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Abstract

We establish an equivalence between two algorithmic tasks: derandomization, the deter-
ministic simulation of probabilistic algorithms; and refutation, the deterministic construction
of inputs on which a given probabilistic algorithm fails to compute a certain hard function.

We prove that refuting low-space probabilistic streaming algorithms that try to compute
functions f ∈ FP is equivalent to proving that prBPP = prP , even in cases where a lower
bound for f against this class (without a refuter) is already unconditionally known. We also
demonstrate the generality of the connection between refutation and derandomization, by
establishing connections between refuting classes of constant-depth circuits of sublinear size
and derandomizing constant-depth circuits of polynomial size with threshold gates (i.e., T C0).

Our connection generalizes and strengthens recent work on the characterization of deran-
domization. In particular, using refuter terminology allows to directly compare several recent
works to each other and to the current work, as well as to chart a path for further progress.
Along the way, we also improve the targeted hitting-set generator of Chen and Tell (FOCS
2021), showing that its translation of hardness to pseudorandomness scales down to T C0.
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1 Introduction

Can every randomized algorithm be simulated by a deterministic one, with low overhead? The
question of whether universal derandomization is possible, generally expressed as prBPP =
prP , has fascinated a generation of researchers, partly due to deep connections between de-
randomization and computational lower bounds. In the classical “hardness vs randomness”
line of works, efficient derandomization (e.g., prBPP = prP) was shown to be possible, as-
suming exponentially-strong non-uniform circuit lower bounds against exponential time (see,
e.g., [NW94, IW97, STV01, SU05, Uma03]). That is, it has been known for a long time that
sufficiently strong non-uniform circuit lower bounds would imply universal derandomization.

However, non-uniform circuit lower bound hypotheses appear to be overkill for prBPP =
prP , since prBPP = prP is only concerned with derandomizing probabilistic uniform algo-
rithms (e.g., Turing machines). More recently, researchers have found potentially weaker uniform
lower bound assumptions which suffice (and are sometimes equivalent) for prBPP = prP :

• Chen and Tell [CT21] show that prBPP = prP follows from the assumption that there is
a multi-output function f computable by poly-size LOGSPACE-uniform circuits of depth
n2 that cannot be computed on almost all inputs1 by any probabilistic fixed-polynomial-
time algorithm (running faster than the deterministic poly-time algorithm for f ). They also
prove that the assumption is necessary when the depth restriction is removed.

• Liu and Pass [LP22a] show that prBPP = prP is equivalent to proving a certain lower
bound on probabilistic polynomial-time algorithms attempting to approximate the condi-
tional Kt (Levin) complexity of a given binary string. In follow-up work [LP22b], they
show that prBPP = prP is equivalent to the existence of a poly-time f which is “leakage-
resilient” against probabilistic fixed-polynomial-time algorithms on almost all inputs.

• Korten [Kor22a] showed that prBPP = prP is equivalent to constructing a deterministic
polynomial-time algorithm that gets as input a probabilistic circuit C : {0, 1}n → {0, 1}n−1

and a deterministic circuit D : {0, 1}n−1 → {0, 1}n, and outputs x ∈ {0, 1}n such that
Pr[D(C(x)) = x] < 1/2.

In a different setting, a recent related work of van Melkebeek and Sdroievski [vMS23] shows
similar results for proving that AM = NP .

It is not a priori clear how to directly compare the various assumptions in the above works,
all of which were proved to be equivalent to universal derandomization.

Efficient refutations. Another line of works, dating back to [Kab01] (see also [GSTS07]), studies
efficient refutation. Suppose we know a lower bound “ f /∈ C” for some class of algorithms C.
The problem of efficient refutation asks how easy it is to produce “bad” inputs, on which a
given “weak” algorithm A ∈ C fails to compute f . More formally, for a class C of algorithms
(circuits, Turing machines, streaming algorithms, etc.) and a function f : {0, 1}∗ → {0, 1}∗, we
say an algorithm A is a refuter for f against C if for “many” n and all C ∈ C, A(1n, 〈C〉) outputs

1Throughout the paper, the meaning of “almost all inputs” will be “all but finitely many inputs”; that is, every
probabilistic machine succeeds in computing the function only on finitely many inputs.
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x ∈ {0, 1}n such that C(x) 6= f (x).2 A lower bound of the form “ f /∈ C” is said to be constructive
if there is a efficient refuter for f against C, e.g. there is a refuter computable in polynomial time.

A recent work by Chen, Jin, Santhanam, and Williams [CJSW21] showed that for a variety
of unconditionally known lower bounds, constructivizing these bounds (that is, finding efficient
refuters for them) would have significant consequences in complexity theory. Most pertinently
to the current work, they showed that sufficiently strong refutation implies derandomization: if there
exist polynomial-time refuters against nondeterministic models (one-tape Turing machines, as well
as streaming algorithms), then E needs exponential-size circuits, which in turn implies prBPP =
prP .3 Indeed, their results use the classical approach for derandomization, which relies on strong
circuit lower bounds, rather than the new approaches, which use uniform lower bounds.

Our contributions: Bird’s eye view. The main question motivating this work is whether we can
leverage the new approach for derandomization in order to prove stronger connections between
refutation and derandomization. For example, can we show that more relaxed forms of refutation
(compared to the ones studied in [CJSW21]) suffice for derandomization? Taking this question
even further: Can we show that refutation is equivalent to derandomization, connecting the study
of refuters to the line of works proving characterizations of the prBPP = prP conjecture?

We provide a strong affirmative answer to the foregoing questions, by proving a general
equivalence between derandomization and refutation. In fact, our refuter-based characterization
of derandomization generalizes and significantly strengthens all the recently discovered results
studying derandomization from weaker hypotheses (i.e., [CT21, LP22a, LP22b, Kor22a]). It turns
out that looking at derandomization through the lens of refutation allows us to directly compare
the hypotheses in each of these works, as well as to prove stronger results.

In more detail, we study the consequences of deterministically refuting classes of probabilistic
algorithms, for hard functions in FP . We show that this sort of refutation – even for uncondi-
tionally known lower bounds – is equivalent to derandomization. Moreover, we prove that this
equivalence holds both for general probabilistic algorithms and for weak classes of algorithms:
the equivalence (or near-equivalence) scales down “as far as” T C0, which is a lower complexity
class compared to previous works studying derandomization from weaker hypotheses.

Setup and notation. We consider refuting non-uniform classes C of algorithms: for every input
length n, C contains a set Cn of probabilistic algorithms. The algorithms in Cn do not need to
be Boolean circuits, as in the usual definition of non-uniform classes; for example, Cn could be a
set of probabilistic RAM machines or streaming algorithms with a certain description length and
runtime bound, where we consider their execution on inputs of fixed length n.

We say that A is a refuter for a function f against a class C = ∪n∈NCn of probabilistic
algorithms if for every n ∈ N and every C ∈ Cn, A(1n, 〈C〉) outputs an x ∈ {0, 1}n such that
Pr[C(x) = f (x)] < 2/3, where the probability is over the internal randomness of C. If A runs in
deterministic polynomial time, we say that A is an FP-refuter. We say that A is a BPP-refuter
for f against C if A runs in probabilistic polynomial time and satisfies

Pr
[

A(1n, 〈C〉) outputs an x ∈ {0, 1}n such that Pr[C(x) = f (x)] < 2/3
]
≥ 2/3

2The “many” n may be infinitely many n, or all but finitely many n, depending on the lower bound being proved.
3They also showed that any proof of classical conjectured lower bounds (such as NEXP 6= BPP) would neces-

sarily yield constructive lower bounds; that is, constructivity is necessary for proving these conjectures.
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for every n ∈N and every C ∈ Cn, where the outer probability is over the randomness of A.

1.1 Derandomization of prBPP vs refutation for low-space streaming algorithms

Define str-T ISP [t(n), s(n)] as the class of probabilistic one-pass streaming algorithms that on n-
bit inputs have description length n, and run in time t(n) and space s(n). Our first result asserts
that constructing an FP-refuter for any function in f ∈ FP against low-space streaming algorithms
suffices for derandomization. (This should be compared with [CJSW21, Theorems 1.5 and 3.4],
which needed refuters for general non-deterministic machines.) In fact, we prove an equivalence
between such refutation and prBPP = prP , as follows:

Theorem 1.1. The following statements are equivalent:

1. For some ε > 0 and f : {0, 1}∗ → {0, 1}∗ computable in polynomial time T, there is an FP-refuter
for f against str-T ISP [T(n)1+ε, nε].

2. prBPP = prP .

3. For every class C of probabilistic RAMs supporting error-reduction4, and every f ∈ FP such that
there is a BPP-refuter for f against C, there is an FP-refuter for f against C.

Theorem 1.1 states multiple compelling equivalences. First of all, it says that universal deran-
domization is equivalent to derandomizing refuters against efficient low-space streaming algorithms.
We find this equivalence particularly surprising, since this class of algorithms seems remark-
ably weak. We also stress that there are many known unconditional lower bounds for functions
in polynomial time against streaming algorithms with space o(n) and any running time (see,
e.g., [AMS99]). Thus, one implication of Theorem 1.1 is that constructivizing known lower bounds
for streaming algorithms suffices to prove that prBPP = prP .

Second, Theorem 1.1 also states that universal derandomization (prBPP = prP) is equiva-
lent to derandomizing every probabilistic polynomial-time refuter against a class of probabilistic
RAMs: when a probabilistic efficient refuter exists, there is also a deterministic one. Therefore,
derandomizing probabilistic refuters is “complete” for universal derandomization.

Third, Theorem 1.1 says that deterministically refuting streaming algorithms is equivalent to de-
terministically refuting significantly stronger classes C. For example, constructivizing lower bounds
for certain functions in quasilinear time against n2−ε-time and nε-space streaming algorithms (e.g.,
constructivizing lower bounds in [AMS99]) would also constructivize lower bounds for certain
multi-output functions in quasilinear time against general n2−ε-time and nε-space algorithms (e.g., it
would constructivize lower bounds such as those in [Bea91, MW18]).5

Refuters for functions with multiple output bits. The reader might have noticed that the func-
tion f in Theorem 1.1 is allowed to have multiple output bits. This generalization is important:
constructing refuters for functions with multiple output bits is, intuitively, a significantly easier
task than constructing refuters for decision problems. Thus, our results offer a characterization

4Informally, we only require that in C, we can take the majority vote of constantly many independent runs of an
algorithm in C; see Definition 6.3 for details.

5This can be viewed as a generalization and strengthening of [LP22b, Theorem 1.2], who showed that leakage-
resilient hardness with nε bits of leakage is equivalent to leakage-resilient hardness with n−O(log(n)) bits of leakage,
by proving that both are equivalent to derandomization (where hardness here is in the “almost all inputs” sense).
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of derandomization in terms of weaker hypotheses. Moreover, it is through the use of multiple
output bits that we are able to generalize and strengthen the known characterizations of de-
randomization from [CT21, LP22a, LP22b, Kor22a], as well as compare them to each other (we
elaborate on this in Section 1.3).

In contrast to the proofs of our results (some of which are quite involved), it is easy to show
that refuters for functions with a single output bit implies derandomization (see Section 3.5), and
indeed the latter statement has fewer interesting consequences.6

1.2 Scaling down the equivalence to weak circuit classes

We demonstrate the generality of the connection between refutation and derandomization by
showing that the equivalence in Theorem 1.1 scales down to weak complexity classes. In fact,
we show that this equivalence scales “as far down” as T C0, which is a lower complexity class
than in [CT21, LP22a, LP22b]. As this scaling-down requires significant technical work, we will
only illustrate this for the “extreme point” of T C0; we have no reason to doubt that similar
equivalences hold for stronger classes such as NC. A secondary reason for proving scaled-
down equivalences is a hope that our results could be leveraged in order to prove unconditional
derandomizations for weaker circuit classes.

In the following, we show connections between refuting classes of probabilistic circuits with
constant depth and a sub-linear number of gates, and derandomization of constant-depth circuit
families of polynomial size with threshold gates, a.k.a. T C0.7 Towards stating the results, recall
that CAPP is the problem in which we are given a circuit C : {0, 1}n → {0, 1} and want to
distinguish between the case Prr[C(r) = 1] ≥ 2/3 and Prr[C(r) = 1] ≤ 1/3. This problem
is prBPP-complete, in that CAPP is solvable in deterministic polynomial time if and only if
prBPP = prP . Also recall that in CAPP0,1/2, we are given a circuit C : {0, 1}n → {0, 1} and have
to distinguish between the cases Prr[C(r) = 1] ≥ 1/2 and Prr[C(r) = 1] = 0. This “one-sided”
CAPP problem is solvable in deterministic polynomial time if and only if prRP = prP .

Full equivalence for a specific function. We first consider refuters only for the specific “hard”
function f (x) = x, denoted Identity. Indeed, extremely weak algorithms fail to compute Identity
(e.g., algorithms that only access nε bits of input), and we show that refuters for Identity against
certain such classes is equivalent to solving CAPP in polynomial time, for all of T C0.

Theorem 1.2. The following are equivalent:

1. There is a polynomial-time algorithm solving CAPP for T C0 circuits.

2. For some ε > 0, there is an FP-refuter for Identity against probabilistic T C0 ◦ ⊕ circuits that have
O(n1+ε) wires, and nε gates in the bottom XOR layer.

6This situation is reminiscent of that in Chen and Tell [CT21]. To see this, note that prBPP = prP trivially follows
from the existence of f ∈ P such that for all but finitely many inputs x, Prr[M(x, r) = f (x)] < 2/3, where M is
a probabilistic machine solving the prBPP-complete decision problem CAPP. The main contribution of [CT21] is
proving that prBPP = prP follows from a similar statement for functions with multiple output bits. (The original
statement in [CT21] asserts that prBPP = prP follows from the existence of f that is hard for all probabilistic
machines running in some fixed polynomial time; but since it suffices to derandomize a machine solving a prBPP-
complete problem, it suffices to require that f will be hard on almost all inputs for a single (specific) machine F.)

7Throughout the paper, we restrict the gates in T C0 circuits to have polynomially bounded weights; see Section 3.1.
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As in Theorem 1.1, the refuted class in Theorem 1.2 is very weak. In particular, for ε < 1
we already unconditionally know that Identity cannot be computed by T C0 ◦ ⊕ circuits as in
Theorem 1.2; what we lack is an FP-refuter “witnessing” the simple lower bound.8

Near-equivalence for a broader class of hard functions. Theorem 1.2 shows a full equivalence,
but needs a refuter for the specific function Identity. We now relax the hypothesis by allowing
refuters for a significantly richer class of hard functions, at the cost of proving a near-equivalence
rather than a full equivalence. Details follow.

For a T C0 circuit C with T(n) gates, consider the function Φ(i, j) = wi,j, where i ∈ [T(n)] is
the index of a threshold gate g of C, j ∈ [T(n)] is the index j of a child h of g in C, and wi,j is
the weight of h in the linear combination defining g. Roughly speaking, we say that a circuit C is
highly uniform if Φ is computable by P-uniform T C0 circuits of size To(1) (see Definition 3.6).

Consider any f computable by highly uniform T C0 circuits. In one direction (refutation ⇒
derandomization), we show that a refuter for f against distributions over T C0 ◦ SUM circuits of
nε gates, where ε ∈ (0, 1) is an arbitrarily small constant, would suffice to solve CAPP0,1/2 for all
of T C0. (As usual, the notation SUM denotes gates that compute a weighted sum of their inputs
with polynomially bounded weights, over the integers; see Section 3.2.1.)

Theorem 1.3 (informal, see Theorem 6.10). For every ε > 0 and d, k ∈ N there exists d′ > 1 such
that the following holds. Let f : {0, 1}? → {0, 1}? be any function mapping n bits to nε bits that is
computable by a family of highly uniform threshold circuits of depth d and size nk. Assume that there is a
P-computable refuter for f against distributions over T C0

d′ ◦ SUM circuits with n2ε gates. Then, there is
a deterministic polynomial-time algorithm solving CAPP0,1/2 for T C0

d circuits.

Similarly to our previous results, hard functions as in Theorem 1.3 exist, for example the
inner product mod 2 (IP2) function.9 The challenge is in constructivizing the lower bound.

To complement Theorem 1.3 and show a near-equivalence, we will slightly restrict the class
of hard functions and the class of refuted algorithms. For a family of distributions D = {Dn}n∈N

where Dn is over n-bit T C0 ◦ SUM circuits, we say that D is T C0-samplable if for every n ∈ N

there exists a multi-output T C0 circuit Sn, called a sampler, such that the output distribution of
Sn over random input is Dn (see Definition 3.8 for details). Then:

Theorem 1.4 (informal, see Theorem 6.13). Let f : {0, 1}n → {0, 1}nε
be computable by highly

uniform T C0 circuits, and assume that there is a probabilistic T C0-computable refuter for f against
Samp-T C0[n2ε], where Samp-T C0[n2ε] is the class of T C0-samplable distributions over T C0 ◦ SUM cir-
cuits with n2ε gates. Then, for the following three statements, we have (1) =⇒ (2) =⇒ (3).

1. There is a deterministic polynomial-time algorithm solving CAPP for T C0.

2. There is an FP-refuter for f against Samp-T C0[n2ε].

3. There is a deterministic polynomial-time algorithm solving CAPP0,1/2 for T C0.
8Since there are only nε XOR gates in the bottom layer, all functions computed by probabilistic T C0 ◦ ⊕ circuits

have two-party (public-coin) probabilistic communication complexity O(nε). For all ε < 1, such protocols cannot
compute Identity, as this would require both parties to completely reconstruct the opposite party’s n/2-bit input.

9Following [Nis93], any function computed by a distribution of linear threshold circuits with nε gates has commu-
nication complexity at most O(nε log n). Thus, our T C0 ◦ SUM circuits can be simulated by communication protocols
with such complexity. However, the randomized (two-party) communication complexity of IP2 is Ω(n) [CG88].
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An improved targeted hitting-set generator. As mentioned above, the proofs of our results
leverage the recent new approaches to derandomization. On the way to proving Theorems 1.3
and 1.4, we also make a significant contribution to the technical machinery underlying these
new approaches, and this contribution is of independent interest. Specifically, a main technical
ingredient in our results is a “scaled-down” version of the targeted PRG of [CT21], as follows:

Theorem 1.5 (informal; see Theorem 5.1). Let f : {0, 1}n → {0, 1}m(n) be computable by a family of
highly uniform T C0 circuits of size T, let γ ∈ (0, 1), and let M ≤ TΩ(γ). Then, there exist d′ ∈ N and
deterministic algorithms HCT-TC0

f and RCT-TC0
f that for every z ∈ {0, 1}n satisfy:

1. Generator: HCT-TC0
f (z) runs in time poly(T) and prints a set of M-bit strings.

2. Reconstruction: RCT-TC0
f (1n) prints a sampler for a distribution R f over T C0

d′ ◦ SUM[Tγ] oracle
circuits, such that for any D : {0, 1}M → {0, 1} that satisfies Prr[D(r) = 1] ≥ 1/M but D rejects
all output strings of HCT-TC0

f (z), we have

Pr
R f←R f

[
RD

f (z) prints a T C0
d′ oracle circuit E such that tt(ED) = f (z)

]
≥ 2/3 ,

where tt(ED) is the truth-table of ED.

To compare, Chen and Tell [CT21] proved a version of Theorem 1.5 in which the function f is
computable by logspace-uniform circuits of fixed polynomial depth, and the reconstruction pro-
cedure is computable by probabilistic logspace-uniform circuits of comparable depth. Achieving
reconstruction with constant-depth threshold circuits requires significant technical work.

1.3 Generalizing previous characterizations of derandomization

The equivalences between refutation and derandomization generalize and strengthen previous
characterizations of prBPP = prP , as well as allow to directly compare these characterizations.
To state this, we will need a more refined technical version of Theorem 1.1.

A refinement of Theorem 1.1. As a first step, instead of refuting arbitrary non-uniform models,
we consider Turing machines with non-uniform advice, and distinguish between the machine
and the advice. That is, for every machine M, and every sufficiently large n ∈ N, and ev-
ery advice string a ∈ {0, 1}n, we give the refuter input (M, a) and ask it to print x such that
Pr[M(a, x) = f (x)] ≤ 1/2. We also consider the natural relaxation of refuters to list-refuters, in
which the refuter is allowed to print a list x1, ..., xpoly(n) ∈ {0, 1}n, and it is only required that for
some i ∈ [poly(n)] the string xi will be a hard input for M with advice a.

The next two relaxations are somewhat less natural, but they make our results significantly
more general. So far, the output of the hard function f depended only on the input x; we
will also allow the function f to depend on the advice a (i.e., on the refuted algorithm), requiring
that Pr[M(a, xi) = f (a, xi)] ≤ 1/2 for some i. Lastly, we relax the conditions even further by
considering what we call compression list-refuters, where we only require that M(a, xi) will fail
to print a small circuit (say, of size

√
| f (a, xi)|) whose truth-table is f (a, xi) (see Definition 3.4).

Our most general technical statement is analogous to Theorem 1.1 but holds even for the very
relaxed notions of refuters described above. Let us state the result a bit informally here, while
focusing for simplicity on the “refutation⇒ derandomization” direction:
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Theorem 1.6 (informal, see Theorem 6.1). Let ε > 0 and T(n) = poly(n), and let f be any advice-
dependent function that is computable in time T and hard for str-T ISP [T1+ε, nε].10 Assume that there
is a list-refuter in FP for f against str-T ISP [T1+ε, nε] algorithms that try to compress the output from
length N to length

√
N. Then, prBPP = prP .

For a detailed technical statement, which also includes the converse direction to Theorem 6.1
(i.e., it shows a full equivalence), see Corollary 6.5.

Generalizing and strengthening known results. Our results strictly improve over the known
works that characterize prBPP = prP in terms of uniform hardness hypotheses (see [CT21,
LP22a, LP22a, Kor22a]). Roughly speaking, there are three “moving parts” in our equivalences
between derandomization and refutation: the complexity of the hard function f , the weak class
C of algorithms being refuted, and the complexity of the deterministic refuter itself. Ideally, we
would like to deduce derandomization from refuters against the weakest-possible class C, for
any hard function f ∈ FP , and while only requiring that the refuter runs in FP .11

As we explain in Section 7, results in previous works [CT21, LP22a, LP22b, Kor22a] can all be
recast in the terminology of refuters (see Table 1). From this perspective, all prior works relate
derandomization to refuters for the identity function. That is, fixing a universal constant c > 1:

• Chen and Tell [CT21] showed that prBPP = prP follows from refuters computable by
logspace-uniform circuits of depth n2 for Identity against the class C of probabilistic time-nc

algorithms that only depend on the input length (i.e., the weakest class in terms of input
access). A conjecture implicit in [CT21] asserts that prBPP = prP is equivalent to FP-
refuters for Identity against C, without the depth restriction. (See Section 7.3.)

• Liu and Pass [LP22b] showed that prBPP = prP is equivalent to FP-refuters for Identity
against communication protocols with runtime nc and with nε bits of communication, for
an arbitrarily small constant ε > 0. (Recall that this class is stronger than str-T ISP [nc, nε],
because the communicating party is allowed arbitrary access to its input.) Korten’s charac-
terization [Kor22a] can be viewed in a similar light. (See Section 7.1.)

• Finally, the hardness assumption for conditional Kolmogorov complexity proved by Liu
and Pass [LP22a] to be equivalent to prBPP = prP can be viewed as a compression list-
refuter for Identity against general probabilistic time-nc algorithms. (See Section 7.2.)

Thus, the main improvement of our results (i.e., of Theorem 1.6 and Corollary 6.5) over prior
work is in weakening the class of refuted algorithms (i.e., to str-T ISP [T1+ε, nε]) and in extending
the class of hard functions (i.e., from Identity to all functions computable in time T).

An open problem. A natural goal is to improve our results by further weakening the class of
refuted algorithms, and further broadening the class of hard functions. What could be an ideal
result to hope for in this context? We suggest the following open problem:

10Note: The class str-T ISP [t(n), s(n)] here is defined not as non-uniform streaming algorithms, but as uniform
streaming algorithms that receive non-uniform advice; see Sections 3.1 and 3.1.3 for an explanation of the distinction.

11There is good reason to only attempt to deduce derandomization from refuters for f ∈ FP , rather than (say) relax
the requirement to f ∈ FBPP . Loosely speaking, a proof of the conditional statement “refutation of any f ∈ FBPP
implies derandomization” would unconditionally imply that prBPP = prP ; see Claim 6.6 for precise details.
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Reference Hard function f Weak class C Refuter Complexity

[CT21] Identity obl-BPT IME [nc] lu-T IMEDEPT H[poly(n), n2]

[LP22a] Identity BPT IME [nc] FP

[LP22b, Kor22a] Identity ow-COMM[nc, nε] FP

Thm 1.6, Cor 6.5 DT IME [n(1−ε)·c] str-T ISP [nc, nε] FP

Conjecture FP obl-BPT IME [nc] FP

Table 1: In the above, c > 1 is a sufficiently large universal constant, and ε > 0 is an arbitrarily
small constant. We have the following relationships:

obl-BPT IME [nc] ⊆ str-T ISP [nc, nε] ⊆ ow-COMM[nc, nε] ⊆ BPT IME [nc] ,

where obl-BPT IME [T] refers to probabilistic T-time algorithms that do not examine their input
(i.e., only depend on its length); and ow-COMM[T, k] refers to probabilistic one-way commu-
nication protocols that run in time T and send k bits; and strT ISP [T, S] refers to probabilistic
streaming algorithms running in time T and space S. Also, the class lu-T IMEDEPT H[T, d]
represents logspace-uniform circuits of size T and depth d.

Open Problem 1. Prove the following statement, for some constant c ≥ 1: If there is an FP-refuter for
some f ∈ FP against probabilistic algorithms running in time nc that do not examine their input (i.e.,
only depend on its length), then prBPP = prP .

The refuted class of algorithms in Open Problem 1 is the weakest possible in terms of the
dependency on the input. Recall that if prBPP = prP , then (by Theorem 1.1) for any f ∈ FP ,
and essentially any class C of RAMs such that there is a BPP-refuter for f against C, there is an
FP-refuter for f against C. Open Problem 1 asks to prove a strong converse direction: even a
refuter against the weakest possible class C (in terms of input-dependency) suffices to prove that
prBPP = prP .12 We note that an analogous statement for the case of functions f ∈ P with a
single output bit is easy to prove (see Claim 3.17).

1.4 Refuters against deterministic algorithms and the Lossy Code problem

So far, we showed universal derandomization follows from (or is equivalent to) deterministic
refuters for probabilistic algorithms. We show that derandomization consequences follow even
from a refutation task that is potentially easier: deterministic refuters for deterministic algorithms.

To see this, let us recall Korten’s perspective on derandomization [Kor22b], which centers
around a problem called LossyCode. The problem is defined as follows:

Definition 1.7 (LossyCode [Kor22b]). In LossyCode, given a pair of circuits C : {0, 1}n → {0, 1}n−1

and D : {0, 1}n−1 → {0, 1}n as input, the goal is to output an x ∈ {0, 1}n such that D(C(x)) 6= x.

12Indeed, Open Problem 1 asks to prove its conclusion when f ∈ FP can be arbitrary, rather than only a function
that has a BPP-refuter. However, we stated the problem in this manner only for simplicity: proving the statement in
Open Problem 1 only for functions in f ∈ FP that have a BPP-refuter would be just as interesting.
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Note that LossyCode can be solved easily using randomness, since half of the inputs x ∈
{0, 1}n satisfy the required property (and given x, it is easy to check if D(C(x)) 6= x). However,
it seems challenging to solve the problem deterministically. In contrast to CAPP, we do not know
if LossyCode is complete for prBPP , and in fact proving so would imply that BPP ⊆ NP
(see [Kor22b] for an explanation). This implies that there might be more hope for progress on
deterministic poly-time algorithms for LossyCode, compared to CAPP.

First, we show that solving LossyCode reduces to (deterministically) refuting deterministic
streaming algorithms, for any hard function in FP . Leveraging the ideas of [Kor22b], we prove:

Theorem 1.8. For any function f ∈ FP and ε ∈ (0, 1), if there is an FP-refuter for f against nε-space
polynomial-time deterministic streaming algorithms, then LossyCode ∈ FP .

To obtain a full equivalence between efficient refutation and solving LossyCode, we consider
refuters for specific, well-studied functions. In particular, we show that solving LossyCode is
equivalent to providing efficient refuters for Set-Disjointness (DISJ) or for Inner Product (IP)
against low-space streaming algorithms, where space is measured in the number of stored bits.13

Theorem 1.9. For a function f ∈ {DISJ, IP} and all ε ∈ (0, 1), the following are equivalent:

1. There is a refuter in FP for f against nε-space poly-time deterministic streaming algorithms.

2. There is a refuter in FP for f against (n− 1)-space poly-time deterministic streaming algorithms.

3. LossyCode ∈ FP .

2 Technical overview

The algorithmic framework for derandomization in this work uses targeted pseudorandom genera-

tors (tarPRGs), as defined by Goldreich [Gol11]. As in recent works [CT21, LP22a, LP22b, vMS23],
we will use reconstructive tarPRGs. To describe this object, consider derandomizing the probabilis-
tic machine M = MCAPP that solves the prBPP-complete problem CAPP. At a high level,

1. Given input x ∈ {0, 1}n, the reconstructive tarPRG computes a string f (x), and then maps
f (x) to a set Sx, f (x) of n-bit strings s1, ..., sn̄, for n̄ = poly(n). We output MAJ {M(x, si)}i∈[n̄].

2. The pseudorandomness of Sx, f (x) for M(x, ·) follows by designing an e�cient reconstruction

algorithm R: Assuming that Prr∈{0,1}n [M(x, r) = 1] /∈ Pri∈[n̄][M(x, si) = 1] ± 1/10, the
algorithm RM(x,·) computes x 7→ f (x) “too efficiently”. Since our hypothesis will be that f
is hard to compute very efficiently on x, we reach a contradiction.

In recent works, the mapping of f (x) to the set Sx, f (x) generally used known technical tools:
for example, we may think of f (x) as the truth-table of a function {0, 1}log(| f (x)|) → {0, 1}, and
apply the Nisan-Wigderson construction [NW94] (with the code of [STV01]) to this function. The

13In the DISJn (IPn resp.) problem, one is given two n-bit strings x, y ∈ {0, 1}n (y is given after all of x) and the goal
is to determine whether their inner product ∑n

i=1 xiyi is non-zero (odd resp.).
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novelty in [LP22a, LP22b], following [CT21, Section 2.1], was in reanalyzing the known recon-
struction argument of [NW94, IW98, STV01] to prove the correctness of the tarPRG, applying the
same high-level template outlined above, with a suitable (new) hardness assumption.14

For example, if the reconstruction R requires nε queries to the truth-table f (x) (as in [NW94,
IW98, STV01]), then one needs to assume that the mapping x 7→ f (x) is hard to compute even if
one is allowed “leakage” of nε bits from f (x). Furthermore, if we want the tarPRG to succeed on
all inputs, then this same type of hardness should hold for all (but at most finitely many) inputs.
This is precisely how the result in [LP22b] is proved.

2.1 Our starting point: A new perspective

We suggest a new perspective on the above framework. Let us think of the problem of computing
f algorithmically: how hard it is to compute f that will have the required properties? Another
way to frame this question is to ask: given x, how hard is it to find f (x) such that RM(x,·)(x) fails to
print f (x), when it has some “limited access” to f (x)? (The meaning of “limited access” here could
be, say, nε bits of information, as in [LP22b].)

Our key observation is to think of x not as specifying an input, but rather as specifying the
algorithm Rx = RM(x,·)(x), and to think of f (x) not as the output of Rx, but rather as a potential
input for Rx. That is, reformulating the question above:

We are given a description of an algorithm Rx, and our task is to find a string y such that Rx
fails to print y, even when Rx has some “limited access” to y.

Indeed, this is precisely a refutation task for the algorithm Rx, where we are trying to find
a “bad” input y demonstrating that Rx does not compute the hard function Identity(y) = y.
Moreover, recall that in previous works, the requirement was that computing the mapping x 7→ y
will be hard for the reconstruction algorithm R on all but finitely many x. From the current
viewpoint, this translates into requiring that the refuter will succeed in the worst-case, i.e., succeed
in finding a hard y when given any Rx (except, perhaps, on finitely many x).

From a technical viewpoint, given the perspective above, we will improve the known results
by: (1) extending the class of hard functions (i.e., allowing more hard functions than just Identity),
and (2) creating more efficient reconstruction algorithms R, such that they can work with “even
less access” to y, and with more restricted computational resources.

2.2 Warm-up: The Nisan-Wigderson generator

As a warm-up, let us prove that (deterministic polynomial-time) refuting the function Identity
against streaming algorithms with nε space (for an arbitrarily small constant ε > 0) implies
prBPP = prP .

We are given x as input to the probabilistic algorithm M = MCAPP which solves CAPP.
We know in advance the reconstruction algorithm R that our proof will use (see below), and
moreover there is an efficient mapping from x to Rx = RM(x,·). Therefore we can compute the
description of Rx, and feed the description to the poly-time refuter, which outputs y. Thinking

14Loosely speaking, the original argument of [IW98] applied only to functions that have certain structural prop-
erties (i.e., are downward self-reducible and randomly self-reducible), yet required standard hardness assumptions.
In [CT21, Section 2.1] and [LP22a, LP22b] it was reanalyzed (for tarPRGs) without the assumption that the function
has structural properties, but with new types of hardness assumptions.
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of y as a truth-table, we use the standard construction of [NW94, IW98, STV01] to obtain a set of
strings that is hopefully pseudorandom.

The main observation needed for the proof is that the reconstruction algorithm R of [NW94,
IW98, STV01] can be implemented by a streaming algorithm that passes over y. Specifically, the
combination of the local list-decoder of [STV01] and of the reconstruction of [NW94, IW98] only
requires making non-adaptive linear queries to y (since the code of [STV01] is linear, and since
the queries of [NW94, IW98] are non-adaptive). Indeed, a streaming algorithm can first toss
random coins to choose linear queries to y, then resolve these queries in a single pass over y, and
finally run the rest of the reconstruction procedure without accessing y again.

Furthermore, this streaming algorithm also uses low space. This essentially follows by a
padding argument: given x ∈ {0, 1}n0 , we instantiate the argument above with x′ = x0n−n0 ,
where n = (n0)C/ε for a sufficiently large constant C > 1. The number of coins that M needs
is |x| = nε/C, and therefore (closely inspecting the reconstruction argument in [NW94, IW98,
STV01] for this parameter setting) the number of queries to y is at most, say, nε/2. Thus, the
streaming algorithm only needs nε space to resolve these queries during its pass on y.

2.3 A broader class of hard functions

Let us now describe the proof of Theorem 1.1. The main part of the proof is to deduce deran-
domization from the existence of a refuter for any function f computable in time T(n) = poly(n)
against streaming algorithms running in time T1+ε and space nε.

Starting with the argument above, instead of applying the PRG construction of [NW94, IW98,
STV01] to y, we will apply a targeted hitting-set generator (tarHSG) HCT from [CT21] to y, where
HCT is instantiated with the hard function f . That is, given x, we first compute a description of
Rx = RM(x,·) for a predetermined reconstruction algorithm R that will be presented below, run
the refuter on Rx to obtain a bad input y, and finally run HCT, instantiated with the hard function
f , on input y, to obtain a pseudorandom set.

We argue that this construction is a tarHSG,15 which implies that prRP = prP and hence
(by [Sip83, Lau83, BF99, GZ11]) prBPP = prP . To do so, we analyze HCT in a different way
than in [CT21]. Recall that for any f computable in deterministic time T and input y for f , the
generator HCT produces t ≈ T sets S(1)

f ,y , ..., S(t)
f ,y.16 We argue that the following holds: If M(x, ·)

distinguishes every set S(i)
f ,y from random, then we can compute y 7→ f (y) by a one-pass streaming

algorithm Rx using time T1+ε and space nε. Since this contradicts the properties of the refuter
(i.e., the refuter finds y that fails Rx), we conclude that our construction is indeed a tarHSG.

To prove this we need to give a reconstruction algorithm Rx with such properties. We recall
the following facts about HCT and about its known reconstruction algorithm:

1. The generator HCT simulates the uniform circuit computing f (y), and transforms the matrix
G(y, f ) representing the gate-values in this circuit into an “encoded” matrix B(y, f ) that we
call a bootstrapping system, which has useful properties (the transformation uses the ideas

15That is, if Prx[M(x, r) = 1] ≥ 1/2 then there exists a string s in the pseudorandom set such that M(x, s) = 1.
16The original work [CT21] required that f will be compuable by logspace-uniform circuits of size T and depth

d, and the number of pseudorandom sets was t ≈ d. In this work we use any function computable in time T, and
instantiate the original construction with d ≈ T (as any function computable in time T is computable by logspace-
uniform circuits of size Õ(T) and depth Õ(T)).
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of Goldwasser, Kalai, and Rothblum [GKR15]). For simplicity, assume that the dimensions
of B(y, f ) are identical to those of G(y, f ). Then, HCT applies the generator of [NW94] to each
of the t ≈ T rows of B(y, f ), to obtain pseudorandom sets S(1)

f ,y , ..., S(t)
f ,y. The output is ∪iS

(i)
f ,y.

2. The reconstruction argument works in a layer-by-layer fashion: it starts from the bottom
layer, which has an encoding of y, and in the end reaches the top layer, which has f (y).
For each layer i = 1, ..., t sequentially, we run the reconstruction argument of [NW94, IW98]
RNW to obtain a small circuit Ci whose truth-table is the ith layer. The algorithm RNW needs
to make queries to the (i − 1)th layer,17 and since we already have a circuit Ci−1 whose
truth-table is the (i− 1)th layer, we can simulate Ci−1 to answer the queries of RNW.

As in Section 2.2, since the number of random coins that we need is, say, nε/2, each step of the
reconstruction can be executed in time nε (and in particular, each step makes at most nε queries
and prints a circuit of size at most nε). This yields an algorithm Rx that computes y 7→ f (y) in
time T1+ε, but we still have not explained why Rx is a low-space one-pass streaming algorithm.

The key observation is that we can implement Rx with limited access to y. Specifically, we
start the reconstruction from the second layer of the circuit for f (y). The only time we need access
to the first layer, which encodes y, is when answering the queries of RNW to the first layer (i.e.,
when we run RNW to get a circuit C2 for the second layer). Moreover, since the first layer is a
linear encoding of y, to answer these queries we only need to compute linear functions of y. Since
there are at most nε queries in each step, we can compute these nε linear functions of y by an
≈ nε-space one-pass streaming algorithm. For precise details, see Theorem 3.15 and Section 6.1.

The converse direction: Obtaining an equivalence. To prove Theorem 1.1 we also need to
show the converse direction, i.e., that derandomization implies refutation. Observe that the first
direction (described above) holds for any f in time T; to get an equivalence, we now restrict our
attention to f ’s that have a BPP-refuter, denoted Ref f .

Then, proving the converse direction is simple. Note that we can test whether a given string
y is actually a bad string for Rx (i.e., by computing f (y), simulating Rx(y), and comparing the
outcomes). Thus, to find y that will be bad for Rx, we run a search-to-decision reduction as
in [Gol11]: we construct random coins for Ref f bit-by-bit, and in each step we verify that the
probability that Ref f outputs a string that is bad for Rx (conditioned on the current prefix of
coins) is approximately maintained. Each step requires solving a decision problem in prBPP ,
and thus (by our assumption) this problem can be solved in prP . For details see Theorem 6.4.

2.4 Extending the connection down to T C0, and an improved Chen-Tell generator

Next, we prove that the equivalence between refutation and derandomization is more general,
and in fact scales all the way down to T C0 circuits. The equivalence stated in Theorem 1.2, which
refers to the specific hard function Identity, follows from ideas similar to the ones in Section 2.2,
only with a more careful analysis of the known algorithms of [NW94, IW98, STV01] (for details
see Theorem 3.14, Appendix B, and Theorem 6.7).

17This description abstracts away many technical details. For example, the algorithm RNW actually needs to make
queries to the ith layer to construct Ci. We require B( f ,y) to be downward self-reducible, and thus these queries can be
answered by a small number of queries to the (i− 1)th layer. (The other property that we require from B( f ,y) is that
each layer will be a codeword in a sufficiently good error-correcting code; see Section 5 for details.)
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We therefore focus on the connection in Theorem 1.4, whose proof is the most technically
involved part of this work. Let us first sketch the proof of the special case stated in Theorem 1.3:
if there is a refuter for any function in highly uniform T C0 against distributions over T C0 ◦ SUM
of size nε, then CAPP0,1/2 of T C0 circuits can be solved in deterministic polynomial time.

The CAPP0,1/2 algorithm is similar to the one in Section 2.3: it receives an input x ∈ {0, 1}n

(which represents a T C0 circuit of size nε), computes the description of a sampler Rx = Sx for
a distribution over T C0 ◦ SUM circuits (where S is a predetermined uniform algorithm that we
describe below), feeds Rx into the refuter to obtain y, and runs a tarHSG HCT-TC0 that we will
construct (instantiated with the function f ) on input y to obtain pseudorandom strings.

Our goal is to construct HCT-TC0 that is instantiated with a function f computable by highly
uniform T C0 circuits of size T(n) = poly(n), such that HCT-TC0 has a reconstruction algorithm
Rec that is a distribution over T C0 ◦ SUM circuits with nε gates. To do so, consider the matrix
G( f ,y) of gate-values for f (y), which has d = O(1) rows and T columns. We want to encode G( f ,y)

into a bootstrapping system B( f ,y) that has a T C0 ◦ SUM reconstruction Rec, as follows:

1. For d′ = O(d), every circuit in the support of Rx will consist of a sequence of d′ − 1 T C0

circuits Rec(2), ...,Rec(d) of size nε, where Rec(i) corresponds to the ith row of B( f ,y).

2. For i = 2, ..., d′, the circuit Rec(i) gets access to a distinguisher D for the tarHSG (we think
of D as the T C0 circuit x), and prints a circuit Ci whose truth-table is the ith layer in B( f ,y);
to do so, Rec(i) makes non-adaptive queries to Ci−1 (i.e., to the circuit that Rec(i−1) printed).

3. The circuit C1 (that Rec(2) queries) consists of a layer of nε “SUM gates” such that each
“gate” computes a weighted sum (over the integers) of the bits of y.18

The technical challenges, and our high-level approach. The reconstruction algorithm for each
row in [CT21] is an NC circuit. We do not know how to design a more efficient reconstruction
algorithm (in particular, in T C0) for each row when using their B( f ,y): the reason is that the
reconstruction algorithm implements the list-decoder for the Reed-Muller code [STV01], which
in turn uses the list-decoder for the Reed-Solomon code [Sud97]; there is currently no known
list-decoder for Reed-Solomon that works in constant depth.

To support T C0 reconstruction of each row, we will construct a new bootstrapping sys-
tem B( f ,y). This bootstrapping system can be viewed as a new and more efficient version of
the [GKR15] encoding of uniform circuits. For an arbitrarily small constant δ > 0, the boot-
strapping system B( f ,y) has P-uniform T C0 circuits of size Tδ that can list-decode each row from
distance 1/2+ T−Ω(δ), and that reduce the computation of an entry in a row i to the computation
of Tδ entries in row i− 1. (See Proposition 5.5 for a precise statement.)

The main technical ingredient in the construction of B( f ,y) is an error-correcting code that is
locally encodable and approximately locally decodable by uniform T C0 circuits; that is:

Proposition 2.1 (informal, see Proposition 4.1). For every γ, ν > 0 and finite field F of size |F| ≤
poly(N) there exists a mapping Enc : FN → {0, 1}N̄ , where N̄ = Ncγ,ν , such that the following holds:

1. (Locally encodable.) There is a P-uniform family of T C0 circuits of size NO(γ+ν) that gets input
i ∈ [N̄], queries z ∈ FN at Nγ locations, and outputs Enc(z)i.

18We write “gate” because this functionality is implemented in binary, and therefore each “SUM gate” actually
consists of several gates, which represent the outcome of the weighted sum in binary.
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2. (Locally approximately decodable.) There is a P-uniform family {DN}N∈N of probabilistic
oracle T C0 circuits of size NO(γ+ν) such that for every z ∈ FN and any O ∈ {0, 1}N̄ satisfying
Prj∈[N̄]

[
Enc(z)j = O(j)

]
> 1/2+ N−ν, the following holds. The circuit DN first has a probabilistic

preprocessing step, in which it non-adaptively queries z, and with probability 1− o(1) satisfies the
following. There is S ⊆ [N] of density |S|/N ≥ 1− N−γ such that for every i ∈ S,

Pr
[
(DN)

O(i) = zi

]
> 2/3 ,

where the probability is over the random coins of DN after the preprocessing step.

We believe that the improved bootstrapping system and the code in Proposition 2.1 are of
independent interest, and may find further applications. As one example, they allow us to scale
down the results in [CT21] to hold for T C0 circuits, rather than only for NC circuits; this is
essentially the content of Theorem 1.5 (see Theorem 5.1 for the detailed statement).

2.4.1 The new bootstrapping system: an improved version of the GKR encoding

The idea for constructing B(y, f ) in [GKR15, CT21] is to think of each row i ∈ [d] in G( f ,y) as a
function αi : {0, 1}log(T) → {0, 1}, arithmetize the row as a polynomial α̂i : Fm → F, and insert
additional polynomials between each pair of rows that implement a sumcheck-like functionality.
This yields a matrix (with entries in F) such that each row is a codeword in a locally list-decodable
code, and computing any entry in row i efficiently reduces to computing a few entries in row
i− 1 (the reader is referred to [CT21] for a detailed explanation).

Our goal is to construct B(y, f ) when f is a highly uniform T C0 circuit, such that the local
list-decoder for each row is a T C0 circuit, and the downward reduction from row i to row i− 1
is computable in T C0.

Arithmetization and sumcheck polynomials. We first define αi differently than in [GKR15,
CT21]: for every threshold gate g(y) = 1[∑h wh · h(y) > θg] (where the h’s are the gates feeding
into g, and the wg,h’s and θg are real numbers), we define αi(g) = ∑h wg,h · h(y). The arithme-
tization of αi is now straightforward, i.e. α̂i(g) = ∑h Φ̂(g, h) · h(y) where Φ̂ is an appropriate
arithmetization of the function Φ(g, h) = wg,h (see below). Whenever our algorithms (e.g., for
downward self-reducibility) will need to obtain a value g(y) in the ith layer given access to α̂i,
they will compute the function 1[α̂i(g) > θg], which can be done in T C0.

Relying on the fact that the size-T circuit for f is highly uniform (which means that Φ is
computable by a uniform T C0 circuit of size To(1); see Definition 3.6), we arithmetize the Φ’s
by polynomials of degree Tδ over a field of size p = Θ(T2), where δ > 0 is a sufficiently small
constant. This allows us to insert only constantly many sumcheck-like polynomials between each
pair of rows, and hence B( f ,y) is of constant depth d′ = O(d). (See Proposition 5.3 for details.)

Now we have a sequence of d′ rows such that each row is a codeword in the Reed-Muller code,
and the sequence is downward self-reducible by uniform T C0 circuits (again, details appear in
Proposition 5.3). The main trouble is that the local list-decoder for each row, i.e. the local list-
decoder for the Reed-Muller code, is not known to be in T C0.
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Local encodability and approximate local decodability for reconstruction. In [CT21], each row
was further encoded by the Hadamard code to yield a binary matrix B( f ,y) (whose rows were
used as truth-tables for the generator of [NW94]). To resolve the problem above, instead of the
Hadamard code, we encode each row by the code from Proposition 2.1.

To see why this is helpful, think of each α̂i as already encoded in a code that is uniquely
decodable in T C0 from distance 1 − T−Ω(1): the T C0 decoder implements the standard unique
decoding for the Reed-Muller code. Combined with the T C0 local approximate decoder of the
code from Proposition 2.1, each row is now locally decodable from agreement 1/2 + T−Ω(1) by
T C0 circuits, as we wanted.

To prove that B( f ,y) is still downward self-reducible, we will rely on the T C0-local-encoding
property of the code. Specifically, since each entry j in row i is a local encoding of α̂i, computing
the jth entry reduces to computing “a few” values of α̂i; and computing each value of α̂i reduces to
computing “a few” values of α̂i−1, which in turn appear as entries in the encoding of α̂i−1.19 And
since the local encoding of the code is computable in P-uniform T C0 of size Tδ, this sequence of
reductions can be computed in P-uniform T C0 of such size.

The last part is implementing the base case, i.e. the bottom row of B( f ,y). This bottom row
needs to compute values of the low-degree extension of y (since these are the queries made by
the downward self-reducibility algorithm, when running the reconstruction for the second row).
Indeed, these values can be computed using SUM gates (see Proposition 5.3 for details).

2.4.2 A T C0-locally encodable and T C0-locally approximately-decodable efficient code

The proof of Proposition 2.1 follows a recent construction of a code by Doron and Tell [DT23].20

The code is actually a combination of two codes: the first code increases the distance from N−Ω(1)

to a tiny constant δ > 0, using a refinement of a construction by Goldwasser et al. [GGH+07]; and
the second code increases the distance from δ to 1/2− N−Ω(1), using the derandomized direct
product of Impagliazzo and Wigderson [IW97].

The first code. We use the classical expander-based distance-amplification of Alon et al. [ABN+92],
to increase the distance from N−Ω(1) to (say) 0.4. This code has a constant-depth decoder, and as
proved by Gutfreund and Viola [GV04] (see [GGH+07]), using the Gabber-Galil [GG79] expander,
encoding can be done by constant-depth circuits (see Lemma 4.4).

The problem is that now the alphabet is large, and we want to decrease it to binary. Moreover,
we want to do so while maintaining a non-adaptive constant-depth decoder, since non-adaptivity
is important for the construction of B( f ,y). An idea from [DT23] is to use a sequence of con-
catenation steps with different codes to gradually decrease the alphabet, while approximately
maintaining the distance and preserving the complexity of the decoder at each step. We follow
the same approach, while ensuring local-encodability in T C0 (see Sections 4.1.2 and 4.1.3).

The second code. We use the derandomized direct-product code of [IW97], concatenated with
the Hadamard code, to increase the distance from δ to 1/2− N−Ω(1). Indeed, this code is locally
encodable by P-uniform T C0 circuits; to see this, let us focus on local encodability of the code
of [IW97]. Given an output index i, we can compute the locations in the input that appear in the

19Indeed, while we did not state this in Proposition 2.1, the code is systematic; see Proposition 4.1.
20We use the same ideas as in [DT23], but cherry-pick parts of the construction, and argue different properties.
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ith output location, by XORing: (1) the output of the expander-random-walk sampler (we again
use the Gabber-Galil expander, which is computable in constant depth), and (2) the output of a
combinatorial design function (where the combinatorial design is hard-wired into the circuit by
the P-uniform algorithm constructing the circuit). See Proposition 4.6 and Claim 4.6.1 for details.

The local decodability of this code by T C0 circuits is presented in a non-standard way in
Proposition 2.1, but it (essentially) already follows from a close examination of the decoding
algorithms from [GL89, IW97]. See the proof of Proposition 4.6 for details.

2.4.3 Getting a near-equivalence: a T C0-samplable reconstruction

So far, we described the proof of Theorem 1.3, which asserts that efficient refutation of distribu-
tions over small T C0 ◦ SUM circuits implies derandomization of T C0 (with one-sided error). To
prove the two-way connection stated in Theorem 1.4, we need an additional observation.

Recall that in the argument above, we denoted by Rec the distribution over small T C0 ◦ SUM
circuits, and we also mentioned that Rec has a uniform sampler S. However, the argument
already supports a stronger statement: going through our proofs, we can implement S as a P-
uniform T C0 circuit (of fixed polynomial size, say n2). It follows that Rx = Sx is a T C0 circuit that
samples a distribution over C, where C is the class of small T C0 ◦ SUM circuits.

This observation paves the way towards proving a converse direction, i.e., showing that de-
randomization of T C0-samplable distributions over C implies refutation of such distributions. To
see this, assume that we have a deterministic polynomial-time CAPP algorithm for T C0, and let
f be a function with a T C0-refuter (as detailed in the hypothesis of Theorem 1.4). Given a T C0-
sampler for a distribution over C, we use the same search-to-decision reduction as in Section 2.3:
we construct random coins for the refuter bit-by-bit, where the decision at each step reduces to
solving CAPP for T C0. For the full details, see Theorem 6.13.

3 Preliminaries

For a positive integer k, we use [k] to denote the set {1, 2, . . . , k}. We use N to denote all non-
negative integers and N≥1 to denote all positive integers.

As mentioned in Section 1, in this paper we consider refuters for non-uniform models of
computation. We will have two formalizations of non-uniform models: the first refers to RAMs
that take advice, and is presented in Section 3.1; and the second refers to non-uniform circuits,
and is presented in Section 3.2.

3.1 Classes of RAMs, and refuters for machines with advice

The machine model in this paper is the RAM model, and in particular we consider classes of
RAMs that take advice. More formally, these will be RAMs that take two inputs (a, x), and
we think of a as non-uniform advice and of x as the actual input, and analyze the machine
accordingly (see Section 3.1.3). Throughout the paper, when referring to such machines, we will
usually omit the suffix “that takes advice”, but this is always implicitly assumed.
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3.1.1 Streaming algorithms

One class of RAMs that we will repeatedly refer to in the paper is streaming algorithms (that
take advice), defined as follows:

Definition 3.1 (streaming algorithms). A one-pass streaming algorithm running in time T and in space

s is a RAM that takes as input (a, x), runs in time T(|a|+ |x|) and in space s(|a|+ |x|), and accesses
x in a bit-by-bit fashion, reading each bit of x once and in-order. (There is no limitation as to how the
machine accesses a.) We denote the class of such algorithms by str-T ISP [T, s].

Recall that in the beginning of Section 1 we referred to str-T ISP as the class of non-uniform
streaming algorithms, rather than as the class of uniform streaming algorithms that take advice.
We explain this difference in Section 3.1.3.

3.1.2 Refuters for classes of RAMs

To define refuters for classes of RAMs, we consider a generalized notion of a hard function, in
which the function may also depend on the advice. More formally:

Definition 3.2 (algorithm-dependent hard function). Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ and let C
be a class of probabilistic RAM machines, and let p : N → N. We say that f is a p-bounded algorithm-

dependent hard function against C if for every M ∈ C and sufficiently large n ∈N and string a ∈ {0, 1}n

there exists x ∈ {0, 1}p(n) such that Pr[M(a, x) = f (a, x)] < 2/3.

A refuter for a class C gets as input a description of M ∈ C and also an arbitrary advice a,
and outputs x such that M(a, x) fails to compute f (a, x). The first type of refuter that we define
is a list-refuter, which outputs a set x1, ..., xt such that for some i ∈ [t] it holds that M(a, xi) fails
to compute f (a, xi).

Definition 3.3 (list-refuter). Let C be a class of probabilistic RAM machines, and let f be a p-bounded
algorithm-dependent hard function against C for some p. An algorithm A is a P-computable list-refuter

for C against f if for every M ∈ C and sufficiently large n ∈ N, when given as input the description of
M and a string a ∈ {0, 1}n, the algorithm A runs in deterministic time poly(n) and prints a length-t list
x1, . . . , xt ∈ {0, 1}p(n) such that for some i ∈ [t] it holds that

Pr [M(a, xi) prints f (a, xi)] < 2/3 .

We say A is a refuter if the length of all output lists is always 1.

The next notion of refuter is more relaxed: we ask the refuter again to output x1, ..., xt, but
this time we only require that for some i ∈ [t] it holds that M(a, xi) fails to compute a compressed
version of f (a, xi), in the form of a small circuit whose truth-table is f (a, xi).

Definition 3.4 (compression list-refuter). Let C be a class of probabilistic RAM machines, and let f be
a p-bounded algorithm-dependent hard function against C for some p. An algorithm A is a P-computable

s-compression list-refuter for C against f if for every M ∈ C and sufficiently large n ∈N, when given as
input the description of M and a string a ∈ {0, 1}n, the algorithm A runs in deterministic time poly(n)
and prints a length-t list x1, . . . , xt ∈ {0, 1}p(n) such that for some i ∈ [t] it holds that

Pr [M(a, xi) prints a circuit of size s(|a|+ |xi|) whose truth-table is f (a, xi)] < 2/3 .

We say A is an s-compression refuter if the length of all output lists is always 1.
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Note that the circuit size s in Definition 3.4 is a function of the input length to f (i.e., of
|a|+ |x|), rather than a function of the length of the truth-table | f (a, x)|. One may think of this as
compressing the input (a, x) such that the compressed version still contains enough information
to efficiently produce the output f (a, x).

The next notion of refuters is randomized refuters, which tosses random coins, and with notice-
able probability prints a string x such that M(a, x) fails to compute f (a, x). (In this definition we
will not use the relaxations of list-refuters and of compression refuters.)

Definition 3.5 (randomized refuters). Let p : N→N, let C be a class of probabilistic RAM machines,
and let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a p-bounded algorithm-dependent hard function against C.
We say that f admits a polynomial-time randomized refuter against C, if there exists a randomized
algorithm B and a polynomial q such that for every M ∈ C and sufficiently large n ∈ N and string a ∈
{0, 1}n, with probability at least 1/q(n), B(M, a) outputs a length-p(n) string x satisfying Pr[M(a, x) =
f (a, x)] < 2/3.

3.1.3 Non-uniform classes of RAMs

In Theorem 1.1, we considered what we referred to there as non-uniform classes of algorithms,
where for every input length n, the class contains a set Cn of probabilistic algorithms whose
description is of length n and that are executed on inputs of length n.

This presentation in Theorem 1.1 was done merely for simplicity. The formalization of non-
uniform classes of RAMs does not explicitly appear in our technical results, since our technical
results use the more refined notion presented in this section, which separates a machine M ∈ C
from the advice a ∈ {0, 1}∗ that it gets.21 However, the refined formalization does capture
the notion of non-uniform algorithms. For example, to capture any streaming algorithm C of
description length n, we can fix C to contain a universal machine U that intreprets its input as a
description of a streaming algorithm, and let a ∈ {0, 1}n be a description of C.

3.2 Classes of circuits, and refuters for circuits

For convenience, we consider circuit families with many input parameters. Specifically, a circuit
family with k input parameters ~̀ = (`1, `2, . . . , `k) ∈ Nk is defined as {C~̀}~̀∈Nk . We say that a
circuit family {C~̀}~̀∈Nk is P-uniform if there is an algorithm AC that, given input parameters
~̀ ∈Nk, outputs the description of C~̀ in |C~̀ | time.

3.2.1 Threshold Circuits

Notation. Consider a family of threshold circuits of depth d = d(n) and with T = (n) gates.
For any n ∈ N and i ∈ [d] and j ∈ [T], denote by gi,j the jth gate in the ith layer, and denote the
function that gi,j computes by

gi,j(x) = 1

[
∑

k∈[T]
wi,j,k · gi−1,k(x) > θi,j

]
,

21Implicitly, the machine’s description is of constant size, since in our formalization we first fix the machine and
then consider an advice a that is arbirarily long.
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where θi,j ∈ Z and wi,j,k ∈ Z for all k ∈ [T]. Denoting W = maxi,j,k
{

wi,j,k
}

, we assume throughout
the paper that W ≤ T. We also assume, without loss of generality, that |θi,j| ≤ T2.

We denote by T C0 ◦ SUM the class of families of constant-depth circuits with threshold gates
such that for every family there exists a constant C > 1 for which the following holds. Each
circuit in the family has a layer of gates at the bottom, where the gates in the layer are partitioned
into blocks of size (C + 1) · log(n), and each block computes a weighted sum of the inputs
(represented in binary) over the integers, with weights bounded by nC.

For S : N → N, we use T C0
d-WIRES[S] to denote the class of depth-d threshold circuits with

at most S wires (instead of gates). We also use T C0
d-WIRES[S] ◦ `-XOR to denote a circuit con-

sists with a top T C0
d circuit of S total wires and a bottom layer of ` parity gates. Similarly for

T C0
d-WIRES[S] ◦ `-SUM.

Highly uniform circuits. The following definition of highly uniform threshold circuits is a more
precise and fine-grained version of the definition that appeared in Section 1.2.

Definition 3.6 (highly uniform threshold circuits). Let T, d : N → N, and let δ0 ∈ (0, 1) and
d0 ∈ N≥1. We say that a family of threshold circuits of size T(n) and depth d(n) is (δ0, d0)-highly
uniform if:

1. There exists a P-uniform family of threshold circuits {Weightn,i}n∈N≥1, i∈[d(n)] of size T(n)δ0 and
depth d0 such that Weightn takes (j, k) ∈ [T]× [T] as input and outputs wi,j,k.

2. There exists a P-uniform family of threshold circuits {Thrn,i}n∈N≥1, i∈[d(n)] of size T(n)δ0 and depth
d0 such that Thrn,i takes j ∈ [T] as input and outputs θi,j.22

For convenience, we also say a family of threshold circuits is δ-highly uniform if it is
(
δ2, 1/δ

)
-highly

uniform.

3.2.2 Samplable distributions over circuits, and refuters for them

In this paper we will often consider a distribution over n-input C-circuits (i.e., a randomized
C circuits). Since a general distribution may not be described succinctly, we will consider the
following two standards to describe randomized C circuits:

Definition 3.7 (probabilistic circuits). A size-s n-input probabilistic C circuit C is a C circuit that takes
two inputs x ∈ {0, 1}n and r ∈ {0, 1}R, where R ≤ s is the number of random coins used by C. Given
an input x ∈ {0, 1}n, C draws r ← UR and outputs C(x, r).

Definition 3.8 (samplable distribution over circuits). Let C,C′ be two circuit classes. We say that a
distribution D over C′-circuits is C-samplable if there exists a C-circuit S, which we call a sampler for D,
that satisfies the following: The circuit S gets random coins as input, prints a description of a C′-circuit,
and the output distribution (over a uniform choice of coins) is exactly D. We say that a family {Dn}n∈N

of distributions, where Dn is a distribution over circuits with n input bits, is samplable by C-circuits if
for every n ∈ N there is a C-circuit sampler for Dn. In shorthand, we say that {Dn} is a probabilistic

(C 7→ C′)-circuit family.

22More formally, since by definition of threshold circuits we have 0 ≤ wi,j,k, θi,j ≤ T, Weightn and Thrn both have
dlog Te output gates, specifying the binary representation of wi,j,k and θi,j, respectively.
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Loosely speaking, a refuter for f against samplable distributions over circuits gets as input a
description of a sampler S, and outputs a string x such that the distribution over circuits fails to
compute f (x).

Definition 3.9 (refuter for samplable distributions of circuits). Let C,C′ be two circuit classes, and let
τ ∈ (0, 1). We say that an algorithm R is a P-computable τ-refuter for f against probabilistic (C 7→ C′)-
circuits, if for every probabilistic (C 7→ C′)-circuit family {Dn} and sufficiently large n ∈ N, when R
is given input 1n and a description of a C-sampler Sn for Dn, outputs a string x ∈ {0, 1}n such that
Pr[ f (x) = Dn(x)] ≤ τ.

Similarly to Definition 3.4, a compression refuter for f against a distribution over circuits out-
puts x such that the distribution fails to output a small circuit whose truth-table is f (x).

Definition 3.10 (compression refuter for samplable distributions of circuits). Let C,C′ be two circuit
classes. We say that an algorithm R is a P-computable (D, nε)-compression list refuter for f against

probabilistic (C 7→ C′)-circuits, if for every probabilistic (C 7→ C′)-circuit family {Dn} and sufficiently
large n ∈N, when R is given input 1n and a description of a C-sampler Sn for Dn, it prints a length-t list
x1, . . . , xt ∈ {0, 1}n such that

for some i ∈ [t], Pr[Dn(xi) outputs a D circuit of size nε whose truth-table is f (xi)] < 2/3 . (1)

When we omit the circuit class D above, we set it to unrestricted Boolean circuits by default.

Definition 3.11. Let F be a circuit class. We say R is a probabilistic F-computable τ-refuter for f against

probabilistic (C 7→ C′)-circuits, if with probability 1− τ, R(1n) outputs a string x ∈ {0, 1}n such that
Pr[ f (x) = Dn(x)] ≤ τ.

When τ is not specified, we take τ = 2/3 by default (in both definitions of refuters for
samplable distributions of circuits).

3.3 Reconstructive PRGs and HSGs

In this section we present known construtions of pseudorandom generators and of (targeted)
hitting-set generators. To that end, let us recall the standard notion of a circuit that distinguishes
a distribution from the uniform distribution, and of a circuit that avoids a distribution.

Definition 3.12 (Avoiding and Distinguishing). Let m, t ∈ N, D : {0, 1}m → {0, 1}, and Z =
(zi)i∈[t] be a list of strings from {0, 1}m. Let ε ∈ (0, 1). We say that D ε-distinguishes Z, if∣∣∣∣ Pr

r∈{0,1}m
[D(r) = 1]− Pr

r∈[t]
[D(zi) = 1]

∣∣∣∣ ≥ ε.

We say that D ε-avoids Z, if Prr∈{0,1}m [D(r) = 1] ≥ ε and D(zi) = 0 for every i ∈ [t].

The first PRG is the Nisan-Wigderson [NW94] construction, with flexible parameters and with
its reconstruction presented as a distribution over deterministic T C0 circuits that is samplable by
P-uniform probabilistic T C0 circuits.

Theorem 3.13 (the NW PRG with T C0 reconstruction). There are universal constants cNW > 1 and
dNW ∈N≥1 and deterministic algorithms GNW and RNW such that the following holds:
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1. Generator: When given a string a ∈ {0, 1}n and m ∈N such that (log(n))cNW ≤ m ≤ n1/cNW , the
algorithm GNW runs in time ncNW·(log(n)/ log(m)), and prints a list of strings in {0, 1}m.

2. Reconstruction: On input (1n, m) such that (log(n))cNW ≤ m ≤ n1/cNW , the algorithm RNW runs in
time ncNW·(log(n)/ log(m)) and prints the description of a non-adaptive oracle T C0

dNW circuit S with mcNW

gates that maps randomness to a description of a non-adaptive oracle T C0
dNW circuit Dec with mcNW

gates. For any oracle D : {0, 1}m → {0, 1} that 1/m-distinguishes GNW(a, m), with probability at
least 1− 2−3m over Dec drawn from Sa, it holds that

Pr
i∈[n]

[
DecD(i) = ai

]
≥ 1/2 + m−3.

Proof. The algorithm GNW constructs a combinatorial design S1, ..., Sm ⊆ [d] with sets of size
|Si| = log(n) and with pairwise intersections |Si ∩ Sj| ≤ 10 · log(m) for distinct i, j ∈ [m] and
d = 2(log(n))2/ log(m) (see, e.g., [AB09, Lemma 20.14]). For every s ∈ {0, 1}d, the sth output
string in the list is (az�S1

, ..., az�Sm
) ∈ {0, 1}m.

Let us describe the oracle circuit S that prints Dec (it will be evident from the description that
a polynomial-time algorithm RNW can print S). For t = 1, ..., O(m2) in parallel, the circuit S:

1. Randomly chooses i ∈ [m] and z ∈ {0, 1}d−` and a bit σ ∈ {0, 1}, and queries a in ≤
m · 210·log(m) locations according to (i, z, σ) and the design.

2. Randomly chooses r = O(m4) locations q1, ..., qr ∈ [n], and queries a on these locations.

3. Let Dect be a deterministicAC0 oracle circuit computing the standard reconstruction of [NW94]
with the fixed values (i, z, σ) and the fixed design hard-wired into Dect. The circuit S prints
a deterministic T C0 oracle circuit Estt that computes νt = Pri∈[r]

[
(Dect)D(qi) = aqi

]
. (The

circuits Dect for t ∈ [O(m)] will be sub-circuits of Dec.)

Then, the circuit S prints a top gadget for the circuit Dec, which finds t that maximizes νt

(breaking ties arbitrarily), and on input i ∈ [n] answers (Dect)D(i).
Note that both S and Dec are non-adaptive oracle circuits (i.e., S queries a non-adaptively,

and Dec queries D non-adaptively) whose depth is bounded by a universal constant dNW ∈ N,
and whose size is at most poly(m) · 210·log(m) ≤ mcNW . By a standard analysis from [NW94], for
each t, with probability at least 1/O(m) over choice of (i, z, σ) it holds that

µt = Pr
q∈[n]

[
(Dect)D(q) = aq

]
≥ 1/2 + 1/O(m2).

Hence, with probability 1− 2−Ω(m), there exists t such that µt ≥ 1/2 + 1/O(m2). Now, condi-
tioned on |νt − µt| ≤ 1/m3 for all t, which also happens with probability 1− 2−Ω(m), we have
Pri∈[n]

[
(Dec)D(i) = ai

]
≥ 1/2 + m−3.

The second PRG is the standard combination of the Nisan-Wigderson [NW94] construction
with the error-correcting code of Sudan, Trevisan, and Vadhan [STV01] for hardness amplifica-
tion. We present it while arguing that the reconstruction is a non-uniform T C0 ◦ XOR circuit.

Theorem 3.14 (the STV PRG with T C0 ◦ XOR reconstruction). There are universal constants cSTV >
1 and dSTV ∈ N≥1 such that for every sufficiently small constant γ ∈ (0, 1), there are deterministic
algorithms GSTV and RSTV that satisfy the following:
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1. Generator: When given a string a ∈ {0, 1}n, GSTV runs in time ncNW/γ2
and prints a list of strings

in {0, 1}m, where m = nγ.

2. Reconstruction: RSTV(1n) outputs the description of a probabilistic(
T C0

dSTV [n ·m
cSTV ] 7→ T C0

dSTV ◦ XOR[m
cSTV ]

)
oracle circuit R f , such that given D : {0, 1}m → {0, 1} that 1/m-distinguishes GSTV(a) as oracle,
we have

Pr
R f←R f

[
RD

f (a) outputs a T C0
dSTV non-adaptive oracle circuit E such that tt(ED) = a

]
≥ 2/3.

The fact that the reconstruction can be done with a non-uniform T C0 ◦ XOR circuit follows
from the original proof, but it is non-standard. We therefore include a proof of this fact in
Appendix B.

Next, we present the targeted hitting-set generator of Chen and Tell [CT21]. Specifically,
we present the generator while arguing that its reconstruction is a streaming algorithm using
bounded space.

Theorem 3.15 (the reconstructive targeted HSG from [CT21] as a streaming algorithm). There
exists a universal constant c > 1 such that the following holds. Let f : {0, 1}n → {0, 1}n be computable
in time T(n), let γ > 0, and let M : N → N such that c · log(T) ≤ M ≤ Tγ/c. Then, there exists a
deterministic algorithm HCT

f and a probabilistic oracle machine RCT
f that for every z ∈ {0, 1}N satisfy the

following:

1. Generator: When given input z, the machine HCT
f runs in time poly(T(N)) and prints a list of

strings in {0, 1}M.

2. Reconstruction: RCT
f gets input z, and can be implemented by an Mc-space one-pass streaming

algorithm over the input z with running time Mc · T1+γ. When RCT
f is given oracle access to a

function D : {0, 1}M → {0, 1} that 1/M-avoids HCT
f (z), with probability at least 1− 1/M the

machine RCT
f outputs an oracle circuit C f (z) of size Tγ such that the truth-table of (C f (z))

D is f (z).

The fact that the reconstruction algorithm of the generator in Theorem 3.15 is a one-pass
streaming algorithm was not explicitly stated before, but it follows already from the original
construction and proof. For completeness, we explain why this is the case in Appendix A.

3.4 Search-to-decision reduction for randomized algorithms

We will use the following search-to-decision reduction for prBPP . The reduction constructs an
(approximate) solution to a BPP-search problem (as defined in [Gol11]) by repeatedly calling an
algorithm for corresponding decision problem. In fact, in the following statement, we consider
search problems such that solutions can be verified by circuits from a certain (potentially weak)
class C, and reduce finding (approximate) solutions to such problems to a CAPP-like decision
problem for C. That is:
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Theorem 3.16. Let C be a circuit class, and assume that for every µ ∈ (0, 1) and c ∈ N there is
a deterministic polynomial-time algorithm that gets as input C ∈ C, accepts if Prr[C(r) = 1] ≥ µ, and
rejects if Prr[C(r) = 1] ≤ µ− 1/|C|c. Then, for every 0 < a < b < 1, there is a deterministic polynomial-
time algorithm that, given a C circuit C : {0, 1}α+β → {0, 1} such that Prz←{0,1}α+β [C(z) = 1] ≥ b,
outputs a string x such that Prz←{0,1}β [C(x, z)] ≥ a.

Proof. The proof is a search-to-decision reduction a-la [Gol11], constructing x bit-by-bit. Starting
with x′ that is the empty string, we will maintain the invariant that after iteration i ∈ [α], the
updated prefix x′ ∈ {0, 1}i will satisfy Prr′∈{0,1}α−i ,z∈{0,1}β [C(x′r′, z) = 1] ≥ b− i/|C|2. To do so,
in each iteration i ∈ [α], the algorithm decides whether

Pr
r′∈{0,1}α−i ,z∈{0,1}β

[C(x′0r′, z) = 1] ≥ b− (i− 1)/|C|2 (3.1)

or

Pr
r′∈{0,1}α−i ,z∈{0,1}β

[C(x′0r′, z) = 1] ≤ b− i/|C|2 , (3.2)

by calling the hypothesized deterministic polynomial-time algorithm Est for this problem. If Est
accepts, then x′0 does not satisfy Eq. (3.2), and we proceed with the i-bit prefix x′0; if Est rejects,
then x′0 does not satisfy Eq. (3.1), and we proceed with the i-bit prefix x′1. Since at least one
string x′0 or x′1 satisfies Eq. (3.1), the invariant is maintained after the iteration. After α ≤ |C|
iterations, we have that Prz∈{0,1}β [C(x, z) = 1] ≥ b− 1/|C| > a.

3.5 Refuting functions with one output bit

Recall that, as stated in Section 1.1, it is straightforward to show that refuters for functions with a
single output bit implies derandomization. In fact, the proof holds even when the class of refuted
algorithms is the weakest possible in terms of dependency on the input:

Claim 3.17. Assume that there is an FP-refuter for some decision problem f ∈ P against the class of
probabilistic size-n circuits that are insensitive to their input (i.e., their output depends only on the input
length). Then, prBPP = prP .

Proof. Let A be a refuter in FP for f ∈ P against probabilistic circuits that are insensitive to their
input; we show how to solve CAPP in deterministic polynomial time. Given a circuit C of size at
most n, let D be a probabilistic circuit that ignores its input x, chooses r ∈ {0, 1}n uniformly at
random, and outputs C(r); note D also has size n (ignoring the inputs). Given C, our algorithm
for CAPP constructs D and runs A(D), printing an x such that Prr[D(x, r) 6= f (x)] > 1/3. Since
D(x, r) = C(r), we have Prr[C(r) 6= f (x)] > 1/3; in other words, we are not in the case that
Prr[C(r) = f (x)] ≥ 2/3. Since f ∈ P , we can compute ¬ f (x) and output it.

Note that Open Problem 1 asks to prove a statement as in Claim 3.17 but for arbitrary func-
tions f ∈ FP , rather than only for decision problem f ∈ P .
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4 A T C0-locally-encodable and T C0-locally-approximately-decodable
code

Our main goal in this section is to prove the following statement, which asserts that there is
an error-correcting code that is locally encodable by T C0 circuits, and locally approximately
decodable by T C0 circuits. That is:

Proposition 4.1 (a locally encodable and locally approximately decodable code). There is a uni-
versal constant c0 > 1 such that the following holds. For every γ, ν > 0 and finite field F of size
|F| ≤ poly(N) there exists c = cγ,ν > 1 and a mapping Enc : FN → {0, 1}N̄ , where N̄ = Nc, such that
the following holds:

1. (Locally encodable.) There is a P-uniform family {QN}N∈N of threshold circuits of constant
depth and size |QN | = Nc0·(γ+ν) such that QN gets input i ∈ [N̄] and prints a set q1, ..., qM ∈ [N],
where M = Nγ. Also, there is a P-uniform family {EN}N∈N of threshold circuits of constant depth
and size |EN | = Nc0·(γ+ν) such that EN gets input i ∈ [N̄] and x1, ..., xM ∈ F, and outputs a bit σ
such that the following holds: For any z ∈ FN satisfying zq` = x` for all ` ∈ [M], the output of EN
is σ = Enc(z)i.

2. (Locally approximately decodable.) There is a P-uniform family {DN}N∈N of probabilistic
oracle threshold circuits of constant depth and size |DN | = Nc0·(γ+ν) such that for every z ∈ FN

the following holds. The circuit DN first has a probabilistic preprocessing step, in which it non-
adaptively queries z. Now, fix any O ∈ {0, 1}N̄ satisfying Prj∈[N̄]

[
Enc(z)j = O(j)

]
> 1/2+ N−ν.

Then, with probability at least 1− o(1) over the coins in the preprocessing step, there exists a set
S ⊆ [N] of density |S|/N ≥ 1− N−γ such that for every i ∈ S,

Pr
[
(DN)

O(i) = zi

]
> 2/3 ,

where the probability is over the random coins of DN after the preprocessing step.

3. (Systematic.) There is a P-uniform family {IN}N∈N of non-adaptive oracle threshold circuits of
constant depth and size |IN | = Nc0·(γ+ν) such that IN gets input i ∈ [N] and oracle access to an
N̄-bit string and for every x ∈ FN and every i ∈ [N] satisfies IN(i)Enc(x) = xi.

At a high-level, the code underlying Proposition 4.1 will be a combination of two different
(locally encodable and approximately locally decodable) codes. Loosely speaking, the first code
(uniquely) N−γ-approximately decodes from agreement 1− δ for a small constant δ (i.e., given
a codeword that is corrupted on δ of the coordinates, it recovers the unique original message on
all but N−γ of the coordinates); and the second code δ-approximately decodes from agreement
1/2 + N−ν.

We first present the two codes in Sections 4.1 and 4.2, respectively, and then prove Proposi-
tion 4.1 in Section 4.3 by combining them in a straightforward way.

4.1 The first code: From distance N−Ω(1) to distance 0.01

The first code, which we now present, N−γ-approximately decodes from agreement 1− δ.
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Proposition 4.2. There are two universal constants c1 > 1 and δ > 0 such that for every γ > 0 there
exists ĉ = ĉγ > 1 for which the following holds. Let {FN}N∈N be a sequence of finite fields of size
|FN | = poly(N) . Then, there is a mapping Enc1 : (FN)

N → {0, 1}N̂ , where N̂ = N ĉ, such that the
following holds:

1. (Locally encodable.) There is a P-uniform family {QN}N∈N of threshold circuits of constant
depth and size |QN | = Nc1·γ such that QN gets input i ∈

[
N̂
]

and prints a set q1, ..., qM ∈ [N],
where M = Nc1·γ. Also, there is a P-uniform family {EN}N∈N of threshold circuits of constant
depth and size |EN | = Nc1·γ such that EN gets input i ∈ [N̂] and x1, ..., xM ∈ FN , and outputs
a bit σ such that the following holds: For any z ∈ (FN)

N satisfying zq` = x` for all ` ∈ [M], the
output of EN is σ = Enc1(z)i.

2. (Locally approximately decodable.) There is a P-uniform family {DN}N∈N of probabilistic
non-adaptive oracle threshold circuits of constant depth and size |DN | = Nc1·γ such that for every
z ∈ (FN)

N the following holds. Let O : {0, 1}N̂ → {0, 1} such that Prj∈[N̂]

[
Enc1(z)j = O(j)

]
≥

1− δ. Then, there exists a set S ⊆ [N] of density |S|/N ≥ 1− N−γ such that for every i ∈ S,

Pr
[
(DN)

O(i) = zi

]
≥ 2/3 ,

where the probability is over the random coins of DN .

3. (Systematic.) There is a P-uniform family {IN}N∈N of non-adaptive oracle threshold circuits of
constant depth and size |IN | = Nc1·γ such that IN gets input i ∈ [N] and oracle access to an N̂-bit
string and for every z ∈ FN and every i ∈ [N] satisfies IN(i)Enc1(z) = zi.

At a high level, we will first use the classical expander-based distance-amplification of Alon
et al. [ABN+92] to increase the distance of the code from N−γ to (say) 0.4. Then we will reduce
the alphabet to {0, 1} in a sequence of concatenation steps, where each concatenation step mildly
reduces the size of the alphabet while approximately preserving the distance.

Towards presenting the proof, in Sections 4.1.1 and 4.1.2 we construct two building-blocks
that will be used repeatedly in the code. Then, in Section 4.1.3 we prove Proposition 4.2. The
following auxiliary technical definition will be used in both building-blocks.

Definition 4.3 (nice alphabets). We say that a sequence {ΣM}M∈N of alphabets of size is nice if there are

two functions Φ =
{

ΦM : ΣM → {0, 1}dlog(|ΣM |)e
}

M∈N
and Φ−1 =

{
Φ−1

M : {0, 1}dlog(|ΣM |)e → ΣM

}
M∈N

that are computable in P-uniform T C0 of size polylog(|ΣM|) and that satisfy Φ−1
M (ΦM(x)) = x for every

M ∈N and x ∈ ΣM.

4.1.1 Efficient implementation of expander-based distance amplification

The first building-block is an efficient implementation of the expander-based distance amplifica-
tion of [ABN+92], presented in [GGH+07] (following [GV04]).

Lemma 4.4 (efficient expander-based distance amplification). There exists α ∈ (0, 1) such that the
following holds. Let {ΣM}M∈N be a nice sequence of alphabets, and let d(M) = MO(γ) or d(M) =
poly(|ΣM|). Then, there exists Encex =

{
EncexM : (ΣM)M → (Σd

M)M} such that the following holds.
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1. (Locally encodable.) There is a P-uniform family of T C0 circuits {EM}M∈N of size poly(d, log(M))
such that EM gets input i ∈ [M] and prints a set of coordinates ΓM(i, 1), ..., ΓM(i, d). For every
z ∈ ΣM

M, let EncexM(z) ∈ (Σd
M)M such that every i ∈ [M] it holds EncexM(z)i = (zΓM(i,1), ..., zΓM(i,d)).

2. (Locally approximately decodable.) There is a P-uniform family of non-adaptive oracle T C0

circuits {DM}M∈N of size poly(d, log(M), log(|Σ|)) that satisfies the following. Let y ∈ (Σd
M)M

such that there exists z ∈ (ΣM)M for which Pri∈[M] [Enc
ex
M(z) = y] ≥ 0.6. Then, for all but d−α of

the coordinates i ∈ [M] we have (DM)y(i) = zi.

Proof. Let α > 0 be a sufficiently small constant. We consider a family of bipartite graphs
[M]× [M] that are d-biregular and have the following property: for any set B ⊆ [M] of vertices
on the right side satisfying |B| ≤ 2M/5, there are at most δ ·M vertices v on the left side satisfying
|Γ(v) ∩ B| ≥ d/2, where Γ(v) is the list of neighbors of v. As shown in [GGH+07, Claim 4.1]
(following [GV04], using powers of the expanders of [GG79]), there exists such a family coupled
with a family of P-uniform AC0 circuits of size poly(d, log(M)) such that given the name of a
vertex v (on either side of the graph), the circuit outputs the list Γ(v).

Turning to decoding, consider DM that gets input i ∈ [M] and oracle access to y ∈ (Σd
M)M

as in the hypothesis. The circuit DM computes the list Γ(i), queries y on each j ∈ Γ(i) to obtain
a list of d-tuples, and for each j ∈ [d] it computes k j ∈ [d] such that i is the (k j)

th neighbor of j.
The output is the majority vote, over all j ∈ [d], of the (k j)

th entry in the jth tuple. Note that the
majority vote can be computed in P-uniform T C0 of size poly(d, log(|Σ|)),23 and hence DM can
be implemented by a P-uniform T C0 circuit of such size. For a standard proof of correctness of
this decoder, see e.g. [GGH+07, Proof of Theorem 1.3].

4.1.2 Efficient alphabet reduction

The second building-block, presented next, will be used to reduce the alphabet of a code by an
almost exponential factor, while approximately preserving its original constant distance. The
building block itself is a mapping of every alphabet symbol to a short sequence of symbols over
a smaller alphabet, in a way that supports efficient unique decoding of the original symbol from
any sequence that has smll constant distance from the correct encoding.

Lemma 4.5 (efficient alphabet reduction). Let {ΣM}M∈N be a nice sequence of alphabets. Then,
there exists a mapping Encal =

{
EncalM : ΣM → (Σ′M)`M

}
, where |Σ′M| = 2polyloglog(|ΣM |) and `M =

polylog(|ΣM|), such that the following holds.

1. (Locally encodable.) There is a P-uniform family of T C0 circuits {EM}M∈N of size polyloglog(|Σ|)
such that EM gets input z ∈ ΣM and i ∈ [`M] and outputs EncalM(z)i. 24

2. (Locally decodable.) There is a P-uniform family of probabilistic non-adaptive oracle T C0 circuits
{DM}M∈N of size polyloglog(|Σ|) that satisfies the following. Let y ∈ (Σ′M)`M such that there

23To see this, let σ1, ..., σd be the symbols appearing in the corresponding places in the d tuples. For every σj ∈ Σ,

we compute cj = |
{

k : σk = σj

}
| in T C0 of size poly(d, log(|Σ|)). Now we compare the d integers

{
cj

}
j∈[d]

in T C0 of

size poly(d) to find the maximal cj, and output σj.
24The uniform circuits receive Σ-symbols and output symbols in binary representation, relying on the efficient

bijection between Σ and {0, 1}log(|Σ|) that exists because Σ is nice.
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exists z ∈ ΣM for which Pri∈[`M ]

[
EncalM(z)i = yi

]
≥ 0.6. Then, for every i ∈ [log(|ΣM|)] we have

that Pr[(DM)y(i) = zi] ≥ 2/3, where the probability is over the internal coins of DM.

3. (Niceness preserving.) The alphabet sequence Σ′ = {Σ′M}M∈N
is nice.

Proof. At a high level, we combine a Reed-Muller encoding over a relatively small field with the
expander-based encoding from Lemma 4.4. Towards describing the construction, for simplicity
we denote Σ = ΣM and Encal = EncalM , etc.

Given z ∈ Σ, we identify z with the corresponding vector in {0, 1}k=log(|Σ|) (using the niceness
of the alphabet Σ), and encode it by the low-degree extension view of the Reed-Muller code,
with a field F′ of size |F′| = 2d2loglog(k)e = O(loglog|Σ|)2 and interpolation set H of size |H| =
2dloglog(k)e = O(loglog(|Σ)), and m = |H|

log(|H|) variables. Note that this yields z(1) ∈ (F′)|F|
′m

. 25

Now we encode z(1) by the code from Lemma 4.4, instantiated with alphabet F′ and length
` = |F′|m = polylog(|Σ|) and parameter value d = poly(|F|′), to obtain z(2) ∈ ((F′)d)`. Note that
the alphabet F′ is nice, and hence we can use Lemma 4.4.

Let Encal(z) = z(2), and note that

|Encal(z)| =
(
(F′)d

)`
;

we think of Encal(z) as consisting of ` symbols from Σ′ = (F′)d, and note that

|Σ′| = (loglog|Σ|)polyloglog(|Σ|) = 2polyloglog(|Σ|)

and that Σ′ is nice.
Let us first describe the encoding circuit EM. We map z to z(1) via standard Lagrange inter-

polation over the field F′ and with |H| = loglog(|Σ|), which can be done by a P-uniform T C0

circuit of size poly(m · H, log(|F′|)) = polyloglog(|Σ|). Then we map z(1) to z(2) via Lemma 4.4,
which can also be done by a P-uniform T C0 circuit of size poly(d, log(`)) = polyloglog(|Σ|).

Turning to decoding of a corrupt codeword y ∈ (Σ′)`, we will use standard decoding of
composed codes. That is, we run the standard unique local decoder for the Reed-Muller code
from distance ∆ = d−α = H/100|F′| (where α > 0 is the universal constant from Lemma 4.4),
and whenever this decoder accesses a symbol, we answer by running the decoder for the code
from Lemma 4.4 and giving it access to y.

Since y is (1/4)-close to Encal(z) for some z ∈ Σ, it holds that y is (1/4)-close to the mapping
z(2) of z(1) by Encex. Thus, by Lemma 4.4, there exists z̃ ∈ (F′)|F

′|m that agrees with z(1) on all
but ∆ of the coordinates such that the queries of the local decoder for the Reed-Muller code are
answered according to z̃. It follows that for every i ∈ [k], with high probability, the local decoder
for the Reed-Muller code outputs the correct ith symbol in the encoding of z.

As for the complexity of the decoder, first note that its queries are indeed non-adaptive,
because the two decoders that it uses are non-adaptive. The unique decoder for the Reed-Muller
code can be implemented by P-uniform T C0 circuits of size poly(|H|, log(|F′|)), and the decoder
from Lemma 4.4 can be implemented by P-uniform T C0 circuits of size

poly(d, log(`), log(|F′|)) = poly(|F′|) = polyloglog(|Σ|) .

25In more detail, let H be the set of vectors in (F′)m with last m − log(|H|) coordinates equaling zero. Since
|H|m ≥ k, we identify each coordinate i ∈ [k] with a corresponding element ~hi ∈ H. Given z ∈ {0, 1}k, for every
~v ∈ (F′)m we define p(~v) = ∑i∈[k] δ~hi

(~v) · zi. The output is z(1) = (p(~v))~v∈(F′)m .
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The bound follows by combining both circuits.

4.1.3 Proof of Proposition 4.2

For simplicity, denote F = FN . Given z ∈ FN , we compute Enc1(z) in four steps, as follows.

1. Encode z to z(1) ∈ (Fd)N using the code from Lemma 4.4, where d = NO(γ).

2. Concatenate z(1) with the code from Lemma 4.5; that is, encode each (Fd)-symbol of z(1)

by the code from Lemma 4.5, to obtain z(2) ∈
(

Σ(2)
)`·N

, where |Σ(2)| = 2polyloglog(Fd) =

2polylog(N,log(|F|)) and ` = polylog(|F|d) = poly(N, log(|F|)). Denote N(2) = N · ` =
poly(N).

3. Concatenate z(2) with the code from Lemma 4.5 again, to obtain z(3) ∈
(

Σ(3)
)`′·N(2)

, where

|Σ(3)| = 2polyloglog(|Σ(2)|) = 2polyloglog(N,log(|F|)) and `′ = polylog(|Σ|(2)) = polylog(N, log(|F|)).
Denote N(3) = N(2) · `′ = poly(N).

4. Concatenate z(3) with the good binary code of [STV01], to obtain z(4) ∈ {0, 1}poly(N). We
define Enc1(z) = z(4) and N̂ = |z(4)| = poly(N).

Local encoding. By the definition of Enc1, each output bit i ∈ [N̂] of Enc1(z) = z(4) is a function
of all the bits encoding of a Σ(3)-symbol in z(3). In turn, each Σ(3)-symbol in z(3) is the encoding
under Lemma 4.5 of a Σ(2)-symbol in z(2), and each Σ(2)-symbol in z(2) is the encoding under
Lemma 4.5 of an Fd-symbol in z(1). Finally, each Fd-symbol in z(1) is the concatenation of d
symbols in z. It follows that each output bit i of Enc1(z) depends on d symbols in z.

We now argue that the mapping of i to the d locations of the symbols in z that affect Enc1(z)i
can be computed in P-uniform T C0 of size NO(γ). To see this, note that tracing back i to the
relevant location of the symbol in z(3), then further to the relevant location in z(2), and then
to the relevant location ji in z(1) is computable easily from the index i (because the encodings
z(1) 7→ z(2) 7→ z(3) 7→ z(4) are concatenations). Given ji ∈ |z(1)|, we run the circuit EN from
Lemma 4.4 to compute the d locations.

Also, by the constructions of EN’s from Lemmas 4.4 and 4.5, we can compute Enc1(z)i from
the values of z in these d locations by a P-uniform T C0 circuit of size NO(γ). (The main bottleneck
is the encoder from Lemma 4.4, which uses size poly(d, log(N)) for d = NO(γ).)26

Local decoding. At a high-level, the decoder DN implements standard decoding for concate-
nated codes. Specifically, given i ∈ [N] and oracle access to O as in our assumption, we:

1. Run the decoder D(1)
N for the code from Lemma 4.4 instantiated with parameter d = NO(γ).

Whenever it tries to access an Fd-symbol q1 ∈ [N], perform Step (2) to obtain the answer.

26Note that this does not use the local encoding property of Lemma 4.4; that is, to compute Enc1(z)i we compute
all the bits of the relevant Σ(2)-symbols and Σ(3)-symbols. This causes a size blow-up of polylog(N, log(|F|)), which
does not affect the complexity of the encoder.
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2. For all j ∈ [log(|Fd|)] in parallel, we run the decoder D(2)
N for the code from Lemma 4.5,

instantiated with alphabet Fd and with input j. Whenever the decoder tries to access a
Σ(2)-symbol q2 ∈ [N(2)], perform Step (3) to obtain the answer.

3. For all k ∈ [log(|Σ(2)|)], we run the decoder D(3)
N for the code from Lemma 4.5, instantiated

with alphabet Σ(2) and with input k. Whenever the decoder tries to access a Σ(3)-symbol
q3 ∈ [N(3)], perform Step (4) to obtain the answer.

4. Let EncSTV be the encoding of [STV01], and recall that it maps log(|Σ(3)|) bits to t =
polylog(|Σ(3)|) = polyloglog(N) bits. We query O at the t locations corresponding to
the encoding of the qth symbol, to obtain an answer a ∈ {0, 1}t. Then we enumerate over
all messages m ∈ Σ(3), compute EncSTV(m) for each m, and output m that maximizes
Prj∈[t][Enc

STV(m)j = aj].

Since all the decoders are non-adaptive, the composed decoder is also non-adaptive. Also, the
original decoder from Lemma 4.5 is probabilistic and has error probability 1/3; by naive error-
reduction, we can assume that it has error probability N−ω(1), at the cost of increasing the circuit
size by a polylog(N) factor. (This will not affect our analysis, and it preserves non-adaptivity.)

Let us first bound the complexity of the decoder. It can be implemented by combining four
P-uniform probabilistic non-adaptive oracle T C0 circuits, which yields a circuit of total size

poly(d)︸ ︷︷ ︸
D(1)

N

+((1 + o(1)) · log(|F|d) · polyloglog(|F|d)︸ ︷︷ ︸
D(2)

N and D(3)
N

) + |Σ(3)|︸ ︷︷ ︸
decoding EncSTV

≤ NO(γ) .

The proof of correctness follows a standard proof of correctness for decoding concatenated
codes. Specifically, with high probability, all invocations of the decoder from Lemma 4.5 were
successful (recall that we reduced its error to N−ω(1)); we condition on this event. Now, for a
sufficiently small δ > 0, if the distance of O from Enc1(z) is at most δ, then for at most

√
δ of

the blocks of length t corresponding to encodings of Σ(3)-symbols in z(3), at most
√

δ of the bits
in the block are corrupted. Hence, the decoder for EncSTV succeeds on at least

√
δ of locations

q3 ∈ [N(3)], which implies that the decoder in Step (3) gets oracle access to a string that is of
distance

√
δ from z(3). The same logic applies to Step (2), and to Step (1). Relying on Lemma 4.4

and on a sufficiently small choice of δ > 0 (such that δ1/8 < 2/5) the decoder maps i to zi for all
but d−α = N−γ of the coordinates i ∈ [N].

Systematic. We are given an index i ∈ [N], and our goal is to find an output index i′ ∈ [N̂]
such that Enc1(z)i′ = zi for all z. The main thing that we need to verify is that for the code
Encex : (ΣM)M → (Σd

M)M, given an input index i0 ∈ [M], we can find j ∈ [M] and i′ ∈ [d] such
that i is the (i′)h symbol in Encex(z)j. The reason that this suffices is that Enc1 first encodes
z 7→ Encex(z), and then performs a sequence of concatenation steps, where each concatenation
step encodes each block by a systematic code (i.e., either the combination of the Reed-Muller
code, which is systematic, with Encex, which we will now show is indeed systematic; or the code
of [STV01], which is systematic).

To verify the claim about Encex, recall that given i ∈ [N] we can produce the list of neighbors
of i (in the degree-d expander graph [M] × [M] underlying Encex) in P-uniform AC0 of size
poly(d, log(M)). In our setting we will always have poly(d, log(M)) ≤ NO(γ). Letting j be the
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first neighbor of i in the list, we can find the index i′ of i in the list of neighbors of j by P-uniform
AC0 circuits of size NO(γ) (i.e., by computing the list of neighbors of j).

4.2 The second code: From distance 0.01 to distance 1/2− N−Ω(1)

We now present the second code, which (1− δ)-approximately decodes from agreement 1/2 +
N−ν, for an arbitrarily small constant δ > 0. Note that at such agreement we cannot hope
to support unique decoding, and thus this code can be thought of as list-decodable. In the
statement below, the code will use a preliminary preprocessing step, to ensure that it can find
the right message in the list of possible messages.

Proposition 4.6. There is a universal constant c2 > 1 such that the following holds. For every δ, ν′ > 0
there exists c′ = c′δ,ν′ > 1 and a mapping Enc2 : {0, 1}N̂ → {0, 1}N̄ , where N̄ = N̂c′ , such that the
following holds:

1. (Locally encodable.) There is a P-uniform family {QN̂}N̂∈N
of T C0 circuits of size |QN̂ | =

N̂c2·ν′ such that QN̂ gets input i ∈ [N̄] and prints a set q1, ..., qk ∈ [N̂], where k ≤ c2 · (ν′/δ2) ·
log(N̂). Also, there is a P-uniform family {EN̂}N̂∈N

of threshold circuits of constant depth and
size |EN̂ | = (N̂)c2·ν′ such that EN̂ gets input i ∈ [N̄] and x1, ..., xk ∈ F, and outputs a bit σ such
that the following holds: For any z ∈ {0, 1}N̂ satisfying zq` = x` for all ` ∈ [k], the output of EN̂ is
σ = Enc2(z)i.

2. (Locally approximately decodable.) There is a P-uniform family {DN̂}N̂∈N
of probabilistic

non-adaptive oracle T C0 circuits of size |DN̂ | = (N̂)c2·ν′ such that for every z ∈ {0, 1}N̂ the
following holds. Fix any O ∈ {0, 1}N̄ satisfying Prj∈[N̄]

[
Enc2(z)j = Oj

]
≥ 1/2 + (N̂)−ν′ . The

circuit DN̂ first has a probabilistic preprocessing step, in which it non-adaptively queries z. Then,
with probability at least 1− o(1) over the coins in the preprocessing step, there exists a set S ⊆ [N̂]
of density |S|/N̂ ≥ 1− δ such that (DN̂)

O(i) = zi for every i ∈ S.

3. (Systematic.) There is a P-uniform family {IN̂}N∈N
of non-adaptive oracle threshold circuits of

constant depth and size |IN̂ | = (N̂)c2·ν′ such that IN̂ gets input i ∈
[
N̂
]

and oracle access to an
N̄-bit string and for every z ∈ {0, 1}N̂ and every i ∈

[
N̂
]

satisfies IN̂(i)
Enc2(z) = zi.

Proof. At a high-level, the code is the concatenation of the derandomized direct product code of
Impagliazzo and Wigderson [IW97] and of the Hadamard code.

Construction. Let n = log(N̂), let ε = (N̂)−c′′·ν′ , let δ′ = δ/2, and let k = (c′′/(δ′)2) · log(1/ε),
for a sufficienty large universal constant c′′ > 1. Consider the two following algorithms:

1. The expander-random-walk sampler. Specifically, fix any expander over {0, 1}n with con-
stant degree and a sufficiently small (constant) normalized second largest eigenvalue. Lt
Samp : {0, 1}m1 → ({0, 1}n)k be the function that takes as input a description of a k-length
walk on the expander (i.e., an initial n-bit index of a vertex and k indices of edges) and
outputs the indices of the k vertices encountered in the walk. Note that m1 = n + O(k).
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2. An efficiently computable combinatorial design Des : {0, 1}m2 × [k] → {0, 1}n, which takes as
input z ∈ {0, 1}m2 and the index i ∈ [k] of a set Si ⊆ [n] of size |Si| = n, and outputs z�Si

.
The design has the property that for any i 6= j it holds that |Si ∩ Sj| ≤ (ν′/2) · n. We will
use designs with m2 = O(n/ν′) and k as above.27

Let n̄ = m1 + m2 = Oν′,δ′(n + log(1/ε)). For any (y1, y2) ∈ {0, 1}n̄ and i ∈ [k], we define
Loc(y1, y2, i) = Samp(y1, i) ⊕ Des(y2, i) ∈ {0, 1}n. Then, given z ∈ {0, 1}N̂ , we map it to z′ ∈
({0, 1}k)2n̄

such that for any (y1, y2) ∈ {0, 1}n̄ it holds that

z′y1,y2
=
(

zLoc(y1,y2,1), ..., zLoc(y1,y2,k)

)
.

The output of Enc2(z) is the concatenation of z′ with the Hadamard code. Since k = Oδ′(log(1/ε)),
this yields a binary codeword Enc(z) of length

2n̄+k = N̂ · (1/ε)cν′ = N̂c′
δ,ν′ ,

for a sufficiently large c′δ,ν′ > 1.

Local encoding. We prove that there exists a P-uniform family of T C0 circuits of small size for
local encoding of the code. We first show that the locations for the derandomized direct product
encoding of [IW97] can be computed in uniform AC0:

Claim 4.6.1. There is a P-uniform family ofAC0 circuits of size (N̂)c′′·ν′ that get input (y1, y2) ∈ {0, 1}n̄

and print the set {Loc(y1, y2, i)}i∈[k].

Proof. We instantiate Samp with the Gabber-Galil expander [GG79] of constant degree over [N̂].28

As was shown in [GV04], there is a P-uniform family of AC0 circuits of size poly(log(N̂), 2k) <
(N̂)c′′·ν′ that gets as input i ∈ [k] and the description of a k-length walk (i.e., a starting vertex and
a list of indices of edges) and outputs the ith vertex in the walk.29 In particular, given y1 ∈ {0, 1}m1

and i ∈ [k], such circuits can output Samp(y1, i).
Also, combinatorial designs with parameters as those of Des above are well-known to be

computable in time poly(k, m2) � N̂ (see, e.g., [Vad12, Problem 3.2]). We consider a P-uniform
family of circuits in which the P-uniform algorithm that constructs the circuit computes such a
design and hard-wires it into the circuit; the description of a design is of length k · n � (N̂)ν′ .
Given input y2 ∈ {0, 1}m2 and i ∈ [n], the circuit projects y2 to the coordinates in the ith set in the
design.

By combining the two families of circuits above, we obtain a P-uniform family of AC0 cir-
cuits of size at most Nc′′·ν′ that, given (y1, y2, i), computes Loc(y1, y2, i). (That is, the family
computes Samp(y1, i) and Des(y2, i) in parallel and XORs them.) The claim follows by computing
Loc(y1, y2, i) in parallel for all i ∈ [k]. �

27There exist designs with a significantly larger number of sets k = 2Θ(ν′)·n, but we will not need such a large k.
28A minor technical point is that such expanders are only defined over vertex-set of size that is a square (i.e., N2 for

some N ∈ N). Since we are considering expanders over the vertex-set [N̄], and we do not mind a quadratic increase
in the value of N̂ in the previous steps, we may assume without loss of generality that N̂ is a square.

29In [GV04] this claim is stated only for a specific value of k, but as observed in [GGH+07] the original proof already
supports the claim for every k.
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For the final encoding of z ∈ {0, 1}N̂ to Enc2(z) ∈ {0, 1}N̄ , note that any output index ī ∈ [N̄]
can be thought of as a pair (i, j) where i = (y1, y2) ∈ {0, 1}n̄ and j ∈ {0, 1}k. The set of coordinates
that the īth output depends on is the set Sī = {Loc(y1, y2, i)}i∈[k], and the value of the īth output is

⊕i∈[k] ji · Loc(y1, y2, i). By Claim 4.6.1, there is a P-uniform family of AC0 circuits of size (N̂)c′′·ν′

computing the mapping ī 7→ Sī, and the output list is of size |Sī| = k·. The final output can be
computed by computing a parity over k values, and this can be done in P-uniform T C0 of size
poly(k)� Nc′′·ν′ .

Systematic. Given i ∈ [N̂] ≡ {0, 1}n, the circuit IN̂ finds a neighbor j of i in the expander
over {0, 1}n (that was used for the encoding, in the proof of Claim 4.6.2), and finds the index
σ ∈ [O(1)] of the edge that goes from j to i (by trying all O(1) indices in parallel). Let y1 describe
the walk that starts from j, goes along index σ to i in the first step, and proceeds arbitrarily (e.g.,
walking along index σ for k− 1 additional steps). Note that Samp(y1, i′) = i. Also let y2 = 0m2 ,
and note that Loc(y1, y2, 1) = i. Then, IN̂ queries its oracle at the location that corresponds to
(y1, y2) and to the linear function f (x1, ..., xk) = x1 (we can assume that this is the first location
in the block that corresponds to (y1, y2)). As argued in the proof of Claim 4.6.2, by our choice of
expander this can be executed by a AC0 circuit of size (N̂)c′′·ν′ .

Local approximate decoding. The claimed decodability essentially follows from the classical
works of [IW97] and [GL89], yet we spell the argument out in detail to explain why the specific
properties that we claim hold.

Let us recall the local decoding algorithm of [IW97], and use the presentation of the construc-
tion and proof from [DT23]. For convenience, we denote by IWN̂ the mapping of z to z′ defined

as above (i.e., z′y1,y2
=
(

zLoc(y1,y2,1), ..., zLoc(y1,y2,k)

)
). Then, we argue that:

Claim 4.6.2. There is a P-uniform family of probabilistic non-adaptive oracle T C0 circuits
{

DIW
N̂

}
N̂∈N

of size (N̂)c′′·ν′ satisfying the following. Let w ∈ {0, 1}N̂ , and let Ō : {0, 1}n̄ → {0, 1}k such that
Pry1,y2∈{0,1}n̄ [Ō(y1, y2) = IWN̂(w)y1,y2 ] ≥ ε. The circuit DIW

N̂ first has a probabilistic preprocessing
step in which it queries w. Then, with probability at least 1− o(1) over the randomness of DIW

N̂ in the
preprocessing step, there is a set X ⊆ [N̂] of density |X|/N̂ ≥ 1− δ′ such that for every x ∈ X it holds
that (DIW

N̂ )Ō(x) = wx (note that this computational step is deterministic).

Proof. The uniform circuit is essentially the decoding algorithm of [IW97], as presented in [DT23,
Lemma A.2 and the subsequent description]. In the preprocessing step it repeats the following
procedure t = O(n/ε2) times, in parallel:

Choose at random a seed z1 ∈ {0, 1}m1 for Samp, and an index i ∈ [k], and values
α ∈ {0, 1}m2−n for the entries of z2 ∈ {0, 1}m2 on coordinates outside Si. Now query
w in parallel on a set of at most (k− 1) · 2(ν′/2)·n locations, which are determined by
(i, α) and by the combinatorial design.30

30Specifically, in parallel for all j ∈ [k] \ {i} do the following. Compute the set Si ∩ Sj, iterate in parallel over all

choices for x(j) ∈ {0, 1}|Si∩Sj |, and compute the n-bit string x′ obtained by placing x(j) in locations Si ∩ Sj and α�Sj
in

locations Sj \ Si. Query w in position Loc(z1, z2, j) = x′ ⊕ Samp(z1, j).
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Now, given x ∈ [N̂], the output is the majority of the outputs of t sub-circuits on x, where
each sub-circuit corresponds to one of the experiments in the preprocessing steps (i.e., to a fixed
choice of (z1, i, α)), and performs the following:

1. Compute x′ = x⊕ Samp(z1, i), complete x′ (using α) to z2 ∈ {0, 1}m2 , and query Ō on input
(z1, z2).31

2. For each j ∈ [k] \ {i}, let cj ∈ {0, 1} equal zero iff Ō(z1, z2)j = wLoc(z1,z2,j).

3. For ` = ∑j 6=i cj, output Ō(z1, z2)i with probability 2−` and a random bit otherwise.

Since this is precisely the construction of [IW97], its correctness follows from the original
proof (see, e.g., [DT23, Proof of Lemma A.2]). In the construction above the second step (after
preprocessing) is probabilistic, and the original proof shows that with probability 1− o(1) over
coins in the preprocessing phase, there is X of density 1− δ′ such that for every x ∈ X it holds
that Pr

[
(DIW

N̂ )Ō(x) = wx

]
≥ 0.99. Using naive error-reduction, we can reduce the error prob-

ability from 0.01 to 1/(N̂)2, and choose random coins for the second step in advance (i.e., in
the preprocessing phase). Then, the second step is deterministic, and with probability at least
1− o(1) over the coins in the preprocessing phase, the second step is correct for every x ∈ X.

As for the complexity of the construction, note that the number of queries in the preprocessing
step is less than

Q = 2(ν
′/2)·n · k · (n/ε2) = (N̂)c′′·ν′ ,

and that the size of the circuit is at most

O
(

t · (N̂)c′′·ν′ · polylog(N̂)
)
< N̂2c′′·ν′ . �

Next, we recall the list-decoding algorithm for the Hadamard code from [GL89].

Claim 4.6.3. There is a P-uniform family
{

DGL
N̂

}
N̂∈N

of probabilistic non-adaptive oracle T C0 circuits

of size (N̂)c′′·ν′ that satisfies the following. For every z ∈ {0, 1}N̂ and every O ∈ {0, 1}N̄ that agrees with
Enc2(z) on 1/2 + (N̂)−ν′ of the inputs,

Pr
[
(DGL

N̂ )O(x) = IWN̂(z)x

]
≥ 2ε ,

where the probability is over x ∈ {0, 1}n̄ and over the random coins of DGL
N̂ .

We are now ready to construct the final decoder DN̂ . In the preprocessing step, we repeat the
following experiment for O(1/ε) times, in parallel. For j = 1, ..., O(1/ε):

1. Run the preprocessing step of DIW
N̂ .

2. Choose uniformly at random a set of ` = O(log(1/ε)) locations q(j)
1 , ..., q(j)

` ∈ [N̂], and query
w on these locations.

31To parse the meaning of this step, note that Loc(z1, z2, i) = Samp(z1, i) ◦ x′ = x, so we hope to have Ō(z1, z2)i = wx.
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3. Choose in advance fixed random coins r(j) to be used by DGL
N̂ and by the second step of

DIW
N̂ .32

4. For i ∈ [`], run DIW
N̂ (i), and whenever it queries its oracle Ō at location q′ ∈ {0, 1}n̄, answer

using DGL
N̂ (q′). (Both decoders are run using the fixed random coins.) Let w̃(j)

i be the answer
of this procedure.

5. Let ṽ(j) = Pri∈[`]

[
w̃(j)

i = wi

]
. If ṽ(j) ≥ 1− δ′/2, consider this experiment successful; other-

wise, consider the experiment failed.

Now, let j∗ ∈ [O(1/ε)] be the index of the first successful experiment (if there was no suc-
cessful experiment, abort). In the second step, the decoder is given i ∈ [N̂]; it runs DIW

N̂ (i) and
answers its queries using DGL

N̂ , where both decoders use the fixed random coins specified by r(j∗).
Observe that the final decoder only non-adaptive oracle queries, and can be implemented by

P-uniform T C0 circuits of size

r · ` ·O
(
(N̂)c′′·ν′ · (N̂)c′′·ν′

)
≤ (N̂)c2·ν′ .

As for the correctness of the decoder, note that with probability at least ε over choice of
random coins for DGL

N̂ , there exists a set X0 ⊆ {0, 1}n̄ of density at least |X0|/2n̄ ≥ ε such that
for every x ∈ X0 it holds that (DGL

N̂ )O(x) = IWN̂(z)x. Whenever this happens, there exists
Ō : {0, 1}n̄ → {0, 1}k satisfying Pry1,y2∈{0,1}n̄

[
Ō(y1, y2) = IWN̂(w)y1,y2

]
≥ ε such that the queries

of DIW
N̂ will be answered (by DGL

N̂ ) according to Ō. Then, with probability at least 1− o(1) over
the coins in the preprocessing step of DIW

N̂ , there exists a set X ⊆ [N̂] of density at least 1− δ′

such that for every x ∈ X it holds that (DIW
N̂ )Ō(x) = wx.

For j ∈ [r], let D(j) be the decoding procedure that runs DIW
N̂ and answers its queries using

DGL
N̂ where both decoders use the coins specified by r(j). Also let vj = Prx∈[N̂]

[
(D(j))O(i) = wi

]
.

Since we repeat the experiment for r = O(1/ε) times, with probability 1− o(1) there exists j such
that vj ≥ 1− δ′. Also, with probability at least 1− o(1), for every j it holds that |vj − ṽj| ≤ δ′/2.
Condition on both events happening. Then, j∗ satisfies vj∗ ≥ 1− 2δ′ = 1− δ. By definition, the
decoder will answer in the second step according to D(j∗), and hence will answer correctly on at
least 1− δ of the coordinates x ∈ [N̂].

4.3 Proof of Proposition 4.1

Given the two codes in Proposition 4.2 and 4.6, we are now ready to prove Proposition 4.1.
Let γ, ν be the parameters and F be the finite field. Let c = cγ,ν to be a sufficiently large

enough constant to be specified later and c0 be a sufficiently large universal constant.

32We stress that we choose different (independent) random coins for DGL
N̂

and for DIW
N̂

, and denote by r(j) the
concatenation of these two fixed choices.
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Notation of first code. Let c1 and δ be the universal constants from Proposition 4.2, and let γ̂
be a constant to be specified later. We apply Proposition 4.2 with parameters γ̂ and field F to
obtain the encoding

Enc1 : FN → {0, 1}N̂ , where N̂ = N ĉ and ĉ = ĉγ̂ .

We then use Ê, Q̂, D̂ to denote the circuits Q, D, N from Proposition 4.2.

Notation of second code. Let c2 be the universal constant from Proposition 4.6, and let ν̄ be
two constants to be specified later. We apply Proposition 4.6 with parameters δ, ν̄ and to obtain
the encoding

Enc2 : {0, 1}N̂ → {0, 1}N̄ , where N̄ = N̂ c̄ and c̄ = c̄δ,ν̄ .

We then use Ē, Q̄, D̄ to denote the circuits Q, D, N from Proposition 4.6.

The mapping Enc. With the notation set up, we now define the encoding map Enc : FN →
{0, 1}N̄ as

Enc(x) = Enc2(Enc1(x)), where x ∈ FN .

We also let x̂ = Enc1(x) and x̄ = Enc2(x̂). That is, we have the following

Enc : x ∈ FN Enc1−−→ x̂ ∈ {0, 1}N̂ Enc2−−→ x̄ ∈ {0, 1}N̄ .

In particular, we now set c = ĉ · c̄ so that N̄ = Nc.

The construction of QN . Now we are ready to define QN , which is going to be a natural
composition of Q̄N̂ and Q̂N . Formally, QN works as follows:

1. Given input i ∈ [N̄], run Q̄N̂(i) to obtain q1, . . . , qM̄ ∈
[
N̂
]

where M̄ = c2 · (ν̄/δ2) · log(N̂).33

2. For every j ∈ [M̄], run Q̂N(qj) to obtain qj,1, . . . , qj,M̂ ∈ [N] where M̂ = Nc1·γ̂.

3. Output all of qj,` for j ∈ [M̄] and ` ∈ [M̂].

Now, note that QN has M = M̄ · M̂ ≤ N2·c1·γ̂ outputs in [N]. We now set γ̂ = γ/(2 · c1) and
ν̄ = ν/ĉ. We then have M ≤ Nγ as desired.

Also, we have |Q̄N̂ | ≤ N̂c2·ν̄ and |Q̂N | ≤ Nc1·γ̂, it follows their composition QN is a T C0 circuit
of size

O
(

N̂c2·ν̄ + M̄ · Nc1·γ̂
)
≤ O

(
Nc2·ν̄·ĉ + N2·c1·γ̂

)
≤ Nc0·(γ+ν),

for a sufficiently large constant c0, by our choice of ν̄ and γ̂.

33For simplicity, we add some dummy queries to make the number of queries exactly c2 · (ν̄/δ2) · log(N̂).
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The construction of EN . After defining QN , we are now ready to define EN in the natural way.

1. Given input i ∈ [N̄] and xj,` ∈ F for (j, `) ∈ [M̄]× [M̂], Q̄N̂(i) to obtain q1, . . . , qM̄ ∈
[
N̂
]
.

2. For every j ∈ [M̄], run ÊN with input qj ∈
[
N̂
]

and list qj,1, . . . , qj,M̂ to obtain σj ∈ {0, 1}.

3. Run ĒN̂ with input i and list σ1, . . . , σM̄ to obtain the output σ.

Similarly to the case of QN , we can implement EN by a T C0 circuit of size Nc0·(γ+ν). More-
over, the desired properties of QN and EN follows immediately from the properties of Q̂, Ê, Q̄, Ē
from Proposition 4.2 and Proposition 4.6.

The construction of DN . Again, DN is given by the natural composition of D̄N̂ and D̂N . For-
mally, it works as follows:

1. Given an oracle O : {0, 1}N̄ → {0, 1} such that

Pr
j∈[N̄]

[
x̄j = O(j)

]
> 1/2 +

(
N̂
)−ν̄ .

2. (Preprocessing phase.) Run the preprocessing phase of D̄N̂ to obtain non-adaptive queries
q1, . . . , qt ∈

[
N̂
]

to x̂, where t ≤ |D̄N̂ |, run Q̂N to convert these into non-adaptive queries
{qj,`}j∈[t],`∈[M̂] to x, and run ÊN to convert the answers of the new queries to answers of the
original queries.

3. Run the main phase of D̄N̂ Θ(log N̂) times with independent randomness, taking a majority,
and fixing the randomness to obtain a deterministic oracle circuit W : {0, 1}N̂ → {0, 1} such
that the following

Pr
j∈[N̂]

[
x̂j = WO(j)

]
≥ 2/3

happens with 1− o(1) probability over all randomness above.34

4. (Main phase.) Given input i ∈ [N], output(
D̂N
)WO

(i).

Now, DN can be implemented by a probabilistic T C0 circuit, and its size can be bounded as
follows

|DN | ≤ O
(
|D̄N̂ | · log N̂ + |D̄N̂ | · N

c1·γ̂
)

≤ O
((

N̂
)c2·ν̄ · Nc1·γ̂

)
(log N̂ ≤ Nc1·γ̂)

≤ O
(

N ĉ·c2·ν̄+c1·γ̂
)

. (N̂ = N ĉ)

Note that the required approximation is 1/2 + N−ν. Recall that ν̄ = ν/ĉ, we have
(

N̂
)−ν̄

=

N−ĉ·ν̄ = N−ν. And the size of DN can be bounded by Nc0·(γ+ν) by our choice of ν̄ and γ̂,
and setting c0 to be large enough. The correctness of DN follows directly from Proposition 4.2
and Proposition 4.6, which completes the proof.

34Note that both phases of D̄ are considered as the preprocessing phase of DN . The execution of D̂ below is
considered as the main phase of DN .
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Systematic. Finally, we note that since both Enc1 and Enc2 are systematic, their composed code
Enc is systematic as well. This completes the proof.

5 Improved Chen-Tell hitting set generator with T C0 reconstruction

The goal of this section is to prove the following result, which is an improved version of the
targeted hitting-set generator of [CT21]:

Theorem 5.1 (Reconstructive targeted HSG for highly uniform T C0 circuits). Let c ∈ N≥1 be
a sufficiently large universal constant. For every γ ∈ (0, 1) and d ∈ N≥1 there exist d1 ∈ N≥1
and δ ∈ (0, 1) such that the following holds. Let T, M, m : N → N be such that M ≤ Tγ/c. Let
f : {0, 1}n → {0, 1}m(n) be computable by a family of δ-highly uniform threshold circuits of depth d and
T size. Then, there exist deterministic algorithms HCT-TC0

f and RCT-TC0
f that for every z ∈ {0, 1}n the

following hold:

1. Generator: When given input z, the machine HCT-TC0
f runs in time poly(T) and prints a set of

strings in {0, 1}M.

2. Compression Reconstruction: RCT-TC0
f (1n) outputs the description of a probabilistic(

T C0
d1
[n · Tγ] 7→ T C0

d1
◦ SUM[Tγ]

)
oracle circuit R f , such that given D : {0, 1}M → {0, 1} that 1/M-avoids HCT-TC0

f (z) as oracle, we
have

Pr
R f←R f

[
RD

f (z) outputs a T C0
d1

oracle circuit E such that tt(ED) = f (z)
]
≥ 2/3.

The proof of Theorem 5.1 relies on the T C0-locally-encodable and T C0-locally-approximately-
decodable code from Section 4. In Section 5.1 we present the construction of a bootstrapping
system for highly uniform T C0 circuit, whose high-level description was given in Section 2.4.1,
and in Section 5.2 we present the proof of Theorem 5.1.

5.1 Efficient polynomial decompositions of highly uniform threshold circuits

Towards constructing the bootstrapping system, let us now define an intermediary object called
a polynomial decomposition of a circuit. This object, following the ideas of [GKR15], was defined
in [CT21] for general (logspace-uniform) circuits, and we present another definition that is suit-
able for T C0 circuits.

Definition 5.2 (polynomial decomposition of a threshold circuit). Let C be a threshold circuit that
has n input bits, size T, and depth d. For every x ∈ {0, 1}n, we call a collection of polynomials a
polynomial decomposition of C(x) if it meets the following specifications.

1. (Notation.) For any i ∈ [d] and j ∈ [T], denote by gi,j the jth gate in the ith layer, and denote the
function that gi,j computes by

gi,j(x) = 1

[
∑

k∈[T]
wi,j,k · gi−1,k(x) > θi,j

]
,
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where θi,j ∈ Z and wi,j,k ∈ Z for all k ∈ [T].

2. (Arithmetic setting.) For some prime 5 · T2 < p ≤ 10 · T2, the polynomials are defined over the
prime field F = Fp. For some integer h ≤ p, let H = [h] ⊆ F, let m be the minimal integer such
that hm ≥ T. Let ξ : [T]→ Hm be an injection and ξ−1 : Hm → [T] ∪ {⊥} be its inverse.35

3. (Circuit-structure polynomial.) For each i ∈ [d], let Φi : H2m → {−T, ..., T} be the following
function. On input (~u,~v) ∈ Hm × Hm, we interpret the pair as (j, k) ∈ [T] × [T], and output
wi,j,k.36 The polynomial Φ̂i : F2m → F can be any extension of Φi.

4. (Input polynomial.) Let α0 : Hm → {0, 1} represent the string x0hm−n, and let α̂0 : Fm → F be
defined by

α̂0(~u) = ∑
i∈[n], z=ξ(i)

δ~z(~u) · α0(~z) ,

where δ~z is Kronecker’s delta function (i.e., δ~z(~u) = ∏j∈[m] ∏a∈H\{zj}
uj−a
zj−a ).

5. (Layer polynomials.) For each i ∈ [d], let αi : Hm → {0, 1} represent the values of the gates at the
ith layer of C in the computation of C(x) (with zeroes in locations that do not index valid gates).37

Also let

α̂i(~u) = ∑
~v∈Hm

Φ̂i(~u,~v) · α̂i−1(~v) .

6. (Sumcheck polynomials.) For each i ∈ [d], let α̂i,0 : F2m → F be the polynomial

α̂i,0(~u, σ1, ..., σm) = Φ̂i(~u, σ1,...,m) · α̂i−1(σ1,...,m) ,

and for every j ∈ [m− 1], let α̂i,j : F2m−j → F be the polynomial

α̂i,j(~u, σ1, ..., σm−j) = ∑
σm−j+1,...,σm∈H

Φ̂i(~u, σ1,...,m) · α̂i−1(σ1,...,m) ,

where σk,...,k+r = σk, σk+1, ..., σk+r. We also denote α̂i,m ≡ α̂i.

Next, we argue that every highly uniform family of T C0 circuits has a very efficient poly-
nomial decomposition. The crux of the proof is arithmetizing the “weights function” Φ appro-
priately, relying on a suitable arithmetization of the (small) uniform circuits for Φ (which exist
because the family is highly uniform).

Proposition 5.3 (efficient polynomial decompositions of highly uniform threshold circuits). There
exists a universal constant c ∈N such that the following holds. Let δ > 0 be a sufficiently small constant,
and let {Cn}n∈N be a δ-highly uniform family of circuits of size T(n) and depth d(n). Then, for every
x ∈ {0, 1}n there exists a polynomial decomposition of Cn(x) satisfying:

35ξ−1(~u) = ⊥ if ~u is not in the range of ξ. We always use ξ to encode an index i as an element from Hm. We will
pick an ξ such that ξ−1 is also easy to compute, and for simplicity we ignore the complexity of computing ξ and ξ−1

since it is negligible; we only need them to be computable in T C0.
36If ~u or ~v represents an integer larger than T, then Φi(~u,~v) = 0.
37Formally, for every ~u ∈ Hm, αi(~u) equals gi,ξ−1(~u) if ξ−1(~u) 6= ⊥, and 0 otherwise.

38



1. (Arithmetic setting.) The polynomials are defined over Fp, where p is the smallest prime in the
interval

[
5 · T2 + 1, 10 · T2]. Let H = [h] ⊆ F, where h is the smallest power of two of magnitude

at least
(
T2)δ/6, and let m be the minimal integer such that hm ≥ 2T. Moreover, all polynomials in

the polynomial decomposition have total degree at most Tc·δ.

2. (Faithful representation.) For every i ∈ [d(n)] and ~u ∈ Hm representing a gate in the ith layer,
the value of the gate in Cn(x) is 1 if and only if α̂i(~u) ≥ θi,~u.

3. (Base case.) There is P-uniform T C0 circuit of size n · hc that given ~u ∈ Fm, outputs the descrip-
tion of a SUM gate C~u such that C~u(x) = α̂0(~u).

4. (Downward self-reducibility.) There are two P-uniform non-adaptive oracle threshold circuits
of size hc and constant depth that solve each of the following tasks, respectively:

(a) Given input i ∈ [d] and (~u, σ1, ..., σm) ∈ F2m and oracle access to α̂i−1, output α̂i,0(~u, σ1, ..., σm).

(b) Given input (i, j) ∈ [d]× [m] and (~u, σ1, ..., σm−j) ∈ F2m−j and oracle access to α̂i,j−1, output
α̂i,j(~u, σ1, ..., σm−j).

Proof. To specify the polynomial decomposition according to Definition 5.2, it suffices to specify
the circuit structure polynomials Φ̂i.

Construction of polynomials Φ̂i. Since {Cn}n∈N is δ-highly uniform, we have:

1. There exists a P-uniform family of threshold circuits {Weightn,i}n∈N≥1, i∈[d(n)] of size T(n)δ2

and depth 1/δ such that Weightn,i takes (j, k) ∈ [T]× [T] as input and outputs wi,j,k.

2. There exists a P-uniform family of threshold circuits {Thrn,i}n∈N≥1, i∈[d(n)] of size T(n)δ2

and depth 1/δ such that Thrn,i takes j ∈ [T] as input and outputs θi,j.

First, by composing with ξ−1 from Definition 5.2, we can convert Weightn,i into a circuit
Dn,i : H2m → Fp such that

Dn,i(~u,~v) =

{
Weightn,i(ξ

−1(u), ξ−1(v)) mod p ξ−1(u) 6= ⊥ and ξ−1(v) 6= ⊥ ,
0 otherwise .

In above, for any z ∈ N, we use z mod p to denote its unique conjugate number in Fp.
In more detail, Dn,i takes 2m blocks of length-dlog he Boolean strings as input, interpret each
of them as an integer in H (if any of the strings does not encode a valid integer in H, Dn,i
outputs 0 immediately) to obtain a pair (~u,~v) ∈ Hm × Hm, and outputs Weightn,i(ξ

−1(u), ξ−1(v))
if ξ−1(u) 6= ⊥ and ξ−1(v) 6= ⊥ and 0 otherwise. It is easy to see that Dn,i can be implemented by
a TO(δ2)-size, (1/δ + O(1))-depth T C0 circuit.

Now, we can see that Dn,i computes Φi as per Definition 5.2. To obtain the desired arithme-
tization Φ̂i : F2m → F, we compute a degree-h polynomial Q : F→ Fdlog he by interpolation such
that for every u ∈ [H], we have that Q(u) equals the binary representation of u as an integer.

For the next step we will need the following lemma, which allows us to transform the Dn,i’s
to circuits that compute polynomials of bounded degree.
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Lemma 5.3.1. There is a universal constant c ∈N≥1 and a polynomial-time algorithm that takes a prime
5 · t2 < p ≤ 2t together with the description of a t-size d-depth n-input T C0 circuit C : {0, 1}n → Fp as
input, and outputs another tc-size (c · d)-depth T C0 circuit C′ : Fn

p → Fp such that the following hold:

• C′ computes a degree-tc·d polynomial over Fp.

• For every z ∈ {0, 1}n, we have C(z) = C′(z).

Proof. Let m = dlog pe. Note that C can be decomposed into m Boolean output circuits C1, . . . , Cm,
such that Ci(z) outputs the i-th bit of the binary representation of C(z). Note that in the field Fp,
a negative number −z for z ∈ [p− 1] equals p− z.

For each i ∈ [m], we will construct a low-degree polynomial Φi such that Ci(z) = Φi(z)
for every z ∈ {0, 1}n, and show Φi can be computed by another T C0 circuit C′i . Then, we will
combine all the C′i into a a single circuit C′, and all the Φi into a single polynomial Φ.

Fix i ∈ [m], for every gate G : {0, 1}v → {0, 1} in Ci (here v ≤ t), we have

G(y1, . . . , yv) := 1

[
∑

i∈[v]
wi · yi ≥ θ

]
,

where wi, θ ∈ {−t,−t + 1, . . . , t} for every i ∈ [v]. By standard interpolation, we can interpolate
a degree-2t2 polynomial pG : Fp → Fp such that pG(z) = 1[z ≥ θ] for every z ∈ {−t2,−t2 +

1, . . . , t2}.38 Moreover, pG can be computed in T C0 of size poly(t) · polylog(p) [HAB02a]. Next,
we define PG : Fv

p → Fp as PG(y1, . . . , yv) = pG(∑i∈[v] wi · yi). Note that PG has degree 2 · t2 as
well, and can also be computed in T C0.

Now, we replace every gate G in Ci by a degree-(2 · t2) polynomial PG over Fp to obtain a
polynomial Φi. Since Ci has depth d, we know that Φi has degree at most (2t)2d. Moreover, by the
description above and our assumption on p, Φi can be computed by a poly(t)-size O(d)-depth
T C0 circuit C′i that can be constructed from Ci in polynomial time.

Finally, we set Φ(z) = ∑m
i=1 2i−1 ·Φi(z) for every z ∈ Fm

p . Note that Φ has degree (2t)2d and
Φ can be computed by a poly(t)-size O(d)-depth T C0 circuit C′ that can be constructed from C
in polynomial time. �

Let t = TO(δ2). Noting that p > 5 · T2 > 5t2, we also apply Lemma 5.3.1 to Dn,i to obtain
a circuit D′n,i of size TO(δ2) and depth O(1/δ) that computes a degree-TO(δ) polynomial from
F2mdlog he to F that agrees with Dn,i on all Boolean inputs. Finally, we define

Φ̂n,i(v1, . . . , v2m) = D′n,i(Q(v1), . . . , Q(v2m)) .

From the above discussion, Φ̂n,i can be computed by a P-uniform threshold circuit family
of size TO(δ2) and depth O(1/δ), and it has degree at most TO(δ), given our choice of h. Most
importantly, it is an extension of Φi defined in Definition 5.2 (by identifying negative numbers as
their conjugates in Fp).

38Here {−t2,−t2 + 1, . . . , t2} denotes {p− t2, p− t2 + 1, . . . , p− 1, 0, 1, . . . , t2}.
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Verification of properties. After specifying the extension, we immediately obtain the polyno-
mials α̂i and α̂i,j for i ∈ [d] and j ∈ [m]. Also, α̂0 is defined as in Definition 5.2. From their
definitions and our choice of h, the arithmetic setting, the faithful representation, and the down-
ward self-reducibility follow immediately.

To verify the base case, given ~u ∈ Fm, we need to output the weights of the SUM gate(
δξ(1)(~u), . . . , δξ(n)(~u)

)
.

The base case follows from the observation that each entry can be computed by a poly(h)-size
T C0 circuit given ~u.

We need the following standard T C0 decoder for Reed-Muller codes.

Lemma 5.4 (Low Depth Decoder for Reed-Muller Code, [AB09, Section 19.3, 19.4]). Let p be a
prime, F = Fp and d, m ∈ N≥1 such that d < p/3. Suppose there is a (hidden) degree-d m-variate
polynomial P over F, and let δ ∈ [0, 1

3(d+1) ). For any oracle O : Fm → F such that

Pr
~x←Fm

[O(~x) = P(~x)] > 1− δ,

there is a P-uniform probabilistic T C0 circuit family {RM-LDCp,m,d}p,m,d∈N of size poly(m, log p) with
non-adaptive O oracle gates, such that for every ~x ∈ Fm,

Pr[RM-LDCO
p,m,d(~x) = P(~x)] ≥ 1− p−2m,

where the probability is over the randomness of RM-LDCp,m,d.

Proof. Let ~x ∈ Fm be the input; recall that we want to compute P(~x). We will give a randomized
non-adaptive oracle T C0 circuit CO (with O oracle gates) of size poly(m, d, log p) that computes
P(~x) with probability at least 2/3 for every ~x ∈ Fm. The error probability can then be reduced to
p−2m, by running CO for O(m log p) times with independent randomness and taking a majority.

We draw a random vector ~v ← Fm, and for every t ∈ F we define Q(t) = P(~x + t ·~v). Now
for every t ∈ [d + 1] we compute αt = O(~x + t ·~v). Letting z denote the number of t ∈ [d + 1]
such that αt 6= Q(t), we have E[z] ≤ δ(d + 1) since all αt distributes uniformly over Fm. By the
Markov bound, we have Pr[z = 0] ≥ 2/3.

We then use Lagrange polynomial interpolation to compute a degree-d polynomial W : F→ F

such that W(t) = αt for all t ∈ [d + 1], and output W(0). Note that since W and Q both
have degree at most d, when z = 0, we have W(0) = Q(0) = P(~x), which completes the
proof. The whole procedure can be done with P-uniform probabilistic T C0 oracle circuits of
poly(m, d, log p)-size [HAB02b].

We are now ready to present the bootstrapping system for highly uniform families of T C0 cir-
cuits. Roughly speaking, the bootstrapping system will be obtained by encoding the polynomials
from the polynomial decomposition in Proposition 5.3 by the code from Proposition 4.1.

Proposition 5.5 (refined encoding of efficient polynomial decompositions for highly uniform
circuits). There exists a universal constant c1 ∈ N such that the following holds. Let δ ∈ (0, 1) be a
sufficiently small constant, and let {Cn}n∈N be a δ-highly uniform family of circuits of size T(n) and
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constant depth d. Then, there is a constant κ that only depends on δ such that for every x ∈ {0, 1}n there
exists a sequence of functions w(1)

x , ..., w(d′)
x : [Tκ] → {0, 1}, where T = T(n) and d′ = O(d), satisfying

the following:

1. (Faithful representation.) There is a P-uniform T C0 oracle circuit family {OUTn}n∈N of size
Tc1·δsuch that when OUTn is given i ∈ [T] as input and oracle access to w(d′)

x it outputs Cn(x)i.

2. (Base case.) There is P-uniform T C0 circuit family {BASEn}n∈N of size n · Tc1·δ that given
i ∈ [Tκ], outputs the description of a polylog(n)-size T C0 ◦ SUM circuit Ci such that Ci(x)
outputs w(1)

x (i).

3. (Downward self-reducibility.) There is a P-uniform T C0 oracle circuit family {DSRn}n∈N, i∈{2,...,d′}

of size Tc1·δ that, when given j ∈ [Tκ] and oracle access to w(i−1)
x , outputs w(i)

x (j).

4. (Layer reconstruction.) There is a P-uniform probabilistic T C0 oracle circuit family {RECn}n∈N

that for any i ∈ {2, . . . , d′} satisfies the following. The circuit RECn first has a probabilistic prepro-
cessing step, in which it makes non-adaptive queries to w(i)

x . Now, fix any O : [Tκ] → {0, 1} such
that Prj∈[Tκ ][O(j) = w(i)

x (j)] ≥ 1/2 + T−δ/c1 . Then, with probability at least 1− 2−Tδ
over the

coins in the preprocessing step, for any j ∈ [Tκ] it holds that Pr
[
RECO

n (j) = w(i)
x (j)

]
≥ 1− 2−Tδ

,
where the probability is over the random coins of RECn after the preprocessing step.

Proof. Let ĉ be the universal constant from Proposition 5.3. We apply Proposition 5.3 to {Cn}.
Let p, h, F be as defined in Proposition 5.3. Let κ be a sufficiently large constant that depends on
δ. Let c1 be a sufficiently large constant.

We first define a sequence polynomial {Pi}i∈[d′] = {Pi}i∈[d′]. We set d′ = m · d + 1 and

{Pi}i∈[d′] = {α̂0, α̂1,1, . . . , α̂1,m, α̂2,1, . . . , α̂2,2m, . . . , α̂d,1, . . . , α̂d,m}.

By adding dummy variables, we can view all of the polynomials above as mappings from
F2m to F. Note that they all have degree at most T ĉ·δ.

Let N = |F2m| = p2m. By the choice of h and m, we have N = Tµ/δ for a universal constant µ.
Now, we let w(1)

x compute the following Boolean function: given ~u ∈ Fm and i ∈ dlog pe,
output the i-th bit of the binary representation of α̂0(~u). (We fill the unused space in [Tκ] with
zeroes.) The base case follows immediately from the base case of Proposition 5.3.

We instantiate the code Enc from Proposition 4.1 with γ = 2·ĉ·δ2

µ and ν = δ2, and let c0 be the
universal constant from Proposition 4.1 and c? = c?γ,ν be the corresponding constant. We now set

κ so that Tκ = Nc? = N̄. For every i ∈ {2, . . . , d′}, we define w(i)
x as Enc(Pi), where we view Pi as

a vector from FN .

Downward self-reducibility. Fix i ∈ {2, . . . , d′}. DSRn,i operates as follows:

1. Given j ∈ [N̄] as input, run QN(j) to obtain M = Nγ many queries q1, . . . , qM ∈ [N] to Pi,
such that Enc(Pi)j = EN((Pi)q1

, . . . , (Pi)qM
).
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2. For each ` ∈ [M], run the corresponding DSR algorithm that computes Pi with input q`
(interpreted as a vector in F2m) of Proposition 5.3 given an oracle for Pi−1; we answer its

query to Pi−1 either using our oracle to w(i−1)
x directly (when i = 2), or using Iw(i−1)

x
N from

the systematic property of Proposition 4.1 (by which IEnc(Pi−1)
N computes Pi−1).

Since (1) |QN |, |EN |, |IN | ≤ Nc0·(γ+ν) ≤ TO(δ) and (2) the DSR T C0 oracle circuits in Propo-
sition 5.3 and the T C0 circuit IN from Proposition 4.1 are both non-adaptive, DSRn,i can be
implemented by a P-uniform non-adaptive T C0 oracle circuit of size TO(δ).

Layer reconstruction. Fix i ∈ {2, . . . , d′} and given an oracle O : {0, 1}N̄ → {0, 1} such that
Prj∈[N̄][O(j) = Enc(Pi)] ≥ 1/2 + N−ν. RECn operates as follows:

1. Run DN from Proposition 4.1 with oracle O. We know that with 1− o(1) probability over
the preprocessing step of DN , there is a set S ⊆ [N] with |S|/N ≥ 1 − N−γ such that
Pr
[
(DN)

O (z) = Pi(z)
]
≥ 2/3 for every z ∈ S (here we can interpret z as an element in

F2m). By running the main step (after the preprocessing step) of DN for O(log N) times,
each with independent randomness, we can indeed obtain a probabilistic non-adaptive
oracle circuit D̄ such that for all z ∈ S, Pr

[
(D̄)

O
(z) = Pi(z)

]
≥ 1− 1/N2.

Hence, by a simple union bound, with probability 1− o(1) over all the randomness above

(including the randomness of the main step), we know that
(

D̃N

)O
(z) = Pi(z) for all z ∈ S,

where we use D̃ to denote D̄ with randomness fixed.

2. Now, note that Nγ =
(
Tµ/δ

) 2·ĉ·δ2
µ = T2·ĉ·δ. In particular, let d = T ĉ·δ be the degree of Pi, we

have Nγ = d2. Therefore we output RM-LDCD̃O
N

p,2m,d(j) for the given input j ∈ [N̄].

By repeating the above procedure O(Tδ) times and taking the majority answer, we can reduce
the error probability to 2−Tδ

as desired. Moreover, one can see that RECN can be implemented
by TO(δ)-size probabilistic T C0 circuits as desired.

5.2 Reconstructive targeted HSG for highly uniform T C0 circuits

Now we are ready to prove Theorem 5.1.

Reminder of Theorem 5.1. Let c ∈N≥1 be a sufficiently large universal constant. For every γ ∈ (0, 1)
and d ∈ N≥1 there exist d1 ∈ N≥1 and δ ∈ (0, 1) such that the following holds. Let T, M : N → N be
such that M ≤ Tγ/c. Let f : {0, 1}n → {0, 1}∗ be computable by a family of δ-highly uniform threshold
circuits of depth d and T size. Then, there exist deterministic algorithms HCT-TC0

f and RCT-TC0
f that for every

z ∈ {0, 1}n the following hold:

1. Generator: When given input z, the machine HCT-TC0
f runs in time poly(T) and prints a set of

strings in {0, 1}M.
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2. Reconstruction: RCT-TC0
f (1n) outputs the description of a probabilistic(

T C0
d1
[n · Tγ] 7→ T C0

d1
◦ SUM[Tγ]

)
oracle circuit R f , such that given D : {0, 1}M → {0, 1} that 1/M-avoids HCT-TC0

f (z) as oracle, we
have

Pr
R f←R f

[
RD

f (z) outputs a T C0
d1

oracle circuit E such that tt(ED) = f (z)
]
≥ 2/3.

Proof. Let c1 be the universal constant from Proposition 5.5. Let d1 ∈ N≥1 and δ ∈ (0, 1) to be
specified later. Let κ = κ(δ) be the corresponding constant from Proposition 5.5. Let c ∈ N≥1 be
a sufficient large universal constant.

Without loss of generality, we can assume M = Tγ/c since for smaller M we can truncate
HCT-TC0

f ’s outputs to their first M bits and it is straightforward to verify the reconstruction works
with minor modifications.

Applying Proposition 5.5 to the δ-highly uniform threshold circuit {Cn} of size T(n) and
depth d that computes f , for every z ∈ {0, 1}n, there is a sequence of functions w(1)

z , ..., w(d′)
z : [Tc1 ]→

{0, 1}, where d′ = O(d(n)), that satisfies the conditions in Proposition 5.5.

5.2.1 The generator HCT-TC0
f

We set γ1 = γ
c·κ . We apply Theorem 3.13 with parameter γ1 and define

HCT-TC0
f (z) =

⋃
i∈[d′]

GNW(w(i)
z ).

Note that HCT-TC0
f (z) outputs a set of string of length Tκ·γ1 = Tγ/c = M, as desired.

Moreover, from the base case and the downward self-reducibility of Proposition 5.5, given z,
one can compute w(i)

z for all i ∈ [d′] in poly(T) time. Since GNW also takes poly(T) time to compute
(Theorem 3.13), we conclude that HCT-TC0

f (z) can be computed in poly(T) time as desired.

5.2.2 The reconstruction RCT-TC0
f

We need to output a T C0
d1
[n · Tγ] sampler S that maps randomness to a T C0

d1
◦ SUM[Tγ] oracle

circuit, so that the corresponding probabilistic oracle circuit R f satisfies the conditions in the
reconstruction part of the theorem.

Notation. Fix an oracle D : {0, 1}M → {0, 1} that 1/M-avoids HCT-TC0
f (z) =

⋃
i∈[d′] GNW(w(i)

z ). In

particular, it holds that D also 1/M-distinguishes GNW(w(i)
z ) for every i ∈ [d′]. Let cNW and dNW

be the universal constants from Theorem 3.13. Let SNW = RNW(1Tc1 ). Without loss of generality,
we assume that SNW takes exactly rNW = McNW bits as input. Let d0, µ ∈ N≥1 be sufficiently large
universal constants such that d0 ≥ dNW.
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High-level overview of the construction. Roughly speaking, we will first construct d′ samplers
S2, . . . , Sd′+1, such that each Si maps its own input (i.e., the randomness) to a (deterministic)
oracle circuit Ei. The overall sampler S then runs all the Si with independent randomness, and
composes their outputted circuits together to form a single circuit

E = Ed′+1 ◦ · · · ◦ E2.

In more detail, for every i ∈ {2, . . . , d′}, Ei takes the output of Ei−1 (i > 2) or z (i = 2) as
input, and outputs the description of an oracle circuit Ci such that CD

i is supposed to compute
w(i)

z . For i = d′ + 1, Sd′+1 outputs a circuit Ed′+1 that takes the output of Ed′ as input and outputs
the description of an oracle circuit Cd′+1 such that CD

d′+1 is supposed to computes f (z).

Notation for RECn. Let rpre, rmain ≤ Tc1·δ be the number of random bits used by RECn of Propo-
sition 5.5 for the preprocessing step and the main step, respectively. (We use the main step to
denote the operation of RECn after the preprocessing step.)

Let Spre and Smain be the T C0
d0
[Tc1·δ] samplers for the preprocessing step and the main step of

RECn, respectively. Let i ∈ [d′] (note that RECn does not depend on i). In more detail: (1) Spre takes
αpre ∈ {0, 1}rpre bits as input, and outputs a list of queries to w(i)

z , denoted by q1, q2, . . . , qt ∈ [Tc1 ],
where t ≤ Tc1·δ; (2) Smain takes αmain ∈ {0, 1}rmain as input, and outputs a T C0

d0
oracle circuit C′i of

size Tc1·δ that takes t bits and j ∈ [Tc1 ] as input.
The promise of Proposition 5.5 implies that for any O : {0, 1}Tc1 → {0, 1} satisfying

Pr
j∈[Tc1 ]

[O(j) = w(i)
z (j)] ≥ 1/2 + T−δ/c1 ,

with probability at least 1− 2−Tδ+1 · Tc1 ≥ 1− 2−Tδ/2 over αpre ← Urpre and αmain ← Urmain , it holds

that (C′′i )
O (j) := (C′i)

O (w(i)
z (q1), . . . , w(i)

z (qt), j) computes w(i)
z . We set c ≥ 3γ·c1

δ so that we have
1/2 + M−3 ≥ T−δ/c1 . (To see this, note that M3 = T3γ/c ≥ Tδ/c1 by our choice of c.)

5.2.3 Construction of S2

We first construct the sampler S2, whose properties are summarized by the claim below. We
remark that the sampled circuit E2 below does not need an oracle.

Claim 5.6. There is a polynomial-time algorithm that, given 1n, outputs a T C0
O(d0)

[n · Tγ/2] circuit S2
satisfying the following:

1. S2 takes r2 = n · Tγ/2 bits as input, and outputs the description of a TO(c1·δ)-size T C0
O(d0)

◦ SUM
circuit E2.

2. E2 takes z ∈ {0, 1}n as input, and outputs the description of a Tµ·c1·δ-size T C0
µ·d0

oracle circuit C2.

3. For every z ∈ {0, 1}n, with probability at least 1− 1/3d′ over E2 ← S2(Ur2), letting C2 = E2(z),
it holds that CD

2 computes w(2)
z .

Before proving Claim 5.6. We need the following observation, which follows directly by
combining the base case and the properties of DSRn of Proposition 5.5.
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Observation 5.7. There is a P-uniform n · TO(c1·δ)-size T C0
d0

circuit that takes input i ∈ [Tc1 ] and

outputs a TO(c1·δ)-size T C0
d0
◦ SUM circuit Wi such that Wi(z) = w(2)

z (i) for all z ∈ {0, 1}n.

Proof of Claim 5.6. S2 consists of two stages, S2,1 and S2,2, such that S2,1 aims to sample a circuit
E2,1 that runs the Nisan-Wigderson reconstruction of Theorem 3.13 to obtain an oracle circuit
C̃2 that weakly approximates w(2)

z , and S2,2 aims to sample a circuit E2,2 that corrects C̃2 into
another oracle circuit C2 that computes w(2)

z on all inputs. From now on, we describe S2,1 and
S2,2 separately, and show how S combines them together.

Construction of S2,1. S2,1 takes rNW bits as input, denoted by r2,1 ∈ {0, 1}rNW . S2,1 first uses r2,1 to
compute a circuit E2,1 that maps z ∈ {0, 1}n to the description of a McNW-size T C0

dNW oracle circuit

C̃2 = Sw(2)
z

NW (r2,1).
Formally, given r2,1, S2,1 computes all the queries of SNW made to w(2)

z in T C0
dNW [M

cNW ] (note that

SNW is a non-adaptive oracle circuit), and applies Observation 5.7 to replace all calls to w(z)
z in SNW

by TO(c1·δ)-size T C0
d0
◦ SUM circuits with input z. This way, S2,1 outputs the desired TO(c1·δ)-size

T C0
O(d0)

◦ SUM circuit E2,1.
Moreover, by Observation 5.7, we know that S2,1 can be implemented by a n · TO(c1·δ)-size

T C0
O(d0)

circuit.

Construction of S2,2. Let r2,2 = rpre + rmain. S2,2 takes (αpre, αmain) ∈ {0, 1}r2,2 as input, it first
runs Spre(αpre) to compute q1, q2, . . . , qt ∈ [Tc1 ], and then runs Smain(αmain) to obtain the oracle
circuit C′2, then it constructs the desired circuit E2,2 that first computes w(2)

z (q1), . . . , w(2)
z (qt), and

then outputs C′′2 by fixing the first t bits of the input to C′2 to w(2)
z (q1), . . . , w(2)

z (qt). Note that C′′2
is a Tc1·δ-size T C0

d0
circuit.

By Observation 5.7, E2,2 is a TO(c1·δ)-size T C0
O(d0)

◦ SUM circuit, and S2,2 can be implemented
by a n · TO(c1·δ)-size T C0

O(d0)
circuit.

Construction of S2. Finally, S2 runs S2,1 and S2,2 with independent randomness to obtain cir-
cuits E2,1 and E2,2. It then constructs the final circuit E2 that works as follows: E2 first runs E2,1
and E2,2 in parallel (on input z) to obtain the description of the oracle circuit C̃2 and the oracle
circuit C′′2 , and then replaces the oracle in C′′2 by C̃2 to obtain the final oracle circuit C2. Recall
that d0 ≥ dNW, C2 is a Tµ·c1·δ-size T C0

µ·d0
circuit.

With a standard encoding of T C0 oracle circuits, this oracle replacement operation can be
done by a polynomial-size T C0

O(d0)
circuit (polynomial in terms of the total input length |C̃2|+

|C′′2 |). Hence E2 is a TO(c1·δ)-size T C0
O(d0)

◦SUM circuit, and S2 can be implemented by a n ·TO(c1·δ)-
size T C0

O(d0)
circuit.

Analysis of S2. We set δ sufficiently small compared to γ, so that the TO(c1·δ) above is at most
Tγ/2. The first two items of the claim are established by the discussions above. Now we show
the last item. By Theorem 3.13, we know that with probability 1− 2−3M over E2,1 ← S2,1(UrNW),
for C̃2 = E2,1(z), it holds that C̃D

2
(
1/2 + M−3)-approximates w(2)

z . Then recall that by our
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choice of c we have 1/2 + M−3 ≥ 1/2 + T−δ/c1 , we have that with probability 1− 2−Tδ/2 over

E2,2 ← S2,2(Ur2,2), for C′′2 = E2,2(z), it holds that (C′′2 )
C̃D

computes w(2)
z . A simple union bound

completes the proof.

5.2.4 Construction of Si for i > 2

Now we construct the sampler Si for i ∈ {3, . . . , d′}, whose properties are summarized by the
claim below. Unlike Claim 5.6, the sampled circuit Ei below needs D as the oracle.

Claim 5.8. There is a polynomial-time algorithm that, given 1n and i ∈ {3, . . . , d′}, outputs a T C0
O(d0)

[
Tγ/2]

circuit Si satisfying the following:

1. Si takes ri = Tγ/2 bits as input, and outputs the description of a TO(c1·δ)-size T C0
O(d0)

circuit Ei.

2. Ei takes the description of a Tµ·c1·δ-size T C0
µ·d0

oracle circuit Ci−1 as input, and outputs the descrip-
tion of a Tµ·c1·δ-size T C0

µ·d0
oracle circuit Ci.

3. For every oracle circuit Ci−1 such that CD
i−1 computes w(i−1)

z , with probability at least 1− 1/3d′

over Ei ← Si(Uri), it holds that Ci = Ei(Ci−1) computes w(i)
z given the oracle D.

Proof. First, in polynomial-time one can compute a T C0
O(d0)

[TO(c1·δ)] circuit Ei,0 that takes the

description of a T C0
µ·d0

[
Tµ·c1·δ

]
oracle circuit Ci−1 such that CD

i−1 computes w(i−1)
z , composes it

with the DSRn algorithm of Proposition 5.5, and outputs the description of an T C0
O(d0)

[TO(c1·δ)]

oracle circuit Fi such that FD
i computes w(i)

z . Since Ei,0 does not depend on z, we can hardwire
Ei,0 in to the description of Si so that Si can output it directly.

After Ei,0, similar to S2, Si consists of two stages, Si,1 and Si,2, such that Si,1 aims to sample
a circuit Ei,1 that runs the Nisan-Wigderson reconstruction of Theorem 3.13 to obtain an oracle
circuit C̃i that weakly approximates w(i)

z , and Si,2 aims to sample a circuit Ei,2 that corrects C̃i into
another oracle circuit Ci that computes w(i)

z on all inputs. From now on, we describe Si,1 and Si,2
separately, and show how Si combines them together.

Construction of Si,1. Si,1 takes rNW bits as input, denoted by ri,1 ∈ {0, 1}rNW . Si,1 first uses ri,1 to
compute a circuit Ei,1 that maps the description of Fi to the description of a McNW-size T C0

dNW oracle

circuit C̃i = Sw(i)
z

NW (ri,1).
Formally, given ri,1, Si,1 computes all the queries of SNW made to w(i)

z in T C0
dNW [M

cNW ] (note that
SNW is a non-adaptive oracle circuit) and outputs the oracle circuit Ei,1 that works as follows: Ei,1

takes the description of the oracle circuit Fi as input, replaces all calls to w(z)
z in SNW by evaluating

FD
i , and then outputs the description of the resulting circuit C̃i.

Note that Si,1 can be implemented by a TO(c1·δ)-size T C0
O(d0)

circuit, and Ei,1 is a TO(c1·δ)-size
T C0

O(d0)
oracle circuit.
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Construction of Si,2. Let r2,2 = rpre + rmain. Si,2 takes (αpre, αmain) ∈ {0, 1}r2,2 as input. It first
runs Spre(αpre) to computes q1, q2, . . . , qt ∈ [Tc1 ], and then runs Smain(αmain) to obtain the oracle
circuit C′2, then it constructs the desired circuit Ei,2 that takes the description of Fi as input,
computes w(i)

z (q1), . . . , w(i)
z (qt) by evaluating Fi, and then outputs C′′i by fixing the first t bits of

the input to C′i to w(i)
z (q1), . . . , w(i)

z (qt). Note that Ei,2 is a TO(c1·δ)-size T C0
O(d0)

circuit, and Si,2 can
be implemented by a TO(c1·δ)-size T C0

O(d0)
circuit.

Construction and analysis of Si. Finally, Si runs Si,1 and Si,2 with independent randomness to
obtain circuits Ei,1 and Ei,2. It then constructs the final circuit Ei that works as follows: Ei first
runs Ei,0 with input Ci−1 to obtain the oracle circuit Fi, then it runs Ei,1 and Ei,2 with input Fi

in parallel to obtain the description of the oracle circuit C̃i and the oracle circuit C′′i , and then
replace the oracle in C′′i by C̃i to obtain the final oracle circuit Ci.

Similarly to the proof of Claim 5.6, this oracle replacement operation can be done by a
polynomial-size T C0

d0
circuits. Hence Ei is a TO(c1·δ)-size T C0

O(d0)
circuit, and Si can be imple-

mented by a TO(c1·δ)-size T C0
O(d0)

circuit.
The analysis follows from the same argument of Claim 5.6.

5.2.5 Final construction

Finally, using the OUTn circuit from Proposition 5.5, in polynomial time we can compute a
T C0

O(d0)
[TO(c1·δ)] circuit Ed′+1 that takes the description of a Tµ·c1·δ-size T C0

µ·d0
oracle circuit Cd′

as input, and outputs the description of a TO(µ·c1·δ)-size T C0
O(µ·d0)

oracle circuit Cd′+1, such that if

CD
d′ computes w(d′)

z , then CD
d′+1 computes f (z). Since the above algorithm is deterministic, we can

construct a T C0
O(d0)

[TO(c1·δ)] circuit Sd′+1 that takes no input and outputs Ed′+1 as the “sampler”
for the last stage. (We define Sd′+1 only for notational convenience.)

As already discussed in the high-level overview, the final sampler S runs S2, . . . , Sd′+1 with
independent randomness to obtain circuits E2, . . . , Ed′+1. The final output of S is then

E = Ed′+1 ◦ Ed′ ◦ · · · ◦ E2.

By setting δ small enough and d1 large enough, the desired complexity on E and S follows
from Claim 5.6 and Claim 5.8, and the correctness follows from a union bound.

6 Derandomization vs refutation

In this section we prove our main results, relying on the technical tools that were developed in
previous sections. First, in Section 6.1, we prove Theorem 1.1. Then, in Section 6.2, we prove
Theorems 1.2, 1.3 and 1.4. Finally, in Section 6.3, we prove Theorem 1.8.

6.1 Derandomization vs refutation against low-space streaming algorithms

Let us start by proving the direction “refutation ⇒ derandomization”. That is, we show that
deterministically refuting low-space streaming algorithms implies that prBPP = prP .

48



Theorem 6.1 (refutation of streaming algorithms implies derandomization). Let ε ∈ (0, 1), let
T(N) ≥ N and p(n) be polynomials, and let f be a p-bounded T-time algorithm-dependent hard function
for str-T ISP [T1+ε, nε]. Assume that there exists a P-computable Nε-compression list-refuter for f
against str-T ISP [T1+ε, nε]. Then, prBPP = prP .

Proof. To prove the theorem, it suffices to show that for every linear-time machine M, given input
x ∈ {0, 1}m, we can distinguish between the case that Prr[M(x, r) = 1] ≥ 1/2 and Prr[M(x, r) =
1] = 0. Without loss of generality, we assume that M uses exactly m bits of randomness.

Notation. We begin by introducing some notation. Let M be a probabilistic linear-time machine,
and let c be the universal constant from Theorem 3.15. Let δ = ε/4c. We set n = m1/δ. For every
a ∈ {0, 1}m, we use ā ∈ {0, 1}n to denote the padded string ā = (a, 0n−m). We also set γ = γ(δ)
be such that T(N)γ = Nε/4.

Let (a, x) ∈ {0, 1}m×{0, 1}p(n) and N = |(ā, x)| = n+ p(n). We also set Sa,x = HCT
f (ā, x), with

parameter γ and output length m. (Note that m = nε/4c < T(N)γ/c = Nε/4c, so the assumption
of Theorem 3.15 is satisfied.)

Lemma 6.2 (instance-wise reconstruction). There is a one-pass streaming algorithm R = R f (i.e., the
algorithm depends on f ) that uses space Nε and time T(N)1+ε and satisfies the following. For any fixed
(a, x) ∈ {0, 1}m × {0, 1}p(n), if

Pr
r
[M(a, r) = 1] ≥ 1/2 and Pr

s∈Sa,x
[M(a, s) = 1] = 0 ,

then, when R is given input (ā, x), with probability at least 2/3 it prints a circuit of size Nε whose
truth-table is f (ā, x).

Proof. Let z = (ā, x). We define R to be the reconstruction algorithm RCT
f from Theorem 3.15

with oracle replaced by Da(r) := M(a, r). From the assumption we know that Da(·) 1/2-avoids
HCT

f (z) = Sa,x, we know that with probability at least 2/3, RCT
f outputs an oracle circuit C f (z) of

size T(N)γ = Nε/4 such that the truth-table of CDa
f (z) is f (z). R then simply composes C f (z) with

Da to output a circuit of Nε/4 ·m2 ≤ Nε. This establishes the correctness of R.
Now we verify the time and space complexity of R. From Theorem 3.15, R is a one-pass

streaming algorithm that runs in mc+1 · T(N)1+γ ≤ T(N)1+ε time and uses at most mc ≤ Nε

space. This completes the proof.

Now we are ready to prove the theorem. Given input a ∈ {0, 1}m for M, we run the list-
refuter on input (R, ā) to obtain x1, ..., xk ∈ {0, 1}p(n), where k = poly(n). For each i ∈ [k], we
compute the list Si = Sa,xi , and finally we output

∨
i∈[k],s∈Si

M(a, s). From Theorem 3.15, the
whole procedure can be done in poly(n) time.

Assume towards a contradiction that for some a ∈ {0, 1}m it holds that

Pr
r∈{0,1}m

[M(a, r) = 1] ≥ 1/2 and
∨

i∈[k],s∈Si

M(a, s) = 0 .

By Lemma 6.2, for every i ∈ [k] it holds that R(ā, xi) prints, with high probability, a circuit of size
Nε whose truth-table is f (ā, xi). This contradicts the properties of the compression list-refuter.
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We now prove the converse direction, which asserts that derandomization implies refutation.
Recall that the deduced refuter in Theorem 1.1 works not only for streaming algorithms, but for
essentially any class of RAMs, where the class only needs to satisfy a very weak property. Let us
define this property and prove the result.

Definition 6.3 (closure under error-reduction). We say that a class C of probabilistic RAMs is closed

under error-reduction if there is a deterministic polynomial-time algorithm that takes as input a description
of any M ∈ C and outputs a description of M′ such that M′(x) runs M(x) for 100 times with independent
coins each time, and outputs the most frequent outcome (breaking ties arbitrarily).

Theorem 6.4 (derandomization implies refutation). Let C be a class of probabilistic RAMs closed
under error-reduction, let p be a polynomial, and let f ∈ FP be a p-bounded algorithm-dependent hard
function for C that admits a BPP-refuter. Assuming prP = prBPP , there is an FP-refuter for C
against f .

Proof. Let Ref be the BPP-refuter for f against C. Given input (M, a) where M ∈ C, let M′ ∈ C
be the error-reduced version of M from Definition 6.3. We construct the circuit

D(r, r′) = 1
[
M′((a, x), r′) 6= f (a, x)

]
, where x = Ref((M′, a), r) ;

that is, D takes as input random coins r for Ref and random coins r′ for M′; it runs Ref on input
(M′, a) with random coins r, to obtain an input x for M′; then it runs M′ on input (a, x) with
random coins r′; and finally, it compares the output of M′ on x to f (a, x).

Since Ref is a BPP-refuter, with probability at least 2/3 over r, the output x satisfies Prr′ [M((a, x), r′) =
f (a, x)] < 2/3. Thus, Prr,r′ [D(r, r′) = 1] ≥ (2/9). Running the search-to-decision reduction from
Theorem 3.16 on the circuit D,39 we find r∗ such that Prr′ [D(r∗, r′) = 1] ≥ 1/9. Equivalently,
denoting x∗ = Ref((M′, a), r∗), we have that

Pr
r′

[
M′((a, x∗), r′) 6= f (a, x∗)

]
≥ 1/9 .

The output of the deterministic refuter is x∗.
Now, assume towards a contradiction that Prr′′ [M((a, x∗), r′′) = f (a, x∗)] ≥ 2/3. Then, by the

definition of M′ as the error-reduced version of M, we have that Prr′ [M′((a, x∗), r′) = f (a, x∗) ≥
0.99. This yields a contradiction.

The following corollary is a more general version of Theorem 1.1, and it asserts an equivalence
between refutation and derandomization.

Corollary 6.5. The following statements are equivalent:

1. For some ε > 0 and polynomials p, T and a p-bounded T-time algorithm-dependent hard function
f against strT ISP [T(n)1+ε, nε], there there is an Nε-compression list-refuter in FP for f against
strT ISP [T(n)1+ε, nε].

2. prBPP = prP .

39By our assumption that prBPP = prP , it follows that CAPP for general circuits is solvable in deterministic
polynomial time, and hence an algorithm as in the hypothesis of Theorem 3.16 exists.
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3. For every class C of probabilistic RAMs closed under error-reduction, and any p-bounded algorithm-
dependent hard function f ∈ FP for C that admits a BPP-refuter (where p is a polynomial), there
is an FP-refuter for f against C.

Proof. The implication (1) ⇒ (2) follows from Theorem 6.1. The implication (2) ⇒ (3) follows
from Theorem 6.4. For the implication (3)⇒ (1), it suffices to show, unconditionally, that there is
a function f computable in polynomial time T that is hard against str-T ISP [T1+ε, nε], and that
has a BPP-refuter. (Note that we will be using a standard hard function, which is a special case
of an algorithm-dependent hard function.)

Such a function indeed exists, because the well-known lower bounds for functions in FP
against streaming algorithms of sublinear space complexity (and any time complexity) actually
hold on average. That is, the classical proofs define very simple distributions, and show that
with probability Ω(1) over an input sampled from these distributions, the streaming algorithm
fails on that input.40 Thus, the BPP-refuter can repeatedly sample an input and verify that the
streaming algorithm fails to compute the hard function on it (until it finds a suitable input).

Finally, recall that in Section 1.3 we mentioned that proving a statement along the lines of
“BPP-refuters imply derandomization” would unconditionally imply that prBPP = prP . Let
us now state this claim formally and prove it.

Claim 6.6. Let C be any class of RAMs running in polynomial time such that for every M ∈ C and every
input z there is a string y such that Pr[M(z) = y] ≥ 2/3. Consider the following statement:

(Cond.Stt.) Assume that there is a probabilistic polynomial-time RAM f and a deterministic
polynomial-time algorithm R such that for every M ∈ C and sufficiently large n ∈N and a ∈
{0, 1}n, the algorithm R(M, a) prints x ∈ {0, 1}poly(n) satisfying Pr[M(x, a) = f (x, a)] <
2/3, where the probability is over the random coins of M and of f . Then, prBPP = prP .

Then, we have that

(Cond.Stt.) =⇒ prBPP = prP .

In other words, to prove that prBPP = prP , it suffices to prove the conditional statement (Cond.Stt.).

Proof. For any C, we show that f and R as in the hypothesis of (Cond.Stt.) exist unconditionally.
Thus, if (Cond.Stt.) is true, then prBPP = prP .

To see this, let T be the polynomial bound on the running times of machines in C, and
consider the following machine f . Given as input (x, a), simulate the first ` = log∗(n) RAMs
M1, ..., M` on input (x, a). Specifically, each machine is simulated for T steps, and we repeat the
simulation for O(log(`)) times (so that if there exists y such that Pr[Mi(a, x) = y] ≥ 2/3, then
with probability at least 1/(100`), this y will be the output of Mi in at least 0.6 of its simulations).
For each i ∈ [`], denote by y(i) the output that Mi prints in at least 0.6 of its simulations (if no
such string exists, or if Mi does not halt after T1+ε steps in one of the simulations, then y(i) = 0`).

40For example, the lower bound in [AMS99, Proposition 3.1] holds with probability Ω(1) over a distribution that is
obtained by applying a polynomial-time transformation to the hard distribution from the proof of the communication
lower bound for disjointness [Raz92]. Alternatively, one can directly consider the latter lower bound as a lower bound
on streaming algorithms (where the streaming algorithm first sees Alice’s input x, bit-by-bit, and then sees Bob’s input
y, bit-by-bit), in which case the hard distribution from [Raz92] is also hard for streaming algorithms.
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Let zi =

{
y(i)i |y(i)| ≥ i
0 o.w.

. Finally, print the `-bit string such that for every i ∈ [`] it holds that

f (x, a)i = ¬zi.
Note that f runs in probabilistic polynomial time. Also note that for every M ∈ C there are

at most finitely many inputs (x, a) such that Pr[M(x, a) = f (x, a)] ≥ 2/3. (Recall that, by the
definition of C, for every M ∈ C and every input (x, a) there exists y such that Pr[M(x, a) = y] ≥
2/3.) Hence, there is a trivial algorithm R that satisfies the hypothesis, namely the algorithm
that gets input (M, a) and outputs any fixed x (e.g., x = 0p(|a|)). By the conditional statement
(Cond.Stt.), it follows that prBPP = prP .

6.2 Derandomization vs refutation for T C0

In this section we present connections between refutation and derandomization in the setting of
weak circuit classes, and in particular for T C0. In Section 6.2.1 we present the results concerning
refuting Identity (i.e., Theorem 1.2), and in Section 6.2.2 we present the results concerning refuting
any function in highly uniform T C0 (i.e., Theorems 1.3 and 1.4).

6.2.1 Special case: derandomization vs refutation for Identity against T C0

Let us prove Theorem 1.2, which asserts an equivalence between refuting Identity against small
probabilistic T C0 ◦ ⊕ circuits, and derandomization of T C0. As a first step, we prove that
compression-refuters for probabilistic T C0 ◦⊕ circuits with nε gates suffices for derandomization:

Theorem 6.7 (compression refutation for Identity against small probabilistic T C0 circuits implies
derandomization). For every d ∈N≥1 there exists d′ ∈N≥1 such that the following holds. Assume the
following:

• For some ε ∈ (0, 1), there is a P-computable (T C0
d′ , nε)-compression refuter for Identity against

probabilistic (T C0
d′ [n

1+ε] 7→ (T C0
d′ ◦ XOR)[nε])-circuits.

Then, there is a deterministic polynomial-time algorithm solving CAPP for T C0
d circuits.

Proof. Fix d ∈ N≥1. Given a T C0
d circuit C : {0, 1}m → {0, 1}. By adding dummy inputs, we can

assume C has size n as well. Our goal is to estimate Prz∈{0,1}m [C(z) = 1] within an additive error
of 1/m.

Let ε ∈ (0, 1). Let cSTV and dSTV be the universal constants from Theorem 3.14, and let γ =
ε/4cSTV, and n = m1/γ. We instantiate Theorem 3.14 with parameter γ. And we run RSTV(1n) to
obtain the description of a probabilistic(

T C0
dSTV [n ·m

cSTV ] 7→ T C0
dSTV ◦ XOR[m

cSTV ]
)

oracle circuitR′, such that for every a ∈ {0, 1}n, given D : {0, 1}m → {0, 1} that 1/m-distinguishes
GSTV(a) as oracle, we have

Pr
R′←R′

[(
R′
)D

(a) outputs a T C0
dSTV oracle circuit E such that tt(ED) = a

]
≥ 2/3.
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Now, noting that mcSTV = nε/4, we replace the oracle of R′ by our m-size T C0
d circuit C to

obtain the description of a probabilistic(
T C0

d′ [n
1+ε] 7→ T C0

d′ ◦ XOR[nε]
)

circuit R for some constant d′ that only depends on dSTV and d.
We next run the assumed P-computable (T C0

d′ , nε)-compression refuter for Identity on R
to obtain a bad input a ∈ {0, 1}n. From the construction of R, we know that C does not
1/m-distinguishes GSTV(a). Therefore, we can enumerate all outputs of GSTV(a) to estimate
Prz∈{0,1}m [C(z) = 1] within an additive error of 1/m. This completes the proof.

Towards proving Theorem 1.2, we want to show that derandomization of T C0 follows from re-
futers against small probabilistic T C0 ◦ ⊕ circuits, rather than from compression-refuters against
such circuits. This statement seems obvious, since a refuter is intuitively stronger than a list-
refuter: given a circuit C whose truth-table is f (x), we can print f (x) by printing the truth-table
of C (thus, if we have x such that f (x) cannot be printed by small circuits, then f (x) also can-
not be compressed by small circuits). But the point is that the foregoing transformation has
computational overheads, which strengthen the circuit model that needs to be refuted.

Thus, we now prove a corollary asserting that derandomization of T C0 follows from (stan-
dard, non-compression) refuters against small probabilistic T C0 ◦ ⊕ circuits, while accounting
for this overhead. Recall that we use T C0

d-WIRES[S] ◦ `-XOR to denote a circuit consists with a
top T C0

d circuit of S total wires and a bottom layer of ` parity gates. Then:

Corollary 6.8 (refutation for Identity against small probabilistic T C0 circuits implies derandom-
ization). For every d ∈N≥1 there exists d′ ∈N≥1 such that the following holds. Assume the following:

• For some ε ∈ (0, 1), there is a P-computable refuter for Identity against probabilistic (T C0
d′ [n

1+ε] 7→
(T C0

d′-WIRES[n1+ε] ◦ nε-XOR)-circuits.

Then, there is a deterministic polynomial-time algorithm solving CAPP for T C0
d circuits.

Proof. Let ε1 ∈ (0, 1) be a constant to be specified later. We first apply Theorem 6.7 with pa-
rameters ε1 and d, and let d′1 be the corresponding constants. Let µ ∈ N be a sufficiently large
constant.

Given the description of a probabilistic (T C0
d′1
[n1+ε1 ] 7→ (T C0

d′1
◦ XOR)[nε1 ]) circuit C, in

polynomial-time we can construct the description of a probabilistic(
T C0

µ·d′1
[n1+µ·ε1 ] 7→ (T C0

µ·d′1
-WIRES[n · nµ·ε1 ] ◦ nε1-XOR

)
circuit C ′, such that C ′ first runs C and treats its output as the description of a T C0

d′1
circuit E of

nε1 size, and outputs the first n bits of E’s truth-table.41

Let d′ = µ · d′1 and ε = µ · ε1. From the above transformation, it follows that a P-computable

refuter for Identity against probabilistic
(
T C0

d′ [n
1+ε] 7→ T C0

d′-WIRES[n1+ε] ◦ nε-XOR
)

-circuits im-

plies a P-computable (T C0
d′1

, nε1)-compression refuter for Identity against probabilistic (T C0
d′1
[n1+ε1 ] 7→

(T C0
d′1
◦ XOR)[nε1 ])-circuits. The corollary then follows from Theorem 6.7.

41More precisely, C ′ is the composition of C and a T CO(d′1)
circuit U that takes the description of a T C0

d′1
circuit E of

nε1 size as input, and outputs the first n bits of E’s truth-table. It it easy to see that U has n · nO(ε1) wires.
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We now complement Corollary 6.8 by proving a converse direction (i.e., “derandomization
⇒ refutation”), which will complete the proof of Theorem 1.2.

Theorem 6.9 (Theorem 1.2, formally stated). The following two statements are equivalent:

1. For every d ∈N, there is a polynomial-time algorithm solving CAPP for T C0
d circuits.

2. For every d′ ∈N, there exist ε ∈ (0, 1) and a P-computable refuter for Identity against probabilistic
(T C0

d′ [n
1+ε] 7→ (T C0

d′-WIRES[n1+ε] ◦ nε-XOR)-circuits.

Proof. The direction (2) =⇒ (1) follows immediately from Corollary 6.8. So it suffices to show
the (1) =⇒ (2) direction.

Fix d′ ∈N. For convenience, we use F to denote probabilistic (T C0
d′ [n

1+ε] 7→ (T C0
d′-WIRES[n1+ε] ◦

nε-XOR)-circuits.
We first note that given the description of an n-input F circuit C, in polynomial time we can

construct a T C0 circuit B such that for every x ∈ {0, 1}n, we have C(x) has the same distribution
as B(x, Ur1), where r1 ≤ poly(n). We note that since C only has nε gates at the bottom, we have
Prα←{0,1}n [C(α) = α] ≤ 0.01. We construct the following T C0 circuit W : {0, 1}n × {0, 1}r1 →
{0, 1} as

W(α, β) = 1
[

B(α, β) = f (α)
]
.

We know that Prα,β[W(α, β) = 1] < 0.01. From (1) and Theorem 3.16, in polynomial deter-
ministic time we can find an α ∈ {0, 1}r2 such that Prβ[W(α, β) = 1] < 2/3, then α is the output
of our deterministic refuter.

6.2.2 Generalization to any hard function computable by highly uniform T C0 circuits

In Section 6.2.1 we proved results focusing on refuters against small probabilistic T C0 circuits
for the “hard function” f = Identity. In this section we broaden the class of hard functions f ,
from Identity to all functions computable in highly uniform T C0. To do so we will crucially rely
on Theorem 5.1. We start by proving (a more general and technical version of) Theorem 1.3.

Theorem 6.10 (compression refutation against small probabilistic T C0 circuits implies deran-
domization). For every ε ∈ (0, 1) and d, d f , k ∈ N≥1 there exist d′ ∈ N≥1 and δ ∈ (0, 1) such that the
following holds. Let f : {0, 1}∗ → {0, 1}∗ be any function computable by a family of δ-highly uniform
threshold circuits of depth d f and nk size. Assume the following:

• There is a P-computable (T C0
d′ , nε)-compression list-refuter for f against probabilistic (T C0

d′ [n
1+ε] 7→

(T C0
d′ ◦ SUM)[nε])-circuits.

Then, there is a deterministic polynomial-time algorithm solving CAPP0,1/2 for T C0
d circuits.

Proof. Let T(n) = nk, and let γ be such that T(n)γ = nε/4. Let c be the universal constant
from Theorem 5.1. Let d1 and δ be the corresponding parameters from Theorem 5.1 when apply-
ing it with γ and d f .

Let f : {0, 1}∗ → {0, 1}∗ be a function computable by a family of δ-highly uniform threshold
circuits of depth d f and T(n) size.

Given an m-input T C0
d circuit C : {0, 1}m → {0, 1}, our goal is to decide between the case

that Prr[C(r) = 1] ≥ 1/2 and Prr[C(r) = 1] = 0. By adding dummy gates, without loss of
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generality, we can assume C can be described by an m-bit string a ∈ {0, 1}m, and we also use
Ca : {0, 1}m → {0, 1} to denote the circuit corresponds to a. Let n = m4c/ε so that m = nε/4c.

Applying Theorem 5.1 with function f , parameter γ and output length m, for x ∈ {0, 1}n, we
set Sx = HCT

f (x). (Note that m = nε/4c = T(n)γ/c, so the assumption of Theorem 5.1 is satisfied.)

Lemma 6.11 (instance-wise reconstruction). There is a constant d′ ∈N that only depends on d, f1, and
d1 such that d′ ≥ max(d f , d, d1) and the following holds. Given a ∈ {0, 1}m, there is a polynomial-time

algorithm that computes the description of a
(
T C0

d′ [n
1+ε]

)
-samplable probabilistic T C0

d′ ◦ SUM n-input
circuit Ra of size nε, such that for every x ∈ {0, 1}n, if

Pr
r
[Ca(r) = 1] ≥ 1/2 and Pr

s∈Sx
[Ca(s) = 1] = 0 ,

then, when R is given input x, with probability at least 2/3 it prints a T C0
d′ circuit of size nε whose

truth-table is f (x).

Proof. Let R f = RCT-TC0
f (1n) be the

(
T C0

d1
[n · Tγ]

)
-samplable probabilistic T C0

d1
◦ SUM oracle cir-

cuit R f of size Tγ outputted by RCT-TC0
f from Theorem 5.1. We replace the oracle of Ra by Ca to

obtain Ra. Recalling that m = nε/4c and Tγ = nε/4, Ra corresponds to a
(
T C0

d′ [n
1+ε]

)
-samplable

probabilistic T C0
d′ ◦ SUM n-input circuit of size nε, for a sufficiently large d′ that only depends on

d1, d f , and d. And from its construction, Ra can be computed from a in polynomial time.
From Theorem 5.1, if Prr[Ca(r) = 1] ≥ 1/2 and Prs∈Sx [Ca(s) = 1] = 0, then it holds that Ra(x)

prints a T C0
d′ circuit of size nε whose truth-table is f (x) with probability at least 2/3. �

Now, given input a ∈ {0, 1}m to CAPP0,1/2, we construct Ra from Lemma 6.11, and run the
compression list-refuter on input (1n, Ra) to obtain x1, ..., xt ∈ {0, 1}n, where t ≤ poly(n). For
each i ∈ [t], we compute the list Si = Sxi , and finally we output

∨
i∈[t],s∈Si

Ca(s). From Theo-
rem 5.1, the whole procedure runs in polynomial time.

Assume towards a contradiction that for some a ∈ {0, 1}m it holds that

Pr
r∈{0,1}m

[Ca(r) = 1] ≥ 1/2 and
∨

i∈[t],s∈Si

Ca(s) = 0 .

By Lemma 6.11, for every i ∈ [t] it holds that Ra(xi) prints, with high probability, a T C0
d′ circuit of

size nε whose truth-table is f (xi). This contradicts the properties of the compression list-refuter.

Analogously to Corollary 6.8, we now show that constructing a refuter (rather than a compression-
refuter) against probabilistic T C0 ◦ SUM circuits suffices for derandomization, and this will in-
duce some overhead in the circuit model. Since now we are concerned with arbitrary functions
f : {0, 1}n → {0, 1}m rather than with f = Identity, we will quantify the output length m = m(n)
of f , and account for the overhead in the circuit model according to m.

Corollary 6.12 (refutation implies derandomization for small probabilistic T C0 circuits). For every
ε ∈ (0, 1) and d, d f , k ∈ N≥1 there exist d′ ∈ N≥1 and δ ∈ (0, 1) such that the following holds. Let
m : N → N. Let f : {0, 1}n → {0, 1}m(n) be any function computable by a family of δ-highly uniform
threshold circuits of depth d f and nk size. Assume the following:
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• There is a P-computable list-refuter for f against probabilistic(
T C0

d′ [(m + n) · nε] 7→ T C0
d′-WIRES[m · nε] ◦ nε-SUM

)
circuits.

Then, there is a deterministic polynomial-time algorithm solving CAPP0,1/2 for T C0
d circuits.

Proof. Let ε1 ∈ (0, 1) be a constant to be specified later. We first apply Theorem 6.10 with
parameters ε1, d, d f , and k, and let d′1 and δ1 be the corresponding constants. We let δ = δ1. Let
µ ∈N be a sufficiently large constant.

Given the description of a probabilistic (T C0
d′1
[n1+ε1 ] 7→ (T C0

d′1
◦ SUM)[nε1 ]) circuit C, in

polynomial-time we can construct the description of a probabilistic(
T C0

µ·d′1
[(m + n) · nµ·ε1 ] 7→ (T C0

µ·d′1
-WIRES[m · nµ·ε1 ] ◦ nε1-SUM

)
circuit C ′, such that C ′ first runs C and treats its output as the description of a T C0

d′1
circuit E of

nε1 size, and outputs the first m bits of E’s truth-table.42

Let d′ = µ · d′1 and ε = µ · ε1. From the above transformation, it follows that a P-computable

list-refuter for f against probabilistic
(
T C0

d′ [m · n1+ε] 7→ T C0
d′-WIRES[m · nε] ◦ nε-SUM

)
-circuits

immediately implies a P-computable (T C0
d′1

, nε1)-compression list-refuter for f against prob-

abilistic (T C0
d′1
[n1+ε1 ] 7→ (T C0

d′1
◦ SUM)[nε1 ])-circuits. The corollary then follows from Theo-

rem 6.10.

We can now prove Theorem 1.4. In the following statement, we use f : {0, 1}n → {0, 1}m with
an arbitrary output length m = m(n); the statement of Theorem 1.4 is obtained by using m = nε.

Theorem 6.13 (derandomization vs refutation for T C0 ◦ nε-SUM circuits). Let ε ∈ (0, 1), m : N→
N, and f : {0, 1}n → {0, 1}m(n) be such that

• For every δ ∈ (0, 1), f is computable by a family of δ-highly threshold circuits of constant depth.

• For every d′ ∈N, there is a probabilistic T C0-computable 1/10-refuter for f against probabilistic(
T C0

d′ [m · n1+ε] 7→ T C0
d′-WIRES[m · nε] ◦ nε-SUM

)
-circuits .

Then, for the following three statements, we have (1) =⇒ (2) =⇒ (3).

1. For every d ∈N, there is a deterministic polynomial-time algorithm solving CAPP for T C0
d circuits.

2. For every d′ ∈N, there is a P-computable refuter for f against probabilistic(
T C0

d′ [m · n1+ε] 7→ T C0
d′-WIRES[m · nε] ◦ nε-SUM

)
-circuits .

42More precisely, C′ is the composition of C and a T CO(d′1)
circuit U that takes the description of a T C0

d′1
circuit E of

nε1 size as input, and outputs the first m bits of E’s truth-table. It it easy to see that U has m · nO(ε1) wires.
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3. For every d ∈ N, there is a deterministic polynomial-time algorithm solving CAPP0,1/2 for T C0
d

circuits.

Proof. First, note that (2) =⇒ (3) follows immediately from Corollary 6.12. So it suffices to
prove (1) =⇒ (2).

Fix d′ ∈N. For convenience, we use F to denote probabilistic(
T C0

d′ [m · n1+ε] 7→ T C0
d′-WIRES[m · nε] ◦ nε-SUM

)
-circuits.

We first note that given the description of an n-input F circuit C, in polynomial time we can
construct a T C0 circuit B such that for every x ∈ {0, 1}n, we have C(x) has the same distribution
as B(x, Ur1), where r1 ≤ poly(n).

Let R be the probabilistic T C0 refuter for f . Given the description of an n-input F circuit C
as input, with probability at least 9/10 over its randomness, R outputs a string z ∈ {0, 1}n such
that Pr[C(z) = f (z)] < 1/10. Now, let r2 be the number of random bits used by R. We construct
the following T C0 circuit W : {0, 1}r2 × {0, 1}r1 → {0, 1} as

W(α, β) = 1
[

B(R(C; α), β) = f (R(C; α))
]
.

By the condition on R, we know that Prα,β[W(α, β) = 1] < 1/5. From (1) and Theorem 3.16,
in polynomial deterministic time we can find an α ∈ {0, 1}r2 such that Prβ[W(α, β) = 1] < 2/3,
then R(C, α) is the output of our deterministic refuter.

6.3 Refuting deterministic streaming algorithms vs Lossy Code

In this section we prove Theorem 1.8 and Theorem 1.9.

Reminder of Theorem 1.8. For any function f ∈ FP , ε ∈ (0, 1), a deterministic refuter for f against
nε-space polynomial-time deterministic streaming algorithms implies that LossyCode ∈ FP .

Proof. The theorem would easily follow from Korten’s J-tree construction [Kor22b]. Below we
give a much simpler self-contained proof, but the ideas are very similar to Korten’s results.

Fix f ∈ FP and ε ∈ (0, 1), and let R be the corresponding refuter from the theorem statement.
We show how to solve LossyCode ∈ FP .

Let C : {0, 1}n → {0, 1}n−1 and D : {0, 1}n−1 → {0, 1}n be two circuits of size s (we have
n ≤ s), interpreted as the input to LossyCode. For simplicity, we will assume fm (the restriction
of f on m-bit inputs) is a function from {0, 1}m to {0, 1}m. Since f ∈ FP , there is a constant
k ∈ N such that fm admits an mk-time single-tape Turing machine. We further assume that that
the output of the machine is the first m bits in its tape at the end of the execution.

Let m = s2/ε, we construct the following mε-space streaming algorithm B that attempts to
compute fm:

• Given streaming access to the input x ∈ {0, 1}m, let β = x[1,n]. For every i ∈ {n + 1, . . . , mk},
we set β ← C(β) ◦ xi. In other words, we set β as an n-bit succinct representation of the
string x · 0mk−m, which represent the initial tape of the single-tape Turing machine.43

43We assume for simplicity that the single-tape Turing machine also gets another input-length tape on which the
input length |x| = m is written; so we don’t have to include a termination symbol # after x on the input tape.
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• Given a string β ∈ {0, 1}n, consider the string y ∈ {0, 1}mk
defined as follows: letting

β = z(`−1), for every i from mk down to n + 1, we set yi ← βn and β ← D(β[1,n−1]); and
y[n] ← β. By its definition, given an index i ∈ [mk] and β ∈ {0, 1}n as input, one can output
yi using space O(s) and running time poly(s) ·mk. We denote its output by Access(β, i).

We initialize the location of the head to be idx = 1 and q to be the starting state of Turing
machine.

• For every t ∈ [mk]:

1. Let oidx ← idx. Given Access(β, oidx) and q, get the new content of the oidx-th cell
(denoted as u ∈ {0, 1}) and update idx and q according to the Turing machine.

Set tmp← β. Define a string y ∈ {0, 1}mk
such that yi = Access(tmp, i) if i 6= oidx, and

yi = u otherwise.

2. Let β = y[1,n]. For every i ∈ {n + 1, . . . , mk}, we set β← C(β) ◦ yi.

• For every i ∈ [m]: output Access(β, i).

Roughly speaking, we use C and D to maintain an n-bit succinct representation β of the
current mk-bit content of the Turing machine tape. The Access(β, i) function allows us to access
the i-th bit of the tape in O(s) space and poly(m) time.44 The overall running time of B is also
bounded by poly(m).

We use β(0) to denote the value of β before the 1-th round (of the execution of the Turing
machine) and β(t) to denote the value of β at the end of the t-th round. We note that β(i) is our
succinct representation of the content of the tape after the Turing machine runs for i steps. We
also let the string y(t) to denote the string y defined at the t-th round, and y(0) = x ◦ 0mk−m.

Now, one can observe that if for every t ∈ {0, 1, . . . , mk} and for every j ∈ [mk], we have
y(t)j = Access(β(t), j). Then by a simple induction, y(m

k) is the correct tape content at the end of the
execution of the Turing machine, meaning that B computes f (x) correctly on input x ∈ {0, 1}m.

Hence, running the refuter R on B, we get an input x ∈ {0, 1}m such that B(x) 6= fm(x), which
in particular means there exists t, j such that y(t)j 6= Access(β(t), j). By the definition of β(t), we

can see that in the process of repeatedly applying C on y(t) to obtain β(t), at least once we would
encounter a β such that D(C(β)) 6= β. This allows us to solve LossyCode with input (C, D), and
completes the proof.

Reminder of Theorem 1.9. For a function f ∈ {DISJ, IP} and ε ∈ (0, 1), the following are equivalent:

1. There is a refuter in FP for f against nε-space poly-time deterministic streaming algorithms.

2. There is a refuter in FP for f against (n− 1)-space poly-time deterministic streaming algorithms.

3. LossyCode ∈ FP .

44The J-tree construction from [Kor22b] allows a much faster access time of poly(log m, s); but poly(m) already
suffices for our purpose.
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Proof. The (1) ⇒ (3) direction follows immediately from Theorem 1.8. And (2) ⇒ (1) direction
is immediate.

In the following we establish the (3)⇒ (2) direction. We will only show it for DISJ; the proof
for IP is almost identical. Given a deterministic (n− 1)-space nk-time streaming algorithm B that
attempts to solve DISJn, we construct an input pair C, D to LossyCode as follows:

1. The compression circuit C : {0, 1}n → {0, 1}n−1: runs B on x as the first half of the input
to DISJ, and then output the memory of the algorithm B after reading all of x.

2. The decompression circuit D : {0, 1}n−1 → {0, 1}n: Given a memory state z ∈ {0, 1}n−1, we
construct output x ∈ {0, 1}n as follows: for every i ∈ [n], we run B starting with memory z
and the second half being string ei ∈ {0, 1}n (ei means only the i-th bit is 1, all others being
0) to obtain an output x̄ and set xi = x̄.

Now, since LossyCode ∈ FP , in polynomial time we can find an input x ∈ {0, 1}n such that
D(C(x)) 6= x. By definition of C and D, it means that for some i ∈ [n], B fails on the input (x, ei).
Therefore, we can enumerate all i ∈ [n] to find out which of the (x, ei) is the desired counter
example.

7 Characterization of derandomization via the refuter framework

In this section we explain how using the terminology of refuters allows to capture and generalize
previous results. In Section 7.1 we explain how to generalize [LP22a], in Section 7.2 we explain
how to generalize [LP22b], and in Section 7.3 we explain how to generalize [CT21].

7.1 Leakage-resilient hardness and refuter for Identity

We first recall the definition of almost-all-input leakage-resilient hardness from [LP22b], and
explain why it’s equivalent to the existence of refuter for Identity against a certain class of algo-
rithms.

Definition 7.1 (Almost-all-input (a.a.i.) leakage-resilient hardness). Let f : {0, 1}n → {0, 1}n be a
(multi-output) function. We say that f is almost-all-input (T, `)-leakage resilient hard if for all T-time45

probabilistic algorithms leak and A satisfying leak(x, f (x)) ≤ `(|x|), for all sufficiently long strings x,
A(x, leak(x, f (x))) 6= f (x) with probability at least 2/3 (over their internal randomness).

We now define non-uniform probabilistic one-way efficient communication protocols (denoted as
one-way efficient CP for convenience) as a special class of RAM machines: for input length n ∈
N≥1, communication ` = `(n) ∈N, and running time T = T(n) ∈N, there are two randomized
uniform T(n)-time algorithms A and B that46 take n-bit input x ∈ {0, 1}n and n-bit advice
a ∈ {0, 1}n such that A(a, x) outputs an `-bit message m ∈ {0, 1}` and B(a, m) outputs a Boolean
string.47 We can also define non-uniform probabilistic efficient communication protocols with

45This means the running time of A and leak are bounded by T(n) where n = |x| is the length of their first input.
46This means that running time of A and B are bounded by T(n).
47We fix the advice length to be the same as input length for simplicity, but we can certainly separate them as

different parameters. Also, note that here the second agent (modeled by B) has no input.
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communication ` and running time T in a similar way, by giving the current transcript to A and
B as an additional input.

We now note that aai leakage-resilient hardness is by definition equivalent to refuter for
Identity against one-way efficient CP.

Observation 7.2. The following statements are equivalent:

1. There is a function f : {0, 1}n → {0, 1}n that is a.a.i. (T, `)-leakage resilient hard.

2. There exists a refuter R for Identity against T-time one-way efficient CP with communication com-
plexity `.

Proof. From their definitions, there is a one-to-one correspondence between leak and A, A and
B, and (crucially) the a.a.i.-leakage resilient hard function f and the refuter R.

We can show the following equivalence.

Theorem 7.3. For every polynomial T(n) ≥ n1+Ω(1), and for every ε ∈ (0, 1), the following statements
are equivalent:

1. prP = prBPP .

2. There is a P-computable nε-compression refuter for Identity against probablistic (SIZE[n1+ε] 7→
SIZE-XOR[nε])-circuits.

3. There is a refuter for Identity against T-time one-way efficient CP with communication complexity
nε.

4. There is a refuter for Identity against T-time efficient CP with communication complexity n− 1.

Proof. It is easy to see that (4) =⇒ (3). To see that (3) =⇒ (2), note that a probabilistic
(SIZE[n1+ε] 7→ SIZE-XOR[nε])-circuit C implies a n1+ε-time one-way efficient CP with communi-
cation complexity nε as follows: A(x) simulates C(x), and sends its nε-bit output ` to B. B(x, `)
treats ` as an log n-input nε-size circuit and outputs its truth-table.

We note that (2) =⇒ (1) follows from an identical proof as in Theorem 6.7. To show (1) =⇒
(4), we note that for any T-time efficient CP P = (A, B) with communication complexity at most
1/2, we have Prz∈{0,1}n [P(z) = z] ≤ 1/2 (the randomness is also over the inner randomness of
P) by a simple counting argument. Assuming prP = prBPP and applying Theorem 3.16, we
can find an z such that Pr[ P(z) = z] < 2/3 deterministically. This completes the proof.

Remark 7.4. We remark that Item (2) in Theorem 7.3 is indeed (syntactically) equivalent to the notion of
a.a.i. leakage-resilient hardness local hardness in [LP22b].

In particular, the equivalence between Item (1) and Item (2) above shows that even assuming
the leak function from Definition 7.1 to be a probabilistic SIZE ◦ XOR[nε] circuit sampled by an
n1+ε circuit and the A function to be the truth-table generation function (given an nε-size circuit,
output its length-n truth-table) that does not depend on the input x, the existence of a.a.i. leakage
resilient hard is still equivalent to derandomization.
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7.2 Hardness of Conditional Kolmogorov Complexity

We now explain how the viewpoint of refuters allows to generalize the results of [LP22a]. To
do so, let us first recall the definitions of Levin’s Kolmogorov complexity and of the problem
GapMcKtP, which refes to conditional Levin’s Kolmogorov complexity.

Definition 7.5 (Levin’s Kolmogorov complexity). For a fixed universal Turing machine U, and any
x, z ∈ {0, 1}∗, we define

Kt(x|z) = min
Π∈{0,1}∗,t∈N

{
|Π|+ log(t) : U(Π(z), 1t) = x

}
.

Definition 7.6 (GapMcKtP). Let TYES, TNO : N → N. The problem problem GapMcKtP[TYES, TNO] is
defined as follows:

• YES instances: (x, z) such that |x| = |z| and Kt(x|z) ≤ TYES(|x|).

• NO instances: (x, z) such that |x| = |z| and Kt(x|z) ≥ TNO(|x|).

The main result from [LP22a] asserts that derandomization is equivalent to hardness of
GapMcKtP against probabilistic polynomial-time algorithms on almost all conditions z; that is, for
every algorithm and every z (except, at most, finitely many), there is an x such that the algorithm
fails on input (x, z).

Theorem 7.7 (derandomization vs almost-all-conditions hardness of GapMcKtP; [LP22a, Theorem
1]). There exists a constant c ≥ 1 such that the following two statements are equivalent.

1. prBPP = prP .

2. There exists γ ∈ R such that for every probabilistic algorithm M running in time nc, for all but
finitely many z ∈ {0, 1}∗, there exists x ∈ {0, 1}∗ such that M fails to solve GapMcKtP[γ ·
log(n), n− 1] correctly on input (x, z).

We now show that Corollary 6.5 is a strengthening of Theorem 7.7. Specifically, we prove
that the hypothesis of Theorem 7.7 is at least as strong as the hypothesis in Corollary 6.5, which
asserts the existence of a compression list-refuter for probabilistic algorithms running in time nc.

Claim 7.8 (hardness of GapMcKtP implies refutation). Suppose that the hypothesis in Item (2) of
Theorem 7.7 holds. Then, there exists a P-computable

√
n-compression list-refuter for Identity against

general probabilistic algorithms running in time nc−o(1).

Proof. The refuter Ref gets input (M, a), where |a| = n, and enumerates over all strings Π1, ..., Π2`+1−1
of length at most ` = γ · log(n). Treating each Πi as the description of a RAM, it simulates the
machine for 2` steps on input a, and if the machine prints an n-bit string wi, then Ref prints wi
(otherwise, the refuter just moves on to Πi+1). The final output list of Ref consists of all wi’s that
it printed.

Assume towards a contradiction that there is a time-nc−o(1) RAM M′ and an infinite set A ⊆
{0, 1}∗ such that for every a ∈ {0, 1}∗, for all wi that Ref(M′, a) prints, it holds that

Pr
[

M′(a, wi) prints a circuit of size
√

2|a| whose truth-table is wi

]
≥ 2/3 ,
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where the probability is over the random coins of M′.48

Then, for any z ∈ A, for all x we solve GapMcKtP[γ · log(n), n− 1] on input (x, z) as follows.
Given (x, z), we simulate M′(z, x) for constantly many independent trials; if in one of those trials,
M outputs a circuit of size

√
2|z| with truth-table equal to x then we accept, otherwise we reject.

Note that on “no” instances, we always reject (because no such circuit exists). On “yes” instances,
by definition there exists a program Π of size at most ` running in at most 2` steps such that
Π(z) = x. By the definition of Ref, one of the outputs in the list that Ref(M′, z) prints will be x.
By the assumption on M′ and the fact that a ∈ Z, with high probability M′(z, x) prints a circuit
of size

√
2|z| with truth-table x, therefore we accept.

7.3 Almost-all-inputs hardness

We now explain how the viewpoint of refuters also allows us to capture and generalize the results
of Chen and Tell [CT21]. Recall that they considered the notion of hardness on almost all inputs,
defined as follows:

Definition 7.9 (almost-all-inputs hardness). A function f : {0, 1}∗ → {0, 1}∗ is hard on almost all

inputs for probabilistic algorithms running in time T if for every T-time algorithm M and for all but
finitely many inputs x, Pr[M(x) = f (x)] < 2/3.

The main result of [CT21] is a two-way connections between derandomization (i.e., prBPP =
prP) and the existence of functions that are hard on almost all inputs for probabilistic algorithms
running in fixed polynomial time.

Theorem 7.10 (the main result of [CT21]). For any ` = polylog(n), the following statements hold:

1. If there is a function mapping n bits to n/` bits that is computable by logspace-uniform circuits of
polynomial size and depth O(n2), and that is hard for probabilistic time nc on almost all inputs,
where c > 1 is a sufficiently large universal constant, then prBPP = prP .

2. If prBPP = prP , then for every c ≥ 1 there is a function in FP mapping n bits to n/` bits that
is hard for probabilistic time nc on almost all inputs.

The original statement in [CT21] referred to length-preserving functions, but (as mentioned
in that paper) the precise output length is immaterial for the result. We have chosen to present
the result in Theorem 7.10 using output length n/polylog(n) to facilitate capturing cleanly it
using refuter terminology.

To capture Theorem 7.10 in refuter terminology, we define algorithms that get advice and do

not examine their input as the class of RAMs M that get two inputs and satisfy the following: for
every a ∈ {0, 1}∗ and every x, x′ ∈ {0, 1}∗ such that |x| = |x′| it holds that M(x, a) = M(x′, a).
(When M is probabilistic, we require the equality to hold for every fixed choice of random coins.)

The following claim asserts that hardness on almost all inputs is equivalent to refuting algo-
rithms that do not examine their input.

Claim 7.11 (almost-all-inputs hardness is equivalent to refuting machines that don’t examine
their inputs). For any polynomial T(n) ≥ n2, the following statements are equivalent:

48The reason that the circuit size is
√

2|a| instead of
√
|a| is that we defined s-compression refuters with s =

√
·

being a function of |a|+ |wi| = 2|a|.
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1. There is an FP-refuter for Identity against algorithms that on n-bit inputs run in probabilistic time
O(T(Õ(n))), get Õ(n) bits of advice, and do not examine their input.

2. There is a function f ∈ FP mapping n bits to n/polylog(n) bits that is hard on almost all inputs
for probabilistic algorithms running in time O(T).

Proof. We first prove that (1) ⇒ (2). Let R be the refuter, let `(n) = polylog(n) be a sufficiently
large polylogarithm. Given input x ∈ {0, 1}n, consider the first m = log(n) Turing machines,
denoted M1, ..., Mm, according to some canonical enumeration. For every i ∈ [m], we compute
yi = R(Mi, x)) ∈ {0, 1}n/`,49 and print the string

f (x) = y1 ◦ y2 ◦ ... ◦ ym ,

which is of length n/` · log(n) = n/polylog(n). (For i ∈ [m] such that the refuter does not output
a string yi, we print yi = 0n/`.)

Assume towards a contradiction that there is a time-O(T) Turing machine F and an infinite
set X ⊆ {0, 1}∗ such that for every x ∈ X it holds that Pr[F(x) = f (x)] ≥ 2/3. Let A be an
advice-taking machine that on any input of length n, and given advice x ∈ {0, 1}N where N
satisfies n = N/`, simulates F on input x and outputs the (iA)

th substring of F(x), where iA
is A’s index in the enumeration of Turing machines.50 Note that the advice complexity of A
is N = n · `(N) = Õ(n), and its running time is O(T(N)) = O(T(Õ(n))). Thus, for every
sufficiently long x ∈ X we have

Pr
[

A
(

R(A, x), x
)
= R(A, x)

]
= Pr[F(x)iA = R(A, x)]

≥ Pr[F(x) = f (x)]
≥ 2/3 ,

which contradicts the properties of the refuter.
Now, let us prove that (2) ⇒ (1). For a sufficiently large polylogarithm ` = polylog(n), the

refuter gets input (M, a) where M is the description of a T-time machine that does not examine its
input and a ∈ {0, 1}n, and the refuter outputs f (a) ∈ {0, 1}n/`. Assume towards a contradiction
that for some machine M running in time T′(m) = O(T(Õ(m))) and infinitely many advice
strings a ∈ {0, 1}∗ it holds that Pr[M( f (a), a) = f (a)] ≥ 2/3. Consider the machine M′ that
gets input a ∈ {0, 1}n and outputs M(0n/`, a). The running time of M′ is T′(n/`) < O(T(n)),
and we have that M′(a) = M(0n/`, a) = M( f (a), a). Thus, for infinitely many a’s we have that
Pr[M′(a) = f (a)] ≥ 2/3, a contradiction.

Observe that in the proof above, the refuter and the almost-all-inputs hard function have
essentially the same complexity. In particular, if one is computable by logspace-uniform circuits
of polynomial size and depth n2, then the other is computable by logspace-uniform circuits of
polynomial size and depth O(n2). Hence, we can present Theorem 7.10 in refuter terminology:

Corollary 7.12 (the main result of [CT21], in refuter terminology). For every c ≥ 1, let Oc be the
class of probabilistic algorithms that on n-bit inputs run in time nc, get Õ(n) bits of advice, and do not
examine their input. Then, the following statements hold:

49We ignore rounding issues throughout the proof, for simplicity.
50We can assume that A can use its own index iA in its execution, by Kleene’s recursion theorem and assuming an

efficient mapping of machine descriptions to their indices in the enumeration of machines.
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1. For a sufficiently large c ≥ 1, assume that there is a refuter for Identity againstOc that is computable
by logspace-uniform circuits of polynomial size and depth n2. Then, prBPP = prP .

2. If prBPP = prP , then for every constant c > 1 there is an FP-refuter for Identity against Oc.
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A The tarHSG of [CT21] with low-space streaming reconstruction

In this section we prove Theorem 3.15 (restated below).

Reminder of Theorem 3.15. There exists a universal constant c > 1 such that the following holds.
Let f : {0, 1}N → {0, 1}N be computable in time T(N), let γ > 0, and let M : N → N such that
c · log(T) < M < Tγ/c. Then, there exists a deterministic algorithm HCT

f and a probabilistic oracle
machine RCT

f that for every z ∈ {0, 1}N satisfy the following:

1. Generator: When given input z, the machine HCT
f runs in time poly(T(N)) and prints a list of

strings in {0, 1}M.

2. Reconstruction: RCT
f gets input z, and can be implemented by a Tγ-space one-pass streaming

algorithm over the input z with running time Mc · T1+γ. When RCT
f is given oracle access to a

function D : {0, 1}M → {0, 1} that 1/M-avoids HCT
f (z), with probability at least 1− 1/M the

machine RCT
f outputs an oracle circuit C f (z) of size Tγ such that the truth-table of (C f (z))

D is f (z).

Proof sketch. From our assumption, f is also computable by a logspace-uniform circuit of Õ(T)
size and Õ(T) depth. We follow the reconstruction algorithm described in [CT21, Section 4.4]
and observe that everything except for the first iteration takes only

(t · Tγ ·M)4c2
0 · (d + N) ≤ T1+O(γ) ·MO(1)

time and TO(γ) space. Moreover, the first iteration is the only place where the algorithm needs
access to the input string z.

Hence, the remaining challenge is to implement the first phase by a TO(γ)-space one-pass
streaming algorithm. The original reconstruction algorithm in [CT21, Section 4.4] constructs a
circuit of size t0 ≥ N for the first polynomial p1, which already requires N bits to restore (which
can be much larger than the TO(γ) space bound we aim for). We observe that this is not necessary:
instead of building a circuit C1 for p1, we can directly start from building a circuit C2 for p2, and
using the t0-time base case algorithm to answer all queries when running [CT21, Lemma 4.10]
for i = 2. This can be done in TO(γ) · poly(M) · t0 ≤ T1+O(γ) · poly(M) time and only uses TO(γ)

space.
Moreover, we can further observe that [CT21, Lemma 4.10] only makes TO(γ) non-adaptive

queries to Ci−1, meaning that one can first gather all these queries using TO(γ) space, and then
try to answer all of them together using a single pass over the input. We note that p1 correspond
to the input polynomial α̂0 : Fm → F, which is defined by

α̂0(~w) = ∑
~z∈Hm′×{0}m−m′

δ~z(~w) · α0(~z) ,

where δ~z is Kronecker’s delta function (i.e., δ~z(~w) = ∏j∈[m] ∏a∈H\{zj}
wj−a
zj−a ) and α0(~z) denotes

an input bit to f indexed by ~z. From its definition, one can see that in O(log T) space one can
compute α̂0(~w) via a single pass over the input.

Finally, we can set the γ above small enough compared to the γ in the statement, and the
whole algorithm can be implemented by a Tγ-space one-pass streaming algorithm over the input
z with running time Mc · T1+γ. This completes the proof.
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B The STV PRG with T C0 ◦ XOR reconstruction

B.1 Finite Fields

Throughout this section, we will only consider finite fields of the form GF(22·3`) for some ` ∈ N

since they enjoy simple representations that will be useful for us. We say p = 2r is a nice power of
2, if r = 2 · 3` for some ` ∈N.

Let ` ∈ N and n = 2 · 3`. In the following we use F to denote F2n for convenience. We will
always represent GF2n as F2[x]/(xn + xn/2 + 1).51 That is, we identify each element of GF(2n) with
an F2[x] polynomial of degree less than n. To avoid confusion, given a polynomial P(x) ∈ F2[x]
with degree less than n, we will use (P(x))F to denote the unique element in F identified with
P(x).

Let κ(n) be the natural bijection between {0, 1}n and F = GF(2n): for every a ∈ {0, 1}n,
κ(n)(a) =

(
∑i∈[n] ai · xi−1

)
F

. We always use κ(n) to encode elements from F by Boolean strings.
That is, whenever we say that an algorithm takes an input from F, we mean it takes a string
x ∈ {0, 1}n and interprets it as an element of F via κ(n). Similarly, whenever we say that an
algorithm outputs an element from F, we mean it outputs a string {0, 1}n encoding that element
via κ(n). For simplicity, sometimes we use (a)F to denote κ(n)(a). Also, when we say the i-th
element in F, we mean the element in F encoded by the i-th lexicographically smallest Boolean
string in {0, 1}n.

B.2 Proof of Theorem 3.14

Theorem B.1 (the STV PRG with T C0 ◦ XOR reconstruction). There are universal constants cSTV >
1 and dSTV ∈ N≥1 such that for every sufficiently small constant γ̄ ∈ (0, 1), there are deterministic
algorithms GSTV and RSTV that satisfy the following:

1. Generator: When given a string z ∈ {0, 1}n, GSTV runs in time poly(n) and prints a list of strings
in {0, 1}m, where m = nγ̄.

2. Reconstruction: RSTV(1n) outputs the description of a probabilistic(
T C0

dSTV [n ·m
cSTV ] 7→ T C0

dSTV ◦ XOR[m
cSTV ]

)
oracle circuit R f , such that given D : {0, 1}m → {0, 1} that 1/m-distinguishes GSTV(z) as oracle,
we have

Pr
R f←R f

[
RD

f (z) outputs a T C0
d1

oracle circuit E such that tt(ED) = z
]
≥ 2/3.

Proof. We begin by setting some notation.

Notation. Let h be the smallest nice power of 2 that is at least m. Let p = h27 (therefore p is
also a nice power of 2). Let ` be the smallest integer such that h` ≥ n. Let F = Fp and H be the

51Note that x2·3` + x3` + 1 ∈ F2[x] is always irreducible; see [VL99, Theorem 1.1.28].
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first h elements from Fp. Let ξ : [n] → Hm be an efficiently computable injection mapping.52 Let
z ∈ {0, 1}n be our input. Let cNW and dNW be the universal constants from Theorem 3.13.

Let d0 ∈ N be a sufficiently large constant such that d0 ≥ dNW. Let µ ∈ N be a sufficiently
large constant.

The generator GSTV. First, we define Pz : F` → F as

Pz(~u) = ∑
i∈[n], ~w=ξ(i)

δ~w(~u) · ai ,

where δ~w is Kronecker’s delta function (i.e., δ~w(~u) = ∏j∈[`] ∏a∈H\{zj}
uj−a
wj−a ). Let d = ` · (h− 1) be

the degree of Pz.
From our choice of h, we know that m ≤ h ≤ m3. We also have n ≤ h` ≤ n2, and n27 ≤ p` ≤

n54.
Let ẑ = tt(Pz) ∈ F|F|

`
and let N = |ẑ| = |F|`. We instantiate Theorem 4.1 with γ = γ̄ and

ν = γ̄. Note that Nc0·(γ+ν) ≤ poly(m). Let c0 be the universal constant from Theorem 4.1 and
c? = c?γ,ν be the corresponding constant. Let z̄ = Enc(ẑ) and N̄ = |z̄|. Note that N̄ = Nc? . Now
let γ1 so that Nc?·γ1 = nγ̄ = m (note that γ1 is not a constant, but since N ≤ poly(n) by the
definition of h, p, we have that γ1 is bounded away from 0), and we define

GSTV(z) = GNW(z̄, m).

Note that GSTV(z) runs in poly(n) time as desired.

Reconstruction RSTV. We need the following fact.

Fact B.2. The following two statements hold:

1. There is a P-uniform n · poly(m)-size T C0
d0

circuit that takes input i ∈ [|ẑ|] and outputs a circuit
Gi consisting of (log2 p) XOR gates such that Gi(z) = ẑi for all z ∈ {0, 1}n.

2. There is a P-uniform n · poly(m)-size T C0
d0

circuit that takes input i ∈ [|z̄|] and outputs a
poly(m)-size T C0

d0
◦ XOR circuit Wi such that Wi(z) = z̄i for all z ∈ {0, 1}n.

Proof. Let i ∈ [ẑ] and ~w ∈ F` be the corresponding vector. To compute the gate Gi, it suffices to
compute the coefficients βk = δξ(k)(~w) for every k ∈ [n] (so that ẑi = Pz(~w) = ∑k∈[n] βk · ak). From
the definition of δξ(k)(~w), this can be by a P-uniform n · poly(m)-size T C0

d0
circuit.

The circuit Wj is computed as follows:

1. Given input i ∈ [|z̄|]. Run QN(i) to obtain a list q1, . . . , qM ∈ [N], where M = Nγ.

2. For each j ∈ [M], interpreting qj as a vector ~wj ∈ F`. Output the circuit Wi defined as

Wi(z) = EN(i, Gqi(z), . . . , GqM(z)).

Note that |QN |, |EN | ≤ Nc0·(γ+ν) ≤ poly(m). Hence, Wj can be computed from j by a P-
uniform n · poly(m)-size T C0

d0
.

52For simplicity we ignore the complexity of computing ξ since it is negligible.
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Let SNW = RNW(1|z̄|, m). Without loss of generality, we assume that SNW takes exactly rNW = mcNW

bits as input.
In the following we will construct two samplers S1 and S2, and combine them to obtain our

final sampler S.

Claim B.3. There is a polynomial-time algorithm that, given 1n, outputs a T C0
O(d0)

[n ·mcSTV/2] circuit S1
satisfying the following:

1. S1 takes r1 = rNW bits as input, and outputs the description of a poly(m)-size T C0
O(d0)

◦XOR circuit
E1.

2. E1 takes z ∈ {0, 1}n as input, and outputs the description of a mcNW-size T C0
dNW oracle circuit C1.

3. For every z ∈ {0, 1}n, with probability at least 0.99 over E1 ← S1(Ur1), letting C1 = E1(z), it
holds that

Pr
i∈[N̄]

[
CD

1 (i) = z̄i

]
≥ 1/2 + m−3.

Proof. Formally, given α1 ∈ {0, 1}r1 , S1 computes all the queries of SNW made to ā in T C0
dNW [m

cNW ]
(note that SNW is a non-adaptive oracle circuit), and applies Fact B.2 to replace all calls to ā in
SNW by poly(m)-size T C0

d0
◦ XOR circuits with input z ∈ {0, 1}n. This way, S1 outputs the desired

poly(m)-size T C0
O(d0)

◦ XOR circuit E1.
Moreover, by Fact B.2, we know that S1 can be implemented by a T C0

O(d0)
circuit of n ·poly(m)

size.

Claim B.4. There is a polynomial-time algorithm that, given 1n, outputs a T C0
O(d0)

[n ·mcSTV/2] circuit S2
satisfying the following:

1. S2 takes r2 = mcSTV/2 bits as input, and outputs the description of a poly(m)-size T C0
O(d0)

◦ XOR
circuit E2.

2. E2 takes z ∈ {0, 1}n as input, and outputs the description of a mµ-size T C0
d0

oracle circuit C2.

3. For every z ∈ {0, 1}n and every oracle O : [N̄] → {0, 1} such that Pri∈[N̄] [O(i) = z̄i] ≥ 1/2 +

m−3, with probability at least 1− 0.99 over E2 ← S2(Ur2), letting C2 = E2(z), it holds that

Pr
i∈[N̄]

[
CO

2 (i) = z̄i

]
≥ 1− 1/d2.

Proof. Let rpre, rmain ≤ Tc1·δ be the number of random bits used by DN of Proposition 5.5 for the
preprocessing step and the main step, respectively. (We use the main step to denote the operation
of RECn after the preprocessing step.)

Let Spre and Smain be the T C0
d0
[Nc0·(η+ν)] samplers for the preprocessing step and the main step

of DN , respectively. In more detail: (1) Spre takes αpre ∈ {0, 1}rpre bits as input, and outputs a list
of queries to ẑ, denoted by q1, q2, . . . , qt ∈ [t], where t ≤ Nc0·(η+ν); (2) Smain takes αmain ∈ {0, 1}rmain

as input, and outputs a T C0
d0

oracle circuit C′2 of size Nc0·(η+ν) that takes t bits and j ∈ [N] as
input.

The promise of Proposition 4.1 implies that for any O : {0, 1}N̄ → {0, 1} satisfying Prj∈[N̄][O(j) =
z̄(j)] ≥ 1/2 + N−ν, with probability at least 1− o(1) over αpre ← Urpre and αmain ← Urmain , it holds

70



that CO
2 (j) := (C′2)

O (ẑq1 , . . . , ẑqt , j) computes ẑ on a (1− N−γ) fraction of inputs from [N]. Note
that by our choice of γ and ν and the facts that N ≥ n27 and m ≤ h ≤ m3, it holds that Nν ≥ m3

and Nγ ≥ d2, as desired by the claim.
Let r2 = rpre + rmain. S2 takes (αpre, αmain) ∈ {0, 1}r2 as input, it first runs Spre(αpre) to compute

q1, q2, . . . , qt ∈ [N], and then runs Smain(αmain) to obtain the oracle circuit C′2, then it constructs
the desired circuit E2 that first computes ẑq1 , . . . , ẑqt , and then outputs C2 by fixing the first t bits
of the input to C′2 to ẑq1 , . . . , ẑqt . Note that C2 is a mµ-size T C0

d0
circuit.

By Fact B.2, E2 is a poly(m)-size T C0
O(d0)

◦ XOR circuit, S2 can be implemented by an n ·
poly(m)-size T C0

O(d0)
circuit.

Let r3 be the number of random bits used by RM-LDCp,`,d. Finally, S takes (α1, α2, α3) ∈
{0, 1}r1 × {0, 1}r2 × {0, 1}r3 as input, and computes E1 = S1(r1), E2 = S2(r2), and C3 by fixing the
randomness in RM-LDCp,`,d (Lemma 5.4) by α3. It then constructs the final circuit E on input z
that operates as follows: compute C1 = E1(z), C2 = E2(z), and compute an oracle circuit

C′O(~u) := CC
CO

1
2

3 (~u)

for ~u ∈ Fm, where O : {0, 1}m → {0, 1} is an oracle. Output

CO(i) =
(
C′
)O

(ξ(i)).

The complexity and correctness of S follows from the two claims above, and from Lemma 5.4.
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