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Abstract

We introduce a hitting set generator for Polynomial Identity Testing based on evaluations of
low-degree univariate rational functions at abscissas associated with the variables. Despite the
univariate nature, we establish an equivalence up to rescaling with a generator introduced by
Shpilka and Volkovich, which has a similar structure but uses multivariate polynomials in the
abscissas.

We initiate a systematic analytic study of the power of hitting set generators by character-
izing their vanishing ideals, i.e., the sets of polynomials that they fail to hit. We provide two
such characterizations for our generator. First, we develop a small collection of polynomials
that jointly produce the vanishing ideal. As corollaries, we obtain tight bounds on the min-
imum degree, sparseness, and partition class size of set-multilinearity in the vanishing ideal.
Second, inspired by a connection to alternating algebra, we develop a structured deterministic
membership test for the multilinear part of the vanishing ideal. We present a derivation based
on alternating algebra along with the required background, as well as one in terms of zero
substitutions and partial derivatives, avoiding the need for alternating algebra.

As a proof of concept of the utility of our analytic approach, we rederive known derandom-
ization results based on the generator by Shpilka and Volkovich and present a new application
in derandomization / lower bounds for read-once oblivious algebraic branching programs.

1 Overview

Polynomial identity testing (PIT) is the fundamental problem of deciding whether a given multivari-
ate algebraic circuit formally computes the zero polynomial. PIT has a simple efficient randomized
algorithm that only needs blackbox access to the circuit: Pick a random point and check whether
the circuit evaluates to zero on that particular point.

Despite the fundamental nature of PIT and the simplicity of the randomized algorithm, no
efficient deterministic algorithm is known—even in the white-box setting, where the algorithm has
access to the description of the circuit. The existence of such an algorithm would imply long-
sought circuit lower bounds [HS80; Agr05; KI04]. Conversely, sufficiently strong circuit lower
bounds yield blackbox derandomization for all of BPP, the class of decision problems admitting
efficient randomized algorithms with bounded error [NW94; IW97]. Although the known results
leave gaps between the two directions, they show that PIT constitutes an important stepping stone
towards derandomizing BPP, and suggest that derandomizing BPP can be achieved in a blackbox
fashion if at all.

Blackbox derandomization of PIT for a class of polynomials C in the variables x1, . . . , xn is
equivalent to the efficient construction of a substitution G that replaces each xi by a low-degree
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polynomial in a small set of fresh variables such that, for every nonzero polynomial p from C, p(G)
remains nonzero [SY10, Lemma 4.1]. We refer to G as a generator, the fresh variables are its seed,
and we say that G hits the class C. If there are l seed variables, and if p and G have degree at most
nO(1), then the resulting deterministic PIT algorithm for C makes nO(l) blackbox queries.

Much progress on derandomizing PIT has been obtained by designing such substitutions and
analyzing their hitting properties for interesting classes C. Shpilka and Volkovich [SV15] introduced
a generator, by now dubbed the Shpilka–Volkovich generator, or “SV generator” for short. It takes
as an additional parameter a positive integer l and can be viewed as an algebraic version of l-wise
independence in the sense that any selection of l of the original variables can remain independent
while the others are forced to zero. The property is realized using Lagrange interpolation with
respect to n distinct elements of the underlying field F, one element ai corresponding to each
original variable xi. We refer to the elements ai as abscissas; they are also parameters of SV.

Definition 1 (SV generator). The Shpilka–Volkovich Generator (SV for short) for F[x1, . . . , xn]
is parametrized by the following data:

◦ A positive integer l.

◦ For each i ∈ [n], a distinct abscissa ai ∈ F.

The generator SVl takes as seed l pairs of fresh variables (y1, z1), . . . , (yl, zl) and substitutes

xi ←
l∑

t=1

zt · Li(yt), (1)

where the Lagrange interpolant Li is the unique univariate polynomial of degree at most n − 1
satisfying Li(ai) = 1 and Li(aj) = 0 for j ∈ [n] \ {i}.

SV1 takes two seed variables, y and z. For any i ∈ [n], setting y = ai gets xi = z while the
other variables are set to zero. For larger l, SVl is the sum of l independent copies of SV1.

Shpilka and Volkovich proved that SV1 hits sums of a bounded number of read-once formulas
for l = O(log n) [SV15], later improved to l = O(1) [MV18]. The generator for l = O(log n) has
also been shown to hit multilinear depth-4 circuits with bounded top fan-in [KMS+13], multilinear
bounded-read formulas [AvMV15], commutative read-once oblivious algebraic branching programs
[FSS14], Σm

∧
ΣΠO(1) formulas [For15], circuits with locally-low algebraic rank in the sense of

[KS17], and orbits of simple polynomial classes under invertible linear transformations of the vari-
ables [MS21]. The generator is an ingredient in other hitting set constructions, as well, notably
constructions using the technique of low-support rank concentration [ASS13; AGK+15; GKS+17;
GKS17; ST21; BG22]. It also forms the core of a “succinct” generator that hits a variety of classes
including depth-2 circuits [FSV18].

Vanishing ideal. In this paper, we initiate a systematic study of the power of a generator G
through the set of polynomials p such that p(G) vanishes, which we denote by Van[G]. For any
fixed generator G, Van[G] is closed under addition, and for all q ∈ F[x1, . . . , xn] and p ∈ Van[G],
q ·p ∈ Van[G]. By definition, this means that the set Van[G] has the algebraic structure of an ideal.
From now on we refer to Van[G] as the vanishing ideal of G. Our technical contributions can be
understood as precisely characterizing the vanishing ideal of the SV generator.

Characterizations of the vanishing ideal facilitate two objectives:
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Derandomization. A generator G hits a class C of polynomials if and only if C and Van[G] have
at most the zero polynomial in common. For a class C defined by a resource bound, G trivially
hits C if the characterization of the nonzero elements in Van[G] is incompatible with being
computable within the resource bound. In other words, derandomization of PIT for C reduces
to proving lower bounds for Van[G]. By developing explicit structure for polynomials in the
ideal, lower bounds become more tractable.

More generally, given a characterization of Van[G], in order to derandomize PIT for a class C
it suffices to design another generator G′ that hits merely the polynomials in C ∩Van[G]. As
G hits the remainder of C, combining G with G′ yields a generator for all of C. In this way,
one may assume—for free—additional structure about the polynomials in C, namely that the
polynomials moreover belong to Van[G]. Explicit constructions of polynomials in Van[G] give
explicit polynomials outside C.

Lower bounds. If we happen to know that G hits the class C of polynomials computable within
some resource bound, then any expression for a nonzero polynomial in Van[G] yields an
explicit polynomial that falls outside C. Such a statement is often referred to as hardness of
representation, and it can be viewed as a lower bound in the model of computation underlying
C (assuming the polynomial can be computed in the model at all). Characterizing Van[G]
makes explicit the polynomials to which the lower bound applies.

We illustrate how to make progress on both objectives through our characterizations of the SV
generator’s vanishing ideal.

Rational function evaluations. Another contribution of our paper is the development of an
alternate view of the SV generator, namely as evaluations of univariate rational functions of low
degree. We would like to promote the perspective for its intrinsic appeal and applicability. Among
other benefits, it facilitates the study of the vanishing ideal.

The transition goes as follows. Recall in Definition 1 that the SV generator takes as additional
parameters a positive integer l and an arbitrary choice of distinct abscissas ai ∈ F for each of the
original variables xi, i ∈ [n]. When l = 1, SV1 takes as seed two fresh variables, y and z, and can
be described succinctly in terms of the Lagrange interpolants Li for the set of abscissas. Plugging
in an explicit expression for the Lagrange interpolants, we have:

xi ← z · Li(y)
.
= z ·

∏
j∈[n]\{i}

y − aj
ai − aj

. (2)

By rescaling, the denominators on the right-hand side of (2) can be cleared, resulting in the following
somewhat simpler substitution:

xi ← z ·
∏

j∈[n]\{i}

(y − aj). (3)

The vanishing ideals of (3) and SV1 are the same up to rescaling each variable to match the rescaling
from (2) to (3).

More importantly, we apply the change of variables z ← z′/
∏
j∈[n](y − aj). The resulting

substitution now uses rational functions of the seed:

xi ←
z′

y − ai
. (4)

The notion of vanishing ideal naturally extends to rational function substitutions. The change of
variables from (3) to (4) establishes that any polynomial vanishing on (3) also vanishes on (4). The
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change of variables is invertible (the inverse is z′ ← z ·
∏
j∈[n](y−aj)), so any polynomial vanishing

on (4) also vanishes on (3). We conclude that the vanishing ideal of (4) is the same as that of SV1

up to rescaling the variables.
Note that, for fixed y and z′, (4) may be interpreted as first forming a univariate rational function

f(α) = z′

y−α (depending on y and z′ but independent of i) and then substituting xi ← f(ai). As y

and z′ vary, f ranges over all rational functions in α with numerator degree zero and denominator
degree one. We denote (4) by RFE0

1, where RFE is a short-hand for Rational Function Evaluation,
0 bounds the numerator degree, and 1 bounds the denominator degree.

As a generator, RFE0
1 naturally generalizes to RFEkl for arbitrary k, l ∈ N.

Definition 2 (RFE generator). The Rational Function Evaluation Generator (RFE for short)
for F[x1, . . . , xn] is parametrized by the following data:

◦ A non-negative integer k, the numerator degree.

◦ A non-negative integer l, the denominator degree.

◦ For each i ∈ [n], a distinct abscissa ai ∈ F.

The generator RFEkl takes as seed a rational function f ∈ F(α) such that f can be written as g/h
for some g, h ∈ F[α] with deg(g) ≤ k, deg(h) ≤ l, and h(ai) ̸= 0 for all i ∈ [n]. From f , it generates
the substitution xi ← f(ai) for each i ∈ [n].

There are multiple ways to parametrize the seed of RFEkl using scalars; the flexibility to choose
is a source of convenience. We refer to Section 2 for a discussion on different parametrizations, as
well as on how large the underlying field F must be. As is customary in the context of blackbox
derandomization of PIT, we assume that F is sufficiently large, possibly by taking a field extension.

The connection between RFE0
1 and SV1 extends as follows. For higher values of l, SVl is defined

as the sum of l independent instantiations of SV1. The same transformations as above relate SVl

and the sum of l independent instantiations of RFE0
1. Partial fraction decomposition expresses a

(non-degenerate) univariate rational function with numerator of degree l − 1 and denominator of
degree l as a sum of l rational functions with numerators of degree 0 and denominators of degree
1. As a result, SVl is equivalent in power to RFEl−1l , up to variable rescaling. See Section 2 for a
formal treatment.

For parameter values k ̸= l − 1, there is no SV generator that corresponds to RFEkl , but
SVmax(k+1,l) encompasses RFEkl (up to rescaling) and uses at most twice as many seed variables.
Thus, the RFE-generator and the SV-generator efficiently hit the same classes of polynomials. How-
ever, RFE induces simple linear dependencies on the seed variables—as opposed to the nonlinear
dependencies produced by SV—which enables our approach for determining the vanishing ideal.
The moral is that, even though polynomial substitutions are sufficient for derandomizing PIT, it
nevertheless helps to consider rational substitutions. Their use may simplify analysis and arguably
yield more elegant constructions.

As another indication of the power of rational substitutions, an alternate interpretation of the
RFE generator is that it substitutes the ratio of two linear functions of the seed variables, where
the coefficients of the linear functions are powers of the abscissas. A generator that only substitutes
linear functions—as opposed to a ratio of linear functions—of the seed variables must have seed
length n in order to hit all linear polynomials. This is because if the seed length were less than
n, then there exists a nontrivial linear combination of the n variables that becomes zero after
substitution. In contrast, the simplest nontrivial case of RFE, RFE0

1, hits all linear polynomials
and only needs a seed of length 2.
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Generating set. Our first result describes a small and explicit generating set for the vanishing
ideal of RFE. It consists of instantiations of a single determinant expression.

Theorem 3 (generating set). Let k, l, n ∈ N and let ai for i ∈ [n] be distinct elements of F. The
vanishing ideal of RFEkl in F[x1, . . . , xn] for the given choice of abscissas (ai)i∈[n] is generated by
the following polynomials over all choices of k + l + 2 indices i1, i2, . . . , ik+l+2 ∈ [n]:

EVCkl [i1, i2, . . . , ik+l+2]
.
= det

[
akij ak−1ij

. . . 1 alijxij al−1ij
xij . . . xij

]k+l+2

j=1
. (5)

Moreover, for any fixed set C ⊆ [n] of size k + 1, the polynomials EVCkl [C ⊔ L] form a generating
set of minimum size when L ranges over all (l + 1)-subsets of [n] that are disjoint from C, where

EVCkl [S]
.
= EVCkl [i1, i2, . . . , i|S|]

for S = {i1, . . . , i|S|} ⊆ [n] with i1 < i2 < · · · < i|S|.

The name “EVC” is a shorthand for “Elementary Vandermonde Circulation”. Later in this
overview and in Section 9 we discuss a representation of polynomials using alternating algebra,
with connections to notions from network flow. In this representation, polynomials in the vanishing
ideal coincide with circulations, and instantiations of EVC are the elementary circulations.

We refer to the set C in Theorem 3 as a core. The core C plays a similar role as in a combinatorial
sunflower except that, unlike the petals of a sunflower, the sets L do not need to be disjoint outside
the core.

Example 4. Consider the special case where k = 0 and l = 1. The generator for RFE0
1 when

i1 = 1, i2 = 2, and i3 = 3 is given by

EVC0
1[1, 2, 3]

.
=

∣∣∣∣∣∣
1 a1x1 x1
1 a2x2 x2
1 a3x3 x3

∣∣∣∣∣∣ = (a1 − a2)x1x2 + (a2 − a3)x2x3 + (a3 − a1)x3x1.

For any fixed i∗ ∈ [n], the polynomials EVC0
1[S] form a generating set of minimum size when S

ranges over all subsets of [n] that contain C = {i∗}. As an aside, they also constitute minimal
polynomials not computable by read-once formulas, which is consistent with the fact that SV1 hits
all read-once formulas (see Theorem 32). ◀

In general, the generators EVCkl are nonzero, multilinear, homogeneous polynomials of degree
l+1, and they have nonzero coefficients for all multilinear monomials of degree l+1. Each generating
set of minimum size in Theorem 3 yields a Gröbner basis with respect to every monomial order
that prioritizes the variables outside C. A Gröbner basis is a special generating set that allows
solving ideal-membership queries more efficiently, among other problems in computational algebra
[CLO13; AL94]. Computing Gröbner bases for general ideals is exponential-space complete [KM96;
May97]. Theorem 3 represents a rare instance of a natural and interesting ideal for which we know
a small and explicit Gröbner basis. See the end of Section 3 for more background on Gröbner bases.

To gain some intuition about dependencies between the generators EVCkl , note that permuting
the order of the variables used in the construction of EVCkl yields the same polynomial or minus
that polynomial, depending on the sign of the permutation. This follows from the determinant
structure of EVCkl and is the reason why we need to fix the order of the variables in order to obtain
a generating set of minimum size. More profoundly, the following relationship holds for every choice
of k + l + 3 indices i1, i2, . . . , ik+l+3 ∈ [n] and every univariate polynomial q of degree at most k:

det
[
q(aij ) akij ak−1ij

. . . 1 alijxij al−1ij
xij . . . xij

]k+l+3

j=1
= 0. (6)
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The determinant in (6) vanishes because the first column of the matrix is a linear combination of
the next k+1. A minor expansion across the first column expresses the determinant of the matrix
as a linear combination of minors, and each minor is an instantiation of EVCkl . Since (6) vanishes,
the minor expansion yields a linear dependency for every nonzero polynomial q of degree at most
k. In fact, when {i1, . . . , ik+l+3} varies over subsets of [n] containing a fixed core of size k + 1, the
equations (6) generate all linear dependencies among instances of EVCkl .

As corollaries to Theorem 3 we obtain the following tight bounds on Van[RFEkl ]. The bounds
hold for every way to choose the parameters in Definition 2, including the abscissas.

Corollary 5. The minimum degree of a nonzero polynomial in Van[RFEkl ] equals l + 1.

Corollary 5 proves a conjecture by Fournier and Korwar [FK18] (additional partial results
reported in [Kor21]) that there exists a polynomial of degree l+ 1 in n = 2l+ 1 variables that SVl

fails to hit. The conjecture follows because the generators for Van[SVl] have degree l + 1 and use
2l + 1 variables. See also Corollary 21 in Section 3.

As none of the generators contain a monomial of support l or less, the same holds for every
nonzero polynomial in Van[RFEkl ]. This extends the known property that SVl hits every polynomial
that contains a monomial of support l or less [SV15]. See Proposition 26 and Theorem 8 for a
strengthening in the case of multilinear polynomials.

Corollary 6. The minimum sparseness, i.e., number of monomials, of a nonzero polynomial in
Van[RFEkl ] equals

(
k+l+2
l+1

)
.

The generators EVCkl realize the bound in Corollary 6 as they exactly contain all multilinear
monomials of degree l + 1 that can be formed out of their k + l + 2 variables. The claim that no
nonzero polynomial in Van[RFEkl ] contains fewer than

(
k+l+2
l+1

)
monomials requires an additional

combinatorial argument (see Lemma 36). It is a (tight) quantitative strengthening of the known
property that SVl hits every polynomial with fewer than 2l monomials [AvMV15; GKS+17; For15;
FSV18]. Note that for k = l − 1 we have that

(
k+l+2
l+1

)
=
(
2l+1
l+1

)
= Θ(22l/

√
l). One consequence is

that for SVl to hit all polynomials with m monomials, a seed length of l = Ω(logm) is required. In
particular, hitting sparse polynomials requires l = Ω(log n).

Another consequence deals with set-multilinearity, a common restriction in works on derandom-
izing PIT and algebraic circuit lower bounds. A polynomial p of degree l + 1 in a set of variables
{x1, . . . , xn} is said to be set-multilinear if [n] can be partitioned as [n] = X1 ⊔ X2 ⊔ · · · ⊔ Xl+1

such that every monomial in p is a product xi1 · xi2 · · · · · xil+1
, where ij ∈ Xj . Note that set-

multilinearity implies multilinearity but not the other way around. As the generators EVCkl are
not set-multilinear, it is not immediately clear from Theorem 3 whether Van[RFEkl ] contains non-
trivial set-multilinear polynomials of any degree. However, a variation on the construction of the
generators EVCkl yields explicit set-multilinear homogeneous polynomials in Van[RFEkl ] of degree
l+1 where each Xj has size k+2 (see Definition 38). We denote them by ESMVCkl , where ESMVC
stands for “Elementary Set-Multilinear Vandermonde Circulation”. ESMVCkl contains all mono-
mials of the form xi1 · xi2 · · · · · xil+1

with ij ∈ Xj . For any variable partition (X1, X2, . . . , Xl+1)

with |X1| = · · · = |Xl+1| = k + 2, ESMVCkl is the only set-multilinear polynomial in Van[RFEkl ]
with that variable partition, up to a scalar multiple, and exhibits the following extremal property.
See also Theorem 41.

Corollary 7. The minimum partition class size of a nonzero set-multilinear polynomial of degree
l + 1 in Van[RFEkl ] equals k + 2.
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Membership test. Our second characterization of the vanishing ideal of RFE can be viewed
as a structured membership test. Given a polynomial p, there is a generic way to test whether
p belongs to the vanishing ideal of a generator G, namely by symbolically substituting G into p
and verifying that the result simplifies to zero. When G is a polynomial substitution, the well-
known transformation of a generator into a deterministic blackbox PIT algorithm yields another
test: Verify p(G) = 0 for a sufficiently large set of substitutions into the seed variables. By clearing
denominators, the same goes for rational substitutions like RFEkl .

While the generic test works, one cannot extract G-specific insight into whether or why G hits
any particular polynomial. In contrast, our membership test uses the specific structure of G and
provides useful insight. Building on the generating set of Theorem 3, we state our structured test
for membership of multilinear polynomials in Van[RFEkl ] in terms of partial derivatives and zero
substitutions. Several prior papers demonstrated the utility of those operations in the context of
derandomizing PIT using the SV generator, especially for syntactically multilinear models [SV15;
KMS+13; AvMV15].

Theorem 8 (membership test for multilinear polynomials). Let k, l, n ∈ N and let ai for
i ∈ [n] be distinct elements of F. A multilinear polynomial p ∈ F[x1, . . . , xn] belongs to Van[RFEkl ]
if and only if both of the following conditions hold:

1. There are no monomials of degree l or less, nor of degree n− k or more, in p.

2. For all disjoint subsets K,L ⊆ [n] with |K| = k and |L| = l, ∂Lp|K←0 is zero upon the
following substitution for each i ∈ [n] \ (K ∪ L), where z denotes a fresh variable:

xi ← z ·
∏
j∈K(ai − aj)∏
j∈L(ai − aj)

. (7)

A few technical comments regarding the statement are in order. The first part of condition 1 in
Theorem 8 generalizes the known property that SVl hits every multilinear polynomial that contains
a monomial of degree l or less [SV15]. As for the second part, see Proposition 26 for more discussion.
The two parts together imply that all multilinear polynomials on n ≤ k+ l+1 variables are hit by
RFEkl .

In condition 2, ∂Lp|K←0 denotes the polynomial obtained by taking the partial derivative of
p with respect to every variable in L and setting all the variables in K to zero. Because of the
multilinearity, the order of the operations does not matter, and the resulting polynomial depends
only on variables in [n] \ (K ∪ L). The substitution (7) can be viewed as xi ← f(ai), where

f(α) = z · fK,L(ai)
.
= z ·

∏
j∈K(α− aj)∏
j∈L(α− aj)

is a valid seed of RFEkl for polynomials in the variables xi, i ∈ [n] \ (K ∪ L). Upon substitution,
∂Lp|K←0 becomes a univariate polynomial q of degree at most n− k − l in the fresh variable z. In
the case where p is homogeneous, q has at most one term, and q is nonzero if and only q is nonzero
at z = 1. In general, for any fixed set Z of n− k− l+ 1 elements of F, q is nonzero if and only if q
is nonzero at some z ∈ Z.

Theorem 8 can be understood as stating that a multilinear polynomial p is hit by RFEkl if and
only if p has a monomial supported on few or all-but-few variables, or else there is a set of k zero
substitutions, K, and a set of l partial derivatives, L, whose application to p leaves a polynomial
that is nonzero after substituting xi ← z · fK,L(ai). By judiciously choosing variables for the zero
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substitutions and partial derivatives, prior papers managed to simplify polynomials p of certain
types and reduce PIT for p to PIT for simpler instances, resulting in efficient recursive algorithms.
In Section 5, we develop a general framework for such algorithms and prove correctness directly
from Theorem 8. Moreover, because Theorem 8 is a precise characterization, any argument that
SV or RFE hits a class of multilinear polynomials can be converted into one within our framework,
i.e., into an argument based on zero substitutions and partial derivatives. Thus, Theorem 8 shows
that these tools harness the complete power of SV and RFE for multilinear polynomials.

Applications. We illustrate the utility of our characterizations of the vanishing ideal of RFE in
the two directions mentioned before.

Derandomization. To start, we demonstrate how Theorem 8 yields an alternate proof of
the result from [MV18] that SV1—equivalently, RFE0

1—hits every nonzero read-once formula F .
Whereas the original proof hinges on a clever ad-hoc argument, our proof (described in Section 5)
is entirely systematic and amounts to a couple straightforward observations in order to apply
Theorem 8.

As a proof of concept of the additional power of our characterization for derandomization,
we make progress in a well-studied model for algebraic computation, namely read-once oblivious
algebraic branching programs (ROABPs). An ROABP consists of a layered digraph, the width of
which constitutes an important complexity parameter. We refer to Section 8.1 for more background.

Theorem 9 (ROABP hitting property). For any integer l ≥ 1, SVl hits the class of polynomials
computed by read-once oblivious algebraic branching programs of width less than (l/3) + 1 that
contain a monomial of degree at most l + 1.

To the best of our knowledge, Theorem 9 is incomparable to the known results for ROABPs
[RS05; JQS09; JQS10; FS13; FSS14; AGK+15; AFS+18; GKS+17; GKS17; GG20; ST21; BG22].
Without the restriction that the polynomial has a monomial of degree at most l + 1, Theorem 9
would imply a fully blackbox polynomial-time identity test for the class of constant-width ROABPs.
No such test has been proven to exist at this time; prior work requires either quasipolynomial time
or else opening the blackbox, such as by knowing the order in which the variables are read.

With the restriction, hitting the class in Theorem 9 with SVl represents fairly specialized
progress. This is because SVl+1 is well-known to hit every polynomial containing a monomial
of support l + 1 or less, and thus hits the class in Theorem 9, irrespective of the restriction on
ROABP width. That said, the method of proof of Theorem 9 diverges significantly from prior uses
of the SV generator and therefore may be of independent interest. We elaborate on the method
more when we discuss the techniques of this paper, but for now, we point out that most prior uses
of the SV generator rely on combinatorial arguments, i.e., arguments that depend only on which
monomials are present in the polynomials to hit. Theorem 9 necessarily goes beyond this because
there is a polynomial in Van[SVl] of degree l + 1 that has the same monomials as a polynomial
computed by an ROABP of width 2, which by Theorem 9 is not in Van[SVl] for l ≥ 4. Namely,
any instance of ESMVCl−1l contains exactly all the monomials of the form xi1 · xi2 · · · · · xil+1

with
(i1, . . . , il+1) ∈ X1 × · · · ×Xl+1 for some disjoint sets Xj ; the same goes for

∏
j

∑
ij∈Xj

xij , which
is computed by an ROABP of width 2.

Lower bounds. Our result for ROABPs also illustrates this direction. Our derandomiza-
tion result for the class in Theorem 9 is essentially equivalent to the folllowing lower bound (see
Section 8.2 for details).
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Theorem 10 (ROABP lower bound). For any integer l ≥ 1, every nonzero multilinear homo-
geneous polynomial of degree l + 1 in the vanishing ideal of SVl requires ROABP width at least
(l/3) + 1.

Such a lower bound is interesting because there are appealing such polynomials in the vanishing
ideal, in particular the generators EVCl−1l as well as ESMVCl−1l . Other hardness of representation
results follow in a similar manner from prior hitting properties of SV in the literature. The following
lower bounds apply to computing both EVCl−1l and ESMVCl−1l :

◦ Any syntactically multilinear formula must have at least Ω(log(l)/ log log(l)) reads of some
variable [AvMV15, Theorem 6.3].

◦ Any sum of read-once formulas must have at least Ω(l) summands [MV18, Corollary 5.2].

◦ There exists an order of the variables such that any ROABP with that order must have width
at least 2Ω(l) [FSS14, Corollary 4.3].

◦ Any Σm
∧
ΣΠO(1) formula must have top fan-in at least 2Ω(l) [For15]; see also [FSV18,

Lemma 5.12].

◦ Lower bounds over characteristic zero for circuits with locally-low algebraic rank [KS17,
Lemma 5.2].

Techniques. Many of our results ultimately require showing that, under suitable conditions, RFE
hits a polynomial p. A recurring analysis fulfills this role in the proofs of Theorems 3, 8, and 9.
We take intuition from the analytic setting (e.g., F = R) and study the behavior of p(RFE) as a
function of the seed’s zeroes and poles. When they are near the abscissas of chosen variables of
p, the behavior is dominated by the contributions of the monomials of p for which the variables
with abscissas near zeros have minimal degree and the variables with abscissas near poles have
maximal degree. This allows us to analyze a first approximation to p(RFE) by “zooming in” on
the contributions of the monomials in which the chosen variables have extremal degrees. If the
first approximation is nonzero, then we can conclude that RFE hits p. We capture the technique
in our Zoom Lemma (Lemma 24). Formal Laurent series can express the analytic intuition purely
algebraically. We provide a proof from first principles that does not require any background in
Laurent series and works over all fields.

Theorem 3 states the equality I = Van[RFEkl ] of two ideals, where I denotes the ideal generated
by all instantiations of EVCkl , and Van[RFEkl ] the vanishing ideal of RFEkl .

◦ The inclusion ⊆ follows from linearizing the defining equations of RFEkl (Lemma 13). The
technique mirrors the use of resultants to compute implicit equations for rational plane curves.
This is where the switch from SV to RFE helps.

◦ To establish the inclusion ⊇ we first show that every equivalence class of polynomials modulo
I contains a representative p whose monomials exhibit the combinatorial structure of a core
(Lemma 19). The structure allows us to apply the Zoom Lemma such that the zoomed-in
contributions of p only depend on a single variable. As the evaluation in the Zoom Lemma
leaves a nonzero univariate polynonial nonzero, we conclude that RFEkl hits p (Lemma 20).

The proof of Theorem 8 also relies on the Zoom Lemma. Membership to the ideal is equiva-
lent to the vanishing of all coefficients of the expansion of p(RFE). The proof can be viewed as
determining a small number of coefficients sufficient to guarantee that their vanishing implies all
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coefficients vanish. The restriction to multilinear polynomials p allows us to express the zoomed-in
contributions of p as the result of applying partial derivatives and zero-substitutions.

Theorem 9 makes use of the characterization of the minimum width of a read-once oblivious
algebraic branching program computing a polynomial p as the maximum rank of the monomial
coefficient matrices of p for various variable partitions [Nis91]. The result is effectively about
polynomials p that are homogeneous of degree l+1, in which case the monomial coefficient matrices
have a block-diagonal structure with l + 2 blocks. An application of the Zoom Lemma in the
contrapositive yields linear equations between elements of consecutive blocks under the assumption
that SVl fails to hit p. When some block is zero, the equations yield a Cauchy system on the rows
or columns of its neighboring blocks. Based on the fact that Cauchy systems have full rank and
exploiting the specific structure, we deduce several constraints on the row-space/column-space of
the neighboring blocks. A careful analysis and case analysis based on the number of zero blocks
yields a rank lower bound of at least (l/3) + 1 for a well-chosen partition of the variables.

We point out that, in the preceding application, the Zoom Lemma is instantiated several times
in parallel to form a large system of equations on the coefficients of p, and the whole system is
necessary for the analysis. This stands in contrast to most prior work using SV, which can be cast
as using knowledge of how p is computed to guide a search for a single fruitful instantiation of the
Zoom Lemma.

Alternating algebra representation. The inspiration for several of our results stems from
expressing the polynomials EVCkl using concepts from alternating algebra (also known as exte-
rior algebra or Grassmann algebra). In fact, the membership test for the ideal generated by the
instantions of EVCkl in Theorem 8 is based on the relationship ∂2 = 0 from alternating algebra.
Our original statement and proof of the theorem made use of that framework, but we managed to
eliminate the alternating algebra afterwards. Still, as we find the perspective insightful and poten-
tially helpful for future developments, we describe the connection briefly here and in more detail in
Section 9. We explain the intuition for the simple case where the degree of the polynomial p equals
l + 1. In that setting, belonging to the ideal generated by the polynomials EVCkl is equivalent to
being in their linear span.

The alternating algebra Λ∗(U) of a vector space U over a field F consists of the closure of U
under an additional binary operation, referred to as “wedge” and denoted ∧, which is bilinear,
associative, and satisfies

u ∧ u = 0 (8)

for every u ∈ U . This determines a well-defined algebra. When the characteristic of F is not 2, (8)
can equivalently be understood as anti-commutativity:

u1 ∧ u2 = −(u2 ∧ u1) (9)

for every u1, u2 ∈ U . For any characteristic and u1, u2, . . . , ut ∈ U ,

u1 ∧ u2 ∧ · · · ∧ ut (10)

is nonzero iff the ui’s are linearly independent, and any permutation of the order of the vectors in
(10) yields the same element of Λ∗(U) up to a sign. The sign equals the sign of the permutation,
whence the name “alternating algebra.” If U has a basis V = {v1, . . . , vn} of size n, then a basis for
Λ∗(U) can be formed by all 2n expressions of the form (10), where the ui’s range over all subsets of
V and are taken in some fixed order. Considering the elements of V as vertices, the basis elements
of Λ∗(U) can be thought of as the oriented simplices of all dimensions that can be built from V .
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Anti-commutativity arises naturally in the context of network flow, where V denotes the vertices
of the underlying graph, and a wedge v1∧v2 of level t = 2 represents one unit of flow from v1 to v2.
Equation (9) reflects the fact that one unit of flow from v1 to v2 cancels with one unit of flow from
v2 to v1. The adjacent levels t = 1 and t = 3 also have natural interpretations in the flow setting:
v1 (the element of Λ∗(U) of the form (10) with t = 1) represents one unit of surplus flow at v1 (the
vertex of the graph), and v1 ∧ v2 ∧ v3 abstracts a circulation of one unit along the directed cycle
v1 → v2 → v3 → v1.

The different levels are related by so-called boundary maps, which are linear transformations
that map a simplex to a linear combination of its subsimplices of one dimension less. The maps
are parametrized by a linear weight function w : U → F, and defined on the vertices by

∂w : v1 ∧ v2 ∧ · · · ∧ vt 7→
t∑
i=1

(−1)i+1w(vi) v1 ∧ · · · ∧ vi−1 ∧ vi+1 ∧ · · · ∧ vt, (11)

an expression resembling the minor expansion of a determinant along a column [w(vi)]
t
i=1. In the

flow setting, using w ≡ 1, applying ∂1 to v1 ∧ v2 yields v2 − v1, the superposition of demand at v1
and surplus at v2 corresponding to one unit of flow from v1 to v2. Likewise, ∂1 sends the abstract
elementary circulation v1 ∧ v2 ∧ v3 to the superposition of the three edge flows that make up the
directed 3-cycle v1 → v2 → v3 → v1. A linear combination p of terms (10) with t = 2 represents
a valid circulation iff it satisfies conservation of flow at every vertex, which can be expressed as
∂1(p) = 0, i.e., p is in the kernel of ∂1. An equivalent criterion is for p to be the superposition
of circulations around directed 3-cycles, which can be expressed as p being in the image of ∂1.
The relationship im(∂w) = ker(∂w) between the image and the kernel of a boundary map holds
for any nonzero w, and generalizes to composed boundary maps: For any linearly independent
w1, . . . , wk+1, it holds that

im
(
∂wk+1

◦ ∂wk
◦ · · · ◦ ∂w1

)
=

k+1⋂
r=1

ker (∂wr) . (12)

When w1, . . . , wk+1 are linearly dependent, ∂wk+1
◦ · · · ◦ ∂w1 is the zero map.

In the context of RFE, the set V consists of a distinct vertex vi for each variable xi, and
simplices correspond to multilinear monomials. The anti-commutativity of ∧ coincides with the
fact that swapping two arguments to EVCkl means swapping two rows in (5), which changes the
sign of the determinant. Using boundary maps, EVCkl [i1, i2, . . . , ik+l+2] can be viewed as ∂ω(vi1 ∧
vi2 ∧ · · · ∧ vik+l+2

), where ∂ω
.
= ∂wk+1

◦ ∂wk
◦ · · · ◦ ∂w1 and wr(vi)

.
= (ai)

r−1. By (12), this means

that EVCkl is in the kernel of ∂wr for each r ∈ [k + 1], or equivalently, in the kernel of ∂w for
each w : U → F of the form w(vi) = q(ai) where q is a polynomial of degree at most k. In fact,
(12) implies that the linear span of the generators EVCkl consists exactly of the polynomials of
degree l + 1 in this kernel. The linear span coincides with the polynomials of degree l + 1 in the
ideal generated by the polynomials EVCkl . For multilinear polynomials, being in the kernel can be
expressed in terms of zero substitutions and partial derivatives as in Theorem 8. This yields an
alternate route for deriving our membership test for multilinear polynomials of degree d = l+ 1 in
the ideal generated by the instantiations of EVCkl , which by Theorem 3 agrees with Van[RFEkl ].
In the basic case where k = 0 and l = 1, only the weight function w ≡ 1 needs to be considered
and the kernel requirement coincides with flow conservation. We refer to Section 9 for the general
multilinear case of arbitrary degree.

Related recent work and further research. We propose to systematically investigate the
power of generators by characterizing their vanishing ideals. As we demonstrated for SV and RFE,
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such characterizations can exhibit both strengths and weaknesses of the generator.
Specific other generators of interest include Klivans–Spielman [KS01] and generators based on

the matrix rank condenser by Gabizon and Raz [GR08; KS11; FS12]. A related direction is figuring
out how vanishing ideals are affected when manipulating generators. Examples include the RFE
generator with pseudorandom abscissas, or work that relates the vanishing ideal of a combination
of generators to the vanishing ideals of the constituent generators. In particular, a combination of
SV with Klivans–Spielman appears in the literature [KMS+13; FSS14; FSV18], where the latter is
used to effectively hit sparse polynomials, which our results show that SV does not.

The generator SVl is the canonical example of an l-wise independent generator in the alge-
braic setting. Understanding the power of l-wise independent generators more broadly, e.g., as
formalized in [FST+21; MS21], could lead to useful insights for derandomizing PIT. This work
demonstrates explicit polynomials like EVCl−1l and ESMVCl−1l that are not automatically hit by
l-wise independence as they are not hit by SVl. Is there a deeper underlying reason related to
l-wise independence?

A generator hits all polynomials from a resource-bounded class iff no nonzero polynomial in
the vanishing ideal can be computed within those resources. Chatterjee and Tengse [CT23] re-
cently showed the following generic limitation: The vanishing ideal of any generator computable
by algebraic circuits of polynomial size in the number of variables contains a nonzero polynomial
computable in VPSPACE. From this perspective, our results exhibit a weakness of SV and RFE
in that their vanishing ideals contain nonzero polynomials from the presumably much smaller class
VBP. In fact, EVCkl is a polynomial depending on only k + l+ 2 variables and is computable by a
branching program of size polynomial in the number of variables. Thus, in order to hit all branching
programs of size s, SV and RFE require a seed length k + l + 2 = sΩ(1).

A related question is whether the generators we have identified have minimal (or approximately
minimal) complexity in the vanishing ideal. Andrews and Forbes [AF22] recently established such
a result for a generator that substitutes an n×m matrix of variables with the product of n× l and
l ×m matrices of variables for small l. The vanishing ideal of their generator is straightforwardly
generated by (l + 1) × (l + 1) minors. For this vanishing ideal the authors manage to show that
every nonzero element is at least as hard as computing Θ(l1/3)×Θ(l1/3) determinants (under simple
reductions and in the sense of border complexity).

Lastly, we list some avenues for improving specific aspects of our results. Theorem 8 repre-
sents an elementary deterministic membership test in the vanishing ideal of RFEkl for multilinear
polynomials. Can the elementary test can be extended to all polynomials? From the alternating
algebra perspective, the test relies an the convenient one-to-one correspondence between multilinear
polynomials and elements of the alternating algebra. For general polynomials, this correspondence
is no longer one-to-one, and the resulting membership test is nondeterministic.

Another target is eliminating degree restrictions for our characterizations of specialized classes
of polynomials, in particular in Theorem 9 for ROABPs. Removing the degree restriction for
ROABPs would result in a full blackbox derandomization of constant-width ROABPs. An alter-
native possibility is that, through better analysis of the vanishing ideal, it turns out that RFE has
limitations in derandomizing constant-width ROABPs.

Organization. We start in Section 2 with formal aspects of the RFE generator that have been
omitted from the informal discussion thus far. We construct the generating set for the vanishing
ideal (Theorem 3) in Section 3, followed by the Zoom Lemma in Section 4. The ideal membership
test (Theorem 8) is developed in Section 5. We present the results on sparseness in Section 6, and the
ones on set-multilinearity in Section 7. Background on ROABPs and our result on derandomizing
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PIT for ROABPs (Theorem 9) are covered in Section 8. We end our paper in Section 9 with
a further discussion of the alternating algebra representation and an alternate derivation of the
membership test for multilinear polynomials in the ideal generated by the instances of EVCkl .

2 RFE Generator

We defined the RFE generator in the overview but omitted some of the formal details. In this
section, we discuss different parametrizations of RFE as well as how to obtain deterministic blackbox
PIT algorithms from a generator and how large the underlying field F must be. We also state and
establish the precise relationship between RFEl−1l and SVl.

In Definition 2, we defined RFE as a set of substitutions formed by varying the seed f over
certain rational functions with coefficients in F. Meanwhile, our analyses proceed by parametrizing
f by scalars, abstracting the scalar parameters as fresh formal variables, and calculating in the field
of rational functions in those variables. The approaches are equivalent over large enough fields, and
the flexibility to choose is a source of convenience. Here are some natural parametrizations of f :

Coefficients. Select scalars g0, . . . , gk, h0, . . . , hl ∈ F and set

f(α) =
gkα

k + gk−1α
k−1 + · · ·+ g1α+ g0

hlαl + hl−1αl−1 + · · ·+ h1α+ h0
,

ignoring choices of h0, . . . , hl for which the denominator vanishes at some abscissa.

Evaluations. Fix two collections, B = {b1, . . . , bk+1} and C = {c1, . . . , cl+1}, each of distinct
scalars from F. Then select scalars g1, . . . , gk+1 and h1, . . . , hl+1 and set

f(α) =
g(α)

h(α)

where g is the unique degree-k polynomial with g(b1) = g1, g(b2) = g2, . . . , g(bk+1) = gk+1,
and h is defined similarly with respect to C. Choices of h1, . . . , hl+1 that lead h to vanish at
some abscissa are ignored.

Note that an explicit formula for g and h in terms of the parameters can be obtained using
the Lagrange interpolants with respect to B and C.

Roots. Select scalars z, s1, . . . , sk′ , t1, . . . , tl′ ∈ F for some k′ ≤ k and l′ ≤ l and set

f(α) = z · (α− s1) · · · · · (α− sk
′)

(α− t1) · · · · · (α− tl′)
,

where {t1, . . . , tl′} is disjoint from the set of abscissas.

In fact, it is no loss of power to restrict to k′ = k and l′ = l.

Hybrids are of course possible, too. For example, Proposition 12 below uses the evaluations
parametrization for the numerator and roots parametrization for the denominator.

The following lemma justifies that, for any polynomial p, as long as F is large enough, p(RFE)
vanishes with respect to a particular parametrization of RFE if and only if it vanishes with respect
to RFE as defined in Definition 2. The lemma is an extension of the well-known analogous result for
polynomials, sometimes referred to as the polynomial identity lemma [Ore22; DL78; Zip79; Sch80].
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Lemma 11. Let F be field, and f = g/h ∈ F(τ1, . . . , τl) be a rational function in l variables with
deg(g) ≤ d and deg(h) ≤ d. Let S ⊆ F be finite. Then the probability that f vanishes or is undefined
when each τi is substituted by a uniformly random element of S is at most 2d/|S|.

In particular, if F is infinite, then, for all polynomials p, all the above parametrizations and
Definition 2 are equivalent for the purposes of hitting p; when p is fixed, the equivalence holds
provided |F| ≥ poly(n, deg(p)). Quantitative bounds on the number of substitutions to perform
when testing whether RFE hits p in the blackbox algorithm likewise follow from Lemma 11. As is
customary in the context of blackbox derandomization of PIT, if F is not large enough, then one
works instead over a sufficiently large extension of F.

We now formally state and argue the close relationship between RFEl−1l and SVl that we
sketched in Section 1.

Proposition 12. Let l and n be positive integers. There is an invertible diagonal transformation
A : Fn → Fn such that, for any polynomial p ∈ F[x1, . . . , xn], p(SVl) = 0 if and only if (p ◦
A)(RFEl−1l ) = 0.

In particular, the vanishing ideals of RFEl−1l and of SVl are the same up to the rescaling of
Proposition 12.

Proof of Proposition 12. Let F̂ be the field of rational functions in indeterminates υ1, . . . , υl, ζ1,
. . . , ζl over F. A polynomial p ∈ F[x1, . . . , xn] has p(SVl) = 0 if and only if p vanishes at the point l∑

t=1

ζt
∏

j∈[n]\{i}

υt − aj
ai − aj

: i ∈ [n]

 ∈ F̂n. (13)

Set A : Fn → Fn to be the diagonal linear transformation that divides the coordinate for xi by∏
j∈[n]\{i}(ai − aj). A is invertible. Applying A−1 to (13) yields the point l∑

t=1

ζt
∏

j∈[n]\{i}

(υt − aj) : i ∈ [n]

 =

 l∑
t=1

ζt ∏
j∈[n]

(υt − aj)

 1

υt − ai
: i ∈ [n]

 . (14)

p vanishes at (13) if and only if p ◦A vanishes at (14). Now let F̂′ be the field of rational functions
in indeterminates τ1, . . . , τl, σ1, . . . , σl over F. After the change of variables

ζt ←
1∏

j∈[n](τt − aj)
· −σt∏

s̸=t(τt − τs)
and υt ← τt

(14) becomes l∑
t=1

σt(∏
s ̸=t τt − τs

) 1

ai − τt
: i ∈ [n]

 =

(∑l
t=1 σt

∏
s ̸=t

ai−τs
τt−τs∏l

t=1 ai − τt
: i ∈ [n]

)
∈ F̂′n. (15)

Since the change of variables is invertible, p ◦A vanishes at (14) if and only if it vanishes at (15).
Now, viewing σ1, . . . , σl, τ1, . . . , τl as seed variables, observe that the right-hand side of (15) is

RFEl−1l (g/h) where g is parametrized by evaluations (g(τt) = σt) and h is parametrized by roots

(τ1, . . . , τl). It follows that p ◦A vanishes at (15) if and only if (p ◦A)(RFEl−1l ) = 0.
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3 Generating Set

In this section, we establish Theorem 3, our characterization of the vanishing ideal of RFE in terms
of an explicit generating set. For every k, l ∈ N, we develop a template, EVCkl , for constructing
polynomials that belong to the vanishing ideal of RFEkl such that all instantiations collectively
generate the vanishing ideal.

The template can be derived in the following fashion. Fix any seed f of RFEkl , and write it as
f = g/h where g(α) =

∑k
d=0 gdα

d and h(α) =
∑l

d=0 hdα
d are respectively polynomials of degree

k and l. For any i ∈ [n], the polynomial g(ai)/h(ai) − xi ∈ F[x1, . . . , xn] vanishes by definition at
RFEkl (f). While this polynomial varies with f , it does so uniformly. Specifically, after rescaling
to g(ai)− h(ai)xi, the polynomial depends only linearly on the coefficients of g and h. We exploit
this uniformity to construct a polynomial that vanishes at RFEkl (f) but that now is independent
of f . Since f is arbitrary, the constructed polynomial belongs to the vanishing ideal of RFEkl .

The construction begins by expressing the vanishing of each g(ai)− h(ai)xi at RFEkl (f) as the
following system of equations. Abbreviating

g⃗
.
=
[
gk gk−1 . . . g1 g0

]⊺
h⃗
.
=
[
hl hl−1 . . . h1 h0

]⊺
,

we write [
aki ak−1i . . . 1 alixi al−1i xi . . . xi

]
i∈[n] ·

[
g⃗

−h⃗

]
= 0. (16)

Written this way, (16) has the form of a homogeneous system of linear equations. There is one
equation for each i ∈ [n] and one unknown for each of the k + l + 2 parameters of the seed f .
The system’s coefficient matrix has no dependence on f , but for any f , substituting RFEkl (f) into
x1, . . . , xn yields a system that has a nontrivial solution, namely the vector in (16).

Consider, then, the determinant of the square subsystem of (16) formed by any k+ l+ 2 rows.
It is a polynomial in F[x1, . . . , xn]. Because the coefficient matrix in (16) is independent of f , the
determinant is independent of f . Because the subsystem has a nonzero solution after substituting
RFEkl (f) for any f , the determinant vanishes after substituting RFEkl (f) for any f . We conclude
that the determinant belongs to the vanishing ideal of RFEkl .

Recalling that the determinant for the subsystem consisting of rows i1, . . . , ik+l+2 is identically
EVCkl [i1, i2, . . . , ik+l+2], we have established:

Lemma 13. For every k, l ∈ N and i1, i2, . . . , ik+l+2 ∈ [n], EVCkl [i1, . . . , ik+l+2] ∈ Van[RFEkl ].

As we explain at the end of this section, the above derivation is where our use of RFE in lieu of
SV plays a critical role. Before moving on, we also point a few elementary properties and an provide
an explicit expression for the coefficients of EVCkl as products of Vandermonde determinants in
the abscissas and a sign term. We introduce the following notation for the underling Vandermonde
matrices.

Definition 14 (Vandermonde matrix). For T = {i1, . . . , it} ⊆ [n] with i1 < · · · < it, we
abbreviate the Vandermonde matrix built from ai for i ∈ T in increasing order as

AT
.
=

a
t−1
i1

· · · 1
...

...

at−1it
· · · 1

 . (17)
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The sign term makes use of the following standard combinatorial quantity.

Definition 15 (cross inversions). For A,B ⊆ [n], XInv(A,B)
.
= |{(a, b) ∈ A × B | a > b}|

denotes the number of cross inversions between A and B.

Proposition 16. For every k, l ∈ N, EVCkl is skew-symmetric in that, for any i1, . . . , ik+l+2 ∈ [n]
and permutation π of [k + l + 2],

EVCkl [i1, . . . , ik+l+2] = sign(π) · EVCkl [iπ(1), . . . , iπ(k+l+2))].

For any S ⊆ [n] with |S| = k+l+2, EVCkl [S] is a nonzero, multilinear, and homogeneous polynomial
of total degree l+1, and every multilinear monomial of degree l+1 in xi1 , . . . , xik+l+2

appears with
a nonzero coefficient. More specifically, for S = {i1, . . . , ik+l+2} ⊆ [n] with i1 < i2 < . . . , ik+l+2,

EVCkl [S] =
∑

K⊔L=S
|L|=l+1

γK,L ·
∏
i∈L

xi, (18)

where
γK,L

.
= (−1)XInv(K,L) · det(AK) · det(AL). (19)

Proof. All assertions follow from elementary properties of determinants, that Vandermonde deter-
minants are nonzero unless they have duplicate rows, and the following computation. The coefficient
γK,L can be obtained by plugging in 0 for xi with i ∈ K, and 1 for xi with i ∈ L. For K∗ consisting
of the first k + 1 elements of S and L∗ of the last l + 1, this yields the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

aki1 · · · 1 0 · · · 0
...

. . .
...

...
. . .

...
akik+1

· · · 1 0 · · · 0

∗ · · · ∗ alik+2
· · · 1

...
. . .

...
...

. . .
...

∗ · · · ∗ alik+l+2
· · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (20)

which equals the product of the Vandermonde matrices det(AK∗) and det(AL∗), and confirms the
expression for γK∗,L∗ as XInv(K∗, L∗) = 0. For general K and L, we obtain a determinant with
the same shape as (20) after rearranging the rows such that the ones involving ai for i ∈ K
appear first and in order, and the ones involving ai for i ∈ L appear last and in order. By skew-
symmetry, the rearrangement induces an additional factor of sign(π) = (−1)Inv(π), where π denotes
the underlying permutation of [k + l + 2] and Inv(π) denotes the number of inversions of π, which
equals XInv(K,L).

Lemma 13 shows that the polynomials EVCkl [i1, . . . , ik+l+2] belong to the vanishing ideal of
RFEkl . In fact, various subsets of them generate the vanishing ideal. To prove that a certain subset
does so, we establish the following two steps:

1. Modulo the ideal I generated by the subset, every polynomial is equal to a polynomial with
a particular combinatorial structure (Lemma 19).

2. Every nonzero polynomial with that structure is hit by RFEkl (Lemma 20).

16



Together, these show that every polynomial in the vanishing ideal of RFEkl is equal to the zero
polynomial modulo the ideal I. We conclude that the ideals coincide, i.e., the vanishing ideal of
RFEkl is generated by the subset of instantiations of EVCkl that define I.

For the subset of instantiations EVCkl [C ⊔L] where C ⊆ [n] is any fixed subset of size k+1 and
L ⊆ [n] ranges over all subsets of size l + 1 disjoint from C, the combinatorial structure bridging
the two steps is that the polynomial is cored.

Definition 17 (monomial support and cored polynomial). The support of a monomial m ∈
F[x1, . . . , xn], denoted supp(m), is the set of indices i ∈ [n] such that m depends on xi. For c, t ∈ N,
a polynomial p ∈ F[x1, . . . , xn] is said to be (c, t)-cored if there exists C ⊆ [n], called the core, such
that |C| ≤ c and for every monomial m of p, |supp(m) \ C| ≤ t. For any subset C ⊆ [n] and
monomial m =

∏
i∈[n] x

di
i , we call

∏
i∈C x

di
i the C-part of m, and

∏
i∈[n]\C x

di
i the non-C-part of m.

The crux for the first step is the following property, which allows us to gradually get closer to
a (k + 1, l)-cored polynomial.

Proposition 18. Let k, l, n ∈ N, let C be a (k + 1)-subset of [n], and let I denote the ideal
generated by the polynomials EVCkl [C ⊔ L] where L ranges over all (l + 1)-subsets of [n] \ C.
Consider a monomial m ∈ F[x1, . . . , xn] such that |supp(m) \ C| > l. Modulo I, m is equal to a
linear combination of monomials whose non-C-parts have lower degree than the non-C-part of m.

Proof. Let L be a subset of supp(m)\C of size l+1. Let m′ be the monomial such that m = m′ ·xL,
where xL

.
=
∏
i∈L xi. By Proposition 16, xL is a monomial of EVCkl [C ⊔ L], and every other

monomial of EVCkl [C ⊔ L] has non-C-part of degree at most l. It follows that m′ · EVCkl [C ⊔ L]
can be written as c ·m + r, where c in a nonzero element in F and every monomial in r has non-
C-part of lower degree than m does. Since ideals are closed under multiplication by any other
polynomial, m′ · EVCkl [C ⊔ L] ∈ I. Thus, we have 0 ≡ c ·m+ r mod I, which can be rewritten as
m ≡ −c−1 · r mod I.

Proposition 18 leads to the following formalization of the first step of our approach.

Lemma 19. Let k, l, n ∈ N, let C be a (k + 1)-subset of [n], and let I be the ideal generated by
the polynomials EVCkl [C ⊔ L] where L ranges over all (l + 1)-subsets of [n] \ C. Modulo I, every
polynomial is equal to a (k + 1, l)-cored polynomial with core C.

Proof. For any polynomial p ∈ F[x1, . . . , xn], Proposition 18 allows us to systematically eliminate
any monomial m in p that violates the (k + 1, l)-cored condition, without changing p modulo I.
The process may introduce other monomials, but those monomials all have non-C-parts of degree
lower than m does. This means that the process cannot continue indefinitely. When it ends, the
remaining polynomial is (k + 1, l)-cored with core C and is equivalent to p modulo I.

The second step of our approach is formalized in Lemma 20.

Lemma 20. Suppose p is nonzero and (k + 1, l)-cored. Then RFEkl hits p.

We prove Lemma 20 from the Zoom Lemma in Section 4. Assuming it, we have all ingredients
for the proof of Theorem 3.

Proof of Theorem 3. The combination of Lemma 13, Lemma 19, and Lemma 20 shows that, for
every core C ⊆ [n] of size k + 1, the vanishing ideal Van[RFEkl ] is generated by the polynomials
EVCkl [C ⊔L] where L ranges over all (l+1)-subsets of [n] \C. The generators are all homogeneous
of minimum degree l + 1, and each generator has a monomial that occurs in none of the other
generators (namely the product of the variables in L). Therefore, the generating set has minimum
size since it forms a vector space basis of the degree-(l + 1) part of Van[RFEkl ].
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As an aside, we justify along the same lines the claim from Section 1 that all linear dependencies
among instances of EVCkl are generated by the equations (6) when {i1, . . . , ik+l+3} ranges over all
subsets of [n] containing a core C of size k+1. A similar reduction strategy modulo those equations
allows us to rewrite ∑

S⊆[n]
|S|=k+l+2

cS · EVCkl [S] = 0

such that the range of the subsets S is reduced to a (k + 1, l + 1)-cored subclass with core C. By
linear independence, the only equation of that form is the trivial one with all cS = 0.

Gröbner basis. We end this section with a short discussion on Gröbner bases. This part is not
essential for understanding the remainder of the paper; the reader may feel free to skip it. Readers
who want to know more may refer to [AL94; CLO13].

Gröbner bases are useful for solving several computational problems involving ideals, including
determining whether a given polynomial p belongs to an ideal I given by a finite set G of generators.
The setup presumes a total order ≥ on monomials with the following properties:

◦ For all monomials m, we have m ≥ 1, where 1 denotes the empty monomial.

◦ For monomials m1,m2,m, we have that if m1 ≥ m2, then m1 ·m ≥ m2 ·m.

Assuming such a monomial ordering ≥, every nonzero polynomial has a unique monomial that is
maximal in ≥, which we call the leading monomial.

For a given a polynomial p, we can compute a G-reduced form of p by repeatedly applying the
following reduction step, starting from f = p: Find g ∈ G such that the leading monomial of g
divides some monomial m of f , and then subtract a suitable multiple of g from f so as to produce
a new value of f that does not contain m as a monomial. If multiple such g and m exist, pick any.
The process continues until no suitable g and m can be found, which the properties of the ordering
≥ guarantee to happen at some point. The final f is called a G-reduced form of p, which may or
may not be unique.

A natural algorithm to determine membership of p in I is to compute a G-reduced form f of
p and conclude that p ∈ I if and only if f = 0. A positive conclusion is always correct because
reduction does not affect membership and 0 trivially belongs to the ideal. However, the algorithm
can have false negatives, namely when p ∈ I has a nonzero G-reduced form, i.e., the reduction
process reaches some f ∈ I that does not have a monomial m divisible by the leading monomial of
some g ∈ G.

A Gröbner basis G for I is a finite set of generators satisfying the additional constraint that
every nonzero element of I has a monomial m that is divisible by the leading monomial of some
element of G. In this case, the above algorithm for deciding membership in I is always correct. In
fact, this gives another characterization of when a finite generating set G is a Gröbner basis. Yet
another characterization is that every polynomial p has a unique G-reduced form f .

In the overview, we claimed that the set G of polynomials EVCkl [C ⊔ L] form a Gröbner basis
for Van[RFEkl ], where C ⊆ [n] is a fixed core of size k + 1 and L ranges over the (l + 1)-subsets of
[n]\C. This holds with respect to any monomial ordering such that, for every L, xL

.
=
∏
i∈L xi is the

leading monomial of EVCkl [C ⊔ L]. Examples of such orderings include all lexicographic orderings
where the variables outside C have higher priority than the variables inside C. Lemma 20 implies
that every nonzero polynomial in Van[RFEkl ] has a monomial with more than l variables outside of
C, which is to say that the monomial is divisible by xL for some L ⊆ [n] \C of size l+ 1. As xL is
the leading monomial of EVCkl [C ⊔ L], we conclude that every nonzero polynomial in Van[RFEkl ]
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has a monomial that is divisible by the leading term of some element of G, i.e., G is a Gröbner
basis.

One can interpret Proposition 18 as performing a reduction step of p by G. Lemma 19 keeps
performing this step until it is no longer possible, yielding a G-reduced form f of p that is (k+1, l)-
cored with core C. Lemma 20 implies that any two (k+1, l)-cored representatives modulo I of the
same polynomial p coincide, so every polynomial p has a unique G-reduced form. This is another
way to see that the set G is a Gröbner basis.

Instantiation for SV. By the connection between SV and RFE, a generating set for Van[RFEl−1l ]
induces a generating set for Van[SVl]. We provide an explicit expression as an instantiation of
Theorem 3 and Proposition 16.

Corollary 21. Let l, n ∈ N and let ai for i ∈ [n] be distinct elements of F. For any fixed set C ⊆ [n]
of size l, the polynomials EVCSVl[C⊔L] form a generating set of mininum size for Van[SVl] when L
ranges over all (l+1)-subsets of [n] that are disjoint from C. Here, for any S = {i1, . . . , i2l+1} ⊆ [n]
with i1 < · · · < i2l+1,

EVCSVl[S]
.
=

∑
T⊆S
|T |=l+1

γ′S\T,T ·
∏
i∈T

xi,

where

γ′S\T,T
.
= (−1)XInv(S\T,T ) ·

∏
i∈T

∏
j∈[n]\{i}

(ai − aj)

 · det(AS\T ) · det(AT ). (21)

Proof. By Proposition 12, for any polynomial p ∈ F[x1, . . . , xn], p(SVl) = 0 iff (p◦A)(RFEl−1l ) = 0,
where A : Fn → Fn is the invertible transformation that divides each variable xi by

∏
j∈[n]\{i}(ai−

aj). Since the vanishing ideal of RFEl−1l coincides with the ideal generated by the polynomials

EVCl−1l [C ⊔L], it follows that the vanishing ideal of SVl coincides with the ideal generated by the
polynomials

EVCl−1l [C ⊔ L] ◦A−1. (22)

For T ⊆ S .
= C ⊔L with |T | = l+1, the coefficient of

∏
i∈T xi in EVCl−1l [S] is given by γS\T,T . By

the construction of A, A−1 multiplies xi by
∏
j∈[n]\{i}(ai − aj). Thus, the coefficient of

∏
i∈T xi in

(22) equals γ′S\T,T given by (21) and EVCl−1l [C ⊔ L] ◦A−1 = EVCSVl[S].

In comparison to the coefficients γS\T,T of the polynomial EVCl−1l [S], the coefficients γ′S\T,T
of EVCSVl[S] contain an additional term, namely the middle term on the right-hand side of (21).
As a consequence, each coefficient of EVCSVl[S] depends on all abscissas a1, . . . , an, whereas the
coefficients of EVCkl [S] only depend on the abscissas with indices in S. This reflects a difference
in setup between the two generators: The substitution for a variable xi is a multivariate function
of all abscissas in SV versus a univariate function of the abscissa ai only in RFE. The difference
represents one reason why RFE is more convenient to work with than SV, even though both have
essentially the same power.

A more important reason is our derivation of the generating set EVCkl in Lemma 13. Our
approach hinges on the fact that the substitutions for a variable xi induce linear equations involving
the seed variables gk, . . . , g0, hl, . . . , h0, with coefficients being expressions in terms of the polynomial
variables x1, . . . , xn and abscissas a1, . . . , an. Collecting k + l+ 2 of such equations yields as many
linear constraints as unknowns, which suffices to derive a nontrivial element of the vanishing ideal.
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The substitutions (1) for xi made by SVl similarly induce linear equations, though not between
the mere seed variables y1, z1, . . . , yl, zl but between monomials in the seed variables, namely the
constant monomial and the monomials zty

d
t for t ∈ [l] and d ∈ {0, . . . , n − 1}. In contrast to

the setting of RFE, even if we collect all of those equations, namely n linear equations in nl + 1
unknowns, this does not give us enough information to derive a nontrivial element of the vanishing
ideal.

4 Zoom Lemma

Throughout the paper we make repeated use of a key technical tool, the Zoom Lemma. The lemma
allows us to zoom in on the contributions of the monomials in a polynomial p that have prescribed
degrees in a subset of the variables. We introduce the following terminology for prescribing degrees.

Definition 22 (degree pattern). Let J ⊆ [n]. A degree pattern with domain J is a J-indexed
tuple d ∈ NJ of nonnegative integers. A degree pattern d matches a monomial m ∈ F[x1, . . . , xn] if,
for every j ∈ J , m has degree exactly dj in xj. We say that d is in p if d matches some monomial
in p.

For any fixed J , every polynomial p ∈ F[x1, . . . , xn] can be written uniquely in the form

p =
∑
d∈NJ

pd · xd

where xd
.
=
∏
j∈J x

dj
j and pd depends only on variables not indexed by J . We refer to pd as the

coefficient of xd in p.

The notation pd can be viewed as a generalization of the common one for the coefficient of
degree d of a univariate polynomial p.

Our technique allows us to zoom in on the contributions of the coefficients pd of degree patterns
d that satisfy the following additional constraint.

Definition 23 (extremal degree pattern). Let K,L ⊆ [n]. A degree pattern d∗ ∈ NK∪L is
(K,L)-extremal in a polynomial p ∈ F[x1, . . . , xn] if d∗ is the unique degree pattern d ∈ NK∪L in p
that satisfies both

(i) dj ≤ d∗j for all j ∈ K, and

(ii) dj ≥ d∗j for all j ∈ L.

The notion of extremality in Definition 23 is closely related to standard notions of minimality
and maximality of tuples of numbers. A J-tuple d∗ is minimal in a set D of such tuples if the only
tuple d ∈ D that satisfies dj ≤ d∗j for all j ∈ J , is d∗ itself. A maximal tuple is defined similarly
by replacing ≤ by ≥. Minimality is equivalently (J,∅)-extremality, and maximality is equivalently
(∅, J)-extremality.

WhenK and L intersect, note that only degree patterns d ∈ NK∪L with dj = d∗j for all j ∈ K∩L
affect whether d∗ is (K,L)-extremal.

The above terminology lets us state our key technical lemma succinctly.

Lemma 24 (Zoom Lemma). Let K,L ⊆ [n], let p ∈ F[x1, . . . , xn], and let d∗ ∈ NK∪L be a degree
pattern that is (K,L)-extremal in p. If the coefficient pd∗ is nonzero upon the substitution

xi ← z ·
∏
j∈K\L(ai − aj)∏
j∈L\K(ai − aj)

∀i ∈ [n] \ (K ∪ L) (23)
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where z is a fresh variable, then RFEkl hits p for any k ≥ |K| and l ≥ |L|.

Note that the result of substituting (23) into pd∗ is a univariate polynomial q in z. In the
case where p is homogeneous, q has a single monomial, so q is nonzero iff q is nonzero at z = 1.
In general, it suffices for q to be nonzero at some point z ∈ F. As for the conclusion, the most
interesting settings in Lemma 24 are k = |K| and l = |L|. This is because the range of RFEkl is
contained in the range of RFEk

′
l′ for k′ ≥ k and l′ ≥ l. Also, whereas many or our instantiations of

the Zoom Lemma have K and L disjoint, this is not necessary for the lemma to hold.1

Let us first see how the Zoom Lemma allows us to complete the proof of Theorem 3. There are
several ways to do so; we present a fairly generic way.

Proof of Lemma 20 from the Zoom Lemma. Let C ⊆ [n] denote a core of size at most k + 1 for p.
We construct subsets K,L ⊆ [n] with |K| ≤ k and |L| ≤ l, and a degree pattern d∗ with domain
K ∪L that is (K,L)-extremal in p such that pd∗ is nonzero upon the substitution (23). The Zoom
Lemma then implies that RFEkl hits p.

The construction consists of two steps. First, we pick i∗ ∈ C arbitrarily. (We can assume
without loss of generality that C is nonempty because if C is a core, then so is C with an additional
element.) We also set K

.
= C \ {i∗}, and let d+ be a degree pattern with domain K that matches

a monomial in p and that is minimal among all such degree patterns. The existence of d+ follows
from the fact that p is nonzero. By construction, |K| ≤ (k + 1)− 1 = k and pd+ is nonzero.

Second, we pick a degree pattern d− with domain [n] \ C that matches a monomial in pd+ and
that is maximal among all such degree patterns. The existence of d− follows from the fact that
pd+ is nonzero. Let L denote the set of indices j ∈ [n] \C on which d− is positive. The hypothesis
that C is a (k + 1, l)-core for p implies that |L| ≤ l. By construction, the restriction of d− to the
domain L is maximal among the degree patterns with domain L in pd+ .

Note that K and L are disjoint, because K ⊆ C and L ⊆ [n] \ C. We define d∗ as the degree
pattern with domain K ⊔ L that agrees with d+ on K and with d− on L. The minimality and
maximality properties of d+ and d− imply that d∗ is (K,L)-extremal in p. As there is at least
one monomial in p that agrees with the degree pattern d∗, the coefficient pd∗ is nonzero. Since
K includes all of C but i∗, pd∗ cannot depend on variables indexed by C other than xi∗ . By the
maximality of d− on [n]\C and the fact that L contains all indices in [n]\C on which d− is positive,
pd∗ cannot depend on any variable in [n] \C. Thus, pd∗ is a nonzero polynomial that depends only
on xi∗ . It follows that substituting (23) into pd∗ yields a nonzero polynomial in z.

Before giving a formal proof of the Zoom Lemma, we provide some intuition for the mechanism
behind it, and we explain how the choice of the substitution (23) and the extremality requirement
arise. We consider k = |K| and l = |L|, and focus on the setting of homogeneous polynomials p, in
which case we can set z = 1 without loss of generality.

We start with the special case where (i) ℓ = 0, or equivalently L = ∅, and (ii) the degree pattern
d∗ ∈ NK is zero in every coordinate, so xd

∗
is the constant monomial 1. We can zoom in on pd∗ by

setting all variables xj for j ∈ K to zero. The generator RFEk0 allows us to do so by picking a seed
f such that f(aj) = 0 for all j ∈ K, namely

f(α)
.
=
∏
j∈K

(α− aj). (24)

The evaluation of p at RFE(f) coincides with the evaluation of pd∗ at RFE(f), which is precisely
(23) with z = 1. If the evaluation is nonzero, then evidently RFEk0 hits p, as desired.

1In fact, allowing K and L to overlap is useful in Section 5 (see Proposition 35) and Section 8 (see Proposition 52).
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In order to handle more general degree patterns d∗ ∈ NK , we introduce a fresh parameter ξj
for each j ∈ K, and replace aj in (24) by aj − ξj , i.e., we consider the seeds

f̂(α)
.
=
∏
j∈K

(α− aj + ξj), (25)

where the hat indicates a dependency on the fresh parameters. For each i, f̂(ai) is a multivariate
polynomial in ξj , j ∈ K, and RFE(f̂) applies the substitution xi ← f̂(ai) for each i ∈ [n]. The

critical property is that f̂(ai) contains the factor ξi for i ∈ K but not for i ̸∈ K. More precisely,

f̂(ai) =

{
ĉi · ξi i ∈ K
ĉi i ̸∈ K

,

where ĉi
.
=
∏
j∈K\{i}(ai − aj + ξj) is a multivariate polynomial in the parameters ξ with nonzero

constant term, namely ci
.
=
∏
j∈K\{i}(ai − aj).

For any monomial m with matching degree pattern d ∈ NK , we have

m(RFE(f̂)) = m(ĉ) · ξd = md(ĉ) · ĉd · ξd.

Here we see that, when m(RFE(f̂)) is expanded as a linear combination of monomials in the ξj , the
combination contains only monomials divisible by ξd and the coefficient of ξd is nonzero (namely
cd).

In the expansion of p(RFE(f̂)), the coefficient of ξd
∗

(a) has a contribution m(c) = md∗(c) · cd
∗
from each monomial m in p that matches d∗, and

(b) may have contributions from other monomials m in p but only from those whose degree
pattern on K is smaller than d∗, i.e., only if degj(m) ≤ d∗j for all j ∈ K.

By adding the contributions of all monomials m with degree pattern d∗ we obtain

pd∗(RFE(f̂)) · RFE(f̂)d
∗
= pd∗(ĉ) · ĉd

∗ · ξd∗ .

By properties (a) and (b) above, we conclude that the coefficient of the monomial ξd
∗
in p(RFE(f̂)):

(a’) has a contribution of pd∗(c) · cd
∗
from the monomials matching d∗, and

(b’) cannot have any additional contributions provided that there are no degree patterns on K in
p that are smaller than d∗.

For a degree pattern d∗ in p, condition (b’) can be formulated as the minimality of d∗ among the
degree patterns on K in p, which is exactly the requirement that d∗ is (K,L)-extremal in p for
L = ∅. Under this condition we conclude that the coefficient of the monomial ξd

∗
in p(RFE(f̂))

equals pd∗(c) · cd
∗
. Note that cd

∗
is nonzero. Since pd∗(c) only depends on the components ci for

i ∈ [n] \K, and those components agree with (23) for z = 1, the coefficient of the monomial ξd
∗

in p(RFE(f̂)) is nonzero if and only if pd∗ is nonzero at the point (23) with z = 1. Thus, for
a homogeneous polynomial p, the hypotheses of the lemma imply that p(RFE(f̂)) is a nonzero
polynomial in the parameters ξ. It follows that a random setting of the parameters ξ yields a seed
f ′ for RFEk0 such that p(RFE(f ′)) is nonzero. This shows that RFEk0 hits p.

The symmetric case k = 0 can be obtained from the case l = 0 by transforming xi 7→ x−1i for
each i ∈ [n]. The transformation maps a seed f for RFE0

l into a seed f̃ for RFEl0, wherein the
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zeroes of f̃ come from the poles of f . Given a polynomial p(x1, . . . , xn), we similarly transform
the variables and clear dominators to obtain the polynomial p̃(x1, . . . , xn)

.
= p(x−11 , . . . , x−1n ) · xg,

where g is any degree pattern with domain [n] for which gi is at least the degree of xi in p for every
i ∈ [n]. We apply the previous case of the Zoom Lemma to p̃ and obtain the new case of the Zoom
Lemma for p. Note that a monomial with degree pattern d̃ in p̃ corresponds to a monomial with
degree pattern d = g − d̃ in p. It follows that d̃∗ is minimal in p̃ iff d∗ is maximal in p, which is
exactly the (K,L)-extremality requirement of the Zoom Lemma in the case where K = ∅.

The above arguments for the special cases l = 0 and k = 0 carry through for arbitrary poly-
nomials p under the assumption that pd∗ is nonzero upon the substitution (23) with z = 1, i.e.,
that the univariate polynomial q(z) obtained by substituting (23) in pd∗ is nonzero at z = 1. The
homogeneity of p was only used to conclude that if q is nonzero, then q is nonzero at z = 1. To
handle polynomials p where q may be nonzero but zero at z = 1, we run the above argument with
an arbitrary value of z ∈ F where q is nonzero. We can do so by including an additional factor
of z on the right-hand sides of (24) and (25), i.e., by considering f(α)

.
= z ·

∏
j∈K(α − aj) and

f̂(α)
.
= z ·

∏
j∈K(α− aj + ξj), respectively. Both expressions correspond to valid seeds for RFEk0 in

the roots parametrization.
The case for general k and l follows in a similar fashion, introducing parameters for the zeroes as

well as the poles of the seed f , considering the monomial in those parameters with degree pattern
determined by d∗, and clearing denominators.

Proof of Zoom Lemma. Let K, L, p, and d∗ be as in the lemma statement. Fix z to a value in F
such that pd∗ is nonzero upon the substitution (23). Such a value exists by the hypothesis of the
lemma (for large enough F). Since the range of RFEkl is contained in the range of RFEk

′
l′ for k′ ≥ k

and l′ ≥ l, it suffices to show that RFEkl hits p for k = |K| and l = |L|. Let ξj for each j ∈ K and

ηj for each j ∈ L be fresh indeterminates. We denote by F̂ the field of rational functions in those
indeterminates with coefficients in F, and by V the subset of elements that, when written in lowest
terms, have denominators with nonzero constant terms. Let Φ : V → F map each element of V to
the result of substituting ξj ← 0 for each j ∈ K and ηj ← 0 for each j ∈ L. The result is always
well-defined.

Define f̂ ∈ F̂(α) as follows:

f̂(α)
.
= z ·

∏
j∈K(α− aj + ξj)∏
j∈L(α− aj + ηj)

.

The substitution RFE(f̂) effects xi ← f̂(ai) ∈ F̂ for each i ∈ [n]. We claim that p(RFE(f̂)) is
nonzero. This suffices to conclude that RFEkl hits p, because substituting ξj and ηj by a random

scalar from F transforms f̂ into a seed f ′ such that, with high probability, f ′ is a valid seed for
RFEkl and p(RFE(f ′)) ̸= 0. Henceforth we show that p(RFE(f̂)) ̸= 0.

For each i ∈ [n], there exists ĉi ∈ V with Φ(ĉi) ̸= 0 such that

f̂(ai) =


ĉi · ξiηi i ∈ K ∩ L
ĉi · ξi i ∈ K \ L
ĉi · 1

ηi
i ∈ L \K

ĉi i ̸∈ K ∪ L

, (26)

namely

ĉi = z ·
∏
j∈K\{i}(ai − aj + ξj)∏
j∈L\{i}(ai − aj + ηj)

.
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For i ̸∈ K ∪ L, Φ(ĉi) is moreover the value substituted into xi by (23).
Let D denote the set of all degree patterns d ∈ NK∪L that match a monomial in p. We have

that
p =

∑
d∈D

pd · xd. (27)

For d ∈ D, define q̂d to be the result of substituting xi ← ĉi into pd for each i ∈ [n].
Combining (26) and (27), we obtain

p(RFE(f̂)) =
∑
d∈D

q̂d · ĉd ·
ξd|K

ηd|L
, (28)

where d|K and d|L respectively are the restrictions of d onto the domains K and L respectively. Fix
any function ψ : [k+ l]→ K ∪L such that ψ establishes a bijection between {1, . . . , k} and K and
establishes a bijection between {k+1, . . . , k+l} and L. For j ∈ {1, . . . , k}, let ζj be an alias for ξψ(j),

and for j ∈ {k+1, . . . , k+ l}, let ζj be an alias for ηψ(j). For each d ∈ NK∪L, define a corresponding

δ ∈ Zk+l given by δj = dψ(j) for j ∈ {1, . . . , k} and δj = −dψ(j) for j ∈ {k + 1, . . . , k + l}. Let

∆ ⊆ Zk+l consist of the δ corresponding to each d ∈ D. Finally, for each d ∈ D with corresponding
δ ∈ ∆, define ĉδ

.
= q̂d · ĉd, capturing the first two factors in the d-th term of (28). Rewritten in this

notation, (28) becomes ∑
δ∈∆

ĉδ ·
k+l∏
j=1

ζ
δj
j . (29)

Our hypothesis that d∗ is (K,L)-extremal in p says that the only d ∈ D such that dj ≤ d∗j for
every j ∈ K and dj ≥ d∗j for every j ∈ L, is d = d∗. Translated into a condition on the element
δ∗ ∈ ∆ corresponding to d∗, the hypothesis says that δ∗ is minimal in ∆. Our other hypothesis
states that pd∗ does not vanish upon substituting (23). As (23) equates to substituting xi ← Φ(ĉi)
for i ̸∈ K ∪ L, this hypothesis equivalently states that Φ(q̂d∗) is nonzero. Since for each j ∈ K ∪ L
we have Φ(ĉj) ̸= 0, we conclude that Φ(ĉδ∗) ̸= 0. That p(RFE(f̂)) is nonzero now follows from the
next proposition.

Proposition 25. Let F̂ = F(ζ1, . . . , ζr) be the field of rational functions in indeterminates ζ1, . . . , ζr,
let V ⊆ F̂ consist of the rational functions whose denominator has nonzero constant term, and let
Φ : V → F be the function that maps each rational function in V to its value after substituting
ζj ← 0 for all j ∈ [r]. Let

s =
∑
δ∈∆

ĉδ ·
r∏
j=1

ζ
δj
j

where ∆ ⊆ Zr is some finite set, and we have ĉδ ∈ V for every δ ∈ ∆. If there exists δ∗ ∈ ∆ that
is minimal in ∆ and for which Φ(ĉδ∗) ̸= 0, then s ̸= 0.

Proof. By clearing denominators, we may assume without loss of generality that, for every δ ∈ ∆
and every j ∈ [r], δj ≥ 0, and that, for every δ ∈ ∆, ĉδ is a polynomial in ζ1, . . . , ζr. In this case, all
quantities in the sum for s are polynomials in ζ1, . . . , ζr. The minimality hypothesis on δ∗ implies
that the coefficient of

∏r
j=1 ζ

δ∗j
j in the monomial expansion of s is precisely the constant coefficient

of ĉδ∗ , and the hypothesis Φ(ĉδ∗) ̸= 0 asserts that this coefficient is nonzero.
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5 Membership Test

In this section we develop the structured membership test for the vanishing ideal Van[RFEkl ] given
in Theorem 8. We begin with some basic results regarding membership to Van[RFEkl ] and then
develop a criterion for multilinear polynomials.

Basic properties. It is well-known that Van[SVl] does not contain any polynomial with a mono-
mial of support at most l, i.e., a monomial involving at most l variables. We generalize the lower
bound on the support to Van[RFEkl ] and also establish an upper bound in the case of multilin-
ear polynomials. Note that for multilinear monomials support conditions translate into degree
conditions.

Proposition 26. If a polynomial p contains a monomial of support at most l, then RFEkl hits p.
If a multilinear polynomial p in the variables x1, . . . , xn contains a monomial of support at least
n− k, then RFEkl hits p.

The known proofs of the first part for SVl make use of partial derivatives. We establish the
generalization for RFEkl using our generating set in Theorem 3, whose analysis hinges on the Zoom
Lemma. A similar argument works for the second part, but we opt to establish it via a black-box
reduction to the first part for multilinear polynomials. The approach illustrates the utility of our
generalization of SVl to RFEkl since even for SVl we need to consider settings of the parameters k
and l other than k = l − 1.

Proof. For the first part, by Proposition 16 none of the polynomials EVCkl contain a monomial
of support l or less. The same holds for the nonzero polynomials in the ideal generated by these
polynomials, which by Theorem 3 equals Van[RFEkl ]. Thus, every polynomial that has a monomial
of support at most l, is hit by RFEkl .

For the second part, consider q(x1, . . . , xn)
.
= x1 · · · · · xn · p(1/x1, . . . , 1/xn). Note that if p is a

multilinear polynomial in the variables x1, . . . , xn, then so is q. If a multilinear p has a monomial
of support at least n−k, then q has a monomial of support at most k. By the first part, RFElk hits
q. Since the mapping xi ← 1/xi transforms RFElk into RFEkl , we conclude that RFEkl hits p.

Another feature of SV that generalizes to RFE is that the generator separates the homogeneous
components of a given polynomial p. The feature allows us to reduce the general case of testing
membership in Van[RFEkl ] to the homogeneous case, as was already effectively used in the proof of
the Zoom Lemma.

Proposition 27. For any polynomial p, p vanishes upon substituting RFE if and only if every
homogeneous component of p vanishes upon substituting RFE.

Proof. For any seed f for RFE and any scalar z, the rescaled substitution z · RFE(f) is in the
range of RFE, namely as RFE(z · f). It follows (provided that F is sufficiently large) that p(RFE)
vanishes if and only if p(ζ · RFE) vanishes, where ζ is a fresh indeterminate. We now consider the
expansion of p(ζ · RFE) as a polynomial in ζ. With p(d) as the degree-d homogeneous component
of p, we have

p(ζ · RFE) =
∑
d

p(d)(ζ · RFE) =
∑
d

ζd · p(d)(RFE).

The coefficient of ζd, p(d)(RFE), has no dependence on ζ. We deduce that p(ζ · RFE) is the zero
polynomial if and only if p(d)(RFE) vanishes for every d.
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Criterion for multilinear polynomials. We now develop the full membership test for multi-
linear polynomials given in Theorem 8. Condition 1 in Theorem 8 is just the special case of Propo-
sition 26 for multilinear polynomials. For condition 2 we again make use of the Zoom Lemma. Note
that for multilinear polynomials and disjoint K and L, ∂Lp|K←0 coincides with the coefficient pd∗

where d∗ is the degree pattern with domain K⊔L, 0 in the positions of K, and 1 in the positions of
L. Moreover, since p is multilinear, the condition that d∗ be (K,L)-extremal in p is automatically
satisfied: The only multilinear monomial m with support in K ⊔ L with degxi(m) ≤ d∗i = 0 for all
i ∈ K and degxi(m) ≥ d∗i = 1 for all i ∈ L is m = xd

∗
. This leads to the following specialization of

the Zoom Lemma for multilinear polynomials with disjoint K and L.

Lemma 28 (Zoom Lemma for multilinear polynomials). Let K,L ⊆ [n] be disjoint, and let
p ∈ F[x1, . . . , xn] be a multilinear polynomial. If ∂Lp|K←0 is nonzero upon the substitution

xi ← z ·
∏
j∈K(ai − aj)∏
j∈L(ai − aj)

∀i ∈ [n] \ (K ⊔ L), (30)

where z is a fresh variable, then RFEkl hits p for any k ≥ |K| and l ≥ |L|.

Observe that the substitution (30) in Lemma 28 coincides with (7) in Theorem 8. For multilinear
polynomials p ∈ F[x1, . . . , xn] that only contain monomials of degrees between l+ 1 and n− k− 1,
Theorem 8 amounts to saying that p is hit by RFEkl if and only if there is a way to apply Lemma 28
to prove that p is hit by RFEkl . The backward direction trivially holds. For the forward direction,
we employ a two-step strategy similar to one we used for the part of Theorem 3 that RFEkl hits
every polynomial outside of the ideal generated by instantiations of EVCkl :

1. Modulo the ideal I generated by a certain subset of the instantiations of EVCkl , every poly-
nomial is equal to a cored polynomial with certain parameters.

2. For every such cored polynomial that is nonzero, we can apply Lemma 28 to prove that RFEkl
hits the polynomial.

The crux for the first step in the context of Theorem 3 is the transformation in Proposition 18,
which gradually gets closer to a cored polynomial with the desired parameters. In general, the
transformation in Proposition 18 does not maintain multilinearity. We show how to tweak the
transformation and preserve multilinearity at the expense of an increase in the size of the core.

Proposition 29. Let k, l, n, d ∈ N, let C be a (k + d − l)-subset of [n], and let I denote the ideal
generated by the polynomials EVCkl [K ⊔ L] where K ranges over all (k + 1)-subsets of C and L
ranges over all (l + 1)-subsets of [n] \ K. Consider a multilinear monomial m ∈ F[x1, . . . , xn] of
degree at most d such that |supp(m) \ C| > l. Modulo I, m is equal to a linear combination of
multilinear monomials of the same degree as m but whose non-C-parts have lower degree than the
non-C-part of m.

Proof. Consider the subset L ⊆ supp(m) \ C of size l + 1 in the proof of Proposition 18, and
xL

.
=
∏
i∈L xi. Since m is multilinear, so is m′

.
= m/xL, and |supp(m′)| ≤ d − |L| = d − l − 1.

Provided |C| ≥ (k + 1) + (d− l − 1) = k + d− l, there exists a subset K ⊆ C of size k + 1 that is
disjoint from supp(m′). We substitute EVCkl [C ⊔ L] by EVCkl [K ⊔ L] in the proof. EVCkl [K ⊔ L]
is generically homogeneous and multilinear. By construction K ⊔ L is disjoint from supp(m′), so
EVCkl [K⊔L] does not depend on any variables that m′ depends on. It follows that m′ ·EVCkl [K⊔L]
is multilinear and homogeneous of the same degree as m, and so is r in the proof.
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Applying Proposition 29 repeatedly in a similar way as Proposition 18 in the proof of Lemma 19
yields the following formalization of the first step in the setting of Theorem 8.

Lemma 30. Let k, l, n, d ∈ N, let C be a (k+d−l)-subset of [n], and let I denote the ideal generated
by the polynomials EVCkl [K ⊔ L] where K ranges over all (k + 1)-subsets of C and L ranges over
all (l + 1)-subsets of [n] \ K. Modulo I, every multilinear polynomial p of degree at most d in
F[x1, . . . , xn] is equal to a (k + d− l, l)-cored multilinear polynomial with core C that is either zero
or else has the same degree as p.

The following refinement of Lemma 20 from the context of Section 3 represents the corresponding
second step in the context of Theorem 8.

Lemma 31. Let k, l, n, d ∈ N with l ≤ d ≤ n − k. Let p be a nonzero multilinear polynomial of
degree d in F[x1, . . . , xn] that is (d+ k− l, l)-cored. There are disjoint sets K,L ⊆ [n] with |K| = k
and |L| = l so that ∂Lp|K←0 is nonzero upon the substitution (30).

Proof. Let C denote the core of size at most d + k − l, and let m be a monomial of p of degree
d that maximizes |supp(m) \ C|. Let K be a subset of [n] \ supp(m) of size k that contains all of
C \ supp(m). Such a set K exists because |C \ supp(m)| = |C| − |supp(m)∩C| ≤ |C| − (d− l) ≤ k,
and |[n] \ supp(m)| = n − d ≥ k. Let L be a subset of supp(m) of size l that contains all of
supp(m) \ C. Such a set L exists because |supp(m) \ C| ≤ l and |supp(m)| = d ≥ l. Note that K
and L are disjoint.

The monomial m has a nonzero contribution to ∂Lp|K←0. In general, a monomial m′ has a
nonzero contribution to ∂Lp|K←0 if and only if supp(m′) is disjoint from K and contains L. The
disjointness requirement implies that supp(m′) ∩ C ⊆ C \ K = supp(m) ∩ C, where the equality
follows from the choice of K. The inclusion requirement implies that supp(m) \ C = L \ C ⊆
supp(m′) \C, where the equality follows from the choice of L. In combination with the maximality
of |supp(m) \ C| among the monomials of p of degree d, this means that either m′ does not have
degree d or else supp(m′) \ C = supp(m) \ C. It follows that the only monomials m′ of p of
degree d that contribute to ∂Lp|K←0 satisfy supp(m′) ⊆ supp(m). As p only contains multilinear
monomials, p has exactly one monomial of degree d that has a nonzero contribution to ∂Lp|K←0,
namely the monomial m. We conclude that the polynomial q(z) that results from substituting (30)
into ∂Lp|K←0 has a nonzero term of degree d− l.

We now have all ingredients to establish Theorem 8.

Proof of Theorem 8. If p has a monomial of degree d ≤ l or d ≥ n−k, then Proposition 26 applies,
and RFEkl hits p. The remaining case is that p has degree d with l < d < n− k.

By Lemma 30, we can write p as p = q + r, where q ∈ Van[RFEkl ] and r is a multilinear
(k + d − l, l)-cored polynomial that is either zero or else has degree d. As both p and r are
multilinear, so is q. The contrapositive of Lemma 28 implies that ∂Lq|K←0 is zero upon the
substitution (30) for every pair of disjoint subsets K,L ⊆ [n] of respective sizes k and l. Since
∂Lp|K←0 = ∂Lq|K←0 + ∂Lr|K←0, it follows that, upon the substitution (30), ∂Lp|K←0 coincides
with ∂Lr|K←0.

If r is zero, then p = q belongs to Van[RFEkl ] and condition 2 fails. Otherwise, r has degree d,
and Lemma 31 yields disjoint sets K,L ⊆ [n] with |K| = k and |L| = l so that ∂Lr|K←0 is nonzero
upon the substitution (30). We conclude that condition 2 holds, which by Lemma 28 means that
r does not belong to Van[RFEkl ], and therefore neither does p.

We conclude this section by detailing the connection between Theorem 8 and some prior appli-
cations of the SV generator.
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Application to read-once formulas. We start with the theorem that SV1 hits read-once for-
mulas. The original proof in [MV18] goes by induction on the depth of F . The critical part is the
inductive step for the case where the top gate is an addition, say F = F1 + F2. The argument
in [MV18] involves a clever analysis that uses the variable-disjointness of F1 and F2 to show that
F1(SV

1) and F2(SV
1) cannot cancel each other out. We present an alternate proof that has a

similar inductive outline but follows a more structured, principled approach based on Theorem 8
for the critical part.

Theorem 32 ([MV18]). SV1 hits read-once formulas.

Alternate proof. We show by induction on the depth the formula F that if F is nonconstant, then so
is F (SV1). This suffices because it implies that nonconstant formulas are hit by SV1, and nonzero
constant formulas are hit as the range of SV1 is nonempty.

The inductive step consists of two cases, depending on whether the top gate is a multiplication
gate or an addition gate. The case of a multiplication gate follows from the general property that
the product of a nonconstant polynomial with any nonzero polynomial is nonconstant. It remains
to consider the case of an addition gate.

For a nonconstant formula F , F (SV1) is nonconstant iff SV1 hits the variable part of F (which
is a nonzero polynomial). By Theorem 8 with k = 0 and l = 1, the latter is the case iff at least one
of the following two conditions hold:

1. F has a homogeneous component of degree 1 or at least n.

2. For some L = {i} ⊆ [n], the derivative ∂xiF is nonzero upon the substitution (7).

Consider a read-once formula F with an addition gate on top: F = F1 + F2. The variable-
disjointness of F1 and F2 implies that if condition 1 holds for at least one of F1 or F2, then it holds
for F . The same is true for condition 2. The inductive step in the case of an addition gate at the
top follows.

The case of an addition gate in the above proof has a clean geometric interpretation along the
lines of the alternating algebra representation that we discussed in Section 1 for polynomials that
are multilinear (which polynomials computed by read-once formulas are). Recall that we can think
of the variables as vertices, and multilinear monomials as simplices made from those vertices.2

A multilinear polynomial is a weighted collection of such simplices with weights from F. In this
view, Theorem 8 translates to the following characterization: a weighted collection of simplices
corresponds to a polynomial in the vanishing ideal of RFE0

1 iff there are no simplices of zero, one,
or all vertices (condition 1), and the remaining weights satisfy a certain system of linear equations
(condition 2). Crucially, for each equation in the system, there is a vertex such that the equation
only involves weights of the simplices that contain that vertex, namely the vertex corresponding to
the variable xi where L = {i}. Meanwhile, the sum of two variable-disjoint polynomials corresponds
to taking the vertex-disjoint union of two weighted collections of simplices. It follows directly that
if either of the two polynomials violates a requirement besides the “no simplex of zero vertices”
requirement, then their sum violates the same requirement. The “no simplex of zero vertices”
requirement holds automatically when considering the variable parts, and maps to the special
handling of the constant term in the formal proof.

2In this setting, the orientation of the simplices does not matter.
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Zero-substitutions and partial derivatives. As mentioned in the overview, several prior pa-
pers demonstrated the utility of partial derivatives and zero substitutions in the context of deran-
domizing PIT using the SV generator, especially for syntactically multilinear models. By judiciously
choosing variables for those operations, these papers managed to simplify p and reduce PIT for
p to PIT for simpler instances, resulting in an efficient recursive algorithm. Such recursive argu-
ments can be wrapped into a general framework, similar to the one presented in [MS21] for generic
l-independent generators. Whereas the power of the framework in the generic setting remains
open, thanks to Theorem 8, we can prove that our framework captures the full power of the spe-
cific l-independent generator SVl. More generally, we exhibit a natural reformulation within the
framework of any argument that RFE hits a certain class of multilinear polynomials, such as those
computable with some bounded complexity in some syntactic model.

For the argument, we assume that we can break up the class in the following way.

Definition 33 (grading hypothesis). A class C =
⋃
k,l∈N Ck,l of polynomials satisfies the grading

hypothesis if for every k, l ∈ N and p ∈ Ck,l, at least one of the following holds:

◦ k = l = 0 and p is nonzero.

◦ k > 0 and there is a zero substitution such that the result is in Ck−1,l.

◦ l > 0 and there is a partial derivative such that the result is in Ck,l−1.

Under the additional mild assumption of closure under variable rescaling, we obtain a parameter-
efficient framework through direct applications of Theorem 8.

Proposition 34. Let C =
⋃
k,l∈N Ck,l be a class of polynomials that satisfies the grading hypothesis

and such that each Ck,l is closed under variable rescaling. If RFE0
0 hits C0,0 then RFEkl hits Ck,l for

every k, l ∈ N.

Proof. The proof is by induction on k and l. The base case is k = l = 0, where the claim is
immediate. When k > 0 or l > 0, our hypotheses are such that p ∈ Ck,l either simplifies under a
zero substitution or a partial derivative. In either case, we show how a violation of the conditions in
Theorem 8 for a simpler polynomial p′ ∈ F[x′1, . . . , x′n] translates into a corresponding violation of
the conditions for p ∈ F[x1, . . . , xn], where each variable x′i is a rescaling of xi. More specifically, by
condition 1 of Theorem 8, we may assume that p only has homogeneous components with degrees
in the range l + 1, . . . , n − k − 1. We argue in both cases that p′ similarly satisfies condition 1
of Theorem 8. By the induction hypothesis and closure under variable rescaling, it follows that
∂′L′p′

∣∣
K′←0

(where the prime in ∂′ indicates that the partial derivatives are with respect to the
primed variables x′i) is nonzero for some K ′ and L′ under a particular substitution. Out of K ′ and
L′ we then construct K and L such that ∂Lp|K←0 is nonzero upon the substitution in condition 2
of Theorem 8, where variable rescaling between x′i and xi enables us to match the substitutions for
∂′L′p′

∣∣
K′←0

and ∂Lp|K←0. We provide the remaining details for each case separately.

◦ If p simplifies under a zero substitution xj∗ ← 0, then write p as p = qxj∗ + r where q
and r are polynomials that do not depend on xj∗ , and set p′(. . . , x′i, . . . ) = r(. . . , xi, . . . ) with
xi = x′i ·(ai−aj∗). By closure under rescaling, p′ ∈ Ck−1,l, so by induction p′ is hit by RFEk−1l .
We apply Theorem 8 to p′ with respect to the set of variables {x′1, . . . , x′j∗−1, x′j∗+1, . . . , x

′
n}

and k replaced by k − 1. As p only has homogeneous components with degrees in the range
l + 1, . . . , n − k − 1, so does p′, and condition 1 of Theorem 8 holds for p′. This means
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that condition 2 does not hold for p′. Thus, there must be disjoint K ′, L′ ⊆ [n] \ {j∗} with
|K ′| = k − 1 and |L′| = l so that ∂′L′p′

∣∣
K′←0

is nonzero upon the substitution

x′i ← z ·
∏
j∈K′(ai − aj)∏
j∈L′(ai − aj)

. (31)

Setting K = K ′ ∪ {j∗} and L = L′, we have

∂Lp|K←0 = ∂L′r|K′←0 = ∂′L′p′
∣∣
K′←0

/∏
i∈L′

(ai − aj∗)

and the substitution (31) induces the substitution (7).

◦ If p simplifies under a partial derivative ∂xj∗ , then write p as p = qxj∗ + r where q and
r are polynomials that do not depend on xj∗ , and set p′(. . . , x′i, . . . )

.
= q(. . . , xi, . . . ) with

xi = x′i/(ai−aj∗). By closure under rescaling, p′ ∈ Ck,l−1, so by induction p′ is hit by RFEkl−1.
We apply Theorem 8 to p′ with respect to the set of variables {x′1, . . . , x′j∗−1, x′j∗+1, . . . , x

′
n}

and l replaced by l − 1. As p′ has homogeneous components of degrees one less than p does,
condition 1 of Theorem 8 holds for p′, so condition 2 must fail. Thus, there are disjoint
K ′, L′ ⊆ [n] \ {j∗} with |K ′| = k and |L′| = l − 1 so that ∂′L′p′

∣∣
K′←0

is nonzero upon the
substitution (31). Setting K = K ′ and L = L′ ∪ {j∗}, we have

∂Lp|K←0 = ∂L′q|K′←0 = ∂′L′p′
∣∣
K′←0

·
∏
i∈L′

(ai − aj∗)

and the substitution (31) induces the substitution (7).

In both cases we conclude that ∂Lp|K←0 is nonzero upon the substitution (7), which is the sought
violation of condition 2 of Theorem 8.

We remark that the mild requirement of closure under variable rescaling in Proposition 34 can
be dropped completely at the cost of reduced efficiency in parameters.3

Proposition 35. Let C =
⋃
k,l∈N Ck,l be a class of polynomials that satisfies the grading hypothesis.

If RFE0
0 hits C0,0 then RFEk+lk+l hits Ck,l for every k, l ∈ N.

Proof sketch. The strategy is the same as in the proof of Proposition 34, but in the inductive step
the index i∗ is added to both K ′ and L′ instead of just one of the two sets. This obviates the need
for rescaling to ensure that the substitutions match. Note that the resulting sets K and L are no
longer disjoint, but the general Zoom Lemma accomodates overlapping sets K and L.

Theorem 8 tells us that derivatives and zero substitutions suffice to witness when a multilinear
polynomial p is hit by SV or RFE. One can ask, if we know more information about p, can we infer
which derivatives and zero substitutions form a witness? In some cases we know. For example,
if p has a low-support monomial x1 · · ·xl, then it suffices to take derivatives with respect to each
of x1, . . . , xl. On the other hand, consider that whenever two polynomials p and q are hit by SV,
then so is their product pq. Given explicit witnesses for p and q, we do not know how to obtain an
explicit witness for the product pq.

3This is a setting where we exploit the possibility of the sets K and L in the Zoom Lemma to overlap.
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6 Sparseness

By Proposition 16, the generators EVCkl contain exactly
(
k+l+2
l+1

)
monomials. The following result

shows that no nonzero polynomial in the vanishing ideal of RFEkl has fewer monomials. Corollary 6
follows.

Lemma 36. Suppose p ∈ F[x1, . . . , xn] is nonzero and has only s monomials with nonzero coeffi-
cients. Then, for any k, l such that

(
k+l+2
l+1

)
> s, RFEkl hits p.

The tactic here is to show that, if p has too few monomials appearing in it, then there is a way to
instantiate the Zoom Lemma wherein pd∗ is a single monomial and therefore is nonzero upon the
substitution (23).

Proof. For i ∈ [n], we define two operations, ↓i and ↑i, on nonempty sets of monomials. Applying
↓i to such a set M yields the subset of M consisting of the monomials in which xi appears with its
least degree among all the monomials in M . We define ↑i similarly, except we select the monomials
in which xi appears with its highest degree. We make the following claim:

Claim 37. For any nonempty set of monomials with fewer than
(
k+l+2
l+1

)
monomials, there is a

sequence of ↓ and ↑ operations, with at most k ↓ operations and at most l ↑ operations, such that
the resulting set of monomials has exactly one element.

The claim implies the lemma as follows. LetM be the set of monomials with nonzero coefficient
in p. Apply the claim to M to get a sequence of ↓ and ↑ operations resulting in a single monomial
m0. Let K denote the indices used for the ↓ operations and L the indices used for the ↑ operations.
Let d∗ be the degree pattern with domain K ∪ L that matches m0. By how the operators are
defined, every monomial m in M satisfies either

◦ degxi(m) > d∗i for some i ∈ K (m was removed by ↓i),

◦ degxi(m) < d∗i for some i ∈ L (m was removed by ↑i), or

◦ degxi(m) = d∗i for every i ∈ K ∪ L, in which case m = m0.

Accordingly, d∗ is (K,L)-extremal in p and the Zoom Lemma applies. As pd∗ is a single monomial,
it is nonzero upon the substitution (23). As |K| ≤ k and |L| ≤ l, we conclude that p is hit by
RFEkl .

It remains to prove Claim 37. We do this by induction on |M |. In the base case, |M | = 1, in
which case the empty sequence suffices. Otherwise, |M | > 1, in which case there is a variable xi
that appears with at least two distinct degrees among monomials in M . The sets ↓i(M) and ↑i(M)
are nonempty and disjoint. Since M has size less than

(
k+l+2
l+1

)
=
(
k+l+1
l+1

)
+
(
k+l+1
l

)
, either ↓i(M)

has size less than
(
k+l+1
l+1

)
, or ↑i(M) has size less than

(
k+l+1
l

)
. Whichever is the case, the claim

follows by applying the inductive hypothesis to it.

7 Set-Multilinearity

Although the generators EVCkl provided by Theorem 3 are not set-multilinear, the vanishing ideal
of RFEkl does contain set-multilinear polynomials. In this section, we construct some of degree
l + 1 with partition classes of size k + 2. In fact, we argue that all set-multilinear polynomials in
Van[RFEkl ] of degree l + 1 are in the linear span of the ones we construct.

Our construction is a modification of the one for EVCkl .
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Definition 38. Let k, l, n ∈ N, and let S1, . . . , Sl+1 ⊆ [n] be l + 1 disjoint subsets of k + 2 indices
each. The polynomial ESMVCkl is an (l + 1) × (l + 1) determinant where each entry is itself a
(k+2)× (k+2) determinant. We index the rows in the outer determinant by i = 1, . . . , l+1, and
the columns by d = l, . . . , 0. In each (i, d)-th inner matrix, there is one row per j ∈ Si; it is[

akj ak−1j · · · a1j a0j adjxj

]
.

The name “ESMVC” is a shorthand for “Elementary Set-Multilinear Vandermonde Circulation”.
Similar to EVC, the precise instantiation of ESMVC requires one to pick an order for the sets
S1, . . . , Sl+1 and an order within each set.

Example 39. When k = 1 and l = 2, ESMVC uses three sets of three variables each. To help con-
vey the structure of the determinant, we name the variable-sets S1 = {x1, x2, x3}, S2 = {y1, y2, y3},
and S3 = {z1, z2, z3}, and denote the abscissa of xi by ai, the abscissa of yi by bi, and the abscissa
of zi by ci. With this notation and using the index ordering, ESMVC is the following:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
a11 a01 a21x1

a12 a02 a22x2

a13 a03 a23x3

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
a11 a01 a11x1

a12 a02 a12x2

a13 a03 a13x3

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
a11 a01 a01x1

a12 a02 a02x2

a13 a03 a03x3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
b11 b01 b21y1

b12 b02 b22y2

b13 b03 b23y3

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
b11 b01 b11y1

b12 b02 b12y2

b13 b03 b13y3

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
b11 b01 b01y1

b12 b02 b02y2

b13 b03 b03y3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
c11 c01 c21z1

c12 c02 c22z2

c13 c03 c23z3

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
c11 c01 c11z1

c12 c02 c12z2

c13 c03 c13z3

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
c11 c01 c01z1

c12 c02 c02z2

c13 c03 c03z3

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

◀

The elementary properties of EVCkl from Proposition 16 extend as follows to ESMVCkl .

Proposition 40. For any k, l ∈ N and index sets S1, . . . , Sl+1 as in Definition 38, ESMVCkl is
skew-symmetric with respect to the order of the sets S1, . . . , Sl+1, and the choice of order within
each set, in that any permutation thereof changes the construction by merely multiplying by the
sign of the permutation. For any order, ESMVCkl is nonzero, homogeneous of degree l + 1, and
set-multilinear with respect to the partition S1, . . . , Sl+1, and every monomial consistent with the
partitions appears with a nonzero coefficient. When the sets are ordered as S1, . . . , Sl+1 and the
variables associated with Si are labeled and ordered as (xi,1, . . . , xi,k+2) for i = 1, . . . , l + 1, the
coefficient of x1,1 · · · · · xl+1,1 equals

(−1)(k+1)(l+1) ·

∣∣∣∣∣∣∣
al1,1 · · · a01,1
...

. . .
...

all+1,1 · · · a0l+1,1

∣∣∣∣∣∣∣ ·
l+1∏
i=1

∣∣∣∣∣∣∣
aki,2 · · · a0i,2
...

. . .
...

aki,k+2 · · · a0i,k+2

∣∣∣∣∣∣∣ . (32)

Proof. All assertions to be proved follow from elementary properties of determinants, that Vander-
monde determinants are nonzero unless they have duplicate rows, and the following computation
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for the coefficient of x1,1 · · · · · xl+1,1: Plug 1 into xi,1 for i = 1, . . . , l + 1 and 0 into the remaining
variables, and minor expand along the last column each of the inner determinants. Due to the
minor expansions, the elements in the i-th row of the outer determinant have a common factor of
(−1)k+1 times the (k+1)× (k+1) determinant for that value of i in the product on the right-hand
side of (32). After removing those common factors from all l+1 rows, the remaining (l+1)×(l+1)
outer determinant equals the determinant in the middle of (32).

The following theorem formalizes the role ESMVC plays among the degree-(l+ 1) polynomials
with respect to Van[RFEkl ].

Theorem 41. Let k, l ∈ N and let X1, . . . , Xl+1 be l+ 1 disjoint sets of indices (of any size). The
linear span of ESMVCkl [S1, . . . , Sl+1], over all choices of Si ⊆ Xi with |Si| = k + 2, equals the
set-multilinear polynomials in Van[RFEkl ] with variable partition (X1, . . . , Xl+1).

Theorem 41 and Proposition 40 imply Corollary 7 that there are no set-multilinear polynomials
of degree l + 1 in Van[RFEkl ] that have at least one partition Xi of size less than k + 2.

The proof of Theorem 41 follows the same outline as the one of Theorem 3 in Section 3. We
start by showing that all instantiations of ESMVCkl are contained in Van[RFEkl ] using a similar
argument as that for EVCkl .

Lemma 42. For every k, l ∈ N and every choice of l+ 1 disjoint sets S1, . . . , Sl+1 of k + 2 indices
each, ESMVCkl [S1, . . . , Sl+1] vanishes at RFEkl .

Proof. Let g/h be a seed for RFEkl . Let A be the (l+1)× (l+1) outer matrix defining ESMVC, so

that ESMVC
.
= det(A). Recall that the columns of A are indexed by d = l, . . . , 0. Let h⃗ ∈ Fl+1 be

the column vector where the row indexed by d is the coefficient of αd in h(α). We show that, after
substituting RFEkl (g/h), the matrix-vector product Ah⃗ ∈ Fl+1 yields the zero vector. It follows
that evaluating ESMVC at RFEkl (g/h) vanishes, as it is the determinant of a singular matrix.

Fix i ∈ {1, . . . , l + 1}, and focus on the i-th coordinate of Ah⃗. The (i, d) entry of A is a
determinant; let Bi,d be the inner matrix as in Definition 38. As d varies, only the last column of

Bi,d changes. Thus, by multilinearity of the determinant, the i-th entry of Ah⃗ is itself a determinant.
Recalling that the rows of Bi,l, . . . , Bi,0 are indexed by j ∈ Xi, the j-th row of this determinant is[

akj · · · a0j h(aj)xj
]
.

After substituting RFEkl (g/h), it becomes[
akj · · · a0j g(aj)

]
.

Since g is a degree-k polynomial, the columns of Bi,d are linearly dependent, so the determinant is
zero.

Next, we argue that every polynomial in Van[RFEkl ] that is set-multilinear with respect to the
variable partition (X1, . . . , Xl+1) is in the ideal I generated by the instantiations of ESMVCkl in
the statement of Theorem 41. We use a similar two-step approach as for Theorem 3 in Section 3.

1. Modulo the ideal I, every polynomial is equal to a polynomial with a certain structure
(Lemma 44).

2. Every nonzero polynomial that has the structure and is is set-multilinear with respect to the
variable partition (X1, . . . , Xl+1) is hit by RFEkl (Lemma 45).
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For step 1, we need a suitable replacement for being (c, t)-cored. The following adaptation to
the set-multilinear setting suffices.

Definition 43. Let X1, . . . , Xd ⊆ [n] be disjoint sets of indices. A polynomial p that is set-
multilinear with respect to the partition (X1, . . . , Xd) is (c, t)-multi-cored if there exists a set C

.
=

C1 ⊔ · · · ⊔Cd, with Ci ⊆ Xi, |Ci| ≤ c, such that every monomial m of p satisfies |supp(M) \C| ≤ t.

We refer to the set C in Definition 43 as a multi-core.

Lemma 44. Let k, l ∈ N and let X1, . . . , Xl+1 ⊆ [n] be disjoint sets of indices. Suppose C
.
=

C1 ⊔ · · · ⊔ Cl+1 is a set of indices such that Ci ⊆ Xi and |Ci| = k + 1. Let I be the ideal generated
by the polynomials ESMVCkl [C1 ⊔ {j1}, . . . , Cl+1 ⊔ {jl+1}], where ji ∈ Xi \ Ci. Modulo I, every
set-multilinear polynomial with respect to the variable partition X1, . . . , Xl+1 equals a (k + 1, l)-
multi-cored polynomial with multi-core C.

Proof. By linearity it suffices to establish the result for any monomial m that is set-multilinear with
respect to the partition (X1, . . . , Xl+1). If supp(m) ∩ C is nonempty, then m is already (k + 1, l)-
multi-cored with multi-core C because m only has l + 1 variables in its support. Otherwise, let
m = xj1 · · ·xjl+1

. By Proposition 40, the polynomial ESMVCkl [C1 ⊔ {j1}, . . . , Cl+1 ⊔ {jl+1}] can
be written as c · m + r where c ∈ F is nonzero and r is a linear combination of monomials m′

that are set-multilinear with respect to the partition (X1, . . . , Xl+1) and such that supp(m′)∩C is
nonempty. The result for m follows by writing m ≡ −c−1 · r mod I.

Step 2 is another application of the Zoom Lemma. We make use of the version geared towards
multilinear polynomials, namely Lemma 28.

Lemma 45. Let k, l ∈ N and let X1, . . . , Xl+1 ⊆ [n] be disjoint sets of indices. Every nonzero
polynomial that is set-multilinear with respect to the partition (X1, . . . , Xl+1) and that is (k+ 1, l)-
multi-cored is hit by RFEkl .

Proof. Let p satisfy the hypotheses of the lemma with multi-core C. Let m∗ be a monomial in p
for which supp(m∗) \C is maximal with respect to inclusion. Such a monomial exists because p is
nonzero. Let j∗ ∈ supp(m∗)∩C. Such an index exists since |supp(m∗)| = l+1 and |supp(m∗)\C| ≤ l
by the multi-core property. Let i∗ ∈ [l + 1] be such that j∗ ∈ Xi∗ . Set K

.
= C ∩ Xi∗ \ {j∗} and

L
.
= supp(m∗)\{j∗}. Note that |K| ≤ (k+1)−1 = k and |L| ≤ (l+1)−1 = l. By set-multilinearity,

monomials m in p for which ∂Lm|K←0 is nonzero need to have the form xj · xL where j ∈ Xi \K.
The monomial m∗ is of the form with j = j∗. By the maximality of m∗, any monomial in p of the
form has to have j ∈ Ci. Since C ∩ (Xi \K) = {j∗}, it follows that m∗ is the only monomial in p
that contributes to ∂Lp|K←0. Since ∂Lm

∗|K←0 = xj∗ , it follows that ∂Lp|K←0 is nonzero upon the
substitution (30). We conclude that RFEkl hits p by Lemma 28.

We now have all ingredients to establish Theorem 41.

Proof of Theorem 41. Let S .
= (S1, . . . , Sl+1) range as in the statement. The linear span of the

polynomials ESMVCkl [S] is set-multilinear with respect to the variable partition (X1, . . . , Xl+1)
by Proposition 40, and in Van[RFEkl ] by Lemma 42. In the other direction, the combination of
Lemma 44 and Lemma 45 imply that every polynomial p ∈ Van[RFEkl ] that is set-multilinear with
respect to the variable partition (X1, . . . , Xl+1) falls inside the ideal I generated by the polynomials
ESMVCkl [S], i.e., p =

∑
S qSESMVCkl [S] for some polynomials qS . As all polynomials ESMVCkl [S]

as well as p are homogeneous of degree l+1, it follows that each qS can be replaced by its constant
term.
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8 Read-Once Oblivious Algebraic Branching Programs

In this section we provide some background on ROABPs and establish Theorem 9.

8.1 Background

Algebraic branching programs are a syntactic model for algebraic computation. One forms a
directed graph with a designated source and sink. Each edge is labeled by a polynomial that
depends on at most one variable among x1, . . . , xn. The branching program computes a polynomial
in F[x1, . . . , xn] by summing, over all source-to-sink paths, the product of the labels on the edges
of each path.

A special subclass of algebraic branching programs are read-once oblivious algebraic branching
programs (ROABPs). In this model, the vertices of the branching program are organized in layers.
The layers are totally ordered, and edges exist only from one layer to the next. For each variable,
there is at most one consecutive pair of layers between which that variable appears, and for each
pair of consecutive layers, there is at most one variable that appears between them. In this way,
every source-to-sink path reads each variable at most once (the branching program is read-once),
and the order in which the variables are read is common to all paths (the branching program is
oblivious). We can always assume that the number of layers equals one plus the number of variables
under consideration.

The number of vertices comprising a layer is called its width. The width of an ROABP is the
largest width of its layers. The minimum width of an ROABP computing a given polynomial can
be characterized in terms of the rank of coefficient matrices constructed as follows.

Definition 46. Let U ⊔ V = [n] be a partition of the variable indices, and let MU and MV be
the sets of monomials that are supported on variables indexed by U and V , respectively. For any
polynomial p ∈ F[x1, . . . , xn] define the matrix

CMatU,V (p) ∈ FMU×MV

by setting the (mU ,mV ) entry to equal the coefficient of mUmV in p.

CMatU,V (p) is formally an infinite matrix, but it has only finitely many nonzero entries. When
p has degree at most d, one can just as well truncate CMatU,V (p) to include only rows and columns
indexed by monomials of degree at most d.

Lemma 47 ([Nis91]). Let p ∈ F[x1, . . . , xn] be any polynomial. There is an ROABP of width w
computing p in the variable order x1, . . . , xn if and only if, for every s ∈ {0, . . . , n}, with respect to
the partition U = {1, . . . , s} and V = {s+ 1, . . . , n}, we have

rank(CMatU,V (p)) ≤ w.

We group the monomials in MU and MV by their degrees and order the groups by increasing
degree. This induces a block structure on CMatU,V (p) with one block for every choice of r, c ∈ N;
the (r, c) block is the submatrix with rows indexed by degree-r monomials in MU and columns
indexed by degree-c monomials in MV . In the case where p is homogeneous, the only nonzero
blocks occur for r + c equal to the degree of p. In this case the rank of CMatU,V (p) is the sum of
the ranks of its blocks.

In general, the rank of CMatU,V (p) is at least the rank of CMatU,V (p
(min)), where p(min) denotes

the homogeneous component of p of the lowest degree, dmin. This follows because the submatrix
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of CMatU,V (p) consisting of the rows and columns indexed by monomials of degree at most dmin

has a block structure that is triangular with the blocks of CMatU,V (p
(min)) on the hypotenuse. The

observation yields the following folklore consequence of Lemma 47.

Proposition 48. Let p ∈ F[x1, . . . , xn] be any nonzero polynomial, and let p(min) be the nonzero
homogeneous component of p of least degree. If p can be computed by an ROABP of width w, then
so can p(min).

8.2 Hitting property / lower bound

We now prove Theorem 9 and Theorem 10. The latter provides a lower bound of at least (l/3) + 1
on the width of any ROABP computing a nonzero multilinear homogeneous polynomial of degree
l + 1 in the vanishing ideal of SVl. Theorem 9 follows from Theorem 10 in a standard way. We
provide a proof for completeness.

Proof of Theorem 9. Fix p satisfying the hypotheses of Theorem 9. We show that RFEl−1l hits

p; this implies SVl hits p because RFEl−1l and SVl are equivalent up to variable rescaling, and
rescaling variables does not affect ROABP width.

If p contains a monomial depending on at most l variables, then Proposition 26 implies that
RFEl−1l hits p. The remaining case is when the homogeneous component p(min) of the least degree
is multilinear of degree l + 1. By Proposition 48, p(min) has ROABP width less than (l/3) + 1. By
Theorem 10, p(min) is hit by RFEl−1l , and by Proposition 27 so is p.

In the remainder of this section we establish Theorem 10. We do not try to optimize the
dependence of the bound on l.

Fix a positive integer l, and fix an arbitrary variable order, say x1, . . . , xn. We show that,
for every polynomial p that is nonzero, multilinear, and homogeneous of degree l + 1, and that
belongs to the vanishing ideal of RFEl−1l , there exists some s ∈ {0, . . . , n} so that, with respect
to the partition U = {1, . . . , s}, V = {s+ 1, . . . , n}, it holds that rank(CMatU,V (p)) ≥ (l/3) + 1.
Theorem 10 then follows by Lemma 47.

Let C
.
= CMatU,V (p). As p is homogeneous of degree l + 1, C is block diagonal, with a

block Cd for each d ∈ {0, . . . , l + 1} consisting of the rows indexed by monomials of degree d
and the columns indexed by monomials of degree l + 1 − d. The block diagonal structure implies
rank(C) =

∑l+1
d=0 rank(Cd).

Via condition 2 of Theorem 8, the hypothesis that p belongs to Van[RFEl−1l ] induces linear
equations on the entries in the blocks Cd. For homogeneous polynomials like p, the condition
stipulates that for all disjoint subsets K,L ⊆ [n] with |K| = k = l − 1 and |L| = l, ∂Lp|K←0

vanishes at the point (7) with z = 1. This is a linear equation in the coefficients of ∂Lp|K←0,
which are entries in the blocks Cd of C. In fact, each of these equations only reads entries from
two adjacent blocks, i.e., blocks Cd and Cd′ with |d − d′| = 1. This is because L has size l, one
less than the degree of p, so the only monomials that contribute to ∂Lp|K←0 are those that are
one variable xi times the product of the variables indexed by L. It follows that the corresponding
linear equation on C reads only entries that reside in the blocks C|L∩U |+1 (for i ∈ U) and C|L∩U |
(for i ∈ V ).

We exploit the structure of these equations and argue that, for an appropriate choice of the
partition index s, rank(C) is high.
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Ingredients. Our analysis has four ingredients. The first ingredient is the fact that rank(C) is
at least the number of nonzero blocks Cd. This is because a nonzero block has rank at least 1,
and rank(C) is the sum of the ranks of the blocks. This simple observation means we can focus on
situations where relatively few of the blocks are nonzero.

The second ingredient establishes an alternative lower bound on rank(C) in terms of the mini-
mum distance between a nonzero block Cd and either extreme (d = 0 or d = l+1). Another way to
think about this distance is as the maximum t such that every monomial in p depends on at least
t variables indexed by U and at least t variables indexed by V .

Lemma 49. Let p ∈ Van[RFEl−1l ] be nonzero, multilinear, and homogeneous of degree l + 1, let
U ⊔ V be a partition of [n], and let C

.
= CMatU,V (p). If every monomial in p depends on at least t

variables indexed by U and at least t variables indexed by V , then rank(C) ≥ t+ 1.

The proof involves revisiting the equations from condition 2 of Theorem 8 and modifying4 the
underlying instantiations of Lemma 24 to obtain a system of linear equations with a simple enough
structure that we can analyze.

The remaining ingredients allow us to reduce to situations where either the first or second
ingredient applies. The third ingredient lets us fix any two zero blocks and zero out all the blocks
that are not between them.

Proposition 50. Let p ∈ Van[RFEl−1l ] be multilinear and homogeneous of degree l+ 1. Let U ⊔ V
be a partition of [n], and let C

.
= CMatU,V (p). Suppose that for some d1, d2 ∈ {−1, . . . , l + 2} with

d1 ≤ d2, we have Cd1 = 0 and Cd2 = 0, where C−1
.
= 0 and Cl+2

.
= 0. Let p′ be the polynomial

obtained from p by zeroing out the blocks Cd with d < d1 or d > d2. Then p
′ belongs to Van[RFEl−1l ].

As zeroing out blocks does not increase the rank of C, our lower bound for rank(C) reduces
to the same lower bound for the rank of CMatU,V (p

′). This effectively extends the scope of the
second ingredient: Alone, the second ingredient requires that all nonzero blocks of C be far from
the extremes; with the third ingredient, it suffices that there exists a subinterval of nonzero blocks
that is surrounded by zero blocks and that is far from the extremes. The proof hinges on the
adjacent-block property of the equations from condition 2 of Theorem 8.

The ingredients thus far suffice provided there exists a nonzero block far from the extremes:
Such a block belongs to some subinterval of nonzero blocks that is surrounded by zero blocks, say
Cd1 to the left and Cd2 to the right, and the subinterval either is large and therefore has many
nonzero blocks such that the first ingredient applies, or else it is small and therefore stays far from
the extremes such that the combination of the second and third ingredients applies. See Figure 1
for an illustration. The fourth and final ingredient lets us ensure there is a nonzero block far
from the extremes by setting the partition index s appropriately. In fact, it lets us guarantee a
zero-to-nonzero transition at a position of our choosing.

Proposition 51. For every d ∈ {−1, . . . , l}, there is s ∈ {0, . . . , n} such that Cd = 0 and Cd+1 ̸= 0
with respect to the partition U = {1, . . . , s}, V = {s+ 1, . . . , n}, where C−1

.
= 0.

Combining ingredients. Let us find out what lower bound on rank(C) the prior ingredients give
us as a function of the position d = d1 in the interval where we have a guaranteed zero-to-nonzero
transition as in Proposition 51. Starting from position d1, keep increasing the position index until
we hit the next zero block, say at position d2, where we use Cl+2

.
= 0 as a sentinel. See Figure 1.

4This is a setting where we exploit the possibility of the sets K and L in the Zoom Lemma to overlap.
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d −1 0 · · · d1 d1 + 1 · · · d2 − 1 d2 · · · l + 1 l + 2

Cd 0 ∗ ∗ 0 ̸= 0 ̸= 0 ̸= 0 0 ∗ ∗ 0
C ′d 0 0 0 0 ̸= 0 ̸= 0 ̸= 0 0 0 0 0

leftmost interval
d1 + 1 blocks

middle interval
d2 − d1 − 1 blocks

rightmost interval
l + 2− d2 blocks

Figure 1: Rank lower bound analysis in terms of the blocks Cd of p and C ′d of p′ (Proposition 50)

1. By the first ingredient, since the middle interval consists of nonzero blocks only, rank(C) ≥
d2 − d1 − 1.

2. By the combination of the second and the third ingredient, we have that rank(C) ≥ t + 1
where t = min(d1+1, l+2−d2) is the minimum length of the leftmost and rightmost intervals.
Indeed, let p′ be the polynomial obtained from p by zeroing out the blocks Cd with d < d1 or
d > d2. By Proposition 50 p′ ∈ Van[RFEl−1l ]. The polynomial p′ is nonzero as it contains the
original block Cd+1, which is nonzero. It is homogeneous of degree l + 1 and multilinear as
all of its monomials also occur in the homogeneous multilinear polynomial p of degree l + 1.
By construction, every monomial in p′ contains at least d1 + 1 variables indexed by U , and
at least l + 2 − d2 variables indexed by V . As such, p′ satisfies the conditions of Lemma 49
with t = min(d1 + 1, l + 2− d2). It follows that rank(C) ≥ rank(CMatU,V (p

′)) ≥ t+ 1.

If the rightmost interval has length at least the leftmost interval (l + 2 − d2 ≥ d1 + 1), then item
2 yields rank(C) ≥ d1 + 2. Otherwise, the rightmost interval is strictly shorter than the leftmost
interval (d1+1 > l+2−d2); this implies that the middle interval has length at least l−2d1+1, which
by item 1 yields rank(C) ≥ l− 2d1 + 1. In any case, the bound rank(C) ≥ min(d1 + 2, l− 2d1 + 1)
holds. Taking d1 =

⌊
l−1
3

⌋
optimizes this expression, achieving rank(C) ≥

⌊
l−1
3

⌋
+ 2 ≥ (l/3) + 1.

This completes the proof of Theorem 10 modulo the proofs of ingredients two through four.

Proofs. We conclude by proving ingredients two through four. We start with the one that requires
the least specificity (ingredient 4, Proposition 51), then do ingredient 3 (Proposition 50), and end
with the one that involves the most structure (ingredient 2, Lemma 49).

Proof of Proposition 51. When s = 0, C0 contains all entries. As s increases by 1, some entries
move from their current block Cd′ to the next block Cd′+1. Finally, when s = n, Cl+1 contains all
entries. For d ≥ 0, it follows that every nonzero entry moves from Cd to Cd+1 at some time. If
we stop increasing s right after the last nonzero entry of C moves out of Cd, we have Cd = 0 and
Cd+1 ̸= 0. For d = −1, we can pick s = 0 as C−1 = 0 and C0 = C ̸= 0.

Proof of Proposition 50. It suffices to show that whenever p satisfies the two conditions in Theo-
rem 8, then so does p′. Both p and p′ are homogeneous. Condition 1 holds for p′ as p′ either is zero
or else has the same degree as p. Regarding condition 2, as mentioned, the condition is equivalent
to a system of homogeneous linear equations on C ′

.
= CMatU,V (p

′), each involving only an adjacent
pair of blocks in C ′. Those that involve only blocks C ′d with d ≤ d1 are met as the equations are
homogeneous and the involved blocks are all zero. The same holds for the equations that involve
only blocks C ′d with d ≥ d2. The remaining equations involve only blocks C ′d with d ∈ {d1, . . . , d2},
on which p and p′ agree. As the equations hold for C, they also hold for C ′.
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It remains to argue Lemma 49. Our proof makes use of linear equations that are closely related
to those given by Theorem 8, which in turn come from the Zoom Lemma. We revisit the application
of the Zoom Lemma so as to obtain a simpler coefficient matrix—ultimately a Cauchy matrix—that
enables a deeper analysis. To facilitate the discussion, we utilize the following notation. As p is
multilinear, we only need to consider rows indexed by monomials of the form

∏
i∈I xi for I ⊆ U

and columns indexed by monomials of the form
∏
j∈J xj for J ⊆ V . This allows us to index rows

by subsets I ⊆ U and columns by subsets J ⊆ V . For I ⊆ U and J ⊆ V we denote by C(I, J) the
corresponding entry of C. The following proposition describes the linear equations we use.

Proposition 52. Let p ∈ Van[RFEl−1l ] be multilinear, and homogeneous of degree l+ 1, let U ⊔ V
be a partition of [n], and let C

.
= CMatU,V (p). For every I ⊆ U and J ⊆ V with |I|+ |J | = l, and

for every j∗ ∈ I ∪ J , ∑
i∈U\I

C({i} ∪ I, J)
ai − aj∗

+
∑
i∈V \J

C(I, {i} ∪ J)
ai − aj∗

= 0. (33)

Proof. Set L
.
= I ∪ J and K

.
= L \ {j∗}, and note that K ⊆ L. Let d∗ ∈ NL be the all-1 degree

pattern with domain L, and let m∗
.
=
∏
i∈L xi be the monomial supported on L that matches d∗.

As p is multilinear, d∗ is (K,L)-extremal in p. Since p is in Van[RFEl−1l ], the contrapositive of the
Zoom Lemma tells us that the coefficient pd∗ of p vanishes at the point (23) with z = 1.

The multilinear monomials m of degree l + 1 that match d∗ have the form m = xi ·m∗, where
i ∈ [n] \ L. Thus, we can write the coefficient pd∗ as

pd∗ =
∑
i∈U\I

C({i} ∪ I, J) · xi +
∑
i∈V \J

C(I, {i} ∪ J) · xi. (34)

For each i ∈ [n] \ L, (23) with z = 1 substitutes 1/(ai − aj∗) into xi. Plugging this into (34) yields
(33).

Proof of Lemma 49. The proof goes by induction on t. The base case is t = 0, where the lemma
holds because the rank of a nonzero matrix is always at least 1. For the inductive step, where
t ≥ 1, we zoom in on the contributions of the monomials that contain a particular variable. More
precisely, for j∗ ∈ [n], let pj∗ denote the partial derivative pj∗

.
= ∂xj∗p. Consider any j

∗ ∈ [n] such
that pj∗ is nonzero. As p is multilinear and homogeneous of degree l + 1, pj∗ is multilinear and
homogeneous of degree l. As every monomial in p depends on at least t variables indexed by U and
at least t variables indexed by V , every monomial in pj∗ depends on at least t−1 variables indexed
by U and at least t − 1 variables indexed by V . In a moment, we argue that for every j∗ ∈ [n],
pj∗ ∈ Van[RFEl−2l−1]. Then we will show the following:

Claim 53. There exists j∗ ∈ [n] such that pj∗ ̸= 0 and

rank(CMatU,V (p)) ≥ rank(CMatU,V (pj∗)) + 1. (35)

Given j∗ as in Claim 53, we conclude by induction that

rank(CMatU,V (p)) ≥ rank(CMatU,V (pj∗)) + 1 ≥ (t− 1) + 1 + 1 = t+ 1.

To see that pj∗ belongs to the vanishing ideal of RFEl−2l−1, we use Theorem 8. Note that pj∗ is
homogeneous, just like p. Condition 1 of Theorem 8 is satisfied by pj∗ since it it is satisfied by p,
and all of k, l, n, and the degree of pj∗ are one less. Given K and L as in condition 2 of Theorem 8,
we have

∂Lpj∗ |K←0 = pd∗ (36)
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where d∗ is the degree pattern with domain K ∪ L ∪ {j∗} that has d∗j = 1 for j ∈ L ∪ {j∗} and

d∗j = 0 for j ∈ K. Since p ∈ Van[RFEl−1l ], the contrapositive of the Zoom Lemma applied to
p with K ′ = K ∪ {j∗}, L′ = L ∪ {j∗}, d∗, says that (36) is zero upon the substitution (7). So
pj∗ ∈ Van[RFEl−2l−1] by Theorem 8. This concludes the proof of Lemma 49 modulo the proof of
Claim 53.

Proof of Claim 53. Let U ′ ⊆ U be the indices of variables xi such that p depends on xi, and
similarly define V ′ ⊆ V . We first consider the possibility that (35) fails for every j∗ ∈ V ′. We show
that this can only happen when |V ′| < |U ′|. A symmetric argument shows that if (35) fails for all
j∗ ∈ U ′, then it must be that |U ′| < |V ′|. As both inequalities cannot simultaneously occur, this
guarantees the existence of the desired j∗.

Suppose that (35) fails for each j∗ ∈ V ′. Observe that the column of CMatU,V (pj∗) corre-
sponding to a monomial m equals the column of CMatU,V (xj∗pj∗) corresponding to the monomial
xj∗m; all other columns of CMatU,V (xj∗pj∗) are zero. The matrix CMatU,V (xj∗pj∗) can also be
formed from CMatU,V (p) by zeroing out all the columns indexed by subsets that do not contain j∗

(corresponding to multilinear monomials not involving xj∗). The failure of (35) for j∗ implies that
CMatU,V (pj∗) has the same rank as CMatU,V (p), which is to say that the columns of CMatU,V (p)
indexed by subsets that contain j∗ span all the columns of CMatU,V (p). Going block by block, this
implies that for every block Cd of C = CMatU,V (p), the columns within Cd that are indexed by
subsets containing j∗ span all the columns of Cd. This goes for every j

∗ ∈ V ′, as we are assuming
that (35) fails for all of them.

Let d be minimal such that Cd ̸= 0, i.e., such that p has a monomial depending on exactly d
variables indexed by U . We have d ≥ t ≥ 1 and Cd−1 = 0. The entries of Cd appear in the linear
equations (33) given in Proposition 52, either with entries from Cd−1 or from Cd+1. Since Cd−1
is zero, the equations involving Cd−1 and Cd simplify to equations on Cd only. Namely, for every
I ⊆ U with |I| = d − 1, every J ⊆ V with |J | = l − (d − 1), and every j∗ ∈ I ∪ J , equation (33)
simplifies to ∑

i∈U\I

Cd({i} ∪ I, J)
ai − aj∗

= 0. (37)

For any fixed i ∈ U \ U ′, all entries of the form Cd({i} ∪ I, J) are zero. Thus, we can restrict the
range of i in (37) from U \ I to U ′ \ I:∑

i∈U ′\I

Cd({i} ∪ I, J)
ai − aj∗

= 0. (38)

Since Cd ̸= 0, there is at least one fixed I for which not all entries of the form Cd({i} ∪ I, J)
are zero as i and J vary. Let I∗ be such an I, and let C∗d denote the submatrix of Cd that consists
of all entries of the form Cd({i} ∪ I∗, J) as i and J vary. For every J ⊆ V with |J | = l − (d − 1)
and every j∗ ∈ I∗ ∪ J , we have ∑

i∈U ′\I∗

C∗d({i} ∪ I∗, J)
ai − aj∗

= 0. (39)

For each j∗ ∈ V ′, consider the equations (39) where J ranges over all subsets of V of size |J | =
l−(d−1) that contain j∗. Observe that the coefficients 1

ai−aj∗
in (39) are independent of the choice

of J . We argued that the columns of Cd indexed by subsets J that contain j∗ span all columns of
Cd. The same holds for C∗d , as C

∗
d is obtained from Cd by removing rows. It follows that (39) holds

for every subset J of V of size l − (d− 1) (not just the ones containing j∗).

40



In particular, consider any one nonzero column of C∗d . The column represents a nontrivial
solution to the homogeneous system (39) of |V ′| linear equations (one for each choice of j∗ ∈ V ′)
in |U ′ \ I∗| unknowns (one for each i ∈ U ′ \ I∗). The coefficient matrix [ 1

ai−aj∗
] is a Cauchy

matrix, which is well-known to have full rank. In order for there to be a nontrivial solution, the
number of equations must be strictly less than the number of unknowns. In other words, we have
|V ′| < |U ′ \ I∗| ≤ |U ′|, as desired.

9 Alternating Algebra Representation

In this section we present in greater detail the alternating algebra-based representation of (mul-
tilinear) polynomials suited to studying the vanishing ideal of RFE. Subsection 9.1 expands the
informal discussion from the overview, describing the representation and characterization for the
setting when l = 1, k = 0, and degree d = 2. Subsection 9.2 provides a brief introduction to alter-
nating algebra suited to our purpose. Subsection 9.3 formalizes the discussion from Subsection 9.1
and extends it to the case of multilinear polynomials for general k, l, and d.

9.1 Basic case

For the purposes of this subsection, we fix the parameters k = 0, l = 1, and d = 2. That is to say,
we are studying which degree-2 polynomials belong to the vanishing ideal for RFE0

1.
In Theorem 3, we proved that the polynomials EVC0

1[i1, i2, i3] as i1, i2, i3 range over [n] generate
Van[RFE0

1]. As these generators are all homogeneous degree-2 polynomials, a degree-2 polynomial
p is in the ideal if and only if it is a linear combination of instantiations of EVC0

1.
Consider the generator when expanded as a linear combination of monomials:

EVC0
1[i1, i2, i3] =

∣∣∣∣ai1 1
ai2 1

∣∣∣∣xi1xi2 + ∣∣∣∣ai3 1
ai1 1

∣∣∣∣xi3xi1 + ∣∣∣∣ai2 1
ai3 1

∣∣∣∣xi2xi3 .
We represent it graphically by creating a vertex vi ∈ V for each variable xi, an undirected edge for
each monomial, and assigning to each edge a weight equal to the coefficient of that monomial:

vi1

vi2

vi3

∣∣∣∣ai1 1
ai2 1

∣∣∣∣ ∣∣∣∣ai2 1
ai3 1

∣∣∣∣
∣∣∣∣ai3 1
ai1 1

∣∣∣∣
Observe that the coefficient of xi1xi2 has no dependence on ai3 . In particular, as i3 varies, the
coefficient of xi1xi2 in EVC0

1[i1, i2, i3] does not change. In any other instantiation of EVC0
1 involving

both i1 and i2, the coefficient is either the same, or else differs by a sign, according to whether
i1 or i2 precedes the other in the determinant. A similar pattern holds with respect to all other
monomials. This suggests we can modify the graphical representation by rescaling the weights on
edges and eliminate the dependence on the abscissas. To capture the signs, we use oriented edges.
More precisely, for each edge {vi1 , vi2}, we consider either of its two orientations, say vi1 → vi2 ,

and then divide its coefficient by

∣∣∣∣ai1 1
ai2 1

∣∣∣∣. Note that considering the opposite orientation coincides

with flipping the sign of the scaling factor. With these changes, EVC0
1[i1, i2, i3] may be drawn in

any of the following ways (among others).
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vi1

vi2

vi3

1 1

1
vi1

vi2

vi3

−1 1

1
vi1

vi2

vi3

−1 −1

1
vi1

vi2

vi3

−1 −1

−1

While different choices of edge orientations lead to different illustrations, any one illustration can be
transformed into any other by considering edges in opposite orientations as needed, and flipping the
sign of each associated coefficient. By identifying each edge in one orientation with the negative
of itself in the opposite orientation, we can view all the illustrations as renditions of the same
underlying object.

In general, we can represent any degree-2 homogeneous multilinear polynomial p ∈ F[x1, . . . , xn]
in a similar way: For each monomial xi1xi2 create an oriented edge vi1 → vi2 and set the weight of

the edge to be the coefficient of xi1xi2 in p divided by

∣∣∣∣ai1 1
ai2 1

∣∣∣∣. The representation determines the

polynomial: simply undo the scaling on each edge, and read off a linear combination of monomials.
Note moreover that this graphical representation is linear in the polynomial: adding or rescaling
polynomials coincides with adding or rescaling coefficients on the edges.

Observe that, in every graphical representation of EVC0
1[i1, i2, i3], at every vertex, the sum of the

coefficients on edges oriented out of that vertex equals the sum of the coefficients on edges oriented
in to that vertex. Indeed, we can interpret EVC0

1[i1, i2, i3] as a circulation in which one unit of flow
travels around a simple 3-cycle vi1 → vi2 → vi3 → vi1 . The coefficient on an oriented edge v1 → v2
measures how much flow is traveling in the direction v1 → v2, with negatives representing flow in
the opposite direction. That the sum of coefficients on outgoing edges equals the sum of coefficients
on incoming edges reflects the defining property of a circulation, namely that the conservation law
holds at every vertex: the total flow in equals the total flow out.

Conservation is maintained under linear combinations. Since every degree-2 polynomial p in
Van[RFE0

1] is a linear combination of instantiations of EVC0
1, the representation of p also satisfies

the conservation law at every vertex, i.e., the representation of p is a circulation. Thus, conservation
is a necessary condition for membership in Van[RFE0

1].
Conservation is sufficient for ideal membership, as well. By definition, conservation at every

vertex means that the representation is a circulation. By the well-known flow decomposition the-
orem (see, e.g., [AMO93, p. 80-81]), every circulation can be decomposed into a superposition of
circulations around simple cycles. A unit circulation around a simple cycle can be decomposed into
a sum of unit circulations around 3-cycles; this is depicted for a 5-cycle below, where each edge
indicates unit flow:

v1

v2

v3

v4

v5

= v1

v2

v3

v4

v5

= v1

v2

v3

v4

v5

The basis of the first equality in the above figure is that a unit flow v1 → v3 cancels with a unit
flow v3 → v1, and similar for v4 in lieu of v3. Thus, conservation implies that we have a linear
combination of unit circulations on 3-cycles, i.e., a linear combination of instantiations of EVC0

1.
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In summary, a multilinear homogeneous degree-2 polynomial is in Van[RFE0
1] if and only if its

graphical representation satisfies the conservation law at every vertex. This is the representation
and ideal membership characterization in the basic setting with k = 0, l = 1, and d = 2 for
multilinear homogeneous polynomials. Note that, in this basic setting, the multilinear homoge-
neous degree-2 case represents the core of the problem. The remaining cases contain a univariate
monomial, and are outside of RFE0

1 by Proposition 26.

9.2 Alternating algebra

In order to generalize Subsection 9.1, we need to be able to discuss higher-dimensional analogues of
“flow” and “circulation”, as well as appropriately-generalized notions of “conservation.” Suited to
this purpose is the language of alternating algebra. Alternating algebra was introduced in the 1800s
by Hermann Grassmann [Gra44; GK00] and is the formalism underlying differential geometry and
its applications to physics. We give a brief introduction to alternating algebra here, tailored toward
our purposes.

For each i ∈ [n], we create a fresh vertex vi ∈ V , which corresponds to the variable xi. The
alternating algebra provides a multiplication, denoted ∧, that can be thought of as a constructor
to make oriented simplices out of these vertices. For example, the ∧-product of v1 with v2, written
v1 ∧v2, encodes the simplex with vertices v1 and v2 in a particular orientation; v2∧v1 encodes the
same simplex with the opposite orientation. When v1 = v2, v1 ∧v2 is defined to be zero. ∧-
multiplication is associative. Rather than being commutative, the ∧-product is anticommutative
in the sense that v1 ∧v2 = −v2∧v1. In this way the order of the vertices in the product encodes an
orientation. There are only ever two orientations. In a larger product such as v1∧v2 ∧v3, we have

v1∧v2 ∧v3 = −v1∧v3∧v2
= v3 ∧v1 ∧v2 = −v3∧v2∧v1
= v2 ∧v3 ∧v1 = −v2∧v1∧v3.

In general, permuting the vertices in a ∧-product by an even permutation has no effect, while
permuting by an odd permutation flips the sign. Any ∧-product that uses the same vertex more
than once is zero.

We can formally extend ∧-multiplication to linear combinations of vertices in V . Denote U
to be the F-vector space with basis V . The ∧-multiplication extends to U by being distributive.
Overall, ∧-multiplication has the following defining properties, for any u1, u2, u3 ∈ U :

◦ Associativity: u1 ∧ (u2 ∧ u3) = (u1 ∧ u2) ∧ u3.

◦ Distributivity: u1 ∧ (u2 + u3) = u1 ∧ u2 + u1 ∧ u3.

◦ Alternation: u1 ∧ u1 = 0.

The alternation property implies anti-commutativity5: u1∧u2 = −u2∧u1. The alternating algebra
consists of all formal linear combinations of ∧-products of vertices from V , or equivalently, of
elements from U . We denote the underlying universe as follows.

Definition 54 (space of oriented simplices). For each t ∈ N, we let

Λt(U)
.
= span(u1 ∧ · · · ∧ut : u1, . . . , ut ∈ U)

denote the space of linear combinations of t-vertex oriented simplices. For a set of indices T , we
write uT

.
=
∧
i∈T ui, with the convention that the indices are listed in increasing order.

5Alternation and anti-commutativity are equivalent provided the characteristic of the field differs from 2.
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The distributivity and anti-commutativity properties of ∧ imply that

Λt(U) = span(u[t] : u1, . . . , ut are distinct elements in V ),

which justifies the reference to t-vertex simplices. The properties also imply that changing the
order of the vertices in the wedge product yields the same element up to a sign, namely the sign of
the underlying permutation. This justifies the reference to orientation, where there are two possible
orientations. To emphasize, the t in Λt(U) counts the number of vertices in the simplices; this is
one more than the usual notion of dimension of a simplex. For t = 0, we have a distinct simplex
corresponding to the empty product, denoted 1, which is an identity for ∧.

To connect this with Subsection 9.1, recall the graphical depiction of EVC0
1[i1, i2, i3]:

vi1

vi2

vi3

1 1

1

Adopting the convention that an arrow v1 → v2 is v1∧v2 (and so an arrow v2 → v1 is v2∧v1 =
−v1∧v2), we can alternatively express the above as

vi1 ∧vi2 + vi2 ∧vi3 + vi3 ∧vi1 .

In general, the graphical representation of a homogeneous degree-2 multilinear polynomial is some
linear combination of 2-vertex oriented simplices. When we go to higher-degree polynomials, we
make use of oriented simplices with more vertices.

To express conservation, we introduce boundary maps, which are parametrized by a linear
weight function w : U → F. The boundary map ∂w is a linear map that sends each simplex to a
linear combination of its boundary faces (and the empty simplex to zero) according to a formula
reminiscent of the minor expansion of a determinant along a column consisting of the values of w.

Definition 55 (boundary map). For any linear function w : U → F, the boundary map with
weight function w, ∂w :

⊕n
t=0 Λ

t(U)→
⊕n

t=0 Λ
t(U), is the map

u1∧ · · · ∧ut 7→
t∑
i=1

(−1)i+1w(ui)(u1∧ · · · ∧ui−1∧ui+1∧ · · · ∧ut), (40)

where u1, . . . , ut ∈ U .

The boundary map ∂w is well-defined and linear. To see this, note that the sign factor (−1)i+1

in (40) ensures well-definedness of the restriction to vertices, i.e., for u1, . . . , ut ∈ V . This is because
changing the order of the vertices on the left-hand side results in the correct sign change on the
right-hand side. The linearity of w then guarantees that the linear extension of the restriction to
vertices coincides with (40). For each t ≥ 1, ∂w(Λ

t(U)) ⊆ Λt−1(U), while ∂w(Λ
0(U)) = {0}.

In the simplest case, w is the constant-1 function. In this case, the boundary of some 2-vertex
simplex is given by

∂1(v1 ∧v2) = v2 − v1.

In particular, v1 ∧v2 contributes −1 toward v1 and +1 toward v2. This coincides with the contri-
bution of the edge v1 → v2 toward the net flow into the vertices v1 and v2. In exactly this way,
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conservation is identified with having a vanishing boundary. Note also that for this choice of weight
function

∂1(v1 ∧v2 ∧v3) = v2 ∧v3 − v1 ∧v3 + v1 ∧v2 = v1∧v2 + v2∧v3 + v3∧v1.

Thus, unit circulations on 3-cycles are in one-to-one and onto correspondence with the images under
∂1 of oriented 3-simplices on the vertices. By the decomposition discussed in the Subsection 9.1, it
follows that circulations are in one-to-one and onto correspondence with the elements of ∂1(Λ

3(U)).
This means that ∂1(Λ

3(U)) = ker(∂1) ∩ Λ2(U).
In general, for every linear w : U → F

im(∂w) = ker(∂w), (41)

or equivalently, ∂w(Λ
t(U)) = ker(∂w)∩Λt−1(U) for every t ∈ [n]. This key relationship implies that

taking the same boundary multiple times always vanishes. That is, for any w, ∂w ◦ ∂w = 0, often
written as ∂2w = 0. Another property is that for any w,w′ and β, β′ ∈ F, ∂βw+β′w′ = β∂w + β′∂w′ ,
which is to say that the boundary maps themselves are linear in w. It follows from these that,
for any w,w′, ∂w ◦ ∂w′ = −∂w′ ◦ ∂w. This means that the boundary maps themselves behave like
an alternating algebra, with ◦ as the multiplication rather than ∧. For any w1, . . . , wk+1, write
ω = w1 ∧ · · · ∧wk+1, and define ∂ω = ∂wk+1

◦ · · · ◦ ∂w1 . That is, w1∧ · · · ∧wk+1 means apply ∂w1 , then
∂w2 , and so on, up to ∂wk+1

. The result is well-defined, and we borrow the shorthand notation
introduced in Definition 54: wT

.
=
∧
j∈T wj , where T ⊆ [k+1] and the indices in the wedge product

are taken in increasing order.
The image-kernel relationship (41) extends as follows: For linearly independent w1, . . . , wk+1,

im(∂w1∧ · · · ∧wk+1
) =

k+1⋂
r=1

ker(∂wr). (42)

If w1, . . . wk+1 are linearly dependent, then ∂w1∧ · · · ∧wk+1
vanishes. In fact, a further generalization

holds and will be useful. We include a proof for completeness. (42) corresponds to the special case
∆ = 0.

Proposition 56 (generalized image-kernel relationship). For k,∆ ∈ N and any linearly
independent linear functions w1, . . . , wk+∆+1 : U → F

span
B⊆[k+∆+1]
|B|=k+1

im(∂wB ) =
⋂

B⊆[k+∆+1]
|B|=∆+1

ker(∂wB ). (43)

Proof. Extend w1, . . . , wk+∆+1 to a basis w1, . . . , wn of all linear functions U → F. We can interpret
w1, . . . , wn as a basis of the dual space U∗, and w(u) as a bilinear form U∗ × U → F. This means
we can construct a dual basis u1, . . . , un ∈ U such that for i, j ∈ [n], wj(ui) is 1 if i = j and 0 if
i ̸= j.

In this particular basis u1, . . . , un, the boundary maps with weight functions wj take a very
simple form: The only term in (40) that remains for w = wj is the one with i = j. More generally,
for B, T ⊆ [n],

∂wB (uT ) =

{
±uT\B if B ⊆ T
0 otherwise.

(44)

With this characterization, we can see that both the span of the images and the intersection of the
kernels coincide with

span(uS : S ⊆ [n] with |S ∩ [k +∆+ 1]| ≤ ∆).
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We obtain±uS as ∂wB (uT ) if and only if T = B⊔S. Such a choice of T andB withB ⊆ [k+∆+1]
and |B| = k+1 exists if and only if there are at least k+1 elements in [k+∆+1]\S, or equivalently,
|S ∩ [k+∆+ 1]| ≤ (k+∆+ 1)− (k+ 1) = ∆. This proves the equality for the span of the images.

On the other hand, uS falls within ker(∂wB ) if and only if B ̸⊆ S. This is case for every
B ⊆ [k+∆+1] with |B| = ∆+1 if and only if S contains at most ∆ elements in [k+∆+1]. This
proves the equality of the intersection of the kernels.

In the following subsection, we will need an explicit formula for computing ∂ω(u
T ) for generic

u1, . . . , un ∈ U and T ⊆ [n]. From a concrete perspective, the effect of a single boundary map in
Definition 55 resembles one level of determinant minor expansion, so composing boundary maps
should produce a partially expanded determinant. We formalize that intuition with the following
proposition, which characterizes the boundary of a t-simplex after applying k weighted boundaries
as a linear combination of (t− k)-simplices. Each (t− k)-simplex is indexed by a subset J of T .

Proposition 57 (composed boundary maps). Let w1, . . . , wk+1 : U → F be linear functions,
T a set of indices, and ui ∈ U for i ∈ T .

∂w[k+1](uT ) =
∑

I⊔J=T
|I|=k+1

(−1)XInv(I,J) · det
[
wr(ui)

]r∈[k+1]

i∈I · uJ , (45)

where in the determinant, the rows from top to bottom and the columns from left to right are in
increasing order of index i and r, respectively.

Proof. Observe that ∂w[k+1](uT ) ∈ Λt−k−1(U) and, by Definition 55, can be written as a linear
combination of uJ over all J ⊆ T with |J | = |T | − k − 1. It suffices to show that the coefficients of
each uJ match the ones given above.

Without loss of generality, let T = [t], as this does not change the relative order of any de-
terminants or ∧-products. Consider the terms formed by iteratively expanding ∂w[k+1](uT )

.
=

∂w1 ∧ · · · ∧wk+1
(uT ) by Definition 55. Each term is in one-to-one correspondence with the choices of

i we make in the expansions of Definition 55. In particular, the terms that yield uJ correspond to
the bijections σ : [k+1]→ I, where I = T \J . For a given σ, the corresponding coefficient is equal
to

(−1)(
∑

i∈I i)+k+1−|{r,r′∈[k+1]:r′<r,σ(r′)<σ(r)}|
∏

r∈[k+1]

wr(uσ(r)).

The |{r′ < r, σ(r′) < σ(r)}| term accounts for the fact that, when each r is selected, some terms
of T may have been previously removed, shifting the relative rank of r. Since for any distinct
r, r′ ∈ [k + 1], either σ(r′) > σ(r) or σ(r′) < σ(r), we can rewrite |{r′ < r, σ(r′) < σ(r)}| =(
k+1
2

)
− |{r′ < r, σ(r′) > σ(r)}|.

As for the term
∑

i∈I i, writing i as i = |{i′ ∈ I : i′ ≤ i}|+ |{j ∈ J : j < i}| and summing over

all i ∈ I, we have that
∑

i∈I i =
∑k+1

r=1 r +XInv(I, J) =
(
k+2
2

)
+XInv(I, J).

As
(
k+2
2

)
=
(
k+1
2

)
+ k + 1, we get that the coefficient of uJ equals∑

σ:[k+1]→I

(−1)XInv(I,J)+|{r′<r,σ(r′)>σ(r)}|+2k+2
∏

r∈[k+1]

wr(uσ(r)).

By definition of the determinant and simplifying, this is equal to (−1)XInv(I,J) det
[
wr(ui)

]r∈[k+1]

i∈I .

In the next subsection we will apply Proposition 57 with ui = vi. For the choice of ui in the
proof of Proposition 56, the matrix in (45) is the identity matrix and thus has determinant 1, which
results in (44).
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9.3 General case

With the notation of alternating algebra in hand, we turn now to generalizing the characterization
of Van[RFEkl ] based on the representation of polynomials that we introduced in Subsection 9.1,
henceforth the simplicial representation. We focus on multilinear polynomials, but the parameters
k, l ∈ N may be arbitrary. For starters, we still restrict to degree d = l + 1. We then generalize to
multilinear polynomials of arbitrary degree and present an alternate proof to Theorem 8. We end
with some thoughts about the non-multilinear case.

As before, we associate each variable xi with a distinct vertex vi ∈ V , where U
.
= span(V )

denotes an underlying vector space over F. We view a polynomial as a linear combination of
monomials and represent each degree-t multilinear monomial as an oriented simplex with t vertices.
The representation makes use the Vandermonde determinants det(AT ) for T ⊆ [n], where AT refers
to the notation that we introduced in (17) for the Vandermonde matrix built from the abscisses
ai for i ∈ T in increasing order. The Vandermonde determinant det(AT ) can be written as the
product of pairwise differences:

det(AT ) =
∏

i,j∈T,i<j
(ai − aj). (46)

In particular, as the abscissas are distinct, det(AT ) is always nonzero.
Let vT

.
=
∧
i∈T vi, where the indices are listed in increasing order. We represent the monomial

xT
.
=
∏
i∈T xi for T ⊆ [n] by the element vT / det(AT ). Formally, we define the following “decoder

map,” which maps a simplicial representation to the polynomial it represents.

Definition 58 (representation). ρ :
⊕n

t=0 Λ
t(U)→ F[x1, . . . , xn] is the linear map extending

vT 7→ det(AT ) · xT (47)

for every T ⊆ [n].

Note that (47) holds irrespective of the order of the indices, as long as the same order is used
for both vT and det(AT ). This is because exchanging any two indices changes the sign of both the
left-hand side and the determinant on the right-hand side. The mapping ρ induces a vector space
isomorphism between Λl+1(U) and the space of multilinear homogeneous degree-(l+1) polynomials.

The strategy for our membership test in Van[RFE] consists of two steps: First express Van[RFE]
in terms of ρ and the image of the boundary maps ∂w, and then apply the (generalized) image-kernel
relationship from alternating algebra. In Definition 55, w is taken to be a linear function from U
to F. As a linear function, w is completely defined by its values on the basis V . By Lagrange
interpolation, every function with domain V can be viewed as a polynomial of degree less than n in
the abscissas a1, . . . , an. For our purposes, it is useful to view the weight function w as a univariate
polynomial q in the abscissas.

Definition 59 (degree of boundary map). Let w : U → F be linear and a1, . . . , an be distinct
elements of F. We say that w is interpolated by q ∈ F[α] if w(vi) = q(ai) for i ∈ [n]. We say that
w is of degree d if w is interpolated by a degree-d polynomial q.

Furthermore, given fixed a1, . . . , an, the correspondence between a weight function w and its
interpolating polynomial q forms an isomorphism; if w1, w2 are interpolated by q1, q2, then w1+w2

is interpolated by q1+q2, and cw1 is interpolated by cq1. From now on, we directly refer to a weight
function by the polynomial in F[α] that interpolates it. We will be interested in the boundaries
that are weighted by low-degree polynomials.
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Multilinear case for degree d = l + 1. In the case of degree d = l + 1, the first step of our
approach boils down to finding a simplicial representation for the generators EVCkl . We do so using
composed boundary maps of degree at most k.

Lemma 60. For any k, l ∈ N and S ⊆ [n], |S| = k + l + 2,

EVCkl [S] = ρ
(
∂αk ∧ · · · ∧α0

(
vS
))
. (48)

That is, EVCkl is the polynomial formed from a given (k + l + 2)-vertex simplex by iteratively
applying to it the k + 1 boundaries weighted by αk, αk−1, . . . , α0 respectively, where αr stands for
the weight function interpolated by the polynomial αr.

Proof. Using our notation, the explicit expression (18) in Proposition 16 can be rewritten as

EVCkl [S] =
∑

K⊔L=S
|K|=k+1

(−1)XInv(K,L) · det(AK) · det(AL) · xL. (49)

For the right-hand side, we use Proposition 57 to get:

ρ
(
∂αk ∧ · · · ∧α0

(
vS
))

=
∑

K⊔L=S
|K|=k+1

(−1)XInv(K,L) · det(AK) · ρ
(
vL
)

=
∑

K⊔L=S
|K|=k+1

(−1)XInv(K,L) · det(AK) · det(AL) · xL.

The sum is identical to (49).

Lemma 60 yields the following characterization of the part of Van[RFEkl ] of degree l + 1. We
state it in a format to which we can directly apply the image-kernel relationship (42).

Corollary 61. For any k, l ∈ N, the set of polynomials of degree l + 1 in Van[RFEkl ] is given by

ρ(∂αk ∧ · · · ∧α0(Λk+l+2(U))).

Proof. Since every degree-(l+1) polynomial p in Van[RFEkl ] is a linear combination of instantiations
of EVCkl , Lemma 60 allows to us to express the subset in Van[RFEkl ] as

span
S⊆[n]

|S|=k+l+2

ρ(∂αk ∧ · · · ∧α0(vS)).

The result follows by linearity and the fact that U = span(V ).

The image-kernel relationship (42) then leads to the following membership test. Recall that ρ
induces an isomorphism from the space of (l + 1)-vertex oriented simplices Λl+1(U) to the set of
multilinear polynomials of degree l + 1, so ρ−1 is well-defined on multilinear polynomials.

Theorem 62. Let k, l ∈ N. For any multilinear polynomial p ∈ F[x1, . . . , xn] of degree l + 1,
p(RFEkl ) = 0 if and only if p is homogeneous of degree l + 1 and

∂w(ρ
−1(p)) = 0

for every weight function w of degree at most k.
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Proof. The criterion in Corollary 61 can be rewritten as

ρ−1(p) ∈ ∂αk ∧ · · · ∧α0(Λk+l+2(U)).

By Proposition 56, this is equivalent to

ρ−1(p) ∈

(
k⋂
r=0

ker(∂αr)

)
∩ Λl+1(U).

The intersection with Λl+1(U) means that p is homogeneous of degree l+ 1. For such polynomials
p, we have that p(RFEkl ) = 0 if and only if ∂αr(ρ−1(p)) = 0 for r = 0, . . . , k, which by linearity is
equivalent to ∂w(ρ

−1(p)) = 0 for all weight functions w of degree at most k.

Theorem 62 states that a multilinear polynomial p of degree l + 1 is in the vanishing ideal
of RFEkl if and only if it is homogeneous of degree l + 1 and the simplicial representation of p
satisfies conservation with respect to all degree-k boundaries. This is the representation and ideal
membership characterization for such polynomials for general k and l in the special case of degree
d = l + 1. As we will argue in Proposition 67, the characterization coincides with the membership
test from Theorem 8 for multilinear polynomials of degree l + 1.

In Section 9.1 we considered the special case with k = 0 and l = 1. In that basic setting, the
only weight functions of degree k are the constant functions, and only w ≡ 1 needs to be considered
in Theorem 62. The resulting criterion is exactly the conservation criterion that we developed in
Section 9.1.

Note that the restriction in Theorem 62 to multilinear polynomials p is just to ensure that
ρ−1(p) is well-defined. For polynomials of degree l+1 that are not multilinear, one could interpret
the non-existence of ρ−1(p) as not satisfying the criterion. This is consistent with Proposition 26,
which implies that polynomials of degree l + 1 that are not multilinear are automatically outside
Van[RFEkl ] since they necessarily have a monomial supported on l or fewer variables.

Through Lemma 60, the property that ∂w(ρ
−1(EVCkl )) = 0 for every weight function w of

degree at most k can be viewed as an application of ∂w∧αk ∧ · · · ∧α0 = 0 to Λt(U) with t = k+ l+2.
The equations (6) follow in a similar way from an application with t = k + l + 3.

Multilinear case of arbitrary degree. The two-step approach underlying Theorem 62 extends
to multilinear polynomials of higher degrees. Whereas in the special case of degree d = l+1 we only
needed simplicial representations for EVCkl [S] in the first step, we now need them for polynomials
of the more general form EVCkl [S] · xM where M ⊆ [n] is disjoint from S. We can handle the
additional term xM in Lemma 60 by including a multiplicative factor

µM (α)
.
=
∏
j∈M

(α− aj) (50)

in each of the weight functions. The extra factor acts as a masking term and ensures that in the
expansions of (40) the terms with i ∈M vanish, so under ρ the factor xM remains.

Lemma 63. For any k, l ∈ N, S ⊔M ⊆ [n] with |S| = k + l + 2, and µM (α)
.
=
∏
j∈M (α− aj),

EVCkl [S] · xM =
det(AS)

det(AS⊔M )
· ρ(∂µM (α)αk ∧ · · · ∧µM (α)α0(vS⊔M )). (51)
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Proof. Expand ∂µM (α)αk ∧ · · · ∧µM (α)α0(vS⊔M ) by Proposition 57. Notice that the only nonzero terms
in the expansion correspond to subsets J that contain M . Substituting I ← K and J ← L ⊔M ,
and factoring out the µM (ai) terms from the determinant, we can write

∂µM (α)αk ∧ · · · ∧µM (α)α0(vS⊔M ) =
∑

K⊔L=S
|K|=k+1

(−1)XInv(K,L⊔M) ·

(∏
i∈K

µM (ai)

)
· det(AK) · vL⊔M .

Applying ρ yields

ρ(∂µM (α)αk ∧ · · · ∧µM (α)α0(vS⊔M ))

=
∑

K⊔L=S
|K|=k+1

(−1)XInv(K,L⊔M) ·

(∏
i∈K

µM (ai)

)
· det(AK) · det(AL⊔M ) · xL⊔M . (52)

Applying (46) to T = L ⊔M , T = L, and T = M , rearranging terms, and remembering that AT
takes rows in increasing index, we obtain

det(AL⊔M ) = (−1)XInv(L,M) ·

 ∏
i∈L,j∈M

(ai − aj)

 · det(AL) · det(AM ). (53)

We can expand (−1)XInv(K,L⊔M) as the product (−1)XInv(K,L)(−1)XInv(K,M) because XInv(K,L⊔M)
equals the sum XInv(K,L) + XInv(K,M). By the definition of µM , we can expand

∏
i∈K µM (ai)

as
∏
i∈K,j∈M (ai−aj). Those expansions and (53) allow us to write the summand on the right-hand

side of (52) as

(−1)XInv(K,L)(−1)XInv(K,M)(−1)XInv(L,M)·

 ∏
i∈K⊔L,j∈M

(ai − aj)

·det(AK)·det(AL)·det(AM )·xL⊔M

Using the similar fact as above that (−1)XInv(K⊔L,M) = (−1)XInv(K,M)(−1)XInv(L,M), recalling that
K ⊔ L = S, and pulling out the terms independent of the choice of K, we obtain

ρ(∂µM (α)αk ∧ · · · ∧µM (α)α0(vS⊔M ))

= (−1)XInv(S,M) ·

 ∏
i∈S,j∈M

(ai − aj)

 · det(AM ) · xM
∑

K⊔L=S
|K|=k+1

(−1)XInv(K,L) · det(AK) · det(AL) · xL

=
det(AS⊔M )

det(AS)
· xM

∑
K⊔L=S
|K|=k+1

(−1)XInv(K,L) · det(AK) · det(AL) · xL,

where the last step applies (53) with L← S. By Proposition 16, this establishes the result.

The multilinear elements in Van[RFEkl ] are exactly the linear combinations of terms of the form
(51) where S ⊆ [n] ranges over subsets of size k+ l+2 andM ⊆ [n] over subsets disjoint with S. In
order to obtain a simpler characterization of the same type, as well as one to which we can apply
the generalized image-kernel relationship, we show that we can replace the weight functions on the
right-hand side of (51) by generic weight functions of the same degree or by Lagrange interpolants
with respect to a subset of abscissas of size one more.
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Proposition 64. Let k+1,m, t ∈ N with t ≥ k+1, ν ∈ Λt(U), and N ⊆ [n] with |N | = k+m+1.
Let LN,j for j ∈ N denote the Lagrange interpolants for the subset of abscissas {ai}i∈N , i.e., LN,j
denotes the unique univariate polynomial of degree at most |N |−1 satisfying LN,j(ai) = 1 for i = j
and LN,j(ai) = 0 for i ∈ N \ {j}. For all weight functions w1, . . . , wk+1 of degree at most k +m,

span
M⊆N
|M |=m

∂µM (α)αk ∧ · · · ∧µM (α)α0(ν) = span
w1,...,wk+1F[α]

deg(w1),... deg(wk+1)≤k+m

∂w[k+1](ν) = span
B⊆N
|B|=k+1

∂LB
N
(ν). (54)

Some explanation of the compact notation on the right-hand side of (54) is in order. First,
we use LN,j to differentiate with the notation Lj for Lagrange interpolants that we introduced
in Definition 1, where Lj corresponds to L[n],j . Second, for a subset B ⊆ N , we write LBN as a
shorthand for

∧
j∈B LN,j , where the indices in the wedge product are taken in increasing order.

Finally, in the composed boundary operator ∂LB
N
, the Lagrange interpolant LN,j represents the

weight function interpolated by LN,j as in Definition 59.

Proof. The inclusion ⊆ of the first equality in (54) follows because the weight functions µM (α)αr

for r ∈ {0, . . . , k} have degree at most k + |M | = k +m.
To argue the inclusion ⊆ of the second equality in (54), note that the Lagrange interpolants

LN,j for j ∈ N are linearly independent and that there are as many of them as the dimension of
the space of polynomials of degree at most |N | − 1 = k +m, so they form a basis for that space.
In particular, we can write all weight functions w1, . . . , wk+1 of degree at most k + m as linear
combinations of the Lagrange interpolants LN,j , j ∈ N . By the distributivity and antisymmetry of
the wedge product, this implies that

∂w[k+1](ν) ∈ span
B⊆N
|B|=k+1

∂LB
N
(ν).

It remains to argue that the right-most side of (54) is included in the left-most side. Fix a subset
B ⊆ N of size |B| = k + 1. Since the polynomials LN,j for j ∈ B individually have roots in all but
one element of {ai}i∈N , they collectively have common roots among exactly |N |− |B| = m of these
abscissas, which form a setM ⊆ N . Each LN,j can therefore be written as the product of µM and a
polynomial of degree at most k, or equivalently, as a linear combination of µM (α)αk, . . . , µM (α)α0.
Once again, by the distributivity and antisymmetry of the wedge product, we have that

∂LB
N
(ν) ∈ span

M⊆N
|M |=m

∂µM (α)αk ∧ · · · ∧µM (α)α0(ν).

The first equality in (54) connects weight functions as on the right-hand side of (51) with generic
ones of the same degree. This leads to the following simple characterization of the multilinear part
of Van[RFEkl ] in terms of ρ and the image of composed boundary maps. The characterization
naturally decomposes into separate ones for the homogeneous components of the various degrees d.

Corollary 65. For any k, l ∈ N, the set of multilinear polynomials p ∈ F[x1, . . . , xn] in Van[RFEkl ]
is given by the direct sum ⊕n−k−1d=0 Hd of homogeneous components of degree d ∈ {0, . . . , n− k − 1}
given by

Hd
.
= span ρ(∂w[k+1](Λk+d+1(U))), (55)

where w1, . . . , wk+1 range over all weight functions of degree at most k + d− l − 1.
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For d ≤ l, the only possible choices for the weight functions w1, . . . wk+1 in Corollary 65 are
linearly dependent, which implies that ∂w[k+1] vanishes and therefore Hd only contains the zero
polynomial. This is consistent with Proposition 26, as is the restriction d ≤ n− k − 1.

Proof. By Theorem 3 and the fact that all the instantiations EVCkl are homogeneous of degree
l + 1, the multilinear elements in Van[RFEkl ] are exactly the linear combinations of terms of the
form (51) where S ⊆ [n] ranges over subsets of size k + l + 2 and M ⊆ [n] over subsets disjoint
with S. The homogeneous component of degree d equals the contributions of the combinations
(S,M) where |M | = m

.
= d − l − 1. Since S ⊔M ⊆ [n] and |S| + |M | = k + d + 1, it follows that

d ≤ n− k − 1.
Since the weight functions on the right-hand side of (51) are of degree at most |M | + k =

k + d − l − 1, the homogeneous component of degree d falls inside Hd. For the other inclusion,
consider ν = vT for T ⊆ [n] with |T | = t

.
= k + d + 1. The first equality in (54) applies for any

N ⊆ [n] with |N | = k +m + 1 = t − l − 1. If we pick N ⊆ T , we have that M ⊆ N ⊆ T and we
can write T as T = S ⊔M where |S| = |T | − |M | = k + l + 2. Thus, each term on the left-most
side of (54) is of the form of the boundary expression on the right-hand side of (51). By Lemma 63
and linearity, it follows that all of Hd can be realized as homogeneous components of degree d of
polynomials in Van[RFEkl ].

For d = l+1, up to constant factors, there is only one nontrivial composed boundary map ∂w[k+1]

up to scalar multiplication, namely the map ∂αk ∧ · · · ∧α0 from Corollary 61. Thus, Corollary 61
represents the special case of Corollary 65 for degree d = l + 1.

The second equality in (54) from Proposition 64 leads to another characterization of the mul-
tilinear part of Van[RFEkl ] in terms of ρ and composed boundary maps, one that is more technical
but to which we can directly apply the generalized image-kernel relationship. This leads to the
following test for membership of multilinear polynomials in Van[RFEkl ]. Consistent with the char-
acterization in Corollary 65 and with Proposition 27, the test decomposes into independent ones
for each of the homogeneous components.

Theorem 66. Let k, l ∈ N. For any multilinear polynomial p ∈ F[x1, . . . , xn], p(RFEkl ) = 0 if and
only if the homogeneous components p(d) of p for all degrees d satisfy the following requirements:

1. p(d) = 0 if d ≤ l or d ≥ n− k.

2. For all d = l +∆+ 1 with ∆ ∈ {0, . . . , n− k − l − 2} and all weight functions w1, . . . , w∆+1

of degree at most k +∆ ,
∂w1∧ · · · ∧w∆+1(ρ

−1(p(d))) = 0. (56)

Proof. Consider the characterization (55) of the homogeneous components Hd in Corollary 65. We
already argued that Hd only contains the zero polynomial for d ≤ l and that there are no terms for
d ≥ n− k − 1. This gives us condition 1.

In the remainder of the proof we consider the requirements for d ∈ {l + 1, . . . , n − k − 1}.
For multilinear p, ρ−1(p) is well-defined. Applying ρ−1 and the second equality in (54), we can
alternately write (55) as

ρ−1(Hd) = span
B⊆N
|B|=k+1

∂LB
N
(Λk+d+1(U)), (57)

where N ⊆ [n] can be any fixed subset of size |N | = k + d − l, namely by setting m = d − l − 1,
which we know is non-negative. For easier notation, we pick N = [k + d − l]. By Proposition 56
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with wj
.
= LN,j and ∆

.
= d− l − 1, we can further rewrite the right-hand side of (57) as

ρ−1(Hd) =
⋂

B⊆[k+∆+1]
|B|=∆+1

ker(∂LB
N
) ∩ Λd(U).

Thus p(d) ∈ Hd if and only if

(∀B ⊆ [k +∆+ 1] with |B| = ∆+ 1) ∂LB
N
(ρ−1(p(d))) = 0. (58)

Another application of the second part of Proposition 64, this time with k ← ∆, m ← k, t ← d,
ν = ρ−1(p(d)), and N = [k + ∆ + 1], shows that if (58) holds for the particular choice of weight
functions wj = LN,j , then (58) holds for all choices of weight functions wj of degree at most k+∆.
The statement follows.

As we will argue in more detail below, by another application of the first part of Proposition 64, it
suffices in condition 2 of Theorem 66 to consider weight functions of the form wj(α) = µK(α)α∆−j+1

for j ∈ [∆+1], where K ranges over all subsets of size k of some fixed N ⊆ [n] with |N | = k+∆+1.
In this case, (56) becomes

∂µK(α)α∆ ∧ · · · ∧µK(α)α0(ρ−1(p(d))) = 0. (59)

The left-hand side of (59) lives in Λl(U), and the condition is equivalent to requiring that the
coefficient of vL vanishes for every subset L ⊆ [n] \ K of size |L| = l. Those coefficients can be
expressed in terms of evaluations of ∂Lp

(d)
∣∣
K←0

, where we take the partial derivative with respect
to the variables xi for i ∈ L and set the variables xi for i ∈ K to zero. Intuitively, whereas in
Lemma 63 the effect of the masking factors µM was to retain only contributions of monomials that
contain xi for every i ∈ M , in this dual setting the effect of µK is to cancel the contributions of
monomials that contain xi for at least one i ∈ K.

Proposition 67. Let p ∈ F[x1, . . . , xn] be a multilinear polynomial, let K,L ⊆ [n] be disjoint
subsets with |K| = k and |L| = l, and ∆ ∈ N. Let eK,L denote the value of ∂Lp|K←0 upon the
substitution xi ← µK(ai)/µL(ai) for i ∈ [n] \ (K ⊔ L), and cK,L denote the coefficient of vL in
∂µK(α)α∆ ∧ · · · ∧µK(α)α0(ρ−1(p)). Then eK,L = cK,L · det(AL).

Proof. By linearity, it suffices to establish the result for monomials p = xT where T ⊆ [n]. In such
a case ρ−1(p) = vT / det(AT ).

If L ̸⊆ T , then cK,L vanishes because boundary maps can only remove components from a wedge
product, not insert new components. On the other hand, ∂Lx

T
∣∣
K←0

is identically zero because we
are taking a partial derivative with respect to a variable that does not appear, so eK,L vanishes
and the equality holds.

If L ⊆ T , by applying Proposition 57 to vT and scaling,

cK,L = (−1)XInv(M,L)
∏
i∈M

µK(ai) · det(AM )/ det(AT ),

where M
.
= T \L. Note that if K ∩M ̸= ∅ then the term

∏
i∈M µK(ai) vanishes, hence cL vanishes.

On the other hand, ∂Lx
T
∣∣
K←0

is identically zero because we are setting a variable to zero that

appears in the monomial xT . So, eK,L vanishes and the equality holds.
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The remaining cases are those where L ⊆ T and K ∩M = ∅. By (53)

det(AT ) = det(AM⊔L) = (−1)XInv(M,L) ·

∏
i∈M

∏
j∈L

(ai − aj)

 · det(AM ) · det(AL).

Combining this with the notation µL(ai)
.
=
∏
j∈L(ai − aj), we can rewrite the expression for cK,L

as

cK,L =

(∏
i∈M

µK(ai)

µL(ai)

)
· 1

det(AL)
. (60)

On the other hand, we have that ∂Lx
T
∣∣
K←0

= xM , and the value upon the substitution xi ←
µK(ai)/µL(ai) for i ∈ [n] \ (K ⊔ L) equals

eK,L =
∏
i∈M

µK(ai)

µL(ai)
. (61)

The result follows by comparing (60) and (61).

In combination with Theorem 66, the connection in Proposition 67 yields an alternate proof of
Theorem 8. It provides a membership test for the ideal generated by the instantiations of EVCkl
that, beyond the machinery of alternating algebra developed in this section, only requires the
elementary properties of EVCkl stated in Proposition 16. In particular, it does not make use of
the Zoom Lemma, which we developed as a tool to obviate the need for alternating algebra after
we had obtained our results. Note that the alternate approach to Theorem 8 still relies on the
Zoom Lemma for the connection to RFE, namely in the argument that the ideal generated by the
instantiations of EVCkl includes all of Van[RFEkl ].

Alternate proof of Theorem 8. Consider the membership test given by Theorem 66. Condition 1
is equivalent to condition 1 in Theorem 8. It remains to argue that condition 2 is equivalent to
condition 2 in Theorem 8.

Fix ∆ ∈ {0, . . . , n−k−l−2} and consider Proposition 64 with k ← ∆, m← k, t← d
.
= l+∆+1,

and ν = ρ−1(p(d)). Set N ⊆ [n] to be an arbitrary subset of size N = k+∆+1 and rename the setM
as K. The application of the first equality in Proposition 64 tells us that the combined requirements
(56) over all choices of weight functions w1, . . . , w∆+1 of degree at most k+∆ are equivalent to the
combined requirements (59) over all subsets K ⊆ N of size k, or, because of the arbitrariness of N ,
over all subsets K ⊆ [n] of size k. The left-hand side of (59) is a linear combination of terms of the
form vL, where L ⊆ [n] is a subset of size |L| = d−∆− 1 = l and is disjoint from K because of the
masking factor µK in all weight functions. Thus, (59) holds if and only if the coefficient cK,L,d of
vL on the left-hand side vanishes for every such L. By Proposition 67, cK,L,d = 0 is equivalent to
eK,L,d = 0, where eK,L,d denotes the value of ∂Lp

(d)
∣∣
K←0

upon the substitution xi ← µK(ai)/µL(ai)
for i ∈ [n] \ (K ⊔ L).

In summary, condition 2 in Theorem 66 stipulates that for all disjoint subsets K,L ⊆ [n] with
|K| = k and |L| = l,

(∀d ∈ {l + 1, . . . , n− k − 1}) eK,L,d = 0. (62)

The value eK,L,d is also the coefficient of degree d − l of the univariate polynomial in z obtained
from ∂Lp|K←0 after the substitution (7) from condition 2 in Theorem 8. Since the range of d in
(62) covers all terms of this univariate polynomial in z, (62) is equivalent to the polynomial being
zero, which is exactly condition 2 in Theorem 8.
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Beyond multilinearity. Theorem 66 does well for understanding the multilinear elements of
the vanishing ideal. For non-multilinear elements, one may do the following. Let Λ̂t(U) be Λt(U)
except that coefficients may be arbitrary polynomials in F[x1, . . . , xn] rather than just scalars in
F. The decoder map ρ and boundary maps ∂w carry over to Λ̂t(U) directly, though now ρ is no
longer injective. The following variation of Theorem 62 characterizes ideal membership for arbitrary
polynomials.

Proposition 68. Let k, l ∈ N. For any polynomial p ∈ F[x1, . . . , xn], p(RFEkl ) = 0 if and only if

there exists η ∈ Λ̂l+1(U) with ρ(η) = p such that, for every weight function w of degree at most k,

∂w(η) = 0.

Proof. For the forward direction, we consider polynomials of the form p = EVCkl [S] · m, where
S ⊆ [n] with |S| = k+ l+2 and m is a (not necessarily multilinear) monomial in F[x1, . . . , xn]. One
choice of η ∈ Λ̂l+1(U) for which ρ(η) = p is η = (−1)(k+1)(l+1)∂αk ∧ · · · ∧α0(vS) ·m, by Lemma 60.
For this choice of η and any weight function w of degree at most k, ∂w(η) = 0. The forward
direction follows since every polynomial p for which p(RFEkl ) = 0 can be expressed as a linear
combination of polynomials of the described form.

For the backward direction, suppose there exists η ∈ Λ̂l+1(U) such that ρ(η) = p and ∂w(η) = 0
for all weight functions w of degree at most k. We can write η =

∑
m ωm ·m as a linear combination

of monomials m ∈ F[x1, . . . , xn], each with coefficient ωm ∈ Λl+1(U). Since ∂w does not affect
polynomial coefficients by nonconstant factors, we have that for each m, ∂w(ωm) vanishes for all w
of degree at most k. Theorem 62 implies that ρ(∂w(ωm)) is not hit by RFEkl . By linearity, ρ(η) is
not hit by RFEkl .

While Proposition 68 applies to a broader class of polynomials, it has the drawback that repre-
senting polynomials with Λ̂l+1(U) is too redundant. Specifically, whenever p has a representation
in Λ̂l+1(U), there are many η ∈ Λ̂l+1(U) that represent p, and most of them do not satisfy the
boundary conditions, even when p belongs to the vanishing ideal. This erodes the utility of the
characterization. Theorems 62 and 66 yield straightforward tests: Given p, form the unique η with
ρ(η) = p, and then check whether the boundary conditions hold for η. Proposition 68, on the other
hand, leaves η underspecified.
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