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Abstract

We study the following question: what cryptographic assumptions are needed for obtaining
constant-round computationally-sound argument systems? We focus on argument systems with
almost-linear verification time for subclasses of P, such as depth-bounded computations. Kil-
ian’s celebrated work [STOC 1992] provides such 4-message arguments for P (actually, for NP)
using collision-resistant hash functions. We show that one-way functions suffice for obtaining
constant-round arguments of almost-linear verification time for languages in P that have log-
space uniform circuits of linear depth and polynomial size. More generally, the complexity of
the verifier scales with the circuit depth. Furthermore, our argument systems (like Kilian’s)
are doubly-efficient; that is, the honest prover strategy can be implemented in polynomial-
time. Unconditionally sound interactive proofs for this class of computations do not rely on
any cryptographic assumptions, but they require a linear number of rounds [Goldwasser, Kalai
and Rothblum, STOC 2008]. Constant-round interactive proof systems of linear verification
complexity are not known even for NC (indeed, even for AC1).

∗Email: noga.amit@weizmann.ac.il. This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 819702)
and from the Simons Collaboration on The Theory of Algorithmic Fairness.

†Email: rothblum@alum.mit.edu. Part of this work was done while the author was at the Weizmann Institute of
Science. This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 819702) and from the Simons Collaboration
on The Theory of Algorithmic Fairness.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 81 (2023)

noga.amit@weizmann.ac.il
rothblum@alum.mit.edu


Contents

1 Introduction 1
1.1 Zero-Knowledge Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Technical Overview 5
2.1 Background: UOWHFs, Local Openings and Holographic Proof-Systems . . . . . . . 5
2.2 An Argument-System Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Holographic Hash Root (HHR) Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 The Tree-Layer Sub-Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Preliminaries 11
3.1 UOWHF and Merkle Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Multivariate Polynomials and Low Degree Extensions . . . . . . . . . . . . . . . . . 16
3.3 Circuit Classes, Uniformity and Succinct Descriptions . . . . . . . . . . . . . . . . . 20
3.4 HIP and HIPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Constant-round HIPs and HIPPs for AC0[⊕] and #AC0

F,fin . . . . . . . . . . . . . . . 27

4 The Protocol for LHHR 29
4.1 Parameter Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 The Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Constructing the Layer-to-Layer Subprotocol . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1 Protocol Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 Proving the Layer-to-Layer Subprotocol . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.1 Uniformity Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Flat-GKR 53
5.1 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A IPs, HIPs and HIPPs: Protocols and Assumptions 64
A.1 Assumptions About The Power of IPs . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.2 Constant Round HIP for #AC0

F,fin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.2.1 Setting the field size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.3 Constant Round HIPP for AC0[⊕] and #AC0
F,fin . . . . . . . . . . . . . . . . . . . . . 69

A.4 Proof of Claim 3.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



1 Introduction

A proof-system allows an untrusted prover to convince a verifier that a complex claim is true.
The claim is usually framed as the membership of an input x in a language L, where verification
should be more efficient than deciding membership in L. In a computationally sound argument
system [BCC88], soundness is relaxed to hold only against polynomial-time cheating provers, under
cryptographic assumptions. If x /∈ L, then no polynomial-time cheating prover should be able to get
the verifier to accept (except with small probability). Understanding the cryptographic assumptions
needed to construct argument systems, and the expressive power of these protocols (i.e., which
languages have argument systems) is a central question in the foundations of cryptography.

We study this question, focusing on efficient argument systems that have a constant number of
rounds and almost-linear communication and verification time, and on constructing such argument
systems for subclasses of P, such as depth-bounded computations. Kilian’s [Kil92] celebrated work
showed that, assuming the existence of collision-resistant hash functions (CRHs), every language in
P has a 4-message argument system with sublinear communication and almost-linear verification
time (actually, this result applies to all of NP, but for now we focus on P and its subclasses).
Kilian’s result demonstrated that CRHs are sufficient for constructing argument systems that go
well beyond what is known for unconditionally sound interactive proof systems (IPs) [GMR89] (and,
in some regimes, beyond what is plausible for IPs [GH98, GVW02]). It is not well understood,
however, whether such argument systems can be based on assumptions that are significantly weaker
than collision-resistant hashing. The quest to understand the minimal assumptions needed for
implementing cryptographic primitives is a central theme in the theoretical study of cryptography.
Considering argument systems through this lens, we ask:

Can constant-round computationally sound argument systems with almost-linear communication
and verification time be based on the “minimal”1 assumption of one-way functions (OWFs)?
Does their power extend beyond what is known (or plausible) using unconditionally sound IPs?

We answer these questions in the affirmative. Our main result is a constant-round argument
system, whose security only relies on the existence of one-way functions, where the communication
and the verification time grow linearly with the depth of the circuits computing the language:

Theorem 1.1 (Constant-round arguments from one-way functions). If one-way functions exist,
then for every language L that is computable by log-space uniform circuits of fan-in 2, depth D(n)
and polynomial size, and for every desired constant σ ∈ (0, 1), there is a constant-round public-coin
argument system, with perfect completeness and negligible soundness error against poly(n)-time
cheating provers, where n is the input length. The protocol’s complexities are:

• Constant round complexity O(1/σ3),2

• Communication complexity O(nσ ·D(n)),

• The verifier runs in time O(nσ ·D(n) + n1+σ), while the honest prover runs in poly(n) time.

1One-way functions are often referred to as a “minimal” assumption for cryptography, and in many cases one-way
functions are essential for constructing cryptographic primitives [IL89]. We note, however, that it is not known
whether one-way functions are essential for constructing arguments. Wee [Wee05] studies the relationship between
non-trivial arguments and various assumptions.

2By O(1/σ3) we mean that there exists a universal constant c s.t. the round complexity is at most c/σ3.
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The number of rounds is a constant, where this constant depends on the desired communication
complexity and verification time. For linear-depth computations, for any desired constant σ, the
communication and the verification time can be O(n1+σ) using O(1/σ3) rounds. The protocol is
doubly-efficient: the honest prover runs in polynomial time. Thus, this argument system can be
used for delegating computation to an untrusted server, and obtaining a proof that a claimed output
of the computation is correct [GKR15]. For simplicity, we take the security parameter to be a small
polynomial in the input length throughout (obtaining security against poly(n)-time adversaries).
More generally, the communication, verifier runtime and prover runtime depend polynomially on
the security parameter. Finally, having established that one-way functions suffice for extending the
power of argument systems beyond what is known for interactive proof systems, a natural question
for future work is whether one-way functions suffice for constructing arguments that can be verified
in almost-linear time for all of P (or even for all of NP).

Comparison to known argument systems. As noted above, assuming the existence of CRHs,
there exist 4-message doubly-efficient arguments with sublinear communication and almost-linear
verification time for all of P [Kil92]. In fact, this celebrated protocol can be used for all of NP,
i.e., a much richer class of computations. Indeed, such arguments exist even beyond NP, as was
shown by Micali [Mic94] (under stronger assumptions) and by Barak and Goldreich [BG08]. One
major focus, starting with [Mic94], is reducing the round complexity to “non-interactive” or to
2-message protocols, under minimal cryptographic assumptions. This vast literature is too vast
for us to survey here. See e.g. Kalai, Raz and Rothblum [KRR22] and Choudhuri, Jain and Jin
[CJJ21], as well as the recent expositions by Thaler [Tha22] and Ishai [Ish20a, Ish20b], and the
references therein. Many of these works construct protocols for P or for subclasses of P. The vast
majority of works on argument systems use assumptions that (at the very least) imply CRHs. One
exception is works by Bitansky, Kalai and Paneth [BKP18] and by Komargodski, Naor and Yogev
[KNY18], who construct argument systems based on the existence of the more relaxed primitive of
multi-collision-resistant hash functions, though the recent work of Rothblum and Vasudevan [RV22]
indicates that the gap between collision-resistance and multi-collision-resistance might not be wide.

The main distinction in our work is that we rely only on the existence of one-way functions, but
our result is for a more restricted class of depth-bounded computations, and the round complexity,
while constant, is larger than in Kilian’s 4-message protocol (let alone the subsequent works that
further reduce the interaction using stronger assumptions). OWFs are generally considered to be a
considerably more relaxed assumption than CRHs. Simon [Sim98] showed a black-box separation
between the two notions. We remark that while the long-standing open question of constructing
CRHs from OWFs is well beyond the current state of the art, Holmgren and Lombardi [HL18] do
show that an exponentially hard variant of OWFs is sufficient for constructing CRHs.

Comparison to Interactive Proofs. A parallel body of work studies the expressive power of
unconditionally sound interactive proof systems. For the class of log-space uniform poly-size depth
D circuits, known doubly-efficient IPs (DEIPs) require round complexity that is quasi-linear in
D [GKR15], compared with the constant round complexity in our new protocol (though we note
that our protocol is computationally sound, assumes the existence of one-way functions, and its
communication complexity and verification time are larger by a small polynomial factor). See 1
for a full comparison. The gap in the round complexity is not merely for known protocols: we find
it quite plausible to conjecture that there do not exist constant-round interactive proofs for linear
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depth computations (indeed, one could conjecture that they do not even exist for AC1 circuits):

Remark 1.2 (IPs for linear depth.). In an interactive proof, we require a constant gap between the
completeness and the soundness error. A significantly more relaxed requirement is to only have some
infinitesimal gap between the completeness and the soundness error. Essentially all known results
for IPs become straightforward if one is willing to make this relaxation (in particular, the gap can
be smaller than the inverse of the computation size). Nonetheless, for linear-depth computations, it
is not known how to construct a constant-round DEIP with any gap between the completeness and
the soundness error. We find it plausible to conjecture that no such proof system exists. Indeed,
even for AC1 no such proof system is known. Of course, this assumption precludes the possibility
of getting a DEIP with a constant gap, but our main result shows this is possible for an argument
system (assuming OWFs). See Appendix A.1 for further discussion.

In Table 1 we compare the power and complexity of known doubly-efficient IPs:

# rounds communication verifier time uniformity
class (in)

depth D, size S [GKR15] O(D·logS) D · polylog(S) n · poly(D, logS) log-space
uniform

space S, poly-time [RRR16] exp(Õ(1/σ)) nσ · poly(S) nσ · poly(S) + Õ(n)

none
(Turing
machine)

AC0[⊕] [GR20] O(1/σ) nσ+o(1) n1+o(1)
adjacency
predicate3

NC1 [GR20] O(1/σ2) nσ+o(1) n1+o(1)
incidence
function4

depth D, poly-size (this) O(1/σ3) O(nσ ·D) O(nσ ·D + n1+σ)
log-space
uniform

Table 1: Comparison of doubly-efficient proof systems, where σ > 0 is a desired constant for
bounding the communication. The proof systems from prior works are unconditionally sound,
whereas our new result is computationally sound assuming the existence of one-way functions.

Elaborating on the relationship to known constant-round DEIPs: Reingold, Rothblum and
Rothblum [RRR16] showed constant-round interactive proofs for languages that can be decided
in bounded-polynomial space and polynomial time. This class is incomparable to the class of
languages in our main result (languages with linear-depth polynomial-size circuits). Though the
classes are incomparable, we view the round complexity in our construction as much smaller. Fixing
a constant σ, to get communication complexity O(nσ · poly(S)) for an S-space computation, the
RRR protocol uses exp(Õ(1/σ)) many rounds. In our protocol, on the other hand, O(1/σ3) rounds
suffice for obtaining O(nσ ·D) communication for a depth-D computation. Goldreich and Rothblum
[GR20] constructed constant-round protocols for highly uniform variants of the complexity classes

3The circuit’s adjacency predicate should be computable by a no(1)-size formula that can be constructed in n1+o(1)-
time. See Section 3.3.

4The circuit’s incidence function should be computable by a no(1)-size formula that can be constructed in n1+o(1)-
time. See Section 3.3.
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AC0[⊕], using O(1/σ) rounds, and NC1, using O(1/σ2) rounds. The main distinction with our work
is that our new protocol applies to computations well beyond NC1. We remark, however, that the
constant-round GR protocol for AC0[⊕] plays an important role in our construction.

1.1 Zero-Knowledge Arguments

Based on Theorem 1.1, we show that the existence of one-way functions suffices for succinct constant
round zero-knowledge argument systems, with perfect completeness and constant soundness error,
for NP relations whose verification circuit has bounded-polynomial depth. Succinctness means that
the communication is nearly-linear in the witness length.

Theorem 1.3 (Constant-round succinct zero-knowledge for bounded-polynomial depth relations
from one-way functions). If one-way functions exist, then for every language L ∈ NP whose relation
is computable by log-space uniform circuits of fan-in 2, depth D(n) and polynomial size, and for
every desired constant σ ∈ (0, 1), there is a constant-round computational zero-knowledge argument
system as follows. The argument system is public-coin and has perfect completeness and constant
soundness error against poly(n)-time cheating provers, where n is the input length. The protocol
has constant round complexity O(1/σ3). Taking M(n) to be the witness length, the communication
complexity is O(nσ · (M(n) +D(n))) and the verifier runtime is O(nσ · (n+M(n) +D(n)). Given
a witness w for x’s membership in L, the honest prover runs in poly(n) time.

Proof sketch. The zero-knowledge argument system follows from the public-coin protocol of Theo-
rem 1.1, using a standard transformation for public-coins protocols [IY87, BGG+88]. The prover
and the verifier run the protocol of Theorem 1.1 on the circuit computing the NP relation, with re-
spect to input (x,w) (where x is the input and w is the witness). Rather than sending its messages
in the clear, the prover sends computationally hiding and statistically binding bit commitments
to the witness and to its messages. Such bit commitments can be constructed from one-way
functions [Nao91]. After completing the protocol, the prover and the verifier run a non-succinct
zero-knowledge proof to show that the verifier would accept if it saw the witness and the messages
inside the prover’s commitments (we need to use refinements to the 3-coloring protocol of [GMW91]
to get constant soundness with communication and verification time that are nearly-linear in the
circuit size for this final statement).

The constant soundness error in Theorem 1.3 can be amplified, but we need to use sequential
repetition to maintain zero-knowledge. Indeed, constructing even non-succinct constant-round zero-
knowledge arguments with negligible soundness error from one-way functions is a long-standing
open problem. We also remark that we could use statistically hiding and computationally binding
commitments, to obtain an analogous succinct statistical zero-knowledge argument, but known
constructions of such commitments from OWFs [HNO+09] are not constant-round (indeed, there
are black-box lower bounds [HHRS15]). The resulting protocol would have a small polynomial
number of rounds.

Comparison to prior work on succinct ZK from one-way functions. The comparison
to the state of the art from prior work on constructing zero-knowledge from one-way functions
is analogous to the comparison of Theorem 1.1 to prior work on DEIPs (all ZK protocols we
compare to here are unconditionally sound proof systems). For NP relations computable by poly-
size linear-depth circuits, the GKR protocol gives a succinct proof system with Õ(n) rounds. The
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RRR protocol gives constant-round succinct zero-knowledge for an incomparable class of poly-
time bounded-polynomial space relations. The GR protocol imply constant-round succinct zero-
knowledge for AC0[⊕] and NC1 relations.

2 Technical Overview

We outline the key ideas underlying our constant-round argument construction (Theorem 1.1). We
begin with a brief review on universal one-way hash functions (UOWHFs) and hash trees.

2.1 Background: UOWHFs, Local Openings and Holographic Proof-Systems

UOWHFs. A family H of universal one-way hash functions (UOWHFs), introduced by Naor
and Yung [NY89], is a family of shrinking functions with the following property: fixing an input x,
and drawing a random hash function h from the family H, it is hard to find a “second preimage”
x′ ̸= x s.t. h(x′) = h(x). This is sometimes referred to as second-preimage collision resistance, or
targeted collision resistance. Note that the order of events is important: the input x should be fixed
before the hash function h ∼ H is selected. This is a considerable relaxation to collision-resistant
families, where even after h is chosen, it should be hard to find any collision (in a UOWHF, after
h is revealed, it may well be possible to adaptively compute a pair x′, x′′ that collide, but they
will not collide with any input that was fixed before h was chosen). Indeed, Rompel [Rom90]
showed that UOWHFs can be constructed from any one-way function (Naor and Yung showed a
construction from one-way permutations). Our construction uses a family of UOWHFs that map
inputs in {0, 1}κ2 to outputs in {0, 1}κ, where the security parameter κ is generally taken to be nε

for a small constant ε ∈ (0, 1], and the “shrinkage” factor is 1/κ = 1/nε.

Local opening. UOWHFs can be used in a hash tree to hash an M -bit string x ∈ {0, 1}M to
a short commitment (or hash root) y ∈ {0, 1}κ. The root y can later be used to locally open any
desired bit xi. The construction divides the string x into “chunks” of length κ and places them on
the leaves of a binary tree of depth ℓ ≈ log(M/κ) (i.e., at layer ℓ of the tree). For each internal node
in the tree, its value is the output of a UOWHF applied to (the concatenation of) its children’s
values. Thus, nodes are hashed up the tree, and the value at the root is the commitment or hash-
root. Later, we can “open” x[i] (the ith bit of x) by revealing the hash values along the path from
the root to the leaf containing the ith bit, together with the value of the sibling of each node along
this path. The two important properties of this construction are:

1. Local opening: given any i, the local opening for x[i] only requires sending O(κ · logM)
bits and can be verified in poly(logM,κ) time.

2. Local targeted collision resistance: for any string x fixed before choosing the hash func-
tions (see below), taking root(x) to be the (correct) hash root according to x, it is hard to
find an index i and a valid opening for any value of the ith bit that is different from x[i].

Naor and Yung [NY89] observed that using a single UOWHF in a straightforward hash tree
[Mer89, Dam89] might not be secure (see also the work of Bellare and Rogaway [BR97] that builds
an attack on this scheme). However, they showed that the construction is secure if we use a separate
hash function for each layer of the tree ((ℓ− 1) UOWHFs in all).
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Our construction uses a d-ary hash tree, which is a straightforward extension of the binary tree
described above. The depth is ℓ ≈ logd(|x|/κ), and local opening requires sending O(ℓ · d · κ) bits.
We comment that this construction is not a “standard” commitment scheme in the sense that it is
not necessarily hiding (and, as described in the second item, only satisfies the relaxed “targeted”
binding property when comparing to the one implied by CRH).

Holographic proof systems. In a holographic proof system, the verifier is not given access to
the main input explicitly. Instead, it outputs a claim about the encoding of the input under a
high distance error correcting code. Given this redundancy, the verifier should run in sublinear
time in the input length. Holographic proof systems were introduced by Babai et al. [BFLS91] in
the context of PCPs. Holographic Interactive Proofs were formalized and generalized by Gur and
Rothblum [GR17].

In our work, the code used for the “holographic input” x will always be the low-degree extension
(LDE, see Section 3.2). After interacting with the prover, the verifier either rejects, or it outputs
a claim (r, v) about the input’s encoding LDE(x), where r is a location in LDE(x), and v is a claim
about the value of LDE(x) at location r. Completeness means that if the prover’s statement is true
and the prover follows the protocol, then the verifier doesn’t reject and it holds that LDE(x)[r] = v.
Soundness means that if the prover’s statement is false, then the probability that the verifier doesn’t
reject and LDE(x)[r] = v is small. The statement can either be that the input x is in a language
L, or that f(x) = y for a specified function f and claimed output y (verifying membership in a
language corresponds to the case where f is a Boolean-valued function).

Holographic interactive proofs are at the heart of many IP systems. In particular, all the proof
systems in Table 1 have holographic variants, where the verifier’s runtime is reduced to being nearly-
linear in the communication complexity, while the number of rounds, communication complexity,
and prover runtime are unchanged.5 If the claim is about evaluating a function f with output length
|y| (rather than membership in a language), then the communication complexity and verification
time grow by an additive term that is nearly-linear in |y|.

2.2 An Argument-System Template

We begin by describing a “template protocol” for constructing argument systems, which allows us
both to prove a warm-up for our main result, and also to introduce important ideas and concepts
from the full protocol. In particular, we isolate a new primitive: a holographic hash root protocol,
which suffices for constructing argument systems that have a small number of interaction rounds.

The warm-up in this section gives an argument system for linear-depth circuits with round
complexity exp(Õ(1/σ)), and nearly-linear communication and verification time. We note that
while the number of rounds is an exponentially larger constant than in our main result, it already
goes well beyond what is known (and, under plausible assumptions, beyond what is possible) using
unconditionally sound interactive proofs. Let C be a log-space uniform circuit ensemble with size
S = S(n) = poly(n) and depth D = D(n). Without loss of generality, we assume that the circuit
is layered, where the gates in layer i are the ones at distance (i− 1) from the circuit’s output gate,
and for each i, the gates in layer i are fed (only) by gates in layer (i+ 1). We also pad the circuit
so that each layer is exactly of width S. On input x, the template protocol proceeds as follows:

5The GR proof-system for AC0 is not holographic as-is, but modifying it to be holographic is straightforward, see
Appendix A.2.
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1. The verifier chooses UOWHFs h̄ for a hash tree on M = poly(S) bits and sends them to the
prover.

2. For each layer i of the circuit C, let Vi ∈ {0, 1}S be the values of the gates in layer i when the
circuit is evaluated on the input x. Let V̂i ∈ {0, 1}M be the encoding of the ith layer using
the low-degree extension (see above). For each i ∈ [1, . . . , D − 1], the prover computes V̂i,
hashes it using the hash tree, and sends the root yi = root(V̂i) to the verifier.

3. The verifier receives alleged hash roots {ỹi}D−1
i=1 . The prover and the verifier run in parallel

(D−1) executions of an unconditionally sound holographic interactive proof (HIP, see above).
The ith execution is on (holographic) input Vi+1 (the values of gates at layer (i + 1)), and
proves that ỹi is the correct hash root for the low-degree extension of the values of the gates
in the ith layer, where these latter values (of layer i) are computed by applying the gates in
the ith circuit layer to the string Vi+1 that is the input to the proof system.

The outputs of these (D − 1) executions are claims {(ri, vi)}Di=2, where the ith claim alleges

that the value of the low-degree extension V̂i at location ri has value vi. We also add the
claim that the circuit accepts as a claim (r1, v1) about the LDE of the output layer.

4. The verifier accepts if the following checks pass:

(a) none of the HIP executions rejected.

(b) the verifier asks the prover to perform a local opening for each ỹi: opening the rthi
location in the hashed string, and showing that its value is vi.

(c) For the input layer, the verifier also checks that x̂[rD] = vD (this requires evaluating the
input’s low-degree extension at a single point).

Completeness and Soundness. Completeness follows by construction. For soundness, let V̂i be
the correct LDE of the gates in layer i of the circuit (when evaluated on the input x), and consider
the hash roots {ỹi}D−1

i=1 . A critical insight in our analysis is that the values {V̂i} are fixed before the
verifier chooses its hash functions. Thus, the hash tree’s local targeted collision resistance applies,
and for each i, if ỹi is “correct”, i.e. if it is the real value at the root of the hash tree on V̂i, then
in Step (4b), the prover cannot open ỹi to any other value except V̂i[ri]. This will be quite helpful
for catching the prover if it is cheating.

We proceed as follows: if the first hash root ỹ1 is correct, then the prover has committed to a
string indicating that the circuit rejects the input! This commitment is binding, and in particular
the verifier will reject when it checks the opening of the commitment in Step (4b). Otherwise, if
ỹ1 is incorrect, then there are two possibilities: either there is some layer i∗ ∈ [1, . . . , D − 2] where
ỹi∗ is incorrect, but ỹi∗+1 is correct. The soundness of the HIP implies that the i∗th execution will

yield a false claim, i.e. V̂i∗+1[ri∗+1] ̸= vi∗+1. But since the prover sent the correct hash root for the
(i∗ + 1)th layer, in Step (4b), it cannot open the hash root to any value except the correct value
(which is different from vi∗+1), and the verifier will reject. The remaining possibility is that the
prover was cheating on ỹD−1: in this case, w.h.p. the HIP for layer (D − 1) outputs a false claim
about the LDE of the input x, and the verifier will reject in Step (4c).
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Complexity analysis. The communication complexity isD times the communication complexity
in the HIP, plus (D ·poly(log(n), κ)) for sending the hash roots and openings. Similarly, the verifier
runtime is D times the runtime in the HIP, plus (D ·poly(log(n), κ)) for the hash roots, and openings
and another almost-linear term for the final LDE check in Step (4c) (this final term can be omitted
if we give the verifier query access to the LDE of the input x). Finally, the round complexity is
dominated by the round complexity of the HIP executions of Step (3), but the key point is that
these are performed in parallel, and the proof in each execution is for a computation whose depth
is independent of the depth of the circuit C.

The HIP. The ith HIP is performed to check the following computational claim: let C layer
i be

the circuit that computes the ith layer of the circuit C. Let LDE be the circuit that takes an input
V ∈ {0, 1}S and computes its low-degree extension V̂ ∈ {0, 1}M . Finally, let root be the circuit
that takes an M -bit string V̂ and outputs the root of the hash tree computed on V̂ (with the hash
functions h̄ sent by the verifier). The ith execution uses the HIP to verify a claim about the value

of the function (root ◦ LDE ◦ C layer
i ), where we think of the input to this function as the values

of the i + 1st layer of the circuit. Any HIP that can perform this computation efficiently may be
used here. For example, we can take the holographic variants of the GKR or RRR protocols (see
Table 1, and note that the verifier time is reduced in the holographic case). In particular, since this
function can be computed in polynomial time and poly(κ) space, RRR can yield exp(Õ(1/σ)) rounds,
(nσ+o(1) ·poly(κ)) communication and verification time, and polynomial prover time. Alternatively,
since this function is also computable by log-space uniform circuits of depth poly(κ), GKR can
yield poly(log n, κ) rounds, communication, and verification time. Under stronger cryptographic
assumptions, one could also use the GR protocols, see Remark 2.1.

Digest. Our protocol uses the UOWHF to force the prover to send a commitment for each layer
of the circuit, where a cheating prover has two (bad) choices, either (a) send a correct hash root
for that layer’s gate values. In this case, the commitment is binding, and the prover’s hands are
forevermore tied when it makes claims about this layer’s LDE, or (b) the prover sends an incorrect
hash root, where at the very least the prover needs to send an incorrect hash root for the output
layer (otherwise it will be caught immediately). Since there must be some layer where the prover
is cheating on the root of layer i but we can access the correct LDE of layer (i+1) (either because
the prover sent a correct hash root, which is binding, or because layer (i + 1) is the input layer),
verification can be reduced to checking consistency between a hash root and the layer below it.
I.e., we have reduced verifying the deep / complex computation of C, to verifying (in parallel)
many simpler computations. Each of these simpler computations evaluates one circuit layer, and
composes it with a computation of the low-degree extension and the hash tree. Thus, our goal is
constructing efficient HIPs for these simpler computations (moreover, as we will see below, these
simpler computations have nice structure that facilitates the construction of very efficient proof
systems).

2.3 Holographic Hash Root (HHR) Protocol

In a holographic hash root (HHR) protocol, the prover and the verifier are given a claim of the form
(h̄, y) and a holographic input w. After interacting with the prover, the verifier (who never accesses
w) either rejects or outputs a claim (r, v) about the LDE ŵ of w. If y is the correct hash-root of w
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w.r.t. the hash functions h̄, then ŵ[r] = v. If y is not the correct hash root, then w.h.p. either the
verifier rejects, or ŵ[r] ̸= v. The HHR protocols in this work have information-theoretic soundness
(though computational soundness would suffice for the template protocol).

On a conceptual level, our work identifies HHR protocols as a very useful component for con-
structing argument-systems with small round-complexity. Once we have a HHR protocol, we can
compose it sequentially with a HIP for verifying a claim about the computation that takes as input
a vector V of values for the gates at layer (i + 1), computes the values V ′ that V induces for the
gates in layer i, and checks a single claim about the LDE of V ′. We can construct a constant-round
HIP for the latter task (evaluating a single circuit layer and then computing a low-degree exten-
sion) using the GR protocol (see Table 1). Thus, the round complexity of the template protocol is
dominated by the round complexity that can be achieved for HHRs.

A better HHR protocol. Our main technical contribution is an HHR protocol whose round
complexity is only (1/σ3). Our main result (Theorem 1.1) follows by plugging the HHR protocol
into the template protocol of Section 2.2. The HHR protocol closely follows the construction of
a hash tree. Fixing a small constant δ > 0 (set below), we use a family of UOWHF functions

{h : {0, 1}n2δ → {0, 1}nδ}h∈H (the security parameter κ is set to be a sufficiently small power of n).
We use these hash functions in an d = nδ-ary hash tree (see Section 2.1). The tree has ℓ = O(1/δ)
layers, where layer j in the tree is nδ-times smaller than layer j + 1. Given the root of the tree,
local opening requires sending O(n2δ) bits to the receiver/verifier (for each node on the path from
the root to the leaf, the values of all (d− 1) of its siblings need to be sent).

The HHR protocol sequentially “strips away” the layers of the hash tree, beginning with a claim
about the hash root and ending with a claim about the leaves of the tree. This is achieved by means
of a tree-layer sub-protocol: a O(1/δ2)-round protocol that begins with an input claim about the
LDE of the tree nodes in layer j, and ends with an output claim about the LDE of the tree nodes
in layer (j + 1). If the input claim is correct and the prover follows the protocol, then the output
claim will also be correct. If, however, the input claim is incorrect, then (no matter what strategy
a cheating prover utilizes) the output claim will also be incorrect. This structure is inspired by,
and similar to, the GKR protocol, but we emphasize that the computation for moving from one
layer to another is not of constant depth, since it involves applying the hash function, which is an
arbitrary poly(κ) = nO(δ)-time computation, whereas we want a O(1/δ2) round protocol.

Several remarks are in order. We emphasize that we run the tree-layer sub-protocols sequentially,
starting from the output layer (layer 1), and ending with the bottom of the tree (layer (ℓ − 1)).
There are O(1/δ) tree layers, so the total round complexity is O(1/δ3). Theorem 1.1 is derived
by taking δ to be a small enough constant multiple of the desired σ, so the nO(δ) term in the
verification time and communication complexity (see Theorem 5.1) ends up being nσ. Finally, the
alert reader will have noticed that we need to begin the HHR with a claim about the LDE of the
hash root, and we will end it with a claim about the LDE of the values in the leaves. For the first
point: the verifier, who knows the claimed hash root y, can choose a random location r and take
v = LDE(y)[r] to be the input claim to the first sub-protocol. If y is not the correct hash root,
then w.h.p. over the choice of r the first input claim will be false (since the low-degree extension
is a high-distance error-correcting code). Second, by definition of the HHR, the values in layer ℓ
are already a low-degree extension of the string w. In the final sub-protocol, we will directly get a
claim about LDE(w) (rather than a claim about LDE(LDE(w)).
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Remark 2.1 (Stronger assumptions). If the UOWHF were computable in highly uniform AC0[⊕],
we could instead simply use the constant-round GR protocol to move from one layer to another
(see Table 1). In fact, a UOWHF computable in highly uniform NC1 should suffice, since the GR
protocol can also work on highly uniform NC1 circuits. Indeed, it is possible to prove that the circuit
that computes the UOWHF tree can satisfy this stronger uniformity condition (see Footnotes 3 and
4 for the exact uniformity conditions), and it would be an NC1 circuit thanks to the polynomial
shrinkage of the UOWHF, that promises that the tree has a constant number of layers.

UOWHFs in such low classes have been conjectured to exist (see e.g. [AM13], but note that we
need super-linear shrinkage in our construction, because we want the tree to be of constant depth).
Regardless, in this work, we do not want to assume anything beyond the existence of one-way
functions.

2.3.1 The Tree-Layer Sub-Protocol

We briefly sketch some of the ideas in this final sub-protocol. Let nin = n2δ and nout = nδ be the
input and output lengths of the hash function. We take wi ∈ {0, 1}n

i·δ
to be the vector of the values

of nodes in layer i of the hash tree, and let k = k(i) = |wi+1|/nin be the number of nodes in layer
i. As described above, given a claim (i, ri, vi) about wi, and given also a holographic input wi+1,
the goal of our sub-protocol is for the verifier (to reject or) to output a claim (ri+1, vi+1) about
the holographic input. The crux of the matter is doing this using only O(1/δ2) rounds, which we
accomplish by utilizing the particular structure of the hash tree’s computation: the tree operates
independently and in parallel on blocks of wi+1. Dividing the layers into blocks we have:

wi = y1, ..., yk for |yj | = nout,

where yj is the value of the jth node in layer i, and

wi+1 = z1, ..., zk for |zj | = nin,

where each zj is the concatenation of the values of the jth node’s children. Taking hj to be the
hash function for layer j, we can now restate the claim about layer j: k∧

j=1

yj = hj(zj)

∧ (LDE(y1, . . . , yk)[ri] = vi) . (1)

Thus, there are k “mini-claims”, each about a single evaluation of the hash function, tied together
by a “ global claim” about the low-degree extension of (the concatenation of) the resulting outputs.
We use a batch-verification protocol to verify the k mini-claims, together with the global claim about
the LDE, at a cost that is not much larger than verifying a single claim (each single claim is about
single a poly(κ)-size computation, so the verifier can verify it on its own). Our protocol is inspired
by the UP batching protocol of Reingold, Rothblum and Rothblum [RRR18]. The idea is to proceed
in sequential iterations, where in each iteration we run a “reducing” sub-sub-protocol to restrict
the claims being made to a smaller subset S′ ⊆ [k] of the k initial mini-claims, tied together with
a “global claim” about the computations in the set S′. The size of the set is reduced by a factor
of roughly nδ in each iteration, so after O(1/δ) iterations, the final set has only a few surviving
mini-claims. The prover can send to the verifier the values of the surviving tree nodes, and the
verify can verify the remaining claims by brute force in nO(δ) time and communication (there is a
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technical issue here: this is a holographic protocol, so we need to reduce these final mini-claims to
claims about the LDE of the (i+ 1)st tree layer).

As in [RRR18], the “reducing” sub-sub-protocol is performed using an interactive proof of
proximity (IPP) [RVW13], where a claim about a large implicit input X (the sequence of yi’s and
zi’s) is reduced to a claim about a subset of X’s bits. We elaborate briefly on how this is done in
our context. We use an IPP where the verifier (on top of having implicit input) has holographic
input, and at the end of the interaction, the verifier outputs a claim about its encoding. We view
the k hash outputs (in layer i) as the implicit input, and the k hash inputs (in layer (i+1)) as the
holographic input. The IPP lets us reduce a claim about a set S of input-output pairs to: (i) a
claim of the same form about a smaller subset of the pairs, and (ii) a holographic claim about the
encoding of the inputs. We “set aside” the holographic claims generated by the IPPs, and at the
end of the protocol we reduce all of them to a single claim about the LDE of the (i+1)st layer. The
reducing sub-sub-protocol has O(1/δ) rounds, nO(δ) communication and verification time, and a
polynomial prover. Rolling these complexities back to the HHR protocol and the template protocol
gives the result claimed in Theorem 1.1.

We remark that there are significant technical hurdles that need to be overcome in the full
construction. The main reason is that we want the reducing sub-sub-protocol to run in only
O(1/δ) rounds. Thus, we can only afford to use (an extension of) the GR protocol for highly-
uniform AC0[⊕] circuits in the IPP.6 Thus, we need to carefully argue that all the computations
being verified can be performed via highly uniform low-complexity circuits. For example, we need to
augment the implicit yi inputs in the IPP with the entire tableau of the hash function’s computation,
so that verification can be in AC0[⊕]. We also need to carefully argue about the structure of the
“global claims” tying together the mini-claims in each iteration, to ensure they can be verified by
a highly-uniform low-depth circuit.

This concludes our high-level sketch of the sub-sub-protocol’s structure, and we direct the reader
to Section 4 for a more detailed overview and the full details.

Organization. Preliminaries and technical definitions are in Section 3. In Section 4, we prove
the HHR protocol. The full proof of Theorem 1.1, that is, a constant-round argument from one-way
functions, is in Section 5. We refer to this proof system as “flat-GKR”, as it essentially “flattens”
the GKR protocol, and performs its consistency checks between circuit layers in parallel, instead
of sequentially.

3 Preliminaries

For a string x ∈ Σn and an index i ∈ [n], we denote by x[i] the ith entry in x. For a set I ⊆ [n],
we use x|I to describe the sequence of entries in x corresponding to coordinates in I, and “◦” for
string concatenation. For a finite field F and a string x ∈ F∗, we use [x]2 for denoting x’s binary
representation. There are many possible representations, and we fix one of them (we formally define
it where it is used). Notice that this representation is an injection from the field F to {0, 1}⌈log(|F|)⌉,
and we do not argue that field operations are preserved under it.

For any pair of distributions, D1 ≡ D2 means that they are identical. We use x ∈R D to
indicate that the element x was drawn uniformly at random from the distribution D.

6In fact, AC0[⊕] isn’t a sufficiently rich for our purposes, so we extend the protocol to apply to constant-depth
arithmetic circuits over large fields with bounded fan-in multiplication gates (see Appendix A.2).
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Let x, y ∈ Σn be two strings of length n ∈ N over a (finite) alphabet Σ. We define the (relative

Hamming) distance of x and y as ∆ (x, y)
def
= |{xi ̸= yi : i ∈ [n]}| /n. If ∆ (x, y) ≤ ε, then we say

that x is ε-close to y, and otherwise we say that x is ε-far from y. We define the distance of x from

a (non-empty) set S ⊆ Σn as ∆ (x, S)
def
= miny∈S ∆(x, y). If ∆ (x, S) ≤ ε, then we say that x is

ε-close to S and otherwise we say that x is ε-far from S. We extend these definitions from strings
to functions by identifying a function with its truth table. For a set S (of size at least 2), take its
minimum distance to be the minimum, over all distinct vectors x, y ∈ S of ∆ (x, y).

3.1 UOWHF and Merkle Tree

Definition 3.1 (UOWHF [NY89]). Let κ be a security parameter, and let {n1i} and {n0i} be two
polynomially related increasing sequences that depend on κ, such that for all i, n0i ≤ n1i. Let Hk
be a collection of functions such that for all h ∈ Hk, h : {0, 1}n1k → {0, 1}n0k .

Let A be a probabilistic poly(κ)-time algorithm that on input 1k outputs x(1) ∈ {0, 1}n1k that
we call an initial value, then given a random h ∈ Hk attempts to find x(2) ∈ {0, 1}n1k such that
h(x(1)) = h(x(2)) but x(1) ̸= x(2). Such an H = Hk is called a family of universal one-way hash
functions (UOWHFs) if for all poly(κ)-time probabilistic algorithms A, the following holds for
sufficiently large k:

1. If x(1) ∈ {0, 1}n1k is A’s initial value, then Pr[A(h, x(1)) = x(2), h(x(1)) = h(x(2)), x(2) ̸=
x(1)] = negl(n1k) where the probability is taken over all h ∈ H and the random choices of A.

2. ∀h ∈ H there is a description of h of length polynomial in n1k , such that given h’s description
and x, h(x) is computable in polynomial time.

3. H is accessible: there exists an efficient algorithm G such that on input 1k, G generates
uniformly at random a description of h ∈ H.

We note that we treat H as a collection of descriptions of functions.

We comment that the uniformity condition that A satisfies will eventually determine the unifor-
mity condition that the prover in the argument system of Section 5 satisfies: If the UOWHFs are
secure against non-uniform adversaries, then the protocol is secure against non-uniform provers,
whereas if the UOWHFs are secure only against uniform adversaries, then the protocol is as well.

As mentioned in the Overview (see Section 2), Rompel gave the first construction of UOWHFs
from arbitrary one-way functions, while Katz and Koo gave the first full proof for Rompel’s con-
struction.

Theorem 3.2 ([Rom90, KK05]). The existence of one-way functions implies the existence of uni-
versal one-way hash functions.

In what follows, we define a Merkle Tree and a valid path in the standard way. Next, we define
a “relaxed” (when comparing to CRHs) security property that a commitment scheme based on a
Merkle tree may satisfy, and we call such a commitment a “2-PLOSC” (Definition 3.5). We show
in Claim 3.6 that instantiating a Merkle tree with a family of UOWHFs results in a 2-PLOSC.
We conclude that the existence of one-way functions suffices for constructing a 2-PLOSC. As was
mentioned in the overview, we stress that this construction is not a “standard” commitment scheme
in the sense that it is not necessarily hiding, and that its security is a “targeted” binding property.
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Construction 3.3 (Merkle Tree). Fix N,nin, nout ∈ N and a finite alphabet Σ. Set7 L = N
nin

, and

let ℓ = ℓ(N,nin, nout) to be defined below. Given a string z ∈ ΣN and functions h1, ..., hℓ : Σ
nin →

Σnout, the Merkle Tree T = T (z, h1, ..., hℓ) is defined in the following manner:

• The tree has ℓ+ 1 layers. The first layer is the root and the last layer is the leaves;

• There are L leaves. For j = 1, ..., L, the jth leaf is denoted by c(ℓ+1,j) and contains

z[(j − 1)nin]...z[j · nin − 1];

• For i ∈ [ℓ], the ith layer is denoted by wi and is created by applying hi on the i + 1st layer:

The jth block in the ith layer is denoted by c(i,j) and contains hi(c(i+1,j)) for j = 1, ..., |wi+1|
nin

;

• The root is denoted by y = h1(c(2,1)), thus w1 = y.

We comment about the indexing of the tree nodes and blocks. As the tree is (nin/nout)-ary, it
is most convenient for us to index “chunks” of nin nodes, which we call a block: namely, for each
fixed tree layer i, the blocks in this layer are indexed as c(i,1), . . . , c(i,M) for M = |wi|/nin. In other
words, each tree node is coupled together with its (nin/nout− 1) siblings. We stress that we do not
give an explicit notation for each tree node, only to blocks of nodes. In particular, this means that
there is no explicit indexing for the image of each block, e.g., for hi(c(i+1,j)), but we will not need
one. In comparison to a binary tree, this indexing is equivalent to coupling each pair of nodes (that
are siblings, i.e., mapped together to the next layer by the hash function) to a block, and index the
block only.

Definition 3.4 (Valid Path). Let N,nin, nout,Σ, L, ℓ and h1, ..., hℓ be as in Construction 3.3. Given
a string y ∈ Σnout and a leaf index q′ ∈ [L], a path p = (p1, ..., pℓ+1) is called a valid path from q′

to y if it satisfies the following properties:

• ∀i ∈ [ℓ+ 1] : pi ∈ Σnin;

• ∀i ∈ [ℓ] : pi = hi(pi+1);

• p1 = y.

Definition 3.5 (2-PLOSC). Let N,nin, nout,Σ, ℓ and h1, ..., hℓ be as in Construction 3.3. Assume
that nout ≪ N . A Second-Preimage Locally Openable Succinct8 Commitment using a Merkle tree
for strings in ΣN is defined via a pair of probabilistic polynomial-time algorithms (S,R) such that:

• Commit Phase:

– S chooses a string z ∈ ΣN ;

– R sends hash functions h1, ..., hℓ : Σ
nin → Σnout;

– S sends a commitment y ∈ Σnout: the (correct) hash root of the Merkle Tree T =
T (z, h1, ..., hℓ).

7We assume that N , as well as any other layer length, is a multiple of nin. This is always possible by padding,
and does not hurt the security since the all-zero string is a fixed string, and therefore the UOWHF security condition
applies to it as well.

8We call this scheme succinct because the output of the commit phase is small.
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• Local-Opening Phase: S outputs an index q ∈ [N ] and an opening of a leaf q′ =
⌈

q
nin

⌉
,

that is, a path p = (p1, ..., pℓ+1).

• Security: For a sufficiently large nin and for all q′ =
⌈

q
nin

⌉
,

Pr
S coins
h1,...,hℓ

[p is a valid path from q′ to y and pℓ+1 ̸= z[(q′ − 1)nin]...z[q
′ · nin − 1]] = negl(nin).

Claim 3.6 (A UOWHF tree is a 2-PLOSC). In the setting of Definition 3.5, if R samples h1, ..., hℓ
uniformly at random from a UOWHFs family9 H : Σnin → Σnout, and nin and N are polynomially
related, then the commitment scheme is secure. In other words, given the functions, the leaves and
the correct root for them, it is impossible for S to find an index and a second valid opening for it.

Proof. Assume towards contradiction that there exist N,nin, nout ∈ N, a finite alphabet Σ and
a PPTM (probabilistic polynomial-time Turing machine) S, such that S’s success probability in
breaking the security of the commitment is some non-negligible function η(nin). As before, set
L = N/nin, and ℓ to be the number of layers. Denote the number of blocks in the tree by N . We
use S to build a PPTM A that breaks the second-preimage resistance of one of the UOWHFs with
some non-negligible probability. A simulates the receiver R in the commitment scheme, and works
as follows:

• A chooses the first preimage:

– It samples10 a block index (i, j) out of all N blocks in the tree (its “guess” for the
location of the collision);

– It interacts with S and they perform the first step of the Commit Phase, in which S
chooses a string z ∈ ΣN ;

– It samples ℓ− 1 function from H : h1, ..., hi−2, hi, ..., hℓ;

– Using hℓ, ..., hi and z, it builds the Merkle Tree T up to its ith layer;

– A declares x(1) = c(i,j) as its initial value.

• A receives the function: a function h is sampled from H and sent to A.

• A computes a second preimage:

– A resumes the interaction with S. Following the second and third steps of the Com-
mit Phase, A sends the hash functions h1, ..., hi−2, h, hi, ...hℓ to S, which sends back a
commitment y;

– They proceed to the Local-Opening Phase: S outputs an index q ∈ [N ] and an opening

of a leaf q′ =
⌈

q
nin

⌉
, that is, a path p = (p1, ..., pℓ+1);

– A declares x(2) = pi as its second preimage.

9Definition 3.1 considers a UOWHF as a Boolean function. Here we allow the functions to be over some finite
alphabet Σ, and the definition is extended in the natural way. In our protocol, however, we take Σ = GF[2].

10We think of the sampling process as follows: A samples a block v ∈ [N ]. It then finds the unique (i, j) to which
v corresponds in the full binary tree, assuming some canonical indexing of the blocks.
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Correctness. Let A’s guess (i, j) and z, h1, ..., hℓ, y, q
′, p be as described above. Notice that

the maximal number of blocks in each layer is L, as the last layer is the longest. We define
τ : [L] × [ℓ + 1] → [L] in the following manner: Given a leaf index j and a layer i, consider the
unique path from the root to the jth leaf. τ(j, i) is the block index of the ith layer that this path
passes through.

We denote by p′ the unique path in T from the root to the leaf in the index q′. It is composed
out of tree blocks, where c(i,ji) is the i

th block, namely:

p′ =
(
c(1,j1), ..., c(ℓ+1,jℓ+1)

)
,

where ∀i ∈ [ℓ+ 1], ji = τ(q′, i). In particular, jℓ+1 = q′ and j1 = 1, hence p′ =
(
c(1,1), ..., c(ℓ+1,q′)

)
.

Our aim is to lower bound the probability that A’s guess is good, namely, that it “hits” a block
on the path that S chose, and that a collision occurs on that block. First, if j ̸= ji (which means
that the block is not on the correct path) then A fails in the security game. Next, we prove that
with probability η(nin), there exists a layer in which there is a collision between p and p′.

We denote by i∗ the first layer in which a collision occurs, and if no such layer exists (i.e., with
probability 1 − η(nin)) then i∗ = ⊥. In order to find this i∗, and by that prove its existence, we
scan the paths layer by layer, from the top layer 1 to the bottom layer ℓ + 1. We notice that if S
outputs a path that is a second opening for q, then pℓ+1 ̸= c(ℓ+1,q′). Thus, it must be that p ̸= p′,
because their last block is different, which implies that there exists i∗ such that pi∗ ̸= c(i∗,ji∗ ) but
hi∗−1(pi∗) = hi∗−1(c(i∗,ji∗ )). These are two different strings that are mapped to the same image
under hi∗−1.

We turn to prove that if i∗ exists, then it is independent of the guess i that A made. We observe
that if h, h1, h2, ..., hℓ are all sampled uniformly at random from H, then

∀i ∈ [ℓ], (h1, h2, ..., hi−2, h, hi, ..., hℓ) ≡ (h1, h2, ..., hi−2, hi−1, hi, ..., hℓ)

This means that the internal behavior of S, as well as its output, is independent of i, because all of
its possible inputs (h1, h2, ..., hi−2, h, hi, ..., hℓ)i∈[ℓ] are sampled from the same distribution. Thus, i
and i∗ are independent.

Together, we get that the probability that A breaks the first property (1) of H is:

Pr
A coins, h

[A(h, x(1)) = x(2), h(x(1)) = h(x(2)), x(2) ̸= x(1)] ≥ Pr[i∗ exists ∧ (i, j) = (i∗, ji∗)] ≥
η(nin)

N
,

where the last inequality follows from the fact that A chooses (i, j) uniformly at random. Since
the number of blocks N is upper bounded by the number of nodes, which in turn is bounded by
2L (as the tree is a full t-ary tree for t = nin/nout, and t > 2), we get that A’s success probability
is at least

η(nin)

2L
=

η(nin)

2N/nout
.

Since nin and N are polynomially related, and nin and nout as well, N/nout is non-negligible in
nin. This implies that η(nin)/2L is a non-negligible function in nin, and we get that A breaks the
security of H.
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Efficiency. The sampling is done efficiently thanks to H’s third property (3). Building T takes
poly(N,nin, log(|Σ|)) · ℓ thanks to H’s second property (2), and finding paths in T is also done
efficiently. Moreover, S was assumed to be a PPTM, and computing τ is equivalent to performing
O(logN) operations of integers in [L]. The number of layers ℓ is upper bounded by logL, since the
arity of the tree is bigger than 2 as noted above. Overall, A operates in poly(N,nin, log(|Σ|)) time,
and thus forms a PPTM.

Remark 3.7 (The alphabet of the UOWHF tree). As already mentioned in Footnote 9, in this
work we will only use Σ = GF[2]. However, the strings that we want to hash — that is, to use as
leaves for the UOWHF tree — are going to be over some finite field F (in particular, we always hash
low degree extensions, defined next). Thus, given some z ∈ FN that we wish to hash, the leaves are
actually going to be [z]2 ∈ {0, 1}N ·log(|F|), and this detail is going to be implicit in what follows.

In this setting, a valid opening may consist of sending log(|F|) paths, one per each bit in the
binary representation of the leaf index (the one to be opened). However, since these bits are con-
secutive in [z]2, and since a block size nin will be bigger than the binary representation of an index
(namely, nin > log(|F|)), an opening will only consist up to two paths. To facilitate the reading, we
also omit this detail, and only refer to a single path per opening, and to leaf indices in [N ].

3.2 Multivariate Polynomials and Low Degree Extensions

We recall some important facts on multivariate polynomials (see [Sud95] for a far more detailed
introduction). A basic fact, captured by the Schwartz-Zippel lemma is that low degree polynomials
cannot have too many roots.

Lemma 3.8 (Schwartz-Zippel Lemma). Let P : Fm → F be a non-zero polynomial of total degree
d. Then,

Pr
x∈Fm

[P (x) = 0] ≤ d

|F|
.

An immediate corollary of the Schwartz-Zippel Lemma is that two distinct polynomials P,Q :
Fm → F of total degree d may agree on at most a d

|F| -fraction of their domain Fm.
Throughout this work, we consider fields in which operations can be implemented efficiently

(i.e., in poly-logarithmic time in the field size). Formally we define such fields as follows.

Definition 3.9. We say that an ensemble of finite fields F = (Fn)n∈N is constructible if elements
in Fn can be represented by O(log(|Fn|)) bits and field operations (i.e., addition, subtraction, mul-
tiplication, inversion and sampling random elements) can all be performed in polylog(|Fn|) time
given this representation.

A well known fact is that for every S = S(n), there exists a constructible field ensemble of size
O(S) and its representation can be found in polylog(S) time using a randomized algorithm (see,
e.g., [Gol08, Appendix G.3] for details). Furthermore, if the ensemble extends GF[2], then the
representation can be found deterministically within this time.
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Low Degree Extension. Let H ⊆ F be (ensembles of) finite fields. Fix an integer m ∈ N. A
basic fact is that for every function ϕ : Hm → F, there exists a unique extension of ϕ into a function
ϕ̂ : Fm → F (which agrees with ϕ on Hm; i.e., ϕ̂|Hm ≡ ϕ), such that ϕ̂ is an m-variate polynomial of
individual degree at most (|H| − 1). Moreover, there exists a collection of |H|m functions {τ̂x}x∈Hm

such that each τ̂x : Fm → F is the m-variate polynomial of degree (|H| − 1) in each variable defined
as

τ̂x(z)
def
=
∏
i∈[m]

∏
h∈H\{xi}

zi − h
xi − h

, (2)

and for every function ϕ : Hm → F it holds that

ϕ̂(z1, ..., zm) =
∑
x∈Hm

τ̂x(z1, ..., zm) · ϕ(x). (3)

The function ϕ̂ is called the low degree extension of ϕ (with respect to F, H and m).
The low degree extension can be viewed as an error correcting code applied to bit strings.

Formally, fix some canonical ordering of the elements in H. For every integer n ∈ N, we identify
the set [n] with the set Hlog|H|(n) by taking the representation of i ∈ [n] in base |H|. Consider the
function LDEF,H : {0, 1}n → F|F|m , where m = log|H|(n),

11 that given a string ϕ ∈ {0, 1}n, views ϕ
as a function ϕ : Hm → {0, 1}, by identifying [n] with Hm as above, and outputs the truth table of
the low degree extension ϕ̂ : Fm → F of ϕ, represented as an |F|m dimensional vector.

We use the notation LDE(ϕ) = LDEF,H(ϕ) or ϕ̂ to denote the unique low degree extension (with
degree (|H| − 1) in each variable) for inputs of varying lengths. That is, m = m(n) is implicitly
taken to be the appropriate number of variables required for any input of length n and a field of
size |H|. Typically, m will be clear from the context and otherwise we define it. Once |H| is set,
there is a unique m for every input length, therefore it is well defined.

Proposition 3.10. Let H ⊆ F be constructible field ensembles. There exists a Turing machine that
on input x ∈ Hm, runs in time O(m · |H|2) and outputs the polynomial τ̂x : Fm → F defined above,
represented as an arithmetic circuit over F.

Moreover, the arithmetic circuit τ̂x is an O(log n)-highly uniform circuit (see Definition 3.17)
of size O(m · |H|2), and there exists a Turing machine with the above time bound that given an
input pair (x, z) ∈ Hm × Fm outputs τ̂x(z).

Proof Sketch. The proof follows from the definition of τ̂x in Equation (2), and the fact that H and
F are constructible. First, let us assume that H is an extension field of GF[2]. There exists an
arithmetic O(|H|)-size circuit whose input is two field elements and output is 0 if they are equal
and 1 otherwise. For a fixed i ∈ [m], we locate “in parallel” |H| copies of this circuit to get a circuit
that compares xi ∈ H to any of H’s elements. Then, using m multiplication gates with fan-in 2
that are connected to gates computing (zi − h)h∈H for zi ∈ F (notice that, due to our additional
assumption, addition and subtraction are equivalent over F) and to the output of these |H| copies,
we get an O(m · |H|)-size circuit that computes the product∏

h∈H\{xi}

(zi − h).

11We assume n is a power of |H|, otherwise we can pad the input with zeros.
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Observe that for every i ∈ [m], ∏
h∈H\{xi}

(xi − h)−1 =
∏

h∈H\{0}

h,

namely, the product of all invertible (non-zero) elements is also the product of the inverses of
all invertible elements. Since the latter can be computed in size H, these m gates (one per each
i ∈ [m]) can be computed in size (m · |H|). Overall, the size of the circuit is O(m · |H|2). Its
uniformity follows from the same arguments used in the proof of Claim 3.22. In order to get rid of
the assumption that H extends GF[2], one has to replace each subtraction gate with two gates: the
first is a multiplication gate that computes the additive inverse of the second term, by multiplying
it with the additive inverse of 1, and the second is an addition gate that sums this result with
the first term. Notice that this transformation can only increase the circuit’s size or depth by a
constant factor, and does not hurt its uniformity.

Proposition 3.11. Let H ⊆ F be constructible field ensembles. Let ϕ : Hm → F and suppose that
ϕ can be evaluated by a Turing machine in time t. Then, there exists a Turing machine that, given
as an input a point z ∈ Fm, runs in time |H|m ·O(m · |H|2) +O(t) and outputs the value ϕ̂(z).

Proof. The Turing machine computes

ϕ̂(z) =
∑
x∈Hm

τ̂x(z) · ϕ(x)

by generating and evaluating τ̂x(z) as in Proposition 3.10.

In certain cases, we need to split a claim about the low degree extension of multiple strings into
multiple claims about the low degree extension of each one of them. A natural way of doing so is
to leverage the fact that the low degree extension is a tensor code.

In detail, given strings ϕ1, ..., ϕk of varying lengths, denote by ϕ′ the longest one and denote its
length by n′. Take m such that |H|m ≥ n′ and place all inputs in an |H| × |H|m matrix, where the
ith row contains ϕi and empty cells are filled with zeros.12 As before, interpret every row of the
matrix as a function Hm → F (an m-variate polynomial of degree-(|H| − 1) in each variable), and
each column as a function H→ F (a degree-(|H|− 1) univariate polynomial). Apply the low degree
extension on each row and each column to get an |F| × |F|m matrix.

Notice that the probability that a uniformly random element of the matrix r′ ∈ Fm+1 resides
in the first |H| rows is |H|/|F|. Otherwise, the value at r′ depends on all low degree extensions
of ϕ1, ..., ϕk: It is a linear combination of them and one may split a claim about the value of
LDE(ϕ1, ..., ϕk)[r

′] to k claims about ϕ̂1, ..., ϕ̂k, using Equation (3). Namely, there exists coefficients
α1, ..., αk ∈ F and a coordinate r ∈ Fm such that

LDE(ϕ1, ..., ϕk)[r
′] = α1 · LDE(ϕ1)[r] + ...+ αk · LDE(ϕk)[r]. (4)

The following proposition shows how to use this property in the interactive setting: namely, that
there exists an interactive reduction from the (m+1)-dimensional claim to k m-dimensional claims
that outputs their k coefficients as described in Equation (4).

12Actually, it may be the case that k > |H|, and then we need to perform the same process more than one time,
i.e., where the elements of the matrix are vectors or matrices themselves, instead of field elements. In our usages,
however, it always holds that k < |H|.
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Proposition 3.12. Let (r′, v′) ∈ Fm+1×F be a claim about the low degree extension LDE = LDEF,H
of k ≤ |H| strings (ϕ1, ..., ϕk), namely, LDE(ϕ1, ..., ϕk)[r

′] = v′. Set r to be the projection of r′ on
{0} × Fm. Then, there exists an interactive protocol between a prover and the verifier, such that
the verifier outputs k values v1, ..., vk ∈ F and k coefficients α1, ..., αk ∈ F that satisfy

LDE(ϕ1, ..., ϕk)[r
′] = v′ ⇐⇒

k∧
i=1

(αi · LDE(ϕi)[r] = vi).

The verifier runs in time O(|H|2 ·
∑k

i=1m(|ϕi|)), the prover runs in time O(|H|2 ·
∑k

i=1m(|ϕi|) · |ϕi|),
the communication complexity is k ·log(|F|) and the number of rounds is 1/2 (i.e., a single message).

Proof. The prover computes vi = LDE(ϕi)[r], for every i ∈ [k], and sends these values to the
verifier. This takes O(|H|2 ·

∑k
i=1m(|ϕi|) · |ϕi|) time. The verifier checks that v′ =

∑k
i=1 vi, and

otherwise rejects. If this test passed, it outputs the received values v1, ..., vk, together with the
coefficients α1, ..., αk ∈ F that it computes. Notice that the ith coefficient αi can be found in time
O(m(|ϕi|) · |H|2) due to Proposition 3.10.

Soundness follows from the fact if the original claim (r′, v′) was false, then either at least one
of the alleged claims (r, vi) is false, or the sum of v1, ..., vk is not equal to v′.

We comment that it may be that only one of these coefficients is non-zero, in the case that
r′[1] ≤ |H|. The aforementioned reduction is still correct, but we have not gained anything. We
further comment that if the verifier is able to compute one of the values vi on its own, it can
certainly do so and subtract the result from v′ (instead of subtracting the alleged value for vi that
the prover provides). Of course, this change does not hurt the soundness of the reduction.

Next, the following claim implements the standard interactive process of reducing the task of
proving many claims about the low degree extension of a string to the task of proving a single claim
about it. The high level idea is to consider a low degree curve passing through all the points that
the verifier wishes to read. The prover specifies the values for all the points on the curve and the
verifier outputs a random point on the curve and its alleged value. Soundness follows from the fact
that composing a low degree curve with a low degree polynomial results in a low degree univariate
polynomial.

Claim 3.13 (Reducing the number of claims). Fix some input w and a set of t claims, denoted
(χi, θi)i∈[t] ∈ (Fm×F)t, about LDEF,H(w) = ŵ. Then, for every ε ∈ (0, 1], there exists an interactive
protocol that outputs a single claim (χ, θ) such that:

• Completeness. If ∀i ∈ [t], ŵ[χi] = θi, then ŵ[χ] = θ.

• Soundness. If ∃i ∈ [t] such that ŵ[χi] ̸= θi, then, for every prover strategy, with probability
1− (m · |H| · tε)/(ε · |F|) over the verifier coin tosses, it holds that ŵ[χ] ̸= θ.

The prover runs in time poly(|F|m), the verifier runs in time ((1/ε) ·m · |H| · t1+ε · log(|F|)), the
communication complexity is ((1/ε) ·m · |H| · t1+ε · log(|F|)) and the number of rounds is 1/ε.

Proof. We split the set (χi, θi)i∈[t] into t
1−ε “batches” of size at most tε each. We run the following

process on each of the batches, and repeat applying it on the results for 1/ε iterations:
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1. Let (ρi)i∈[tε] ∈ Ftε be some canonical set of distinct fixed elements known to the prover and
to the verifier. For each batch (χi, θi)i∈[tε], let γ : F→ Fm be the unique degree-(tε−1) curve
that passes through the batch of points (χi)i∈[tε], such that ∀i, γ(ρi) = χi. The prover sends
the function ŵ ◦ γ : F→ F to the verifier.

2. Upon receiving a function f : F → F from the prover (supposedly, f = ŵ ◦ γ), the verifier
checks that f is a polynomial of degree m · (|H| − 1) · (tε− 1), and that ∀i, f(ρi) = θi. If these
tests pass, then the verifier chooses a random element ρ ∈ F and sends it to the prover.

3. The prover and the verifier continue to the next iteration, such that the batch (χi, θi)i∈[tε]
was reduced to the single claim (γ(ρ), f(ρ)).

Completeness is trivial. For soundness, imagine a tε-ary tree, where each internal node repre-
sents a claim that is the result of the foregoing process when applied to its children. The leaves
represent the original claims (χi, θi)i∈[t]. Assume that the ith claim is false, i.e., that ŵ[χi] ̸= θi,
and assume that for some cheating prover strategy, the probability that the output claim is correct
is s. That is,

s = Pr[ŵ[χ] = θ].

Observe that the ith leaf represents a false claim but the root represents a correct claim, and
consider the unique path that connects the root and the ith leaf. There must exist some node in
this path that represents a correct claim, but at least one of its children represents a false claim.
We focus on the interactive process that is applied to these children. In this process, the only way
for the prover to pass the tests in Step (2) is by sending a function f such that f ̸= ŵ ◦ γ but
f(ρ) = (ŵ ◦ γ)(ρ). This implies that f and ŵ ◦ γ are two distinct polynomials of degree at most
m · (|H| − 1) · (tε − 1), and thus by the Schwartz-Zippel Lemma (see 3.8), we get that

Pr[f(ρ) = ŵ ◦ γ(ρ)] ≤ m · (|H| − 1) · (tε − 1)

|F|
≤ m · |H| · tε

|F|
.

By a Union Bound over all 1/ε nodes in the path, we get that

s ≤ m · |H| · tε

ε · |F|
.

Notice that sending or evaluating a polynomial over F with (total) degree at most m · (|H| − 1) ·
(tε−1) takes m · (|H|−1) · (tε−1) · log(|F|) < m · |H| · tε · log(|F|) bits or time. To conclude, observe
that there are at most t/(tε − 1) ≤ t/ε nodes in the tree and that there are 2/ε messages, and the
other complexity measures follow by construction.

3.3 Circuit Classes, Uniformity and Succinct Descriptions

Ensembles of Boolean and arithmetic circuits play an important role in many of our protocols.
Throughout this work, circuit ensembles {Cn}∞n=1 are indexed by an integer n. We do not (neces-
sarily) take n to be the n-th circuit’s input length: an ensemble is an arbitrary sequence of circuits of
non-decreasing input lengths. We usually refer to the input length by ninput = ninput(n) (where the
case ninput = n, which is the more common use in the literature, is a special case). We can refer to
the language computed by a circuit ensemble, which is the set {(n, x) : x ∈ {0, 1}ninput (n)

∧
Cn(x) =
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1}∞n=1. We measure circuit complexity as a function of the index n (rather than the input length).
For example, in an ensemble of polynomial-size circuits, the n-th circuit Cn can have size poly(n)
even if the input x is say of length O(log(n)). Separating the index n from the input length allows
us to tie together several different circuits of varying input lengths that are used in our protocol.
Throughout our work, the circuit’s input length will be at most polynomial in n (but it can be
smaller than n, even logarithmic), i.e. ninput(n) ≤ poly(n).

For pair languages (or triplet languages), we take the lengths of the various inputs to also be a
function of n. For example, for inputs of the form (x, y), where x is an explicit input and y is an
implicit input, we have ninput(n) = |x|+ |y| = nexp(n) + nimp(n).

Boolean and arithmetic circuits. Throughout this work we refer to several circuit classes, and
the languages they can compute. AC0 circuits are ensembles of Boolean circuits with polynomial
size, constant depth, and unbounded fan-in. AC0[⊕] circuits also allow parity gates of unbounded
fan-in. NC1 circuits are Boolean circuits of logarithmic depth and constant fan-in. Probabilistic cir-
cuits are also allowed to use random coins as part of their input. We also refer to the corresponding
complexity classes of languages (or functions) computable by circuits of each type (i.e. the classes
AC,AC0[⊕],NC1), where in defining the complexity classes we restrict to ensembles where the input
length is ninput = n.

We make extensive use of arithmetic circuits over a field F: #AC0
F,fin circuits are constant-depth

arithmetic circuits, with addition and multiplication gates over the field F, where addition gates
have unbounded fan-in, but the fan-in of multiplication gates is bounded by fin(n) (typically nσ

for a small constant σ). Probabilistic arithmetic circuits are allowed to use random coins as part of
their input.13 We also refer to the corresponding complexity class #AC0

F,fin of arithmetic functions
computable by such circuits with input length ninput = n.

We sometimes use arithmetic circuits to compute Boolean functions:

Definition 3.14 (Arithmetic circuit computing a Boolean function). An arithmetic circuit Ĉ on
ninput inputs computes a Boolean function f : {0, 1}ninput → {0, 1} if for every Boolean input,

the circuit outputs 1 if and only if f(x) = 1. If f(x) = 0, then we allow Ĉ to output any field
element that is not 1 (we remark that in some of the arithmetic circuits we use to compute Boolean
functions, it will be the case that they output 0 when f(x) = 0, but this will not always be the case).

We say that a circuit ensemble {Ĉn} computes an ensemble of Boolean functions {fn} if the
above condition holds for every integer n.

Uniformity and succinct descriptions. Circuit uniformity plays an important role in our
protocols: specifically, in a protocol for verifying the output of a large circuit, the verifier (whose
running time is smaller than the circuit size) needs to have a succinct implicit description of the
circuit. There are different notions of uniformity that have been studied in this context. The most
flexible notion of uniformity that we consider in this work is log-space uniformity, where there
should exist a log-space Turing machine that, on input 1n, outputs the entire circuit Cn.

For several of our protocols, we need to utilize more fine-grained or restrictive uniformity no-
tions. Following the formalization in [GR20], we consider the complexity of a succinct (implicit)
representation of the circuit. We consider two such representations:

13Unless otherwise noted, we assume the random inputs to a randomized arithmetic circuit are each drawn uniformly
and i.i.d. from {0, 1}.
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• An adjacency predicate that indicates, for a pair of gates u and v, whether gate u is fed by
gate v.

• An incidence function that indicates, for a gate u and an index i, the identity of the i-th gate
that feeds gate u (by convention, the value 0 indicates that the gate has fewer than i gates).

Notice that when these representations are Boolean (rather than arithmetic), they are referred
to as Boolean formulas, which extends the standard definition of a Boolean formula, since the
incidence function is vector-valued: We refer to any Boolean circuit as a Boolean formula as long
as each of its internal gates have fan-out 1, or, in other words, if each of its output bits can be
computed by a (standard) Boolean formula.

In all cases, we assume that the circuit (Boolean or arithmetic) is layered: gates at layer (i− 1)
are fed only by gates in layer i, where layer i consists of all gates at distance i from the output
gate(s). This also means that each layer contains all of the constant gates (which are moved from
layer to layer), rather than only the input layer: in case of Boolean circuits, these are 0 and 1, and in
case of arithmetic circuits, these are all of the elements of F. Following [GR20], and without loss of
generality, we make several simplifying assumptions. For Boolean circuits, we assume that for each
layer i, all gates in that layer have the same functionality. For AC0[⊕] circuits, we assume that there
are no negation gates (only addition and parity gates). Moreover, for #AC0

F,fin circuits, we allow
addition and multiplication gates, and we assume that for each layer i, all gates are of the same type
(addition or multiplication). See [GR20] for a more thorough discussion of these assumptions and
why they can be made without loss of generality. Finally, we assume that claims about the LDE
of a circuit’s input layer are only about the actual input to the circuit, rather than on the constant
gates as well. In all of the interactive protocols that we use in this work, this assumption can be
justified using Proposition 3.12 (in particular, see the comment after the proposition: the verifier
can compute on it own the values of the low-degree extension that correspond to the constant
gates). The cost in the complexity measures will be immaterial in all cases.

We say that a circuit is highly uniform if the appropriate function (adjacency predicate or
incidence function) can be represented by a sufficiently small formula, where this formula itself can
be constructed (and evaluated) by a Turing machine whose running time is bounded. In some of
our results we use circuits where constructing the above formula requires a short advice string. A
circuit is s-succinct (and highly uniform) if there is an s-bit advice string s.t. when this advice
string is fed to a Turing machine it outputs the formula computing the adjacency predicate or
incidence function. Intuitively, the verifier in an interactive protocol will need to run this Turing
machine (with the appropriate advice string) to compute the formula and evaluate it on various
inputs.

For Boolean circuits, we only require a formula as above for computing the adjacency predicate:

Definition 3.15 (Succinct and highly uniform Boolean circuit). An ensemble {Cn} of Boolean
circuits is s(n)-succinct and highly uniform if there exists a Turing machine M and an ensemble
{an} of s(n)-bit advice strings, such that on input (n, an) the Turing machine M runs in time
(s1+o(1) ·no(1)) and outputs a formula of size (s1+o(1) ·no(1)) that computes the circuit Cn’s adjacency
predicate.

If s(n) = 0, i.e. the advice is empty, we simply say that {Cn} is highly uniform.

For arithmetic circuits, we require a formula as above for the adjacency predicate of addition
gates. For multiplication gates, we need a formula for computing the incidence function. We
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emphasize that even though the circuits are arithmetic, the adjacency predicate and the incidence
function are Boolean formulas (the incidence function is a vector-valued Boolean function).

Definition 3.16 (Succinct and highly uniform arithmetic circuits). An ensemble {Cn} of arithmetic
circuits over fields {Fn} is s(n)-succinct and highly uniform if there exists a Turing machine M
and an ensemble {an} of s(n)-bit advice strings, such that on input (n, an) the Turing machine M
runs in time (s1+o(1) · no(1)) and outputs two Boolean formulas of size (s1+o(1) · no(1)). The first
formula computes the adjacency predicate for the circuit Cn’s addition gates. The second formula
computes the incidence function for the circuit Cn’s multiplication gates.

If s(n) = 0, i.e. the advice is empty, we simply say that {Cn} is highly uniform.

In addition to bounding the size of the Boolean formulas that compute the circuit’s adjacency
predicate or incidence function, one may also want to bound their degree, when viewing them as
arithmetic circuits over GF[2]. Notice that an arithmetic representation of these functions is not
necessarily the result of a direct arithmetization of a Boolean formula; rather, any small arith-
metic circuit over GF[2] that computes these functions can satisfy the definition. This alternative
requirement will be useful in bounding the soundness error of the HIPP of Theorem 3.26.

Definition 3.17 (Succinct and d(n)-highly uniform circuits). An ensemble {Cn} of Boolean (resp.,
arithmetic) circuits is s(n)-succinct and d(n)-highly uniform if there exists a Turing machine M
and an ensemble {an} of s(n)-bit advice strings, such that on input (n, an) the Turing machine M
runs in time (s1+o(1) · no(1)) and outputs an arithmetic circuit over GF[2], of size (s1+o(1) · no(1))
and degree at most d(n), that computes the circuit Cn’s adjacency predicate (resp., another circuit
for computing Cn’s incidence function, analogously to Definition 3.16).

Using the approximation method of Razborov [Raz87] and Smolensky [Smo87], Goldreich and
Rothblum [GR20] show that highly uniform Boolean AC0[⊕] circuits can be approximated by highly-
uniform probabilistic arithmetic #AC0

F,fin circuits:

Theorem 3.18 (Approximating AC0[⊕] circuits via #AC0
F,fin [GR20]). Let L be a language that is

computable by an ensemble of s(n)-succinct and d(n)-highly uniform AC0[⊕] circuits {Cn}. Then
for any field F and integer-valued function λ(n) ≤ n, there exists an ensemble of s(n)-succinct
and d(n)-highly uniform probabilistic #AC0

F,fin circuits {Ĉn} of size (|Cn| · λ(n) · no(1)) where
fin = O(log(|Cn|) + λ(n)) and for every input x ∈ {0, 1}n:

Pr
Ĉn’s coins

[
Ĉn(x) ̸= Cn(x)

]
≤ 2−λ(n).

The number of random coins used by the circuit Ĉn is O((λ(n) + log |Cn|) · log(n)). We refer to
these random coins as the seed.

We remark that here the approximation is strong, in the sense that the arithmetic circuit’s
output agrees with the Boolean output w.h.p. (thus, it is stronger than our default notion of
Definition 3.14, because it always outputs 0 when Cn(x) = 0 instead of an arbitrary field element
that is not 1). On the other hand, it is weaker than an arithmetic circuit that computes a Boolean
function, as the approximation is probabilistic.

We also emphasize that the fan-in of the multiplication gates in the resulting circuits is loga-
rithmic (in the size of the circuit and the inverse of the error probability). This is in contrast to
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the straightforward arithmetization (replacing AND gates with multiplications), where the fan-in
would be polynomial. Another important aspect of this theorem is that even though we do not
have a small and low-degree arithmetic circuit for the incidence function of the AC0[⊕] circuit, we
can get such a small circuit for computing the incidence function of the #AC0

F,fin circuit’s multi-
plication gates. Moreover, the degree of the adjacency predicate for the circuit’s addition gates is
not increased by more than a logarithmic factor under this transformation.

Remark 3.19. In the interactive proof setting, the choice of the seed when using the foregoing
theorem is made by the verifier: It uniformly selects it and sends it to the prover. Moreover, in
order to get rid of the completeness error that this randomized reduction carries, at the end of the
interaction the prover needs to send a message that indicates if the random string was “good” (and
convince the verifier otherwise in case it is not). This only adds a single round of communication
(a single verifier message and a single prover message), whereas it increases the communication
only by O((λ(n) + log |Cn|) · log(n)) bits.

Succinct functions and sets. We next define a notion of succinct representation of functions.
Loosely speaking, a function f , which can be Boolean or arithmetic over a field F, has an s-succinct
d-highly uniform representation if it can be computed by circuits in a low complexity class that are
also s-succinct and d-highly uniform circuits (see Definitions 3.15, 3.16 and 3.17). In particular,
this means that there is an s-bit string ⟨f⟩ that describes f . The actual definition requires that the
circuit computing f reside in AC0[⊕] (for Boolean functions) or #AC0

F,fin (for arithmetic functions):

Definition 3.20 (Succinct Description of Functions). A Boolean function f has an s(n)-succinct
d(n)-highly uniform description if it can be computed by an s(n)-succinct and d(n)-highly uniform
ensemble of AC0[⊕] circuits. We use ⟨f⟩ to refer to the succinct description of f (the advice string
in Definition 3.15).

An arithmetic function f has an s(n)-succinct d(n)-highly uniform description if it can be
computed by an s(n)-succinct and d(n)-highly uniform ensemble of #AC0

F,fin circuits. We use ⟨f⟩
to refer to the succinct description of f (the s(n)-bit advice string in Definition 3.16).

When d(n) is not specified, we say that f has an s(n)-succinct description if it can be computed
by an s(n)-succinct and highly uniform ensemble. Note that by Theorem 3.18, any s(n)-succinct
Boolean function f can also be viewed as a s(n)-succinct arithmetic probabilistic function f̂ , where
for every input in {0, 1}∗, f and f̂ agree w.h.p.

We also define succinct representation for sets A ⊆ [n]. Roughly speaking, this means that there
is a succinct function that can be used to efficiently compute a list of A’s elements. To facilitate
efficient computation and uniformity, the formal definition is somewhat more involved: it allows
the list to have the elements of A in arbitrary order and with multiplicities.

Definition 3.21 (Succinct Description of Sets). An ensemble {An} of sets has an s(n)-succinct
d(n)-highly uniform description as a list of length q(n) if there exists an ensemble of s(n)-succinct
and d(n)-highly uniform AC0[⊕] circuits {CA,n}, where CA,n maps indices in [q(n)] (given in binary
representation) to elements in [m(n)], such that for every value of n, the following holds: Let vA be
the q(n)-dimensional vector whose ith entry is the output of CA,n on input i, then the set of distinct
elements in vA exactly equals An.

We refer to ⟨A⟩ as the succinct representation of A (the s(n)-bit advice string in Definition
3.15). We refer to [m(n)] as A’s domain, of size m(n).
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As in Definition 3.20, when d(n) is not specified, the ensemble {CA,n} should be highly uniform.
Note that each element of A must appear at least once in vA, but if q > |A| then elements of A can
appear more than once (indeed, at least one element must appear multiple times). We remark that
the circuit mapping indices in [q] to elements in A can be used (in parallel) to compute the entire
list. This blows up the circuit size by a multiplicative factor of q (but doesn’t increase the depth
or worsen the uniformity). Finally, the formula computing the adjacency predicate of the circuit is
of size proportional to the description s (which can be much smaller than |A|).

Compared to the definition of succinct description of sets in [RRR18, Definition 2.2], that
definition is more straightforward, as it allows NC1 circuits. Since we require that the circuit that
outputs the elements of A is an AC0[⊕] circuit, we need a more flexible definition.

Binary representation of field elements. Take F = {f0, ..., f|F|−1}, where f0 = 0 and f1 = 1.
If F is an extension field of GF[2], then field elements can be represented as polynomials with binary
coefficients with degree at most (log(|F|)−1). We define the (log(|F|))-bit vector of coefficients as the
binary representation of an element, such that each bit in the bit string corresponds to the coefficient
in the polynomial at the same position. The following claim shows that this representation can be
computed by highly-uniform circuits. Its proof can be found in Appendix A.4.

Claim 3.22. Let F be an extension field of GF[2]. The binary representation of a field element can
be computed in O(log n)-highly uniform #AC0

F,fin with multiplication gates of fan-in |F|.

3.4 HIP and HIPP

In this work, we build several proof-systems of a special type, called a Holographic Interactive Proof
(HIP) — a notion formally defined in the work of Gur and Rothblum [GR17]. A HIP is defined
similarly to a standard interactive proof, except that the verifier, rather than being given access
to the main input explicitly, outputs a claim about the encoding of the input. Thus, the input
is called holographic. The hope is that the redundancy provided by the encoding will allow the
verifier to run in sublinear time.

As a matter of fact, it turns out that for some codes (specifically the low degree extension),
reading just a single point r from the encoded input suffices for the verifier (we later implement
this idea in Claim 3.13). Thus, we restrict our attention to such protocols. Furthermore, in order
to facilitate composition, rather than having the verifier actually read the (encoded) input at the
point r, the verifier outputs a claim about the point, i.e., it outputs r together with a value v that
it would have expected to see, had it actually queried the (encoded) input at r.

We generalize the definition for pair languages. On input (x, z), we interpret x as the explicit
input and z as the holographic input. The prover gets them while the verifier only gets (x, |z|).
The claim about the encoding of the input is only about the holographic input z.

We focus on HIPs with respect to the low degree extension encoding (which is formally defined
in Section 3.2), thus the definition we provide is only for this family of codes.

Definition 3.23 (Holographic Interactive Proof (HIP)). Fix finite fields H ⊆ F and a low degree
extension encoding LDE = LDEF,H.

A Holographic Interactive Proof for a pair language L, with respect to the low degree extension
LDE, is an interactive protocol with two parties: a (computationally unbounded) prover P and a
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computationally bounded verifier V. Both parties get as input x ∈ {0, 1}nexp . The prover also gets
z ∈ {0, 1}nhol whereas the verifier only gets |z| = nhol .

At the end of the interaction, either the verifier rejects or it outputs a coordinate r ∈ Fm(nhol ),
and a value v ∈ F, such that:

• Completeness. If (x, z) ∈ L and the prover honestly follows the protocol, then LDE(z)[r] = v.

• Soundness. If (x, z) /∈ L, then for any (unbounded) cheating prover, with probability at least
1/2 over the verifier’s coins, LDE(z)[r] ̸= v.

In the setting of holographic proofs of proximity, we consider a triplet language L with inputs
of the form (x, y, z). As in the HIP definition, x is the explicit input and z is the holographic input.
The input y is implicit; it is an auxiliary information that the prover gets, while the verifier only
gets query access to (but never gets explicit access to or outputs a claim about). In the case that
L represents an NP relation, we think of y as the NP witness for the membership of (x, z) in the
underlying NP language.

Loosely speaking, we say that an IPP (or a holographic IPP) is oblivious if the verifier makes
all its queries to y non-adaptively at the end of the interaction. Put differently, we eliminate its
query access to y, and instead the verifier specifies some query set Q of bits from y and a predicate
ψ, that captures the conditions that would make it not reject (and to output a claim (r, v) about
the encoding of the holographic input, in the holographic case). On input (x, y, z), the probability
that the verifier does not reject and outputs ψ such that ψ(yQ) = 1, is related to the distance of y
from the set L(x, z) = {y′ : (x, y′, z) ∈ L}: if y ∈ L(x, z), then this probability is 1, whereas if y is
ε-far from L(x, z), then this probability is at most 1/2.

For technical considerations in our proof, we actually require that the verifier generates succinct
descriptions of Q and ψ (see Definitions 3.20 and 3.21 for the precise technical definition of succinct
descriptions of functions and sets). This allows the verifier to run in time that is sublinear in the
sizes of Q and ψ. We proceed with the formal general definition, that does not require Q or ψ to
be succinct:

Definition 3.24 (Oblivious Holographic IPP). Fix finite fields H ⊆ F and a low degree extension
encoding LDE = LDEF,H.

An Oblivious Holographic IPP (oblivious HIPP) for a triplet language L, with respect to the low
degree extension LDE, is an interactive protocol with two parties: a (computationally unbounded)
prover P and a computationally bounded verifier V. Both parties get as input x ∈ {0, 1}nexp and
a proximity parameter ε > 0. The prover also gets y ∈ {0, 1}nimp and z ∈ {0, 1}nhol whereas the
verifier only gets (|y| = nimp , |z| = nhol ).

At the end of the interaction, either the verifier rejects or it outputs: (1) a coordinate r ∈ Fm(nhol )

and a value v ∈ F; (2) a description ⟨Q⟩ of a set Q ⊆ [nimp ] of size q and a description ⟨ψ⟩ of a
predicate ψ : {0, 1}q → {0, 1}, such that:

• Completeness. For every triplet (x, y, z) ∈ L and proximity parameter ε > 0 it holds that

Pr[V does not reject, ψ(yQ) = 1 and LDE(z)[r] = v] = 1.

• Soundness. For every ε > 0, (x, z) ∈ {0, 1}nexp × {0, 1}nhol and every a priori fixed y that
is ε-far from the set {y′ : (x, y′, z) ∈ L}, and for every computationally unbounded (cheating)
prover P∗ it holds that

Pr[V does not reject, ψ(yQ) = 1 and LDE(z)[r] = v] ≤ 1/2.
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The query complexity of an oblivious holographic IPP is q, the size of the set Q, and the commu-
nication complexity is the number of bits exchanged between V and P. We say that the IPP has an
efficient prover strategy if the honest prover strategy P can be implemented in polynomial time.

In order to prove Lemma 4.6 (see Section 4.4), which is our main technical tool, we utilize an
idea from the work of Reingold et al. [RRR18] who used known IPP protocols to achieve batch
verification for UP languages. There, they introduced and studied the notion of Interactive Witness
Verification (IWV). We comment that an IPP for a pair language (resp., Oblivious IPP), in which
the holographic input is empty, is a strict generalization of an IWV (resp., Oblivious IWV).

The first difference, as its name suggests, is that an IWV is only defined for an NP relation,
rather than for any pair (or triplet) language. In other words, the input satisfies the relation if
and only if the implicit input is the NP witness of the explicit input. The second difference is that
a general IPP depends on the distance, i.e., the probability that the verifier accepts depends on
the distance of the implicit input from the language induced by the explicit and the holographic
inputs: if the implicit input is in the language, then this probability is 1, whereas if it is far from
it, then this probability is at most 1/2. In contrast, in an IWV, the verifier rejects w.h.p. for any
fixed false witness, regardless of its distance from a valid NP witness for the input.

We avoid defining or using IWV protocols, as they did, since our usage requires using the
holographic version of these. Thus, instead, we use the more generalized form of holographic IPPs
for triplet languages.

3.5 Constant-round HIPs and HIPPs for AC0[⊕] and #AC0
F,fin

Constant-Round HIP. The following result is derived from the constant round interactive proof
of Goldreich and Rothblum [GR20].

Theorem 3.25 (Constant-round HIP for AC0[⊕], #AC0
F,fin [GR20]). Let δ ∈ (0, 1] be a constant,

and let H ⊆ F be (ensembles of) extension fields of GF[2], where |Hn| = Θ(nδ) and |Fn| = poly(n).
Let L be a pair language with input length ninput = nexp + nhol ≤ poly(n) that can be computed:

• either in s(n)-succinct and d(n)-highly uniform AC0[⊕], with circuit size O(nC), circuit depth
D = O(1), and succinct description length s(n) ≤ n,

• or in s(n)-succinct and d(n)-highly uniform #AC0
F,fin , with circuit size O(nC), circuit depth

D = O(1), succinct description length s(n) ≤ n, and multiplication gate fan-in fin = O(nδ).

There is a holographic interactive proof (HIP) for L with respect to the low degree extension
LDEF,H (see Definition 3.23) with the following complexity measures:

• the number of rounds is O(D · C/δ),

• the communication complexity is (nO(δ) · s(n)1+o(1)),

• the verifier, who gets the s(n)-bit string describing the circuit as an additional explicit input,
runs in time (nO(δ) · (s(n)1+o(1) + nexp)),

• the prover, who gets explicit access to all inputs (including the string describing the circuit)
runs in time poly(n),
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• the HIP has perfect completeness, and the soundness error is (nO(δ) · d/|F|).

See Appendix A.2 for a review of the construction (there are some technical differences from
the protocol and presentation in [GR20]). The result is shown for #AC0

F,fin circuits, that may be
vector-valued. In this case, all output wires equal 1 if and only if the input is in the language, and
this generalization is possible at the same cost as for a single output (see Remark A.1).

The result for AC0[⊕] circuits follows using the approximation method (Theorem 3.18).

Constant-round HIPP. Our protocols make use of a constant-round holographic oblivious IPP
for languages that are computable in highly uniform AC0[⊕] or #AC0

F,fin . In particular, this IPP is
used to construct the reduction HIP (Preduction,Vreduction), in Lemma 4.4.

In what follows, we use the uniformity Definitions 3.15 and 3.16 for triplet languages. In order
to do so, we interpret the second and third input for a triplet language as the second input for a
pair language.

Theorem 3.26 (Constant-round HIPP for AC0[⊕], #AC0
F,fin [RVW13]). Let δ ∈ (0, 1] be a constant,

and let H ⊆ F be (ensembles of) extension fields of GF[2], where |Hn| = Θ(nδ) and |Fn| = poly(n).
Let L be a triplet language where triplets (x, y, z) have lengths ninput = |x|+ |y|+ |z| = nexp+nimp+
nhol ≤ poly(n). Suppose that L is computable:

• either in s(n)-succinct and d(n)-highly uniform #AC0
F,fin , with circuit size O(nC), circuit

depth D = O(1), succinct description length s(n) ≤ n, and multiplication gate fan-in fin =
O(nδ),

• or in s(n)-succinct and d(n)-highly uniform AC0[⊕], with circuit size O(nC), circuit depth
D = O(1), and succinct description length s(n) ≤ n.

Then, for every ε = ε(nimp) > 0 there exists an oblivious holographic ε(n)-IPP for L with
respect to the low degree extension LDEF,H with the following complexity measures:

• the query complexity to the implicit input is q = ( 1
ε(nimp)

)1+o(1),

• the number of rounds is r = O(D · C/δ),

• the communication complexity is cc =
(
(ε(nimp) · nimp) · nO(δ) · s(n)1+o(1)

)
,

• the verifier, which gets the s(n)-bit string describing the circuit as an additional explicit input,
runs in time nO(δ) ·

(
(ε(n) · n) · s(n)1+o(1) + nexp

)
,

• the honest prover, who gets explicit access to all inputs (including circuit description string)
runs in time poly(n),

• the HIPP has perfect completeness and soundness error ρ = (nO(δ) · d/|F|).

As noted above, the IPP is oblivious: the verifier interacts with the prover without querying
the implicit input y (or the holographic input z). At the end of interaction, the verifier either
rejects or it outputs a claim about the value of a single coordinate in the low-degree extension of
the holographic input z, and a claim about the implicit input y, which is described by:
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1. an nδ+o(1)-succinct O(log n)-highly uniform description ⟨Q⟩ of the query set Q ⊆ [nimp ] as a
list of length q (see Definition 3.21). Moreover, the function mapping an index i ∈ [q] to a
query location in [nimp ] can be computed by circuits of size nδ+o(1),

2. an nδ+o(1)-succinct O(log n)-highly uniform description ⟨ψ⟩ of the arithmetic predicate ψ :
{0, 1}q → F (see Definition 3.20), computed by a #AC0

F,fin circuit of size (q ·nδ+o(1)) over the
field F, where fin = O(log n).

The HIPP’s output claim about the implicit input is that ψ(y|Q) = 1

We stress that the depths of the circuits for Q and ψ are independent of δ. See Appendix A.3 for
a review of the [RVW13] construction and the details for the highly-uniform succinct representation
of Q and of ψ. As above, the result is shown for #AC0

F,fin circuits. The result for AC0[⊕] circuits
then follows using the approximation method (Theorem 3.18).

4 The Protocol for LHHR

We define the language LHHR (stands for Holographic Hash Root), with respect to the definition of
a hash root from Construction 3.3.

Definition 4.1 (HHR). The language LHHR is parameterized by an ensemble (F,H)n, that defines
the low degree extension encoding LDE = LDEF,H, by the integers (nin, nout, nh,M)n, and by a
family of functions H : {0, 1}nin → {0, 1}nout. Take ℓ+ 1 to be the number of layers in the Merkle
Tree (see Construction 3.3) whose leaves are LDE(w),14 with respect to H.

The explicit input to the language is h = h1 ◦ ...◦hℓ, the concatenation of the length-nh descrip-
tions of ℓ functions chosen from H, and a string y ∈ {0, 1}nout. The holographic input is a string
w ∈ {0, 1}M .

YES instances of the language are all triplets
(
w, (y, h)

)
such that y is the correct hash root of

LDE(w) with respect to h.

The following section is devoted to constructing a HIP for LHHR, whose properties are specified
in the theorem below. For soundness, we emphasize that, as in any HIP, the guarantee holds only
if the entire string w is fixed before the protocol begins, although the verifier never accesses it.

Theorem 4.2. Let δ ∈ (0, 1] be a constant, and let H ⊆ F be (ensembles of) extension fields of
GF[2], where |Hn| = Θ(nδ) and |Fn| = poly(n). Fix a low degree extension encoding LDE = LDEF,H.
Set (nin, nout, nh,M)n = (n2δ, nδ, nO(δ), poly(n)).

The language LHHR as defined in Definition 4.1 has a HIP (PHHR,VHHR) between a prover and
a verifier, where the explicit input is y ∈ {0, 1}nout and h ∈ {0, 1}ℓ·nh, and the prover also gets the
holographic input w ∈ {0, 1}M . The output of the protocol is a coordinate r ∈ Fm and a value v ∈ F
such that:

• Completeness. If
(
w, (y, h)

)
∈ LHHR and the prover honestly follows the protocol, then

LDE(w)[r] = v.

• Soundness. If
(
w, (y, h)

)
/∈ LHHR, then for any (unbounded) cheating prover, with probability

at least (1− nO(δ)/|F|) over the verifier’s coins, LDE(w)[r] ̸= v.

14We refer to LDE(w) as the leaves of the tree, although it is not a binary string. See Remark 3.7 for details.
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• Complexity. The verifier runs in time nO(δ), the (honest) prover runs in time poly(n), the
number of rounds is O(1/δ3) and the communication complexity is nO(δ).

4.1 Parameter Setting

For any δ ∈ (0, 1] and n ∈ N, we take H ⊆ F to be an extension field of GF[2], such that |H| = Θ(nδ)
and |F| = poly(n).15 Define

nin = n2δ, nout = nδ,

and a security parameter κ = nδ.16 Followed by Definition 3.1, we take k to be the smallest integer
such that n1k = nin and n0k = nout. We use a UOWHF family that is secure against polynomial
time adversaries (i.e., poly(κ) = poly(n)), such that the time it takes to compute each function is
poly(κ) = nO(δ). Note that if OWFs exist, then there exist UOWHFs satisfying these properties.

Once the fields are set, the length of |LDEF,H(w)| = |LDE(w)| for |w| = M is set, and we can
find ℓ: It is the unique solution to the equation(

nout
nin

)ℓ−1

· |LDE(w)| = nout,

and this implies that (nδ)ℓ = |LDE(w)|, thus ℓ = lognδ(|LDE(w)|). We get that ℓ = O(1/δ) for
all M = poly(n), as |LDE(w)| = poly(M). In fact, due to Remark 3.7, the length of the leaves is
actually (log(|F|) · poly(M)), but this is still poly(n).

4.2 The Protocol

The protocol uses an interactive protocol (Pi,Vi) that is implemented in Section 4.3.

The LHHR Protocol (PHHR, VHHR)
Explicit Input: y ∈ {0, 1}nout , h ∈ {0, 1}ℓ·nh .
Holographic Input: w ∈ {0, 1}M .

1. The prover PHHR creates the Merkle tree with LDE(w) as leaves and h as the functions,
as in Construction 3.3. The tree has ℓ + 1 layers. Each layer is denoted wi, where
w1 = y and wℓ+1 = LDE(w). The LDE of each layer is denoted ŵi.

2. The verifier VHHR samples an index r1 ∈R Fm and sends it to PHHR. Then, it sets
v1 = ŵ1[r1] = LDE(y)[r1].

3. For i = 1, ..., ℓ:

(a) PHHR and VHHR run (Pi,Vi) on explicit input (ri, vi) and holographic input wi+1.

(b) If Vi rejects then VHHR immediately rejects. Otherwise, if Vi outputs (ri+1, vi+1),
then PHHR and VHHR use this claim for the next iteration.

Output: a claim (r, v) = (rℓ+1, vℓ+1) about LDE(w) = wℓ+1.
a

15In fact, |F| can be taken to be a very small polynomial, not much bigger than |H| (see Section A.2.1). Notice
that while H is a subset of F, and they both extend GF[2], H is not necessarily a subfield of F.

16We comment that we could take κ to be even smaller, i.e., nε for ε < δ, however taking κ = nδ is sufficient.
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aThe claim (rℓ+1, vℓ+1) is indeed about wℓ+1, rather than about ŵℓ+1 (see Remark A.2).

4.3 Constructing the Layer-to-Layer Subprotocol

For the rest of this section we fix some layer i ∈ [ℓ]. Our goal is to construct a constant-round HIP
(Pi,Vi) that reduces the task of verifying that

ŵi[ri] = vi,

to the task of verifying that
ŵi+1[ri+1] = vi+1,

where ri+1 ∈ Fm (for m = m(|wi|) = ⌈log|H|(|wi|)⌉) is a random value determined by the verifier,
and vi+1 is a value determined by the protocol. Since the protocol operates sequentially on blocks
of wi and wi+1, it will be convenient to use the following notation:17

wi = y1, ..., yk for |yp| = nout,

and
wi+1 = z1, ..., zk for |zp| = nin,

for k = k(i) = |wi+1|/nin. As noted in Construction 3.3, we assume k is an integer (otherwise, we
pad the inputs in a suitable way).

The only exception is the bottom layer of the tree, since unlike any other layer, its extension is
also hashed. For this layer, we denote

ŵℓ+1 = LDE(w) = z1, ..., zk for |zp| = nin,

i.e., we view its extension as divided into blocks, instead of wℓ+1 = w itself. The relation between
the blocks is, as expected,

∀(i, p) ∈ [ℓ]× [k] : hi(zp) = yp. (5)

For any fixed i ∈ [ℓ], this equation defines a batching relation, as it performs the same computation
for k times. Although the blocks of the bottom layer ŵℓ+1 are actually over the field F, we think
of them as binary strings (we use their binary representation), and thus the whole tree is binary,
and the functions are all Boolean. This technical detail is addressed in Remark A.2.

Next, we present the layer-to-layer subprotocol. Its correctness is stated and proved in Lemma 4.6.
Before doing so, a few remarks are in order.

First, the protocol uses a sequence of predicates (ψj)j∈[ℓ′]. All of them are arithmetic circuits
that compute linear combinations of the bits of their inputs, and compare the result to given values.
We further discuss their structure in Section 4.4.1, and formally define them in Appendix A.3.

Secondly, we emphasize that when the protocol begins, Pi has the ith layer (yp)p∈[k] = wi, as
it is invoked by PHHR who has full access to wi. In the first step of the protocol, Pi computes the
tableaux of the computations (hi(zp) = yp)p∈[k], denoted (Tp)p∈[k]. Each yp will be augmented with
the corresponding Tp, and the predicates will operate on subsets of (yp, Tp)p∈[k].

17Note that y1, ..., yk and z1, ..., zk depend on the layer i ∈ [ℓ]. For the sake of simplicity, this dependence is not
captured in our notations.
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Moreover, we take the number of iterations ℓ′ to be the maximal integer such that the size of
the witnesses that are left before each iteration would be at least |H| but at most O(|H|), i.e.,

|H| ≤ |y1 + T1| · k1−(ℓ′−1)·δ ≤ c · |H|

for some constant c ≥ 1. In particular, ℓ′ ≤ 1/δ + 1.
We further comment that when i = ℓ, i.e., when the protocol outputs the claim (rℓ+1, vℓ+1)

about the bottom layer of the tree, then this claim is about the layer itself, rather than about its
low degree extension (or about its binary representation), as it is already given as a low degree
extension (see Remark A.2).

The layer-to-layer subprotocol (Pi,Vi)
Explicit Input: hi ∈ {0, 1}nh , ri ∈ Fm, vi ∈ F.
Holographic Input: (zp)p∈[k] ∈ ({0, 1}nin)k.

1. Pi computes (Tp)p∈[k], the tableaux of the computations (hi(zp) = yp)p∈[k].

2. Both parties set ⟨S1⟩ to be an nδ+o(1)-succinct description (with an empty advice) of
the set S1 = [k] as a list of length k, and ⟨ψ1⟩ to be an nδ+o(1)-succinct description of
the arithmetic circuit that is defined as ψ1 ((yp, Tp)p∈S1) = 1 ⇐⇒ LDE(wi)[ri] = vi.

3. For j = 1, ..., ℓ′ − 1:

(a) Run (Preduction,Vreduction) on explicit input (hi, ⟨Sj⟩, ⟨ψj⟩), holographic input
(zp)p∈Sj and with respect to parameter qj = sj · k−δ, where sj is the size of
the set Sj .

a More specifically, Vi emulates Vreduction and Pi emulates Preduction,
and maintains full access to (yp, Tp)p∈Sj .

(b) If Vreduction rejects then Vi immediately rejects. Otherwise Vreduction outputs
⟨Sj+1⟩ and ⟨ψj+1⟩, as well as a claim (χj , θj) about (zp)p∈Sj .

4. Pi sends to Vi the pairs (yp, Tp)p∈Sℓ′ , while Vi expands ⟨Sℓ′⟩ to a full description of the
list that represents the set Sℓ′ , and ⟨ψℓ′⟩ to a full description of the function ψℓ′ . Then,
Vi runs two tests:

(a) Checks that ψℓ′
(
(yp ◦ Tp)p∈Sℓ′

)
= 1.

(b) Pi and Vi run the constant-round HIP of Theorem 3.25 on holographic input
(zp)p∈Sℓ′ and explicit input (hi, (ỹp, T̃p)p∈Sℓ′ ) to check that ∀p ∈ Sℓ′ , T̃p is the
correct tableau for the computation hi(zp) = ỹp.

b The protocol ends with a claim
(χℓ′ , θℓ′) about (zp)p∈Sℓ′ .

5. Pi and Vi run the constant-round HIP of Theorem 3.25 on holographic input (zp)p∈[k]
and with respect to the advice strings (⟨Sj⟩)j∈[ℓ′] to verify the set of claims (χj , θj)j∈[ℓ′].

c

The protocol ends with a claim about (zp)p∈[k], denoted (ri+1, vi+1), and the protocol
outputs it.

aTechnically, it is the length of the list that represents the set Sj . It holds that sj = qj−1, where q0 = k.
bWe denote this relation as Rℓ′ and define it in Section 4.4.1.
cThe claims are also considered as a part of the advice for the circuit on which the HIP runs. The full

specification of the circuit is defined in Section 4.4.1.

32



Remark 4.3. As already done in the protocol statement, throughout this section we abuse notation
and do not distinguish between the set Sj and the list that represents it. That is, (zp)p∈Sj indicates
the sequence of holographic inputs according to the order of the list that represents the set Sj, rather
than according to the set Sj itself, that has no order and no multiplicities. The same is true with
respect to (yp, Tp)p∈Sj .

We start with an overview of the protocol.

4.3.1 Protocol Overview

We fix i ∈ [ℓ] and restate the goal of the layer-to-layer subprotocol (as stated at the beginning of
the section) in terms of (yp)p∈[k] and (zp)p∈[k]. The protocol reduces two computations:

1. an input claim (ri, vi) about ŵi[ri], that is, a claim about the low degree extension of (yp)p∈[k];

2. the relation described in Equation (5), with respect to (yp)p∈[k] and (zp)p∈[k],

to an output claim (ri+1, vi+1) about the low degree extension of (zp)p∈[k], that is, a claim about
ŵi+1. Since the protocol is holographic, its input is divided into an explicit input and holographic
input. The claim (ri, vi), together with the description of the function hi, is the explicit input to
the protocol. The sequence (zp)p∈[k] is the holographic input; and, indeed, the protocol outputs a
claim about the low degree extension of (zp)p∈[k]. We comment that the sequence (yp, Tp)p∈[k] is
not an input to the protocol; rather, it is an auxiliary information that the prover has full access
to and may use. The verifier does not have access to (yp, Tp)p∈[k] and never uses it.

The layer-to-layer subprotocol is inspired by the UP batching protocol of [RRR18] (see Theorem
4.1 in that work). Our protocol assumes the existence of a HIP (Preduction,Vreduction), that runs
recursively on a subset S ⊆ [k] of the input-output pairs (zj , yj). The first iteration is instantiated
with the set S1 = [k] and with a predicate ψ1 such that ψ1 ((yp, Tp)p∈S1) = 1 ⇐⇒ LDE(wi)[ri] = vi,
and they form the explicit input to the reduction protocol. The holographic input is (zp)p∈S1 . When
the reduction protocol ends, either the verifier rejects or it outputs a subset S2 ⊂ S1 and a predicate
ψ2 computed by the protocol, such that |S2| = k1−δ for a suitable constant δ > 0. Moreover, it
outputs a claim (χ1, θ1) about (zp)p∈S1 . The protocol guarantees that if ψ1 ((yp, Tp)p∈S1) = 0, then
w.h.p. either ψ2 ((yp, Tp)p∈S2) = 0 or (χ1, θ1) is a false claim (i.e., that LDE ((zp)p∈S1) [χ1] ̸= θ1).

The claim (χ1, θ1) is kept aside until the end of all iterations. Notice that at this point, we are
in better shape than where we started, because the computation that needs to be verified refers
to a smaller (holographic) input. (S2, ψ2) are the explicit input to the second iteration, and the
holographic input is narrowed down to (zp)p∈S2 . When it ends, once again if the verifier does not
reject, then it outputs a subset S3 ⊂ S2, a predicate ψ3 and a claim (χ2, θ2) about (zp)p∈S2 , such
that |S3| = k1−2δ, and the soundness guarantee is defined analogously.

After (ℓ′ − 1) = O(1/δ) iterations, if the verifier does not reject, then we are left with a set Sℓ′

that contains only a few elements out of the holographic input, and with a predicate ψℓ′ . With high
probability, it holds that ψ1 ((yp, Tp)p∈S1) = 1 if and only if ψℓ′

(
(yp, Tp)p∈Sℓ′

)
= 1 and (χj , θj)j∈[ℓ′−1]

are all correct claims about the holographic input.
The verifier cannot check the result of ψℓ′ by itself, although Sℓ′ is small, since it does not have

any access to (yp, Tp)p∈Sℓ′ . Nor it can check the consistency between (yp, Tp)p∈Sℓ′ and (zp)p∈Sℓ′

(namely, that hi(zp) = ỹp for every p ∈ Sℓ′ and that T̃p is the correct tableau for this computation),
because it does not have explicit access to (zp)p∈Sℓ′ , rather, only holographic access. A natural
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solution is asking from the prover to send over (yp, Tp)p∈Sℓ′ . After that, the verifier can check

that the alleged (ỹp, T̃p)p∈Sℓ′ satisfy ψℓ′ , and that they are consistent with the holographic input
(zp)p∈[k]. The latter check is performed by executing another holographic IP, that (interactively)
reduces this task to a single claim about the holographic input, that the protocol outputs. In fact,
the task of verifying the set of claims (χj , θj)j∈[ℓ′−1] that we kept so far is also taken into account
in this reduction.

To conclude the overview, we demistify one last technical detail, regarding the representation
of the sets. Both the implicit and the holographic inputs in each iteration are ordered according
to a list that represents the set Sj (see Definition 3.21). We note that the reduction protocol does
not output (descriptions of) ordered lists. Rather, each Sj ⊆ [k] is represented by a list of indices
in an arbitrary order (determined by the protocol, or in particular, by the verifier’s coin tosses),
and moreover, this list may have multiplicities. Sorting this list and eliminating multiplicities
indeed gives the set Sj , but the verifier cannot do this by itself, as this list may be as long as k.
Nevertheless, the succinctness condition that all of these sets satisfy promises that the verifier is
able to delegate the task of “sorting” these lists, and indeed this is also taken into account in the
holographic IP that we run in the last step.

4.4 Proving the Layer-to-Layer Subprotocol

Roadmap for Section 4.4. Theorem 3.26 presented the HIPP used in the layer-to-layer sub-
protocol, that is applicable to any sufficiently uniform triplet language. We use this HIPP to
instantiated Lemma 4.4, that implements the HIP (Preduction,Vreduction). After we prove the cor-
rectness of the reduction subprotocol, we use it in Lemma 4.6 to prove the correctness of the
layer-to-layer subprotocol (Pi,Vi). Finally, in Section 4.4.1, we prove that the relations on which
we applied the HIPP indeed satisfy the required uniformity conditions.

First, let us formally define the “batching” relation RS , which is the relation that the HIPP
built in Theorem 3.26 is going to work on. For that, we first formally define R, the batching relation
of Equation (5). Since we do not want to assume anything about hi, and, in particular, that it is
computable in AC0, we augment the relation with the tableau of hi’s computation. This is captured
by the relation R:(

(hi, z), (y, T )
)
∈ R ⇐⇒ hi(z) = y and T is the correct tableau for computing hi(z) = y. (6)

Loosely speaking, although R ∈ P, it can be viewed as a UP-relation that checks the validity of a
hash value y, given a string z and a function hi. That is, y is considered the correct witness for
(hi, z) if and only if hi(z) = y. As already mentioned, we augment the witness y with the tableau
T of the computation hi(z) = y, in order to reduce the complexity of the verification to AC0. We
stress that the tableau is unique, thus every (hi, z) has only one unique witness. The complexity
and uniformity conditions that R has to satisfy are proved in Claim 4.7 in Section 4.4.1.

Next, we turn to define RS . We generalize the definition of an NP relation for inputs of the
form (x, z), and witnesses y. We think of x as some additional information that may be common
to many different pairs (z, y). Taking x to be empty gives a standard NP relation.

Fix two descriptions ⟨S⟩, ⟨ψ⟩ of a set S and a predicate ψ as described above. For a (generalized)
NP relation R, we consider a related (generalized) NP relation RS , viewed as a triplet language and
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defined as:

RS
def
=
{( explicit︷ ︸︸ ︷
x, ⟨S⟩, ⟨ψ⟩,

implicit︷ ︸︸ ︷
(yp)p∈S ,

holographic︷ ︸︸ ︷
(zp)p∈S

)
: ∀p ∈ S,

(
(x, zp), yp

)
∈ R and ψ((yp)p∈S) = 1

}
. (7)

We defer the uniformity proof of RS to Section 4.4.1 as well (see Claim 4.8 there).
The following lemma is a generalization of Lemma 4.1.1 in [RRR18], in the sense that it uses a

HIPP instead of an IWV, and builds a HIP instead of an IP. The lemma corresponds to a single step
in reducing the number of statements. Loosely speaking, this step shows an interactive protocol,
where if we start with a false claim about a subset of the k UP statements, then at the end of the
protocol, with high probability, we will have a false claim about a smaller subset of the statements.
This step is where we rely on the existence of the oblivious HIPP for sufficiently uniform AC0 triplet
language. For an NP relation with input of the form (x, z) and witnesses y, we use the HIPP in
the natural way: x is the explicit input, z is the holographic input and y is the implicit input. As
mentioned earlier, Lemma 4.4 can be instantiated with any such HIPP. The HIP is derived almost
directly from the HIPP, and this lemma takes care of the technical details that arise when using
the HIPP for constructing a batching HIP.

Lemma 4.4. Let δ ∈ (0, 1] be a constant, and let H ⊆ F be (ensembles of) extension fields of
GF[2], where |Hn| = Θ(nδ) and |Fn| = poly(n).

Let L be a triplet language with input of length ninput = nexp+nimp+nhol , where ninput ≤ poly(n).
Suppose that if L is computable by an ensemble of nδ+o(1)-succinct and O(log n)-highly uniform
AC0[⊕] or #AC0

F,fin circuits with fin = O(nδ), then for every parameter q, L has an oblivious HIPP
with respect to the low degree extension LDE = LDEF,H with the following complexity measures:

• the proximity parameter is ε(ninput) = nδimp/q,

• the number of rounds is r = r(nexp , nimp , nhol , δ),

• the communication complexity is cc = cc(nexp , nimp , nhol , q),

• the verifier, which gets the nδ+o(1)-bit string describing the circuit as an additional explicit
input, runs in time Vtime = Vtime(nexp , nimp , nhol , q),

• the honest prover, who gets explicit access to all inputs (including circuit description string)
runs in time Ptime = Ptime(nexp , nimp , nhol , q),

• the HIPP has perfect completeness and soundness error ρ = ρ(nexp , nimp , nhol , q),

such that the query set Q ⊆ [nimp ] that the HIPP generates has an nδ+o(1)-succinct O(log n)-highly
uniform description ⟨Q⟩ as a list of length q, where the function mapping an index i ∈ [q] to a
query location in [nimp ] is computed by circuits of size nδ+o(1); and, the predicate ψ : {0, 1}q → F,
which represents the claim about the implicit input, has an nδ+o(1)-succinct O(log n)-highly uniform
description ⟨ψ⟩ and is computed by a #AC0

F,fin circuit of size of size (q ·nδ+o(1)), where fin = O(nδ).

Let R be a UP relation computable in nδ-succinct and O(log n)-highly uniform AC0[⊕], with
inputs of the form (x, z) and witnesses y. There exists a HIP between a prover Preduction and a
verifier Vreduction with respect to the same low degree extension LDE, such that the following holds.
The explicit input is x and nδ+o(1)-succinct descriptions ⟨S⟩ that satisfies the uniformity condition
described above, and ⟨ψ⟩ that describes a #AC0

F,fin circuit, where fin = O(nδ). The holographic input
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is zS = (zp)p∈S. In addition, the prover Preduction also gets access to the witnesses yS = (yp)p∈S.
The two parties interact and at the end of the interaction Vreduction either rejects or it outputs:

1. an nδ+o(1)-succinct O(log n)-highly uniform description ⟨S′⟩ of a set S′ ⊆ S as a list of length
q, where the function mapping an index i ∈ [q] to a query location in S is computed by circuits
of size nδ+o(1);

2. an nδ+o(1)-succinct O(log n)-highly uniform description ⟨ψ′⟩ of the predicate ψ : {0, 1}q·nimp →
F, computed by a #AC0

F,fin circuit of size (q · nδ+o(1) + Õ(nimp)), where fin = O(nδ);

3. a claim (χ, θ) about LDE(zS) = ẑS;

such that:

• Completeness. If (x, zp, yp) ∈ R for all p ∈ S, and ψ(yS) = 1, then, with probability 1, after
interacting with Preduction, the verifier Vreduction outputs ⟨S′⟩, ⟨ψ′⟩, (χ, θ) such that

ψ′(yS′) = 1,

and
ẑS [χ] = θ.

• Soundness. If either (1) there exists p ∈ S such that R(x, zp) = ∅, or (2) (x, zp, yp) ∈ R for
all p ∈ S but ψ(yS) = 0, then, for every prover strategy P∗

reduction, with probability 1−ρ, after
interacting with P∗

reduction, the verifier Vreduction either rejects or outputs ⟨S′⟩, ⟨ψ′⟩, (χ, θ) such
that one of the following holds:

1. ∃p ∈ S′ such that R(x, zp) = ∅; or
2. ψ′(yS′) = 0; or

3. ẑS [χ] ̸= θ.

• Complexity. Taking nexp = |x| + |⟨S⟩| + |⟨ψ⟩| + |ξ|, nimp = s · |y1| and nhol = s · |z1| and
ε = nδimp/q, the protocol holds the same complexities of the HIPP.

Proof. Fix δ,H,F as stated above. Let R be a UP relation computable in nδ-succinct O(log n)-highly
uniform AC0[⊕], with inputs of the form (x, z) and witnesses y.

Let RS be as defined in Equation (7). By Claim 4.8, RS is computable by an ensemble of
nδ+o(1)-succinct and O(log n)-highly uniform #AC0

F,fin circuits with fin = O(nδ). Therefore, by
the lemma’s hypothesis, there exists an oblivious HIPP (PIPP ,VIPP ) for RS , where we set the
proximity parameter to be ε = nδimp/q.

As mentioned in Remark 3.19, the first message of the HIPP is a random seed of length polylog(n)
that the verifier uniformly selects. Then, both parties follow the protocol, and at the end the prover
sends an additional message. This change does not increase the communication complexity of the
HIPP, nor hurts its soundness or the parties’ running time, but we still include its length as a part
of the explicit input to RS , on which we run the HIPP. However, for simplicity, we omit it when
we consider the input to RS .

We use (PIPP ,VIPP ) to construct a protocol (Preduction,Vreduction) as required in the theorem’s
statement. The verifier Vreduction and the prover Preduction run (PIPP ,VIPP ) with respect to the
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explicit input (x, ⟨S⟩, ⟨ψ⟩), the holographic input zS = (zp)p∈S and the implicit input yS = (yp)p∈S
(recall that Preduction has full access the witnesses).

If VIPP rejects then Vreduction immediately rejects. Otherwise, VIPP outputs the descriptions
⟨Q′⟩ and ⟨ψ′

int⟩ where Q′ ⊆ S × [nimp ], of size q, specifies which bits to read from each of the
witnesses included in yS , while ψ

′
int : {0, 1}q → {0, 1} is a predicate specifying whether VIPP would

have accepted had it read those bits. Let S′ ⊂ S denote the witnesses that Q′ refers to, and let
ψ′ : {0, 1}q·nimp → {0, 1} be the predicate that gets the q chosen witnesses entirely and returns the
same answer that ψ′

int returns on their appropriate subset of size q. Moreover, VIPP outputs a
claim (χ, θ) about ẑS . Overall, the verifier Vreduction outputs ⟨S′⟩, ⟨ψ′⟩ and the claim (χ, θ).

Succinctness of S′. Without loss of generality, we assume that k and nimp are powers of 2.
This means that for every coordinate r ∈ {0, 1}log k+log(nimp) (the representation of a coordinate in
Q′ ⊆ [k]× [nimp ]), the first log k bits indicate which witness r refers to, and the other bits indicate
the locations to read from the witness in this index.

Since Q′ has an nδ+o(1)-succinct O(log n)-highly uniform description ⟨Q′⟩ as a list of length q, there
exists an nδ+o(1)-succinct and O(log n)-highly uniform AC0[⊕] circuit CQ′ that maps indices in [q]
to elements in S × [nimp ], and fully describes Q′ (see Definition 3.21). By the assumption, CQ′ is
of size nδ+o(1)

We describe a circuit Cchop that works as follows: on input r ∈ {0, 1}log k+log(nimp), it returns the
first log k bits of r. It is immediate that Cchop is an O(log n)-highly uniform AC0[⊕] circuit, and of
size smaller than nδ+o(1).

The circuit CS′ composes CQ′ and Cchop, by relabeling the input gates for Cchop to be the output
gates of CQ′ , and using ⟨Q′⟩ as its advice string (i.e., ⟨S′⟩ = ⟨Q′⟩). Following the same arguments
from the proof of Claim 4.8, this implies that the circuit CS′ is an nδ+o(1)-succinct O(log n)-highly
uniform AC0[⊕] circuit of size nδ+o(1), that maps indices in [q] to elements in S, such that the
definition for succinct sets is satisfied. We conclude that S′ has an nδ+o(1)-succinct O(log n)-highly
uniform description as a list of length q.

Uniformity of ψ′. Recall that ψ′
int : {0, 1}q → {0, 1} has an nδ+o(1)-succinct O(log n)-highly

uniform description ⟨ψ′
int⟩ and is computed by a #AC0

F,fin circuit of size (q · nδ+o(1)), where fin =

O(nδ). Take Cψ′
int

to be that circuit.

The circuit Cψ′ uses as advice the concatenation of the advice of Cψ′
int

and the advice of Q′ (i.e.,

⟨ψ′⟩ = ⟨ψ′
int⟩ ◦ ⟨Q′⟩). First, it uses ⟨Q′⟩ in order to construct the circuit CQ′18 as described above.

In runs q copies of it in parallel, where it feeds the jth copy with the constant j. Recall that the
witnesses that are the input to Cψ′ are ordered by S′, therefore if the output of the circuit CQ′ on
j is (j, i) ∈ S × [nimp ], then yj [i] is exactly the jth input of Cψ′

int
(where these indices are given in

binary). In order to feed Cψ′
int

with the ith bit of the jth witness, we use the circuit Cselect described
next. Although this circuit is arithmetic, it only works on Boolean values, and this fact is crucial
in its construction.

Given a string y and an index i ∈ {0, 1}log |y| = {0, 1}log(nimp), the circuit Cselect returns yi. This
circuit Cselect is already built in Section 4.4.1, and we use it with |z1| = 1 and k = nimp . The circuit
Cselect is an O(log(nimp))-highly uniform #AC0

F,fin circuit of size Õ(nimp), where fin = log(nimp).
Since ninput ≤ poly(n), in particular log(nimp) = O(log n).

18By that, we mean that the machine that construct this circuit uses this advice string.
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Next, Cψ′ uses ⟨ψ′
int⟩ in order to construct the circuit Cψ′

int
. As mentioned earlier, it is #AC0

F,fin
circuit of size (q · nδ+o(1)), where fin = O(nδ). The circuit Cψ′ connects the jth input of Cψ′

int
to

be the output of Cselect(yj , i). The relabeling of the gates and the composition of the adjacency
predicates and incidence functions is done in the natural way, as described in Claim 4.8.

Since |⟨ψ′⟩| = |⟨ψ′
int⟩| + |⟨Q′⟩| = 2nδ+o(1) = nδ+o(1), we conclude that ψ : {0, 1}q·nimp → F has an

nδ+o(1)-succinct description ⟨ψ′⟩ and that it is computed by an O(log n)-highly uniform #AC0
F,fin

circuit of size (q · nδ+o(1) + Õ(nimp)), where fin = O(nδ), as stated.

We comment that the depths of CS′ and Cψ′ are some global constants independent of δ, since by
the assumption, CQ′ and Cψ′

int
satisfy this property as well.

Completeness. Let zS be a sequence of holographic inputs, and let x be an explicit input together
with a set S ⊆ [k] and a circuit ψ. Let be a random seed ξ, and assume that there exists a unique
yS such that (zp, yp) ∈ R for all p ∈ S and ψ(yS) = 1. The HIPP is run with respect to an input(
(x, ⟨S⟩, ⟨ψ⟩, zS), yS

)
∈ RS and ξ. Thus, by the completeness of the HIPP and Remark 3.19, with

probability 1, it holds that ψ′(yS′) = 1 and that ẑS [χ] = θ.

Soundness. Fix a seed ξ. According to Theorem 3.18, with probability at most 2− log2 n (recall
that in Claim 4.8 we took the error function to be λ(n) = log2 n), it holds that ξ is not a good seed
for approximating one of the circuits which compose C∧R. Taking a Union Bound over these q ≤ n
circuits that we approximate, we get an error probability of at most n · 2− log2 n = o(1). Therefore,
with probability 1− o(1), the seed is a good choice for the circuit which computes RS . In the rest
of the analysis, we assume that the verifier was not extremely unlucky and that this event does not
happen.

Suppose that either there exists p ∈ S such that R(x, zp) = ∅, or ψ(yS) = 0. Let P∗
reduction be

a cheating prover strategy. To show that the soundness condition holds, it suffices to prove the
following claim:

Claim 4.5.

Pr[(∀p ∈ S′, R(x, zp) ̸= ∅) and (ψ(yS′) = 1) and (ẑS [χ] = θ)] ≤ ρ.

Proof. First, we observe that the assumption implies that RS(x, ⟨S⟩, ⟨ψ⟩, zS) = ∅: If ∃p ∈ S such
that R(x, zp) = ∅, then the first condition for membership in RS is violated, and if ψ(yS) = 0, then
the second condition for membership in RS is violated.

For every p ∈ S, if R(x, zp) ̸= ∅ then define ȳp = yp (i.e., the unique witness for (x, zp)), whereas if
R(x, zp) = ∅ then define ȳp as some arbitrary fixed string (e.g., 0nimp ).

We view P∗
reduction as an adversary for the oblivious HIPP, with respect to the a priori fixed witness

string ȳS = (ȳp)p∈S . By the soundness condition of the HIPP, it holds that:

Pr[ψ′(ȳS′) = 1] ≤ ρ.

For all p ∈ S, we have that if R(x, zp) ̸= ∅ then yp = ȳp. Thus,

Pr[(∀p ∈ S′, R(x, zp) ̸= ∅) and (ψ′(yS′) = 1) and (ẑS [χ] = θ)] ≤
Pr[(ψ′(ȳS′) = 1) and (ẑS [χ] = θ)] ≤ ρ,

and the claim follows.
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Complexity. The stated complexity follows from the complexity of the HIPP run on a relation
RS , when setting ε = nδimp/q, which yields:

• nexp = |x|+ |⟨S⟩|+ |⟨ψ⟩|+ |ξ|,
• nimp = |yS | = s · |y1|,
• nhol = |zS | = s · |z1|.

Finally, using the aforementioned results, we are ready to prove the correctness of the layer-to-
layer subprotocol (Pi,Vi).

Lemma 4.6. Let

explicit
input︷ ︸︸ ︷

hi, ri, vi,

holographic
input︷ ︸︸ ︷

(zp)p∈[k],

witnesses︷ ︸︸ ︷
(yp, Tp)p∈[k] be as described above, and let δ > 0 be a constant.

The interactive protocol (Pi,Vi) presented in Protocol 4.3 has the following properties:

• Completeness. If ŵi[ri] = vi, then, with probability 1, after interacting with Pi, the verifier
Vi outputs (ri+1, vi+1) such that ŵi+1[ri+1] = vi+1.

• Soundness. If ŵi[ri] ̸= vi, then for every prover strategy P∗
i , with probability (1−nO(δ)/|F|),

after interacting with P∗
i , the verifier Vi either rejects or outputs (ri+1, vi+1) such that ŵi+1[ri+1] ̸=

vi+1.

• Complexity. The verifier runs in time nO(δ) · (k2δ + 1), the (honest) prover runs in time
poly(n, k), the number of rounds is O(1/δ2) and the communication complexity is nO(δ) · (k2δ + 1).

Proof. Let (Preduction,Vreduction) be the protocol guaranteed by Lemma 4.4, with respect to the
UP relation R and the HIPP of Theorem 3.26. In detail, in the jth iteration of the protocol, for
j ∈ [ℓ′−1], we use (Preduction,Vreduction) for the relation RS as defined in Equation (7), with respect
to R as defined in Equation (6). We use the parameter qj = sj · k−δ, where sj is the length of
the list that represents the set Sj . This means that the length of list that represents the set of
remaining witnesses decreases by a factor of kδ in each iteration. We get that ySj = (yp, Tp)p∈Sj

and that the explicit input is hi (denoted x), together with ⟨Sj⟩ and ⟨ψj⟩.
Notice that both of these usages rely on the fact that the relation R satisfies a uniformity

requirement, and indeed this is proved in Claim 4.7.

Completeness. Assume ŵi[ri] = vi. Let (yp, Tp)p∈[k] be the correct unique witnesses for (zp)p∈[k],
such that for every p ∈ [k],

(
(hi, zp), (yp, Tp)

)
∈ R. Let S1, ..., Sℓ′ and ψ1, ..., ψℓ′ be the sets and the

formulas, respectively, generated in the interaction between Pi and Vi.
By the definition of ψ1, it holds that ψ1 ((yp, Tp)p∈S1) = ψ1

(
(yp, Tp)p∈[k]

)
= 1. By the per-

fect completeness of the (Preduction,Vreduction) protocol, for each iteration j ∈ [ℓ′ − 1], since(
(hi, zp), (yp, Tp)

)
∈ R for all p ∈ Sj and ψj

(
(yp, Tp)p∈Sj

)
= 1, then Vreduction does not rejects,

ψj+1

(
(yp, Tp)p∈Sj+1

)
= 1 and (χj , θj) is a correct claim about (zp)p∈Sj . Thus, at the end of the

loop, ψℓ′
(
(yp, Tp)p∈Sℓ′

)
= 1, and, moreover, all claims (χj , θj)j∈[ℓ′] are correct claims. Since Pi sends

the correct witnesses (yp, Tp)p∈Sℓ′ , by the perfect completeness of the constant-round HIP of The-
orem 3.25, the verifier Vi outputs correct claim (χℓ′ , θℓ′) about (zp)p∈Sℓ′ in Step (4b). This means
that all of the claims (χj , θj)j∈[ℓ′] in Step (5) are reduced into a single correct claim (ri+1, vi+1)
with probability 1, again by the perfect completeness of Theorem 3.25.

39



Soundness. For the soundness condition, fix ŵi, ri and vi such that ŵi[ri] ̸= vi, and fix ŵi+1. Take
A to be the event that after interacting with a cheating prover P∗

i , the verifier Vi does not reject
and outputs a correct claim about ŵi+1. We wish to bound

Pr[A] = Pr[Vi does not reject and ŵi+1[ri+1] = vi+1].

Recall that the protocol (Pi,Vi) consists of ℓ′ − 1 phases. Each phase consists of an interactive
protocol (Preduction,Vreduction) with soundness error ρ. For every 1 ≤ j ≤ ℓ′ − 1, let Tj denote the
event that the verifier does not reject in the jth phase and that its output satisfies the following
two condition:

1. ψj+1

(
(yp, Tp)p∈Sj+1

)
= 1;

2. The claim about zSj is correct, i.e., ẑSj [χj ] = θj .

Thus, assuming that ŵi[ri] ̸= vi implies that (¬T1) (because, in this case, the first condition is
violated by the definition of ψ1). Let E denote the event that at least one of the claims (χj , θj)j∈[ℓ′]
reduced in Step (5) is false, but the output claim (ri+1, vi+1) is correct. Let W denote the event
that ∃p∗ ∈ Sℓ′ s.t. (ỹp∗ , T̃p∗) ̸= (yp∗ , Tp∗) (indeed, all of the pairs (yp, Tp) are well-defined once ŵi is
fixed). By elementary probability theory,

Pr[A] = Pr
[
(E ∧A) ∨

(
¬E ∧

(
(W ∧A) ∨ (¬W ∧A)

))]
≤ Pr[E ∧A] + Pr[¬E ∧W ∧A] + Pr[¬E ∧ ¬W ∧A].

First, Theorem 3.25 implies that Pr[E ∧A] ≤ nO(δ)/|F|.
Secondly, we recall that zp∗ is fixed and cannot be chosen by the prover, as the i+1st layer is fixed
(and wi+1 = z1 ◦ ... ◦ zk). This means that if ∃p∗ ∈ Sℓ′ s.t. (ỹp∗ , T̃p∗) ̸= (yp∗ , Tp∗), then the input
in Step (4b) does not satisfy the relation Rℓ′ as defined in the protocol (because hi(zp∗) ̸= ỹp∗).
However, by assuming (¬E), we know that all of the claims that are reduced in Step (5) are correct,
and in particular, (χℓ′ , θℓ′) as well. Thus, the event (¬E∧W ∧A) implies that the prover breaks the
soundness guarantee of the protocol of Theorem 3.25, which in turn cannot happen with probability
bigger than nO(δ)/|F|.
Finally, observe that the event (¬E ∧ ¬W ∧ A) implies Tℓ′ , since otherwise the verifier rejects in
Step (4a) (notice that this is due to the assumption (¬W ), which means that the test in Step (4a)
is applied to the correct witnesses (yp∗ , Tp∗)). We already know that (¬T1), hence there exists a
phase j ∈ [ℓ′ − 1] such that (¬Tj ∧ Tj+1), i.e., that the soundness guarantee of the HIPP does not
hold, which happens with probability ρ. This implies that

Pr[¬E ∧ ¬W ∧A] ≤ Pr[∃j s.t. ¬Tj ∧ Tj+1 ∧A] ≤
ℓ′−1∑
j=1

Pr[¬Tj ∧ Tj+1 ∧A] ≤ (ℓ′ − 1) · ρ.

All in all, we get that

Pr[A] ≤ nO(δ)

|F|
+
nO(δ)

|F|
+ (ℓ′ − 1) · ρ.

Since ρ = nO(δ) ·O(log n)/|F| = nO(δ)/|F|, since d = O(log n) (all of the circuits are O(log n)-highly
uniform), and ℓ′ ≤ 1/δ, we conclude that Pr[A] ≤ nO(δ)/|F| as desired.
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Complexity. First, we consider the complexity measures of running the reduction subprotocol.
For every j ∈ [ℓ′], let sj denote the length of the list that represents the set Sj . Since the descriptions
of Sj and ψj are nδ+o(1)-succinct, we get that |⟨ψj⟩| + |⟨Sj⟩| = nδ+o(1). Moreover, each hi can be
computed in time nO(δ), which implies that |x| = nh = nO(δ) and |Tj | = n2·O(δ) = nO(δ).

Consider the jth iteration of the loop, for some j ∈ [ℓ′ − 1]. Let njexp , n
j
hol and njimp denote the

lengths of the explicit, holographic and implicit inputs to the jth iteration. We get

njexp = |x|+ |⟨Sj⟩|+ |⟨ψj⟩|+ |ξ| ≤ nO(δ) + 2nδ+o(1) + polylog(n) = nO(δ).

As for the implicit and holographic inputs,

njimp = |Sj | · (|y1|+ |T1|) = sj · (nout + nO(δ)) ≤ sj · nO(δ),

and
njhol = sj · |z1| = sj · nin.

Recall that qj = sj ·k−δ. By Theorem 3.26, together with Lemma 4.4, the jth iteration takes O(1/δ)
rounds and has:

• Communication complexity:

ccj =
(njimp)

δ

sj · k−δ
· njimp · n

O(δ) · (nδ+o(1))1+o(1)

≤
sδj · nO(δ2)

sj · k−δ
· sj · nO(δ) · nO(δ) ≤ k2δ · nO(δ)

• Verifier running time:

Vtimej = nO(δ) ·

(
(njimp)

δ

sj · k−δ
· njimp · (n

δ+o(1))1+o(1) + njexp

)
≤ nO(δ) ·

(
ccj + njexp

)
≤ nO(δ) · (k2δ + 1)

• Prover running time (given the UP witnesses):

Ptimej = poly(njexp , n
j
imp , n

j
hol , sj · k

−δ)

= poly(n, k)

To analyze the last three steps of the protocol, first recall that sℓ′ (i.e., the length of the list
that represents of the final set Sℓ′) has size smaller than nδ. Thus, Step (4) adds an additional
sℓ′ · (|y1| + |T1|) ≤ O(|H|) · nO(δ) = nO(δ) communication. The communication complexity of the
constant-round HIP in Step (4b) and Step (5) is nO(δ) · nδ+o(1) ≤ nO(δ).

As for the verification time, constructing ⟨S1⟩ takes log k time (as the circuit CS1 : [k]→ [k] which
describes the set [k] is the circuit for id). Constructing ⟨ψ1⟩ takes O(log n) time, as explained
in Section (4.4.1). Moreover, generating the set Sℓ′ and the circuit ψℓ′ and evaluating ψℓ′ takes
(qℓ′ ·nδ+o(1))+Õ(nℓ

′
imp) ≤ sℓ′ ·k−δ ·nδ+o(1)+Õ(sℓ′ ·nO(δ)) = O(|H|)·k−δ ·nδ+o(1)+Õ(|H|·nO(δ)) = nO(δ)
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time, using Lemma 4.4, as this is the size of their circuits. The verification time of the constant-
round HIP of Steps (4b) and (5) takes nO(δ) · (nδ+o(1) + nh + sℓ′ · (|y1|+ |T1|)) ≤ nO(δ) time, as the
circuits on which these protocols run are nδ+o(1)-succinct.

Since ℓ′ ≤ 1/δ + 1 and the protocol (Preduction,Vreduction) has the same number of rounds as the
HIPP, which has O(1/δ) rounds, we get that the protocol (Pi,Vi) has ℓ′ = O(1/δ2) rounds. The
depth of the circuit for Step (4b) is O(1) independent of δ, where the depth of the circuit for Step
(5) is O(1/δ). Thus, steps (4b) and (5) take additional O(1/δ) and O(1/δ2) rounds, respectively,
and the parameters stated in the theorem’s statement follow.

4.4.1 Uniformity Proofs

This last section is devoted for uniformity proofs that were deferred throughout the proof of the
layer-to-layer subprotocol. It starts with proving the uniformity of the initial predicate ψ1, on
which the first execution of the layer-to-layer subprotocol is run. Then, we prove the uniformity
of R and of RS . Next, we define Rℓ′ , the final relation defined in the protocol, and prove its
uniformity. Lastly, we construct the circuit that is used in the last step of the protocol, and prove
its uniformity.

The predicate ψ1 and its uniformity. As already noted above, the predicate of the first
recursive call, i.e., ψ1, has to “represent” the input claim (ri, vi). Namely, it must hold that

ψ1

(
(yp, Tp)p∈[k]

)
= 1 ⇐⇒ LDE(wi)[ri] = vi.

Therefore, we must carefully define ⟨ψ1⟩ and make sure that it describes a predicate ψ1 that is
indeed enough uniform. Notice that the first part of these pairs, namely, (yp)p∈[k], is exactly the
current layer i on which the layer-to-layer subprotocol works: namely, wi. Since the input claim
(ri, vi) is only about wi, and not about the tableau (Tp)p∈[k], the predicate ψ1 ignores the second
part in each pair (yp, Tp)p∈[k]. Thus, to ease notation, we assume that it only gets wi as input.

Fix the input length |wi| = N . We recall that ri ∈ Fm (where here m = m(N) = ⌈log|H|(N)⌉,
such that N ≡ |H|m) uniquely defines the locations that are to be read in the input in order to
find the value of its low degree extension at this point (see Equation (3)). Moreover, it defines the
coefficients of each summand (see Equation (2)). Using Proposition 3.10, if we take τ̂i to be the
circuit that computes the coefficient of i ∈ Hm, then τ̂i : Fm → F is an O(log n)-highly uniform
arithmetic circuit of size O(m · |H|2).

First, we describe CLDE,(r,v), a circuit that computes the value of the low degree extension of
its (length-N) input at point r, and outputs 1 if and only if the result is v. This is an arithmetic
circuit over the field F whose advice string is (r, v). Then, we take the circuit that computes ψ1 to
be CLDE,(ri,vi) (i.e., ⟨ψ1⟩ = (ri, vi)).

The circuit is (logically) divided into 6 layers, including the input and the output. In fact, the
circuits (τ̂i)i∈[N ], that the circuit uses, have more than one layer. However, we think of them as a
single one and label them accordingly.

The label of each gate is of the form (t, ℓ), where t ∈ {0, 1}3 denotes the layer (notice that there
is no layer 0), and ℓ ∈ {0, 1}µ denote the internal label, for µ = logN + ξ where ξ is the length of
a label in each of the circuits (τ̂i)i∈[N ] (recall that each of them is of size O(m · |H|2)). It would be
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easier to think of labels and indices as integers, thus we often use the notation [k]2 for the µ-bit
or logN -bit binary expansion of an integer k ∈ [2µ], and it will be clear from the context which
one we refer to. To facilitate the labeling, we allow gates in all layers to be fed by the input layer,
although the circuit is layered and the required gates from the input layer are moved from layer to
layer and labeled appropriately.

• Layer 1: The first (input) layer is composed of the N input gates, the (m+1) advice gates,
and a gate for the constant 1. For 0 ≤ i ≤ N − 1, the ith input is labeled (001, [i]2). For
0 ≤ j ≤ m, the jth advice gate is labeled (001, [N + j]2). The last gate is the constant 1, and
it is labeled (001, [N +m+ 1]2.

• Layer 2: The second layer locates the N circuits τ̂1, ..., τ̂N in parallel, each of them is fed by
(them gates that hold) r. If the internal labels of each of them are binary strings α0, ..., α2ξ−1,
then the jth label of the ith gate, for 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ 2ξ − 1, is (010, [i]2 ◦ αj). We
label the output gate of τ̂i with (010, [i]2).

• Layer 3: The third layer consists of N multiplication gates of fan-in 2, such that for 0 ≤
i ≤ N − 1, the ith gate computes the product of the ith input and the ith coefficient (i.e., the
result of τ̂i). We label them in the natural way by (011, [i]2).

• Layer 4: The forth layer has a single addition gate of fan-in N . It is labeled (100, [0]2) and
fed by all of the gates of the third layer.

• Layer 5: The fifth layer has a single addition gate of fan-in 2. It is labeled (101, [0]2) and
fed by the gate of the previous layer and by the advice gate that holds v. Notice that since
addition and subtraction are the same over extension fields of GF[2], this result outputs 0 if
and only if the value of the low degree extension of the input at r is v.

• Layer 6: The sixth (output) layer has a single addition gate of fan-in 2. It is labeled (110, [0]2)
and fed by the gate of the previous layer and by the constant 1.

Notice that the length of the advice string to the circuit that computes ψ1 is ((m+ 1) · log(|F|)),
since we measure the length of the advice string in bits, and this term is bounded by O(log n).
Moreover, the fan-in for multiplication gates in (τ̂i)i∈[N ] is at most |H| = nδ, as can be seen in

Equation (2). Since the circuit only adds a multiplication gate of fan-in 2, its overall fan-in is nδ

as well. Regarding the input length N , recall that the input to ψ1 is wi, which is of size at most
poly(n), as we assumed that the longest layer is of length poly(M) = poly(n), so we get N = poly(n).
Thus, the circuit that computes ψ1 is of size N · O(|H|2) + O(N) = poly(n), and this implies that
ψ1 is computed by an #AC0

F,fin circuit, where fin = O(nδ). The depth of the circuit is independent
of δ, since this is true w.r.t. (τ̂i)i∈[N ].

Next, we turn to prove its uniformity. Our goal is to construct the adjacency predicate and
incidence function of the circuit, and to prove that they are computable by arithmetic circuits over
GF[2] with size and degree at most O(log n).

First, followed by Proposition 3.10, there exists arithmetic circuits ϕτadj and ϕ
τ
incd that compute

the adjacency predicate and incidence function of each τi in degree O(log n). We take

ϕadj : {0, 1}3+µ → {0, 1}
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to be the circuit’s adjacency predicate, and

ϕincd : {0, 1}3+µ × {0, 1}logN → {0, 1}3+µ

to be the circuit’s incidence function. We always assume that the functions should return 0 or
03+µ for all possible labels that are not explicitly mentioned. We explicitly detail the values they
compute, and then prove that indeed these values are computable in arithmetic circuits with the
claimed properties.

For 0 ≤ i ≤ |F| − 1 and 0 ≤ j1, j2 ≤ 2ξ − 1, it should hold that

ϕadj ((010, [i]2 ◦ αj1), (001, [i]2 ◦ αj2)) = ϕτadj (αj1 , αj2).

In addition, for 0 ≤ i ≤ |F| − 1,

ϕadj ((100, [0]2), (011, [i]2)) = 1,

ϕadj ((101, [0]2), (100, [0]2)) = 1,

ϕadj ((101, [0]2), (001, [N +m]2)) = 1,

and

ϕadj ((110, [0]2), (101, [0]2)) = 1,

ϕadj ((110, [0]2), (101, [N +m+ 1]2)) = 1.

For 0 ≤ i ≤ |F| − 1, 0 ≤ j ≤ 2ξ − 1 and k ∈ [logN ], it should hold that

ϕincd ((010, [i]2 ◦ αj), [k]2) = ϕτincd (αj , [k]2).

In addition, for 0 ≤ i ≤ |F| − 1,

ϕincd ((011, [i]2), [1]2) = (010, [i]2),

and
ϕincd ((011, [i]2), [2]2) = (001, [i]2).

Moreover, we relabel the α1, ..., α2ξ that correspond to the input to the circuits that form the
second layer such that the jth input to τi, for 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ 2ξ − 1, is (001, [N + j]2)
(they all have the same input, that is, the coordinate r).

Now, we show that ϕadj and ϕincd are computable by arithmetic circuits of logarithmic size and
degree. Except for running ϕτadj and ϕτincd , notice that the only operation that they perform is
comparing two binary strings of length at most O(logN) = O(log n). Comparing y and z by an
arithmetic circuit over GF[2] can be done as follows:∏

i∈[|y|]

((1− y[i]) + z[i]) · (y[i] + (1− z[i])) ,

while recalling that subtraction is the same as addition. The size and the degree of this circuit
is linear in its input length. Since the inputs are of length O(log n), we conclude that ψ1 has an
O(log n)-succinct (log n)-highly uniform description ⟨ψ1⟩ and that it is computed by an #AC0

F,fin
circuit, where fin = O(nδ).
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The relation R and its uniformity. We refer the reader to the discussion at the beginning of
Section 4.4 about the chosen structure for R.

Claim 4.7. The relation R described in Equation (6) is computable by an ensemble of nδ-succinct
and O(log n)-highly uniform AC0 circuits.

Proof. To simplify notation, we use h in place of hi throughout this proof. We construct a constant-
depth AC0 circuit C = Cn that computes R. Following Definitions 3.15 and 3.17, we prove that
there exists an nδ-bit long string ⟨R⟩ and a Turing machine M such that on input (n, ⟨R⟩), the
machine runs in time nδ+o(1) and outputs an arithmetic circuit over GF[2] of size nδ+o(1) and degree
O(log n) that computes C’s adjacency predicate.

We interpret the binary vector T in the standard form of a tableau (see, e.g., Theorem 2.21
in [Gol08]): a P × P = |T | array, for some polynomial P = P (κ), where each row represents a
configuration of the Turing machine that computes h(z) (we discuss this machine next), and P
represents the time of this computation. W.l.o.g., suppose that the machine is a one-tape Turing
machine. Taking Q to be the finite set of states, each such configuration can be encoded by P
pairs, where each pair contains the content σ ∈ {0, 1} of a cell of the working tape, and a symbol
q ∈ Q∪{⊥} that indicates either a state of the machine or the fact that the machine is not located
in this cell (in fact, we consider some binary representation of these symbols). The rows are ordered
from top (the first configuration) to bottom. With the exception of the first row, the values of the
entries in each row are determined by (up to) three entries of the row just above it, which represents
the previous configuration, where this determination reflects the function h.

Notice that if h were computable by some fixed Turing machine M̃h that on input z returns
h(z), then building a (highly-uniform) circuit asserting that T is the correct tableau for the compu-
tation h(z) = y given (z, y, T ) would be immediate: the circuit would simply use the constant-size
transition function of M̃h in order to verify the consistency of each two consecutive configurations,
as done in the Cook-Levin theorem. In fact, our computation would be even “easier”, since the
circuit gets the tableau of the computation as input instead of computing it by itself, and that is
why this circuit is in AC0.

However, since h is a UOWHF, chosen from a family H using a randomly chosen key kh, there
is no such “keyless” machine. Nevertheless, one of the properties of H promises that there exists a
machine MH, such that on input (kh, z), outputs h(z). Followed by the foregoing argument, this
means that there exists a (highly-uniform) circuit CH, such that on input (kh, z, y, T ), outputs 1
if and only if T is the correct tableau for the computation h(z) = y. We use this circuit in order
to construct the circuit C, which gets as input an advice string kh, in the following manner: C
emulates CH, only that the key kh will be “hard-wired” into CH, and C will also check that the
bits in the locations of the key (which is a part of its input) are indeed kh (i.e., equal to the bits of
the advice that is hard-wired to the circuit). The full details follow.

Structure. First, we describe the circuit CH. Take δ to be the transition function of MH as
described above, and assume it is given in the form of a lookup table: it is a constant-size collection
of 4-tuple entries, where each entry consists of a pair. For σi ∈ {0, 1}, qi ∈ Q ∪ {⊥}, a 4-tuple
(σ1, q1), (σ2, q2), (σ3, q3), (σ4, q4) is in the collection if and only if

δ
(
(σ1, q1), (σ2, q2), (σ3, q3)

)
= (σ4, q4),

where δ considers the current machine state, the bit in the tape at the location of the reading head,
a new value for the location just read from the tape, and a direction to move the reading head.
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Consider the set of all of the different 4-tuple entries in T (there are |T | of them; each entry of
the tableau appears exactly once as the middle pair (σ2, q2)). Given h’s key kh, if T is indeed
the unique tableau of the computation h(z) = y, then this set should be a subset of the collection
induced by the lookup table: namely, each 4-tuple of tableau entries should appear in the lookup
table. Hence, checking the validity of T boils down to checking that all of the 4-tuples of tableau
entries are included in the collection. Moreover, we must check that the first configuration of T
contains z and that the last configuration contains y.

Formally, the circuit CH consists of two central components, each one of them is a constant-depth
and polynomial-size AC0 circuit. The first component compares z and y to the first and the last
configurations of T . The comparison to z is done using nin conjunction gates and 2nin disjunction
and negation gates, such that all of the gates of the same type are located in the same layer (i.e.,
in parallel). The ith gate is connected to the ith bit of the first configuration and the ith bit of z in
the following manner: denoting the former by b and the latter by b′, the result of each comparison
is given by a constant-size circuit CEQ that computes ((b ∨ ¬b′) ∧ (¬b ∨ b′)). The comparison to y
is done analogously.

The second component is the one that checks the local consistency of each two consecutive con-
figurations. Recall that δ can be described as a constant-size circuit, that is the disjunction of
all of the tuples in the lookup table. Denote this circuit by Cδ. For each entry (i, j) of the ar-
ray that T represents, excluding i = 1, the component connects the gates that match the entries
(i − 1, j − 1), (i − 1, j), (i − 1, j + 1) to a copy of Cδ (or only two entries, in case j is the first or
the last column). This means that there are O(|T |) such copies, and all of them are located “in
parallel”, i.e., in the same layers.

The outputs of all of these conjunction gates of the first component and the circuits Cδ of the
second component are connected to a conjunction gate, of fan-in nin + nout +O(|T |). The output
of the circuit is the output of this gate.

It is clear that the circuit described above is an AC0 circuit. The circuit C merely adds a comparison
between the key that it got as input, that is, the advice string, and the input of CH. These
comparisons are done by the circuit CEQ. Finally, C connects the result of CH and all of the
comparisons with a conjunction gate, and that is its output. It is evident that the depth of the
circuit is independent of δ.

Uniformity. Take kh to be h’s key and recall that C is given the advice string ⟨R⟩ = kh. The length
of kh is κ, and since we took κ = nδ, we get that |⟨R⟩| = |kh| = nδ. Denote by (0, [1]2), ..., (0, [|kh|]2)
the labels of the input gates that correspond to kh (notice that these labels are in binary).

The machine M builds the adjacency predicate of C, denoted ϕ, in the following manner. For
comparing between the ith bit of the gates that correspond to the locations of the key in CH, that
we label with (1, [i]2) for i ∈ [|k|], to the ith bit of the advice string, that is (0, [i]2) for i ∈ [|kh|] (of
course, |k| = |kh|), it should hold that:

ϕ ((0, [i]2), (1, [i]2)) = 1.

The rest of the labels of CH are labeled as a tuple of three binary strings (i, j, k), where the first
two indices specify an input gate or a gate of the first component (i.e., one of the gates used for
the comparison), and the third index specifies a gate in the circuit Cδ. In particular, this means

46



that the first two indices are zero for gates of Cδ, and vice versa. We make sure that these labels
are disjoint from the labels that we already fixed for the key gates.

The circuit for the first component, denoted ϕ1, ignores the third index, and for every pair of gates
(i1, j1), (i2, j2), outputs 1 if and only if they are either (1) two pairs from the set (i− 1, j − 1), (i−
1, j), (i−1, j+1), (i, j), or (2) j1 = j2 and i1, i2 indicate that one of them is a gate that corresponds
to the first or the last row of the tableau, and the other is a gate that corresponds to the input z or
y, respectively. Notice that ϕ1 only compares indices or checks if they are consecutive. Moreover,
ϕ1 returns 0 when it gets as input (i1, j1) = (i2, j2) = 0⃗. This is important, since when it gets labels
of gates in Cδ and ignores the third index, it is left with two sequences of zeros.

We take ϕδ to denote Cδ’s adjacency predicate. Once again, by the way we defined the labels for
CH, we make sure that ϕδ returns zero when it gets k1 = k2 = 0⃗.

Finally, for any two gates (i1, j1, k1), (i2, j2, k2), we define ϕ such that

ϕ((i1, j1, k1), (i2, j2, k2)) = 1− (1− ϕ1((i1, j1), (i2, j2))) · (1− ϕδ(k1, k2)) ,

when recalling that subtraction and addition are the same over GF[2]. All in all, these operations
can all be done using an arithmetic circuit over GF[2] whose size and degree are linear in its input
length, as comparison can be performed in linear size (see, e.g., the uniformity proof of the predicate
ψ1 at the beginning of Section 4.4.1, or Claim 3.22, for full details). All of the labels are of length
O(log(|T | + |kh|)) = O(log n), hence, the adjacency predicate is computable by a degree-O(log n)
arithmetic circuit. We conclude that C is nδ-succinct and O(log n)-highly uniform AC0 circuit.

The relation RS and its uniformity. The following claim is true with respect to any NP
relation R. However, in order to facilitate the notation, one may think of the relation R as defined
in Equation (6), where the explicit input x is hi and each witness yp is the augmented witness
(yp, Tp). We comment that we do not assume any succinctness condition about the set S in the
following claim: although the inputs to RS , namely, (yp)p∈S and (zp)p∈S , are ordered by (the list
that represents) the set S, the circuit that computes R will operate on this sequence as is, in the
order that it is given. This order does not change its functionality.

Claim 4.8. Let δ ∈ (0, 1] be a constant, and let H ⊆ F be (ensembles of) extension fields of GF[2],
where |Hn| = Θ(nδ) and |Fn| = poly(n).

Suppose R is an NP relation computable by an ensemble of nδ-succinct and O(log n)-highly
uniform AC0[⊕] circuits, whose witnesses’ length is nimp, and let RS be as described in Equation
(7). Assume that S ⊆ [k] is a set of size q ≤ poly(n), and that ⟨ψ⟩ is an nδ+o(1)-succinct O(log n)-
highly uniform description for an arithmetic predicate ψ : {0, 1}q·nimp → F, computed by a #AC0

F,fin
circuit where fin = O(nδ).

Then, RS is computable by an ensemble of nδ+o(1)-succinct and O(log n)-highly uniform #AC0
F,fin

circuits, where fin = O(nδ).

Proof. Let R,RS , S and ψ be as described in the hypothesis. We construct a circuit C = Cn that
computes RS , such that the following holds:

• Structure: C is an #AC0
F,fin circuit with fin = O(nδ);
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• Uniformity: C is an nδ+o(1)-succinct and O(log n)-highly uniform arithmetic circuit.

The circuit C is composed of two parts: the component that checks the conditions of R, denoted
C∧R, and the component that checks the condition of ψ, denoted Cψ. First, we build the circuit
C∧R. We use Theorem 3.18 in order to approximate the circuits that form it, as they are Boolean,
and get an arithmetic circuit with a small multiplication gates fan-in. Then, we construct Cψ,
which is arithmetic, and put the components together to get C. We prove that the structure and
the uniformity of C are as stated above.

Structure. First, we take CR to be the nδ-succinct and O(log n)-highly uniform AC0[⊕] circuit
that computes the relation R (actually, in Claim 4.7, we proved that CR is an AC0 circuit). Using
Theorem 3.18 with λ(n) = log2 n, there exists a probabilistic arithmetic circuit ĈR in #AC0

F,fin ,

where fin = O(log(|CR|) + log2 n) = O(log2 n) (and in particular, fin = O(nδ)). The circuit ĈR
approximates CR, and they agree on every input with all but a 2− log2 n probability. It inherits the
uniformity condition of CR, and we use this fact in what follows.

Next, we define C∧R to be the circuit that runs in parallel q copies of the circuit ĈR. The copies
are relabeled in the natural way, by adding a prefix i to each label in the ith copy of ĈR. The ith

copy gets as input (x, zi, yi), according to the order in the list that represents the set S, which is
the way that both the implicit and the holographic inputs to RS are ordered. We wish to stress
that some of these copies may be identical, in the case that q > |S|. The output of C∧R (which is
of length q) is the q results of these copies. Since q ≤ poly(n), it follows that C∧R is in #AC0

F,fin as

well, and with fin = O(nδ).

For Cψ, we use the hypothesis and simply take it to be the #AC0
F,fin circuit that computes ψ, where

fin = O(nδ). We assume that the labels of Cψ and ĈR are disjoint, and otherwise we relabel Cψ.
In both cases, we add the prefix [q + 1]2 to each label in Cψ.

Finally, we define the output of C to be the outputs of Cψ and C∧R. This means that on input
x to RS , x ∈ RS ⇐⇒ C(x) = 1q+1. We conclude that C is in #AC0

F,fin , where fin = O(nδ).
Assuming that the depth of Cψ is independent of δ (which is the case in all usages), the depth of
C is independent of δ as well.

Uniformity. Through this section, we extensively use the different representations for circuits and
the definitions for uniformity. We refer the reader to Section 3.3 for more details on these. We
stress that the size of an adjacency predicate or an incidence function is measured with respect
to the circuits’ index n, rather than to their input length, which may be logarithmic in n (as it
represents a label in a circuit of size poly(n)).

For s = nδ+o(1), we prove that there exists a Turing machine M such that on input (n, ⟨ψ⟩ ◦ ⟨R⟩),
runs in time (s1+o(1) · no(1)) and outputs two arithmetic circuits over GF[2] of size (s1+o(1) · no(1))
and degree O(log n) that compute C’s adjacency predicate for the circuit’s addition gates and the
incidence function for the circuit’s multiplication gates.

By the assumption, CR is an nδ-succinct and O(log n)-highly uniform AC0[⊕] circuit. As mentioned
earlier, ĈR inherits the uniformity condition of CR, and that implies that ĈR is an nδ-succinct and
O(log n)-highly uniform #AC0

F,fin circuit as well.

We take (⟨ψ⟩ ◦ ⟨R⟩) to be C’s advice string. The machine M works as follows: First, it runs the
machines that output the adjacency predicates and incidence functions of ĈR and Cψ, where it uses
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the advice (n, ⟨R⟩) for the first machine and the advice (n, ⟨ψ⟩) for the second. Then, given the
two arithmetic circuits (see Definition 3.17) that compute the adjacency predicates for the addition
gates of ĈR and Cψ, the machine M defines the arithmetic circuit that computes the adjacency
predicate for the addition gates of C in the following manner: On input (u, v), the circuit ignores
the first ⌈log q⌉ bits of u and of v, and outputs the sum of outputs of the two circuits that compute
the adjacency predicates of ĈR and Cψ, where their inputs are the suffixes of u and v. Here, we
used the convention that the circuit computing the incidence function outputs 0 when u or v are
not existing labels, and that we took the labels to be disjoint. Notice that, logically, this addition
gate serves as a disjunction gate, as these arithmetic circuits are over GF[2].
The size of the circuit that computes the adjacency predicate for the addition gates of ĈR is
s = nδ+o(1), and of Cψ is s as well, since |⟨ψ⟩| = s and (s1+o(1) · no(1)) = nδ+o(1) = s. Thus, the
size of the circuit that computes the adjacency predicate of C is nδ+o(1). By the construction, it
is evident that M works in linear time in the size of the these circuits. Furthermore, the degree
of both these circuit is only increased by 1, since we only added a single multiplication gate, and
since the degree of both of them is O(log n) and they are connected in parallel.

M works analogously for the multiplication gates’ incidence function of C. On input (u, i), where
u is a gate and i is an index, the circuit computing the incidence function ignores the first ⌈log q⌉
bits of u, and outputs the sum of the outputs of the two circuits for the incidence function of ĈR
and Cψ (there are |u| multiplication gates, one per each output bit of the circuits), where their
inputs are the suffix of u together with i. Here, we used the convention that the circuit computing
the incidence function outputs 0|u| when u is not an existing label, and that we took the labels to
be disjoint.

By the same argument, the size of this circuit is nδ+o(1), and its degree is O(log n) + 1. Followed
by Definition 3.17, we conclude that C an nδ+o(1)-succinct and O(log n)-highly uniform #AC0

F,fin
circuit, and the claim follows.

The relation Rℓ′ and its uniformity. We refer the reader to the end of Section 4.3.1 for some
high-level details about the role of Rℓ′ . For Step (4b) of the protocol, we define Rℓ′ on holographic
input (zp)p∈Sℓ′ and explicit input (hi, (ỹp, T̃p)p∈Sℓ′ ), such that the input satisfies the relation if and

only if ∀p ∈ Sℓ′ , T̃p is the correct tableau for the computation hi(zp) = ỹp. In order to justify the
usage of Theorem 3.25 on this relation, it must be computable in s(n)-succinct and d(n)-highly
uniform #AC0

F,fin with s(n) ≤ n. However, this is already proved in Claim 4.8: We can view Rℓ′

as a special case of RSℓ′ , when taking R to be as in Equation (6) and ψ to be a tautology. We get

that s(n) ≤ nδ+o(1) and that d = O(log n).

Constructing the circuit for Step (5). Recall the goal of the HIP executed in Step (5) of
the protocol: It reduces the set of claims (χj , θj)j∈[ℓ′] about (zp)p∈[k] to a single claim (ri+1, vi+1)
about it. However, each of the input claims (χj , θj) are about (zp)p∈Sj , namely, on the holographic
input when ordered according to the list that represents it, rather by the natural order of elements
in [k] (see Remark 4.3). On the other hand, the output claim should be about the sorted (zp)p∈[k]
(in the natural order), since z1, ..., zk form the next layer of the hash tree wi+1. Thus, the circuit
we construct in the rest of this section, which computes (χj , θj)j∈[ℓ′], reduces ℓ

′ claims about the
unsorted holographic input to a single claim about the sorted holographic input.
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Formally, recall that the circuit gets as input (zp)p∈[k], and as an advice the sequence of de-
scriptions (⟨Sj⟩)j∈[ℓ′] and the sequence of claims (χj , θj)j∈[ℓ′]. In order to run the constant-round

HIP of Theorem 3.25, we need to prove that this circuit is an nδ+o(1)-succinct and O(log n)-highly
uniform #AC0

F,fin circuit with multiplication gate fan-in fin = O(nδ). Denote this circuit by C.

For every j ∈ [ℓ′], The advice ⟨Sj⟩ can be used to build CSj , an n
δ+o(1)-succinct O(log n)-highly

uniform AC0[⊕] circuit of size nδ+o(1), that maps indices in [qj−1] = [sj−1 · k−δ] (given in binary
representation) to elements in Sj . We recall that sj is the length of the list that represents the set
Sj , where sj = qj−1 and s1 = q0 = k. Thus, qj−1 = s1 · k−(j−1)·δ = k1−(j−1)δ.

First, for every j ∈ [ℓ′], we define the following circuit Cj :

Cj = CS1 ◦ ... ◦ CSj−1 ◦ CSj .

Logically, this circuit maps indices in Sj to their “original” indices in S1 = [k]. Notice that the
list for Sj is of length qj−1, by the way it is defined in the protocol. Thus, Cj : {0, 1}log qj−1 → [k],
and on input [r]2 for r ∈ [qj−1], it returns the rth “original” index in the list that represents Sj .
Actually, we refer to Cj as the circuit described above after arithmetization (that is performed
in the straightforward way, without approximation). Without loss of generality, since each of the
circuits CSj is of size nδ+o(1), the fan-in for multiplication gates in Cj is upper-bounded by nδ.19

Regarding the depth of Cj , since it composes j circuits of a constant depth independent of δ, as
every CSj satisfies this property (as stated in Theorem 3.26) its depth is (c · j) for a global constant
c. However, note that j does depend on δ, and we emphasize that this is only place in this work
when we use the term constant-depth circuit and the depth depends on δ.

We define the following circuit Cselect that “selects” zi, given z1, ..., zk and an index i. Although
this circuit is arithmetic, it only works on Boolean values, and this fact is crucial in its construction.
The circuit works as follows:

• Its input is i ∈ {0, 1}log k and z1, ..., zk ∈ {0, 1}|z1|·k.

• Its first layer compares between i and all of the elements in [k] (namely, the k binary
strings [1]2, ...., [k]2 ∈ {0, 1}log k), using the following identity for two bits b, b′: (b = b′) ≡
((1− b) + b′) · (b+ (1− b′)).

• The second layer shrinks each of the k results to a single bit, by k multiplication gates of
fan-in log k. This bit equals 1 if and only if the two strings are equal. This implies that, at
this point, only the ith bit is 1, and the rest are 0.

• The third layer uses k · |z1| multiplication gates of fan-in 2, that operate on the results of the
third layer (each one has fan-out |z1|) and the inputs z1, ..., zk. If we interpret this layer as
k sequences of length |z1|, we get that only the ith sequence is the string zi, and the rest of
them are 0|z1|.

• The forth (output) layer is the sum of these k results, i.e., |z1| addition gates of fan-in k.
Since a sum of a bit and 0’s returns the bit, we get that the circuit’s output is exactly the
string zi.

19If there exists a gate u in Cj with fin > nδ, split it into nδ gates of the same type of u, with fin = nδ+o(1)/nδ < nδ,
and connect them with a gate with fan-in nδ, that is also of the same type. Repeat this process for any such u. This
increases the size of the circuit by at most a polynomial factor, whereas its depth is at most multiplied by 2.
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By the construction, it is evident that the circuit Cselect is an #AC0
F,fin circuit, where fin = log k =

O(log n).20 Its depth is 4, i.e., a global constant independent of δ.
Take ir to be the output of Cj on index r ∈ [qj−1] (i.e., on [r]2). This means that

∀r ∈ [qj−1], Cselect(z1, ...., zk, ir) = zir .

Therefore, (zp)p∈Sj = zi1 , ..., ziqj−1
, which implies that the jth claim (χj , θj) is about zi1 , ..., ziqj−1

.

Let us stop for a moment and take a closer look at what is done so far. For any fixed j ∈ [ℓ′],
our goal is to check if the claim (χj , θj) about (zp)p∈Sj is correct, whereas the input to the circuit

C is (zp)p∈[k]. Towards this, our building block is a circuit Cj , that on index r returns the rth

element of the list that represents Sj . We denote each such output it by ir, and use it as input
to a circuit that outputs zir , namely, the appropriate block of the holographic input. This means
that the sequence zi1 , ..., ziqj−1

is exactly (zp)p∈Sj , that is, the holographic input when ordered by
the list that represents the set Sj .

Thus, feeding the circuit that computes the low degree extension at the coordinate χj with this
sequence, outputs a value which equals θj if and only if the claim (χj , θj) is a correct claim about
(zp)p∈Sj . Take CLDE,(χj ,θj) to denote this circuit. The full circuit is described at the beginning of
Section 4.4.1, when constructing the predicate ψ1 (there, it is called CLDE,(r,v)). Once again, we
comment that the depth of CLDE,(χj ,θj) is a global constant independent of δ.

Putting it all together, we denote by C ′
j the circuit that is composed of qj−1 copies of the circuit

Cj as described above, located in parallel, where qj−1 = k1−(j−1)δ. The rth copy of Cj is fed with
the constant [r]2, for r ∈ [qj−1]. The output of the r

th copy, denoted ir ∈ [k], is the input to a copy
of Cselect (overall, there are qj−1 parallel copies of Cselect for every j), together with z1, ..., zk. The
output, zir , is the i

th
r input to CLDE,(χj ,θj), and this is how the sequence zi1 , ..., ziqj−1

is produced.

Hence, the output of the circuit C ′
j equals 1 if and only if (χj , θj) is a correct claim about (zp)p∈Sj .

Next, we use these circuits that compute the correctness of each claim (χj , θj). For every j ∈ [ℓ′],
C runs C ′

1, ..., C
′
ℓ′ in parallel. Its output is 1ℓ

′
if and only if the complete set of claims (χj , θj)j∈[ℓ′]

has only correct claims about (zp)p∈[k].
Using the assumption, the construction and Proposition 3.11, we get that all of the subcircuits

of C are #AC0
F,fin circuits where fin = O(nδ). Since they all run in parallel, we conclude that

C is also an #AC0
F,fin circuit where fin = O(nδ). The depth of C is dominated by Cℓ′ , as it is

the deepest out of all the circuits Cj , and all other circuits described above, as mentioned, are of
constant depth where the constant is independent of δ. Thus, C’s depth is O(1/δ).

Regarding the advice, notice that the length of the advice string for C is

ℓ′ · (|⟨S1⟩|+ |(χ1, θ1)|) = ℓ′ ·
(
nδ+o(1) + (m+ 1) · logF

)
= nδ+o(1).21

Finally, we show that the C is O(log n)-highly uniform. The proof follows along similar lines
to the proof of Claim 4.8, thus we only provide a sketch. Each label consists of a tuple of three
binary indices (α, β, γ), where each index is given in binary. α indicates the copy of C ′

j that the
gate belongs to, that is, α = [j]2. Next, β indicates the functionality of the subcircuit that the
gate belongs to: whether it is in CLDE,(χj ,θj), or in one of the qj−1 copies of Cj or Cselect. The third

20The size of each layer i is poly(n), as explained later in the proof of Theorem 4.2, and thus it must hold that for
any k = k(i), log k = O(logn).

21The previous footnote applies here as well: bounding the size of m and ℓ′ in terms of n is only formally justified
in Theorem 4.2, where the length of each layer is set.
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index γ indicates the internal index of the specific subcircuit. In case that β indicates that the gate
belongs to a Cj circuit, γ is interpreted as (γ1, γ2) where γ1 indicates which CSp the gate belongs
to (for p ∈ [j]), where γ2 is the internal label of CSp .

A careful examination of all of the conditions that the adjacency predicate or incidence function
should satisfy yields that there is only a constant number of them. For instance, connecting an
output of some Cj to be the input of some Cselect only requires labeling them with the same γ1,
and then comparing it. Then, although there are up to k copies of them per each C ′

j , they only
induce one condition, that is, comparing a substring of their labels. Moreover, these conditions
(that connect between different subcircuits) boil down to comparing labels, checking that they
are consecutive, or computing the binary representations of field constants.22 Since each of these
operations can be done by an arithmetic circuit over GF[2] whose size and degree are linear in its
input length, and since we can connect them in parallel and only increase their degree by 1, we
are left with proving that each of the circuits CSp , Cselect and CLDE,(χj ,θj) satisfy this uniformity
condition.

First, by the assumption, we know that CSp is O(log n)-highly uniform. Secondly, a full proof for
the uniformity of Cselect can be found in Claim 3.22. Lastly, at the beginning of Section 4.4.1, when
constructing the predicate ψ1, we prove that CLDE,(χj ,θj) has an O(log n)-succinct (log n)-highly

uniform description (that is, (χj , θj)). We conclude that C is O(log n)-highly uniform #AC0
F,fin .

4.5 Proof of Theorem 4.2

Completeness. The perfect completeness follows immediately from the protocol description, as
well as from the perfect completeness of (Pi,Vi).

Soundness. For the soundness condition, fix an input
(
w, (y, h)

)
/∈ LHHR and assume that after

interacting with a cheating prover P∗
LHHR

, the verifier VLHHR
does not reject and outputs a pair (r, v).

Let S denote the event that this claim is true, i.e.,

Pr[S] = Pr[VLHHR
does not reject and LDE(w)[r] = v].

We wish to bound Pr[S]. Denote by y′ the correct hash root of LDE(w). Since y ̸= y′, we get that

Pr
[
LDE(y)[r1] = LDE(y′)[r1]

]
≤ (|H| − 1) ·m

|F|
= O(nδ)/|F|,

followed by Lemma 3.8, that states that every two distinct polynomials of (total) degree≤ (|H| − 1) ·m
over F agree in at most (|H|−1)·m

|F| points. Denote this event by C.

If we assume (¬C ∧ S), we get that v1 = ŵ1[r1] = LDE(y)[r1] ̸= LDE(y′)[r1] but LDE(w)[r] = v. In
other words, the first claim (r1, v1) is false with respect to w, while the last claim (rℓ+1, vℓ+1) = (r, v)
is true. Recall that the LHHR protocol consists of ℓ phases. Each phase consists of a single (Pi,Vi)
run, whose soundness error is nO(δ)/|F|.
Following the same logic of the proof of Lemma 4.4, if the verifier does not reject, then there must
exist a phase i ∈ [ℓ−1] such that the input claim (ri, vi) is correct with respect to w and the output

22By that, we refer to the constant r ∈ [qj−1] that feeds the rth copy of Cj . The circuit needs to wire the constants
0 and 1 to the appropriate gate of [r]2. The exact same issue is fully handled in Claim 3.22, when proving the
uniformity requirements for Layer 6. The depth required for preforming this mapping is a constant independent of δ.
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claim (ri+1, vi+1) is false. This means that the soundness guarantee of (Pi,Vi) is broken, and thus
this event happens with probability at most nO(δ)/|F|. Taking a Union Bound and recalling that
ℓ = O(1/δ) yield that:

Pr[S] = Pr[(S ∧ C) ∨ (S ∧ ¬C)] ≤ Pr[S ∧ C] + Pr[S ∧ ¬C] ≤ O(nδ)

|F|
+

ℓ−1∑
i=1

nO(δ)

|F|
≤ nO(δ)/|F|.

Complexity. The stated complexity follows from the complexity of the (Pi,Vi) protocol. The
protocol is run for ℓ = O(1/δ) times, since we assumed that |w| = M = poly(n) (see Section 4.1).
Since (Pi,Vi) has O(1/δ2) rounds, we overall get O(1/δ3) rounds.

The input size is larger in each iteration, and this is expressed via the parameter k = k(i) (the rest
of the parameters nin, nout, nh and |T | are the same for every i). Therefore, we consider the length
of the longest input (that is, the input to (Pℓ,Vℓ)), where k(ℓ) = |wℓ+1|/nin = |LDE(w)|/n2δ.
We know that |LDE(w)| = poly(M), and we assumed that M = poly(n). In fact, we consider the
binary representation of LDE(w) (see Remark 3.7), which is of length poly(M) · log(|F|), and in
particular poly(n).

Thus, k ≤ poly(n) and the prover runs in time ℓ · poly(n, k) = poly(n). As for the verification time
and the communication complexity, we get that nO(δ) · (k2δ + 1) = nO(δ). We note that finding v1
in Step (1) adds nout ·O(n2δ) = nO(δ) time, using Proposition 3.11.

5 Flat-GKR

After establishing the protocol for HHR, we are ready to state and prove the main result: a constant-
round argument system, whose security only relies on the existence of one-way functions, where
the communication and the verification time grow linearly with the depth of the circuits computing
the language. As mentioned at the end of the technical overview (Section 2), we refer to this proof
system as “flat-GKR”, as it essentially “flattens” the GKR protocol, and performs its consistency
checks between circuit layers in parallel, instead of sequentially. We begin with a formal theorem
statement.

Theorem 5.1 (Theorem 1.1, restated). Assume one-way functions exist and let δ ∈ (0, 1] be a
constant. For every language L that is computable by log-space uniform circuits of fan-in 2, depth
D(n) and polynomial size, there is a constant-round doubly-efficient argument system as follows.
The protocol is public-coin and has perfect completeness and negligible soundness error. Taking n
to be the input length, the protocol’s complexities are:

• constant round complexity O(1/δ3),

• communication complexity D(n) · nO(δ),

• verifier runtime (D(n) + n) · nO(δ). Moreover, if the verifier is given oracle access to the
low-degree extension of the input, then its running time is only D(n) · nO(δ),

• the honest prover runs in poly(n) time,
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• assuming the existence of one-way functions, the protocol is sound against malicious cheating
provers running in time poly(n).

Denote by (Cn)n∈N the ensemble of Boolean circuits that compute L. In our proof, we use the
following fact (see [Gol17, Chapter 3]): Any log-space uniform circuit Cn of depth D(n) ≥ log n
can be emulated by a circuit of size poly(n) and depth O(log n) · D(n), such that the adjacency
predicate of the new circuit can be computed by a polylog(n)-size formula that can be constructed
in polylog(n)-time. We emphasize that the input to the new circuit is the same as the input to Cn,
and of the same length n (the description of Cn is hard-wired to the new circuit as advice). Thus,
w.l.o.g., we assume that Cn itself satisfies this property, and denote its depth by d(n) = D(n) · log n,
and its size by s(n) = poly(n).

Following [GKR15], we assume that the circuit is an arithmetic circuit over the field F. This is
possible, as any Boolean circuit can be converted to an arithmetic circuit while increasing the size
and the depth of the circuit by at most a constant factor. Moreover, as explained in Section 3.3,
we assume without loss of generality that it is a layered arithmetic circuit of fan-in 2, and that the
size of each layer is s = s(n).

For each 1 ≤ i ≤ d, we let Vi : [s]→ F be a function that gets a gate j ∈ [s] and returns the value
of the jth gate of the ith layer of the circuit on input x. As before, we find m = m(s) = ⌈log|H|(s)⌉
such that [s] ≡ |H|m, and for each 1 ≤ i ≤ d− 1, we let

V̂i = LDEF,H(Vi) : Fm → F.

By Proposition 3.11, the time it takes to compute V̂i is |H|m ·O(m · |H|2) = s ·O(m · |H|2).
Since the dth layer, that is, the input layer, is shorter (as n ≤ s), we find m′ = m′(n) =

⌈log|H|(n)⌉ such that [n] ≡ |H|m′
, and let

V̂d = LDEF,H(Vd) : Fm
′ → F.

The same proposition implies that V̂d can be computed in time n ·O(m′ · |H|2).
The following lemma describes a HIP that is used as a subroutine in the protocol. Its goal is

to (interactively) ensure the consistency of two consecutive computed layers of a circuit.

Lemma 5.2 (GKR consistency protocol, [GKR15] ). Fix finite fields H ⊆ F, a low degree extension
LDEF,H,m and a layered arithmetic circuit C : Fn → F of fan-in 2, size s and depth d.23 Assume
that the adjacency predicate of C can be computed by a polylog(n)-size formula ϕadj that can be
constructed in polylog(n)-time. Then, given a layer index i ∈ [d] and a claim (r, v) about the ith

layer Vi, there exists a HIP that runs on explicit input (r, v) and holographic input Vi+1 such that:

• Completeness. If V̂i[r] = v and the prover honestly follows the protocol, then the verifier
outputs a correct claim (r′, v′) about the holographic input: V̂i+1[r

′] = v′.

• Soundness. If V̂i[r] ̸= v, then for any (unbounded) cheating prover, w.p. at least 1−m|H|·|ϕadj |
|F|

over the verifier’s coins, either the verifier rejects or it outputs (r′, v′) s.t. V̂i+1[r
′] ̸= v′.

• Complexity. The prover runs in time poly(|F|m, log n) and the verifier runs in time |H| ·
polylog(n) · poly(m, log(|F|)). The communication complexity is m · |H| · polylog(n) · log(|F|)
and the number of rounds is m+ 1.5.

23We take m = O(log|H|(s)), and this holds for the input layer as well, since m′ ≤ m.
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We proceed with the full description of the interactive proof of Theorem 5.1. The input to the
protocol is a string x ∈ Fn and a layered arithmetic circuit C = Cn : Fn → F of depth d = d(n),
whose adjacency predicate can be computed by a polylog(n)-size formula that can be constructed
in polylog(n)-time.

In what follows, for a string V , we use the notation V̂ = LDEF,H(V ). For every 1 ≤ i ≤ d− 1,
we take ℓ+1 to be the number of layers in the Merkle Tree (see Construction 3.3) whose leaves are
V̂i, with respect to a UOWHFs family H. Since the size of each layer Vi is fixed (to s), the number
of functions required to build these trees is fixed to ℓ.

The Flat-GKR protocol for L (PFlat,VFlat)

1. VFlat uses the generating algorithm G from Theorem 3.2 to sample ℓ UOWHFs
h1, ..., hℓ ∈R H, and sends their description h to PFlat.

2. PFlat commits to the computed layers of the circuit: it computes C(x) and the hash
roots (yi)i∈[d−1] for every layer V̂i of C(x), with respect to h. It sends the hash roots
to VFlat, together with the path p′ =

(
p′1, ..., p

′
ℓ+1

)
.a

3. VFlat checks that p′ is a valid path with respect to y1, and that p′ℓ+1 = 10nin−1.b

Otherwise, it immediately rejects.

4. For i = 1, ..., d− 1, do the following in parallel:

(a) Run the HIP (PHHR,VHHR) from Theorem 4.2, on explicit input (yi, h) and holo-
graphic input Vi. If VHHR rejects then VFlat immediately rejects. Otherwise, the
protocol ends with a claim (r, v) about V̂i.

(b) Run the HIP from Lemma 5.2 on input claim (r, v) with respect to layers V̂i and
V̂i+1. If the verifier does not reject, denote its output claim, about V̂i+1, by (r′, v′).

(c) If i < d− 1:

i. PFlat opens the commitment for (r′, v′): it computes the leaf index q′ =
⌈
r′

nin

⌉
,

and sends q′ and the path p = (p1, ..., pℓ+1).

ii. VFlat checks that p is a valid path with respect to yi+1 and q′ and that it is
consistent with v′,c and rejects otherwise.

Otherwise (i.e., i = d− 1):

• In the holographic case, the protocol outputs (r′, v′).

• In the non-holographic case, the verifier checks if V̂d[r
′] = LDE(x)[r′] = v′. If

the test fails, it rejects and otherwise it accepts.

aThis path should be an opening for index 0 of the first (output) layer V̂1.
bThis condition means that C(x) = 1, since V1 = C(x)0nin−1, and the first s coordinates of V̂1 are V1, as

LDE is a systematic code.
cFormally, the verifier checks that pℓ+1[r

′′] = v′ where r′′ = r′ (mod nin), i.e., r
′′ is the relative index of

r′ in the q′th leaf.
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5.1 Proof of Theorem 5.1

Fix an ensemble of circuits (Cn)n∈N whose adjacency predicates can be computed by a polylog(n)-
size formula that can be constructed in polylog(n)-time. For an input x of length n, denote the
depth of C = Cn by d = d(n) and its size by s = s(n).

Completeness. The perfect completeness follows from the protocol description, as well as from
the perfect completeness of (PHHR,VHHR), proved in Theorem 4.2, and the perfect completeness of
the HIP from Lemma 5.2.

Soundness. For the soundness condition, fix an input x /∈ L, and assume that there exists a cheat-
ing prover P∗

Flat that runs in polynomial time, such that after interacting with it, the probability
that the verifier VFlat accepts is ξ. That is,

Pr[VFlat accepts] = ξ.

Let A denote this event.

Recall that Step (4) consists of d− 1 parallel phases. Each phase consists of two HIPs and a test.
For every i ∈ [d− 1], we use the notation below for the following events:

• Yi: the hash root yi that the prover sends in Step (2) is the correct hash root for V̂i (that is,
the encoding of the ith layer of the circuit computed on input x) with respect to h;

• Hi: the HHR verifier does not reject in Step (4a), and the protocol’s output claim (r, v) is
correct;

• Ei: the verifier of the HIP from Lemma 5.2 does not reject in Step (4b), and the protocol’s
output claim (r′, v′) is correct;

• Pi: for i > 1, Pi is the event that p, the opening for layer i, is a valid path that passes the test
of Step (4(c)ii). Notice that Pi concerns the opening sent in the (i− 1)st phase. For i = 1, P1

implies that p′, the opening for layer 1, is a valid path that passes the test of Step (3).

Since A ⊆ P1,

ξ = Pr[A] = Pr[A ∧ P1] ≤ Pr[Y1 ∧ P1] + Pr[A ∧ ¬Y1]. (8)

P1 implies that p′ is a valid path (see Definition 3.4) and p′ℓ+1 = 10nin−1. Since x /∈ L, it holds
that C(x) = 0, so V1 ̸= 10nin−1. If we also assume Y1, namely that y1 is the correct hash root with
respect to V̂1, then the prover breaks the second preimage security of the commitment scheme as
stated in Claim 3.6. We stress that the first preimage, that is, V̂1, is fixed before the UOWHFs are
chosen, thus the security property indeed applies and

Pr[Y1 ∧ P1] = negl(nin).

We proceed with the event (A ∧ ¬Y1) and split into two cases.

• Case 1: Yd−1 is violated, i.e., yd−1 is a false hash root. Notice that A ⊆ Ed−1, since if the
claim about the output layer is false, then the verifier rejects (or outputs a false claim, in
the holographic case). Therefore, either Hd−1 holds, and then the soundness guarantee of the
HHR protocol is violated (because if the protocol’s input is a false hash root, it should output
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a false claim), or ¬Hd−1 holds, and then (¬Hd−1∧Ed−1) happens, which breaks the soundness
condition of Lemma 5.2 (because if the protocol’s input is a false claim, it should also output
a false claim). Namely,

Pr[A ∧ ¬Y1 ∧ ¬Yd−1] ≤ Pr[¬Yd−1 ∧Hd−1] + Pr[¬Hd−1 ∧ Ed−1]

≤ nO(δ)/|F|+ (m · |H| · |ϕadj |) /|F|,

where the last inequality follows from Theorem 4.2 and Lemma 5.2, where |ϕadj | = polylog(n).24

The full details of these two reductions can be found in Claims 5.5 and 5.6 below, when setting
i∗ = d− 1 and defining Dd−1 = (A ∧ ¬Yd−1). There, we formally show how to reduce P∗

Flat to
cheating strategies that break the soundness guarantee of the HIPs.

• Case 2: Yd−1 holds, i.e., yd−1 is a correct hash root. This means that the first layer has a
false hash root (due to ¬Y1) while the (d − 1)st layer has a correct hash root (due to Yd−1).
Hence, by a hybrid argument, there exists a layer i∗ ∈ [d− 2] such that yi∗ is not the correct
hash root for V̂i∗ but yi∗+1 is the correct hash root for V̂i∗+1. That is,

Pr [A ∧ ¬Y1 ∧ Yd−1] ≤ Pr [∃i∗ ∈ [d− 2] s.t. A ∧ ¬Yi∗ ∧ Yi∗+1] .

The rest of the proof is dedicated to bounding the probability of this case.

We let Di denote the event that i ∈ [d − 2] is the minimal index where (A ∧ ¬Yi ∧ Yi+1) holds.
Observe that

Pr [∃i∗ ∈ [d− 2] s.t. A ∧ ¬Yi∗ ∧ Yi∗+1] = Pr [∃i∗ ∈ [d− 2] s.t. Di∗ ] . (9)

Taking the minimal index in the definition of Di is immaterial; any choice of a unique index i (e.g.,
the maximal) where (¬Yi ∧ Yi+1) holds would work. The idea is to avoid paying for a Union bound
over all layers in Proposition 5.4 (where in Proposition 5.3 it is unavoidable).

We split the event on the right-hand side of Equation (9) into two disjoint events, and the following
two propositions bound the probability of each of them.

Proposition 5.3. Pr [∃i∗ ∈ [d− 2] s.t. Di∗ ∧ ¬Ei∗ ] ≤ (d− 2) · negl(nin).

Proof. The stated event means that there exists a (minimal) layer i∗ where the prover sends a false
root for layer i∗ and a correct root for the next layer (i∗ + 1), but the prover fails in cheating in
either of the HIPs of phase i∗ (Step (4a) and Step (4b) for i = i∗), and so (r′, v′) is a false claim
about layer (i∗ + 1). By a Union Bound,

Pr[∃i∗ ∈ [d− 2] s.t. Di∗ ∧ ¬Ei∗ ] ≤
d−2∑
i=1

Pr[A ∧ Yi+1 ∧ ¬Ei] ≤
d−2∑
i=1

Pr[Pi+1 ∧ Yi+1 ∧ ¬Ei],

where the last inequality follows from the fact that A ⊆ Pi+1, due to the test performed in
Step (4(c)ii).

24In fact, the degree of the adjacency predicate is the one included in the soundness error. In the lemma’s state-
ment we trivially bound the degree with the size of the formula computing the predicate, which is promised to be
polylogarithmic.
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Recall that the event (Pi+1 ∧ Yi+1 ∧ ¬Ei) implies that yi+1 is a correct commitment that the prover
manages to open to a false value in a valid way. Applying the same arguments used to bound the
probability of (Y1 ∧ P1), together with Claim 3.6 (which is applicable, since ∀i, |V̂i| = poly(n) =
poly(nin)), we conclude that each of these events happens with a negligible probability, namely:

∀i ∈ [d− 2], Pr[Pi+1 ∧ Yi+1 ∧ ¬Ei] = negl(nin),

and the proposition follows.

Proposition 5.4. Pr [∃i∗ ∈ [d− 2] s.t. Di∗ ∧ Ei∗ ] ≤ nO(δ)/|F|+ (m · |H| · |ϕadj |) /|F|.

Proof. The stated event means that in the first layer i∗ where the prover sends a false root for layer
i∗ and a correct root for the next layer (i∗ +1), it succeeds in cheating in one of the HIPs of phase
i∗, which means that (r′, v′) is a correct claim about layer (i∗ + 1) although yi∗ is false. Since for
any events X,Y it holds that Pr[X ∧ Y ] ≤ Pr[X | Y ], it suffices to bound

Pr [Ei∗ | ∃i∗ s.t. Di∗ ] .

Observe that if there exists i∗ such that Di∗ holds, then it is unique, therefore i∗ and hence the
event Ei∗ are well defined under the conditioning. The last probability is bounded by

Pr [Hi∗ | ∃i∗ s.t. Di∗ ] + Pr [¬Hi∗ ∧ Ei∗ | ∃i∗ s.t. Di∗ ] ,

i.e., if the root yi∗ is false, but the output claim about layer (i∗ + 1) is correct, then the prover
manages to cheat in at least one of the HIPs. The next two claims bound the two terms above.

Claim 5.5. Pr [Hi∗ | ∃i∗ s.t. Di∗ ] ≤ nO(δ)/|F|.

Proof. We reduce P∗
Flat to a cheating prover strategy P∗

HHR that works as follows:

• Sample h← h1, ..., hℓ uniformly at random from H, and send h to P∗
Flat.

• Receive (yi)i∈[d−1] from P∗
Flat and find i∗.

• Interact with VHHR on explicit input (yi∗ , h) and holographic input Vi∗ . Feed P∗
Flat with VHHR’s

messages, and vice versa. At the end of the interaction, VHHR either rejects or outputs a claim
(r, v) about V̂i∗ .

Since Di∗ implies ¬Yi∗ , then (yi∗ , h) /∈ LHHR. Moreover, Hi∗ implies that VFlat, that executes VHHR,
does not reject. By the soundness guarantee of the HHR protocol, this means that the probability
(over VHHR’s coin tosses) that (r, v) is correct (namely, that Hi∗ holds) is at most nO(δ)/|F|. The
claim follows by reducing the randomized strategy P∗

HHR to an (unbounded) deterministic strategy
by fixing its best choice of randomness.

Claim 5.6. Pr [¬Hi∗ ∧ Ei∗ | ∃i∗ s.t. Di∗ ] ≤ (m · |H| · |ϕadj |) /|F|.

Proof. The proof follows along similar lines to Claim 5.5. Denote the HIP from Lemma 5.2 by
(P,V). We reduce P∗

Flat to a cheating prover strategy P∗ that works as follows:

• Sample h← h1, ..., hℓ uniformly at random from H, and send h to P∗
Flat.
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• Receive (yi)i∈[d−1] from P∗
Flat and find i∗.

• Simulate VHHR on explicit input (yi∗ , h) and holographic input Vi∗ . At the end of the interac-
tion, VHHR either rejects or outputs a claim (r, v) about V̂i∗ .

• Interact with V on explicit input (r, v) and holographic input Vi∗+1. Feed P∗
Flat with V’s

messages, and vice versa. At the end of the interaction, V either rejects or outputs a claim
(r′, v′) about V̂i∗+1.

Once again, if Ei∗ happens, then the verifiers do not reject. Notice that ¬Hi∗ implies that (r, v) is
a false claim about V̂i∗ . On the other hand, Ei∗ implies that (r′, v′) is a correct claim about V̂i∗+1.
By the soundness guarantee of Lemma 5.2, this means that the probability of this event (over V’s
coin tosses) is at most (m · |H| · |ϕadj |) /|F|. Again, the claim follows by reducing the randomized
strategy P∗ to a deterministic one.

This concludes the proof of Proposition 5.4.

All in all, getting back to Equation (8), by the choice of F and H we conclude that

ξ ≤ (d− 1) · negl(nin) + 2
(
nO(δ)/|F|+ (|H| · polylog(n))/|F|

)
= nO(δ)/|F|.

Complexity. The stated complexity follows from the complexity of the HIPs, that are run on
holographic inputs of size s(n) = poly(n). Recall that d = O(log n) ·D(n).

Theorem 3.2 promises that the verifier can sample the UOWHFs in time poly(κ) = nO(δ). Theorem
4.2 implies that the verifier VHHR runs in time nO(δ). In Step (4b), it runs in time Õ(nδ), due
to Lemma 5.2. Checking that a path is valid takes ℓ · poly(κ) = polylog(n) · nO(δ) = nO(δ) time.
Overall, we get that:

Vtime ≤ nO(δ) +O(log n) ·D(n) ·
(
nO(δ) + Õ(nδ) + nO(δ)

)
= D(n) · nO(δ).

For the non-holographic case, in Step (4c) the verifier runs in time n ·O(|H|2) = n1+2δ, which yields
an overall running time of D(n) · nO(δ) + n1+2δ = (D(n) + n) · nO(δ).

The analysis of the communication complexity follows from the same arguments, and we get that
it is bounded by D(n) · nO(δ) as well.

Notice that the number of rounds in Lemma 5.2 is m + 1.5, where m = lognδ(poly(n)) = O(1/δ).
Hence, the number of rounds is dominated by the round complexity of the HHR protocol, which is
O(1/δ3) rounds.
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A IPs, HIPs and HIPPs: Protocols and Assumptions

We review results on interactive proof systems, with an eye towards the relevant parameters for our
work. We begin in Section A.1 by elaborating on plausible assumptions about bounds on the power
of IPs. We give overviews of HIP and HIPP constructions in Sections A.2 and A.3 (respectively).
Finally, in Section A.4, we present the full proof of Claim 3.22, deferred from the preliminaries
section due to its length.

A.1 Assumptions About The Power of IPs

As discussed in Remark 1.2, we can significantly relax the notion of an interactive proof if we only
require an infinitesimal gap between the completeness and the soundness error (in particular, the
gap can be smaller than the inverse of the computation size).We briefly describe how known results
become straightforward under this relaxation:

1. For a (sufficiently uniform) size-S depth-D circuit, we can get a protocol with O(D) rounds
and communication: each round begins with a claim about the alleged value of a gate in the
circuit. The prover sends the alleged values of the gate’s children, and the verifier chooses to
recurse on one of them at random. The protocol has perfect completeness. In each round, if
we began with a false claim, then with probability at least (1/2) the new claim will also be
false. Thus, the soundness error is (1− 2−D).

The above can be viewed as a “weak sauce” or substandard version of the GKR protocol:
both protocols peel back the circuit computation in a layer-by-layer manner, but the GKR
protocol achieves this “peeling” with robust soundness, and the end protocol has a constant
gap between the completeness and the soundness error.

2. For a T -time S-space computation, and for any desired σ ∈ (0, 1), we can get a protocol with
O(T σ · S) communication and O(1/σ) rounds. In each round we begin with a claim about
a T ′-time computation. The prover sends k = T σ intermediate computation states, and the
verifier recurses on a random pair of subsequent states, where the claim in the next round
is that there is a computation path of length T ′′ = T ′/T σ between them. The protocol has
perfect completeness by construction. If we began a round with a false claim, then at least
one pair of subsequent states sent by the prover do not have a computation path of length
T ′′ between them, and the verifier will catch this with probability 1/k. Thus, the protocol’s
soundness error is (1− 1/T ).

The above can be viewed as a “weak sauce” or substandard version of the RRR protocol: both
protocols break the computation into k subclaims about shorter computations and recurse,
but the RRR protocol uses a robust batch-verification technique to achieve a constant gap
between the completeness and the soundness error.

Our goal above was demonstrating that it is much easier to construct IPs with an infinitesimal
completeness-soundness gap. Indeed, the celebrated achievements of the IPs literature, starting
with the IP = PSPACE protocol [LFKN92, Sha92], have revealed that (miraculously) in many cases
IPs with a large gap can achieve much of the expressive power of the relaxed notion.

This brings us to our main point regarding limits on the power of constant-round IPs. Namely,
for the class of languages computable by log-space uniform linear-depth poly-size circuits, it is
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not known how to construct a constant-round DEIP with any gap between the completeness and
the soundness error. We find it plausible to conjecture that no such proof system exists: both
for infinitesimal-gap DEIPs, and certainly for constant-gap DEIPs. Indeed, even for AC1, it is
completely unclear how to construct a constant-round DEIP with any gap.

IPs and alternating computation. We conclude this section by remarking that the relaxed
infinitesimal-gap IP notion is closely related to the notion of alternating computation. An alternat-
ing Turing Machine [CKS81] is an extension of non-deterministic computation, where the machine
can make both existential and universal moves. There is a close relationship between ATMs and
IPs: Goldwasser and Sipser [GS89] showed that IPs are equivalent to ATMs that alternate between
existential and probabilistic moves (see also the work of Fortnow and Lund [FL91]). In particular,
any language that has an r-round, c-communication doubly-efficient IP with verifier runtime Vtime
is also in the class ATIME(r, c,Vtime) of languages decidable by an alternating Turing machine with
r quantifier alternations between existential and universal moves, where the total number of such
moves is c, and the machine can also make Vtime many probabilistic computation steps (if the pro-
tocol has perfect completeness, then Vtime many deterministic computation steps are sufficient).
In the reverse direction, alternating TMs are equivalent to the relaxed notion of IPs with any gap
between completeness and soundness (the notion discussed above).

Thus, under the plausible assumption that the class of languages computable by log-space
uniform linear-depth circuits is not in ATIME(r,O(n1+σ), O(n1+σ)) for any constants r, σ, there are
no constant-round doubly-efficient interactive proofs for this class.

A.2 Constant Round HIP for #AC0
F,fin

We review the higher-level structure of the GR construction [GR20], with an eye towards the (minor)
changes needed for the proof of Theorem 3.25. First, their theorem was stated for Boolean AC0[⊕]
circuits, but it can be separated / abstracted into two steps: (i) transforming a highly uniform
AC0[⊕] circuit to an arithmetic circuit over GF[2] whose multiplication gates have bounded fan-in
and an incidence function. This is the transformation we refer to in Theorem 3.18. Next, (ii) they
construct a proof system for #AC0

F,fin circuits under appropriate conditions on the uniformity and
the fan-in of multiplication gates. In this section, we focus on this second step. Moreover, the GR
protocol was not holographic, but it can be made holographic in a straightforward manner.

W.l.o.g, we assume that the #AC0
F,fin circuit C is layered, and that all gates in each layer are

either of the addition type or the multiplication type. The protocol unwinds the computation
layer by layer in sequential iterations, where in each iteration the prover and the verifier execute a
constant-round layer-consistency sub-protocol. The i-th execution of the sub-protocol begins with a
claim w(i) about value of the LDE of layer i at a location r(i), and ends with a claim (r(i+1), w(i+1))
about the value of the LDE of layer (i + 1). As usual, if the input claim is true then the output
claim will also be true. If the input claim is false, then w.h.p. over the verifier’s coins the output
claim will also be false. The main step in this sub-protocol is an interactive sum-check, but the
details vary between layers of addition gates and layers of multiplication gates.

Addition layers. For addition layer i, suppose that both layer i and layer (i + 1) are of width
|H|m, and that the gates in both layers are labeled by vectors in Hm. We use the (arithmetization
of the) adjacency predicate ϕ̂adj (j, k) that outputs 1 if the addition gate j in layer i is fed by gate
k in layer (i + 1). We remark that the adjacency predicate should take bit strings as its input,
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whereas here we feed it with vectors of field elements, but one can translate the field elements
into the appropriate strings using an easy-to-compute translation function of degree |H| (for more
details, see Claim 3.22).

Let V (i) be the vector of values of the gates in layer i, and V̂ (i) its low-degree extension w.r.t.
H,F (see Section 3.2). Similarly, let V (i+1) be the vector of values of the gates in layer (i + 1)
and V̂ (i+1) its low-degree extension. Finally, let τ̂(x, z) = τ̂x(z) be the functions used to define the
low-degree extension, see Section 3.2 and Proposition 3.10.

The starting claim is that V̂ (i)[r(i)] = w(i). Decomposing the claim about the LDE of the i-th
layer into a sum, this claim can be verified via a sum-check protocol:

V̂ (i)[r(i)] =
∑
j∈Hm

τ̂(j, r(i)) · V (i)[j]

=
∑
j∈Hm

τ̂(j, r(i)) ·

( ∑
k∈Hm

ϕ̂adj (j, k) · V (i+1)[k]

)
=

∑
j∈Hm,k∈Hm

τ̂(j, r(i)) · ϕ̂adj (j, k) · V̂ (i+1)[k].

The sum-check protocol outputs vectors r′, r′′ ∈ Hm and claims about the values of τ̂(r′, r(i)),
ϕ̂adj (r

′, r′′) and V̂ (i+1)[r′′]. The first two claims can be verified by the verifier, the last claim is the
output claim for this layer’s subprotocol (i.e. r(i+1) = r′′).

In terms of the degree of the summands, the degree in j and in k is as follows. Notice that, as
opposed to other usages (e.g., Lemma 3.8) where we consider the total degree (that is, the sum of
the degrees in each of the variables), here we consider the individual degree, since this is the one
that appears in the soundness error of the sum-check protocol.25

degree = O
(
|H|+ deg(ϕ̂adj )

)
(10)

= O
(
nδ + deg(ϕ̂adj )

)
.

The communication complexity and verifier runtime in this subprotocol are thus Õ(degree), and
the soundness error is O(m · degree|F| ) = O(degree/|F|). If deg(ϕ̂adj ) = d, as assumed in the theorem’s

statement, we get that the soundness error is O(nδ + d)/|F|.

Multiplication layers. For multiplication layers, we proceed as above, but now we have (an
arithmetication of) the incidence function ϕ̂incd (j, k) that outputs the label of the k-th gate in layer
(i+ 1) that feeds into gate j in layer i. Let m′ = log|H|(fin) = O(1) be the dimension of the LDE

25In more detail, recall that in each round of the sum-check protocol, the prover sends a univariate polynomial.
This means that the soundness error in each round is proportional to the individual degree, and that the overall
soundness error of the sum-check execution is the sum (over all rounds) of these errors.
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of the “index” k. We again decompose the claim about layer i’s LDE:

V̂ (i)[r(i)] =
∑
j∈Hm

τ̂(j, r(i)) · V (i)[j]

=
∑
j∈Hm

τ̂(j, r(i)) ·

 ∏
k∈Hm′

V (i+1)[ϕ̂incd (j, k)]


=
∑
j∈Hm

 ∏
k∈Hm′

τ̂(j, r(i)) · V̂ (i+1)[ϕ̂incd (j, k)]

 .

Here we have a sum of products. The (individual) degree of the “internal” function is
(
|H| · deg(ϕ̂incd )

)
.

The total number of multiplicants in the product is fin = O(nδ). Thus, the degree in each round
of the sum-check protocol (actually, a sum-product check a la [Sha92]) is bounded by:

degree = O
(
n2δ · deg(ϕ̂incd )

)
. (11)

The communication complexity and verifier runtime are again Õ(degree), and the soundness error
is O(degree/|F|) since m = O(1). Once again, if deg(ϕ̂incd ) = d, as assumed in the theorem’s
statement, we get that the soundness error is O(n2δ · d)/|F| = nO(δ) · d/|F|. Assuming C has size
nC

′
and depth D′, the number of rounds for executing each sum-check is O(C ′/δ), and thus the

overall round complexity is O(D′ · C ′/δ).

Remark A.1 (Multi-output circuits). The protocol we described also applies to cases where we
want to verify the output of an arithmetic circuit that has multiple (say ℓ ≥ 1) output wires. By
convention, we will verify that the value of all output wires is 1. This is done by simply picking
the input claim to the first sub-protocol’s execution to be a random location r(1) on the LDE of the
output layer, where the claimed value v(1) = LDE(1ℓ)[r(1)]. The choice of 1ℓ is arbitrary; any vector
that is known to the verifier would work (however, it is crucial that the verifier knows this output
vector in order to compute v(1)).

A.2.1 Setting the field size

In this work, defining |F| = poly(n) without specifying the polynomial was sufficient for our needs.
Indeed, taking a step back, the only condition that |F| had to satisfy is to be big enough such that
the soundness error nO(δ)/|F| would be o(1). Thus, as is, it is unclear that |F| can be taken to be
quadratic in |H|, that is, |F| = |H|2, where |H| = nδ. In this subsection, we show that for Flat-GKR
(namely, for this work), it is possible.

We start with backtracking the nO(δ)/|F| soundness error of Flat-GKR (see Theorem 5.1), where
we only consider errors that are (strictly) bigger than O(|H|/|F|). The nO(δ)/|F| term is implied
by the soundness error of HHR (see Theorem 4.2). There, it comes from the soundness error of
the (Pi,Vi) protocol. Taking a closer look at its soundness analysis (see Lemma 4.6), the nO(δ)/|F|
term stems from the HIP of Theorem 3.25 (the theorem that is proved in this section), and from
ρ, that is, the soundness error of the HIPP that instantiates Lemma 4.4. Since we use the HIPP
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of Theorem 3.26, we get that ρ is the sum of λ(n) and the HIP’s soundness error,26 where λ(n) is
smaller than any polynomial (see Proposition A.4). We conclude that we are only interested in the
soundness error of the HIP of Theorem 3.25.

As mentioned earlier, this error originates in the degree of the multiplication gates (as it is
bigger than the one of addition gates, see Equations (10) and (11), and the following arguments
apply for addition gates as well). In particular, we “pay” with soundness error for this degree, due
to the Schwartz-Zippel lemma (see Lemma 3.8), according to which we get an O(degree/|F|) error
probability.

Let us review each of the multiplicants of Equation (11). Taking d to denote the degree of ϕ̂incd ,
we get that the overall degree of the entire sum is upper-bounded by:

degree = O(fin · nδ · d). (12)

Thus, if we prove that fin ≤ nβ for β = δ/2, and that d ≤ no(1), we can define |F| = n2δ = |H|2.
This way, we promise that the soundness error nO(δ)/|F| is o(1).

First, we focus on the fan-in. Recall that for every gate in each of the circuits that are used
throughout the work, it also holds that fin ≤ nδ+o(1). As already done in Section 4.4.1 (see Footnote
19), we use the following iterative process: we scan the gates of the circuits from top to bottom
(i.e., from the output layer to the input layer), and search for a gate u such that fin(u) > nδ.
Whenever we find this u, we create new nβ gates of the same type of u, such that each of them
has fin ≤ nδ+o(1)/nβ. These are the new inputs to u. We repeat this process for any such u.
This process halts when the condition is met, and it increases the size of the circuit by at most a
polynomial factor, whereas its depth is increased by a multiplicative factor of δ+o(1)β + 1 ≤ 4.

Regarding the degree d, in each of the usages of the theorem, we proved that indeed in holds
that d ≤ no(1) (in fact, we even proved something stronger: that d ≤ O(log n)).

Remark A.2 (No LDE([LDE(·)]2) in HHR). We remark that if the input x to the protocol is
promised to be a binary representation of an LDE, i.e. x = [LDE(v)]2, then a naive application of
the protocol yields a claim about LDE([LDE(v)]2). Indeed, this is the case in some of our usages of
this theorem (namely, in implementing (Pℓ,Vℓ), see Section 4.3), as we always take the leaves of
the tree to be in an LDE form, and we always convert them to binary (see Remark 3.7).

We wish, instead, to get a claim directly about LDE(v). To do this, instead of running the
protocol on the #AC0

F,fin circuit C, we can run it on the circuit C ′ that takes as input v itself,
computes LDE(v), then computes [LDE(v)]2, and then computes C on [LDE(v)]2. We can apply the
theorem to C ′, as the LDE can be computed in O(log n)-highly uniform #AC0

F,fin with multiplication
gates of fan-in |H|, and the binary representation of a field element can be computed in O(log n)-
highly uniform #AC0

F,fin with multiplication gates of fan-in |F| (see Claim 3.22). Recall that in the

previous section, we proved that the size of |F| can be taken to be smaller than n2δ. This means that
reducing the fan-in of C ′ from |F| to |H| = nδ can be done when only multiplying the circuit’s depth
by 2 (and increasing its size by a polynomial factor). Thus, the circuit C ′ satisfies the conditions
of Theorem 3.25.

26Recall that we only consider errors bigger than O(|H|/|F|). Revisiting Equation (13), an exact calculation of the
probability that at least one of the new forked inputs will have the (new) claimed distance from its (new) claims is

(|F| − 1)−1 + e−µ/ log(|H|). By taking µ = O(n
o(1)
imp · log(|H|)), we get that this term is o(1). For more details see the

next section of the appendix, Section A.3, and [RVW13, Theorem 3.12, Theorem 3.8] with r = O(1).
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A.3 Constant Round HIPP for AC0[⊕] and #AC0
F,fin

We give an overview for the proof of Theorem 3.26, an oblivious constant-round HIPP for (suffi-
ciently uniform) triplet languages computable in AC0[⊕] or #AC0

F,fin . Our construction is based on
the RVW IPP [RVW13], with a few twists and a careful analysis of that protocol’s output claim
about the implicit input. Our overview emphasizes the novel and important points for our analysis.

We briefly recall the setup and the goal of the protocol (see Definition 3.24 for the definition
of HIPPs). The input is a triplet (x, y, z): an explicit input x ∈ {0, 1}nexp , an implicit input
y ∈ {0, 1}nimp , and a holographic input z ∈ {0, 1}nhol . The proximity parameter is ε = ε(nimp). The
IPP is oblivious: the verifier doesn’t access the inputs (y, z). Rather, it interacts with the prover,
accesses (only) the explicit input x, and in the end of the interaction it either rejects the prover’s
assertion, or outputs two claims about the input: (i) a claim on a subset Q of the coordinates of
the implicit input y, where this claim is specified by a predicate ψ, and (ii) a holographic claim
about z, asserting the value of a single location in z’s low-degree extension.

Phase I: distance amplification. The protocol begins by running t parallel executions of a
HIP protocol for the claimed circuit computation. Aiming for a constant number of rounds, we
use the HIP of GR, as detailed in Theorem 3.25, where the explicit input to the HIP is empty
and the holographic input is (x, y, z). Although x is explicit and the verifier holds its value, we
put it into the holographic input to get a better dependence on nexp in the verification time. The
low-degree extension used is w.r.t the fields H and F (see Section 3.2), where the LDE of (x, y, z)
is of dimension mtotal , and the LDE of the implicit input y is of dimension m. If the HIP verifier
rejects (in any execution), then we reject immediately. Otherwise, the HIP executions result in
a vector J ′ ∈ (Fmtotal )t of locations in the LDE of (x, y, z), and a vector v⃗′ ∈ Ft of claims about
LDE(x, y, z)[J ′] = v⃗′. By Proposition 3.12, we can partition the LDE claims into:

(i) claims about the explicit input, which will be merged into a single claim that the verifier
checks explicitly, using the process described in Claim 3.13;

(ii) claims about the holographic input, which will also be merged into a single output holo-
graphic claim in the same manner, and

(iii) claims about a set J ∈ (Fm)t of locations in the LDE of the implicit input y, asserting that
they get values v⃗ ∈ Ft.

In the completeness case, all claims will be true. In the soundness case, w.h.p. either the verifier
rejects in the HIP, or it rejects after it checks the claim about the explicit input, or the holographic
claim is false, or the implicit input y is at Hamming distance at least Ω̃(t) from satisfying that
LDE(y)[J ] = v⃗. The main goal in the protocol is reducing this claim to a claim about a subset of
the coordinates of the implicit input (in the IPP context, this corresponds to achieving sublinear
query complexity into the input).

Before moving to this second phase, we remark on the complexity of the first phase, which is
incurred by running t repetitions of the HIP. Recall that s(n) is the length of the advice string to the

circuit and that the circuit’s size is denoted by nC . Looking ahead, we will take t = ε · nimp · no(1)imp ,

so we get that the communication complexity is (ε · nimp · nO(δ) · s(n)1+o(1)), the verifier runs in
time nO(δ) ·

(
ε · nimp · s(n)1+o(1) + nexp

)
, the prover runs in time poly(n) and the number of rounds

is O(C/δ).
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Phase II: iterated fork-and-reduce. The second phase reduces the claim LDE(y)[J ] = v⃗ to a
sublinear claim about a subset Q of y’s coordinates. If the initial claim is true, then the sublinear
claim will also be true. On the other hand, if y is far from satisfying the input claim, then the
sublinear claim will be false.

The protocol proceeds in rounds, where in each round we begin with a set of input-claim pairs
(a set of inputs, and a set of claims about each input). We “fork” each input-claim pair into

f = log(|H|) = n
o(1)
imp new input-claim pairs, where the new inputs are of a reduced dimension. In

more detail (and with careful indexing), there are r rounds, each indexed by i ∈ [r]. Each round
begins with f i−1 input-claim pairs, indexed by j ∈ [f ]i−1. The i-th round begins with:

• A vector (y(i,j))j∈[f ]i−1 of f i−1 inputs, where each input is a column vector of length |H|m−i.

The first round begins with a single input y(0,(·)) = y, of length Hm (we take (·) to indicate a
vector of dimension 0).

• A collection of t claims about each input, where the claims are all about the LDE of that input,
and are specified by a t-dimensional vector (J (i,j))j∈[f ]i−1 of locations and a t-dimensional

vector (v⃗(i,j))j∈[f ]i−1 of claimed values, where the claim is that:

∀j ∈ [f ]i−1 : y(i,j)[J (i,j)] = v⃗(i,j).

The first round begins with a single claim specified by J (0,(·)) = J and v⃗(0,(·)) = v⃗.

• A distance bound δ(i,j) on the fractional distance of y(i,j) from satisfying the claims. In the
completeness case, all inputs satisfy their claims, whereas in the soundness case, w.h.p. in
each round at least one y(i,j) is δ(i,j)-far from satisfying the claims.

In the first round we have:

δ(0,(·)) =
Ω̃(t)

nimp
= ε · no(1)imp

We proceed to describe the execution rounds, and how we fork each input into f new executions.
In round i, we refer to the j-th “execution path”, which operates on the (i, j)-th input-claim pair.

As described in Section 3.2, the LDE of a vector y′ ∈ F|H|m′
can be viewed as a matrix in the

following way: We view y′ itself as a matrix with dimensions |H| × |H|m′−1, thus we can refer to
the “rows” of y′, which are the rows of this matrix. The LDE of y′ is a matrix with dimensions
|F| × |F|m′−1. For i ∈ [|H|], the i-th row of the LDE is obtained by encoding the row y′i of y

′ as an
LDE. The j-th column of LDE(y′) is the obtained by encoding the column vector (y′1[j], . . . , y

′
|H|[j])

T

(also as an LDE).

The i-th round. In the i-th round, for the (i, j)-th execution, the protocol begins with the prover
sending |H| vectors of claimed values for the LDE of each row h of y(i,j). I.e., the prover sends

{W (i,j)
h }h∈H, and claims that:

∀h ∈ H, LDE(y(i,j)h )[J (i+1,(j,k))] =W
(i,j)
h ,

where J (i+1,(j,k)) is derived from J (i,j) by simply erasing the first coordinate of each location.
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Creating the f forks. The verifier sends f responses, where the k-th response generates the k-th
fork of the (i, j)-th execution. In the k-th fork, the verifier picks a (random) subset of 2k of the rows
of the input y(i,j). It also picks a random coefficient in F for each of these rows. Let A(i+1,(j,k)) ∈ F|H|

denote the vector that has 0’s in the coordinates corresponding to rows that weren’t picked, and the
random field elements in the coordinates that were picked. We use |A(i,(j,k))| = 2k to refer to the
number of coordinates that were not set to 0 (we ignore the fact that for the non-zero-fixed rows,
the random field elements picked can also be 0 with small probability, this will have no impact on
the analysis).

We can now describe the k-th forked input-claim pair (and its distance bound):

• The new input is a linear combination of y(i,j)’s rows, according to the coefficients inA(i+1,(j,k)):

y(i+1,(j,k)) =
∑
h∈H

A(i+1,(j,k))[h] · y(i,j)h

• The new claim is derived by taking linear combinations of the prover’s claims in this round:

v⃗(i+1,(j,k)) =
∑
h∈H

A(i+1,(j,k))[h] ·W (i,j)
h ,

where J (i+1,(j,k)) was derived above, by omitting the first coordinate in each location of J (i,j).

• The new claimed distance bound is:

δ(i+1,(j,k)) = δ(i,j) · 2k

n
o(1)
imp

. (13)

Completeness follows by linearity of the LDE. The soundness argument is more involved, but
it shows that if the original input had the claimed distance bound from its claims, then w.h.p. at
least one of the new forked inputs will have the (new) claimed distance from its (new) claims. We
refer the reader to [RVW13] for further details.

Deriving the output claim. The number of rounds r is a constant set below. After r rounds,

we have a collection of f r = n
o(1)
imp input-claim pairs. In the final round, for each j ∈ [f ]r, the prover

sends to the verifer (explicitly) a claim ỹ(j) about the value of the final input in the j-th execution
path. The communication complexity for sending ỹ(j) shrinks with the number of rounds (since
each round reduces the length of the inputs by a |H| ≈ nδ multiplicative factor). We set r so that

the length of these final inputs is |H|m−r ≈ (ε ·n1+o(1)imp ). To complete the protocol, the verifier runs
two final tests for each of the j final input-claim pairs (the j-th pair is indexed by (r, j)):

1. Alleged-input claim consistency: the verifier checks that

LDE(ỹ(j))[J (r,j)] = v⃗(r,j),

and rejects immediately if this is not the case.
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2. Alleged-input real-input consistency: the verifier picks a set B(j) ⊂ Hm−r of random
coordinates in ỹ(j) (or rather, pseudo-random coordinates: see Proposition A.4), and checks
their consistency with the true implicit input y. This test will be performed by the predicate
ψ. We detail its functionality and then describe the circuit structure.

The set B(j) is of size b(j) = polylog(nimp)/δ
(r,j), i.e. it is chosen so that if ỹ(j) is δ(r,j)-far

from the correct vector y(j), then w.h.p. the two will differ on at least one coordinate in B(j).
We represent B(j) as a |H|m−r-dimensional vector, with b(j) coordinates that are fixed to 1,
and the other coordinates are fixed to 0.

Now the verifier computes the value of the true reduced input y(j) at each of these coordinates,
and compares them with the value in ỹ(j). Unrolling the verifier’s choices during the j-th
execution path, for each coordinate ρ ∈ B(j) the verifier checks that:

y(r,j)[ρ] =
∑
τ∈Hr

∏
i∈[r]

A(i,(j1,...,ji))[τi]

 · y[(τ, ρ)] = ỹ(j)[ρ]. (14)

Recalling that many of the elements in the A(i,j) and B(j) vectors were fixed to 0, the query
complexity for checking input-consistency on the j-th input is:

qexec =

∏
i∈[r]

2ji

 · b(j)
=

∏
i∈[r]

2ji

 · polylog(nimp)

δ(r,j)

=

∏
i∈[r]

2ji

 · polylog(nimp)

δ(0,(·))
·

∏
i∈[r]

n
o(1)
imp

2ji


≤

n
o(1)
imp

δ(0,(·))

≈ 1

ε
· no(1)imp ,

where we remark that the per-execution-path query complexity qexec is independent of the
execution index j.

Remark A.3. In this overview, we show the query complexity is (1/ε) · no(1)imp . RVW actually

show (1/ε)(1+o(1)) by an appropriate choice of parameters. In our use of the theorem ε will be
poly(1/nimp), so the distinction is moot.

Before describing the circuits for performing the alleged-input real-input consistency test, we

wrap up the analysis of the protocol. In terms of complexity, there are f r = n
o(1)
imp execution paths,

so the total query complexity, communication complexity, and verifier runtime are as claimed.
Completeness follows by construction. Soundness follows because w.h.p. at least one of the final
inputs y(r,j) is far from its claim. Either the prover sends ỹ(j) that doesn’t satisfy the claim, in
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which case the Alleged-input claim consistency test fails, or the prover sends ỹ(j) that satisfies the
claim, but then ỹ(j) must be far from the real y(j), and the alleged-input real-input test fails.

As already hinted, the coordinates in this test can be taken to be pseudo-random. This is
captured by the following proposition.

Proposition A.4 (Derandomization of the set B(j)). Take n′ = |H|m−r, and assume that |y(j)| =
|ỹ(j)| = n′ and that they are at distance δ(r,j) from each other. Then, there exists a polylog(n)-
succinct O(log n)-highly uniform AC0[⊕] circuit of size polylog(n), such that given a uniformly

random string ξ ∈R {0, 1}(2 log
3(n′)) as advice, outputs a set B(j) ⊂ {0, 1}log(n′) of size b(j) =

polylog(n′)/δ(r,j) of coordinates in [n′], such that with probability at least 1 − λ over the choice of
ξ, y(j) and ỹ(j) differ on at least one coordinate in B(j), where λ = λ(n) : N → N is smaller than
any polynomial.

Proof. The proof consists of two steps: First, using ξ for generating a set of pairwise independent
coordinates, and second, showing that pairwise independence is enough for catching a difference
between y(j) and ỹ(j) with high probability — namely, that comparing y(j) and ỹ(j) only on the
coordinates included in this set is enough for catching w.h.p. an inconsistency between the strings.

Generating B(j). The set B(j) is composed of subsets, such that each subset satisfies pairwise
independence. These subsets will be used to perform parallel repetitions of the comparison between
y(j) and ỹ(j). This will allow us to achieve the required soundness error while only checking
polylog(n′)/δ(r,j) coordinates, and by that save in random bits (which are the length of the advice
string), and in the size of the circuit that generates these coordinates, as described below.

We take CB(j) to denote the circuit that generates B(j). Recall that |B(j)| = b(j). Following
Definition 3.21, this circuit maps indices in [b(j)] to coordinates in [n′]. Namely, when given an index

i ∈ {0, 1}log b(j) , it returns the ith element of B(j), which is a coordinate in {0, 1}log(n′) (identified
with [n′]). However, we stress that it does not perform the comparisons: The next component we
describe — the circuit that computes ψ — is the one that compares y(j) and ỹ(j).

Let t < n′ be a parameter to be set later, indicating the size of each pairwise independent
subset. We describe the structure of CB(j) , then prove that it satisfies the stated size and uniformity
properties.

• Structure. We use a family of pairwise independent functions that map strings from {0, 1}log t
to strings in {0, 1}log(n′). A known construction of such a family uses random linear maps
{hA,b : {0, 1}log(n′) → {0, 1}log(n′)},27 such that hA,b(x) = Ax + b, where A is a (log(n′) ×
log(n′)) Boolean matrix and b is a binary vector of length log(n′). We take CA,b to denote
this circuit, as it uses (A, b) as advice string.

The circuit CB(j) is composed of log(n′) copies of CA,b, where it uses a different key (A, b) as the
advice string of each copy (these keys will be randomly chosen by the verifier). The copies rep-
resent parallel repetitions, thus it is important that we use independent keys. The construction
promises that a random (A, b) generate pairwise independent strings {hA,b(x)}x∈{0,1}log t .

• Size and uniformity. First, we find CA,b’s size and depth. Given (random) A and b, computing
a map from the pairwise independent family requires multiplication of a matrix and a vector,
and addition of two vectors. Since these vectors are binary, these two operations can be

27Since we take t such that n′ > t, we pad the input x ∈ {0, 1}log t with zeros, i.e., we apply hA,b(x ◦ 0log(n
′)−log t).
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done by a depth-3 Boolean circuit with parity gates, of size O(log2(n′)). Thus, CA,b forms an
AC0[⊕] circuit.
The circuit is O(log log(n′))-highly uniform, following the same arguments used in Claim 3.22:
the most “expensive” operation (with respect to circuit depth) that the adjacency predicate
performs is comparing two binary strings of length O(log log(n′)), which is the length of each
label.

Notice that a random function from this family can be selected using log2(n′) + log(n′) ≤
2 log2(n′) random bits, referred to as the key (these bits instantiate A and b). This means
that CA,b is also (2 log2(n′))-succinct.

Now, recall that CB(j) should map indices i ∈ {0, 1}log b(j) to B(j)’s ith index. Thus, it first
uses the first log log(n′) bits of its input to decide which of the copies to use, and then it feeds
the selected copy with the rest of the input. It is clear that this operation can be done by a
log log(n′)-depth arithmetic circuit over GF[2].
We define CB(j) ’s advice string to be the concatenation of all log(n′) advice strings, of length
(2 log2(n′)) each, needed for computing each of the copies of CA,b. Namely, the advice string
of CB(j) is (2 log3(n′)) random bits.

Overall, we conclude that CB(j) is a (2 log3(n′))-succinct O(log log(n′))-highly uniform AC0[⊕]
circuit of size O(log3(n′)). Recalling that n′ ≤ nimp and that polylog(nimp) ≤ polylog(n), we
get the stated parameters.

Using B(j) for alleged-input real-input consistency test. Given the b(j) coordinates in
[n′], we need to prove that the verifier catches an inconsistency between y(j) and ỹ(j) with high
probability. Recall that the distance between the strings is at least δ(r,j), and that B(j) is composed
of log(n′) subsets of pairwise independent coordinates, each of size t.

Now, we take X to be a random variable indicating the number of coordinates that are different
between the strings, when checking t pairwise independent coordinates. Notice that E[X] = t ·δ(r,j)
and that Var[X] ≤ t · δ(r,j). Observe that the probability that the strings are equal when checking
a single subset is

Pr[X = 0] ≤ Pr
[
E[X]−X ≥ t · δ(r,j)

]
≤ Pr

[
|X − E[X]| ≥ t · δ(r,j)

]
,

thus, Using Chebyshev’s inequality,

Pr[X = 0] ≤ Var[X]

(t · δ(r,j))2
≤ 1

δ(r,j) · t
.

Overall, the probability that the strings are equal on B(j) is at most(
1

δ(r,j) · t

)log(n′)

=

(
1

log(n′)

)log(n′)

,

by taking t = log(n′)/δ(r,j). This error function is smaller than any polynomial in n, as n and
n′ are polynomially related (since n′ ≥ |H| = nδ). To conclude, we define b(j) = t · log(n′) =
log2(n′)/δ(r,j).
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Highly uniform representation of Q. We are now (finally) ready to describe the circuits CQ,
computing the list representing the query set, and Cψ, which checks the predicate ψ.

The query set Q is represented by a list, where each element in the list corresponds to a query
to a location in the input. Each query location is represented as a pair (τ, ρ) for τ ∈ Hr, ρ ∈ Hm−r

(recall that ρ ∈ B(j) ⊂ Hm−r). The list is indexed by tuples in [f ]r × {0, 1}log(qexec), parsed as
follows:

• The first part is an execution number j ∈ [f ]r.

• For fixed prefix j, the next part of the suffix is α ∈ {0, 1}
∑r

i=1 ji , which represents a choice
of a non-zero location in each set A(i,(j1,...,ji)) of coordinates chosen in the i-th round of this
execution path.

• The last part is β ∈ {0, 1}log(b(j)), which represents the choice of coordinates of the Alleged-
input that will be tested.

Thus, the total length of the list is as claimed. The mapping CQ of an index (j, α, β) in the list
to a location (j, τ, ρ) in the implicit input is done as in Equation (14) above. (j, α, β) should be
mapped to the α-th query of the β-th coordinate of ỹ(j) that is checked. The main issues are:

• mapping α to the α-th query location. Towards this, for each execution path j and each
round i, the verifier can prepare a small lookup table T (i,j) : {0, 1}ji → H, which maps an
index γ to the γ-th row of that execution round’s input that was chosen to have a non-zero
coefficient. This lookup table is of size at most |H|, and can be computed by an nδ+o(1)-
succinct O(log n)-highly uniform AC0[⊕] circuit of size nδ+o(1).
The first part of the mapping CQ simply concatenates these r = O(1) circuits. We divide α
into r chunks, where the i-th chunk αi is of length ji, and output:

CjQ,1(α1, . . . , αr) =
(
T (1,j)(α1), . . . , T

(r,j)(αr)
)
.

• mapping β to the β-th location that is tested in ỹ(j) is simpler: we pick a list of b(j) input
locations using Proposition A.4, and output the lookup table that maps β to the β-th location
in the list. We obtain a polylog(n)-succinct O(log n)-highly uniform AC0[⊕] circuit CjQ,2 of

size polylog(n) (namely, we take CjQ,2 to be CB(j) from the proposition), that maps β to the
β-th location in the list.

On input (j, α, β), the circuit CQ outputs (j, CjQ,1(α), C
j
Q,2(β)). This is performed by using j to do

a “lookup” among the n
o(1)
imp j-specific circuits. Since all of the subcircuits are (at most) nδ+o(1)-

succinct O(log n)-highly uniform AC0[⊕] circuits of size nδ+o(1), we conclude that CQ satisfies these
uniformity and size requirements as well. We stress that the depth of CQ is independent of δ, i.e.,
it is some global constant.

Highly uniform representation of ψ. The circuit for ψ proceeds along similar lines. Its inputs
are indexed by the list indices (j, α, β). For each execution path j, we need to check the alleged-
input real-input claims. The verifier can prepare a lookup table, mapping each j and β to the

claimed value ỹ(j)[C
(j)
Q,2(β)], followed by the same arguments from above.
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We now need to map the α-th input wire to the appropriate coefficient, to check that Equation
(14) holds. This is again done by parsing α in blocks αi of length i, and having a lookup table
U (i,j) for mapping αi to the appropriate non-zero coefficient in A(i,j).

Finally, the circuit for ψ checks that Equation (14) holds for each j and β, i.e. that:

ỹ(j)[C
(j)
Q,2(β)] =

∑
α1∈{0,1}j1 ,...,αr∈{0,1}jr

∏
i∈[r]

U (i,j)(αi)

 · (ψ’s (j, α, β)-th input)

 (15)

As claimed, these checks can be performed by an arithmetic nδ+o(1)-succinct #AC0
F,fin circuit,

where the fan-in for multiplication (as above) is logarithmic (this requires using the approximation
method of Theorem 3.18 to compute a large conjunction on all the individual tests that we run). Its
depth is a global constant, independent of δ. This circuit is also O(log n)-highly uniform, following
the same arguments from above.

A.4 Proof of Claim 3.22

We construct a circuit that gets a field element x ∈ F and outputs its binary representation [x]2. To
facilitate the labeling, we allow gates in all layers to use the constants from the input layer, although
the circuit is layered and the constants are moved from layer to layer and labeled appropriately.

The circuit has 7 layers, including the input and the output. The label of each gate is of
the form (t, ℓ1, ℓ2), where t ∈ {0, 1}3 denotes the layer (notice that there is no layer 0), and
(ℓ1, ℓ2) ∈ {0, 1}log(|F|) × {0, 1}log log(|F|) denote the internal label. It is easier to think of labels and
indices as integers, thus we often use the notation [k]2 for the log(|F|)-bit binary expansion of an
integer k ∈ [|F|]. In most cases, ℓ2 will be taken to be empty, and in this case, we write 0⃗ instead
of 0log log(|F|). It will also be convenient to use 1⃗ instead of 1log log(|F|).

• Layer 1: The first (input) layer is composed of a list of all of the constants, that is, all field
elements, in an increasing order (F is an ordered field). For 0 ≤ i ≤ |F| − 1, the label of fi is
(001, [i]2, 0⃗). The last gate of this layer is the circuit’s input, x, and its label is (001, [0]2, 1⃗).

• Layer 2: The second layer has |F| addition gates, labeled (010, [i]2, 0⃗) for 0 ≤ i ≤ |F| − 1.
The ith gate computes (x+ fi), which is also (x− fi), and we will prefer the latter notation.

• Layer 3: The third layer has the following |F| multiplication gates, labeled (011, [i]2, 0⃗) for
0 ≤ i ≤ |F| − 1. The ith gate outputs: ∏

f∈F,f ̸=fi

(x− f).

Moreover, it has an additional multiplication gate, labeled (011, [0]2, 1⃗), that computes∏
f∈F,f ̸=f0

f.

Notice that for every 0 ≤ i ≤ |F|−1, this result is the same as
∏
f∈F,f ̸=fi(fi−f)

−1, namely, the
product of all invertible (non-zero) elements is also the product of the inverses of all invertible
elements. Thus, the last gate avoids computing inverses, but rather perform a much simpler
computation that can be done within the uniformity demands that we want.

76



• Layer 4: The forth layer multiplies the first |F| gates with the last one. For 0 ≤ i ≤ |F| − 1,
the ith gate of this layer is labeled (100, [i]2, 0⃗) and it computes:∏

f∈F,f ̸=fi

x− f
fi − f

.

• Layer 5: The fifth layer adds the constant f1 = 1 to each of the results. This means that the
ith gate outputs 1 if x = fi, and 0 otherwise. Again, we label them by (101, [i]2, 0⃗)0≤i≤|F|−1.

• Layer 6: The sixth layer uses (|F| · log(|F|)) multiplication gates for multiplying the ith result
of the fifth layer described above (that will have fan-out of log(|F|)) with [fi]2, that is, the
ith sequence of the binary representations of all field elements (computed by the incidence
function, detailed next). This means that for x ̸= fi, we get a (log(|F|))-long sequence of 0’s,
and for x = fi, we get [fi]2. The labeling of this layer goes as follows: The jth gate of the ith

sequence, where 0 ≤ i ≤ |F| − 1 and 0 ≤ j ≤ log(|F|)− 1, is (110, [i]2, [j]2).

• Layer 7: The seventh (output) layer is the bitwise sum of these log(|F|) results, i.e., log(|F|)
addition gates of fan-in |F|, labeled (111, [i]2, 0⃗)0≤i≤log(|F|)−1. Since a sum of a bit and 0’s
returns the bit, the circuit outputs [x]2.

It is evident that this circuit is an #AC0
F,fin circuit with multiplication gates of fan-in |F|.

Next, we prove that it is O(log n)-highly uniform. With respect to the labeling defined above, we
construct the adjacency predicate for the circuit’s addition gates, and incidence function for the
circuit’s multiplication gates. Recall that each of them should be computed by an arithmetic circuit
of size at most nδ+o(1) and logarithmic degree. In fact, we will show that they can be computed by
circuits of polylogarithmic size.

Denoting the labels’ length by µ = 3 + log(|F|) + log log(|F|), we take

ϕadj : {0, 1}µ × {0, 1}µ → {0, 1}

to be the circuit’s adjacency predicate, and

ϕincd : {0, 1}µ × {0, 1}log(|F|) → {0, 1}µ

to be the circuit’s incidence function. For transparency, we present their functionalities layer-by-
layer. Layers 2, 5 and 7 are of addition gates, therefore will be handled by ϕadj , whereas layers 3,4
and 6 are of multiplication gates, therefore will be handled by ϕincd . We always assume that the
circuits should return 0 or 0µ for all possible labels that are not explicitly mentioned. Since the
first layer has no incoming wires, we start with the second layer.

• Layer 2: For 0 ≤ i ≤ |F| − 1, it should hold that

ϕadj

(
(010, [i]2, 0⃗), (001, [0]2, 1⃗)

)
= 1,

and
ϕadj

(
(010, [i]2, 0⃗), (001, [i]2, 0⃗)

)
= 1.
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For the second condition, the circuit should compare the middle part of each label (the one
corresponding to ℓ1). A comparison of two binary strings y1, y2 of length log(|F|) by an
arithmetic circuit over GF[2] can be done as follows:∏

i∈[|y1|]

((1− y1[i]) + y2[i]) · (y1[i] + (1− y2[i])) ,

while recalling that subtraction is the same as addition. The size and the degree of this circuit
is O(log(|F|)) = O(log n). For the first condition and for finding the type t in both conditions,
the circuit of ϕadj perform a straightforward comparison between the labels and constants,
using the same argument.

• Layer 3: For 0 ≤ i ≤ |F| − 1, the incidence function should output

ϕincd

(
(011, [i]2, 0⃗), [j]2

)
=

{
(010, [j]2, 0⃗) j < i

(010, [j + 1]2, 0⃗) j ≥ i ,

and
ϕincd

(
(011, [0]2, 1⃗), [j]2

)
= (000, [j]2, 0⃗).

A circuit that computes the second condition is again a simple comparison to constant bits,
as described in the previous item. The first condition, however, requires more care.

For two bits b, b′, we define (b < b′)
def
= ((1− b) · b′) and (b = b′)

def
= ((1− b)+ b′) · (b+(1− b′)).

We denote [j]2 = (jlog(|F|)−1, ..., j2, j1, j0), and [i]2 analogously. First, the circuit computes:

res
def
= (j0 < i0) + ((j0 = i0) · (j1 < i1)) + ((j0 = i0) · (j1 = i1) · (j2 < i2)) + ...+(

(j0 = i0) · ... · (jlog(|F|)−1 = ilog(|F|)−1)
)
.

The circuit’s output is as follows. The first (log(|F|) − 2) output bits are (jlog(|F|)−1, ..., j2).
For the last two bits, the circuit compares the result bit res (notice that the circuit must
duplicate res for this comparison) and 0:

– If res = 0, the last two output bits are (j1, j0);

– If res = 1 and j0 = 0, the last two output bits are (j1, 1);

– If res = 1 and j0 = 1, the last two output bits are (1, 0).

The comparison is done as described above, and the if condition is done by a product of the
comparison and the appropriate output.

• Layer 4: For 0 ≤ i ≤ |F| − 1, the incidence function should output

ϕincd

(
(100, [i]2, 0⃗), [1]2

)
= (011, [i]2, 0⃗),

and
ϕincd

(
(100, [i]2, 0⃗), [2]2

)
= (011, [0]2, 1⃗).

This is done in the same manner as in the previous item.
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• Layer 5: The adjacency predicate should satisfy the following two conditions:

ϕadj

(
(101, [i]2, 0⃗), (001, [1]2, 0⃗)

)
= 1,

for adding the constant 1, and

ϕadj

(
(101, [i]2, 0⃗), (100, [i]2, 0⃗)

)
= 1,

to connect the result of the previous layer. The circuit that computes them works exactly
like the one constructed for the second layer.

• Layer 6: For 0 ≤ i ≤ |F| − 1 and 0 ≤ j ≤ log(|F|)− 1, we denote

αi,j
def
= the jth bit of [fi]2.

The incidence function computes:

ϕincd ((110, [i]2, [j]2), [1]2) = (001, [αi,j ]2, 0⃗),

and
ϕincd ((110, [i]2, [j]2), [2]2) = (101, [i]2, 0⃗).

Whereas the second condition can be implement in the same manner as before, we need to
specify a circuit for the first one, in order to find αi,j .

First, notice that following the definition of a binary representation of a field elements, [fi]2 =
[i]2. Taking y = [i]2, this means that ϕincd gets two binary strings (y, [j]2) as input, such that
the second represents an index, and outputs y[j]. An arithmetic circuit over GF[2] with the
same functionality was already constructed in Section 4.4.1, under the name Cselect. We use
this circuit with |z1| = 1 and k = |y| = log(|F|) (as done in Lemma 4.4, when proving the
uniformity of ψ′). The circuit Cselect is of size Õ(log(|F|)) and degree fin = log log(|F|).

• Layer 7: For 0 ≤ i ≤ |F| − 1 and 0 ≤ j ≤ log(|F|)− 1, the adjacency predicate computes:

ϕadj

(
(111, [i]2, 0⃗), (110, [i]2, [j]2)

)
= 1.

As we already proved, comparing two strings of length log(|F|) can be done using an arithmetic
circuit over GF[2] of logarithmic size.

To conclude, we take the output of each of the full circuits to be the summation of all of the outputs
of corresponding subcircuits. We get that each of the final circuits for ϕadj and ϕincd are of size
polylog(n) and degree O(log n), and the claim follows.
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