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Abstract

We study the power of randomness in the Number-on-Forehead (NOF) model in communi-
cation complexity. We construct an explicit 3-player function f : [N ]3 → {0, 1}, such that: (i)
there exist a randomized NOF protocol computing it that sends a constant number of bits; but
(ii) any deterministic or nondeterministic NOF protocol computing it requires sending about
(logN)1/3 many bits. This exponentially improves upon the previously best-known such sepa-
ration. At the core of our proof is an extension of a recent result of the first and third authors
on sets of integers without 3-term arithmetic progressions into a non-arithmetic setting.

1 Introduction

Number-on-Forehead (NOF) communication introduced by Chandra, Furst, and Lipton [9] is a
central model in communication complexity. In its basic form, there are three parties, Alice, Bob,
and Charlie, who each have an input x, y, z respectively written on their forehead, and their goal is
to communicate and compute a function f(x, y, z). The twist, of course, is that Alice only knows
the inputs y, z, Bob the inputs x, z, and Charlie the inputs x, y. The main goal is to understand
how much communication is needed to compute the function f .

Since its introduction, NOF communication complexity has been extensively studied and is known
to have connections to circuit lower bounds, data structure lower bounds, and additive combina-
torics [1, 2, 4–7, 9, 12, 18–22, 24, 25], among others. In this work, we study the relative power of
randomized vs. deterministic and non-deterministic protocols in the NOF model.

Like standard two-party communication, given a function f : X × Y × Z → {0, 1}, one can
study NOF communication complexity under several models: deterministic, non-deterministic and
randomized protocols. We formally define these later, and note here that they are the natural
analogs of the two-party definitions, where for randomized protocols we assume access to public
randomness.

The (complement of) set-disjointness function provides an explicit example of a function which is
easy for nondeterministic protocols but is hard for deterministic or randomized protocols, see [10]
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for a survey on the history of this problem. Our focus in this paper is on the other direction;
namely explicit functions which are easy for randomized protocols, but are hard for deterministic
and non-deterministic protocols.

Despite the rich literature on NOF protocols, the relative power of randomness for NOF protocols
is poorly understood. Beame et al. [4] showed that there are functions f : [N ]3 → {0, 1} whose
randomized communication complexity is O(1) but whose deterministic (or even non-deterministic)
communication complexity is as large as possible, namely Ω(logN). However, this separation is
existential (based on a counting argument), and no explicit function is known to strongly sep-
arate deterministic and randomized NOF protocols. This is in stark contrast to the two-party
case, where the equality function1 has randomized complexity O(1) and deterministic complexity
Ω(logN).

The best known explicit separation is given by the Exactly-N problem, already considered in
the seminal work [9] that defined the NOF model: ExactlyN : [N ]3 → {0, 1} is defined by
ExactlyN(x, y, z) = 1 if and only if x + y + z = N . The randomized communication complexity of
ExactlyN is O(1) while the best known lower bound on its deterministic communication complexity
is Ω(log logN) [8, 22]. The interest in this function stems from the fact that deterministic lower
bounds for it are equivalent to the famous corners problem in additive combinatorics, which asks
for the largest subset of [N ]2 without a corner2. The conjectured bounds in additive combina-
torics would imply a lower bound of Ω(

√
logN) for the deterministic communication complexity of

ExactlyN; but as mentioned, the known lower bounds are exponentially far from it.

Our main result is an explicit construction of a 3-party function D : [N ]3 → {0, 1}, with constant
randomized NOF communication complexity, and with deterministic (and even non-deterministic)
NOF communication complexity polynomial in the input length, concretely Ω((logN)1/3).

Theorem 1.1. Let q be a prime power and k a large enough constant (k = 34 suffices). Let
N = qk, and identify [N ] with Fk

q . Consider the following 3-player function:

D(x, y, z) = 1[⟨x, y⟩ = ⟨x, z⟩ = ⟨y, z⟩],

where ⟨·, ·⟩ denotes the standard inner-product in Fk
q . Then:

1. The randomized NOF communication complexity of D (with public randomness) is O(1).

2. The deterministic or non-deterministic NOF communication complexity of D is
Ω((logN)1/3).

One of the challenges in showing a result as above is the dearth of techniques for proving lower
bounds in the NOF communication complexity. By and large, the main technique for showing
lower bounds in the 3-party NOF model is the discrepancy method as introduced in [3]. How-
ever, these techniques typically also lower bound the randomized communication complexity. As
such, they are not immediately useful for separating deterministic and randomized communication
complexity.

Inspired by recent progress on the three-term arithmetic progressions problem [16], we introduce a
new technique for lower bounding deterministic NOF communication complexity. We are optimistic
that this technique will find potential applications (for instance for the ExactlyN problem), beyond
the application in this paper. Below we first give a high-level overview of the main ideas, and then
delve into the technical details.

1The equality function is EQ : [N ]2 → {0, 1}, EQ(x, y) = 1[x = y].
2A corner is a triple of points (x, y), (x+ h, y), (x, y + h).
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2 Proof overview

We next give a high-level description of the proof of Theorem 1.1 highlighting the new techniques
we introduce. The proof involves two modular steps:

� We introduce a notion of pseudorandomness against cubes for sets D ⊂ [N ]3. We show that
computing membership in any sparse pseudorandom set D (i.e., |D| < N3−c for a constant
c > 0) is hard for deterministic and non-deterministic NOF protocols.

� We then construct sparse pseudorandom sets as above, which are in addition easy for ran-
domized protocols.

The first step above is more intricate, and we describe it first.

2.1 Pseudorandomness against cubes

A cube C ⊂ [N ]3 is a set of the form C = X × Y × Z for some subsets X,Y, Z ⊆ [N ]. At a high
level, we say D ⊂ [N ]3 is pseudorandom if for any large enough cube C, the intersection D ∩ C
looks random in two ways:

� Its density when restricted to the cube is comparable to its overall density.

� The marginals of D on the faces of C are close to uniform.

Below we use the following convention: we identify a set D ⊂ [N ]3 with its indicator function
D : [N ]3 → {0, 1}. The density of a set is E[D] = |D|/N3.

Definition 2.1 (Pseudorandom set with respect to large cubes). Let D ⊂ [N ]3 of density µ = E[D],
and let γ > 0. Given a cube C = X×Y ×Z ⊂ [N ]3, we say that D is γ-pseudorandom with respect
to C if the following conditions hold:

1. Ex,y,z∈X×Y×Z [D(x, y, z)] = µ(1 ± γ).

2. Ex,y,z,z′∈X×Y×Z×Z [D(x, y, z)D(x, y, z′)] = µ2(1 ± γ), as well as the analogous conditions in-
volving (x, x′, y, z) and (x, y, y′, z).

We say that D is γ-pseudorandom with respect to large cubes if D is γ-pseudorandom with respect
to any cube C of size |C| ≥ γN3.

We show that the above notion of pseudorandomness along with sparsity suffices for hardness
against non-deterministic NOF protocols (which include as a special case also deterministic NOF
protocols).

Theorem 2.2. Let D ⊂ [N ]3 be a set of size |D| ≤ N3−c which is (N−c)-pseudorandom with
respect to large cubes, for some constant c > 0. Then any non-deterministic NOF protocol which
computes D must send Ω((logN)1/3) communication.

The above result follows as a corollary to a more general result on how pseudorandom sets as
defined above interact with cylinder intersections which we next describe.

2.2 From pseudorandomness against cubes to cylinder intersections

We use the well-known connection between NOF protocols and cylinder intersections.
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Definition 2.3 (Cylinder intersection). A set T ⊂ [N ]3 is a cylinder intersection, if there are sets
S1, S2, S3 ⊂ [N ]2 such that

T = {(x, y, z) : (x, y) ∈ S1, (x, z) ∈ S2, (y, z) ∈ S3}.

Equivalently, using the function notation, we have the indicator function equality

T (x, y, z) ≡ S1(x, y)S2(x, z)S3(y, z).

We denote T = CI(S1, S2, S3).

It is well-known that if a function D has a non-deterministic NOF protocol which sends b bits,
then D can be expressed as the union of 2b cylinder intersections. It thus suffices to focus on the
structure of cylinder intersections, and their relation to pseudorandom sets D. Our main technical
theorem in this context shows that any sparse cylinder intersection must also be sparse with respect
to a pseudorandom set D.

Theorem 2.4 (Pseudorandom sets for cubes are pseudorandom for cylinder intersections). Let
D ⊂ [N ]3 be γ-pseudorandom with respect to large cubes. Then, D is pseudorandom with respect
to cylinder intersections in the following one-sided sense. Let t ≤ log(1/γ). For any cylinder
intersection F of density

E
(x,y,z)∈[N ]3

F (x, y, z) ≤ 2−t,

it holds
E

(x,y,z)∈D
F (x, y, z) ≤ 2−ct1/3

for some (absolute) constant c > 0.

Theorem 2.4 shows that any set D which is sparse and pseudorandom for large cubes, must be
difficult for non-deterministic NOF protocols. Theorem 2.2 follows easily from the above theo-
rem.

Proof of Theorem 2.2 from Theorem 2.4. Assume that a non-deterministic NOF protocol which
sends b bits decides D(x, y, z). This implies that D can be expressed as the union of 2b cylinder
intersections F1, . . . , F2b ⊂ [N ]3. For each cylinder intersection Fi, since Fi ⊂ D and we assume
|D| ≤ N3−c, we have |Fi| ≤ N3−c. Since we assume that γ = N−c, we may apply Theorem 2.4 for
t = c logN . This implies that for some constant c′ > 0,

|Fi ∩D| ≤ 2−c′(logN)1/3 |D|.

Since F1, . . . , F2b cover D, their number must satisfy 2b ≥ 2c
′(logN)1/3 , from which the theorem

follows.

We next describe the main ideas in the proof of Theorem 2.4. Its proof relies on a new technical
result, that shows that the product of pseudorandom matrices is close to uniform.

2.3 Uniformity from spreadness

We consider matrices with bounded entries. Given a matrix A with rows indexed by X, columns
indexed by Y and entries bounded in [0, 1], it will be convenient for us to identify it with the
function A : X × Y → [0, 1]. We study three properties of matrices each of which measures how
close a matrix is to a constant matrix. The first property is spreadness, which means that the
density of a matrix cannot be significantly increased by restricting to a large rectangle.
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Definition 2.5 (Spreadness). Let A : X × Y → [0, 1], and let r ≥ 1, ε ∈ (0, 1). We say that A is
(r, ε)-spread if for any rectangle R = X ′ × Y ′ ⊂ X × Y of size |R| ≥ 2−r|X × Y |, it holds that

E
(x,y)∈R

[A(x, y)] ≤ (1 + ε)E[A].

The second property is left lower-bounded, which in matrix notation means that row averages are
not much lower than the global average of the matrix.

Definition 2.6 (Left lower-bounded). Let A : X × Y → [0, 1], and let ε ∈ (0, 1). We say that A is
ε-left lower-bounded if

E
y∈Y

[A(x, y)] ≥ (1 − ε)E[A] ∀x ∈ X.

The third property is near-uniformity, which means that nearly all the entries of a matrix are very
close to the global average of the matrix.

Definition 2.7 (Near-uniformity). Let A : X × Y → [0, 1], and let k ≥ 1, ε ∈ (0, 1). We say that
A is (k, ε)-near uniform if

Pr
(x,y)∈X×Y

[(1 − ε)E[A] ≤ A(x, y) ≤ (1 + ε)E[A]] ≥ 1 − 2−k.

Given A : X×Z → [0, 1], B : Y ×Z → [0, 1], define their normalized product is A◦B : X×Y → [0, 1]
as

(A ◦B)(x, y) = E
z∈Z

A(x, z)B(y, z).

If we consider A,B as matrices, then A ◦ B = 1
|Z|AB

⊤. The following theorem, which can be
considered as the main new technical step in the proof, shows that if A,B are both spread and left
lower-bounded, then their normalized product A ◦B is near-uniform.

Theorem 2.8 (Product of spread matrices is near-uniform). Let A : X × Z → [0, 1], B : Y × Z →
[0, 1]. Let d, k ≥ 1 and ε ∈ (0, 1). Assume that

1. E[A],E[B] ≥ 2−d.

2. A,B are (r, ε)-spread for r ≥ Ω(dk/ε).

3. A,B are ε-left lower-bounded.

Then A ◦B is (k, 320ε) near-uniform.

2.4 Cylinder intersection closure

We now turn back to prove Theorem 2.4. It will be more convenient to prove an equivalent version
of it, which relates to the cylinder intersection closure of sets.

Definition 2.9 (Cylinder intersection closure). Let T ⊂ [N ]3. Its cylinder intersection closure,
denoted CI(T ), is the smallest cylinder intersection containing T . Explicitly, if we denote the
marginals of T by

TXY = {(x, y) : (x, y, z) ∈ T}, TXZ = {(x, z) : (x, y, z) ∈ T}, TY Z = {(y, z) : (x, y, z) ∈ T},

then its cylinder intersection closure is

CI(T ) = CI(TXY , TXZ , TY Z).
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In other words, CI(T ) is the set of all points (x, y, z) such that (x, y, z′), (x, y′, z), (x′, y, z) ∈ T for
some x′, y′, z′ ∈ [N ].

The following theorem is equivalent to Theorem 2.4, and more convenient for us to prove (see
Claim 5.1 for a formal proof of equivalence).

Theorem 2.10. Let D ⊂ [N ]3 be γ-pseudorandom with respect to large cubes. Let T ⊂ D of size
|T | ≥ 2−d|D|, and assume γ ≤ 2−O(d3). Then

|CI(T )| ≥ 2−O(d3)N3.

We now focus on proving Theorem 2.10. We first fix some notations and conventions. We will
consider sets within cubes, T ⊂ X × Y × Z. Given such a set, and a function f : X × Y → [0, 1],
we say that the function f is supported on the XY marginal of T if supp(f) ⊂ TXY . We similarly
define when a function is supported on the XZ, YZ marginals of f .

We define a notion of a “well behaved” set T inside a cube – a property which depends only on
the marginals of T . We will show that for such sets, their cylinder intersection closure must be
large.

Definition 2.11 (Well-behaved sets). Let T ⊂ X × Y ×Z, and let d ≥ 1, r ≥ 1, ε ∈ (0, 1). We say
that T is (d, r, ε)-well behaved if there exist bounded functions f : X×Z → [0, 1], g : Y ×Z → [0, 1],
h : X × Y → [0, 1], supported on the XZ, Y Z, and XY -marginals of T , respectively, such that the
following conditions hold:

1. E[f ],E[g],E[h] ≥ 2−d.

2. f, g are (r, ε)-spread.

3. f, g are ε-left-lower bounded.

The following lemma shows that the cylinder intersection closure of well-behaved sets is large. Its
proof is a direct application of Theorem 2.8.

Lemma 2.12 (Well behaved sets have large cylinder intersection closure). Let T ⊂ X × Y × Z.
Assume that T is (d, r, ε)-well behaved for d ≥ 1, r = Ω(d2), ε = O(1). Then

|CI(T )| ≥ 2−O(d)|X||Y ||Z|.

Typically, given a set T ⊂ [N ]3, it will not be well-behaved. However, if there exists a large cube
C such that T ∩ C (considered as a subset of the cube C) is well-behaved, then we may apply
Lemma 2.12 to T ∩C and obtain that its cylinder intersection closure is large, and hence the same
holds for T . The next lemma guarantees that such a cube exists.

Lemma 2.13 (Finding well-behaved sets). Let D ⊂ [N ]3 be γ-pseudorandom with respect to large
cubes. Let d ≥ 1, r ≥ 1, ε ∈ (0, 1), and assume γ ≤ 2−Ω(dr/ε). Let T ⊂ D of size |T | ≥ 2−d|D|.
Then there is a cube C ⊂ [N ]3 of size |C| ≥ 2−O(dr/ε)N3 such that T ∩ C (considered as a subset
of the cube C) is (d + 2, r, ε)-well behaved.

Combining Lemma 2.12 and Lemma 2.13 proves Theorem 2.10, which to recall is equivalent to
Theorem 2.4.
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Proof of Theorem 2.10. Let T ⊂ D of size |T | ≥ 2−d|D|. Apply Lemma 2.13 with r = O(d2), ε =
O(1) which we may since we assume γ ≤ 2−Ω(d3). This implies the existence of a cube C ⊂ [N ]3

of size |C| ≥ 2−O(d3)N3 such that T ∩ C (considered as a subset of the cube C) is (d + 2, r, ε)-well
behaved. Lemma 2.12 then gives that

|CI(T )| ≥ |CI(T ∩ C)| ≥ 2−O(d)|C| ≥ 2−O(d3)N3.

2.5 Construction of sparse pseudorandom sets

The last piece of the puzzle is constructing sets D ⊂ [N ]3 which are pseudorandom with respect
to large cubes, sparse, and at the same time easy for randomized NOF protocols. Recall that we
identify a set D with its indicator function D : [N ]3 → {0, 1}, which will be the function for which
we consider NOF protocols.

In order to define such sets D, we first define the notion of expander-colorings, which are colorings
of the edges of the complete bi-partite graph such that each color class is a good expander (it is a
variant of two-source extractors). We will then use them to construct the desired set D.

Definition 2.14 (Expander-coloring). Let Col : [N ]×[N ] → [M ]. We say that Col is an (N,M, η)-
expander coloring if for any sets X,Y ⊂ [N ] of size |X|, |Y | ≥ ηN and any color m ∈ [M ],

|{(x, y) ∈ X × Y : Col(x, y) = m}| =
|X||Y |
M

(1 ± η).

We use expander-colorings to define the desired set D ⊂ [N ]3. Given Col : [N ] × [N ] → [M ], we
define its corresponding set D(Col) ⊂ [N ]3 as the set of triples, such that the color of each of the
pairs is the same:

D(Col) = {(x, y, z) ∈ [N ]3 : Col(x, y) = Col(x, z) = Col(y, z)}.

We note that for any expander-coloring Col, the associated function D(Col) is easy for randomized
NOF protocols, since membership in D can be decided by checking the pairwise equalities between
Col(x, y), Col(x, z), and Col(y, z).

Claim 2.15. For any Col : [N ] × [N ] → [M ], there is a randomized NOF protocol (using public
randomness) which sends O(1) bits and computes D(Col).

We show that if Col is a good expander-coloring, then its associated set D(Col) is pseudorandom
with respect to large cubes.

Lemma 2.16 (Pseudorandom sets from expander-colorings). Let Col : [N ] × [N ] → [M ] be an
(N,M, η)-expander coloring. Let γ ∈ (0, 1), and assume η = O(γ3M−5). Then D(Col) is γ-
pseudorandom with respect to large cubes.

To conclude, we need an explicit construction of an expander-coloring with good parameters. We
show that the inner-product function is a good expander-coloring.

Lemma 2.17 (Expander-coloring based on inner-product). Let q be a prime power and k ≥ 3.
Consider the inner-product function IP : Fk

q × Fk
q → Fq given by

IP(x, y) = ⟨x, y⟩ =

k∑
i=1

xiyi.
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Then IP is a (qk, q, η)-expander coloring for η = q−(k−2)/4.

We can now combine together all the machinery we developed, and prove our main theorem,
Theorem 1.1.

Proof of Theorem 1.1. Let q be a prime power and k = 34 (any larger constant would also work).
Lemma 2.17 gives that the inner-product function IP on Fk

q is a (N,M, η)-expander coloring for

N = qk,M = q, η = q−8. Lemma 2.16 gives that D = D(IP) is γ-pseudorandom with respect
to large cubes for γ = O(q−1). In particular, this implies that |D| = Θ(N3q−2), so D is sparse,
concretely |D| = Θ(N3−c) for c = 2/3k. We may thus apply Theorem 2.2 and obtain that the non-
deterministic NOF complexity of D is Ω((logN)1/3). Finally, Claim 2.15 shows that the randomized
NOF complexity of D is O(1).

Paper organization. We start in Section 3 with some preliminary definitions. The proofs of
the lemmas from Section 2.3, Section 2.4 and Section 2.5 are given in Section 4, Section 5 and
Section 6, respectively. We discuss some open problems in Section 7.

3 Preliminaries

Notations. Given positive numbers x, y, we shorthand x = y ± ε for y − ε ≤ x ≤ y + ε. We
similarly define x = y(1± ε). Given x ∈ R we denote x+ = max(x, 0) and x− = max(−x, 0) so that
x = x+ − x−. Given a function f : Ω → R for some domain Ω, its support is supp(f) = {x ∈ Ω :
f(x) ̸= 0}.

Norms and normalizations. Given a real-valued random variable X, its k-th norm is ∥X∥k :=
E[|X|k]1/k. Similarly, for a real-valued function f : Ω → R defined on some ambient finite set Ω,

its k-th norm is ∥f∥k :=
(
Ex∈Ω |f(x)|k

)1/k
. Given two functions f, g : Ω → R, their inner product

is ⟨f, g⟩ := Ex∈Ω[f(x)g(x)].

We need the following claim from [16].

Claim 3.1 ( [16]). Let ε ∈ [0, 14 ]. Suppose X is a real-valued random variable with

� ∥X∥k ≥ 2ε for some even k ∈ N,

� EXj ≥ 0 for all j ∈ N.

Then ∥1 + X∥p ≥ 1 + ε for all integers p ≥ k/ε.

Communication complexity. We consider NOF 3-party protocols in three communication
models: deterministic, randomized (with public ranodmness), and non-deterministic. They are the
analog models for the corresponding two-party models. Formally, the deterministic NOF communi-
cation complexity of f is the least number of bits needed to compute the function by a deterministic
NOF protocol; the randomized NOF communication complexity of f is the least number of bits
needed to compute the function by a randomized NOF protocol, with error at most 1/3, and with
access to public randomness; and the non-deterministic NOF communication complexity of f is the
least number of bits needed to compute f by a non-deterministic NOF protocol. For more details
see any textbook on communication complexity, for example [17] or [23].
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4 Uniformity from spreadness

In this section we prove our main technical tool, Theorem 2.8, which says roughly that for two spread
matrices A and B, the product A ◦B is near-uniform. There are two main steps to the argument,
and there is a strong analogy between these steps with the arguments involved in the “sifting” and
“spectral positivity” sections of [16]. However, the proof we give will be self-contained.3

4.1 Grid norms

We first discuss the following quantity (the “grid norm” of a matrix) which is central to the
argument. This quantity is particularly useful for succinctly capturing certain kinds of double-
counting arguments involving dense bipartite graphs. For example, the proof of Lemma 7.4 in
[13] involves (implicitly) the quantity U2,5(A), where A is the adjacency matrix encoding the set
system involved. In addition, it is known in various contexts that this quantity can be reasonably
interpreted as some kind measure of pseudorandomness (A is “pseudorandom” when ∥A∥U(ℓ,k)

is not much larger than ∥A∥U(1,1)) – see e.g. [14, Theorem 3.1] which discusses the approximate
equivalence of a bound on ∥A∥U(2,2) with some other measures of pseudorandomness.

Definition 4.1 (Grid norms). For a function f : X × Z → R, and ℓ, k ∈ N, let

Uℓ,k(f) := E
x1,x2,...,xℓ∈X

(
E

z∈Z
f(x1, z)f(x2, z) · · · f(xℓ, z)

)k

= E
z1,z2,...,zk∈Z

(
E

x∈X
f(x, z1)f(x, z2) · · · f(x, zk)

)ℓ

= E
x∈Xℓ

z∈Zk

ℓ∏
i=1

k∏
j=1

f(xi, zj).

We also write
∥f∥U(ℓ,k) := |Uℓ,k(f)|1/ℓk.

The name “grid norm” is a bit of a misnomer, as ∥ · ∥U(ℓ,k) is not a norm in general; still, the name
captures the essence in which we use them. It is known that ∥ · ∥U(ℓ,k) is a semi-norm (that is, it
satisfies a triangle inequality) whenever ℓ, k are both even [15, Theorems 2.8, 2.9] – a fact which
we don’t use in this work.

We record some basic properties of ∥ · ∥U(ℓ,k).

Claim 4.2 (Monotonicity). Let ℓ, k, ℓ′, k′ ∈ N, where ℓ ≤ ℓ′, k ≤ k′. Let A : X × Z → R≥0. Then,

∥A∥U(ℓ,k) ≤ ∥A∥U(ℓ′,k) and ∥A∥U(ℓ,k) ≤ ∥A∥U(ℓ,k′).

Proof. By symmetry it suffices to show that ∥A∥U(ℓ,k) ≤ ∥A∥U(ℓ,k′). So, fix ℓ ∈ N. For uniformly

random x ∈ [N ]ℓ, consider the resulting random variable

D = D(x) :=

(
E

z∈Z
A(x1, z)A(x2, z) · · ·A(xℓ, z)

)k

.

3That is, self-contained except for the use of a basic fact about random variables with non-negative odd moments,
Claim 3.1.
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Note that D is non-negative since we assume A is non-negative. We have

ED ≤ (EDr)1/r

for any r ≥ 1, which for r = k′/k shows that

∥A∥U(ℓ,k) = (ED)1/ℓk ≤ (EDk′/k)1/ℓk
′

= ∥A∥U(ℓ,k′).

Lemma 4.3 (Decoupling inequality for U2,k). Let f : X × Z → R and g : Y × Z → R. For even
k ∈ N we have

E
x,y

(
E
z
f(x, z)g(y, z)

)k
≤ U2,k(f)1/2 · U2,k(g)1/2.

Proof. Let x ∈ X, y ∈ Y, z1, . . . , zk ∈ Z. Then

E
x,y

(
E
z
f(x, z)g(y, z)

)k
= E

x,y
E

z1,...,zk

[
k∏

i=1

f(x, zi) ·
k∏

i=1

g(y, zi)

]

= E
z1,...,zk

E
x

[
k∏

i=1

f(x, zi)

]
· E
y

[
k∏

i=1

g(y, zi)

]

≤

√√√√ E
z1,...,zk

(
E
x

k∏
i=1

f(x, zi)

)2
√√√√ E

z1,...,zk

(
E
y

k∏
i=1

g(y, zi)

)2

=
√
U2,k(f)

√
U2,k(g).

Claim 4.4. Let f : X × Z → R, and consider

M(x, x′) := E
z∈Z

f(x, z)f(x′, z).

For any integer j ∈ N we have
E

x,x′∈X
M(x, x′)j ≥ 0.

Proof. We note that
EM(x, x′)j = U2,j(f),

and it is clear from the definition of U2,j(f) that the quantity is non-negative for all real-valued
functions f :

U2,j(f) = E
z1,z2,...,zj∈Z

(
E

x∈X
f(x, z1)f(x, z2) · · · f(x, zk)

)2

≥ 0.

4.2 Spread matrices have controlled grid norms

Let
R =

{
1X′(x)1Y ′(y) : X ′ × Y ′ ⊆ X × Y

}
denote the set of rectangle indicator functions, and let

conv(R) =

{∑
i

ci1Ri : 1Ri ∈ R, ci ≥ 0,
∑
i

ci = 1

}

10



denote its convex hull. We also consider the slightly richer class of “soft rectangles”,

R̃ = {f(x)g(y) : f : X → [0, 1], g : Y → [0, 1]} .

Next, we note that any soft rectangle can be expressed as a convex combination of rectangles. In
particular, this implies that conv(R̃) = conv(R).

Claim 4.5. R̃ ⊆ conv(R).

Proof. Let f(x)g(y) be a soft rectangle. We can write4

f(x)g(y) =

∫ 1

t=0

∫ 1

s=0
1(f(x) ≥ s)1(g(y) ≥ t) ds dt.

The next lemma says that any non-negative function D : X × Y → R≥0 that has a non-trivial
correlation with an element of conv(R) also does so with a rectangle of comparable density.

Claim 4.6. Let D : X × Y → R≥0 and F ∈ conv(R); suppose that ∥D∥∞ ≤ ∆ and ∥F∥1 ≥ δ. If〈
F

∥F∥1
, D

〉
≥ 1 + ε,

then there is some rectangle R with

E
(x,y)∈R

D(x, y) =

〈
1R

∥1R∥1
, D

〉
≥ 1 +

ε

2

and
|R|

|X||Y |
= ∥1R∥1 ≥

εδ

2∆
.

Proof. Write F =
∑

i ci1Ri . We begin by pruning rectangles which are too small: define F ′ =∑
i c

′
i1Ri via

c′i =

{
ci if ∥1Ri∥1 ≥ τ,

0 if ∥1Ri∥1 < τ

for some threshold value τ . We note that

⟨F ′, D⟩
∥F∥1

=
⟨F,D⟩
∥F∥1

− ⟨F − F ′, D⟩
∥F∥1

≥ 1 + ε− ∥F − F ′∥1∥D∥∞
∥F∥1

≥ 1 + ε− τ∆

δ
.

We set τ = εδ
2∆ , giving

⟨F ′, D⟩
∥F ′∥1

≥ ⟨F ′, D⟩
∥F∥1

≥ 1 +
ε

2
.

In particular, we must have ⟨F ′, D⟩ > 0, which guarantees that F ′ is not identically zero. We have

⟨F ′, D⟩
∥F ′∥1

=

∑
i c

′
i ⟨1Ri , D⟩∑

i c
′
i∥1Ri∥1

.

4If desired, one may obtain a representation as a finite combination of rectangles by noting that there are only
finitely many different superlevel sets {x : f(x) ≥ s} and {y : g(y) ≥ t}.
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By averaging, there is some choice of R = Ri with〈
1R

∥1R∥1
, D

〉
≥ 1 +

ε

2

and

∥1R∥1 ≥ τ.

Lemma 4.7. (Sifting a rectangle) Let A : X × Y → [0, 1]; suppose that ∥A∥1 ≥ δ. Let ℓ, k ∈ N. If

∥A∥U(ℓ,k) ≥ (1 + ε)∥A∥1,

then there is some rectangle R with

E
x,y∈R

A(x, y) ≥
(

1 +
ε

2

)
∥A∥1

and
|R|

|X||Y |
= ∥1R∥1 ≥ 1

2 · ε · δℓk+1.

In particular, if A is (r, ε)-spread for some r ≥ (ℓk + 1) log(1/δ) + log(1/ε), then

∥A∥U(ℓ,k) ≤ (1 + 2ε)∥A∥1.

Proof. By assumption we have

∥A∥ℓkU(ℓ,k) = E
x1,...,xℓ∈X
y1,...,yk∈Y

 ℓ∏
i=1

k∏
j=1

A(xi, yj)

 ≥ (1 + ε)ℓk∥A∥ℓk1 .

Our task is to find a reasonably large rectangle R where A is notably denser than average. Before
proceeding with the actual argument, let us offer a not-entirely-accurate picture of how this will be
done. For illustration, suppose A is an adjacency matrix of a bipartite graph with parts X and Y .
We then look for the desired rectangle among those of the following specific form. For any choice
of xi’s and yj ’s we can consider the rectangle R = Γ(y1, y2, . . . , yk) × Γ(x1, x2, . . . , xℓ) ⊆ X × Y ,
where (e.g.) Γ(y1, y2, . . . , yk) ⊆ X denotes the set of common neighbors of the vertices y1, . . . , yk
within our bipartite graph. In the actual argument, we will need to consider also some additional,
related choices for R which are not so nicely describable. We then use our assumption on ∥A∥U(ℓ,k)

to argue that one of these choices must succeed. We now proceed with the argument (considering
now general A : X × Y → [0, 1]).

Let us fix some arbitrary ordering on tuples (i, j) ∈ [ℓ] × [k] (say, the lexicographic ordering), and
consider the prefix-products

ϕ≤(i,j)(A) :=
∏

(i′,j′)≤(i,j)

A(xi′ , yj′).

Thus, we have E[ϕ≤(1,1)(A)] = ∥A∥1 and E[ϕ≤(ℓ,k)(A)] = ∥A∥ℓkU(ℓ,k). Similarly, let us write

ϕ<(i,j)(A) :=
∏

(i′,j′)<(i,j)

A(xi′ , yj′),

12



with the convention ϕ<(1,1)(A) := 1. Now consider the telescoping product

∏
(i,j)∈[ℓ]×[k]

Eϕ≤(i,j)(A)

Eϕ<(i,j)(A)
= ∥A∥ℓkU(ℓ,k)

This quantity is at least (1 + ε)ℓk∥A∥ℓk1 , and so we infer that for some choice of (i∗, j∗) we have

Eϕ≤(i∗,j∗)(A)

Eϕ<(i∗,j∗)(A)
≥ (1 + ε)∥A∥1.

At this point we would like to think of ϕ<(i∗,j∗)(A) primarily as a function of xi∗ and yj∗ . Let us
define

F (xi∗ , yj∗) = E
x1,...,xi∗−1,xi∗+1,...,xℓ∈X
y1,...,yj∗−1,yj∗+1,...,yk∈Y

∏
(i,j)<(i∗,j∗)

A(xi, yj)

so that we may reinterpret

Eϕ≤(i∗,j∗)(A) = Eϕ<(i∗,j∗)(A) ·A(xi∗ , yj∗) = E
xi∗∈X
yj∗∈Y

F (xi∗ , yj∗) ·A(xi∗ , yj∗) = ⟨F,A⟩

and
Eϕ<(i∗,j∗)(A) = E[F ] = ∥F∥1.

Thus, we have 〈
F

∥F∥1
,

A

∥A∥1

〉
≥ 1 + ε.

Finally, we argue that F is a convex combination of soft rectangles so that we may finish the proof
by applying Claim 4.6 (to F and D := A/∥A∥1). Indeed, as a function of xi∗ , yj∗ , and for any fixing
of the other variables xi, yj , the quantity

∏
(i,j)<(i∗,j∗)

A(xi, yj) =


∏

(i,j)<(i∗,j∗)
i ̸=i∗

j ̸=j∗

A(xi, yj)


 ∏

(i,j)<(i∗,j∗)
i=i∗

A(xi∗ , yj)


 ∏

(i,j)<(i∗,j∗)
j=j∗

A(xi, yj∗)



is a soft rectangle: each of the factors A(xi, yj) may depend on xi∗ or yj∗ but not both, and the
product of 1-bounded functions is again a 1-bounded function.

It remains only to discuss what sort of bounds we have on ∥F∥1 and ∥D∥∞. Since A is 1-bounded,
we have ∥D∥∞ ≤ 1

∥A∥1 ≤ 1
δ . It follows also from the 1-boundedness of A that

∥F∥1 = Eϕ<(i∗,j∗) ≥ Eϕ≤(ℓ,j) = ∥A∥ℓkU(ℓ,k) ≥ δℓk.

Thus, Claim 4.6 provides a rectangle R = X ′ × Y ′ of the desired size, ∥1R∥1 ≥ εδℓk+1/2.
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4.3 Products of U2,k-regular matrices

Lemma 4.8 (U2,k-regularity of A and B implies uniformity of A ◦B). Fix an even integer k ∈ N,
ε ∈ (0, 1/80), and set p = ⌈k/ε⌉. Let A : X × Z → R≥0, B : Y × Z → R≥0 be two (nonzero)
matrices, and suppose that

� ∥A∥U(2,p) ≤ (1 + ε)∥A∥1,

� ∥B∥U(2,p) ≤ (1 + ε)∥B∥1,

� A,B are ε-left lower bounded.

Then, the density function D(x, y) = (A◦B)(x,y)
E[A◦B] is close to uniform on X × Y :

∥D − 1∥k ≤ 80ε.

Proof. Note that the statement is scale-invariant with respect to A and B. Without loss of
generality suppose that E[A] = E[B] = 1. For brevity, let Ax, By : Z → R be the func-
tions Ax(z) = A(x, z), By(z) = B(y, z). For any two functions α, β : Z → R, we write
⟨α, β⟩ := Ez[α(z)β(z)]. With this notation we can express

D(x, y) =
⟨Ax, By⟩

E[⟨Ax, By⟩]
.

For what follows it will be convenient to introduce the notation a(x) := Ez A(x, z) and b(y) :=
Ez B(y, z).

We proceed to argue that ∥ ⟨Ax, By⟩ − 1∥k ≤ O(ε). We have

⟨Ax, By⟩ − 1 = ⟨Ax − 1, By − 1⟩ + ⟨Ax − 1, 1⟩ + ⟨By − 1, 1⟩ .

We first consider the latter terms. Note that

∥ ⟨Ax − 1, 1⟩ ∥k = ∥a− 1∥k ≤ ∥(a− 1)−∥k + ∥(a− 1)+∥k.

We handle the positive and negative deviations from 1 separately. First, since we assume A is ε-left
lower bounded we have that a(x) ≥ 1 − ε pointwise, which gives

∥(a− 1)−∥k ≤ ∥(a− 1)−∥∞ ≤ ε.

Second, we note that for uniformly random x, the resulting random variable (a(x) − 1)+ certainly
has non-negative odd moments since it is non-negative, and so with Claim 3.1 we can obtain a bound
on ∥(a− 1)+∥k from a bound on ∥1 + (a− 1)+∥p. Specifically, we have 1 + (a− 1)+ = a + (a− 1)−
and hence

∥1 + (a− 1)+∥p ≤ ∥a∥p + ∥(a− 1)−∥p ≤ ∥a∥p + ε

and
∥a∥p = ∥A∥U(1,p) ≤ ∥A∥U(2,p) ≤ 1 + ε.

We conclude that ∥1 + (a− 1)+∥p ≤ 1 + 2ε, and hence by Claim 3.1

∥(a− 1)+∥k ≤ 4ε.
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Overall, we obtain the bound ∥a − 1∥k ≤ 5ε. Similarly, also ∥b − 1∥k ≤ 5ε. Therefore, by the
triangle inequality for ∥ · ∥k, we have

∥ ⟨Ax, By⟩ − 1∥k ≤ ∥ ⟨Ax − 1, By − 1⟩ ∥k + 10ε.

We now apply the decoupling inequality for U2,k (Lemma 4.3) to study the main term.

∥ ⟨Ax − 1, By − 1⟩ ∥kk = E
x,y

[
E
z

(
(A(x, z) − 1)(B(y, z) − 1)

)k]
≤ U2,k (A− 1)1/2 U2,k (B − 1)1/2 ,

or equivalently,
∥ ⟨Ax − 1, By − 1⟩ ∥k ≤ ∥A− 1∥U(2,k)∥B − 1∥U(2,k).

Without loss of generality, suppose U2,k (A− 1) ≥ U2,k (B − 1) so that ∥A− 1∥2U(2,k) ≥
∥ ⟨Ax − 1, By − 1⟩ ∥k. Seeking contradiction, we observe that if ∥ ⟨Ax, By⟩ − 1∥k > 20ε, then
∥ ⟨Ax − 1, By − 1⟩ ∥k > 10ε, and so

∥A− 1∥2U(2,k) > 10ε.

Let M(x, x′) = ⟨Ax − 1, Ax′ − 1⟩, and note that

U2,k (A− 1) = E
x,x′

(⟨Ax − 1, Ax′ − 1⟩)k = ∥M∥kk.

Consider the random variable M = M(x, x′) arising from a uniform random choice of x, x′ ∈ X.
As observed in Claim 4.4, M has non-negative odd moments. Therefore, by Claim 3.1, ∥1+M∥p >
1 + 5ε. Further,

⟨Ax, Ax′⟩ = 1 + ⟨Ax − 1, 1⟩ + ⟨1, Ax′ − 1⟩ + M(x, x′)

= 1 + M(x, x′) + (a(x) − 1) + (a(x′) − 1)

≥ 1 + M(x, x′) − (a(x) − 1)− − (a(x′) − 1)−,

and so

∥ ⟨Ax, Ax′⟩ ∥p ≥ ∥1 + M∥p − 2∥(a− 1)−∥p
≥ ∥1 + M∥p − 2ε

> 1 + 3ε,

since we already noted that ∥(a− 1)−∥∞ ≤ ε. Thus, we have ∥ ⟨Ax, Ax′⟩ ∥p > 1 + 3ε. On the other
hand, our regularity assumption on A says that

∥ ⟨Ax, Ax′⟩ ∥p = ∥A∥2U(2,p) ≤ (1 + ε)2 < 1 + 3ε,

giving a contradiction. Thus, we must in fact have ∥ ⟨Ax, By⟩ − 1∥k ≤ 20ε.

We can now finish the proof. Recall that D(x, y) = ⟨Ax, By⟩ /E[A ◦ B]. From the above we have
∥ ⟨Ax, By⟩ − 1∥1 ≤ ∥ ⟨Ax, By⟩ − 1∥k ≤ 20ε so that |E[A ◦ B] − 1| ≤ 20ε. Thus, if ε < 1/40, setting
θ = E[A ◦B] ∈ [1 − 20ε, 1 + 20ε] ⊂ [1/2, 2], we get

∥D − 1∥k =
∥ ⟨Ax, By⟩ − θ∥k

θ
≤ 2 (∥ ⟨Ax, By⟩ − 1∥k + |θ − 1|) ≤ 80ε.
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Proof of Theorem 2.8. The proof is a straightforward combination of Lemma 4.7 with Lemma 4.8,
followed by an application of Hölder’s inequality. Let p = ⌈k/ε⌉. We would like to apply Lemma 4.7
to control U2,p(A) and U2,p(B) with our spreadness assumption, which is indeed possible for r =
cdk/ε where c > 0 is a sufficiently large constant. We conclude that

∥A∥U(2,p) ≤ (1 + 2ε)∥A∥1, ∥B∥U(2,p) ≤ (1 + 2ε)∥B∥1.

Consider

D(x, y) :=
(A ◦B)(x, y)

E[A ◦B]
.

From Lemma 4.8 we have
∥D − 1∥k ≤ 160ε.

For any subset S ⊆ X × Y of size |S| ≥ 2−k|X × Y | we have

E
(x,y)∈S

|D(x, y) − 1| ≤
(

E
(x,y)∈S

|D(x, y) − 1|k
)1/k

≤
(

2k E
(x,y)∈X×Y

|D(x, y) − 1|k
)1/k

= 2∥D − 1∥k
≤ 320ε.

If we consider the set T ⊆ X × Y of large deviations

T = {(x, y) : |D(x, y) − 1| > 320ε} ,

it must be the case that |T | < 2−k|X × Y |. Otherwise, we would obtain a large set T with

E
(x,y)∈T

|D(x, y) − 1| > 320ε,

contradicting the calculation above.

4.4 Correlations involving spread matrices

Before continuing we record the following (immediate) corollary of Theorem 2.8: if f and g are
functions which are dense, spread, and left-lower bounded, and h is any function which is dense,
then the quantity Ex,y,z f(x, z)g(y, z)h(x, y) behaves roughly as if the three terms were indepen-
dent.

Corollary 4.9. Let f : X × Z → [0, 1], g : Y × Z → [0, 1], h : X × Y → [0, 1]. Let d ≥ 1 and
δ ∈ (0, 1), and set r = Ω((d + log(1/δ))d/δ) and ε = δ/640. Assume that:

1. E[f ],E[g],E[h] ≥ 2−d.

2. f, g are (r, ε)-spread.

3. f, g are ε-lower bounded.

Then
E

x∈X,y∈Y,z∈Z
[f(x, z)g(y, z)h(x, y)] = (1 ± δ)E[f ]E[g]E[h].
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Proof. Define
S = {(x, y) ∈ X × Y : (f ◦ g)(x, y) = (1 ± δ/2)E[f ]E[g]} .

Applying Theorem 2.8 (with A = f ,B = g, ε = δ/640, and k = 3d + log(1/δ) + 1) gives that
|S| ≥ (1 − 2−k)|X||Y |. For (x, y) ∈ S we have

E
z∈Z

[f(x, z)g(y, z)h(x, y)] = (f ◦ g)(x, y)h(x, y) = (1 ± δ/2)E[f ]E[g]h(x, y).

For (x, y) /∈ S we can naively bound

E
z∈Z

[f(x, z)g(y, z)h(x, y)] ∈ [0, 1].

Averaging over all (x, y) ∈ X × Y gives

E
x∈X,y∈Y,z∈Z

[f(x, z)g(y, z)h(x, y)] = (1 ± δ/2)E[f ]E[g]E[h] ± Pr[(x, y) ∈ S].

The claim follows by the choice of k, since

Pr[(x, y) ∈ S] ≤ 2−k ≤ (δ/2)2−3d ≤ (δ/2)E[f ]E[g]E[h].

5 Cylinder intersection closure

We prove in this section the two lemmas in Section 2.4: Lemmas 2.12 and 2.13, as well as formally
show that Theorem 2.4 and Theorem 2.10 are equivalent.

Claim 5.1. Theorem 2.4 and Theorem 2.10 are equivalent.

Proof. Briefly, Theorem 2.10 is the contra-positive form of Theorem 2.4. Specifically, suppose
Theorem 2.10 is true. Suppose we have the conditions of Theorem 2.4. Now, set T = F ∩D and
d = c1t

1/3 for a small enough constant c1. If |T | ≥ 2−d|D|, then we must have |CI(T )| ≥ 2−c1c2d3N3

for some constant c2. This violates the density of F for a suitable constant c1. The reverse direction
follows similarly.

The proof of Lemma 2.12 is a straightforward application of Corollary 4.9.

Proof of Lemma 2.12. Let M = CI(T ). Let f : X×Z → [0, 1], g : Y ×Z → [0, 1], h : X×Y → [0, 1]
given by the condition that T is (d, r, ε)-well behaved. As f, g, h are bounded and supported on
the XZ, Y Z, and XY -marginals of T , respectively, we have the pointwise lower-bound

M(x, y, z) ≥ f(x, z)g(y, z)h(x, y).

Apply Corollary 4.9 to f, g, h to conclude that

E
(x,y,z)∈X×Y×Z

M(x, y, z) ≥ E
(x,y,z)∈X×Y×Z

f(x, z)g(y, z)h(x, y) ≥ 2−O(d).

This implies that |M | ≥ 2−O(d)|X||Y ||Z|.

We now move to prove Lemma 2.13. We start with the following claim, which shows how the
pseudorandomness of D allows to approximate certain averages of ratios that come up in the
proof.
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Claim 5.2. Assume that D ⊂ [N ]3 is γ-pseudorandom with respect to a cube C = X ×Y ×Z, and
let T ⊂ D. Define the function h : X × Y → [0, 1] given by

h(x, y) =
Ez∈Z [T (x, y, z)]

Ez∈Z [D(x, y, z)]
.

Then

E[h] =
|T ∩ C|
|D ∩ C|

±O(γ1/3).

Proof. Let µ(C) = |D ∩ C|/|C|. Define v : X × Y → R≥0 by

v(x, y) =
Ez∈Z [D(x, y, z)]

µ(C)
.

Note that E[v] = 1, and the second moment of v is

E[v2] =
E(x,y,z,z′)∈X×Y×Z×Z [D(x, y, z)D(x, y, z′)]

E(x,y,z)∈X×Y×Z [D(x, y, z)]2
.

The assumption that D is γ-pseudorandom with respect to C implies that E[v2] = 1±γ
1±γ ≤ 1 + 4γ

and hence Var[v] = O(γ). Define

S =
{

(x, y) ∈ X × Y : v(x, y) = 1 ± γ1/3
}
.

Chebyshev’s inequality gives that |S| ≥ (1 −O(γ1/3))|X||Y |. For (x, y) ∈ S we have

h(x, y) =
Ez∈Z [T (x, y, z)]

(1 ± γ1/3)µ(C)
= (1 ± 2γ1/3)

Ez∈Z [T (x, y, z)]

µ(C)
=

Ez∈Z [T (x, y, z)]

µ(C)
±O(γ1/3),

where we used the fact that Ez∈Z [T (x, y, z)] ≤ Ez∈Z [D(x, y, z)] = (1 ± γ1/3)µ(C) ≤ 2µ(C). For
(x, y) /∈ S we naively bound h(x, y) ∈ [0, 1]. Thus we can estimate

E[h] =
E(x,y,z)∈C [T (x, y, z)]

µ(C)
±O(γ1/3) ± Pr[(x, y) /∈ S] =

|T ∩ C|
|D ∩ C|

±O(γ1/3).

We prove Lemma 2.13 in two steps. First, we do a density increment to find a cube in which the
set T is “mostly” well-behaved (with respect to some specific candidate functions f, g, h which are
obtained by considering marginals of the uniform distribution on T ). The only deficiency will be
that not all points will be left-lower bounded, but instead only most of them. Then we do a pruning
phase to remove the bad points. We start with the necessary definitions.

Definition 5.3 (Mostly left lower-bounded). Let f : X × Y → [0, 1], and let ε ∈ (0, 1), β ∈ (0, 1).
We say that f is β-mostly ε-left lower-bounded if for at least a (1 − β)-fraction of x ∈ X, it holds
that

E
y∈Y

[f(x, y)] ≥ (1 − ε)E[f ].

Definition 5.4 (Mostly well-behaved sets). Let T ⊂ X × Y × Z, and let d ≥ 1, r ≥ 1, ε ∈
(0, 1), β ∈ (0, 1). We say that T is (d, r, ε, β)-mostly well behaved if there exist bounded functions
f : X × Z → [0, 1], g : Y × Z → [0, 1], h : X × Y → [0, 1], supported on the XZ, Y Z, and
XY -marginals of T , respectively, such that the following conditions hold: Suppose that
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1. E[f ],E[g],E[h] ≥ 2−d.

2. f, g are (r, ε)-spread.

3. f, g are β-mostly ε-left-lower bounded.

Lemma 5.5 (Finding mostly well-behaved sets). Let D ⊂ [N ]3 be γ-pseudorandom with respect to
large cubes. Let d ≥ 1, r ≥ 1, ε ∈ (0, 1), β ∈ (0, 1), and assume γ ≤ 2−Ω(dr/ε)β. Let T ⊂ D of size
|T | ≥ 2−d|D|. Then there is a cube C ⊂ [N ]3 of size |C| ≥ 2−O(dr/ε)N3 such that T ∩C (considered
as a subset of the cube C) is (d + 1, r, ε, β)-well behaved.

Proof. Let η = O(ε/r). Given a cube C ⊂ [N ]3 define the function

ϕ(C) =
|T ∩ C|
|D ∩ C|

· |C|η.

Let C = X × Y × Z be the cube which maximizes ϕ(·). We will show that C satisfies the required
properties. Define the functions f : X×Z → [0, 1], g : Y ×Z → [0, 1], h : X×Y → [0, 1] as follows:

f(x, z) =
Ey∈Y T (x, y, z)

Ey∈Y D(x, y, z)
, g(y, z) =

Ex∈X T (x, y, z)

Ex∈X D(x, y, z)
, h(x, y) =

Ez∈Z T (x, y, z)

Ez∈Z D(x, y, z)
.

Observe that indeed f, g, h are supported on the XZ, Y Z,XY faces of T , respectively; and that
since T ⊂ D, the functions f, g, h take values in [0, 1]. We will prove that f, g, h are all 2−d dense,
(r, ε)-spread and β-mostly ε-left lower-bounded. For concreteness, we prove these properties for h,
but they hold for f, g by an analogous argument.

Large cube. First, for C0 = [N ]3 we have ϕ(C0) = (|T |/|D|)N3η ≥ 2−dN3η, and for C we have
ϕ(C) = (|T ∩C|/|D ∩C|)|C|η. Since C maximizes ϕ(·) we can already make two deductions: first,
since |C| ≤ N3 we must have |T ∩ C| ≥ 2−d|D ∩ C|; and second, since |T ∩ C| ≤ |D ∩ C| we have
|C|η ≥ 2−dN3η, which implies |C| ≥ 2−d/ηN3. Note that our assumption that γ ≤ 2−O(dr/ε) implies
that D is γ-pseudorandom with respect to C.

Density. We prove that E[h] ≥ 2−(d+1). Apply Claim 5.2 to T and the cube C. We get

E[h] =
|T ∩ C|
|D ∩ C|

±O(γ1/3) ≥ 2−d ±O(γ1/3).

The claim follows since γ ≤ 2−O(d).

Spreadness. We next show that h is (r, ε)-spread. Assume towards a contradiction that there
exists a rectangle R′ = X ′ × Y ′ ⊂ X × Y of size |R′| ≥ 2−r|X||Y | such that

E
(x,y)∈X′×Y ′

h(x, y) > (1 + ε) E
(x,y)∈X×Y

h(x, y).

Define C ′ = X ′ × Y ′ × Z. Since we take γ small enough (concretely, γ ≤ 2−(d/η+r)), D is also
γ-pseudorandom with respect to C ′. We will show that ϕ(C ′) > ϕ(C), which contradicts the
assumption that C maximizes ϕ(·). Applying Claim 5.2 to C and C ′ gives

E
(x,y)∈X×Y

h(x, y) =
|T ∩ C|
|D ∩ C|

±O(γ1/3)
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and

E
(x,y)∈X′×Y ′

h(x, y) =
|T ∩ C ′|
|D ∩ C ′|

±O(γ1/3)

As we have γ ≤ (2−dε)O(1), we get that

|T ∩ C ′|
|D ∩ C ′|

≥ (1 + ε/2)
|T ∩ C|
|D ∩ C|

which gives
ϕ(C ′)

ϕ(C)
≥ (1 + ε/2)

(
|C ′|
|C|

)η

≥ (1 + ε/2)2−rη > 1

for η = O(ε/r) small enough.

Mostly left lower-bounded. We next show that h is mostly left lower-bounded. Assume to-
wards a contradiction that there exists X ′ ⊂ X of size |X ′| = β|X| such that

E
y∈Y

h(x, y) < (1 − ε)E[h] ∀x ∈ X ′.

Set C ′ = X ′ × Y × Z. Since we assume that γ is small enough (concretely, γ ≤ 2−d/ηβ), D is
γ-pseudorandom with respect to C ′. Applying Claim 5.2 to C ′ gives

E
(x,y)∈X′×Y

h(x, y) =
|T ∩ C ′|
|D ∩ C ′|

±O(γ1/3).

Repeating the same argument for C, and using the fact that we have γ ≤ (2−dε)O(1), we get

|T ∩ C ′|
|D ∩ C ′|

≤ (1 − ε)
|T ∩ C|
|D ∩ C|

+ O(γ1/3) ≤ (1 − ε/2)
|T ∩ C|
|D ∩ C|

,

Since D is γ-pseudorandom with respect to C, C ′, we have |D ∩ C| = (1 ± γ)µ|C|, |D ∩ C ′| =
(1 ± γ)µ|C ′| and hence

|T ∩ C ′|
|C ′|

≤ (1 − ε/4)
|T ∩ C|
|C|

.

Let C ′′ = C \ C ′ = (X \X ′) × Y × Z. We will show that ϕ(C ′′) > ϕ(C), which is a contradiction
to the maximality of C. Note that

|T ∩ C ′′| = |T ∩ C| − |T ∩ C ′| ≥ (1 − (1 − ε/4)β)|T ∩ C|

and
|D ∩ C ′′| = |D ∩ C| − |D ∩ C ′| = (1 − β ± γ)|D ∩ C|

and
|C ′′| = (1 − β)|C|.

Thus

ϕ(C ′′)

ϕ(C)
=

|T ∩ C ′′|
|T ∩ C|

|D ∩ C|
|D ∩ C ′′|

(
|C ′′|
|C|

)η

≥ (1 − β + εβ/4)(1 − β + γ)−1(1 − β)η > 1

where the last inequality holds for γ ≤ O(βε), η ≤ O(ε) small enough.
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As we discussed, we prove Lemma 2.13 by pruning the cube obtained by Lemma 5.5.

Proof of Lemma 2.13. Apply Lemma 5.5 with parameters d, r + 1, ε/2, β = O(2−dε), which we can
as we assume γ = 2−Ω(d3). Let C = X × Y × Z and f : X × Z → [0, 1], g : Y × Z → [0, 1],
h : X × Y → [0, 1] be the obtained functions, satisfying the condition that T ∩ C viewed as a
subset of C is (d + 1, r + 1, ε/2, β)-well behaved. We next prune C to obtain the desired cube and
corresponding functions.

Let X ′ ⊂ X be the set of points x where f is (ε/2)-left lower-bounded, and Y ′ ⊂ Y be the set of
points y where g is (ε/2)-left lower-bounded, both with respect to C. Let C ′ = X ′×Y ′×Z and let
f ′, g′, h′ be the restrictions of f, g, h to X ′×Z, Y ′×Z,X ′×Y ′, respectively. We claim that T ∩C ′,
viewed as a subset of the cube C ′, is (d + 2, r, ε) well-behaved, witnessed by f ′, g′, h′.

We first show that E[f ′],E[g′],E[h′] ≥ 2−(d+2). We show this for f ′, and an analogous argument
works for g′, h′. Note that since |X ′| ≥ (1 − β)|X| and f takes values in [0, 1], we have

E[f ′] = E[f ] ±O(β).

Since we know E[f ] ≥ 2−(d+1), taking β = O(2−d) small enough guarantees that E[f ′] ≥ 2−(d+2).

We next show that f ′, g′ are (r, ε)-spread. We show this for f ′, and an analogous argument works
for g′. Assume that R ⊂ X ′ × Z is a rectangle of size |R| ≥ 2−r|X ′||Z|. We can also view R as
a rectangle R ⊂ X × Z of size |R| ≥ (1 − β)2−r|X||Z| ≥ 2−(r+1)|X||Z|. Recalling that f ′ is a
restriction of f , and applying the assumption that f is (r + 1, ε/2)-spread gives

E
(x,z)∈X′×Z

f ′(x, z) = E
(x,z)∈X′×Z

f(x, z) ≤ (1 + ε/2)E[f ] ≤ (1 + ε)E[f ′],

where in the last inequality we use the fact that E[f ′] = E[f ]±O(β) and our choice of β = O(2−dε).

Finally, we show that f ′, g′ are ε-left lower-bounded. We show this for f ′, and an analogous
argument works for g′. Take any x ∈ X ′. We have by assumption

E
z∈Z

[f(x, z)] ≥ (1 − ε/2)E[f ].

We already saw that E[f ′] = E[f ] ± β, and so for β = O(2−dε) we get that

E
z∈Z

[f ′(x, z)] = E
z∈Z

[f(x, z)] ≥ (1 − ε/2)E[f ] ≥ (1 − ε)E[f ′].

6 Construction of sparse pseudorandom sets

We prove in this section the three lemmas from Section 2.5: Claim 2.15 and Lemmas 2.16
and 2.17.

Proof of Claim 2.15. Let (x, y, z) ∈ [N ]3 denote the inputs to D = D(Col). Each player sees two
out of three inputs; namely, the first player sees (y, z), the second (x, z), and the third (x, y).
Each player computes the color of its respective edge, namely c1 = Col(y, z), c2 = Col(x, z),
c3 = Col(x, y). They then need to decide if c1 = c2 = c3. This can be easily done by using a
randomized protocol for equality between each pair of players, which requires sending only O(1)
bits using public randomness.
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We next show that the inner product function is a good expander-coloring. The proof uses standard
arguments based on Fourier analysis.

Proof of Lemma 2.17. Let Fq be a finite field, k ≥ 3 and set η = q−(k−2)/4. Let X,Y ⊂ Fk
q of size

|X|, |Y | ≥ ηqk. Fix any value v ∈ Fq. We need to show that

Pr
(x,y)∈X×Y

[⟨x, y⟩ = v] = q−1(1 ± η).

We prove this using Fourier analysis. The additive characters of Fq are χu : Fq → C∗ for u ∈ Fq.
Given a ∈ Fq, we have Eu[χu(a)] = 1[a = 0], and hence

Pr
(x,y)∈X×Y

[⟨x, y⟩ = v] = E
(x,y)∈X×Y

E
u∈Fq

[χu(⟨x, y⟩ − v)] .

Using the fact that χ0 ≡ 1, χu(a + b) = χu(a)χu(b) and |χu(−v)| = 1 we get

Pr
(x,y)∈X×Y

[⟨x, y⟩ = v] − q−1 ≤ q−1
∑

u∈Fq\{0}

∣∣∣∣ E
(x,y)∈X×Y

[χu(⟨x, y⟩)]
∣∣∣∣ .

To conclude the proof we bound the latter sum using Lindsey’s lemma (see e.g. [11]). Fix u ∈
Fq \ {0}. Let 1X , 1Y ∈ {0, 1}qk be the indicator vectors of X,Y , respectively. Let H be the
corresponding Fourier transform matrix over Fk

q , namely Hx,y = χu(⟨x, y⟩) for x, y ∈ Fk
q . It is well

known that HH∗ = qkI and hence its spectral norm is ∥H∥ = qk/2. Thus∣∣∣∣ E
(x,y)∈X×Y

[χu(⟨x, y⟩)]
∣∣∣∣ =

|1XH1Y |
|X||Y |

≤ ∥1X∥2∥1Y ∥2∥H∥
|X||Y |

=
∥H∥√
|X||Y |

≤ 1

ηqk/2
= q−1η,

where the last equality follows by our choice of η.

We now move to prove Lemma 2.16. We first develop counting lemmas for expanders, which we
then apply to prove the lemma.

6.1 Counting lemma for bi-partite expanders

As a starting point, we develop counting lemmas for a single color class. These effectively are
bi-partite expanders, but in a slightly non-standard regime, so we formally define them.

Let G = (U, V,E) be a bi-partite graph with parts of equal size |U | = |V | = N . Given sets
X ⊂ U, Y ⊂ V , we denote by eG(X,Y ) the number of edges between X,Y .

Definition 6.1 (Bi-partite expander). Let G = (U, V,E) be a bi-partite graph with |U | = |V | = N .
We say that G is a (N, p, η)-expander, if for any sets X ⊂ U, Y ⊂ V of size |X|, |Y | ≥ ηN it holds

eG(X,Y ) = p|X||Y |(1 ± η).

Next, we extend the definition to k-partite graphs. Let k ≥ 2, and let G = (V1, . . . , Vk;E) be a
k-partite graph with parts V1, . . . , Vk, each of size N . For i ̸= j we denote by Gij the induced
bi-partite graph between parts Vi, Vj , and shorthand Eij(G) = E(Gij).

Definition 6.2 (k-partite expander). Let G be a k-partite graph, with parts each of size N . We
say that G is a k-partite (N, p, η)-expander if for any i ̸= j, the bi-partite graph Gij is an (N, p, η)-
expander.
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A graph H on k nodes is said to be a labeled graph if its nodes are labeled by 1, . . . , k.

Definition 6.3 (Labeled graph homomorphism). Let G be a k-partite (N, p, η)-expander with parts
V1, . . . , Vk. Let H be labeled graph on k nodes. A tuple (v1, . . . , vk) ∈ V1×· · ·×Vk is a homomorphism
from H to G if edges of H map to edges of G; that is, if it satisfies

∀(i, j) : (i, j) ∈ E(H) ⇒ (vi, vj) ∈ Eij(G).

We denote by Hom(H,G) the set of all such tuples.

Our main goal in this section is to prove the following counting lemma.

Lemma 6.4. Let G be a k-partite (N, p, η)-expander, let H a labeled graph with k nodes and ℓ
edges, and let Ui ⊂ Vi for i ∈ [k]. Then the number of homomorphisms (v1, . . . , vk) from H to G,
that satisfy vi ∈ Ui for all i, satisfies

|Hom(H,G) ∩ (U1 × · · · × Uk)| = pℓ
∏
i∈[k]

|Ui| ± 6ηℓNk.

Before proving Lemma 6.4, we need the following claim.

Claim 6.5. Let G be a (N, p, η)-expander with parts U, V . Let X ⊂ U, Y ⊂ V of size |X|, |Y | ≥ ηN .
Define

X ′ = {x ∈ X : eG({x}, Y ) = p|Y |(1 ± η)}.

Then |X \X ′| ≤ 2ηN .

Proof. Define

X1 = {x ∈ X : eG({x}, Y ) > p|Y |(1 + η)} , X2 = {x ∈ X : eG({x}, Y ) < p|Y |(1 − η)} .

Since |Y | ≥ ηN we have |X1|, |X2| < ηN . The claim follows since X \X ′ ⊂ X1 ∪X2.

Proof of Lemma 6.4. We shorthand H = Hom(H,G)∩(U1×· · ·×Uk). The proof is by induction on
k. We start with some base cases. If H has no edges then clearly |H| =

∏
i∈[k] |Ui| and the lemma

holds. Similarly, if H has an isolated node then the claim easily reduces to k − 1 by removing this
node from H, and the corresponding part from G, so may assume H has no isolated nodes. Finally,
note that if some set Ui has size |Ui| ≤ ηN , then |H| ≤

∏
|Ui| ≤ ηNk, and the lemma also holds.

Thus, we may assume that |Ui| ≥ ηN for all i ∈ [k].

The base case of the induction is k = 2, where H consists of a single edge (1, 2). In this case, by
definition of a (N, p, η)-expander we have

|H| = |Hom(H,G) ∩ (U1 × U2)| = eG(U1, U2) = p|U1||U2|(1 ± η) = p|U1||U2| ± ηN2

and the lemma holds.

We next consider k ≥ 3. For vk ∈ Uk, define H(vk) = {(v1, . . . , vk−1) : (v1, . . . , vk) ∈ H}. Then

|H| =
∑

vk∈Uk

|H(vk)|.

Assume the node k ∈ V (H) has s neighbours in H, which we may assume without loss of generality
are 1, . . . , s. Let Γi(vk) = {vi ∈ Ui : (vi, vk) ∈ Eik(G)} denote the neighbours of vk in Ui for i ∈ [s].
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Let G′ be the (k− 1)-partite graph obtained from G by removing the part Vk. Let H ′ be the graph
obtained from H by removing node k. Observe that G′ is a (k− 1)-partite (N, p, η)-expander, that
H ′ is a labeled graph with k − 1 nodes and ℓ− s edges, and that

H(vk) = Hom(H ′, G′) ∩ (Γ1(vk) × · · · × Γs(vk) × Us+1 × · · · × Uk−1).

Using the induction hypothesis for G′, H ′ gives

|H(vk)| = pℓ−s
s∏

i=1

|Γi(vk)| ·
k−1∏

i=s+1

|Ui| ± 6η(ℓ− s)Nk−1.

Next, define
U ′
k = {vk ∈ Uk : ∀i ∈ [s], |Γi(vk)| = p|Ui|(1 ± η)}.

Applying Claim 6.5, we have |Uk \ U ′
k| ≤ 2sηN . We now complete the calculations. Note that we

may assume η ≤ 1/6ℓ otherwise the bound is trivial; in this regime we have (1± η)s = 1± 2ηs. For
vk ∈ U ′

k we have

|H(vk)| = pℓ
k−1∏
i=1

|Ui|(1 ± η)s ± 6(ℓ− s)ηNk−1 = pℓ
k−1∏
i=1

|Ui| ± (6ℓ− 3s)ηNk−1.

For vk ∈ Uk \ U ′
k we naively bound∑

vk∈Uk\U ′
k

|H(vk)| ≤ |Uk \ U ′
k|Nk−1 ≤ 2sηNk.

Summing over all vk ∈ Uk, we conclude that

|H| = pℓ
k∏

i=1

|Ui| ± 6ηℓNk−1.

6.2 Counting lemma for partite expander-colorings

We now apply the counting lemma for expanders (Lemma 6.4) to count monochromatic patterns

in expander-colorings. Let K
(k)
N denote the complete k-partite graph, with parts V1, . . . , Vk, each

of size N . We identify each Vi with [N ] when possible to do so without confusion. We consider

edge-colorings of K
(k)
N . We denote them by Cols = (Colij : 1 ≤ i < j ≤ k) where each Colij :

[N ]2 → [M ].

Definition 6.6 (k-partite expander-coloring). An edge-coloring Cols of K
(k)
N is a k-partite

(N,M, η)-expander coloring if Colij are (N,M, η)-expander colorings for all i ̸= j.

Definition 6.7 (Monochromatic patterns). Let Cols be a k-partite (N,M, η)-expander coloring.
Let H be labeled graph on k nodes. A tuple (v1, . . . , vk) ∈ [N ]k is a monochromatic copy of H in
G if all edges of H are mapped to edges with the same color under Cols. Namely, if there exists
m ∈ [M ] such that

∀(i, j) : (i, j) ∈ E(H) ⇒ Colij(vi, vj) = m.

We denote by Mon(H,Cols) the set of all such tuples.
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The following lemma is an application of Lemma 6.4 to count monochromatic patterns inside partite
expander-colorings.

Lemma 6.8. Let Cols be a k-partite (N,M, η)-expander coloring, let H a labeled graph with k
nodes and ℓ edges, and let Ui ⊂ Vi for i ∈ [k]. Then

|Mon(H,Cols) ∩ (U1 × · · · × Uk)| = M1−ℓ
∏
i∈[k]

|Ui| ± 3ηℓMNk.

Proof. For each color m ∈ [M ], let Gm be the k-partite graph corresponding to edges in Cols
colored in color m. By definition, Gm is a k-partite (N,M−1, η)-expander. The lemma follows by
applying Lemma 6.4 to each Gm and summing over all m.

6.3 Monochromatic triangles in expander-colorings

We prove Lemma 2.16 based on Lemma 6.8. We need one more definition before giving the
proof. Given an expander-coloring Col : [N ] × [N ] → [M ], we denote by Cols(Col, k) the k-
partite expander-coloring where Col is used as the edge-coloring between each of two parts; namely
Cols(Col, k) = (Colij = Col : 1 ≤ i < j ≤ k).

Proof of Lemma 2.16. Let Col : [N ] × [N ] → [M ] be an (N,M, η)-expander coloring. Let D =
D(Col). We will show that D is γ-pseudorandom if we choose η small enough. Let C = X ×Y ×Z
be a cube of size |C| ≥ γN3. Define v : X × Y → R≥0 as

v(x, y) = E
z∈Z

D(x, y, z).

We need to show that E[v] = (1 ± γ)M−2 and E[v2] = (1 ± γ)M−4.

We first analyze the first moment of v. Define a 3-partite (N,M, η)-expander coloring Cols1 =
Cols(Col, 3). Let H1 be a triangle. Observe that

E[v] =
|Mon(H1,Cols1) ∩ (X × Y × Z)|

|X||Y ||Z|
.

Lemma 6.8 then gives

E[v] = M−2 ±O(ηMN3/|X||Y ||Z|) = M−2 ±O(ηM/γ) = (1 ± γ)M−2

since we assume η = O(γ2M−3).

Next, we analyze the second moment of v. Define a 4-partite (N,M, η)-expander coloring Cols2 =
Cols(Col, 4). Let H2 be a union of two triangles sharing an edge; concretely, V (H2) = {1, 2, 3, 4}
and E(H2) = {(1, 2), (1, 3), (2, 3), (1, 4), (2, 4)}. Observe that

E[v2] =
|Mon(H2,Cols2) ∩ (X × Y × Z × Z)|

|X||Y ||Z|2
.

Lemma 6.8 then gives

E[v2] = M−4 ±O(ηMN4/|X||Y ||Z|2) = M−4 ±O(ηM/γ2) = (1 ± γ)M−4

since we assume η = O(γ3M−5).
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7 Open problems

We view Theorem 2.8 as the main new technical innovation of this work, and Theorem 1.1 as
an application of it. One natural open problem is to extend the proof to other functions, and in
particular to ExactlyN; a strong lower bound for the NOF deterministic complexity of it would
imply strong lower bounds for the corners problem. Another open problem is to extend the proof
to more than 3 players. The challenges in it appear to be similar to those of extending the results
of [16] from three-term arithmetic progressions to longer progressions.
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graphs and hypergraphs. Acta Mathematica Hungarica, 161(2):488–506, 2020.

[3] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols and logspace-hard pseudorandom
sequences. In Proceedings of the twenty-first annual ACM symposium on Theory of computing,
pages 1–11, 1989.

[4] P. Beame, M. David, T. Pitassi, and P. Woelfel. Separating deterministic from randomized
multiparty communication complexity. Theory of Computing, 6(1):201–225, 2010.

[5] P. Beame and T. Huynh. Multiparty communication complexity and threshold circuit size of
AC0. SIAM Journal on Computing, 41(3):484–518, 2012.

[6] P. Beame, T. Pitassi, and N. Segerlind. Lower bounds for Lovász–Schrijver systems and beyond
follow from multiparty communication complexity. SIAM Journal on Computing, 37(3):845–
869, 2007.

[7] P. Beame, T. Pitassi, N. Segerlind, and A. Wigderson. A strong direct product theorem
for corruption and the multiparty communication complexity of disjointness. computational
complexity, 15:391–432, 2006.

[8] R. Beigel, W. Gasarch, and J. Glenn. The multiparty communication complexity of Exact-T:
Improved bounds and new problems. In International Symposium on Mathematical Founda-
tions of Computer Science, pages 146–156. Springer, 2006.

[9] A. K. Chandra, M. L. Furst, and R. J. Lipton. Multi-party protocols. In Proceedings of the
fifteenth annual ACM symposium on Theory of computing, pages 94–99, 1983.

[10] A. Chattopadhyay and T. Pitassi. The story of set disjointness. ACM SIGACT News, 41(3):59–
85, 2010.

[11] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic
communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

[12] M. David, T. Pitassi, and E. Viola. Improved separations between nondeterministic and
randomized multiparty communication. ACM Transactions on Computation Theory (TOCT),
1(2):1–20, 2009.

26
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