
Randomized vs. Deterministic Separation in Time-Space Tradeoffs

of Multi-Output Functions

Huacheng Yu∗

Princeton University
yuhch123@gmail.com

Wei Zhan†

Princeton University
weizhan@cs.princeton.edu

Abstract

We prove the first polynomial separation between randomized and deterministic time-space
tradeoffs of multi-output functions. In particular, we present a total function that on the input
of n elements in [n], outputs O(n) elements, such that:

• There exists a randomized oblivious algorithm with space O(log n), time O(n log n) and
one-way access to randomness, that computes the function with probability 1−O(1/n);

• Any deterministic oblivious branching program with space S and time T that computes
the function must satisfy T 2S ≥ Ω(n2.5/ log n).

This implies that logspace randomized algorithms for multi-output functions cannot be black-
box derandomized without an Ω̃(n1/4) overhead in time.

Since previously all the polynomial time-space tradeoffs of multi-output functions are proved
via the Borodin-Cook method, which is a probabilistic method that inherently gives the same
lower bound for randomized and deterministic branching programs, our lower bound proof is
intrinsically different from previous works.

We also examine other natural candidates for proving such separations, and show that
any polynomial separation for these problems would resolve the long-standing open problem
of proving n1+Ω(1) time lower bound for decision problems with polylog(n) space.

1 Introduction

Time-space tradeoff is the phenomenon in computation where one could trade time for space by
recomputing the intermediate results instead of storing them. Apart from being ubiquitous, time-
space lower bounds also help us understand what can or cannot be efficiently computed with
limited memory. However, lower bounds for decision problems turned out difficult to prove, and
it remains a major open problem to prove lower bounds polynomially better than trivial in the
general non-uniform model of sequential computation, i.e. branching programs.

By contrast, there is an abundance of lower bounds against functions that have multiple bits of
output (polynomial in the length of the input). The study of time-space tradeoffs of multi-output
functions started with Borodin and Cook [BC82] who showed that sorting n numbers within space S
and time T requires TS = Ω(n2). Their problem formulation and proof was later refined by Beame
[Bea91], who also showed a similar lower bound for listing unique elements. Tight time-space lower
bounds was also proved for a variety of multi-output problems, including algebraic problems like
matrix multiplication and inversion [Abr91], frequency moments over sliding windows [BCM13],

∗Supported by Simons Junior Faculty Award - AWD1007164.
†Supported by a Simons Investigator Award and by the National Science Foundation grant No. CCF-2007462.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 96 (2023)

and more recently, the memory game [CC17], printing and counting SAT assignments [MW18] and
multiple collision finding [Din20], just to name a few.

Despite being problems from different backgrounds and of different nature, the proofs of their
lower bounds are all direct applications of the original methods of Borodin and Cook [BC82].
A formal (but restrictive for certain applications) and detailed description of the Borodin-Cook
method was given in [Sav98, Section 10.11], and here we present a brief framework of the method:

1. Fix a distribution D over the inputs (often uniform), and find a(S) such that given a(S) bits
in the input, only S bits of output are revealed on average.

2. Prove that for some large c > 1, given any decision tree of depth a(S) and c ·S bits of output
assigned to each path in the tree, these outputs are correct with probability 2−Ω(S) under D.
This is usually the technical part of the proof.

3. Now split the branching program into stages of length a(S), and by a union bound over the
2S starting nodes of each stage, the above argument shows that most inputs under D cannot
generate c·S bits output within a stage. This implies a lower bound of the form ST/a(S) ≥ m
where m = poly(n) is the number of output bits.

Note that here we state the method for proving lower bounds against deterministic branching
programs. When the distribution D above is uniform, the method can be stated even more simply as
a counting argument over the set of inputs, and the lower bounds hold for average-case complexity.
But no matter how D is chosen, by Yao’s Minimax Principle the above arguments actually provide
lower bounds against distributions over deterministic branching programs, the most general model
of randomized sequential computation. In other words, the Borodin-Cook method inherently give
the same lower bound for deterministic and randomized computation. As all the previous lower
bounds are proved using the Borodin-Cook method, the following question remains unanswered
before this work:

Is there a polynomial separation between randomized and deterministic branching
programs for time-space tradeoffs of multi-output functions?

Here we answer this question in the affirmative for oblivious branching programs, where the
queries made to the input in the branching programs are independent of the input. We design a
problem called (n, p)-Non-Occurring Elements, which can be solved efficiently by randomized
oblivious algorithms, while any deterministic oblivious branching program solving the problem
requires either polynomially larger space or polynomially longer time. Our problem has the
additional advantage that it is a total function, which prevents the trivial separation where a
randomized algorithm may have a sublinear running time (see our discussion in Section 1.2).

Definition 1. Let n > 1 and p be a prime factor of n. In the (n, p)-Non-Occurring Elements
((n, p)-NOE for short) problem, the input is an unordered list of n numbersX = (x1, . . . , xn) ∈ [n]n.
The output is a set Y ⊆ [n] such that:

• If for every c ∈ [n], the number of times that c occurs in X is a multiple of p (0 included, so
there are at most n/p distinct occurring elements), then Y consists of the (at least n− n/p)
elements in [n] that do not occur in X;

• Otherwise Y = ∅.

2

Theorem 1.1. There is a randomized oblivious branching program with space O(log n) and time
max{1, n/p2} · O(n log n), that computes (n, p)-NOE with probability at least 1 − 2/n. Moreover,
the algorithm can be implemented with one-way access to random bits. On the other hand, any
deterministic oblivious branching program with space S and time T that correctly computes (n, p)-
NOE must satisfy T 2(S + log T) ≥ Ω(n3/p).

Theorem 1.1 will be proved in Section 3. Taking n = p2, we get a polynomial separation
with randomized upper bound S = O(log n), T = O(n log n) and deterministic lower bound
T 2S ≥ Ω̃(n2.5).

Remark. The (n, p)-NOE problem could be perceived as a “promised” version of the Non-
Occurring Elements problem (in which the output at all times consists of the elements not
occurring in X), and the latter problem has time-space tradeoff TS = Θ(n2) for both deterministic
and randomized branching programs [MW18]. The promise that every elements occurs a multiple
of p times can be efficiently checked with randomness (Lemma 3.1), however there may as well be a
deterministic algorithm that verifies the promise in almost-linear time and poly-log space (subject
to Open Problem ? below). The above facts imply that neither the Non-Occurring Elements
problem nor the promise itself could demonstrate the desired separation.

1.1 Separations with Implications on Decision Problems

We shall stress that our proof of Theorem 1.1 is not technically hard. Indeed, to bypass the inherent
disadvantage of the Borodin-Cook method, the key in our lower bound proof of Theorem 1.1
is to choose adversarially a distribution D that depends on the deterministic structure of the
branching program instead of fixing a distribution D in advance. Arguably, the difficulty in proving
a separation lies mostly in finding a proper total function where the adversarial method works. We
demonstrate this difficulty by showing that, for several natural candidate problems whose best
known deterministic algorithms are polynomially worse than randomized algorithms, proving a
polynomial separation will lead to the resolution of the following open problem:

Open Problem ?. Find an explicit family of decision problems F : {0, 1}n → {0, 1}, such that
any deterministic branching program with space S ≤ polylog(n) that computes F requires time
T = n1+Ω(1).

As we mentioned at the beginning of this paper, Open Problem ? is a long-standing and
notoriously hard problem. Even against oblivious branching programs, the best time-space lower
bound is still T = Ω(n log2(n/S)) proved by Babai, Nisan and Szegedy [BNS92] three decades ago.

For a concrete example of our implication results, one of the candidate functions that we study
can be very succinctly described as follows:

Definition 2. In the 2-StepPointerChasing (2-PC for short) problem, the input is a function
f : [n]→ [n], and the output consists of (x, f(f(x))) for all x ∈ [n].

The 2-PC problem exhibits interesting phase transitions in time-space tradeoffs with different
computation models. With non-oblivious queries, 2-PC can be solved deterministically in space
O(log n) and time O(n). On randomized oblivious branching programs, 2-PC obliges to the tradeoff
T 2S = Θ̃(n3). We conjecture that randomness is required for this tradeoff, and on deterministic
oblivious branching programs the lower bound TS ≥ Ω̃(n2) holds. However, it turns out that
proving such a separation (in fact any lower bound polynomially better than T 2S = Ω(n3)) is at
least as hard as answering Open Problem ?. We will show this in Theorem 4.3, by relating 2-PC
to a matching problem on explicit bipartite expanders.

3

Another example is the SetIntersection problem (given two sets A and B, output elements
in A ∩ B). The optimal randomized algorithm for SetIntersection is based on the small-
space collision finding algorithm [BCM13] on random (or pseudo-random [CJWW22, LZ23]) hash
functions, with time-space tradeoff T 2S = Õ(n3). The randomness seems essential in the original
algorithm and its pseudo-random improvements; however, in Theorem 4.4 we give a black-box
reduction from SetIntersection to the well-studied decision problem of ElementDistinctness,
which shows that proving a polynomial separation for SetIntersection would answer Open
Problem ? on ElementDistinctness.

1.2 Related Works

Query Complexity. In essence, time-space tradeoff in non-uniform models is a study on query
complexity with bounded memory. There are extensive results on separations for query complexity
in different models, and readers can refer to [ABK+21] for a comprehensive lists of separations and
relations between query complexities and other complexity measures on total functions.

Our result is in a parallel world to these separations: The separations in query complexity are
based on sub-linear query algorithms, while we demonstrate our separation with super-linear lower
bounds. In fact, for oblivious queries, there is no separation in query complexity: It was shown in
[Mon10] that no matter deterministic, randomized or even quantum, the oblivious (or non-adaptive)
query complexity for any total boolean function that depends on n variables is always Ω(n). This
is the major reason that we focus on total functions, so that our separation is substantial in the
space-bounded setting.

Superfast Derandomization. With the common belief that BPP = P and BPL = L and the
long line of literature under the “Hardness vs. Randomness” paradigm, several recent works take
interest in the question of how fast derandomization could be. In particular, Chen and Tell [CT21]
showed that under standard hardness assumption, linear overhead in the running time is possible,
which is optimal assuming #NSETH.

In the space-bounded setting, Hoza [Hoz19] proved that any decision problem with space S, time
n·poly(S) and one-way access to randomness can be solved with the same space and time bound and
only O(S) random bits. It is not clear whether a similar result holds for full derandomization even
for S = O(log n), while our Theorem 1.1 can be viewed as an impossibility result for multi-output
functions, that a logspace randomized algorithm cannot be black-box derandomized (so that it keeps
the oblivious query pattern) without an Ω̃(n1/4) time overhead. We conjecture that the separation
holds for general non-oblivious branching programs, so that the black-box assumption could be
removed, and that the separation can be improved to show an unconditional Ω̃(n) overhead.

Derandomizing Element Distinctness. In [BCM13], Beame, Clifford and Machmouchi
presented an randomized algorithm that solves ElementDistinctness (ED for short, that decides
whether n input elements are all distinct) with tradeoff T 2S = Õ(n3), which is strictly better than
sorting. The algorithm requires access to a large random hash function that does not count towards
the space usage. Recent works [CJWW22, LZ23] managed to bring down the seed length of the
hash function to O(log3 n) and thus acquiring an algorithm with the same tradeoff but also one-way
access to random bits. They raised the question of how small the random seed length could be. At
an extreme, one may wonder if the algorithm can be even fully derandomized, so that ED is solved
deterministically with the same tradeoff.

This question cannot be answered in negative without answering Open Problem ?. However,
there are numerous multi-output functions, such as SetIntersection, that uses the same

4

algorithm to achieve the T 2S = Õ(n3) tradeoff, and proving stronger deterministic lower bounds
would also imply that the algorithm of [BCM13] cannot be fully derandomized without polynomial
overhead. Yet in Section 4.2, we show that for all such problems for which we have a tight
randomized lower bound, this route is also impossible without answering Open Problem ?.

Quantum Time-Space Tradeoffs Finally, we would like to mention that the situation of time-
space tradeoffs of multi-output functions is entirely different in quantum computing. Klauck [Kla03]
presented a quantum algorithm for sorting n numbers with T 2S = Õ(n3), which already provides
a polynomial separation between quantum and randomized time-space tradeoff compared to the
classical lower bound in [BC82, Bea91]. The separation is extra strong in the sense that the quantum
algorithm uses only polylog(n) quantum memory.

On the other hand, lower bounds for quantum time-space tradeoffs are more scarce and the
proofs for Step 2 in the quantum analogy of the Borodin-Cook methods are more ad-hoc. Currently,
only two proof methods are known for quantum lower bounds: via direct-product theorems
[KŠdW07] and via the recording query technique [HM21].

2 Preliminaries

We use [n] to denote the set 1, 2, . . . , n. We use asymptotic notations Õ and Ω̃ to hide poly-
logarithmic factors in O(·) and Ω(·). Since throughout this paper, the input size of interest is
always polynomial in n, they always hide factors of polylog(n) regardless of the content in the
parenthesis: For instance, Õ(1) in this paper always stands for O(polylog(n)).

Branching Programs. The computation models we consider in this paper are branching
programs, which are general enough to model any computation with a proper notion of time and
space. However, most of our upper bound results are uniform and can be implemented on more
restrictive models such as RAMs.

A deterministic branching program is a layered DAG, with a unique initial vertex. When the
inputs (x1, . . . , xn) of the problem are from the domain D, each vertex not in the last layer is
labeled with i ∈ [n], and has |D| edges going out towards the next layer labeled with elements in D.
The computation path on input (x1, . . . , xn) is the unique path that starts from the initial vertex,
on each vertex labeled with i queries xi, and then follows the outgoing edge labeled with the value
of xi, until reaching the last layer. We say that a branching program is with space S and time T if
it consists of at most T + 1 layers, and each contains at most 2S vertices. The branching program
is oblivious, if within each layer the labels on all the vertices are the same.

A randomized (oblivious) branching program with space S and time T is a distribution over
deterministic (oblivious) branching programs with the same space and time bound. We say that
a randomized branching program has one-way access to random bits, if in each layer the random
labels on the vertices and outgoing edges are independent of the rest of the branching program.

Multi-Output Functions. For computing a decision problem, each node in the last layer of
the branching program is labeled with 0 or 1, and the output is the label on the final node of the
computation path. For computing a multi-output function F : Dn → Rm with the range set R,
however, we allow outputting during the computation path: Each edge in the branching program is
allowed to output arbitrarily many output statements (j, yj) ∈ [m]×R that claims F (x)j = yj . The
final output is the vector in Rm decided by the collection of output statements on the computation
path, which must be complete and consistent. In many cases, the multi-output function computes

5

a subset of R instead of a vector. In such cases, the output statements are simply elements y ∈ R,
and the final output is the collection of these elements.

Finally, we note that as |D|, |R| and m are all poly(n) in this paper, all the problems we consider
can be converted into the binary domain and binary range, with only polylog(n) overhead in time
and space for the branching programs computing them, which are ignored as we are focused on
polynomial separations.

3 Polynomial Separation for Oblivious Computation

In this section we prove Theorem 1.1. The randomized upper bound is proved in Section 3.1 and
the deterministic lower bound is proved in Section 3.2.

3.1 Randomized Oblivious Upper Bound

Lemma 3.1. There is a randomized algorithm using O(log n) space and O(log n) random bits that
reads X = (x1, . . . , xn) ∈ [n]n as a one-pass stream and satisfies that:

• If every c ∈ [n] occurs in X a multiple of p times, the algorithm always accepts;

• Otherwise, the algorithm rejects with probability at least 1− 2p−1/2 log n.

Proof. The algorithm maintains a linear sketch of the frequencies of elements in [n]. Specifically,
let α1, . . . , αn be uniformly and independently drawn from Fp. The algorithm computes

∑
i αxi

and accepts if the sum equals 0. If some c ∈ [n] occurs not a multiple of p times, the factor before
αc in the sum is non-zero, and the sum equals 0 with probability 1/p.

To reduce the random bit usage (the naive approach uses n log p random bits) we use Reed-
Muller codes. Instead of drawing α1, . . . , αn independently, the algorithm draws β1, . . . , βm ∈ Fp
uniformly and independently, and let α1, . . . , αn be the values of monomials

βd11 βd22 · · ·β
dm
m , 0 ≤ d1, . . . , dm < d.

By taking d = p1/2 and m = 2 log n/ log p, the number of such monomials is at least dm ≥ n.
Since m log p = O(log n), the algorithm can draw and store β1, . . . , βm directly. After reading
xi = c ∈ [n], (c− 1) is decomposed in base d to obtain d1, . . . , dm in sequence, while the algorithm
computes αc = βd11 βd22 · · ·βdmm and accumulates it to the sum

∑
i αxi .

Now the sum
∑

i αxi is a total degree md polynomial in Fp on variables β1, . . . , βm, where the
the coefficients are the frequencies of elements in [n] occurring in X. If every c ∈ [n] occurs in X
a multiple of p times, the polynomial is always zero; Otherwise, the polynomial is non-zero, and
by the Schwartz-Zippel Lemma, the probability that the polynomial evaluates to zero is at most
md/p ≤ 2p−1/2 log n.

Lemma 3.2. Suppose X = (x1, . . . , xn) ∈ [n]n satisfies that every c ∈ [n] occurs in X either
0 or at least p times. Then there is a randomized oblivious algorithm using O(log n) space and
O(n2p−2 log n) time, with one-way access to random bits, that solves Non-Occurring Elements
on X with probability at least 1− 1/n.

Proof. Let R ⊆ [n] be a random multi-set of size r = 3np−1 lnn. As every occurring element occurs
at least p times, the probability that {xi | i ∈ R} does not contain all occurring elements in X is
at most

n · (1− p/n)r ≤ n · e−3 lnn = n−2. (1)

6

The algorithm goes for n/p rounds, in each round independently samples such a multi-set R of
size r, and queries xi for i ∈ R. The algorithm also stores an number j, which is initialized as 0,
and in each round j is updated to the next smallest occurring number

j′ = min {xi > j | i ∈ R} ∪ {n+ 1}.

At the end of each round, the algorithm outputs every number strictly between the pre-updated j
and j′. By (1) and a union bound, with probability at least 1 − 1/n, in every round {xi | i ∈ R}
contains all occurring elements (where there are at most n/p of them). In this case j goes through
all occurring elements in order, and thus the outputs are exactly the non-occurring ones.

The overall time complexity is rn/p = O(n2p−2 log n), and since elements in R can be sampled
sequentially to compute j′ and no need to be stored, the only space usage is for storing j and j′

which is O(log n).

Note that Lemma 3.1 solves a decision problem and thus can be repeated for O(log n) times to
amplify the success probability to 1− 1/n. Then combined with Lemma 3.2, we obtain the desired
randomized oblivious upper bound of space O(log n) and time O((1 + n/p2) · n log n).

3.2 Deterministic Oblivious Lower Bound

Lemma 3.3. Any deterministic oblivious branching program with space S and time T that correctly
computes (n, p)-NOE must satisfy T 2(S + log T) ≥ Ω(n3/p).

Proof. Divide the branching program into ` = 2T/n stages, each of which contains T/` = n/2
queries. We first construct a partition P on [n] that consists of n/p parts of size p as follows:

1. Initially, let P = ∅.

2. For each stage k of the branching program, let Qk be the set of indices queried in the stage.
Arbitrarily pick r = n2/(4Tp) disjoint sets of size p outside

⋃
{P ∈ P} ∪ Qk, and add them

into P.

3. Finally after going through all the stages, arbitrarily partition the remaining elements in [n]
into sets of size p.

Notice that during Step 2, the total number of elements in
⋃
{P ∈ P} never exceeds

r`p =
n2

4Tp
· 2T

n
· p = n/2.

As |Qk| ≤ n/2, this implies that Step 2 is always feasible.
We define a distribution D of X ∈ [n]n as follows: For every part P ∈ P, uniformly and

independently pick c ∈ [n] and let xi = c for all i ∈ P . Notice that the (n, p)-NOE problem is
identical to Non-Occurring Elements on supp(D), i.e., every element occurs a multiple of p
times. Now consider the probability

Pr
X∼D

[On input X, at least m distinct elements are outputted in stage k]. (2)

Since for each input X ∈ supp(D) there are at least n− n/p ≥ n/2 non-occurring elements, there
must exist a stage k such that the above probability is at least 1/` for m = n/(2`).

On the other hand, Step 2 in the construction of P implies that, given the query answers in
stage k (i.e. xi for all i ∈ Qk), there are at least r parts in P whose values in X are still uniformly
random. When the query answers are given, there are at most 2S different collections of outputs

7

in stage k (dictated by the starting state of the stage), and if m distinct elements are outputted
and thus non-occurring, each one of the r parts is consistent with these outputs with probability
1−m/n, as the elements in these parts should be not in the output. Therefore the probability in
(2) is upper bounded by

2S ·
(

1− m

n

)r
= 2S ·

(
1− n

4T

) n2

4Tp ≤ 2S · e−
n3

16T2p .

As the probability is at least 1/` ≥ 1/T , we have

S − log e · n3

16T 2p
≥ − log T ⇒ T 2(S + log T) ≥ Ω(n3/p).

4 Separations that Imply Decision Lower Bounds

In this section we present several natural candidates of multi-output function for randomized vs.
deterministic separations, and show that actually proving such separations will lead to answering
Open Problem ?. These results can be perceived in two ways: On one hand, these are currently
barrier results implying that proving separations for these natural problems is difficult, which is
where the (n, p)-NOE problem in our main result stands out; On the other hand, one may hope
that future developments in proving lower bounds for multi-output functions will help towards the
final resolution of Open Problem ?.

Before getting into the concrete examples, we note that every multi-output function F :
{0, 1}n → {0, 1}m can be converted to a decision problem F ′ : {0, 1}n × [m] → {0, 1} defined
as F ′(x, i) = F (x)i. Therefore, if F ′ can be computed in space O(log n) and time Õ(n), then F
can trivially be computed in space O(log n) and time Õ(mn). Our results in this section holds
non-trivially with better time complexity than Õ(mn). However, this implication is still useful as
it makes decision problems and single-output functions (whose outputs are in [n], or generally have
length m = polylog(n)) morally equivalent with respect to Open Problem ?: Any lower bound for a
single-output function that is polynomially better than trivial implies a corresponding lower bound
for a decision problem.

4.1 Pointer Chasing and Expanders

Recall the definition of the 2-StepPointerChasing problem:

Definition 3. In the 2-StepPointerChasing (2-PC for short) problem, the input is a function
f : [n]→ [n], and the output consists of (x, f(f(x))) for all x ∈ [n].

For non-oblivious algorithms, 2-PC can be easily solved in deterministic space O(log n) and time
O(n), by querying f on each x and adaptively on f(x). On the other hand we have the following
lower bound on oblivious algorithms for 2-PC. The proof is a direct application of Borodin-Cook
method on the uniform distribution, and thus omitted.

Proposition 4.1. Any randomized oblivious branching program with space S and time T that solves
2-PC must satisfy T 2S ≥ Ω̃(n3).

Notice that Proposition 4.1 provides an example of polynomial separation between oblivious
and non-oblivious time-space tradeoffs of total functions. The bound is also tight and can be
achieved via the following simple algorithm: In each round pick two random subsets X,Y ⊆ [n]
with |X| = |Y | =

√
nS. We store at most Õ(S) pairs of (x, f(x)) ∈ X × Y by querying f on X,

8

and output the corresponding (x, f(f(x))) by querying f on Y . Each pair in a round is found with
probability close to S/n, and thus Õ(n/S) rounds suffices.

The above algorithm heavily relies on the fact that Y is decided entirely by randomness and
hardwired into the branching programs. A natural question is whether the same time-space
tradeoff holds for oblivious computation with weaker notions of randomness, or even without
randomness at all. In Theorem 4.3 below, we show that proving impossibility results to this
question will give answers to Open Problem ?. We first need to introduce the single-output function,
ExpanderMatching based on the explicit unbalanced bipartite expanders by Guruswami, Umans
and Vadhan [GUV09].

Definition 4. A bipartite graph Γ ⊆ [n]× [m] is a (k, a)-expander if for every subset L ⊆ [n] with
|L| ≤ k, the number of the neighbors of L is at least a · |L|.

Theorem 4.2 ([GUV09]). For every constant α > 0, given n ∈ N and k ≤ n, there is an explicitly
constructed bipartite graph Γα,n,k ⊆ [n] × [m] which is a (k, 1)-expander, with |Γα,n,k| = Õ(n) and

m ≤ Õ(k1+α).

The original result in [GUV09] is stronger than stated in Theorem 4.2, with the expansion
factor a arbitrarily close to the degree |Γα,n,k|/n = polylog(n). For our application, we only need
expansion to be no less than 1. We use the graph to construct an explicit single-output function
as follows:

Definition 5. The (α, n, k)-ExpanderMatching problem is a function [n]k × [m] → [n] ∪ {⊥},
with m decided by Theorem 4.2. Given the input L ∈ [n]k and y ∈ [m], we think of L as a subset
of [n] with |L| ≤ k. There exists a matching for L in Γα,n,k because of the (k, 1)-expander property,
and we consider the lexicographically smallest matchingM : L→ [m] in Γα,n,k. The output of the
problem is M−1(y) if it exists, or ⊥ if not.

Theorem 4.3. For every constant α > 0, if (α, n, k)-ExpanderMatching can be solved by
deterministic oblivious branching programs with space Õ(1) and time Õ(k), then for every S ≤ n,
there is a deterministic oblivious branching program solving 2-PC with space Õ(S) and time
Õ(
√
n3+α/S).

Proof. We partition [n] into blocks B1 t · · · t Bn/k of size k, with k to be optimally chosen later.
The deterministic oblivious algorithm for 2-PC consists of n/(kS) stages, where in each stage we
output (x, f(f(x))) all x in S consecutive blocks. In order to do so we need to query f on f(Bi),
but as the queries are oblivious, we instead query f on the neighbors of y in Γα,n,k for each y ∈ [m].
Since |f(Bi)| ≤ k, the matching for f(Bi) provides all the answers for x ∈ Bi. More concretely, the
algorithm is described as Algorithm 1.

To prove the correctness, it suffices to show that every x ∈ [n] is outputted. This is guaranteed
in every block Bi+`S , as when y goes through [m], every element in f(Bi+`S) is matched and appears
as ui at some point.

The space complexity is clearly Õ(S) as the bottleneck is storing ui and f(ui) for i ∈ [S]. To
identify the time complexity, notice that f is queried in all three inner loops. For each ` and y, the
(α, n, k)-Expander Matching algorithm makes Õ(kS) queries in total, while querying f(x) for
x ∈ B`S+1 t · · · tB(`+1)S also takes O(kS) time. Besides, for each `, querying f(v) for every edge

(v, y) ∈ Γα,n,k takes |Γα,n,k| = Õ(n) time. Therefore the total number of oblivious queries is

n

kS

(
m · Õ(kS) + Õ(n)

)
= Õ

(
k1+αn+

n2

kS

)
.

Taking k =
√
n/S, the above expression is upper bounded by Õ(

√
n3+α/S).

9

for `← 0, . . . , n/(kS)− 1 do
for y ∈ [m] do

for i ∈ [S] do
Apply (α, n, k)-ExpanderMatching on f(Bi+`S) ∈ [n]k and y;
Store the answer ui ∈ [n] ∪ {⊥}.

foreach v ∈ [n] such that (v, y) ∈ Γα,n,k do
Query f(v);
if v = ui for some i ∈ [S] then attach f(ui) to ui.

for x ∈ B`S+1 t · · · tB(`+1)S do
Query f(x);
if f(x) = ui for some i ∈ [S] then output (x, f(ui)).

Algorithm 1: Deterministic Oblivious Algorithm for 2-PC

As a direct corollary of Theorem 4.3, if we managed to prove a polynomial separation between
randomized and deterministic oblivious time-space tradeoffs of 2-StepPointerChasing, it would
imply a strong lower bound for (α, n, k)-ExpanderMatching for some α > 0 and thus would
answer Open Problem ?.

4.2 Element Distinctness and Collision Finding

We recall the definition of the ElementDistinctness problem.

Definition 6. In the ElementDistinctness (ED for short) problem, the input is a list of n
elements from a fixed domain D, with |D| = poly(n). The output is 1 if all elements are distinct,
and 0 otherwise.

A randomized algorithm for ED with T 2S = Õ(n3) was given in [BCM13], and it was later
improved to use only one-way access to randomness in [CJWW22, LZ23]. Based on the same
algorithm, they also showed that the SetIntersection problem (given two sets A and B of size
n, output A ∩B) can be solved in T 2S = Õ(n3), and the tradeoff is known to be optimal [Din20].
Different variants of this problem was also studied, such as memory games [CC17] and n-collision
finding [Din20], which share the same tight tradeoff for randomized algorithms.

Here we present a general form of SetIntersection, that covers all the variants when two
sets that each contains no duplicates are given, and show its black-box relationship with ED:

Definition 7. In the SetCollision problem, the input contains two sets A,B ⊆ D given as
unordered lists (a1, . . . , an) and (b1, . . . , bn) that contain no duplicated elements in each list itself.
The output consists of all collisions, that are triples (i, j, x) such that ai = bj = x.

Theorem 4.4. If ED can be solved deterministically with space Õ(1) and time Õ(n), then
SetCollision can be solved deterministically with space Õ(1) and time Õ(n3/2). Furthermore,
if the algorithm for ED is oblivious, then for every S ≤ n, there is a deterministic (non-oblivious)
algorithm that solves SetCollision with space Õ(S) and time Õ(

√
n3/S).

Proof. We first present a simple divide-and-conquer algorithm A for solving SetCollision. The
algorithm A(`, s, s′), which find the collisions between two intervals of length l, is described
recursively as Algorithm 2. For the sake of simplicity we assume that ` is a power of 2.

It is easy to see thatA(`, s, s′) outputs all the collisions between the two intervals a[s, . . . , s+`−1]
and b[s′, . . . , s′+`−1], since whenever ` > 1 and there exists at least one collision (which is checked

10

if ` = 1 then
if as = bs′ then Output (s, s′, as);
return.

if ED(as, . . . , as+`−1, bs′ , . . . , bs′+`−1) = 1 then return.
let `′ ← `/2;
Sequentially execute A(`′, s, s′), A(`′, s+ `′, s′), A(`′, s, s′ + `′) and A(`′, s+ `′, s+ `′).

Algorithm 2: Divide-and-Conquer Algorithm A(`, s, s′)

by the ED call), the algorithm splits each interval into two halves, and solve all four pairs of
sub-intervals with the four recursive calls. Hence A(n, 1, 1) solves SetCollision.

The space usage of A(n, 1, 1) is Õ(1), since there are O(log n) levels of recursion and each
recursive call locally uses Õ(1) space. To bound the time usage, the key observation is that there
are at most n collisions. Therefore, although there could be as much as (n/`)2 possible recursive
calls to A at the level of recursion with interval length `, there are in fact at most O(n) actual
calls within each level, while the rest are prematurely stopped because of the ED check. Taking
the summation over ` = 2t for t = 0, . . . , log n, the total time usage of A(n, 1, 1) bounded by∑

t≤ 1
2

logn

O(n) · Õ(2t) +
∑

t> 1
2

logn

(n
2t

)2
· Õ(2t) = Õ(n3/2).

When the space S is larger, in order to leverage the space advantage and reduce the time usage
we need to parallelize the algorithm A. However, the core of algorithm A is the black-box ED
algorithm, whose instances cannot be parallelized if they are highly adaptive. Therefore from now
on, we assume that the space-Õ(1) and time-Õ(n) ED algorithm is oblivious.

To understand how oblivious ED algorithm helps parallelization, consider the recursion level
with ` =

√
n. At this level, we need to answer ED(as, . . . , as+`−1, bs′ , . . . , bs′+`−1) for all n pairs of

s, s′ ∈ {1,
√
n+ 1, . . . , n−

√
n+ 1}. We can call the oblivious ED algorithm to solve the instance

with s = s′ = 1, and call it again to solve another instance with s =
√
n + 1, s′ = 1. Because the

algorithm is oblivious, whenever ai (resp. bi) is queried in the first instance, ai+
√
n (resp. bi) is

queried in the second instance at the exact same time step. That means the two algorithm instance
can be interleaved, using double the space while the queries to B do not need to be repeated. Take
a step further, we can interleave the 4 instances of ED with s, s′ ∈ {1,

√
n+ 1}, using 4 times the

space but only double the time.
In our actual algorithm, we partition {1,

√
n + 1, . . . , n −

√
n + 1} into

√
n/S groups, each of

size
√
S. With the idea stated above, for each pair of groups of s and s′, we can solve all the ED

instances within this pair (there are S instances) with space Õ(S) and time Õ(
√
nS). As there are

n/S pairs of groups, the overall time usage all the ED instances at level ` =
√
n is Õ(

√
n3/S).

More generally, using the same idea, we design a parallelized version of A, which is the algorithm
A∗(`, (si, s′i)i∈I) described as Algorithm 3 below, that takes as an argument a list of |I| ≤ S pairs
of s and s′.

It is clear from the description that A∗(`, (si, s′i)i∈I) functions the same as the sequential
execution of A(`, si, s

′
i) for all i ∈ I. Our final algorithm for SetCollision is to run sequentially

A∗(
√
n,G × G′), for all G and G′ chosen from the

√
n/S groups of size

√
S that partitions

{1,
√
n + 1, . . . , n −

√
n + 1}, and thus it correctly outputs all collisions between set A and B.

Each recursive call of A∗ uses O(S log n) space locally, plus the Õ(S) space to compute at most
S instances of ED in parallel. As there are O(log n) levels of recursion, the overall space usage is
Õ(S).

11

if ` = 1 then
for i ∈ I do

if asi = bs′i then Output (si, s
′
i, asi);

return.
Solve ei ← ED(asi , . . . , asi+`−1, bs′i , . . . , bs′i+`−1) for all i ∈ I in parallel;
let `′ ← `/2, Q← ∅;
foreach i ∈ I such that ei = 0 do

for (∆s,∆s′)← (0, 0), (`′, 0), (`′, 0), (`′, `′) do
Add (si + ∆s, s′i + ∆s′) to the queue Q;
if |Q| = S or reaching the end of the algorithm then

Execute A∗(`′, Q);
Q← ∅.

Algorithm 3: Parallelized Divide-and-Conquer Algorithm A∗(`, (si, s′i)i∈I)

To bound the time usage, we first examine how much time is used to solve S instances of ED
in parallel. Fix the initial argument G and G′ at the start of the recursion and focus on one level
of recursion with interval length `. At this level, one instance of the ED algorithm takes Õ(`)
time. Since the input intervals for these ED instances are either the same or disjoint, each query is
repeated for at most |G|·

√
n/` times at its parallel places after the interleaving parallelization. Thus

the time usage for solving ED is Õ(|G| ·
√
n) = Õ(

√
nS). As the rest of steps take O(S) ≤ O(

√
nS)

time, altogether each recursive call of A∗ locally takes Õ(
√
nS) time, regardless of the level of

recursion.
On the other hand, let us call a recursive callA∗(`, (si, s′i)i∈I) complete if |I| = S, and incomplete

if |I| < S. Since there are at most n collisions, at each level of the recursion there are at most
O(n/S) complete calls, while each call produces at most one incomplete call in the next level.
Initially there are n/S calls, and therefore the total number of calls to A∗ in our final algorithm is
Õ(n/S). So the total running time is Õ(

√
n3/S).

Since SetCollision has the randomized lower bound T 2S = Ω̃(n3), Theorem 4.4 implies
that any polynomial separation between randomized and deterministic time-space tradeoffs of
SetCollision (or its variants such as SetIntersection) would answer Open Problem ? on
ElementDistinctness.

Notice that in the reduction of Theorem 4.4, the input guarantee that both lists A and B are
sets is only used so that ED decides the distinctness between the two lists. Without the guarantee,
we can instead resort to the ListDistinctness problem studied in [BGNV18].

Definition 8. In the ListDistinctness problem (LD for short), the input contains two unordered
lists (a1, . . . , an) and (b1, . . . , bn) from a fixed domain D, with |D| = poly(n). The output is 1 if
there exist i, j ∈ [n] such that ai = bj , and 0 otherwise.

LD is at least as harder as ED, and while ED can be solved in Õ(1) space and Õ(n3/2) time,
no algorithm even with no(1) space and n2−Ω(1) time was known for LD. The proof of Theorem 4.4
can be altered to show that the problem of n-Collision reduces deterministically to LD:

Definition 9. In the n-Collision problem, the input is an unordered lists (a1, . . . , an) of elements
in D. The output consists of n distinct collisions, that are triples (i, j, x) such that i 6= j and
ai = aj = x, or all of the collisions if there are less than n of them.

12

Strictly speaking, the n-Collision problem is not a function, but rather a relational problem,
as the collection of outputted collisions is not uniquely determined. However, a time-space lower
bound of T 2S = Ω̃(n3) is still know for n-Collision [Din20].

Theorem 4.5. If LD can be solved deterministically with space Õ(1) and time Õ(n), then
n-Collision can be solved deterministically with space Õ(1) and time Õ(n3/2). Furthermore, if
the algorithm for LD is oblivious, then for every S ≤ n, there is a deterministic (non-oblivious)
algorithm that solves n-Collision with space Õ(S) and time Õ(

√
n3/S).

Proof. Notice that the collisions found in the algorithms in Theorem 4.4 are all distinct. By setting a
global counter for the number of collisions already found and outputted, the algorithms and proofs in
Theorem 4.4 can be copied verbatim to show a reduction to LD from the problem k-ListCollision,
where the input consists of two unordered lists of size n that may contain duplicates, and the output
contains k collisions (if exist) between the two lists. If LD can be solved deterministically with
space Õ(1) and time Õ(n), then the deterministic algorithm for k-ListCollision works in space
Õ(S) and time max{m,n} · Õ(

√
n/S), where m is the actual number of collisions outputted (S can

be arbitrary when the algorithm for LD is oblivious, and S = O(1) in the general case).
Now notice that the complete graph over n vertices can be partitioned into a set of complete

bipartite graphs, 2t−1 of which being of size (n/2t, n/2t) for t = 1, . . . , log n. We apply
n-ListCollision on each pairs of lists of size n/2t defined by these bipartite graphs, until n
collisions are found. This clearly solves the n-Collision problem with space Õ(S). Suppose that
the number of collisions actually outputted on each bipartite graph is m1,m2, . . . respectively, then
the total time usage is

max
{
m1,

n

2

}
· Õ
(√

n

2S

)
+ max

{
m2,

n

4

}
· Õ
(√

n

4S

)
+ max

{
m3,

n

4

}
· Õ
(√

n

4S

)
+ · · ·

≤ (m1 +m2 + · · ·) · Õ
(√

n

2S

)
+

logn∑
t=1

2t−1 · n
2t
· Õ
(√

n

2tS

)
= Õ

(√
n3/S

)
.

Similarly, we have the corollary of Theorem 4.5 that any polynomial separation between
randomized and deterministic time-space tradeoffs of n-Collision (or its variants such as
MemoryGame [CC17]) would answer Open Problem ? on ListDistinctness.

References

[ABK+21] Scott Aaronson, Shalev Ben-David, Robin Kothari, Shravas Rao, and Avishay Tal.
Degree vs. approximate degree and quantum implications of huang’s sensitivity
theorem. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June
21-25, 2021, pages 1330–1342. ACM, 2021. 4

[Abr91] Karl R. Abrahamson. Time-space tradeoffs for algebraic problems on general sequential
machines. J. Comput. Syst. Sci., 43(2):269–289, 1991. 1

[BC82] Allan Borodin and Stephen A. Cook. A time-space tradeoff for sorting on a general
sequential model of computation. SIAM J. Comput., 11(2):287–297, 1982. 1, 2, 5

[BCM13] Paul Beame, Raphaël Clifford, and Widad Machmouchi. Element distinctness,
frequency moments, and sliding windows. In 54th Annual IEEE Symposium on

13

Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA,
USA, pages 290–299. IEEE Computer Society, 2013. 1, 4, 5, 10

[Bea91] Paul Beame. A general sequential time-space tradeoff for finding unique elements.
SIAM J. Comput., 20(2):270–277, 1991. 1, 5

[BGNV18] Nikhil Bansal, Shashwat Garg, Jesper Nederlof, and Nikhil Vyas. Faster space-efficient
algorithms for subset sum, k-sum, and related problems. SIAM J. Comput., 47(5):1755–
1777, 2018. 12

[BNS92] László Babai, Noam Nisan, and Mario Szegedy. Multiparty protocols, pseudorandom
generators for logspace, and time-space trade-offs. J. Comput. Syst. Sci., 45(2):204–
232, 1992. 3

[CC17] Amit Chakrabarti and Yining Chen. Time-space tradeoffs for the memory game. arXiv
preprint arXiv:1712.01330, 2017. 2, 10, 13

[CJWW22] Lijie Chen, Ce Jin, R. Ryan Williams, and Hongxun Wu. Truly low-space element
distinctness and subset sum via pseudorandom hash functions. In Joseph (Seffi)
Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 - 12, 2022, pages 1661–1678. SIAM, 2022. 4, 10

[CT21] Lijie Chen and Roei Tell. Simple and fast derandomization from very hard functions:
eliminating randomness at almost no cost. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, Virtual Event, Italy, June 21-25, 2021, pages 283–291. ACM, 2021. 4

[Din20] Itai Dinur. Tight time-space lower bounds for finding multiple collision pairs
and their applications. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14,
2020, Proceedings, Part I, volume 12105 of Lecture Notes in Computer Science, pages
405–434. Springer, 2020. 2, 10, 13

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced
expanders and randomness extractors from parvaresh-vardy codes. J. ACM, 56(4):20:1–
20:34, 2009. 9

[HM21] Yassine Hamoudi and Frédéric Magniez. Quantum time-space tradeoff for finding
multiple collision pairs. In Min-Hsiu Hsieh, editor, 16th Conference on the Theory
of Quantum Computation, Communication and Cryptography, TQC 2021, July 5-8,
2021, Virtual Conference, volume 197 of LIPIcs, pages 1:1–1:21. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. 5

[Hoz19] William M. Hoza. Typically-correct derandomization for small time and space. In
Amir Shpilka, editor, 34th Computational Complexity Conference, CCC 2019, July 18-
20, 2019, New Brunswick, NJ, USA, volume 137 of LIPIcs, pages 9:1–9:39. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. 4

[Kla03] Hartmut Klauck. Quantum time-space tradeoffs for sorting. In Lawrence L. Larmore
and Michel X. Goemans, editors, Proceedings of the 35th Annual ACM Symposium

14

on Theory of Computing, June 9-11, 2003, San Diego, CA, USA, pages 69–76. ACM,
2003. 5

[KŠdW07] Hartmut Klauck, Robert Špalek, and Ronald de Wolf. Quantum and classical
strong direct product theorems and optimal time-space tradeoffs. SIAM J. Comput.,
36(5):1472–1493, 2007. 5

[LZ23] Xin Lyu and Weihao Zhu. Time-space tradeoffs for element distinctness and set
intersection via pseudorandomness. In Nikhil Bansal and Viswanath Nagarajan,
editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2023, Florence, Italy, January 22-25, 2023, pages 5243–5281. SIAM, 2023. 4,
10

[Mon10] Ashley Montanaro. Nonadaptive quantum query complexity. Inf. Process. Lett.,
110(24):1110–1113, 2010. 4

[MW18] Dylan M. McKay and R. Ryan Williams. Quadratic Time-Space Lower Bounds for
Computing Natural Functions with a Random Oracle. In Avrim Blum, editor, 10th
Innovations in Theoretical Computer Science Conference (ITCS 2019), volume 124 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 56:1–56:20, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 2, 3

[Sav98] John E. Savage. Models of computation - exploring the power of computing. Addison-
Wesley, 1998. 2

15
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

