
Self-Improvement for Circuit-Analysis Problems

Ryan Williams*

MIT

Dedicated to the memory of Juris Hartmanis

Abstract

Many results in fine-grained complexity reveal intriguing consequences from solving various SAT
problems even slightly faster than exhaustive search. We prove a self-improving (or “bootstrapping”)
theorem for Circuit-SAT, #Circuit-SAT, and its fully-quantified version: solving one of these problems
faster for “large” circuit sizes implies a significant speed-up for “smaller” circuit sizes. Our general
arguments work for a variety of models solving circuit-analysis problems, including non-uniform circuits
and randomized models of computation.

We derive striking consequences for the complexities of these problems. For example, we show that
certain fine-grained improvements on the runtime exponents of polynomial-time versions of Circuit-
SAT would imply subexponential-time algorithms for Circuit-SAT on 2o(n)-size circuits, refuting the
Exponential Time Hypothesis. We also show how slightly faster #Circuit-SAT algorithms on large
circuits can be used to prove lower bounds against uniform circuits with symmetric gates for functions
in deterministic linear time. Our result suggests an “algorithmic method” approach for uniform circuit
lower bounds, which trades non-uniformity for a substantial reduction in the complexity of the hard
function.

*This work was supported in part by the Simons Institute at UC Berkeley, NSF CCF-2127597, and a Frank Quick Faculty
Research Innovation Fellowship. Email: rrw@mit.edu.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 82 (2023)

1 Introduction

Fine-grained complexity relates a wide array of computational problems through intricate reductions that
allow us to infer tight time complexity lower bounds, based on a few hardness hypotheses. Broadly speaking,
two kinds of fine-grained hypotheses have been studied, which we classify as follows.

Weak exponent lower bounds: These bounds assert that the optimal algorithm for a problem with a
known runtime of T (n) requires time at least Ω(T (n)ε), for some ε > 0. A canonical weak exponent lower
bound is the Exponential Time Hypothesis:

ETH: There is an α > 0 such that 3-SAT on n variables needs 2αn time.

Such hypotheses are often employed to argue for a conditional time lower bound in which the precise
exponent is not considered as important as the form of the exponent; this is particularly significant for
FPT algorithmics. To give two striking examples, [CPP16] prove that the EDGE CLIQUE COVER problem,
which has a simple 22

k · poly(n) time algorithm [GGHN08], cannot be in 22
o(k) · poly(n) time unless ETH

is false. While it is known that approximate Nash Equilibria can be found in nO(logn) time [LMM03], it
is also known [BKW15] that an no(logn)-time approximation algorithm (with “good social welfare”) would
contradict ETH (see also [Rub16]).

Strong exponent lower bounds: These bounds assert that the optimal algorithm for a problem with
a runtime of T (n) requires time at least Ω(T (n)1−o(1)). A canonical example of a strong exponent lower
bound is the Strong Exponential Time Hypothesis:

SETH: For all ε ∈ (0, 1), there is a k such that k-SAT on n variables needs 2n(1−ε) time.

Such hypotheses are generally used to argue that the best-known running time for a problem is optimal up
to low-order terms (see [Vas18] for a large sample of reductions and problems).

It is intuitively obvious that a strong exponent lower bound is indeed a stronger assumption than a
weak exponent lower bound: for example, SETH implies ETH [IPZ01, CIP06]. Conversely, the question
of whether ETH implies SETH is a major open problem (already raised explicitly in [IP99]). It is entirely
uncertain how such an implication might be proved. In this paper, we ask a more general question:

Question: Is it possible to “amplify” weak exponent lower bounds into strong exponent lower
bounds?

A positive answer to the question amounts to a situation where improving slightly on the running time
exponent of one problem leads to an arbitrary polynomial improvement in the best-known time exponent of
another problem. We will prove a result of this form for the CIRCUIT SAT problem, as well as its counting
and quantified variants.

We begin with the following version of CIRCUIT SAT, where the input circuit is set to be so large that
the problem is polynomial-time solvable. Let ε ∈ (0, 1] be a (small) constant parameter.

Problem: LARGE CIRCUIT SAT
Given: A circuit C with at most ε log(N) inputs and N gates (a.k.a. N size).1

Decide: Is there an a ∈ {0, 1}n such that C(a) = 1?

1The circuits can be over any universal basis of constant fain, e.g., AND/OR/NOT.

1

For ε ≤ 1, the circuit instances of LARGE CIRCUIT SAT are so large that they cannot possibly be
minimal: recall that the maximum circuit complexity of any ε log(N)-input function is o(N ε) [Juk12].
Such a large circuit must therefore have enormously redundant parts that could potentially be simplified, in
a satisfiability algorithm. Intuitively, CIRCUIT SAT can only get easier to solve as the circuit size increases
(this corresponds to decreasing ε), as one can reduce from the “large” circuit case to the “small” circuit
case by simply adding dummy inputs (see Theorem 3.4 for one formalization of this intuition). Observe the
brute-force algorithm for LARGE CIRCUIT SAT takes nearly-linear time, about Õ(N1+ε) steps. Can we
improve upon the brute-force algorithm for LARGE CIRCUIT SAT? Can the obvious N1+ε time algorithm
for LARGE CIRCUIT SAT be reduced to N1+o(1) for some ε > 0?

A corollary of our main result is that such an algorithm would already imply that the Exponential Time
Hypothesis is false: in fact, the existence of such an algorithm implies that CIRCUIT SAT on 2o(n)-size
circuits can be solved in 2εn time for every ε > 0. The main theorem is as follows.

Theorem 1.1 (“Self-Improvement” For Circuit-SAT, Section 3). Let α, β be positive reals, with α ≤ β.
Suppose CIRCUIT SAT on 2αn+o(n)-size circuits can be solved in 2βn+o(n) time. Then CIRCUIT SAT on
2o(n)-size circuits can be solved in 2(β−α)n+o(n) time.

We call such a result self-improving, as it proceeds by induction, and in each stage of induction, the
running time of the SAT algorithm for 2o(n)-size circuits is improved by combining the assumed algorithm
for LARGE CIRCUIT SAT with the SAT algorithm derived in the previous stage. Theorem 1.1 holds for any
computational model such that T -time algorithms can be simulated by circuits of size T 1+o(1) (for example,
multitape Turing machines [PF79]).2 Theorem 1.1 also holds for randomized algorithms (see Appendix B)
as well as for non-uniform models of computation: given 2βn+o(n)-size circuits solving CIRCUIT SAT on
2αn+o(n)-size inputs, we can construct 2β−α+o(n)-size circuits for CIRCUIT SAT on 2o(n)-size inputs. The
following is an immediate corollary of Theorem 1.1.

Corollary 1.1 (ETH Versus LARGE CIRCUIT SAT). ETH implies that, for every ε > 0, LARGE CIRCUIT

SAT with ε log(N) inputs is not solvable in N1+o(1) time.

In fact, we only have to assume there is an ε > 0 such that CIRCUIT-SAT on 2o(n)-size circuits cannot
be solved in 2εn+o(n) time, which is (presumably) a significantly weaker hypothesis than ETH itself, which
is only concerned with the complexity of k-SAT. The upshot is that, from a weak-exponent lower bound
hypothesis like ETH, we obtain a lower bound of a strong-exponential character for a polynomial-time
solvable problem: if the brute-force Õ(N1+ε)-time algorithm for LARGE CIRCUIT SAT can be improved
to N1+o(1) time, for any ε > 0, then we obtain an arbitrary polynomial improvement over exhaustive
search for CIRCUIT SAT on “small” circuits. Furthermore, we can prove an equivalence between nearly-
linear-time algorithms for CIRCUIT SAT on ε log(N) inputs for arbitrarily small ε > 0, CIRCUIT SAT on
K log(N) inputs for arbitrarily large K ≥ 1, and extensions of CIRCUIT SAT that correspond to levels of
the polynomial hierarchy (Theorem 3.4 and Theorem 3.5). It is also instructive to compare Corollary 1.1
with the implications obtained by assuming a CIRCUIT SAT form of SETH, rather than ETH:

Corollary 1.2 (SETH Versus LARGE CIRCUIT SAT). Assume that for every ε > 0, CIRCUIT SAT on
2o(n)-size circuits cannot be solved in 2(1−ε)n time. Then for every α ≥ 0 and every ε > 0, CIRCUIT SAT
on 2αn+o(n)-size circuits cannot be solved in time 2αn+(1−ε)n+o(n).

2We discuss in Section 3.2 how to obtain results for (apparently) more powerful models of computation, like random access
machines. Intuitively, we just have to change CIRCUIT SAT to a satisfiability problem with a suitable predicate, e.g., RAM SAT for
random access machines.

2

That is, if brute-force is essentially optimal for solving CIRCUIT SAT on subexponential-size circuits,
then brute-force is also optimal for solving CIRCUIT SAT on arbitrarily large 2O(n)-size circuits, in spite
of the fact that the “large” circuit-size case can easily be reduced to the “small” case by adding extra (non-
functional) inputs (see Theorem 3.4). Phrasing Corollary 1.2 another way, we can say that if there is an
ε > 0 and a δ ∈ (0, 1) such that CIRCUIT SAT on N -size circuits with ε log(N) inputs can be solved in
N1+δε time (for example), then CIRCUIT SAT on 2o(n)-size circuits can be solved in 2δn+o(n) time.

We now describe various extensions and consequences. One consequence is that we can prove an equiv-
alence between fast CIRCUIT SAT algorithms for the large-exponential-size and small-exponential-size
cases, as well as an equivalence with ΣkCIRCUIT SAT for constant k ≥ 1 (see Theorem 3.4 for details).

#SAT and QBF. The proof of Theorem 1.1 is quite general. We show that analogous self-improvement
results hold for #CIRCUIT SAT, where we wish to count the number of SAT assignments to a given circuit,
as well as Q-CIRCUIT SAT, the quantified version of CIRCUIT SAT, where we are given a fully-quantified
sentence of the form

(Q1 x1) · · · (Qn xn)[C(x1, . . . , xn)],

where each Qi ∈ {∃, ∀}, C is a circuit, and we wish to decide if the sentence is true or false.

Theorem 1.2. Theorem 1.1 holds for #CIRCUIT SAT and Q-CIRCUIT SAT in place of CIRCUIT SAT.

Thus, all the corollaries for strong-exponent and weak-exponent lower bounds for CIRCUIT SAT carry
over for #CIRCUIT SAT and Q-CIRCUIT SAT as well.

An FFT for Circuits Would Refute Exponential-Time Hypotheses. A major application of the Fast
Fourier Transform (FFT) [CT65] is that univariate degree-n polynomials over a field can be evaluated on
any n points in n · poly(log n) operations [Fid72, BM74], a great improvement over the obvious Θ(n2)
algorithm. Recent work has extended this fundamental result to the multivariate setting [KU11, BGKM22,
BGG+22, GHH+23].

Should we expect fast multipoint evaluation for more complex computational models, such as Boolean
circuits? On the one hand, a folklore result3 gives an efficient circuit C for multipoint evaluation of Boolean
functions: given x1, . . . , xk ∈ {0, 1}n and the truth table T ∈ {0, 1}2n of a function f : {0, 1}n → {0, 1},
we have C(x1, . . . , xk, T) = (f(x1), . . . , f(xk)), for a circuit C of size only poly(n) · (2n + k). Thus, for
very hard functions (that cannot be represented much smaller than their 2n truth table), there are circuits for
multipoint evaluation with size about k + 2n, improving over the obvious k2n bound. On the other hand,
standard results in fine-grained complexity show that if the truth tables of size-s (unrestricted) circuits could
be computed in time poly(n) · (s+ 2n) (for example), then SETH and the 3SUM conjecture are false.4 An
immediate corollary of Theorem 1.1 and Theorem 1.2 is that significantly weaker hypotheses suffice:

Corollary 1.3. If n-input circuits of size s can be evaluated on all inputs in 2n+o(n) + s1+o(1) time,
then the circuit versions of #ETH [DHM+14] and the quantified version of ETH [CRTY20] are false:
#CIRCUIT SAT and Q-CIRCUIT SAT on n-input circuits of 2o(n) size can be solved in 2εn time for all
ε > 0.

That is, the difficulty of finding an FFT-like algorithm for fast multipoint circuit evaluation can be based
on far weaker hypotheses than SETH: weaker than even circuit versions of SETH (used to argue for the
hardness of problems like Edit Distance [AHWW16]).

3See https://cstheory.stackexchange.com/questions/3085/are-there-known-to-exist-functions-with-the-following-direct-sum-property
4For example, see footnote 7 in [Wil13].

3

 https://cstheory.stackexchange.com/questions/3085/are-there-known-to-exist-functions-with-the-following-direct-sum-property

A Uniform Circuit Lower Bound for Linear Time. Studying the consequences of faster #CIRCUIT SAT
algorithms for large circuits further, we show how to prove new unconditional lower bounds against uniform
circuit classes, where fast multipoint evaluation algorithms exist (and thereby small improvements over ex-
haustive search are also possible). Let SYM◦SYM denote the class of Boolean circuits which are depth-two
circuits comprised of arbitrary Boolean symmetric functions (with unbounded fan-in). SYM ◦ SYM is one
of those natural “weak-looking” circuit classes for which the known lower bounds are surprisingly meager.
In terms of non-uniform lower bounds against SYM ◦ SYM, it is only known that there are functions in
ENP which do not have non-uniform SYM ◦ SYM circuits of n2−ε gates, for all ε > 0 [ACW16, Tam16].
Since SYM ◦ SYM can be simulated in depth-3 TC0 with a polynomial blowup in size, one can deduce
from known results on TC0 ([AG94]) that the Permanent does not have polynomial-size highly-uniform
SYM ◦ SYM circuits. It also follows from the literature that, for some α > 0, SAT does not have highly-
uniform SYM ◦ SYM circuits with n1+α gates [AK10].5 We prove a super-linear gate lower bound for
computing problems in linear time with uniform SYM ◦ SYM circuits.

Theorem 1.3 (Section 4). There are linear-time decision problems which do not have POLYLOGTIME-
uniform SYM ◦ SYM circuits of nc gates, for all c < 1.199.

(For an explicit problem exhibiting the lower bound, one could for example take the CIRCUIT EVALU-
ATION decision problem.) The proof of Theorem 1.3 has the form of an indirect diagonalization: assuming
the opposite, we derive a simulation of time-bounded computation that contradicts a hierarchy theorem.
However, for all prior indirect diagonalization lower bounds that we are aware of, across a variety of models
(such as [Kan83, AG94, AKR+01, FLvMV05, vMR05, vM06, vMW12, MW21]), the proofs require that
the hard function is much harder than linear-time computable. For example, the time-space tradeoffs for
SAT [FLvMV05, vM06, BW15] crucially require that the hard function is NP-hard under extremely local
reductions.

We deduce a contradiction by exploiting circuit-analysis algorithms for SYM ◦ SYM. That is, we estab-
lish a version of the “algorithmic method” for circuit lower bounds (initiated by Williams [Wil13, Wil14])
that applies to uniform circuits, and allows the hard function to be contained in P.6 We apply the assumption-
to-be-contradicted in two different ways: once on an initial 2n-time computation (that we wish to speed up),
and again on a circuit that counts the number of SYM gates that are true on the bottom layer, using the
POLYLOGTIME-uniform algorithm for generating the gates on the bottom layer. In the end, our contra-
dictory simulation is achieved by applying fast rectangular matrix multiplication [LU18] appropriately to
“speed-up” the evaluation of a SYM ◦ SYM circuit. If the matrix multiplication exponent ω happens to be
2, our gate lower bound would improve to n1.36.

Indeed, matrix multiplication allows us to compute truth tables of SYM ◦ SYM circuits faster than the
obvious algorithm, and our proof demonstrates how such an algorithm can be used to establish new lower
bounds for linear-time computation. This addresses a question of Williams [Wil18], who gave a faster truth-
table evaluation algorithm for THR ◦ THR circuits, and asked if such algorithms suffice for deriving lower
bounds. (However, super-linear gate lower bounds against THR ◦ THR are already known; see [KW16].
Thus we instead state our results in terms of SYM ◦ SYM.) One can think of our approach as trading non-
uniformity in the circuit lower bound for a significant reduction in the complexity of the hard function (from
ENP or QuasiNP, down to linear time).

5Note that, although it is also known [KW16] that there are functions in P that require n1.5−o(1) gates to be computed by
non-uniform depth-3 TC0 circuits, the translation of SYM ◦ SYM into depth-3 TC0 can increase the total number of gates by a
factor of n, so the methods of [KW16] do not seem to yield linear gate lower bounds for SYM ◦ SYM circuits.

6See [San23] for another proposal, which would apply to uniform lower bounds for NP and PSPACE if it can be realized.
Santhanam’s approach looks significantly more general than ours, but does not seem to extend down to functions in P.

4

On the Difficulty of Improving Self-Improvement. Our results yield a new perspective on computational
lower bounds. We already mentioned (Theorem 1.2) that self-improvement holds for the Q-CIRCUIT SAT
(Quantified Circuit SAT) problem. First we observe that, if we allow our algorithms to call an oracle in the
polynomial hierarchy, then Q-CIRCUIT SAT can be decided efficiently.

Proposition 1. For all positive real α, Q-CIRCUIT SAT on 2αn-size circuits can be decided in poly(n) ·
(2αn + 2n) time with a Σ2SAT oracle.

Indeed, with a Σ2 machine, one can simply guess the 2n-bit truth table of the given circuit, universally
verify the truth table is correct on all inputs, and verify that the QBF defined on the truth table is true, in
O(2kn + 2n) time. (We can use Σ2SAT as an oracle specifically, because of tight reductions from Σ2 time
T (n) to Σ2SAT ; see for example [FLvMV05].) This observation naturally begs the question of whether
Q-CIRCUIT SAT self-improvement is possible on algorithms with an oracle in Σ2P. We observe that such
a result would separate NP from NC1, even if we could only obtain non-uniform circuits as a consequence.

Theorem 1.4 (Section 5). Suppose self-improvement holds for Q-CIRCUIT SAT with Σ2P-oracle algo-
rithms, i.e., assume:

There is some k > 0 such that Q-CIRCUIT SAT on 2kn+o(n)-size circuits in 2kn+o(n) time
(with a Σ2SAT oracle) implies that for all ε > 0, Q-CIRCUIT SAT on 2o(n)-size circuits has
2εn+o(n)-size non-uniform Σ2SAT -oracle circuits.

Then NP ̸= NC1.

(Here, we use the LOGTIME-uniform definition of NC1.) The choice of “Σ2” in the theorem statement
is somewhat arbitrary: using “Σc” for any c ≥ 2 would suffice. To prove this theorem, we show that
NP = NC1 implies a strong circuit lower bound on Q-CIRCUIT SAT, even for circuits with an oracle in the
polynomial hierarchy.

We also prove as a consequence of self-improvement (Theorem 5.2) that, if there is any k > 0 such that
Q-CIRCUIT SAT on 2kn-size circuit predicates has non-uniform circuits of size 2kn+o(n), then NP ̸= NC1.
We should stress that we do not consider these theorems as a viable approach to separating NP from NC1;
rather, it indicates to us that proving the hypotheses seems overly strong and unlikely.

1.1 Open Problems

We pose here a few intriguing open problems, to ensure that the reader sees them.

• Could self-improvement go all the way down to P = NP? Is it possible that (say) linear-time SAT
algorithms for exponential-size circuits might imply polynomial-time algorithms for polynomial-size
circuits, concluding P = NP? There seem to be bottlenecks in the current argument that prevent us
from going significantly below subexponential time, but they could possibly be circumvented with
a little cleverness. Could self-improvement be strengthened in the non-uniform case to conclude
NP ⊂ P/poly?

• Could self-improvement-style results hold for other combinatorial problems, besides just circuit-
based ones? It seems crucial for the self-improvement results that the algorithm solving the problem
can be modeled extremely efficiently, within an instance of the problem. (Perhaps this alone shouldn’t
be considered an impediment, given the ubiquity of complete problems for many complexity classes.)

5

• Can the uniform SYM ◦ SYM circuit lower bounds be further improved? In principle, some fast
matrix multiplication algorithms can be implemented in TC0 [PPJA18] so one might hope to reduce
the complexity of the hard function further in our lower bound. There may also be a way to improve
the degree of the polynomial in the lower bound, by applying self-improvement. Finally, it seems
plausible that our lower bound might be extended to prove that, for every d, there is a cd > 1 such
that CIRCUIT EVAL does not have depth-d SYM circuits of O(ncd) gates.

2 Preliminaries

We assume familiarity with computational complexity, especially circuit complexity [Vol99, AB09, Juk12].
We are often interested in LOGTIME-uniform (and POLYLOGTIME-uniform circuits, respectively), where
local information about the gates of poly(n)-size circuits can be determined in time linear (respectively,
polynomial) in the names of the gates, each of which take O(log n) bits to describe. We will give technical
details on such uniformity conditions as needed in our proofs; see [Vol99] for full technical definitions.

Notation and Defaults. Unless otherwise specified, our Boolean circuits are over the basis of all possible
gates of fan-in two (the particular gate basis will not matter for our results, as long as the basis is universal
and each gate has constant fan-in.)

As is standard for bounded fan-in circuits, the size of a circuit is defined to be the number of gates. For
a given circuit C, we let ⟨C⟩ denote the description of C in binary.

Recall that CIRCUIT EVAL is the P-complete problem of Circuit Evaluation, in which we are given the
description ⟨C⟩ of a circuit C, and an assignment a to the inputs of C, and wish to output C(a) = 1. For
notational convenience, in this paper we redefine CIRCUIT EVAL to be the following multi-output problem:

CIRCUIT EVAL: Given the description ⟨C⟩ of a circuit C, and a partial assignment a to the in-
puts of C, output the description of the circuit C ′(x) := C(a, x), where x denotes the remaining
unassigned inputs of C.

The following basic fact about circuit evaluation will be very useful.

Lemma 2.1 (Valiant [Val76], Pippenger-Fischer [PF79]). CIRCUIT EVAL has circuits of size Õ(n), con-
structible in Õ(n) time (even on a multitape Turing machine). In particular, for every n, there is a circuit
Dn of Õ(n) size such that, given the description ⟨C⟩ of a circuit C of size n and a partial assignment a to
some of C’s inputs, Dn(⟨C⟩ , a) outputs a description of C restricted to the partial assignment a.

2.1 Related Work

The most directly relevant prior result is that of Salamon and Wehar [SW22], who show if CIRCUIT SAT
with 2n gates and n inputs is solvable in 2n+o(n) time, then CIRCUIT SAT with m gates is solvable in 2εm

time for every ε > 0. Our results can be seen as substantial generalizations, weakening the hypotheses
and strengthening the resulting conclusions. More precisely, they require that an Õ(N2)-time solvable ver-
sion of CIRCUIT SAT can be improved to N1+o(1) time, in order to get a subexponential-time algorithm
for satisfiability of O(n)-size circuits. In contrast, one corollary of our main result (Corollary 1.1) states
that improving an Õ(N1+ε)-time solvable version of CIRCUIT SAT to N1+o(1) time, for any ε > 0, im-
plies a subexponential-time algorithm for satisfiability of subexponential-size circuits. (Indeed, following
Theorem 3.5, we obtain a subexponential-time algorithm for ΣkCIRCUIT SAT, for every constant k.)

6

Other works have demonstrated phenomena which are similar to our self-improvement results, but differ
in various critical ways. Williams [Wil13] studied the consequences of speeding-up exhaustive search in
limited scenarios. Along with showing that slightly faster CIRCUIT SAT algorithms imply non-uniform
circuit lower bounds, he also showed that if every problem Π solvable with log n bits of nondeterminism
in nc time and (log n)d space can be simulated in O(nc+0.99) time and poly(log n)d space for all c, d ≥ 1,
then a dramatic speed-up is possible: every such Π can be solved nondeterministically in O(n3) time, which
would imply LOGSPACE ̸= NP among other consequences. Thus, by imposing a space restriction on the
verifier and the assumed simulation, a more dramatic simulation is possible from assuming a minor speed-
up. [Wil13] also observes that a CIRCUIT SAT algorithm running in 4(1−ε)n time on circuits of size 2n with
n inputs, for some ε > 0, implies that the 3SUM conjecture is false.7 It is also easy to see that the same
hypothesis implies that SETH and thereby the Orthogonal Vectors Conjecture is false (this also follows from
the base case of Theorem 1.1).

Paturi and Pudlák [PP10] study OPP algorithms, which are probabilistic polynomial time algorithms
with 1/p(n) success probability, where p(n) can be exponential in n. They show that if CIRCUIT SAT
has an OPP algorithm with success probability 1.999−n, then CIRCUIT SAT on poly(n)-size circuits has
deterministic circuits of size 2n

1−ε
for some ε > 0. Their argument involves applying the polynomial-

size circuit for CIRCUIT SAT to itself in an interesting way. While their CIRCUIT SAT conclusion seems
stronger than the ones we derive (we derive 2εn-time algorithms for 2o(n)-size circuits), their CIRCUIT SAT
hypothesis looks stronger than the hypotheses that we consider, especially for our extensions to randomized
CIRCUIT SAT algorithms (Theorem B.1).

The results in this paper show how “minor-looking” algorithmic improvements would imply major al-
gorithmic improvements, in which the minor algorithm is repeatedly applied to achieve faster algorithms
on smaller input lengths. These results can be seen as converses of hardness magnification phenom-
ena [Sri03, AK10, LW13, OS18, MMW19, OPS19, CMMW19, CJW19, CHO+20], in which “minor-
looking” computational lower bounds would imply major lower bounds. The contrapositives of hardness
magnification results can also be viewed in a similar light. For example, Allender-Koucky [AK10] show
that if Boolean Formula Evaluation has constant-depth MAJORITY/NOT (TC0) circuits of any polynomial
size, then the problem also has O(1/ε)-depth MAJORITY/NOT circuits of n1+ε size, for all ε > 0. This
is proved by exploiting the nice downward self-reducibility of Formula Evaluation. Our setting appears
to be very different from that of hardness magnification. We study versions of NP-hard problems in a
“polynomial-time solvable” regime, and show that sufficiently strong algorithms in this setting would imply
exponentially-faster algorithms in the “super-polynomial-time solvable” regime. In our self-improvement
results for CIRCUIT SAT, #CIRCUIT SAT, and Q-CIRCUIT SAT, we only really need that the problem is
“embarrassingly parallel”, in that the space of variable assignments can be partitioned in a simple way so
that the overall answer can be easily obtained from the answers on the parts.

In general, when one considers CIRCUIT SAT on circuits which are large relative to the number of
input variables, one is studying a problem with “bounded nondeterminism” or “limited nondeterminism”,
where the amount of nondeterminism is significantly less than the input length n (in our case, the amount of
nondeterminism is O(log n)). The theory of complexity classes with limited nondeterminism was initiated
in [KF77]; further related references include [BG93, BBG98, CC97, FGW06, Wil13].

7Recall the 3SUM problem asks: given a set S of n numbers, are there three which sum to zero? The 3SUM conjecture is that
there is no n2−ε time algorithm for 3SUM, where ε > 0.

7

3 Self-Improvement for Circuit Analysis Problems

Here, we prove the main self-improvement result, showing how non-trivial algorithms for LARGE CIRCUIT

SAT would imply faster algorithms for CIRCUIT SAT on subexponential-size circuits.

Reminder of Theorem 1.1. Let α, β be positive reals, with α ≤ β. Suppose CIRCUIT SAT on 2αn+o(n)-
size circuits can be solved in 2βn+o(n) time. Then CIRCUIT SAT on 2o(n)-size circuits can be solved in
2(β−α)n+o(n) time.

Before we begin the proof, the following intuition may be helpful. Suppose we have a circuit C of size
2o(n) and n inputs, and we want to solve Circuit-SAT on C, as fast as possible. Furthermore, assume we
have in our hands an algorithm for Circuit-SAT that runs on circuits of size 2n

′+o(n) with n′ inputs, and this
algorithm runs in 2n

′+o(n) time.
To get a faster SAT algorithm for C using the assumed algorithm, we may start by offloading some of

the work of satisfiability onto the circuit itself, with the following “OR trick” used in several fine-grained
algorithms [Wil14, AWY15, CW21]. WLOG suppose n is even. Take the first n/2 inputs of C, and consider
the circuit C ′ on n/2 inputs, defined as follows:

C ′(x1, . . . , xn/2) =
∨

(a1,...,an/2)∈{0,1}2
n/2

C(a1, . . . , an/2, x1, . . . , xn/2).

That is, C ′ takes an OR over all possible assignments to the first n′ := n/2 variables of C, plugging each
assignment into a separate copy of C. Observe that C ′ has 2n

′+o(n′) size, and C ′ is satisfiable if and only
if C is satisfiable. Now, if we apply our assumed SAT algorithm to C ′, we get a new SAT algorithm for
2o(n)-size C that runs in only 2n

′+o(n′) = 2n/2+o(n) time, beating the brute-force algorithm which runs in
2n+o(n) time.

Our key observation is that the new SAT algorithm just derived can be combined with the assumed SAT
algorithm, to “improve upon itself”. After we split the variables into two parts, instead of taking an OR
over all possible assignments, we can run the new 2n/2+o(n)-time SAT algorithm for 2o(n)-size circuits. For
example, suppose we split the n variables into an “outer” set of n/3 and an “inner” set of 2n/3. After
any assignment to the outer variables is made, the remaining SAT instance on n′ = 2n/3 variables can be
solved in 2n

′/2+o(n′) = 2n/3+o(n) time, using our new SAT algorithm. Therefore, by calling our assumed
SAT algorithm on a 2n/3+o(n)-size circuit that encodes the new SAT algorithm, with the n/3 outer variables
as input, we can derive an even faster SAT algorithm, running in 2n/3+o(n) time on 2o(n)-size circuits.
Repeating the argument, we can achieve 2n/k+o(n) time for any constant k ≥ 1. The following proof is a
very general form of this intuition.

Proof. We will inductively show that for every ε > 0, there is an algorithm which can decide satisfiability
for 2o(n)-size circuits in 2εn time.

Start with a CIRCUIT SAT instance C of 2o(n) size and n inputs. Let S be an algorithm running in
2βn+o(n) time that takes as input the description ⟨C ′⟩ of a 2αn+o(n)-size circuit C ′, and determines satisfia-
bility for C ′.

Our first improved algorithm F1 can be described as follows. Given ⟨C⟩, the algorithm constructs a
circuit D on m = n/(1 + α) inputs with the following behavior. First, given an assignment x of m =
n/(1 + α) bits, D feeds the bits of x into the first n/(1 + α) inputs of C. Formally, this is implemented
by calling CIRCUIT EVAL(⟨C⟩ , x). (The circuit D has the description of C hard-coded.) By Lemma 2.1,
CIRCUIT EVAL(⟨C⟩ , x) outputs the description ⟨C ′⟩ of a circuit C ′ with m′ = αn/(1 + α) inputs and

8

2o(n) ≤ 2o(m) size. Next, D enumerates all possible 2m
′

assignments to the m′ inputs of C ′, and takes the
OR over all such assignments. Thus, D has size

2m
′+o(m) ≤ 2αn/(1+α)+o(n) ≤ 2αm+o(m),

and has m inputs. Note that a description ⟨D⟩ of D can be constructed in 2αm+o(m) time: we only have to
write down a description of the OR of 2m

′
circuits of the form CIRCUIT EVAL(⟨C ′⟩ , a), over all possible

a ∈ {0, 1}m′
. Furthermore, observe that D has m = n/(1 + α) inputs.

Finally, the algorithm feeds the description ⟨D⟩ of size 2αm+o(m) to the assumed algorithm S, which
runs in 2βm+o(m) ≤ 2βn/(1+α)+o(n) time, and outputs a yes/no answer. Observe that C is satisfiable if and
only if S(⟨D⟩) outputs yes: there is a satisfying assignment to C if and only if there is a partial assignment
a ∈ {0, 1}m′

such that CIRCUIT EVAL(⟨C ′⟩ , a) is satisfiable, which is true if and only if S(⟨D⟩) outputs
yes.

From the above, we conclude that satisfiability of circuits of 2o(n) size can be determined in 2βn/(1+α)+o(n)

time. Denote this algorithm by F1.
We can repeat the above argument, but instead of enumerating all possible assignments (simulating

brute-force search), we call the algorithm F1 instead. Suppose inductively that satisfiability of circuits of n
inputs and 2o(n) size can be determined by an algorithm Fk running in 2fkn+o(n) time. (For instance, in the
base case, we know we can set f0 := β, by our hypothesis.)

In particular, let δ ∈ (0, 1) be a parameter, and let C be a 2o(n)-size circuit on n inputs as before. We
make a circuit D on m = (1 − δ)n inputs with the following behavior: Given an assignment x of m bits,
D plugs x into the first (1− δ)n inputs of C, yielding a circuit C ′ with δn inputs and 2o(n) size, by calling
CIRCUIT EVAL appropriately as before. Next, D calls the algorithm Fk to determine the satisfiability of C ′

(instead of computing a large OR), which takes 2δfkn+o(n) time; converting this call into a circuit, the size
is 2δfkn+o(n). Now we have a circuit D on m = (1− δ)n inputs of size 2δfkn+o(n) which is equi-satisfiable
to our original circuit C.

Setting δ such that δfkn = αm, our circuit D will have m inputs and 2αm+o(m) size, so its satisfiability
can be determined in 2βm+o(m) time, by our original assumption. Note that

δfkn = αm ⇐⇒ δfk = α(1− δ),

so setting δ = α/(fk + α) accomplishes this. We can therefore determine satisfiability of C in time

2βm+o(m) ≤ 2β(1−α/(fk+α))n+o(n).

Let this new SAT algorithm be Fk.
Define the sequence

f0 := β, fk+1 := β(1− α/(fk + α)).

The above argument shows that we can construct a sequence of algorithms Fk for computing satisfiability
of 2o(n)-size circuits, where the kth algorithm runs in time 2fkn+o(n). For all α > 0, we claim that the
sequence {fk} is monotone decreasing, and {fk} converges to

f∞ = β − α.

First, we note that the sequence {fk} is monotone increasing, by an easy induction proof.
Base Case: Showing f0 > f1 is equivalent to showing 1 > 1− α/(1 + α), i.e., α/(1 + α) > 0, which

is true since α > 0.

9

Inductive Step: Suppose fk−1 > fk. Recall β > α > 0. We derive

fk+1 = β(1− α/(fk + α)) < β(1− α/(fk−1 + α)) = fk ⇔ 1− α/(fk + α) < 1− α/(fk−1 + α)

⇔ α/(fk + α) > α/(fk−1 + α)

⇔ fk + α < fk−1 + α

⇔ fk < fk−1,which we assumed true.

This completes the induction.
Since every fk ≥ 0 and {fk} is monotone decreasing, the sequence has a limit point satisfying the

equation
f∞ = β(1− α/(f∞ + α)),

which has the two solutions f∞ ∈ {0, β − α}.
The entire construction above is highly uniform, in that a description of the k-th algorithm can be

constructed in O(g(k)) time for a computable function g, given that the description length of S is O(1).
To ensure that the final running time of our algorithm is indeed 2(β−α)n+o(n), we can repeat the above
construction for a slightly unbounded value k = k(n), and note that the sequence {fk} converges rapidly.
We consider two cases. First, for the case where α = β, one can prove by induction that fk = α/(k + α).
Therefore in this case, for any function k(n) ≥ ω(1), we have fk(n) ≤ o(1). For the case where α < β, we
have f0 − f1 = βα/(1 + α), and

fk − fk+1 = β

(
1− α

fk−1 + α

)
− β

(
1− α

fk + α

)
= βα

(
1

fk + α
− 1

fk−1 + α

)
= βα

(
fk−1 − fk

(fk + α)(fk−1 + α)

)
≤ α

β
· (fk−1 − fk),

where the last inequality follows since fk + α and fk−1 + α are both at least β (the sequence {fk} is
monotone non-decreasing). Therefore for β > α and any function k(n) ≥ ω(1), fk(n) is within o(1) of
β − α. This completes the proof.

By tracking the dependence of the circuit size throughout the proof, one can prove a slightly stronger
result than Theorem 1.1, in which the resulting algorithm can solve CIRCUIT SAT rapidly on circuits that
are mildly exponential in size.

Theorem 3.1 (Appendix A). Suppose there are β ≥ α > 0 such that CIRCUIT SAT on 2αn+o(n)-size
circuits can be solved in 2βn+εn time, for all ε > 0. Then for every ε > 0, there is a γ > 0 such that
CIRCUIT SAT on 2γn-size circuits can be solved in 2(β−α)n+εn time.

3.1 Discussion on the Proof

To illustrate the generality of Theorem 1.1, let us discuss various modifications and extensions that can be
made. First, note the construction in the proof of Theorem 1.1 works equally well for relating the circuit
complexity of CIRCUIT SAT and LARGE CIRCUIT SAT. Replacing every occurrence of “algorithm in time
T ” with “circuit of size T ” in the proof, every step goes through. We have:

10

Theorem 3.2. Let α, β > 0 with α ≤ β. Suppose CIRCUIT SAT on 2αn+o(n)-size circuits can be decided
with a circuit family of 2βn+o(n) size. Then CIRCUIT SAT on 2o(n)-size circuits can be decided with a family
of 2(β−α)n+o(n) size.

Note that the construction in the proof of Theorem 1.1 is highly non-black-box: to solve CIRCUIT SAT
on smaller circuits, we use the descriptions of circuits solving CIRCUIT SAT in order to form the inputs
to other CIRCUIT SAT circuits, and achieve a faster algorithm in each inductive stage. At the same time,
there is a sense in which the above proof relativizes. Let A : {0, 1}⋆ → {0, 1} be an arbitrary oracle,
and recall that an A-oracle circuit is a Boolean circuit equipped with the usual gates, along with copies of
Ak : {0, 1}k → {0, 1}, where Ak is the restriction of A to k-bit inputs. (Note that because of the unbounded
fan-in of the Ak gates, the size of an A-oracle circuit is defined to be the number of wires, instead of gates.)
Given a nontrivially-sized A-oracle circuit family for solving LARGE CIRCUIT SAT on A-oracle circuits,
the same argument above can be used to derive a smaller A-oracle circuit family for CIRCUIT SAT on
A-oracle circuits of subexponential size.

Theorem 3.3. Let α, β > 0 with α ≤ β. Suppose CIRCUIT SAT on 2αn+o(n)-size A-oracle circuits can be
decided by an A-oracle circuit family of 2βn+o(n) size (respectively, an A-oracle multitape TM running in
2βn+o(n) time). Then CIRCUIT SAT on 2o(n)-size A-oracle circuits can be decided by an A-oracle family
of 2(β−α)n+o(n) size (respectively, an A-oracle multitape TM running in 2(β−α)n+o(n) time).

It is crucial in our proof that the same oracle A appears in both the instances of CIRCUIT SAT and the
algorithmic model solving CIRCUIT SAT: Theorem 1.4 shows one major consequence that would follow if
we could strengthen self-improvement so that the algorithm uses a stronger oracle than the CIRCUIT SAT
instance.

Furthermore, the proof of Theorem 1.1 works with minor modifications for #CIRCUIT SAT, where we
wish to count the number of SAT assignments to a given circuit, as well as Q-CIRCUIT SAT, the quantified
version of CIRCUIT SAT, where we are given a fully-quantified sentence of the form

(Q1 x1) · · · (Qn xn)[C(x1, . . . , xn)],

where each Qi ∈ {∃, ∀}, C is a circuit, and we wish to decide if the sentence is true or false.

Reminder of Theorem 1.2. Theorem 1.1 holds for #CIRCUIT SAT and Q-CIRCUIT SAT in place of
CIRCUIT SAT.

Proof. (Sketch) We describe how to modify the proof of Theorem 1.1 to accommodate #CIRCUIT SAT
and Q-CIRCUIT SAT.

For Q-CIRCUIT SAT, instead of computing an OR of 2m
′

copies in the base case over all m′-bit partial
assignments, we compute an appropriate Boolean formula of 2m

′
copies, according to the quantifier types

of the m′ variables (existential variables get an OR, universal variables get an AND). The remainder of the
proof is essentially unchanged: as long as our variable splitting and subsequent calls respect the quantifier
order of the variables, the rest of the argument goes through.

For #CIRCUIT SAT, instead of computing an OR of 2m
′

copies in the base case, we instead use a circuit
COUNT which takes N = 2m

′
bits of input (one for each of the m′-bit partial assignments), and outputs

the O(logN)-bit count of the number of ones in the input. It is well-known that such a circuit COUNT can
be implemented in O(N) size, and the construction is uniform (see for example [DKKY10]). This yields a
circuit D which has m inputs, 2m

′+o(m′) size, and t = O(m′) outputs. Let the t output bits be numbered
Ot−1, . . . , O0, so that Ot−1 is the high-order bit of COUNT, O0 is the low-order bit, and so on. Define Di to

11

be the subcircuit of D with only one output gate Oi. Then the overall #SAT count of C can be recovered
by computing the sum

t−1∑
i=0

2i ·#CIRCUIT SAT(Di), (1)

which can be done in poly(m′) ≤ poly(n) time, given #CIRCUIT SAT(Di). This extra calculation only
multiplies the overall running time by poly(n) ≤ 2o(n).

To see why (1) is correct, think of the t-bit output of the circuit D as an integer in {0, 1, . . . , 2t − 1},
where Di outputs the i-th bit of this integer. We observe:

#CIRCUIT SAT(C) =
∑

a∈{0,1}m
D(a) (by definition of D)

=
∑

a∈{0,1}m

(
t−1∑
i=0

2i ·Di(a)

)
(by definition of the circuits Di)

=

t−1∑
i=0

2i ·

 ∑
a∈{0,1}m

Di(a)

=

t−1∑
i=0

2i ·#CIRCUIT SAT(Di).

In the inductive step, the circuit D takes in a partial assignment x of m bits, plugs x into the circuit
C, then calls an algorithm for #CIRCUIT SAT on the reduced circuit, which then outputs a binary count
of the number of satisfying assignments. As in the previous paragraph, we can break D into t = O(n)
subcircuits Dt−1, . . . , D0 where Di outputs the i-th bit of the binary count. Calling the original assumed
#CIRCUIT SAT algorithm on each Di(x) which has m inputs, we can determine the overall #SAT count
using the formula (1). Again, this only multiplies the overall running time by poly(n) overhead, and com-
putes the exact number of SAT assignments.

An Equivalence. One reason why Theorem 1.1 should be considered surprising is that the reduction seems
to be in the “wrong direction”: intuitively, the CIRCUIT SAT problem only gets easier as the circuit size
increases. (The 2n search space becomes “smaller” relative to a larger input.)

The ideas of Theorem 1.1 lead to an intriguing equivalence for nearly-linear time LARGE CIRCUIT

SAT algorithms. For simplicity, we state the result in terms of algorithms solving CIRCUIT SAT, but it
also applies to non-uniform and randomized algorithms (Appendix B), as well as #CIRCUIT SAT and
Q-CIRCUIT SAT.

Let ε-LARGE CIRCUIT SAT be the problem of checking satisfiability for circuits of size N with
ε log(N) inputs.

Theorem 3.4. The following are equivalent:

(1) There is an ε ∈ (0, 1) such that ε-LARGE CIRCUIT SAT is in N1+o(1) time.

(2) For every α > 0 (including arbitrarily large α), α-LARGE CIRCUIT SAT is in N1+o(1) time.

12

Theorem 3.4 shows an existentially-quantified statement is equivalent to its corresponding universally-
quantified statement: if we can solve CIRCUIT SAT on n-input 2Kn-size in 2Kn+o(n) time, for some con-
stant K > 0, then an analogous algorithm exists for every K > 0. As a consequence, the hypothesis would
imply that CIRCUIT SAT on 2εn-size circuits (for any tiny ε > 0) can also be solved in 2εn+o(n), refuting
the (circuit version of) ETH. Therefore, Theorem 3.4 can be seen as a strengthening of Corollary 1.1.

Proof. Clearly (2) implies (1). We prove that (1) implies (2). Assume CIRCUIT SAT on N size and ε log(N)
inputs is in N1+o(1) time for some ε > 0. For every parameter α > 0, we want to solve CIRCUIT SAT on
N size with α log(N) inputs. There are two cases:

Suppose α ≤ ε. Then given a circuit C of N size and α log(N) inputs, simply add (ε−α) log(N) extra
“dummy” inputs that do not connect to the rest of C. We obtain a circuit C ′ of size O(N) with ε log(N)
inputs, and CIRCUIT SAT for C ′ can be solved in N1+o(1) time.

If α > ε, then let t be the smallest integer such that α ≤ tε. Add “dummy” inputs to the circuit C so
that C has exactly tε log(N) inputs, and split the inputs of C into t parts of ε log(N) variables each.

Set C0 := C. We will show that for all i = 0, . . . , t − 1, we can replace our given circuit Ci of
size N1+o(1) and (t − i)ε log(N) inputs with an equi-satisfiable circuit Ci+1 that has size N1+o(1) and
(t − (i + 1))ε log(N) inputs. Given the circuit Ci with (t − i)ε log(N) inputs, the circuit Ci+1 will first
evaluate Ci on its first (t−(i+1))ε log(N) inputs, leaving the last ε log(N) inputs free. The resulting circuit
description of size N1+o(1) is then fed to the CIRCUIT SAT algorithm for size N and ε log(N) inputs, which
runs in N1+o(1) time. Converting all the above to circuitry yields a circuit Ci+1 of (t − (i + 1))ε log(N)
inputs and (N1+o(1))1+o(1) = N1+o(1) size which is equi-satisfiable with Ci.

As the final circuit Ct has no inputs and is equi-satisfiable to C0 = C, we obtain an N1+o(1) time
algorithm for determining satisfiability of C.

In fact, the equivalence can be strengthened even further, to extensions of satisifability that correspond
to constant levels of the polynomial hierarchy. We naturally define Σk ε-LARGE CIRCUIT SAT to be the
restriction of Q-CIRCUIT SAT to circuits with N size, ε log(N) variables (all quantified), such that it is
a “Σk-SAT” instance: namely, the variables can be partitioned into k contiguous blocks, where the first
block contains only existentially quantified variables, and for i = 2, . . . , k, block i contains only universally
quantified variables if i is even, and existentially quantified variables if i is odd. Observe that Σ1 ε-LARGE

CIRCUIT SAT is equivalent to ε-LARGE CIRCUIT SAT, and Σk α-LARGE CIRCUIT SAT corresponds to a
polynomial-time solvable version of the ΣkP-complete problem Σk-SAT [AB09].

Theorem 3.5 (Extension of Theorem 3.4). The following are equivalent:

(1) There is an ε ∈ (0, 1) such that ε-LARGE CIRCUIT SAT is in N1+o(1) time.

(2) For every α > 0 (including arbitrarily large α), α-LARGE CIRCUIT SAT is in N1+o(1) time.

(3) For every k ≥ 1 and every α > 0, Σk α-LARGE CIRCUIT SAT is in N1+o(1) time.

Proof. (1) ⇐⇒ (2) follows from Theorem 3.4. (3) implies (2) by setting k = 1.
We prove that (2) implies (3). Given an instance C of ΣkCIRCUIT SAT with α log(N) variables and

a circuit predicate of size N , first split the variables into ⌈c/α⌉ parts of at most α log(N) variables each.
Next, split every α log(N)-variable part that contains both existential and universal variables (“straddling”
multiple quantifier blocks) into smaller parts which only contain variables of the same quantifier type (either
all-existential, or all-universal). As there are only k total quantifier blocks, this extra splitting creates at most

13

k − 1 more parts. Thus the total number of parts ℓ is at most k + ⌈c/α⌉, each part has variables of exactly
one quantifier type, and each part has at most α log(N) variables.

Let C0 := C. Applying an analogous argument as in the proof of Theorem 3.4, given a circuit Ci of size
N1+o(1) with ℓ− i variable parts, in N1+o(1) time we can obtain an equivalent circuit Ci+1 of size N1+o(1)

with ℓ − (i + 1) variable parts, starting by removing the part that is last in quantification order, and ending
with the part that is first in quantification order. Repeating for ℓ− 1 times, we reduce the ΣkCIRCUIT SAT
problem to satisfiability on a circuit of size N1+o(1) with α log(N) variables, which can be determined
in N1+o(1) time by assumption. The only remaining issue is how to handle those parts with universally
quantified variables. Recalling that

(∀x1, . . . , xt)[C(x1, . . . , xt)] ⇐⇒ ¬(∃x1, . . . , xt)[¬C(x1, . . . , xt)],

we can decide (∀x1, . . . , xt)[C(x1, . . . , xt)] by calling CIRCUIT SAT(¬C) and flipping the bit of the an-
swer. This amounts to feeding the description of ¬Ci (rather than Ci) into our circuit Ci+1, and flipping the
output of the CIRCUIT SAT algorithm implemented in Ci+1. This completes the proof.

To conclude the discussion, we establish some simple consequences of Theorem 1.1.

Reminder of Corollary 1.1. ETH implies that, for every ε > 0, ε-LARGE CIRCUIT SAT is not solvable
in N1+o(1) time.

Proof. We prove the contrapositive. Given an instance of LARGE CIRCUIT SAT with ε log(N) inputs and
N size, let n = ε log(N), so that the circuit size is N = 2εn. Assuming there is an algorithm running in
N1+o(1) = 2εn+o(n) time, setting α = β = ε, Theorem 1.1 implies that for every ε′ > 0, CIRCUIT SAT on
2o(n)-size circuits can be solved in 2ε

′n time. This contradicts (a very weak form of) ETH.

Reminder of Corollary 1.2. Assume that for every ε > 0, CIRCUIT SAT on 2o(n)-size circuits cannot
be solved in 2(1−ε)n time. Then for every α ≥ 0 and every ε > 0, CIRCUIT SAT on 2αn+o(n)-size circuits
cannot be solved in time 2αn+(1−ε)n+o(n).

Proof. Again we prove the contrapositive. Suppose there is an α, ε > 0 such that CIRCUIT SAT on
2αn+o(n)-size circuits has an 2αn+(1−ε)n+o(n)-time algorithm. Setting β := α+1− ε, Theorem 1.1 implies
that for every ε′ > 0, CIRCUIT SAT on 2o(n)-size circuits has an 2(1−ε)n+ε′n+o(n) time algorithm.

3.2 Self-Improvement for Random-Access Models

So far, the self-improving results we have proved hold for any model of computation such that time-T algo-
rithms can be simulated by circuits of T 1+o(1)-size, such as multitape Turing machines; the results also hold
for solving CIRCUIT SAT with circuit families. However, for some random-access models (RAMs) of com-
putation, it is only known (for example) that time-T algorithms can be simulated by T 2+o(1)-size circuits.
In this section, we sketch how to prove self-improvement results in such models as well, in such a way that
we can still refute ETH under analogous conditions. Fixing any random-access model of computation, and
fixing any constant ε > 0, we define the following problem:

14

Problem: RAM SATε

Given: A parameter N given in unary, along with a random-access machine M of description length at
most O(log2(N))2.
Decide: Is there an x ∈ {0, 1}ε log2(N) such that M(x) accepts in at most N steps?

Analogously to LARGE CIRCUIT SAT, where there is a circuit of size N on ε log2(N) inputs, and we
wish to find a satisfying assignment, we are given the description of a RAM M running up to N steps,
and we wish to find a (ε log2(N))-bit input x that makes M accept. As before, the obvious algorithm for
RAM SATε runs in Õ(N1+ε) time (omitting polylog factors that may depend on the particular random-
access model). Applying precisely the same proof as in Theorem 1.1, we can obtain a self-improvement
result for RAM SAT. For illustration, we just give a special case. Define the problem SUBEXP RAM SAT to
be:

Given n and a RAM M of description length at most O(n2) that runs in up to 2o(n) steps on
inputs of length n, decide if there is an input x of length n such that M(x) accepts.

Clearly, the obvious algorithm for SUBEXP RAM SAT runs in 2n+o(n) time.

Theorem 3.6. Suppose there is an ε > 0 such that RAM SATε can be solved on random-access machines
in N1+o(1) time. Then for every ε > 0, SUBEXP RAM SAT can be solved in 2εn time.

Proof. Assume there exists a RAM M ′ that can solve RAM SATε in N1+o(1) time. We prove by induction
that for all natural numbers k, SUBEXP RAM SAT is solvable in 2fkn+o(n) time, where

f0 := 1, fk := fk−1/(1 + εfk−1).

The base case is obvious. Let M0 be the RAM (of description length O(1)) that runs the 2n+o(n)-time
brute-force algorithm for SUBEXP RAM SAT on a given input ⟨n,M⟩, where the length of the description
of M is at most n2.

For the inductive step, suppose we are given an instance ⟨n,M⟩ of SUBEXP RAM SAT. Conceptually
split the n-bit input x into A = εfk−1n/(1+εfk−1) bits and B = n/(1+εfk−1) bits, noting that A+B = n.
Build a RAM Mk that, given an A-bit input y, constructs a RAM My that runs M with y hard-coded in its
first A input bits, and calls the RAM Mk−1 on ⟨B,My⟩, outputting its answer. Observe that the length of
My, | ⟨My⟩ |, is at most | ⟨M⟩ |+ n+O(1), and that | ⟨Mk⟩ | ≤ | ⟨M⟩ |+ | ⟨Mk−1⟩ |+O(1).

By induction, Mk−1 takes 2fk−1B+o(n) time on ⟨B,My⟩. Let Nk := 2fk−1B . Since A = εfk−1B,
we have A = ε log2(Nk), so the RAM Mk runs in N

1+o(1)
k time on ε log2(Nk)-bit input. By assumption,

feeding ⟨Mk⟩ to the RAM M ′, its answer will determine SUBEXP RAM SAT for ⟨n,M⟩ in time

2fk−1B+o(n) = 2fk−1n/(1+εfk−1)+o(n) = 2fkn+o(n).

For every k ≥ 1, we have
fk = 1/(1 + ε · k),

as by induction we can infer

fk =
fk−1

1 + εfk−1
=

1/(1 + ε · (k − 1))

1 + ε/(1 + ε · (k − 1))
=

1

1 + ε · (k − 1) + ε
= 1/(1 + ε · k).

Therefore, by setting k := c/ε for arbitrarily large c ≥ 1, we can solve SUBEXP RAM SAT in time
2n/(1+c)+o(n).

15

The astute reader may wonder why we let the machine description have length quadratic in its input
length. The reason is that this constraint allows us to refute ETH with a faster algorithm for SUBEXP RAM

SAT. (In fact, allowing a description of length Ω(n log n) would suffice.)

Theorem 3.7. Suppose there is an ε > 0 such that RAM SATε can be solved on random-access machines
in N1+o(1) time. Then ETH is false.

Proof. We show how the hypothesis allows us to solve 3-SAT in 2εn time for every ε. Let ε > 0. Given
a 3-CNF formula F on n variables and O(n3) clauses, we first apply the Sparsification Lemma [IPZ01] to
reduce F to an OR of t ≤ 2εn/2 3-CNFs F1, . . . , Ft, where each Fi has at most cεn clauses for a constant
cε depending only on ε.

For all i = 1, . . . , t, define a RAM Mi which takes n bits of input x, and accepts if and only if the
formula Fi is satisfied by the n-variable assignment encoded by x. Since each Fi has at most cεn clauses
of width 3, each Fi can be encoded in at most O(n log n) bits. Therefore each Mi can be defined so that its
description length is at most O(n2). By Theorem 3.6, SUBEXP RAM SAT on each Mi can be solved in time
at most O(2εn/2), thereby deciding satisfiability for the formula Fi. As there are t ≤ 2εn/2 such Mi’s, we
can determine satisfiability of the original F in time at most O(2εn) by forming each M1, . . . ,Mt in turn
and running our assumed algorithm for SUBEXP RAM SAT on each Mi.

4 Uniform Lower Bounds For Linear Time

In this section, we establish new unconditional lower bounds for linear time computation.

Reminder of Theorem 1.3. There are linear-time decision problems which do not have POLYLOGTIME-
uniform SYM ◦ SYM circuits of nc gates, for all c < 1.199.

Proof. Assume the opposite. Our goal will be to contradict the time hierarchy theorem ([AB09]). In partic-
ular, we will contradict the fact that there is a decision problem f : {0, 1}⋆ → {0, 1} such that:

• for all n, and for all x ∈ {0, 1}n \ {0n}, f(x) = 0.

• f is computable in 2n time.

• f is not computable in 2n/n10 time.

In terms of languages and complexity classes, we are saying that there is a unary language in TIME[2n] that
is not in TIME[2n/n10].8 Let M be an algorithm computing f in time 2n. Our fast simulation of M first
checks if the input is of the form 0n; if not, the simulation immediately rejects in linear time. It remains to
demonstrate how to simulate M on 0n.

Assuming that every linear-time problem has uniform SYM ◦ SYM circuits of size nc, it follows from a
standard padding argument that the 2n-time machine M can be simulated by an SYM ◦ SYM circuit family
{Cn} where Cn has at most 2cn gates. The family {Cn} is also POLYLOGTIME-uniform; let us describe
in detail what this means (although the specific uniformity conditions given here are not critical for the
argument).

8The argument could still be carried out without assuming the hard language is unary, but the use of a unary language simplifies
some parts of the proof.

16

• First, there is a constant a ≥ 1 and an na-time algorithm A which on an input ⟨x, n⟩ of cn+O(log n)
bits, outputs gate information for the x-th gate on the bottom layer of the circuit Cn, where x is
interpreted as an integer ranging from 1 to 2cn. For concreteness, let us assume that A outputs an
n-bit vector indicating which of the n inputs to Cn have wires into the x-th gate, and A outputs a
table Tx[0], . . . , Tx[n] of n + 1 bits that describes the symmetric function computed at the x-th gate.
(The interpretation is that when i ∈ {0, . . . , n} inputs to the x-th gate are true, the symmetric function
outputs Tx[i].)

• To handle the top SYM gate, we also have an na-time algorithm B which, given an integer in
{0, . . . , 2cn} encoded in cn + O(1) bits, outputs 0 or 1. This B computes the top SYM gate of
the circuit, given the number of its inputs which are 1. (We assume that every SYM gate on the
bottom layer has a wire to the top SYM gate.)

Using the algorithm A, in poly(na) time we can construct a circuit Dn of poly(na) size which takes a
cn + O(1) bit string x, and outputs 1 if and only if the x-th gate in the bottom SYM layer outputs 1 on the
input 0n. This can be done by simply calling A on ⟨x, n⟩ and outputting the value Tx[0], since none of the
n bits of input are set true.

Observe that computing #CIRCUIT SAT on the circuit Dn is equivalent to determining the number of
gates on the bottom SYM layer which output 1, which equals the number of ones going into the top SYM
gate. Feeding this number into the algorithm B outputs the value of the SYM ◦ SYM circuit on the input 0n.
Therefore, if we can compute #CIRCUIT SAT on Dn in less than 2n/n10 time, the time hierarchy theorem
used above will be contradicted.

We will show how to solve #CIRCUIT SAT on Dn more efficiently, applying (again) the assumption
that linear time has uniform SYM ◦ SYM circuits, and using a key idea from Theorem 1.2. Let γ ∈ (0, 1) be
a parameter to be set later. Given the circuit Dn, in 2γn+o(n) time we can construct a circuit E which takes
in a cn− γn+O(1) bit input z, and computes the integer sum∑

y∈{0,1}γn
Dn(yz).

This circuit E has t ≤ O(n) output bits encoding the sum; we form circuits Et−1, . . . , E0 for each of the
t output bits of the sum, where E0 outputs the low-order bit, Et−1 outputs the high-order bit, and so on.
By our assumption that linear-time has uniform SYM ◦ SYM circuits of size nc, for each circuit Ei, we can
construct an equivalent SYM ◦ SYM circuit Fi, of 2cγn+o(n) size with cn− γn+O(1) inputs. Furthermore,
each Fi can be constructed in 2cγn+o(n) time, by calling the relevant uniform algorithms which produce gate
information.

If we compute #CIRCUIT SAT for each Fi, we can determine #CIRCUIT SAT for the original circuit
Dn by computing

t−1∑
i=0

2i ·#CIRCUIT SAT(Fi),

analogously as in Theorem 1.2. We now turn to computing #CIRCUIT SAT for a given Fi.
Let s = 2cγn+o(n). Following a similar construction in [Wil18], at this point we can do something

stronger than solve #CIRCUIT SAT: we can evaluate each s-size Fi on all 2cn−γn possible assignments, by
using fast matrix multiplication. WLOG, let n′ := cn − γn be even, and split the set of n′ input variables
into two parts P1 and P2 of n′/2 variables each. Enumerate all 2n

′/2 possible assignments to P1 and P2,

17

creating lists L1 and L2 of 2n
′/2 length each. From these lists, we form Boolean matrices M1 and M2, as

follows. Index the rows of M1 by assignments in L1, and the columns by pairs in [n]× [s], defining

M1[a, (i, j)] = 1 ⇔ partial assignment a sets exactly i inputs true going into the j-th (bottom) SYM gate.

Index the rows of M2 by [n]× [s] and the columns by assignments in L2, defining

M2[(i, j), a
′] = 1 ⇔ the j-th (bottom) SYM gate outputs 1 on partial assignment a′, assuming that

exactly i other inputs from the other partial assignment are true.

Each entry of M1 and M2 can be computed in poly(n) time. Observe that the full variable assignment
(a, a′) ∈ L1 × L2 makes the j-th SYM gate output 1, if and only if there is an i such that M1[a, (i, j)] ∧
M2[(i, j), a

′] = 1. Furthermore, such an i is always unique when it exists (a partial assignment a cannot set
exactly i and exactly i′ inputs true, where i ̸= i′). Therefore the (a, a′) entry of the matrix product M1 ·M2

equals the number of (bottom) SYM gates which are true on the assignment (a, a′). By feeding each entry
of the matrix product M1 ·M2 into the top SYM gate of Fi, we can evaluate Fi on all possible inputs, and
thereby determine #CIRCUIT SAT for Fi. This completes the description of the simulation of M , modulo
the setting of the parameter γ > 0.

Now, we wish to determine the conditions under which all of the above can be implemented in 2n/n10

time, or less. The bottleneck is the matrix multiplication step: the dimensions of the matrices are

2(cn−γn)/2 × 2cγn+o(n) and 2cγn+o(n) × 2(cn−γn)/2.

(Note that c appears in the outer dimension of the matrices due to the first application of the assumption,
and c appears in the inner dimension due to the second application.)

Our goal is to now maximize c (setting γ > 0 appropriately) such that the overall matrix multiplication
takes less than 2n/n10 time. As a warm-up, assuming N × N matrix multiplication can be achieved in
N2+o(1) time, we can set (c−γ)/2 = cγ. This has the solution γ = c/(2c+1), so the matrix multiplication
will take 22c

2n/(2c+1) + o(n) time. In that case, we need c2 < (2c+ 1)/2 in order to obtain a contradiction,
which happens precisely when c < (1 +

√
3)/2 < 1.36.

In general, suppose we have an algorithm for multiplying matrices of dimensions N ×Nα and Nα×N
that runs in Nβ+o(1) time. Setting γ > 0 so that

cγ = α · (c− γ)/2,

i.e., γ = αc/(α+2c), the running time of applying the assumed rectangular matrix multiplication algorithm
will be

2β(c−γ)n/2+o(n) = 2β(c−αc/(α+2c))n/2.

To get a contradiction for the largest possible c, we want to set α, β that maximize c subject to the constraint

β

(
c− αc

α+ 2c

)
< 2.

Solving the resulting quadratic in terms of c, the above constraint is equivalent to

c <
1 +

√
αβ + 1

β
.

Examining the table of best-known α, β values (Table 3) in [LU18], we find that the RHS of the inequality
is maximized for α = 0.8 and β = 2.222256, in which case c < 1.19998 suffices.

18

5 Lower Bounds From Improving Self-Improvement

We noted in Section 3 that our self-improvement results are relativizing, if oracles are placed in both the
problem definition and in the algorithms solving the problem. Here, we will show that if self-improvement
could be relativized in a different way, then we would separate NP from NC1. (As mentioned in the in-
troduction, we do not consider this to be an approach to separating NP from NC1, but rather as a potential
limitation to pushing the techniques further.)

First, we prove that if Q-CIRCUIT SAT has subexponential-size circuits, then NP ̸= NC1.

Theorem 5.1. Suppose there is a ℓ ≥ 0 such that for all ε > 0, Q-CIRCUIT SAT on 2o(n)-size circuits has
2εn+o(n)-size non-uniform ΣℓSAT -oracle circuits. Then NP ̸= NC1.

(We define Σ0SAT to simply be the CIRCUIT EVAL decision problem.)

Proof. For a contradiction, assume Q-CIRCUIT SAT on 2o(n)-size circuits has 2εn+o(n)-size (non-uniform)
ΣcP-oracle circuits, and assume NP = NC1.

If NP = NC1, then the entire polynomial hierarchy can be simulated in NC1 by standard arguments
([AB09]), so ΣℓP = NC1 for all ℓ ≥ 1. By a standard padding/translation argument, we have ΣℓE =
TIME[2O(n)] = ATIME[O(n)], where the latter class denotes alternating linear time. However, it is well-
known that functions f ′ : {0, 1}⋆ → {0, 1} of maximum circuit complexity Θ(2n/n) reside in Σ3E ([AB09,
Juk12]). Therefore there is a constant k′ ≥ 1 and a function f ′ : {0, 1}⋆ → {0, 1} that requires Ω(2n/n)-
size circuits, but f ′ is computable in alternating time k′ · n. Furthermore, the construction of f ′ relativizes,
so there is also a function f : {0, 1}⋆ → {0, 1} in Σℓ+3E with maximum ΣℓSAT -oracle circuit complexity,
and since Σℓ+3E = ATIME[O(n)], this f is computable in alternating time kn for some constant k. Let M
be the alternating machine computing f .

We observe that standard methods for reducing computations into propositional logic ([AB09]) show
that the quantified Boolean formula problem (TQBF) is strongly complete for alternating linear time, in the
following sense: for every alternating machine M running in kn time, there is a constant c ≥ 1 (depending
only on the tape alphabet of M) such that the computation of M on an input x of length n can be reduced
to a QBF instance ΦM,x having at most ckn quantified variables, with a circuit predicate of poly(n) size;
furthermore, the construction of ΦM,x takes only poly(n) time and its encoding has poly(n) bits. Moreover,
without loss of generality, the reduction can be designed so that the n bits of the input x always appear in n
specific locations of the encoding of the QBF ΦM,x.

Finally, we use the presumed 2εn+o(n)-size (non-uniform) ΣℓSAT -oracle circuits for Q-CIRCUIT SAT
on n-variable instances of size 2o(n). Given such a circuit Cn that will take a Q-CIRCUIT SAT instance
of size 2o(n), we feed Cn a description of ΦM,x with kcn variables, but we leave the n bits describing x
unassigned, as free variables. That is, the resulting circuit C ′

n, which is Cn having all but n bits set by the
description of ΦM,x, is a circuit with n inputs, such that C ′

n(x) outputs the truth value of ΦM,x.
By construction, C ′

n computes f . However, C ′
n has size 2εkcn+o(n). Since k, c are fixed constants, and

ε > 0 can be made arbitrarily small, this contradicts the fact that f does not have ΣℓSAT -oracle circuits of
2αn size for all α < 1. This concludes the proof.

Let us give two relevant corollaries of Theorem 5.1 for self-improvement. The first states that non-
uniform algorithms that can efficiently decide Q-CIRCUIT SAT on any large circuit sizes would separate
NP from NC1.

Theorem 5.2. Suppose there is some k > 0 such that for all ε > 0, Q-CIRCUIT SAT on 2kn-size circuits
has 2kn+εn-size non-uniform circuits. Then NP ̸= NC1.

19

Proof. Given the hypothesis of the theorem, the self-improvement theorem for Q-CIRCUIT SAT (Theo-
rem 1.2) implies that Q-CIRCUIT SAT on 2o(n)-size circuits has 2εn+o(n)-size non-uniform circuits. The
consequence follows from Theorem 5.1.

The second corollary shows that “improving self-improvement” to hold for oracles in the polynomial
hierarchy (without changing the underlying inputs) would also separate NP from NC1.

Reminder of Theorem 1.4. Suppose self-improvement holds for Q-CIRCUIT SAT with Σ2P-oracle algo-
rithms, i.e., assume:

There is some k > 0 such that Q-CIRCUIT SAT on 2kn+o(n)-size circuits in 2kn+o(n) time
(with a Σ2SAT oracle) implies there is a c ≥ 0 such that for all ε > 0, Q-CIRCUIT SAT on
2o(n)-size circuits has 2εn+o(n)-size non-uniform ΣcSAT -oracle circuits.

Then NP ̸= NC1.

Proof. By Proposition 1, we already know that Q-CIRCUIT SAT on 2n+o(n)-size circuits in 2n+o(n) time
with a Σ2SAT oracle. Thus by assumption, there is a c > 0 such that for all ε > 0, Q-CIRCUIT SAT
on 2o(n)-size circuits has 2εn+o(n)-size non-uniform ΣcSAT -oracle circuits. Applying Theorem 5.1, NP ̸=
NC1 follows.

Although we do not believe the above is currently a viable approach to separating NP from NC1, we
do think the above results should give a minor pause. It is not obvious whether we should believe that
non-uniform ΣcSAT -oracle circuits exist for Q-CIRCUIT SAT. It seems highly unlikely that there are
subexponential-time algorithms for TQBF. However, once we are allowed non-uniformity and oracles in the
polynomial hierarchy, the situation becomes less clear.

Acknowledgements. I am grateful to Lijie Chen, Russell Impagliazzo, Valentine Kabanets, Mohan Paturi,
Rahul Santhanam, and Michael Wehar for interesting discussions. I also thank Shyan Akmal for comments
and corrections on an earlier version of the manuscript. Many thanks to the Simons Institute for providing a
stimulating environment during the Meta-Complexity and Satisfiability Extended Reunion programs.

This paper is dedicated to the memory of my undergraduate mentor Juris Hartmanis, who posed research
questions of the form that are addressed in this paper (see also [ACF+22]). Namely, Prof. Hartmanis often
asked me: “If P = NP, then can SAT be solved in n10 time?” (One may substitute “10” with any specific
constant.) The present paper is my current best attempt to prove that some “fine-grained” version of his
question can be answered positively.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge
University Press, 2009.

[ACF+22] Eric Allender, Jin-Yi Cai, Lance Fortnow, William Gasarch, Neil Immerman, Stuart Kurtz,
James Royer, and Ryan Williams. Open problems column: Open problems by or inspired by
Juris Hartmanis. SIGACT News, 53(4):26, 2022.

[ACW16] Josh Alman, Timothy M. Chan, and R. Ryan Williams. Polynomial representations of thresh-
old functions and algorithmic applications. In FOCS, pages 467–476, 2016.

20

[AG94] Eric Allender and Vivek Gore. A uniform circuit lower bound for the permanent. SIAM J.
Comput., 23(5):1026–1049, 1994.

[AHWW16] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower
bound made. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, pages 375–388. ACM, 2016.

[AK10] Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility. J.
ACM, 57(3):14:1–14:36, 2010.

[AKR+01] Eric Allender, Michal Koucký, Detlef Ronneburger, Sambuddha Roy, and V. Vinay. Time-
space tradeoffs in the counting hierarchy. In CCC, pages 295–302. IEEE Computer Society,
2001.

[AWY15] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In SODA, pages 218–230. Society for Industrial and Applied
Mathematics, 2015.

[BBG98] Stephen A. Bloch, Jonathan F. Buss, and Judy Goldsmith. Sharply bounded alternation and
quasilinear time. Theory Comput. Syst., 31(2):187–214, 1998.

[BG93] Jonathan F. Buss and Judy Goldsmith. Nondeterminism within P. SIAM J. Comput.,
22(3):560–572, 1993.

[BGG+22] Vishwas Bhargava, Sumanta Ghosh, Zeyu Guo, Mrinal Kumar, and Chris Umans. Fast multi-
variate multipoint evaluation over all finite fields. In FOCS, pages 221–232. IEEE, 2022.

[BGKM22] Vishwas Bhargava, Sumanta Ghosh, Mrinal Kumar, and Chandra Kanta Mohapatra. Fast,
algebraic multivariate multipoint evaluation in small characteristic and applications. In STOC,
pages 403–415. ACM, 2022.

[BKW15] Mark Braverman, Young Kun-Ko, and Omri Weinstein. Approximating the best nash equi-
librium in no(log n)-time breaks the exponential time hypothesis. In SODA, pages 970–982,
2015.

[BM74] Allan Borodin and R. Moenck. Fast modular transforms. J. Comput. Syst. Sci., 8(3):366–386,
1974.

[BW15] Samuel R. Buss and Ryan Williams. Limits on alternation trading proofs for time-space lower
bounds. Comput. Complex., 24(3):533–600, 2015.

[CC97] Liming Cai and Jianer Chen. On the amount of nondeterminism and the power of verifying.
SIAM J. Comput., 26(3):733–750, 1997.

[CHO+20] Lijie Chen, Shuichi Hirahara, Igor Carboni Oliveira, Ján Pich, Ninad Rajgopal, and Rahul
Santhanam. Beyond natural proofs: Hardness magnification and locality. In ITCS, pages
70:1–70:48, 2020.

21

[CIP06] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause width
and clause density for SAT. In CCC, pages 252–260, 2006.

[CJW19] Lijie Chen, Ce Jin, and R. Ryan Williams. Hardness magnification for all sparse NP languages.
In FOCS, pages 1240–1255, 2019.

[CMMW19] Lijie Chen, Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Relations and equiv-
alences between circuit lower bounds and Karp-Lipton theorems. In CCC, pages 30:1–30:21,
2019.

[CPP16] Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. Known algorithms for edge clique
cover are probably optimal. SIAM J. Comput., 45(1):67–83, 2016.

[CRTY20] Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev. On exponential-time hypotheses,
derandomization, and circuit lower bounds: Extended abstract. In FOCS, pages 13–23. IEEE,
2020.

[CT65] James W Cooley and John W Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297–301, 1965.

[CW21] Timothy M. Chan and R. Ryan Williams. Deterministic apsp, orthogonal vectors, and more:
Quickly derandomizing Razborov-Smolensky. ACM Trans. Algorithms, 17(1):2:1–2:14, 2021.

[DHM+14] Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen. Exponen-
tial time complexity of the permanent and the tutte polynomial. ACM Trans. Algorithms,
10(4):21:1–21:32, 2014.

[DKKY10] Evgeny Demenkov, Arist Kojevnikov, Alexander S. Kulikov, and Grigory Yaroslavtsev. New
upper bounds on the boolean circuit complexity of symmetric functions. Inf. Process. Lett.,
110(7):264–267, 2010.

[FGW06] Jörg Flum, Martin Grohe, and Mark Weyer. Bounded fixed-parameter tractability and log2n
nondeterministic bits. J. Comput. Syst. Sci., 72(1):34–71, 2006.

[Fid72] Charles M. Fiduccia. Polynomial evaluation via the division algorithm: The fast Fourier
transform revisited. In STOC, pages 88–93, 1972.

[FLvMV05] Lance Fortnow, Richard J. Lipton, Dieter van Melkebeek, and Anastasios Viglas. Time-space
lower bounds for satisfiability. J. ACM, 52(6):835–865, 2005.

[GGHN08] Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Data reduction and exact algo-
rithms for clique cover. ACM J. Exp. Algorithmics, 13, 2008.

[GHH+23] Sumanta Ghosh, Prahladh Harsha, Simao Herdade, Mrinal Kumar, and Ramprasad Sapthar-
ishi. Fast numerical multivariate multipoint evaluation. Electronic Colloquium on Computa-
tional Complexity, TR23-033, 2023.

[IP99] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-sat. In Proceedings of the 14th
Annual IEEE Conference on Computational Complexity, Atlanta, Georgia, USA, May 4-6,
1999, pages 237–240. IEEE Computer Society, 1999.

22

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[Juk12] Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer
Science & Business Media, 2012.

[Kan83] Ravi Kannan. Alternation and the power of nondeterminism. In STOC, pages 344–346. ACM,
1983.

[KF77] Chandra M. R. Kintala and Patrick C. Fischer. Computations with a restricted number of
nondeterministic steps (extended abstract). In STOC, pages 178–185. ACM, 1977.

[Ko82] Ker-I Ko. Some observations on the probabilistic algorithms and np-hard problems. Inf.
Process. Lett., 14(1):39–43, 1982.

[KU11] Kiran S. Kedlaya and Christopher Umans. Fast polynomial factorization and modular compo-
sition. SIAM J. Comput., 40(6):1767–1802, 2011.

[KW16] Daniel M. Kane and Ryan Williams. Super-linear gate and super-quadratic wire lower bounds
for depth-two and depth-three threshold circuits. In STOC, pages 633–643, 2016.

[LMM03] Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Playing large games using simple
strategies. In Proceedings 4th ACM Conference on Electronic Commerce (EC), pages 36–41.
ACM, 2003.

[LU18] Francois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using pow-
ers of the coppersmith-winograd tensor. In SODA, pages 1029–1046. SIAM, 2018.

[LW13] Richard J. Lipton and Ryan Williams. Amplifying circuit lower bounds against polynomial
time, with applications. Computational Complexity, 22(2):311–343, 2013.

[MMW19] Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak lower bounds on resource-
bounded compression imply strong separations of complexity classes. In STOC, pages 1215–
1225. ACM, 2019.

[MW21] Abhijit Mudigonda and R. Ryan Williams. Time-space lower bounds for simulating proof
systems with quantum and randomized verifiers. In ITCS, volume 185 of LIPIcs, pages 50:1–
50:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[OPS19] Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near state-
of-the-art lower bounds. In 34th Computational Complexity Conference, CCC 2019, pages
27:1–27:29, 2019.

[OS18] Igor Carboni Oliveira and Rahul Santhanam. Hardness magnification for natural problems. In
FOCS, pages 65–76, 2018.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J. ACM,
26(2):361–381, 1979.

[PP10] Ramamohan Paturi and Pavel Pudlák. On the complexity of circuit satisfiability. In Leonard J.
Schulman, editor, STOC, pages 241–250. ACM, 2010.

23

[PPJA18] Ojas Parekh, Cynthia A. Phillips, Conrad D. James, and James B. Aimone. Constant-depth
and subcubic-size threshold circuits for matrix multiplication. In Christian Scheideler and
Jeremy T. Fineman, editors, Proceedings of the 30th on Symposium on Parallelism in Algo-
rithms and Architectures, SPAA 2018, Vienna, Austria, July 16-18, 2018, pages 67–76. ACM,
2018.

[Rub16] Aviad Rubinstein. Settling the complexity of computing approximate two-player nash equi-
libria. In FOCS, pages 258–265, 2016.

[San23] Rahul Santhanam. An algorithmic approach to uniform lower bounds. Electronic Colloquium
on Computational Complexity (ECCC), TR23-028:100, 2023.

[Sri03] Aravind Srinivasan. On the approximability of clique and related maximization problems. J.
Comput. Syst. Sci., 67(3):633–651, 2003.

[SW22] András Z. Salamon and Michael Wehar. Superlinear lower bounds based on ETH. In STACS,
volume 219 of LIPIcs, pages 55:1–55:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

[Tam16] Suguru Tamaki. A satisfiability algorithm for depth two circuits with a sub-quadratic num-
ber of symmetric and threshold gates. Electronic Colloquium on Computational Complexity
(ECCC), TR16-100, 2016.

[Val76] Leslie G. Valiant. Universal circuits (preliminary report). In Proceedings of the 8th Annual
ACM Symposium on Theory of Computing, pages 196–203. ACM, 1976.

[Vas18] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.
In Proceedings of the International Congress of Mathematicians (ICM), pages 3447–3487.
World Scientific, 2018.

[vM06] Dieter van Melkebeek. A survey of lower bounds for satisfiability and related problems.
Found. Trends Theor. Comput. Sci., 2(3):197–303, 2006.

[vMR05] Dieter van Melkebeek and Ran Raz. A time lower bound for satisfiability. Theor. Comput.
Sci., 348(2-3):311–320, 2005.

[vMW12] Dieter van Melkebeek and Thomas Watson. Time-space efficient simulations of quantum
computations. Theory Comput., 8(1):1–51, 2012.

[Vol99] Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, 1999.

[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
J. Comput., 42(3):1218–1244, 2013.

[Wil14] Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2, 2014.

[Wil18] R. Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
Theory of Computing, 14(1):1–25, 2018.

24

A Appendix: A Slightly Stronger Self-Improvement

Reminder of Theorem 3.1. Suppose there are β ≥ α > 0 such that CIRCUIT SAT on 2αn+o(n)-size
circuits can be solved in 2βn+εn time, for all ε > 0. Then for every ε > 0, there is a γ > 0 such that
CIRCUIT SAT on 2γn-size circuits can be solved in 2(β−α)n+εn time.

Here we merely sketch the argument, as it closely follows the proof of Theorem 1.1, but also tracks the
dependence on circuit size. Start with a CIRCUIT SAT instance C of 2γn size and n inputs, for γ to be set
later. Let Sε be an algorithm running in 2βn+εn time that takes as input a description of a 2αn+o(n)-size
circuit C ′, and determines satisfiability for C ′.

For a parameter δ ∈ (0, 1) to be determined, build a circuit D on m = (1−δ)n inputs with the following
behavior. First, given an assignment x of m bits, D plugs the bits of x into the first m inputs of C, yielding
the description of a circuit C ′ := C(x, ·) with m′ = n − m = δn inputs, and 2γn+o(n) ≤ 2γ(1−δ)m+o(m)

size. Next, D evaluates C ′ on all possible 2m
′

assignments to the m′ inputs of C ′ and takes the OR over all
2m

′
outputs. Thus, D has size 2δn+γ(1−δ)m+o(m) ≤ 2δm/(1−δ)+γ(1−δ)m+o(m), and has m inputs.
If we set δ so that α = δ/(1−δ)+γ(1−δ), the size of D will be precisely 2αm+o(m), and we can apply

the algorithm Sε. Setting γ > 0 appropriately, we can set δ ∈ (0, 1). (In particular, the above constraint is
equivalent to γ = (α(1− δ)− δ)/(1− δ)2. For every α > 0, one can find a γ > 0 such that we can satisfy
the equation with some δ ∈ (0, 1). If α ≥ 1, then .)

We feed the description of D to the assumed algorithm Sε which runs in time 2βm+εm ≤ 2β(1−δ)n+ε(1−δ)n

size, and outputs a yes/no answer. Observe that C is satisfiable if and only if S(D) outputs yes. Now we
know that satisfiability of circuits of 2γn size can be determined by an algorithm running in 2β(1−δ)n+εn

time, for every ε > 0. Denote this algorithm by F1.
We can repeat the argument again, but instead of taking an OR over all possible assignments, we call

our new SAT algorithm instead. Suppose inductively that CIRCUIT SAT on n-input 2γkn-size circuits can
be determined by circuits of 2fkn+o(n) size.

In particular, let δk ∈ (0, 1) be a parameter, and we make a circuit D on m = (1 − δk)n inputs with
the following behavior: Given an assignment x of m bits, D plugs x into the first (1 − δk)n inputs of C,
yielding a circuit C ′ with δkn inputs and 2γk+1n size. Setting γk+1 = δk · γk, we can apply the induction
hypothesis. Next, D calls the algorithm Fk to determine satisfiability of C ′, taking time 2δkfkn+o(n). Now
we have a circuit D on m = (1 − δk)n inputs of size 2δk·fkn+o(n) which is equi-satisfiable to our original
circuit C.

Setting δk such that δk ·fkn = αm, our circuit D will have m inputs and 2αm+o(m) size, so its satisfiabil-
ity can be determined in 2βm+εm time (for all ε > 0) by hypothesis. Setting δk = α/(fk +α) accomplishes
this. We can therefore determine satisfiability of C in time 2βm+εm, for all ε > 0, which also implies a
bound of 2β(1−α/(fk+α))n+εn, for all ε > 0. Let this algorithm be Fk.

Setting f0 := β, fk+1 := β(1 − α/(fk + α)), we can construct a sequence of algorithms Fk for
computing satisfiability of 2γkn-size circuits, where the kth circuit has size 2fkn+o(n). For every α > 0, we
claim that the sequence {fk} is monotone decreasing, and converges to f∞ = β − α.

We have γk := γ ·
(∏k

i=1 δi

)
. The sequence {γk} is decreasing with increasing k, but all γk are greater

than 0. We conclude that for every ε > 0, there is a γ > 0 such that CIRCUIT SAT on 2γn-size circuits can
be solved in 2(β−α)n+εn time.

25

B Appendix: Extension to Randomized Algorithms

Here, we observe that the self-improvement results of this paper also hold for randomized algorithms solv-
ing CIRCUIT SAT, #CIRCUIT SAT, and Q-CIRCUIT SAT. (As usual, we need our model of randomized
algorithms to have the property that for every T (n)-time algorithm, there is an equivalent T (n)1+o(1)-size
circuit for inputs of length n that can be generated in T 1+o(1) time. These resulting “randomized circuits”
will have n standard input bits, along with O(T) auxiliary inputs to encode the randomness.) We begin by
proving the result for CIRCUIT SAT.

Theorem B.1. If there is a randomized CIRCUIT SAT algorithm running in 2βn+o(n) time on 2αn+o(n)-size
circuits, then for all ε > 0, there is a randomized CIRCUIT SAT algorithm running in 2(β−α+ε) time on
2o(n)-size circuits.

Proof. (Sketch) We sketch the simple modifications necessary to prove the result. Suppose there is a ran-
domized algorithm S that runs in 2βn+o(n) time on 2αn+o(n)-size circuits and solves CIRCUIT SAT.

First of all, we may assume without loss of generality that our randomized algorithms never make
a mistake when they report “SAT” (that is, all CIRCUIT SAT algorithms involved have one-sided error).
Using the self-reducibility of SAT (in particular, applying the standard proof that NP ⊆ BPP implies
NP = RP [Ko82]) by making O(n) calls to the randomized CIRCUIT SAT algorithm (where n is the number
of inputs to the circuit), we can force the randomized algorithm to compute a valid satisfying assignment,
whenever one exists. If the original algorithm runs in T time, the new algorithm runs in O(nT) time. (For
all of our results, this factor of n is negligible, as the circuit size is always much larger than the number of
inputs.) Moreover, we may assume that the error probability of S can be made below 1/n (for example), by
simply repeating S for O(log n) trials, and outputting any satisfying assignment found during the trials.

We observe that the base case of our induction in Theorem 1.1 works with no modification: taking an
OR over all assignments to some fraction of the variables is a deterministic operation that doesn’t require
any randomness. However, the new SAT algorithm F1 for small circuits that we obtain in the base case will
be randomized (with one-sided error) and we will need to handle this property in the induction step.

Suppose that inductively, we have a randomized algorithm Fk for CIRCUIT SAT which takes the de-
scription of a circuit as well as some random bit-string r of length ℓ, and outputs a satisfying assignment
when one exists with probability at least 9/10. (Furthermore, if the given circuit is unsatisfiable, then Fk

always outputs 0.) In the inductive step, when we construct a circuit D that has (1 − δ)n inputs and calls
Fk on the remaining simplified subcircuit with δn inputs, our circuit D now chooses t = O(1) uniform
independent random strings r1, . . . , rt of length ℓ, calls Fk on each of the strings ri set as its randomness,
and outputs any SAT assignment that is output by Fk over the t calls. (The circuit D can now be viewed as
a distribution of circuits.) We have the following properties.

• If the original circuit C is satisfiable, then the (randomized) circuit D constructed is unsatisfiable with
probability at most 1/10t: each of the (independent) t calls to Fk has probability at most 1/10 of
failing to output a SAT assignment, so the probability that all of them fail is at most 1/10t.

• If C is unsatisfiable, then D is unsatisfiable: all settings to the random strings of Fk and all settings
to the input variables of D will result in a zero output, since Fk has one-sided error.

When we call the randomized algorithm S on the (randomized) circuit D, the algorithm S itself has an error
probability of at most 1/n. The probability of error overall for our new algorithm Fk+1 is therefore at most
1/n+ 1/10t, which can be made below 1/10 by setting t = 2 for sufficiently large n.

26

In fact, the above proof outline can be applied to self-improvement for randomized algorithms solv-
ing Q-CIRCUIT SAT and #CIRCUIT SAT as well (extending Theorem 1.2), but we need to be a little
more careful. In particular, we do not know how to enforce one-sided error in a randomized algorithm for
Q-CIRCUIT SAT, nor do we know how to do it for randomized algorithms for #CIRCUIT SAT.

However, suppose instead of making t = O(1) calls to Fk as in the proof of Theorem B.1, the circuit
D takes the majority vote of t := cn calls to algorithm Fk with t independent random settings to the
randomness of Fk, where n is the number of input variables to the original circuit C, and c ≥ 1 is a
sufficiently large constant. The factor-of-n increase in circuit size resulting from making cn calls to Fk

is still negligible, compared to the overall circuit sizes (which are mildly exponential: 2δn size for some
δ > 0).

Fix a variable assignment a to the inputs of D. By a standard Chernoff-Hoeffding style tail bound, since
each call to Fk has probability only 1/10 of error, the probability that D returns an incorrect answer on a
is the probability that our majority vote (of cn calls to Fk) outputs an incorrect answer, which is at most
1/ exp(Θ(cn)). By a union bound over all possible 2(1−δ)n assignments to the (1− δ)n inputs of the circuit
D, the probability that there is some variable assignment a to D such that D returns an incorrect output on
a is still at most 1/ exp(n), by making the constant c ≥ 1 large enough. Therefore, our reduction from the
original circuit C to the randomized circuit D has probability of error only 1/ exp(n), and the rest of the
analysis works as before.

27

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

