have x′ /∈ L′. If

x′ ∈ L′, by soundness of our deterministic IP, the probability any prover
convinces V ′ that x′ /∈ L′ is at most 1

3 . So the probability it convinces V ′

that x′ /∈ L′ three times, and thus convincing V to output x /∈ L, is at
most 1

27 . So by a union bound, the probability V outputs that x /∈ L is
at most 1

3 . Similarly for x /∈ L.
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Time The final verifier spends O(log(T )S) time choosing s, then runs V ′ three
times, which takes time Õ(log(T )S+n). The final prover is just P ′, which
takes time 2O(S).

5 Efficient IP for NTISP

The non deterministic algorithm uses Theorem 21, but some care must be taken
to choose p so that the number of accepting paths is not 0 mod p. In general,
the number of accepting paths may be an adversarial number, so we choose
p randomly. For instance, it could be the product of every number less than

T
log(T ) . Thus this strategy may need p = Ω( T

log(T ) ).

First we show such a prime p can be found with high probability.

Lemma 22 (Find Non-Divisor WHP). There is an algorithm A taking integer
W , and constant ϵ > 0 running in time Õ(polylog( 1ϵ ) log(W )3) such that for
any w ≤ 2W with probability at least 1 − ϵ, algorithm A outputs prime p =
O(W/ϵ) and w mod p ̸= 0.

Proof. First, for any integerm, let km be the number of prime numbers dividing
w greater than m. Then we have

mkm ≤w
≤2W

km ≤ W

log(m)

≤ W

ln(m)
.

By the prime number theorem, for large enoughW , for anym ≥W , the number
of primes less than m are at most 1.25m

ln(m) , and the number of primes less than

2m are at least 1.75m
ln(m) . Thus there are at least 0.5m

ln(m) primes between m and 2m.

If W is too small, just hard code some large, constant prime.
Otherwise, let m = 4W

ϵ . Then the number of primes between m and 2m is

at least 2W
ln(m)ϵ . Recall the total number of primes larger than m dividing w is

at most W
ln(m) . Therefore, at most ϵ

2 fraction of the primes between m and 2m

divide w.
Then using Miller Rabin tests on randomly chosen numbers (see Theo-

rem 17), there is an algorithm running in time

Õ(polylog(
2

ϵ
) log(m)3) = Õ(polylog(

1

ϵ
) log(W )3)

outputting a uniform prime p between m and 2m with probability at least ϵ
2 .

Then by a union bound the probability it fails to output a uniform prime p or
that p divides w is at most ϵ.
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A corollary is that any w has some prime number not dividing it with size
O(log(w)).

Corollary 23 (Log Size Non Divisors Exist). For any integer w, there exists a
prime number p = O(log(w)) such that p does not divide w.

Then using this procedure, we can with high probability find an appropriate
prime, p, so that if the number of accepting paths, w, is non zero, than w
mod p ̸= 0.

Theorem 24 (Verifier Efficient Interactive Protocol For NTISP). Let S, T
and W be computable in time Õ(log(W ) log(T )S + n). Suppose L is recognized
by a nondeterministic algorithm, A, running in time T and space S where the
total number of accepting witnesses are at most 2W . Then

L ∪ Lc ⊆ ITIME1[Õ(log(W ) log(T )S + n), 2O(S)]

where Lc is the complement of L.

Proof. We begin by describing with verifier V and honest prover P . We describe
the protocol for L, the protocol for Lc is similar. Let w = O(2W ) be the number
of accepting paths of A on x. First P outputs whether w = 0 or w ̸= 0. The
protocol splits into two cases depending on what the prover claimed about w:

w ̸= 0: Then P chooses a prime number p = O(W ) such that w mod p ̸= 0.
Such a prime is guaranteed to exist by Corollary 23. Prover P gives p to
the verifier V .

Then V tests if p is prime with the Miller Rabin primality test, Theo-
rem 16, with soundness 1

3 and rejects if it fails. If p passes the primality
test, V performs the interactive protocol of Theorem 21 with verifier V ′

and honest prover P ′ to confirm that w mod p ̸= 0 with soundness 1
3 .

Verifier V outputs x ∈ L if V ′ outputs that w mod p ̸= 0 and rejects
otherwise.

w = 0: Then V uses Lemma 22 to choose a prime p = O(W/ϵ) that does not
divide w with probability at least 5

6 . If the selected p is not prime, then
P proves it by sending a factorization of p. If the factorization is correct,
V gives up and says x /∈ L.

Otherwise, V performs the interactive protocol from Theorem 21 with
verifier V ′ and honest prover P ′ to verify w mod p is 0 with soundness 1

6 .
The verifier V outputs x /∈ L if V ′ outputs that w mod p = 0 and rejects
otherwise.

Now we prove completeness, soundness, verifier time and prover time.

Completeness First, P truthfully outputs whether w = 0.
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w ̸= 0: Suppose x ∈ L. Then for number accepting paths w, there exists
a p = O(W ) such that w mod p ̸= 0 by Corollary 23. By complete-
ness of the Miller Rabin primality test Theorem 16, V confirms p is
prime. By the completeness of Theorem 21, P ′ convinces V ′ that w
mod p ̸= 0. Thus V outputs x ∈ L.

w = 0: Suppose x /∈ L. If V does not find a prime p, prover P proves the
candidate is not prime. Thus the V outputs x /∈ L.

If V does find prime p, by the completeness of the protocol in Theo-
rem 21, P ′ convinces V ′ that w mod p = 0. Thus V outputs x /∈ L.

Soundness: Consider any prover P̃ . We use two cases, depending on whether
w is actually 0, or not.

w ̸= 0: Suppose x ∈ L. Then if P̃ claims w ̸= 0, then V either confirms
x ∈ L, or rejects. So suppose P̃ claims w = 0.

Since w ̸= 0, by soundness of Lemma 22, the probability V chooses
a p so that w mod p ̸= 0 is at least 5

6 . If w mod p ̸= 0, then
from the soundness of Theorem 21, the probability V ′ accepts that
w mod p = 0 is at most 1

6 . Thus by a union bound, V rejects with
probability at least 2

3 .

w = 0: Suppose x /∈ L. If P̃ claims w = 0, then V either confirms x /∈ L,
or rejects. So suppose P̃ claims w ̸= 0.

Then for any number p provided by P̃ , if p is not prime, by soundness
of Theorem 16, V rejects with probability 2

3 . If p is prime, then w

mod p = 0, so by soundness of Theorem 21, P̃ can only convince V ′

that w mod p ̸= 0 with probability 1
3 . So V rejects with probability

at least 2
3 .

Verifier Time: Since prime generation and testing run in time Õ(log(W )3),
and the verifier in Theorem 21 runs in time

Õ (log(pS))O(log(T )S + n) = Õ(log(W ) log(T )S + n),

the total verifier time is Õ(log(W ) log(T )S + n).

Prover Time: The number of accepting paths, w, can be calculated in time
2O(S) by repeated squaring of the computation graph of A on input x.
Given w ̸= 0, the prover can find p such that w mod p ̸= 0 through
exhaustive search in time poly(W ) = 2O(S). Similarly, factorizing a com-
posite p by exhaustive search takes time poly(p) = poly(W ) = 2O(S).
Finally, the prover in Theorem 21 runs in time Õ(log(W ))2O(S) = 2O(S).
So the prover runs in time 2O(S).

One can trivially upper bound the total number of accepting witness with
W = O(T ). This is because at each time step, only one bit of the witness can
be read. Thus the length of a witness string is only T bits, so there are only at
most 2T possible witnesses. This gives us the immediate corollary of Theorem 3.
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6 Open Problems

Two directions for improvement are improving the verifier time and prover time.

1. Could one remove the dependence on log(T )? Is it true that, for S = ω(n),

SPACE[S] ⊆ ITIME[Õ(S)]?

This would prove an equivalence, up to polylogarithmic factors, between
SPACE[S] and ITIME[S]. Recent work, [MC22], showed a similar equiv-
alence between NTIME[T ] and languages verified by PCPs with log(T )
time verifiers, for log(T ) = Ω(n).

2. Can interactive protocols for NTISP be as efficient as those for TISP?

For S = Ω(n), we prove that SPACE[S] ⊆ ITIME[Õ(S2)], but only
show that NSPACE[S] ⊆ ITIME[Õ(S3)]. Does nondeterministic space
require more verifier time than deterministic space?

3. Can we get double efficiency with a similar verifier time? Is it true that

TISP[T, S] ⊆ ITIME[polylog(T )S,poly(T )]?

This would make the verification of polynomial time algorithms only take
as long (up to polylogairthmic factors) as the space of those algorithms,
with a proof that still only takes polynomial time. This would make di-
rectly using interactive proofs for delegating computation more practical.
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