Monotone Classes Beyond VNP

Prerona Chatterjee * Kshitij Gajjar ${ }^{\dagger} \quad$ Anamay Tengse ${ }^{\ddagger}$

October 5, 2023

Abstract

In this work, we study the natural monotone analogues of various equivalent definitions of VPSPACE: a well studied class (Poizat 2008, Koiran \& Perifel 2009, Malod 2011, Mahajan \& Rao 2013) that is believed to be larger than VNP. We observe that these monotone analogues are not equivalent unlike their non-monotone counterparts, and propose monotone VPSPACE (m VPSPACE) to be defined as the monotone analogue of Poizat's definition. With this definition, mVPSPACE turns out to be exponentially stronger than $m V N P$ and also satisfies several desirable closure properties that the other analogues may not.

Our initial goal was to understand the monotone complexity of transparent polynomials, a concept that was recently introduced by Hrubeš \& Yehudayoff (2021). In that context, we show that transparent polynomials of large sparsity are hard for the monotone analogues of all the known definitions of VPSPACE, except for the one due to Poizat.

[^0]
1 Introduction

The aim of algebraic complexity is to classify polynomials in terms of how hard it is to compute them, and the most standard model for computing polynomials is that of an algebraic circuit. An algebraic circuit is a rooted, directed acyclic graph where the leaves are labelled with variables or field constants and internal nodes are labelled with addition $(+)$ or multiplication (\times). Every node therefore naturally computes a polynomial and the polynomial computed by the root is said to be the polynomial computed by the circuit. A formal definition can be found in Section 2.

The central question in the area is to show super-polynomial lower bounds against algebraic circuits for explicit polynomials, or equivalently, to show that VP \neq VNP: the algebraic analogue of the famed P vs. NP question. However, proving strong lower bounds against circuits has turned out to be a difficult problem. Much of the research therefore naturally focusses on various restricted algebraic models which compute correspondingly structured polynomials.

One such syntactic restriction is that of monotonicity, where the models are not allowed to use any negative constants. Therefore, trivially, monotone circuits always compute polynomials with only non-negative coefficients. Such polynomials are called monotone polynomials. We denote the class of all polynomials that are efficiently computable by monotone algebraic circuits by mVP. Also note that any monomial computed during intermediate computation in a monotone circuit can never get cancelled out, making it a fairly weak model. As a result, several strong lower bounds are known against monotone circuits.

Lower bounds in the monotone setting There has been a long line of classical works that prove lower bounds against monotone algebraic circuits [Sch76, SS77, SS80, JS82, KZ86, Gas87]. The most well-known among these, is the result of Jerrum \& Snir [JS82], where they showed exponential lower bounds against monotone circuits for many polynomial families including the Permanent $\left(\mathrm{Perm}_{n}\right)$. In particular, they showed that every monotone algebraic circuit computing the n^{2}-variate Perm_{n} must have size at least $2^{\Omega(n)}$. A few of the more recent works on monotone lower bounds include [RY11, GS12, CKR20].

Additionally, many separations that are believed to be true in the general setting have actually been proved to be true in the monotone setting [SS77, HY16, Yeh19, Sri20]. Most remarkably, Yehudayoff [Yeh19] showed an exponential separation between the computational powers of the monotone analogues of VP and VNP. We denote these classes by mVP (Definition 2.5) and mVNP (Definition 2.6) respectively.

Another line of work in this setting tries to understand the power of non-monotone computational models while computing monotone polynomials. Valiant [Val80], in his seminal paper, showed that there is a family of monotone polynomials which can be computed by polynomial sized non-monotone algebraic circuits such that any monotone algebraic circuit computing them must have exponential size. More recent works [HY13, CDM21, CDGM22, CGM22] have shown
even stronger separations between the relative powers of monotone and non-monotone models while computing monotone polynomials.

Newton polytopes, transparency and monotone complexity Returning briefly to the general setting, an interesting conjecture relating the algebraic complexity of a bivariate polynomial to its geometric property is the 'Tau-conjecture' (also written as τ-conjecture). The Newton polytope of an n-variate polynomial f, denoted by $\operatorname{Newt}(f)$, is the convex hull in \mathbb{R}^{n} of the exponent vectors of the monomials in the support of f. Recently, Hrubeš \& Yehudayoff [HY21] proposed studying the Shadows of Newton polytopes (projections to two-dimensional planes) as an approach to refute the τ-conjecture for Newton polygons made by Koiran, Portier, Tavenas \& Thomassé [KPTT15].

Informally, the τ-conjecture for Newton polygons [KPTT15] states that if f is a bivariate polynomial that can be written as an s-sum of r-products of p-sparse polynomials, then its Newton polygon has at most poly (s, r, p) vertices. A formal definition of Newton polytopes and the τ conjecture for Newton polygons can be found in Section 2.

This conjecture is fairly strong, and it implies, among other things, that VP \neq VNP. However, observe that the Newton polygon retains no information about the coefficients of the polynomial. Since the algebraic complexity of polynomials is believed to be heavily dependent on coefficients (for example the determinant $\left(\operatorname{Det}_{n}\right)$ is efficiently computable by algebraic circuits and this is expected to not be the case for Perm ${ }_{n}$, even though they have the same set of monomials), the τ-conjecture for Newton polygons is believed to be false.

The approach suggested by Hrubeš \& Yehudayoff [HY21] used shadows of Newton polytopes as a means to move from the multivariate setting to the bivariate setting, and use polynomials like determinant (Det_{n}) to refute the conjecture. The difficulty in this strategy however, is to find a polynomial in VP that exhibits high shadow complexity (maximum number of vertices in its projection), since even when a candidate polynomial is fixed, say Det_{n}, it is not easy to design a suitable bivariate projection.

As a means to tackle this issue, Hrubeš \& Yehudayoff introduced the notion of transparent polynomials - polynomials that can be projected to bivariates in such a way that all of their monomials become vertices of the resulting Newton polygon. Further, they also gave examples of polynomials with exponentially large sets of monomials that are provably transparent. Therefore, a proof of any one of these polynomials being in VP would directly refute the τ-conjecture for Newton polytopes.

Even though Hrubeš \& Yehudayoff [HY21] were not able to actually use this approach to refute the conjecture, they used the notions of shadows \& transparency to come up with yet another method for proving lower bounds against monotone algebraic circuits. They showed that the monotone circuit complexity of a polynomial is lower bounded by its shadow complexity when the polynomial is transparent.

Theorem 1.1 ([HY21, Theorem 2]). If f is transparent then every monotone circuit computing f has size at least $\Omega(|\operatorname{supp}(f)|)$.

As a corollary, they present an n-variate polynomial such that any monotone algebraic circuit computing it must have size $\Omega\left(2^{n / 3}\right)$.

1.1 Our Contribution

Here we state our contributions informally; the formal statements can be found in Section 3. Throughout this work we assume that the underlying field is either the field of real numbers or the field of rational numbers. The goal of this work is two-fold.

The first goal is to understand how restrictive the notion of transparency is. Our search begins with an observation by Yehudayoff [Yeh19], that any lower bound against mVP depending solely on the support of the hard polynomial, automatically "lifts" to mVNP with the same parameters ${ }^{1}$. Since transparency is a property solely of the Newton polytope, and hence of the support of the polynomial, the above observation shows that any transparent polynomial that is non-sparse (has super-polynomially large support) is hard to compute even for mVNP. However, we suspect that transparency is an even stronger property. Therefore, a natural question for us is whether there are even larger classes of monotone polynomials that do not contain non-sparse, transparent polynomials.

This brings us to the second goal of this work - studying monotone models of computation that can possibly compute polynomials outside even mVNP. Classes larger than VNP had not been defined in the monotone world prior to this work. We therefore turn to the literature in the non-monotone setting. Here, VPSPACE is a well studied class [Poi08, KP09a, Mal11, MR13] that is believed to be strictly larger than VNP. Interestingly there are multiple definitions of VPSPACE, resulting from varied motivations, all of which are known to be essentially equivalent [Mal11, MR13]. We study the natural monotone analogues of these definitions and show that unlike the non-monotone setting, the powers of the different resulting models vary greatly. This allows us to then analyse if the technique of Hrubeš \& Yehudayoff also works against monotone classes that are possibly larger than mVNP.

The following figure succinctly describes some of our main results.
In Figure 1, the node labels refer to the following classes of polynomial families that have degree-poly (n) and poly (n)-complexity under the corresponding models.

- msuccABP - monotone succinct ABPs (Definition 3.1),
- $\mathrm{mVP}_{\text {quant }}$ - quantified monotone circuits (Definition 3.3),

[^1]

Theorem 3.2
Figure 1: Nodes represent classes of polynomial families; $A \rightarrow B \equiv A \subseteq B$ and $A \longrightarrow B \equiv A \subsetneq$ B. Transparent polynomials are hard for all models corresponding to orange, rectangular nodes.

- $m V P_{\text {sum,prod }}$ - monotone circuits with summation and production gates (Definition 3.8),
- $m V P_{\text {proj }}$ - monotone circuits with projection gates (Definition 3.11).

The orange, rectangular nodes denote the classes in which sparsity of transparent polynomials in it is bounded by a constant factor of the size of the smallest \mathcal{M} computing it, if \mathcal{M} is the computational model corresponding to the class (Theorem 3.10).

An interesting point to note here is that there is an exponential separation between $m V P_{\text {quant }}$ and $m V P_{\text {proj, }}$, which means that at least one of the inclusions: $m V P_{\text {quant }}$ to $m V P_{\text {sum,prod, }}$ and $m V P_{\text {sum,prod }}$ to $m V P_{\text {proj }}$ is strict with an exponential separation.

Additionally, we show the following two statements about mVP quant .

- $\mathrm{mVP}_{\text {quant }}=\mathrm{mVNP}$ if and only if homogeneous components of polynomials in $m V P_{\text {quant }}$ are contained in $\mathrm{mVP}_{\text {quant }}$ (Corollary 3.5). In particular, we show that homogeneous polynomials in $m V P_{\text {quant }}$ are also in $m V N P$ (Theorem 3.4).
- $\mathrm{mVP}_{\text {quant }}=m V P_{\text {sum, prod }}$ if and only if quantified monotone circuits are closed under compositions (Observation 3.9).

Finally, we also show that the homogeneous components of polynomials in $m V P_{\text {proj }}$ are in $m V P_{\text {proj }}$ (Theorem 3.13). This property, along with the fact that $\operatorname{Perm}_{n} \in \mathrm{mVP}_{\text {proj }}$ (Theorem 7.1), is the reason we propose "monotone VPSPACE" (mVPSPACE) to be defined as the class of polynomial families that are efficiently computable by monotone circuits with projection gates (without any restriction on degree).

1.2 Organization of the paper

We begin in Section 2 with formal definitions for all the models of computation that we will be using. Next, we define the monotone analogues of the various definitions of VPSPACE, and outline our results about them in Section 3. The proofs of our results are discussed in Section 4, Section 5, Section 6 and Section 7. We conclude with Section 8, where we discuss some important open threads from our work.

2 Preliminaries

We shall use the following notation for the rest of the paper.

- We use the standard shorthand $[n]=\{1,2, \ldots, n\}$.
- We use boldface letters like $\mathbf{x}, \mathbf{z}, \mathbf{e}$ to denote tuples/sets of variables or constants, individual members are expressed using indexed version of the usual symbols: $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$, $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$. We also use $|\mathbf{y}|$ to denote the size/length of a vector \mathbf{y}.

For vectors \mathbf{x} and \mathbf{e} of the same length n, we use the shorthand $\mathbf{x}^{\mathbf{e}}$ to denote the monomial $x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}$.

- For a polynomial $f(\mathbf{x})$, we denote by $\operatorname{deg}(f)$ the degree of f in \mathbf{x}.
- For a polynomial $f(\mathbf{x})$ and a monomial $m=\mathbf{x}^{\mathbf{e}}$, we refer to the coefficient of m in f by $\operatorname{coeff}_{f}(m)$. The support $\operatorname{supp}(f)$ of a polynomial f is given by $\left\{m: \operatorname{coeff}_{f}(m) \neq 0\right\}$, and the sparsity of a polynomial is the size of its support, $|\operatorname{supp}(f)|$.
- For any polynomial $f(\mathbf{x})$ and any $k \leq \operatorname{deg}(f)$, we denote by $\operatorname{hom}_{k}(f)$ the k-th homogeneous degree component of f in terms of \mathbf{x}. That is, if $f(\mathbf{x})=f_{0}(\mathbf{x})+\ldots+f_{\operatorname{deg}(f)}(\mathbf{x})$ where $f_{k}(\mathbf{x})$ is a homogeneous polynomial of degree k in \mathbf{x}, then $\operatorname{hom}_{k}(f)=f_{k}$.
- The permanent of an $n \times n$ symbolic matrix shall be denoted by Perm n and is defined as $\operatorname{Perm}_{n}=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}$, where S_{n} is the set of all permutations of $[n]$.
- We use $\left\{f_{n}\right\}$ to denote families of polynomials indexed by \mathbb{N}. All complexity classes are defined in terms of asymptotic properties of "polynomials" and are technically sets of such polynomial families. Sometimes however, this technicality is ignored for the sake of brevity, especially when the analogous statement about polynomial families is obvious.

Definition 2.1 (Algebraic circuits). An algebraic circuit is a directed acyclic graph with leaves (nodes with in-degree zero) labelled by formal variables and constants from the field, and other nodes labelled by addition $(+)$ and multiplication (\times) have in-degree 2.

The leaves compute their labels, and every other node computes the operation it is labelled by, on the polynomials along its incoming edges. A node of out-degree zero is called the output of the circuit, and the circuit is said to compute the polynomial computed by the output gate.

In case there are multiple output gates, the circuit is said to be multi-output, and computes a set of polynomials.

The size of a circuit, \mathcal{C}, denoted by size (\mathcal{C}), is the number of nodes in the graph.
An algebraic circuit over \mathbb{Q} or \mathbb{R} is said to be monotone, if all the constants appearing in it are nonnegative.

Definition 2.2 (Algebraic Branching Programs (ABPs)). An algebraic branching program is specified by a layered graph where each edge is labelled by an affine linear form and the first and the last layer have one vertex each, called the "source" and the "sink" vertex respectively. The polynomial computed by an $A B P$ is equal to the sum of the weights of all paths from the start vertex to the end vertex in the $A B P$, where the weight of a path is equal to the product of the labels of all the edges on it.

The width of a layer in an $A B P$ is the number of vertices in it and the width of an $A B P$ is the width of the layer that has the maximum number of vertices in it. The size of an $A B P$ is the number of vertices in it.

Definition 2.3 (Newton polytopes). For a polynomial $f(\mathbf{x})$, its Newton polytope $\operatorname{Newt}(f) \subseteq \mathbb{R}^{n}$, is defined as the convex hull of the exponent vectors of the monomials in its support.

$$
\operatorname{Newt}(f):=\operatorname{conv}\left(\left\{\mathbf{e}: \mathbf{x}^{\mathbf{e}} \in \operatorname{supp}(f)\right\}\right)
$$

A point $\mathbf{e} \in \operatorname{Newt}(f)$ is said to be a vertex, if it cannot be written as a convex combination of other points in $\operatorname{Newt}(f)$. We denote the set of all vertices of a polytope \mathcal{P} using $\operatorname{vert}(\mathcal{P})$.

Conjecture 2.4 (τ conjecture for Newton polytopes [KPTT15]). Suppose $f(x, y)$ is a bivariate polynomial that can be written as $\sum_{i \in[s]} \prod_{j \in[r]} T_{i, j}(x, y)$, where each $T_{i, j}$ has sparsity at most p. Then the Newton polygon of f has poly (s, r, p) vertices.

Basic monotone classes

Definition 2.5 (Monotone VP (mVP)). A family $\left\{f_{n}\right\}$ of monotone polynomials is said to be in mVP , if there exists a constant $c \in \mathbb{N}$ such that for all large n, f_{n} depends on at most n^{c} variables, has degree at most n^{c}, and is computable by a monotone algebraic circuit of size at most n^{c}.
Definition 2.6 (Monotone VNP (mVNP)). A family $\left\{f_{n}\right\}$ of monotone polynomials is said to be in mVNP , if there exists a constant $c \in \mathbb{N}$, and an m-variate family $\left\{g_{m}\right\} \in \mathrm{mVP}$ with $m, \operatorname{size}\left(g_{m}\right) \leq n^{c}$, such that for all large enough n, f_{n} satisfies the following.

$$
f_{n}(\mathbf{x})=\sum_{\mathbf{a} \in\{0,1\}|\mathbf{v}|} g_{m}(\mathbf{x}, \mathbf{y}=\mathbf{a})
$$

An expression of the above form is alternatively called an exponential sum computing f_{n}.

Various definitions of VPSPACE

Koiran \& Perifel [KP09a, KP09b] were the first to define VPSPACE as the class of polynomials (of degree that is potentially exponential in the number of underlying variables) whose coefficients can be computed in PSPACE/ poly, and VPSPACE ${ }_{b}$ to be the polynomials in VPSPACE that have
degree bounded by a polynomial in the number of underlying variables. They showed that if $\mathrm{VP} \neq \mathrm{VPSPACE} \mathrm{E}_{\mathrm{b}}$ then either $\mathrm{VP} \neq \mathrm{VNP}$ or $\mathrm{P} /$ poly \neq PSPACE/poly.

Later, Poizat [Poi08] gave an alternate definition that does not rely on any boolean machinery, but instead uses a new type of gate called a projection gate.
Definition 2.7 (Projection gates [Poi08]). A projection gate is a unary gate that is labelled by a variable z and a constant $b \in\{0,1\}$, denoted by $\mathrm{fix}_{(z=b)}$. It returns the partial evaluation of its input polynomial, at $z=b$, that is, $\operatorname{fix}_{(z=b)}(f(z, \mathbf{x}))=f(b, \mathbf{x})$.

Poizat defined algebraic circuits with projection gates and then defined VPSPACE to be the class of polynomial families that are efficiently computable by this model. Poizat showed ${ }^{2}$ that this definition is equivalent to that of Koiran \& Perifel.
Definition 2.8 (Algebraic circuits with projection gates [Poi08]). An algebraic circuit with projection gates is an algebraic circuit (Definition 2.1) in which the internal nodes can also be projection gates (Definition 2.7), in addition to + or \times.

The size of an algebraic circuit with projection gates is the number of nodes in the underlying graph. \diamond
Adding to Poizat's work, Malod [Mal11] characterized VPSPACE using exponentially large algebraic branching programs (ABPs) that are succinct. Malod's work defines the complexity of an ABP as the size of the smallest algebraic circuit that encodes its graph - outputs the corresponding edge label when given the two endpoints as input. An n-variate ABP is then said to be succinct, if its complexity is poly (n).

Definition 2.9 (Succinct ABPs [Mal11]). A succinct ABP over the n variables $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a triple $(B, \mathbf{s}, \mathbf{t})$ with $|\mathbf{s}|=|\mathbf{t}|=r$, where

- \mathbf{s} is the label of the source vertex, and \mathbf{t} is the label of the sink(target) vertex.
- $B(\mathbf{u}, \mathbf{v}, \mathbf{x})$ is an algebraic circuit that describes a directed acyclic graph G_{B} on the vertex set $\{0,1\}^{r}$ in the following way. For any two vertices $\mathbf{a}, \mathbf{b} \in\{0,1\}^{r}$, the output $B(\mathbf{u}=\mathbf{a}, \mathbf{v}=\mathbf{b}, \mathbf{x})$ is the label of the edge from \mathbf{a} to \mathbf{b} in the $A B P$.
The polynomial computed by the $A B P$ is the sum of polynomials computed along all \mathbf{s} to \mathbf{t} paths in G_{B}; where each path computes the product of the labels of the constituent edges.

The size of the circuit B is said to be the complexity of the succinct ABP. The number of vertices 2^{r} is the size of the succinct $A B P$, and the length of the longest \mathbf{s} to \mathbf{t} path is called the length of the succinct $A B P$.

In the same work [Mal11], Malod alternatively characterized VPSPACE using an interesting algebraic model that resembles (totally) quantified boolean formulas that are known to characterize PSPACE. This model, which we refer to as "quantified algebraic circuits", is defined using special types of projection gates called summation and production gates.

[^2]Definition 2.10 (Summation and Production gates [Mal11]). Summation and production gates are unary gates that are labelled by a variable z, and are denoted by sum_{z} and prod_{z} respectively. A summation gate returns the sum of the $(z=0)$ and $(z=1)$ evaluations of its input, and a production gate returns the product of those evaluations. That is, $\operatorname{sum}_{z}(f(z, \mathbf{x}))=f(0, \mathbf{x})+f(1, \mathbf{x})$, and $\operatorname{prod}_{z}(f(z, \mathbf{x}))=f(0, \mathbf{x})$. $f(1, \mathbf{x})$.

We sometimes use $\operatorname{sum}_{\left\{z_{1}, \ldots, z_{k}\right\}}$ to refer to the nested expression $\operatorname{sum}_{z_{1}} \cdots \operatorname{sum}_{z_{k}}$ (similarly for prod); it can be checked that the order does not matter here.

A quantified algebraic circuit has the form $Q_{z_{1}}^{1} Q_{z_{2}}^{2} \cdots Q_{z_{m}}^{m} \mathcal{C}(\mathbf{x}, \mathbf{z})$, where each Q^{i} is a summation or a production, and $\mathcal{C}(\mathbf{x}, \mathbf{z})$ is a usual algebraic circuit.
Definition 2.11 (Quantified Algebraic Circuits [Mal11]). A quantified algebraic circuit is an algebraic circuit that has the form,

$$
\mathrm{Q}_{z_{1}}^{(1)} \mathrm{Q}_{z_{2}}^{(2)} \cdots \mathrm{Q}_{z_{m}}^{(m)} \mathcal{C}(\mathbf{x}, \mathbf{z}),
$$

where $|\mathbf{z}|=m, \mathrm{Q}^{(i)} \in\{\operatorname{sum}, \operatorname{prod}\}$ for each $i \in[m]$, and \mathcal{C} is an algebraic circuit. The size of such a quantified algebraic circuit is $m+\operatorname{size}(\mathcal{C})$.

Finally, Mahajan \& Rao [MR13] defined algebraic analogues of small space computation (e.g. L, NL) using the notion of width of an algebraic circuit. They use their definitions to import some relationships known in the boolean world to the algebraic world (e.g, they show VL \subseteq VP). They further show that their definition of uniform polynomially-bounded-space computation coincides with that of uniform-VPSPACE as defined by Koiran \& Perifel [KP09a].

We now narrow our focus to the definitions due to Poizat [Poi08] and Malod [Mal11]. We choose these definitions because they are algebraic in nature, and have fairly natural monotone analogues. We elaborate a bit more about this decision in Appendix A.
Remark. It should be noted that all the above-mentioned definitions of VPSPACE allow for the polynomial families to have large degree - as high as $\exp (\operatorname{poly}(n))$. The main focus of our work, however, is to compare the monotone analogues of these models with mVP and mVNP . Since the latter classes only contain lowdegree polynomials, we will only work with polynomials of degree poly (n), or $\mathrm{VPSPACE}_{b}$ as defined in [KP09a], unless mentioned otherwise.

3 Monotone analogues of VPSPACE, and our contributions

We now define monotone analogues for the various definitions of VPSPACE outlined in the previous section, and compare the powers of the resulting monotone models/classes.

3.1 Monotone succinct ABPs

We first consider the natural monotone analogue of the definition due to Malod [Mal11] which uses succinct algebraic branching programs (Definition 2.9).

Malod showed that every family $\left\{f_{n}\right\}$ in VPSPACE can be computed by $2^{\text {poly }(n)}$ sized ABPs that have complexity $\operatorname{poly}(n)$. Recall that the complexity of a succinct ABP is the size of the smallest algebraic circuit that encodes its graph.

We therefore define monotone succinct ABPs as ABPs that can be succinctly described by monotone algebraic circuits of size poly (n). However, this restriction forces that if the monomial $\mathbf{x}^{\mathbf{e}}$ appears in any edge-label (\mathbf{a}, \mathbf{b}), then it also appears in the label of $(\overline{1}, \overline{1})$. Therefore, self-loops are inevitably present in succinct ABPs in the monotone setting. To handle this, we additionally allow the length of the ABP , say ℓ, to be predefined ${ }^{3}$ so that now the polynomial computed by the ABP can be defined to be the sum of polynomials computed by all $\mathbf{s}-\mathbf{t}$ paths of length at most ℓ.
Definition 3.1 (Monotone Succinct ABPs). A monotone succinct ABP over the n variables $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a four tuple $(B, \mathbf{s}, \mathbf{t}, \ell)$ with $|\mathbf{s}|=|\mathbf{t}|=r$, where

- ℓ is the length of the $A B P$.
- \mathbf{s} is the label of the source vertex, and \mathbf{t} is the label of the sink (target) vertex.
- $B(\mathbf{u}, \mathbf{v}, \mathbf{x})$ is a monotone algebraic circuit that describes a directed graph G_{B} on the vertex set $\{0,1\}^{r}$ in the following way. For any two vertices $\mathbf{a}, \mathbf{b} \in\{0,1\}^{r}$, the output $B(\mathbf{u}=\mathbf{a}, \mathbf{v}=\mathbf{b}, \mathbf{x})$ is the label of the edge from \mathbf{a} to \mathbf{b} in the $A B P$.

The polynomial computed by the $A B P$ is the sum of polynomials computed along all \mathbf{s} to \mathbf{t} paths in G_{B} of length at most ℓ; where each path computes the product of the labels of the constituent edges.

The size of the circuit B is said to be the complexity of the monotone succinct $A B P$. The number of vertices 2^{r} is the size of the succinct $A B P$.

Note that since B is a monotone algebraic circuit, all the edge-labels in the ABP are monotone polynomials over \mathbf{x}. It is also not hard to see that any polynomial $f \in \mathrm{mVP}$ is computable by this model. If \mathcal{C} is the monotone circuit computing f, then the monotone succinct ABP computing f is $\left(\mathcal{C}^{\prime}, 0,1,1\right)$ where $\mathcal{C}^{\prime}(u, v, \mathbf{x})=v \cdot \mathcal{C}(\mathbf{x})$.

We show that the computational power of monotone succinct ABPs when computing polynomials of bounded degree does not even go beyond mVNP.

Theorem 3.2. If a polynomial family $\left\{f_{n}\right\}$ of degree $\operatorname{poly}(n)$ is computable by monotone succinct $A B P$ s of complexity $\operatorname{poly}(n)$, then $\left\{f_{n}\right\} \in \mathrm{mVNP}$.

[^3]In contrast, Malod [Mal11] showed that every family in VPSPACE admits succinct ABPs of polynomial complexity, and we expect VPSPACE ${ }_{b}$ to be a much bigger class than VNP.

A proof of Theorem 3.2 can be found in Section 4. It is not clear to us if the converse of Theorem 3.2 is true. Any obvious attack seems to fail due to the restriction that the circuit encoding the ABP needs to be monotone.

3.2 Quantified monotone circuits

As mentioned earlier, Malod [Ma111] had also characterized the class VPSPACE using the notion of quantified algebraic circuits (Definition 2.11). We now consider its natural monotone analogue, which we call quantified monotone circuits.

Definition 3.3 (Quantified Monotone Algebraic Circuits). A quantified monotone algebraic circuit has the form

$$
\mathbf{Q}_{z_{1}}^{(1)} \mathbf{Q}_{z_{2}}^{(2)} \cdots \mathbf{Q}_{z_{m}}^{(m)} \mathcal{C}(\mathbf{x}, \mathbf{z})
$$

where $|\mathbf{z}|=m, \mathbf{Q}^{(i)} \in\{$ sum, $\operatorname{prod}\}$ for each $i \in[m]$, and \mathcal{C} is a monotone algebraic circuit. The size of the quantified monotone algebraic circuit above is $m+\operatorname{size}(\mathcal{C})$.

We denote by $\mathrm{mVP}_{\text {quant }}$ the class of all n-variate polynomial families of degree $\operatorname{poly}(n)$ that are computable by quantified monotone algebraic circuits of size poly (n).

Clearly $\mathrm{mVNP} \subseteq \mathrm{mVP}_{\text {quant }}$. It is therefore interesting to check if the inclusion is tight. We show that $\mathrm{mVNP} \neq \mathrm{mVP}$ quant if and only if there is a family $\left\{f_{n}\right\} \in \mathrm{mVP}$ quant such that the k-th homogeneous component of f_{n} is not in $\mathrm{mVP}_{\text {quant }}$ for some n and $k \leq \operatorname{deg}(f)$.

In particular we show the following statement.
Theorem 3.4. Let f be computable by a quantified monotone circuit of size s. If f is homogeneous, then it is expressible as an exponential sum of size at most $O(s \cdot \operatorname{deg}(f))$.

Since mVNP is closed under addition, we get the following as a corollary.
Corollary 3.5. The class $\mathrm{mVP}_{\text {quant }}$ is closed under taking homogeneous components, if and only if, $\mathrm{mVP}_{\text {quant }}=$ mVNP. That is,

$$
\left(\forall f \in \mathrm{mVP}_{\text {quant }}, \forall k \leq \operatorname{deg}(f), \operatorname{hom}_{k}(f) \in \mathrm{mVP}_{\text {quant }}\right) \Longleftrightarrow \mathrm{mVNP}=\mathrm{mVP}_{\text {quant }}
$$

A proof of Theorem 3.4 and Corollary 3.5 can be found in Section 5.
Even though we believe $\mathrm{mVNP} \subsetneq \mathrm{mVP}$ quant , we feel this might be tricky to prove. The following theorem sheds some light on why that may be the case.

Theorem 3.6. Suppose $f(\mathbf{x})$ is an n-variate, degree-d polynomial computed by a quantified monotone circuit of size s, which uses ℓ summation gates. Then for a set of variables \mathbf{w} of size at most $d \cdot \ell$, there is a monotone circuit $h(\mathbf{x}, \mathbf{w})$ of size at most $d \cdot s$, and a monotone polynomial $A(\mathbf{w})$ such that,

$$
\begin{equation*}
f(\mathbf{x})=\sum_{\mathbf{b} \in\{0,1\}} A(\mathbf{w}=\mathbf{b}) \cdot h(\mathbf{x}, \mathbf{w}=\mathbf{b}), \tag{3.7}
\end{equation*}
$$

where $A(\mathbf{w})$ potentially has circuit size and degree that is exponential in n and ℓ.
Although the obvious size and degree bounds on $A(\mathbf{w})$ above are exponential, it has a somewhat succinct quantified expression that can be inferred from the proof (given in Section 5).

We now discuss how Theorem 3.6 helps us understand a possible difficulty in separating $m V P_{\text {quant }}$ from $m V N P$.

1. If the polynomial $A(\mathbf{w})$ from Theorem 3.6 were to have degree and size that is polynomial in n, then $\mathrm{mVP}_{\text {quant }}$ would collapse to mVNP . Further, since A is free of \mathbf{x}, its exponential degree and size can be leveraged only for designing coefficients of f. Moreover, the monotone nature of A and h ensures that $A(\mathbf{1})$ is the largest value, and contributes equally to all monomials in the support of f, since $\operatorname{supp}(f)=\operatorname{supp}(h(\mathbf{x}, \mathbf{w}=\mathbf{1}))$.
2. Another consequence that is quite interesting is the following. Suppose there is a different monotone polynomial $B(\mathbf{w})$ of small degree and size that agrees with $A(\mathbf{w})$ on all $\{0,1\}$ inputs, then $f(\mathbf{x})=\sum_{\mathbf{b}} B(\mathbf{b}) h(\mathbf{x}, \mathbf{b})$. That is, we can replace A by B in our expression and then f clearly has an efficient ' m VNP-expression'.

Thus, any separation between m VNP and quantified monotone VP will provide a polynomial $A(\mathbf{w})$ which is hard to compute for mVNP , even as a function over the boolean hypercube; a result that perhaps stands on its own.

3.3 Monotone circuits with summation and production gates

Note that it is unclear if quantified monotone circuits are closed under compositions.
We therefore also consider a model that generalizes quantified monotone circuits and is trivially closed under compositions. Here summation and production gates are allowed to appear anywhere in the circuit.
Definition 3.8 (Algebraic circuits with summation and production gates). An algebraic circuit with summation and production gates is an algebraic circuit (Definition 2.1) in which the internal nodes can also be summation or production gates (Definition 2.10), in addition to + or \times. A subset of the variables used by the circuit are marked as auxiliary. These variables do not appear in the output polynomial(s) of the circuit, and the labels for all the summation and production gates are required to be auxiliary variables.

The size of an algebraic circuit with summation and production gates is the number of nodes in the graph.

An algebraic circuit with summation, production gates is said to be monotone, if all the constants appearing in it are non-negative.

We denote by $\mathrm{mVP}_{\text {sum, prod }}$ the class of all n-variate polynomial families of degree $\operatorname{poly}(n)$ that are computable by monotone algebraic circuits with summation and production gates of size poly (n).

Note that even in the non-monotone setting this model is clearly as powerful as quantified circuits, but can be simulated by circuits with projection gates. Again, Malod [Mal11] showed that quantified circuits and circuits with projection gates are equivalent in power. So the class of polynomials efficiently computable by this model is also VPSPACE.

In the monotone setting, however, it is not clear if the power of quantified monotone circuits is the same as that of this model. In particular, we observe the following. Here, we mean 'closure under compositions' in a strong sense: if C_{1} and C_{2} are quantified monotone circuits of size s_{1} and s_{2} respectively, then the polynomial computed by their composition to have a quantified monotone circuit of size at most $s_{1}+s_{2}$.

Observation 3.9 (Informal). Quantified monotone circuits are closed under compositions, if and only if, $m V P_{\text {quant }}=m V P_{\text {sum, prod }}$.

Theorem 6.15 gives a formal statement and its proof can be found in Section 5.
We, however, show that even this seemingly stronger model does not help in computing transparent polynomials.

Theorem 3.10. Any monotone algebraic circuit with summation and production gates that computes a transparent polynomial f, has size at least $|\operatorname{supp}(f)| / 4$.

This shows that transparent polynomials with large support are hard even for this model. A proof can be found in Section 6.

Recall that one way to refute the τ-conjecture for Newton polygons is to show a transparent polynomial in (non-monotone) VP. Theorem 3.10 shows that any transparent polynomial from VP that refutes the conjecture would also witness a separation between VP and a class potentially much bigger than mVNP^{4}. Even though stark separations between monotone and non-monotone models are not unheard of [HY13, CDM21], such a result would also be quite interesting and would further highlight the power of subtractions.

3.4 Monotone circuits with projection gates

Finally, adapting the definition of VPSPACE due to Poizat (Definition 2.8) [Poi08], we define monotone circuits with projection gates.

[^4]Definition 3.11 (Monotone algebraic circuits with projection gates). A monotone algebraic circuit with projection gates is an algebraic circuit with projections (Definition 2.8) in which only non-negative constants from the field are allowed to appear as labels of leaves.

As in Definition 3.8, only the auxiliary variables can be used as labels for the projection gates. The size of a monotone algebraic circuit with projection gates is the number of nodes in the underlying graph.

We denote by $\mathrm{mVP}_{\text {proj }}$ the class of all n-variate polynomials of degree $\operatorname{poly}(n)$ that are computable by size-poly (n) monotone algebraic circuits with projection gates.

This model is clearly at least as powerful as monotone circuits with summation and production gates, since $\operatorname{sum}_{z}=\mathrm{fix}_{(z=0)}+\mathrm{fix}_{(z=1)}$ and $\operatorname{prod}_{z}=\mathrm{fix}_{(z=0)} \times \mathrm{fix}_{(z=1)}$. It would therefore be interesting to show a separation between the power of the two models.

Even though we are unable to do that, we show that monotone circuits with projection gates are indeed more powerful than quantified monotone circuits, with a $2^{\Omega(\sqrt{m})}$ separation.

Theorem 3.12. The polynomial family $\left\{\operatorname{Perm}_{n}\right\}$ can be computed by monotone circuits with projection gates of size $O\left(n^{3}\right)$, but quantified monotone circuits computing it must have size $2^{\Omega(n)}$.

Finally we show that $m V P_{\text {proj }}$ is closed under taking homogeneous components.
Theorem 3.13. Suppose f is computed by a size s monotone circuit with projections. Then for any $k \leq$ $\operatorname{deg}(f), \operatorname{hom}_{k}(f)$ has a monotone circuit with projections of size $O\left(k^{2} \cdot s\right)$.

Proof sketches of Theorem 3.12 and Theorem 3.13 can be found in Section 7.

3.5 Defining Monotone VPSPACE (mVPSPACE)

We propose the following definition for mVPSPACE.
Definition 3.14 (Monotone VPSPACE). A family of polynomials $\left\{f_{n}\right\}$ is said to be in mVPSPACE if for all large n, f_{n} is computable by a monotone algebraic circuit with projection gates (Definition 3.11) of size poly (n).

Further if $\left\{f_{n}\right\}$ has degree $\operatorname{poly}(n)$, then it is said to be in $\operatorname{mVPSPACE}_{b}$.
That is, we define $m V P S P A C E ~ b:=m V P_{p r o j}$ and define $m V P S P A C E$ along the same lines, but without the restriction on the degree being bounded (since VPSPACE does not impose any restrictions on degree). Some of our reasons for this choice are as follows.

Firstly, being a complexity class, mVPSPACE ${ }_{b}$ should be closed under (monotone) affine projections, i.e. setting a few variables to monotone affine polynomials. All of $m V P_{\text {quant }}, m V P_{\text {sum, prod }}$ and $m V P_{\text {proj }}$ have this property.

Further, as mVP and mVNP are closed under taking homogeneous components, it is desirable for a more powerful class to also have this property. Even if $m V P_{\text {quant }}$ satisfies this, it would not lead to a larger class (Corollary 3.5). Also, it is not clear $m V P_{\text {sum,prod }}$ is closed under homogenization, while $\mathrm{mVP}_{\text {proj }}$ is (Theorem 3.13).

Finally, we believe that having $\operatorname{Perm}_{n} \in \mathrm{mVP}_{\text {proj }}$ is an interesting property that further strengthens the case for $m V P_{\text {proj }}$ being the definition for $m V P S P A C E ~ E_{b}$.

4 Monotone succinct algebraic branching programs

In this section we discuss the proof of Theorem 3.2.
Theorem 3.2. If a polynomial family $\left\{f_{n}\right\}$ of degree poly (n) is computable by monotone succinct $A B P s$ of complexity poly (n), then $\left\{f_{n}\right\} \in \mathrm{mVNP}$.

Proof. Let $\mathcal{A}=(B, \mathbf{s}, \mathbf{t}, \ell)$ be the monotone succinct ABP computing f, with $|\mathbf{s}|=|\mathbf{t}|=r$. Then we observe the following.

Claim 4.1. If $\ell>1$, then $\ell \leq \operatorname{deg}(f)+2$.
Proof. Let $b(\mathbf{u}, \mathbf{v}, \mathbf{x})$ be the monotone $(2 r+n)$-variate polynomial computed by the circuit B. Due to the monotonicity of B, for any $\mathbf{e} \in \mathbb{N}^{n}$ we have that if the monomial $\mathbf{x}^{\mathbf{e}}$ appears in any edge-label (\mathbf{a}, \mathbf{b}), then it also appears in the label of $(\overline{1}, \overline{1})$. Therefore, $\operatorname{deg}_{\mathbf{x}}(B(\mathbf{a}, \mathbf{b}, \mathbf{x})) \leq \operatorname{deg}_{\mathbf{x}}(B(\overline{1}, \overline{1}, \mathbf{x}))$ for all a, \mathbf{b}. Similarly, $\operatorname{deg}_{\mathbf{x}}(B(\mathbf{s}, \mathbf{b}, \mathbf{x})) \leq \operatorname{deg}_{\mathbf{x}}(B(\mathbf{s}, \overline{1}, \mathbf{x}))$ and $\operatorname{deg}_{\mathbf{x}}(B(\mathbf{a}, \mathbf{t}, \mathbf{x})) \leq \operatorname{deg}_{\mathbf{x}}(B(\overline{1}, \mathbf{t}, \mathbf{x}))$ for all \mathbf{a}, \mathbf{b}. This shows that if $\ell>1$, then

$$
\operatorname{deg}(f)=\operatorname{deg}\left(B(\mathbf{s}, \overline{1}, \mathbf{x}) \cdot B(\overline{1}, \overline{1}, \mathbf{x})^{\ell-2} \cdot B(\overline{1}, \mathbf{t}, \mathbf{x})\right) \geq \ell-2 .
$$

As a result of the above claim, for $d=\operatorname{deg}(f)$, we have the following.

$$
\begin{aligned}
f(\mathbf{x})= & B(\mathbf{s}, \mathbf{t}, \mathbf{x})+\sum_{j=1}^{d+1}(\text { sum of } \mathbf{s}-\mathbf{t} \text { paths through } j \text { intermediate vertices }) \\
= & B(\mathbf{s}, \mathbf{t}, \mathbf{x})+\sum_{j=1}^{d+1}\left(\sum_{\mathbf{a}_{1}, \ldots, \mathbf{a}_{j} \in\{0,1\}^{r}} B\left(\mathbf{s}, \mathbf{a}_{1}, \mathbf{x}\right) \cdot\left(\prod_{k=1}^{j-1} B\left(\mathbf{a}_{k}, \mathbf{a}_{k+1}, \mathbf{x}\right)\right) \cdot B\left(\mathbf{a}_{j}, \mathbf{t}, \mathbf{x}\right)\right) \\
= & B(\mathbf{s}, \mathbf{t}, \mathbf{x})+ \\
& \sum_{\mathbf{a}_{1}, \ldots, \mathbf{a}_{d+1} \in\{0,1\}^{r}} \sum_{j=1}^{d+1} 2^{-r(d+1-j)}\left(B\left(\mathbf{s}, \mathbf{a}_{1}, \mathbf{x}\right) \cdot\left(\prod_{k=1}^{j-1} B\left(\mathbf{a}_{k}, \mathbf{a}_{k+1}, \mathbf{x}\right)\right) \cdot B\left(\mathbf{a}_{j}, \mathbf{t}, \mathbf{x}\right)\right) .
\end{aligned}
$$

This can be rewritten as follows.

$$
\sum_{\mathbf{a}_{1}, \ldots, \mathbf{a}_{d+1}}\left(2^{-r(d+1)} B(\mathbf{s}, \mathbf{t}, \mathbf{x})+\sum_{j=1}^{d+1} 2^{-r(d+1-j)} B\left(\mathbf{s}, \mathbf{a}_{1}, \mathbf{x}\right)\left(\prod_{k=1}^{j-1} B\left(\mathbf{a}_{k}, \mathbf{a}_{k+1}, \mathbf{x}\right)\right) B\left(\mathbf{a}_{j}, \mathbf{t}, \mathbf{x}\right)\right)
$$

This is clearly a poly-sized exponential sum as $d=\operatorname{poly}(n)$ and B is a monotone circuit of size poly (n).

5 Quantified monotone circuits

5.1 Computing homogeneous polynomials

Theorem 3.4. Let f be computable by a quantified monotone circuit of size s. If f is homogeneous, then it is expressible as an exponential sum of size at most $O(s \cdot \operatorname{deg}(f))$.

Proof. Let $d=\operatorname{deg}(f)$, and let \mathcal{C} be a quantified monotone circuit computing f, that uses exactly k production gates. We can then assume that,

$$
\mathcal{C}(\mathbf{x})=\operatorname{sum}_{\mathbf{y}_{0}} \operatorname{prod}_{z_{1}} \operatorname{sum}_{\mathbf{y}_{1}} \operatorname{prod}_{z_{2}} \cdots \operatorname{sum}_{\mathbf{y}_{k-1}} \operatorname{prod}_{z_{k}} \operatorname{sum}_{\mathbf{y}_{k}} g(\mathbf{x}, \mathbf{y}, \mathbf{z}),
$$

without loss of generality, by using some empty $\mathbf{y}_{j} s$ whenever necessary. Note that the $\mathbf{y}_{j} s$ are sets of variables, whereas each of the $z_{j} \mathrm{~s}$ are single variables.

We now prove the statement in two steps. First, we use the homogeneity of f, and the monotonicity of the quantified circuit, to show that $k \leq \log (d)$.

Claim 5.1. $k \leq \log d$
Proof. For each $i \in[k]$, let $g_{i}\left(z_{i}, \mathbf{x}, \mathbf{w}_{i}\right)=\operatorname{sum}_{\mathbf{y}_{i}} \operatorname{prod}_{z_{i+1}} \operatorname{sum}_{\mathbf{y}_{i+1}} \cdots \operatorname{sum}_{\mathbf{y}_{k}} g(\mathbf{x}, \mathbf{y}, \mathbf{z})$. Here \mathbf{w}_{i} denotes all the auxiliary variables that are alive after ' i rounds' of quantifiers. Further, let $h_{i}\left(\mathbf{x}, \mathbf{w}_{i}\right)=$ $\operatorname{prod}_{z_{i}} g_{i}\left(z_{i}, \mathbf{x}, \mathbf{w}_{i}\right)$.

Now, $f(\mathbf{x})=\operatorname{sum}_{\mathbf{y}_{0}} h_{1}\left(\mathbf{x}, \mathbf{y}_{0}\right)$, and it is homogeneous. Therefore, since h_{1} is monotone, it is also homogeneous in \mathbf{x} with degree exactly d. But $\operatorname{deg}_{\mathbf{x}}\left(h_{1}\right)=\operatorname{deg}_{\mathbf{x}}\left(\operatorname{prod}_{z_{1}} g_{1}\right)=\operatorname{deg}_{\mathbf{x}}\left(g_{1}\left(z_{1}=\right.\right.$ $0))+\operatorname{deg}_{\mathbf{x}}\left(g_{1}\left(z_{1}=1\right)\right)$. If we write $g_{1}\left(z_{1}, \mathbf{x}, \mathbf{w}_{1}\right)=g_{1,0}\left(\mathbf{x}, \mathbf{w}_{1}\right)+z \cdot g_{1,1}\left(z_{1}, \mathbf{x}, \mathbf{w}_{1}\right)$, then we have that $g_{1}\left(z_{1}=0\right)=g_{1,0}\left(\mathbf{x}, \mathbf{w}_{1}\right)$ and $g_{1}\left(z_{1}=1\right)=g_{1,0}\left(\mathbf{x}, \mathbf{w}_{1}\right)+g_{1,1}\left(z_{1}=1, \mathbf{x}, \mathbf{w}_{1}\right)$. Since h_{1} is homogeneous in \mathbf{x} and g_{1} is monotone in all the variables, this must mean that $\operatorname{deg}_{\mathbf{x}}\left(g_{1}\left(z_{1}=\right.\right.$ $0))=\operatorname{deg}_{\mathbf{x}}\left(g_{1}\left(z_{1}=1\right)\right)=\operatorname{deg}_{\mathbf{x}}\left(g_{1}\right)=d / 2$. Also, g_{1} is homogeneous in \mathbf{x}, and thus we can repeat the same argument for h_{2}, g_{2}, and so on.

As a result, we see that $\operatorname{deg}(f)=2^{k} \cdot \operatorname{deg}_{\boldsymbol{x}}(g)$, and hence $k \leq \log d$.
We can now make $2^{k} \leq d$ many copies of the 'inner circuit' $g(\mathbf{x}, \mathbf{y}, \mathbf{z})$, one for each fixing of the \mathbf{z} variables. We then obtain the final exponential sum computing f by using the following 'product rule' for summations repeatedly.

$$
\left(\operatorname{sum}_{\mathbf{y}_{1}} h_{1}\left(\mathbf{x}, \mathbf{y}_{1}\right)\right) \cdot\left(\operatorname{sum}_{\mathbf{y}_{2}} h_{2}\left(\mathbf{x}, \mathbf{y}_{2}\right)\right)=\operatorname{sum}_{\tilde{\mathbf{y}}_{1}, \widetilde{y}_{2}}\left(h_{1}\left(\mathbf{x}, \widetilde{\mathbf{y}}_{1}\right) \cdot h_{2}\left(\mathbf{x}, \widetilde{\mathbf{y}}_{2}\right)\right)
$$

Note that in the above case the two summations are over disjoint sets of variables. This can easily be ensured in our case, by treating the \mathbf{y} variables in each of the $2^{k} \leq d$ copies as mutually disjoint. It is easy to see that the exponential sum has size $O(\operatorname{size}(C), d)$.

Remark 5.2. The first step in the above proof extends more or less as it is, to an arbitrary circuit with summation and production gates. Thus, any circuit with arbitrary summations and productions that computes a homogeneous polynomial can be assumed to not contain any production gates, with a polynomial blowup in size.

However, this does not directly give an efficient exponential sum, because of the second step in the above argument. It crucially uses the fact that for any summation gate g, the number of production gates on a path from g to the root was $O(\log d)$. This ensures that no summation gate (or its auxiliary variable) has to be replicated more than poly (d) times, which is not necessarily true if we start with an arbitrary circuit with summation gates.

5.2 Large exponential sums for arbitrary polynomials

We shall need the following simple observation, which follows from the 'product-rule' for summations stated earlier.

Observation 5.3 (Product of exponential sums).

$$
\operatorname{prod}_{z} \operatorname{sum}_{\mathbf{y}} g(\mathbf{x}, \mathbf{y}, z)=\operatorname{sum}_{\mathbf{y}_{0}, \mathbf{y}_{1}}\left(g\left(\mathbf{x}, \mathbf{y}_{0}, 0\right) \cdot g\left(\mathbf{x}, \mathbf{y}_{1}, 1\right)\right)
$$

Let us see a toy case of trivially moving from a quantified expression to an exponential sum, using Observation 5.3.

$$
\begin{aligned}
f(x) & =\operatorname{sum}_{y_{1}} \operatorname{prod}_{z_{1}} \operatorname{sum}_{y_{2}} \operatorname{prod}_{z_{2}, z_{3}} \operatorname{sum}_{y_{3}} g\left(x, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}\right) \\
& =\operatorname{sum}_{y_{1}} \operatorname{prod}_{z_{1}} \operatorname{sum}_{y_{2}} \operatorname{prod}_{z_{2}} \operatorname{sum}_{y_{3}, 0, y_{3,1}}\left(\prod_{a_{3} \in\{0,1\}} g\left(x, y_{1}, y_{2}, y_{3, a_{3}}, z_{1}, z_{2}, a_{3}\right)\right) \\
& =\operatorname{sum}_{y_{1}} \operatorname{prod}_{z_{1}} \operatorname{sum}_{y_{2}, y_{3,(00)}, y_{3,(01)}, y_{3,(10)}, y_{3,(11)}\left(\prod_{a_{2}, a_{3} \in\{0,1\}} g\left(\ldots, y_{3,\left(a_{2} a_{3}\right)}, z_{1}, a_{2}, a_{3}\right)\right)} \\
& =\operatorname{sum}_{y_{1}} \operatorname{sum}_{y_{2}, *} y_{3, * * *}\left(\prod_{a_{1}, a_{2}, a_{3} \in\{0,1\}} g\left(x, y_{1}, y_{2, a_{1}}, y_{3,\left(a_{1} a_{2} a_{3}\right)}, a_{1}, a_{2}, a_{3}\right)\right)
\end{aligned}
$$

In the last line, each $*$ runs over $\{0,1\}$, so there are $1+2+8=11$ auxiliary variables in total. Note that y_{3} has 8 copies, which is due to the 3 production gates 'above' the summation gate labelled by it. Similarly, y_{2} has just 2 copies, while y_{1} has just one. Also, if instead of single auxiliary variables y_{2} and y_{3} we had sets of auxiliary variables \mathbf{y}_{2} and \mathbf{y}_{3}, nothing much would change. That is, we would have had 8 copies of the set \mathbf{y}_{3} and 2 copies of \mathbf{y}_{2}, irrespective of their sizes.

What this shows in general, is that we can trivially move from a quantified expression to an
expression which has the form

$$
f(\mathbf{x})=\operatorname{sum}_{\mathbf{Y}} \prod_{\mathbf{a} \in\{0,1\}^{r}} g_{\mathbf{a}}\left(\mathbf{x}, \mathbf{y}_{\mathbf{a}}\right)
$$

where $\mathbf{Y}=\cup_{\mathbf{a}}\left\{\mathbf{y}_{\mathbf{a}}\right\}, r$ is the number of production gates in the quantified expression, $|\mathbf{Y}|$ is potentially exponential (since the number of copies of some auxiliary variable might be exponential) but $g_{\mathbf{a}}\left(\mathbf{x}, \mathbf{y}_{\mathbf{a}}\right)=g\left(\mathbf{x}, \mathbf{y}=\mathbf{y}_{\mathbf{a}}, \mathbf{z}=\mathbf{a}\right)$ for a poly-sized circuit $g(\mathbf{x}, \mathbf{y}, \mathbf{z})$.

The key observation that allows us to prove Theorem 3.6 is that if f has degree d, then the number of copies of each auxiliary variable needed in the outer summation gate is at most d. This is because, due to monotonicity, $\operatorname{deg}_{\mathbf{x}}\left(g_{\mathbf{a}}\left(\mathbf{x}, \mathbf{y}_{\mathbf{a}}\right)\right) \neq 0$ for only d many $\mathbf{a} \in\{0,1\}^{r}$.

For a formal proof, we introduce a new shorthand. For a vector $\mathbf{a}=\left\{a_{1}, a_{2}, \ldots, a_{\ell}\right\}$ and a number $k \leq \ell$, we use $\mathbf{a}[: k]$ to denote the prefix vector $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. With this new notation, we can express the last line of our toy example in Section 5 is as follows.

$$
f(x)=\operatorname{sum}_{y_{1}} \operatorname{sum}_{y_{2, *}, y_{3, * * *}}\left(\prod_{\mathbf{a} \in\{0,1\}^{3}} g\left(x, y_{1}, y_{2, \mathbf{a}[: 1]}, y_{3, \mathbf{a}[: 3]}, a_{1}, a_{2}, a_{3}\right)\right)
$$

We are now ready to prove Theorem 3.6, which we recall once more.
Theorem 3.6. Suppose $f(\mathbf{x})$ is an n-variate, degree-d polynomial computed by a quantified monotone circuit of size s, which uses ℓ summation gates. Then for a set of variables \mathbf{w} of size at most $d \cdot \ell$, there is a monotone circuit $h(\mathbf{x}, \mathbf{w})$ of size at most $d \cdot s$, and a monotone polynomial $A(\mathbf{w})$ such that,

$$
\begin{equation*}
f(\mathbf{x})=\sum_{\mathbf{b} \in\{0,1\}} A(\mathbf{w}=\mathbf{b}) \cdot h(\mathbf{x}, \mathbf{w}=\mathbf{b}) \tag{3.6}
\end{equation*}
$$

where $A(\mathbf{w})$ potentially has circuit size and degree that is exponential in n and ℓ.
Proof. The first step is to obtain a trivial exponential sum for the quantified expression, as in the discussion above.

Claim 5.4. Suppose $f(\mathbf{x})$ can be expressed as the following quantified circuit.

$$
f(\mathbf{x})=\operatorname{sum}_{\mathbf{y}_{1}} \operatorname{prod}_{\mathbf{z}_{1}} \operatorname{sum}_{\mathbf{y}_{2}} \operatorname{prod}_{\mathbf{z}_{2}} \cdots \operatorname{prod}_{\mathbf{z}_{k}} \operatorname{sum}_{\mathbf{y}_{k+1}} g\left(\mathbf{x}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{k+1}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{k}\right)
$$

Let $m_{i}=\left|\mathbf{z}_{i}\right|$, and further let $M_{i}=m_{1}+m_{2}+\cdots+m_{i}$, for each $i \in[k]$. Also, let $\mathbf{y}=\mathbf{y}_{1} \cup \mathbf{y}_{2} \cup \cdots \cup$ \mathbf{y}_{k+1}, and $\mathbf{z}=\mathbf{z}_{1} \cup \mathbf{z}_{2} \cup \cdots \cup \mathbf{z}_{k}$

Then $f(\mathbf{x})$ can also be expressed as the following exponential sum.

$$
f(\mathbf{x})=\operatorname{sum}_{\mathbf{Y}}\left(\prod_{\mathbf{a} \in\{0,1\}} g\left(\mathbf{x}, \mathbf{y}_{1}, \mathbf{y}_{2, \mathbf{a}\left[: M_{1}\right]}, \mathbf{y}_{3, \mathbf{a}}\left[: M_{2}\right], \ldots, \mathbf{y}_{k+1, \mathbf{a}\left[: M_{k}\right]}, \mathbf{z}=\mathbf{a}\right)\right)
$$

Here \mathbf{Y} is a set of all y-variables, of size $\left(1+\sum_{i} 2^{M_{i}}\right)$ that is defined as follows.

$$
\mathbf{Y}=\bigcup_{\mathbf{a} \in\{0,1\}^{M_{k}}}\left(\mathbf{y}_{1} \cup \mathbf{y}_{2, \mathbf{a}: M 1]} \cup \cdots \cup \mathbf{y}_{k+1, \mathbf{a}\left[: M_{k}\right]}\right)
$$

Even though the claim is fairly verbose, it is easy to verify given the discussion before the lemma, so we will not explicitly prove it.

As the next step, we shall use the fact that the 'inner circuit' g is monotone, to bound the degree of f from below.

$$
\begin{aligned}
\operatorname{deg}(f) & =\operatorname{deg}_{\mathbf{x}}\left(\operatorname{sum}_{\mathbf{Y}}\left(\prod_{\mathbf{a} \in\{0,1\}^{M_{k}}} g\left(\mathbf{x}, \mathbf{y}_{1}, \mathbf{y}_{\left.2, \mathbf{a}:: M_{1}\right]}, \ldots, \mathbf{y}_{\left.k+1, \mathbf{a}: M_{k}\right]}, \mathbf{z}=\mathbf{a}\right)\right)\right) \\
(g \text { is monotone }) & =\operatorname{deg}_{\mathbf{x}}\left(\prod_{\mathbf{a} \in\{0,1\}^{M_{k}}} g(\mathbf{x}, \mathbf{1}, \mathbf{z}=\mathbf{a})\right) \\
& \geq \sum_{\mathbf{a} \in\{0,1\}^{M_{k}}} \operatorname{deg}(g(\mathbf{x}, \mathbf{1}, \mathbf{z}=\mathbf{a}))
\end{aligned}
$$

Therefore, since f has degree $d=\operatorname{deg}(f)$, it must be the case that for all but d fixings a of \mathbf{z}, $g(\mathbf{x}, \mathbf{y}, \mathbf{a})$ is a constant in terms of \mathbf{x} for any $\{0,1\}$-assignment to the variables in \mathbf{y}.

Let $\mathcal{A}:=\left\{\mathbf{a} \in\{0,1\}^{M_{k}}: \operatorname{deg}_{\mathbf{x}}(g(\mathbf{x}, \mathbf{b}, \mathbf{a}))>0\right.$ for some $\left.\mathbf{b} \in\{0,1\}^{|\mathbf{y}|}\right\}$, and let $\mathcal{A}_{0}:=\{0,1\}^{M_{k}} \backslash$ \mathcal{A}. We therefore have that $|\mathcal{A}| \leq d$. Further, let $\mathbf{Y}_{1}:=\bigcup_{\mathbf{a} \in \mathcal{A}}\left(\mathbf{y}_{1} \cup \mathbf{y}_{2, \mathbf{a}[: M 1]} \cup \cdots \cup \mathbf{y}_{\left.k+1, \mathbf{a}: M_{k}\right]}\right)$, and let $\mathbf{Y}_{0}:=\mathbf{Y} \backslash \mathbf{Y}_{1}$. Note that now $\left|\mathbf{Y}_{1}\right| \leq|\mathcal{A}| \cdot|\mathbf{y}| \leq d \cdot m$.

We can now simplify the exponential sum in Claim 5.4 and finish the proof as follows, where $\mathbf{y}_{\mathbf{a}}$ refers to $\left(\mathbf{y}_{1}, \mathbf{y}_{2, \mathbf{a}\left[M_{1}\right]}, \cdots, \mathbf{y}_{k+1, \mathbf{a}\left[: M_{k}\right]}\right)$.

$$
=\operatorname{sum}_{\mathbf{Y}}\left(\prod_{\mathbf{a} \in\{0,1\}^{M_{k}}} g\left(\mathbf{x}, \mathbf{y}_{\mathbf{a}}, \mathbf{z}=\mathbf{a}\right)\right)=\operatorname{sum}_{\mathbf{Y}}\left(\left(\prod_{\mathbf{a} \in \mathcal{A}_{0}} g\left(\mathbf{x}, \mathbf{y}_{\mathbf{a}}, \mathbf{z}=\mathbf{a}\right)\right) \cdot\left(\prod_{\mathbf{a} \in \mathcal{A}} g\left(\mathbf{x}, \mathbf{y}_{\mathbf{a}}, \mathbf{z}=\mathbf{a}\right)\right)\right)
$$

for appropriate $\mathbf{y}_{\mathbf{a}}$. Now this is equal to

$$
\operatorname{sum}_{\mathbf{Y}}\left(\left(\prod_{\mathbf{a} \in \mathcal{A}_{0}} g\left(\mathbf{0}, \mathbf{y}_{\mathbf{a}}, \mathbf{z}=\mathbf{a}\right)\right) \cdot\left(\prod_{\mathbf{a} \in \mathcal{A}} g\left(\mathbf{x}, \mathbf{y}_{\mathbf{a}}, \mathbf{z}=\mathbf{a}\right)\right)\right)
$$

since the first term is " x -free".

Therefore,

$$
\begin{aligned}
f(\mathbf{x}) & =\operatorname{sum}_{\mathbf{Y}_{1}, \mathbf{Y}_{0}}\left(\left(\prod_{\mathbf{a} \in \mathcal{A}_{0}} g\left(\mathbf{0}, \mathbf{y}_{\mathbf{a}}, \mathbf{z}=\mathbf{a}\right)\right) \cdot\left(\prod_{\mathbf{a} \in \mathcal{A}} g\left(\mathbf{x}, \mathbf{y}_{\mathbf{a}}, \mathbf{z}=\mathbf{a}\right)\right)\right) \\
\text { (regroup terms) } & =\operatorname{sum}_{\mathbf{Y}_{1}}\left(\operatorname{sum}_{\mathbf{Y}_{0}}\left(\prod_{\mathbf{a} \in \mathcal{A}_{0}} g\left(\mathbf{0}, \mathbf{y}_{\mathbf{a}}, \mathbf{z}=\mathbf{a}\right)\right)\right) \cdot\left(\prod_{\mathbf{a} \in \mathcal{A}} g\left(\mathbf{x}, \mathbf{y}_{\mathbf{a}}, \mathbf{z}=\mathbf{a}\right)\right) \\
\text { (simplify) } & =\operatorname{sum}_{\mathbf{Y}_{1}} A\left(\mathbf{Y}_{1}\right) \cdot h\left(\mathbf{x}, \mathbf{Y}_{1}\right)
\end{aligned}
$$

As claimed, the size of h is at most $|\mathcal{A}| \cdot \operatorname{size}(g) \leq d \cdot s$, while $A\left(\mathbf{Y}_{1}\right)$ is a fairly structured polynomial despite its exponential size and degree.

Remark. Since we are allowed exponential size for $A(\mathbf{w})$ one can always take the multilinear polynomial that agrees with A on the hypercube. However, as mentioned towards the end of the proof, we get a monotone polynomial $A(\mathbf{w})$ that is fairly structured. This in particular means that an arbitrary multilinear A that is outside mVNP does not witness the desired separation.

6 Monotone circuits with summation and production gates

6.1 Shadow Complexity of monotone circuits with summation and production gates

In this section, we begin with a proof of Theorem 3.10. Let us start by recalling the theorem.
Theorem 3.10. Any monotone algebraic circuit with summation and production gates that computes a transparent polynomial f, has size at least $|\operatorname{supp}(f)| / 4$.

This result is an extension of the ideas in the work of Hrubeš \& Yehudayoff [HY21]. Their argument shows that any bivariate monotone circuit of size s that computes a polynomial with convexly independent support outputs a polynomial with support at most $4 s$. They achieve this by keeping track of the largest polygon (in terms of the number of vertices) that one can build using the polynomials computed at all the gates in the circuit. They then inductively show that no gate (leaf, addition, multiplication) can increase the number of vertices by 4 . We are able to show the same bound for production and summation gates, by working with a monotone bivariate circuit over y_{1}, y_{2} that is allowed some auxiliary variables z for summations and productions.

An important component of the proof in [HY21] is that if the sum or product of two monotone polynomials is convexly independent, then so are each of the two inputs. However, allowing for summations and productions means that some monomials that are computed internally could get "zeroed out". In fact, summation and production gates do not quite "preserve convex dependencies". For example, the convexly dependent support $\left\{y_{1} y_{2}, y_{1} y_{2} z, y_{1} y_{2} z^{2}\right\}$ when passed through sum $_{z}$ produces just $\left\{y_{1} y_{2}\right\}$, which is convexly independent.

In order to prove Theorem 3.10, one can get around this by working directly with the support projected down to the "true" variables, which we call \mathbf{y}-support in our arguments. It turns out that summations and productions indeed preserve convex dependencies that are in the \mathbf{y} support of the input polynomial.

Before we begin a formal proof, let us recal the concepts of shadow complexity and transparent polynomials.
Definition 6.1 (Shadow complexity [HY21]). For a polynomial $f\left(x_{1}, \ldots, x_{n}\right)$, its shadow complexity $\sigma(f)$ is defined as follows, where the max is taken over linear maps.

$$
\sigma(f):=\max _{L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{2}}|\operatorname{vert}(L(\operatorname{Newt}(f)))|
$$

For any n, a set of points in \mathbb{R}^{n} is said to be convexly independent if no point in the set can be written as a convex combination of other points from the set. Note that if a polynomial has convexly independent support, then all the monomials in its support correspond to vertices of its Newton polytope. The following definition is an even stronger condition.
Definition 6.2 (Transparent polynomials [HY21]). A polynomial f is said to be transparent if $\sigma(f)=$ $|\operatorname{supp}(f)|$.

The following lemma states that the linear map that witnesses the shadow complexity of a polynomial over the reals, can be assumed to be "integral" without loss of generality.

Lemma 6.3 (Consequence of [HY21, Lemma 4.2]). Let $f(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ be an n-variate polynomial. Then there is an $M \in \mathbb{Z}^{2 \times n}$, such that for $L(\mathbf{e}):=M \cdot \mathbf{e},|\operatorname{vert}(L(\operatorname{Newt}(f)))|=\sigma(f)$.

We also require the following concepts from the work of Hrubeš \& Yehudayoff [HY21].
Definition 6.4 (Laurent polynomials and high powered circuits). A Laurent polynomial over the variables $\left\{x_{1}, \ldots, x_{n}\right\}$ and a field \mathbb{F}, is a finite \mathbb{F}-linear combination of terms of the form $x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{n}^{p_{n}}$, where $p_{1}, p_{2}, \ldots, p_{n} \in \mathbb{Z}$. A high-powered circuit over the variables $\left\{x_{1}, \ldots, x_{n}\right\}$ and a field \mathbb{F}, is an algebraic circuit whose leaves can compute terms like $\alpha x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{n}^{p_{n}}$ for any $\alpha \in \mathbb{F}$ and $\mathbf{p} \in \mathbb{Z}^{n}$. In other words, a high-powered circuit can compute an arbitrary Laurent monomial with size 1 ; the size of the high-powered circuit is the total number of nodes as usual.

Using the above definition, we can easily infer the following by replacing each leaf with the corresponding Laurent monomial.

Observation 6.5. Let $f(\mathbf{x})$ be computable by a monotone circuit of size s, and suppose $\sigma(f)=k$. Then there exists a bivariate Laurent polynomial $P\left(y_{1}, y_{2}\right)$ that is computable by a high-powered circuit of size s, whose Newton polygon has k vertices.

We will also need the following lemma from [HY21].

Lemma 6.6 ([HY21, Lemma 5.8]). Let $A, B \subset \mathbb{R}^{2}$ be finite sets, such that $A+B$ is convexly independent. Then if $|A| \geq|B|$, then either $|A|,|B| \leq 2$ or $|B|=1$.

We now have all the concepts required to prove the main theorem of this section, Theorem 3.10. The following results and their proofs closely follow those in [HY21]. We reproduce the overlapping parts for the sake of completeness and ease of exposition.

Theorem 6.7 (Extension of [HY21, Theorem 5.9]). Let $f\left(y_{1}, y_{2}\right)$ be a monotone Laurent polynomial with convexly independent support, and let $C\left(y_{1}, y_{2}, \mathbf{z}\right)$ be a monotone high-powered circuit with summation and production gates ${ }^{5}$, that computes f. Then $\operatorname{size}(C) \geq|\operatorname{supp}(f)| / 4$.

Proof. For a multi-set ${ }^{6} \mathcal{A}$ that contains sets of points in \mathbb{R}^{2}, we define a measure μ that relates to the "largest" convexly independent set that can be constructed using it. For a sub-collection $\mathcal{B} \subseteq \mathcal{A}$ and a map $v: \mathcal{B} \rightarrow \mathbb{R}^{2}$, the resulting set $\mathcal{B}(v)$ is defined as follows.

$$
\mathcal{B}(v):=\bigcup_{A \in \mathcal{B}}(\{v(A)\}+A)
$$

The measure μ is then defined as follows.

$$
\begin{equation*}
\mu(\mathcal{A}):=\max _{\mathcal{B}, v}\{|\mathcal{B}(v)|: \mathcal{B}(v) \text { is convexly independent }\} \tag{6.8}
\end{equation*}
$$

For a Laurent polynomial $g\left(y_{1}, y_{2}, \mathbf{z}\right)$, let $\operatorname{supp}_{\mathbf{y}}(g):=\left\{(a, b): \exists \mathbf{e}, y_{1}^{a} y_{2}^{b} \mathbf{z}^{\mathbf{e}} \in \operatorname{supp}(g)\right\}$ be its \mathbf{y} support. Corresponding to the circuit $C\left(y_{1}, y_{2}, \mathbf{z}\right)$ of size s, we will consider the collection \mathcal{A} of s sets, which will be the \mathbf{y}-supports of the polynomials computed by the s gates. The following claim will help us prove the theorem by induction.

Claim 6.9. For $\mathcal{A}^{\prime}=\mathcal{A} \cup\{B\}$, and $A_{1}, A_{2} \in \mathcal{A}$,

$$
\begin{array}{lr}
\mu\left(\mathcal{A}^{\prime}\right) \leq \mu(\mathcal{A})+|B|, & \text { if } B=u+A_{1} \\
\mu\left(\mathcal{A}^{\prime}\right) \leq \mu(\mathcal{A})+2 & \text { if } B=A_{1} \cup A_{2} \\
\mu\left(\mathcal{A}^{\prime}\right) \leq \mu(\mathcal{A})+4 & \text { if } B=A_{1}+A_{2}, \\
\mu\left(\mathcal{A}^{\prime}\right) \leq \mu(\mathcal{A})+4 & \text { if } B=A_{1}+A^{\prime} \text { for } A^{\prime} \subseteq A_{1} .
\end{array}
$$

Proof. It is trivial to see that (6.10) holds. For (6.11), suppose \mathcal{B} is the subset that achieves $\mu\left(\mathcal{A}^{\prime}\right)>$ $\mu(\mathcal{A})$. Then $A_{1}, B \in \mathcal{B}$ as otherwise one can mimic the contribution of B using $A_{1} ;$ further $v\left(A_{1}\right) \neq$ $v(B)+u$ because otherwise the translations of A_{1} and B overlap. Now note that $\left(\left\{v\left(A_{1}\right)\right\}+A_{1}\right) \cup$ $(\{v(B)\}+B)$ is a convexly independent set of points, and also that $\left(\left\{v\left(A_{1}\right)\right\}+A_{1}\right) \cup(\{v(B)\}+$

[^5]$B)=\left\{v\left(A_{1}\right), v(B)+u\right\}+A_{1}$. Therefore, by Lemma 6.6, we see that $|B|=\left|A_{1}\right| \leq 2$, which finises the proof using (6.10). For (6.12), observe that $\mu(\mathcal{A}) \leq \mu\left(\mathcal{A} \cup A_{1}, A_{2}\right)$. The desired bound then follows by two applications of (6.11). In (6.13), if B is convexly dependent, then it cannot contribute to $\mu\left(\mathcal{A}^{\prime}\right)$, so suppose it is. Assuming $\left|A_{1}\right| \geq\left|A_{2}\right|$ without loss of generality, by Lemma 6.6 , either $|B| \leq\left|A_{1}\right| \cdot\left|A_{2}\right| \leq 4$, or $B=u+A_{1}$ for some u, and (6.11) finishes the proof. Clearly (6.13) implies (6.14), as its proof does not depend on whether $A_{2} \in \mathcal{A}$, or $A_{2} \nsubseteq A_{1}$.

We now argue that the polynomial computed at every gate in $C\left(y_{1}, y_{2}, \mathbf{z}\right)$ has convexly independent \mathbf{y}-support. Since the \mathbf{y}-supports of addition and multiplication gates are unions and Minkowski sums of their children respectively, if any of their input is convexly dependent, then so is the output. For a summation gate $g=\operatorname{sum}_{z} g^{\prime}, \operatorname{supp}_{\mathbf{y}}(g)=\operatorname{supp}_{\mathbf{y}}\left(g^{\prime}\right)$ using Lemma 7.5. For a production gate $g=\operatorname{prod}_{z} g^{\prime}, \operatorname{supp}_{\mathbf{y}}(g)=S^{\prime}+\operatorname{supp}_{\mathbf{y}}\left(g^{\prime}\right)$ for some $S^{\prime} \subseteq \operatorname{supp}_{\mathbf{y}}\left(g^{\prime}\right)$, so any convex dependency in $\operatorname{supp}_{\mathbf{y}}\left(g^{\prime}\right)$ would transfer to $\operatorname{supp}_{\mathbf{y}}(g)$. Since the output of $C(x, y, \mathbf{z})$ is convexly independent, the above observations imply that each gate $g \in C$ has convexly independent $\operatorname{supp}_{\mathbf{y}}(g)$. Let us now prove the theorem by inductively building the collection \mathcal{A} with respect to the circuit C : a gate is added only after adding all of its children. When the gate being added is a leaf, then μ increases by at most 1 due to (6.10). For an addition gate computing $g, \operatorname{supp}_{\mathbf{y}}(g)$ is the union of the (x, y)-supports of its children; so we can apply (6.12). For a multiplication gate computing $g, \operatorname{supp}_{\mathbf{y}}(g)$ is the Minkowski sum of the (x, y)-supports of its children; so we can use (6.13). For a summation gate that computes g, note that its (x, y) support is exactly the same as that of its child (Remark 7.1); therefore (6.11) applies. Finally, for a production gate, we can use (6.14), as $\operatorname{supp}_{\mathbf{y}}\left(\operatorname{prod}_{z} g\right)=\operatorname{supp}_{\mathbf{y}}\left(\left.g\right|_{z=0}\right)+\operatorname{supp}_{\mathbf{y}}\left(\left.g\right|_{z=1}\right)$, and $\operatorname{supp}_{\mathbf{y}}\left(\left.g\right|_{z=0}\right) \subseteq \operatorname{supp}_{\mathbf{y}}\left(\left.g\right|_{z=1}\right)=\operatorname{supp}_{\mathbf{y}}(g)$. Since the measure μ increases by at most 4 in each of the s steps, we have that $|\operatorname{supp}(f)| \leq \mu(\mathcal{A}) \leq 4 s$, as required.

The above result then lets us prove Theorem 3.10, which we first restate.
Theorem 3.10. Any monotone algebraic circuit with summation and production gates that computes a transparent polynomial f, has size at least $|\operatorname{supp}(f)| / 4$.

Proof. Let C be a monotone circuit with production and summation gates of size s that computes f_{n}. Since $f_{n}(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ is transparent, there exists a matrix $M \in \mathbb{Z}^{2 \times n}$, such that the linear map $L(\mathbf{e})=M \mathbf{e}$, satisfies $|\operatorname{vert}(L(\operatorname{Newt}(f)))|=|\operatorname{supp}(f)|$. Further, using Observation 6.5, there exists a size-s high-powered monotone circuit with summation and production gates, that computes a Laurent polynomial $P\left(y_{1}, y_{2}\right)$ which has $|\operatorname{supp}(f)|$ vertices in its Newton polytope. The bound then easily follows from Theorem 6.7.

6.2 Quantified monotone circuits and compositions

Observation 3.9 (Informal). Quantified monotone circuits are closed under compositions, if and only if, $m V P_{\text {quant }}=m V P_{\text {sum, prod }}$.

Even though this statement appears to be straightforward, formally stating it requires a bit more care. Doing that yields the following theorem.

Theorem 6.15. Suppose that for any quantified monotone circuit \mathcal{C} of size s with r leaves, and any multioutput quantified monotone circuit \mathcal{C}^{\prime} of size s^{\prime} with r outputs, we have that the polynomial computed by $\mathcal{C} \circ \mathcal{C}^{\prime}$ has a quantified monotone circuit of size at most $\left(s+s^{\prime}\right)$.

Then, any multi-output, monotone circuit with summation and production gates of size \tilde{s} can be simulated by a multi-output quantified monotone circuit of size at most \tilde{s}, and hence $m V P_{\text {quant }}=m V P_{\text {sum,prod }}$.

The converse is also true.
Proof. One direction of the implication is clearly true because circuits with (arbitrary) summation and production gates have the stated property by definition.

For the converse, let us assume that quantified monotone circuits have the property. We show that this implies that the two models in question have the same power.

Consider a circuit \mathcal{C} of size s with summation and production gates. We group the gates in \mathcal{C} in "bands" numbered from the bottom to the top, in the following way.

- The 0-th band consists only of leaves
- Odd bands consist only of addition or multiplication gates.
- Even bands (other than 0) only consist of summation or production gates.
- The gates in band i can have edges incoming from only bands $j \leq i$.

Now, given a circuit $\tilde{\mathcal{C}}$ of size \tilde{s} with summation and production gates, we express it as a quantified monotone circuit of size $O(s)$ by inducting on the number of bands in it.

For the base case, when $\tilde{\mathcal{C}}$ has up to two bands, it is already a quantified monotone circuit.
In general, if $\tilde{\mathcal{C}}$ has $2 b^{\prime}$ bands, we look at the circuit formed by bands $2 b^{\prime}$ and $\left(2 b^{\prime}-1\right)$ as a quantified monotone circuit; let its size be s. By induction, the multi-output circuit formed by the bands 0 to $2 b^{\prime}-2$ can be expressed as a multi-output, quantified monotone circuit of size at most $s^{\prime}=\tilde{s}-s$, call it \mathcal{C}^{\prime}. Now from the hypothesis, the composition $\mathcal{C} \circ \mathcal{C}^{\prime}$ is also computable by a quantified monotone circuit of size at most $s+s^{\prime} \leq \tilde{s}$.

7 Monotone circuits with projection gates

7.1 Exponential separation from quantified circuits

Theorem 3.12. The polynomial family $\left\{\mathrm{Perm}_{n}\right\}$ can be computed by monotone circuits with projection gates of size $O\left(n^{3}\right)$, but quantified monotone circuits computing it must have size $2^{\Omega(n)}$.

We begin by proving that Perm $_{n} \in \mathrm{mVP}_{\text {proj }}$.

Theorem 7.1. There is a monotone circuit with projection gates of size $O\left(n^{3}\right)$ that computes Perm ${ }_{n}$.
Proof. We first define a polynomial P_{0} such that all its monomials contain exactly one \mathbf{x}-variable from each row.

$$
\text { Let } P_{0}(\mathbf{x}, \mathbf{y}):=\left(\sum_{j=1}^{n} y_{1, j} x_{1, j}\right)\left(\sum_{j=1}^{n} y_{2, j} x_{2, j}\right) \cdots\left(\sum_{j=1}^{n} y_{n, j} x_{n, j}\right) .
$$

Note that P_{0} has n^{2}-many auxiliary variables \mathbf{y}, one attached to each 'true' variable $x_{i, j}$. We now want to use these to progressively prune the monomials that pick up multiple variables from the j th column by projecting the n variables $y_{1, j}, \ldots, y_{n, j}$.

Let $e_{1}, \ldots, e_{n} \in\{0,1\}^{n}$ such that $e_{i}(k)=1 \Leftrightarrow i=k$, and define for each $j \in[n]$,

$$
\begin{equation*}
P_{j}:=\sum_{i \in[n]} \operatorname{fix}_{\left(y_{1, j}=e_{i}(1)\right)}\left(\operatorname{fix}_{\left(y_{2, j}=e_{i}(2)\right)}\left(\cdots\left(\operatorname{fix}_{\left(y_{n, j}=e_{i}(n)\right)}\left(P_{j-1}\right)\right)\right)\right) . \tag{7.2}
\end{equation*}
$$

The following claim is now easy to verify.
Claim 7.3. For all $j \in[n], P_{j}$ contains all the monomials from P_{j-1} that are supported on exactly one \mathbf{x}-variable from the j th column.

As a result, the monomials in P_{n} are exactly those of the monomials in Perm ${ }_{n}$. Additionally, for each j, the auxiliary variables in P_{j} are only from the columns $j+1, \ldots, n$; thus $P_{n}=\operatorname{Perm}_{n}$.

The size of our circuit is $O\left(n^{3}\right)$, since $\operatorname{size}\left(P_{0}\right)=O\left(n^{2}\right)$ and size $\left(P_{j}\right)=\operatorname{size}\left(P_{j-1}\right)+O\left(n^{2}\right)$. This proves Theorem 7.1.

Remark 7.4. Our upper bound above also implies that any polynomial (family) that can be expressed as the permanent of a monotone matrix of size poly (n) (called monotone p-projection of Perm ${ }_{n}$) can also be computed by efficient monotone circuits with projection gates. Although Perm ${ }_{n}$ is complete for nonmonotone VNP, it is not the case that all monotone polynomials in VNP are monotone p-projections of Perm_{n}, as shown by Grochow [Gro17].

The proof of Theorem 3.12 now follows from the following simple extension of an observation due to Yehudayoff [Yeh19] ${ }^{7}$ and the classical lower bound of Jerrum \& Snir [JS82] against monotone algebraic circuits for Perm ${ }_{n}$.

Lemma 7.5. Let $f(\mathbf{x})$ be a monotone polynomial whose support cannot be written as a non-trivial product of two sets, and for some monotone polynomial $g(\mathbf{x}, \mathbf{z})$, suppose we have $f(\mathbf{x})=\mathrm{Q}_{z_{1}}^{(1)} \mathrm{Q}_{z_{2}}^{(2)} \cdots \mathrm{Q}_{z_{m}}^{(m)} g(\mathbf{x}, \mathbf{z})$ with $\mathbf{Q}^{(i)} \in\{$ sum, prod $\}$ for each $i \in[m]$.

Then $\operatorname{supp}(f(\mathbf{x}))=\operatorname{supp}(g(\mathbf{x}, \overline{1}))$.

[^6]Proof. Observe that it is enough to show the statement of the lemma for $m=1$. Therefore, suppose $f(\mathbf{x})=\operatorname{sum}_{z} g(\mathbf{x}, z)$, then $f(\mathbf{x})=g(\mathbf{x}, 0)+g(\mathbf{x}, 1)$, and hence $\operatorname{supp}(f)=\operatorname{supp}(g(\mathbf{x}, 1))$, since g is monotone.

Next, $f(\mathbf{x})=\Pi_{z} g(\mathbf{x}, z)$ means that $f(\mathbf{x})=g(\mathbf{x}, 0) \cdot g(\mathbf{x}, 1)$. As supp (f) cannot be written as a non-trivial product ${ }^{8}$ of two sets, and since g is monotone, this must mean that $g(\mathbf{x}, 0)$ is a constant and $\operatorname{supp}(f(\mathbf{x}))=\operatorname{supp}(g(\mathbf{x}, 1))$ as claimed.

Finally, let us complete the proof of Theorem 3.12.
Theorem 3.12. The polynomial family $\left\{\operatorname{Perm}_{n}\right\}$ can be computed by monotone circuits with projection gates of size $O\left(n^{3}\right)$, but quantified monotone circuits computing it must have size $2^{\Omega(n)}$.

Proof. Let us assume that there is a quantified monotone circuit of size s computing Perm n. Then,

$$
\operatorname{Perm}_{n}(\mathbf{x})=\mathbf{Q}_{z_{1}}^{(1)} \mathbf{Q}_{z_{2}}^{(2)} \cdots \mathbf{Q}_{z_{m}}^{(m)} f(\mathbf{x}, \mathbf{z})
$$

for some $m \leq s$ and $\mathbf{Q}^{(i)} \in\{$ sum, prod $\}$ for each $i \in[m]$.
Note that, by definition, $f(\mathbf{x}, \mathbf{z})$ is computable by a monotone algebraic circuit of size at most s and therefore $f(\mathbf{x}, \overline{1})$ is computable by a monotone algebraic circuit of size at most s. On the other hand, by Lemma 7.5 , the support of $f(\mathbf{x}, \overline{1})$ is the same as that of Perm ${ }_{n}$ since Perm ${ }_{n}$ is irreducible. The required lower bound now follows from the fact that the $2^{\Omega(n)}$ lower bound proved by Jerrum \& Snir [JS82] for Perm n against monotone algebraic circuits, works for any polynomial that has support equal to the support of Perm $_{n}$.

7.2 Closure under homogenization

Theorem 3.13. Suppose f is computed by a size s monotone circuit with projections. Then for any $k \leq$ $\operatorname{deg}(f), \operatorname{hom}_{k}(f)$ has a monotone circuit with projections of size $O\left(k^{2} \cdot s\right)$.

Proof. We show this using the classical argument of 'gate replication'. Given a circuit \mathcal{C}, we construct another circuit \mathcal{C}^{\prime} that has $(k+1)$ copies of each gate in \mathcal{C}. For a gate $g \in \mathcal{C}$, the corresponding gates $g_{0}, g_{1}, \ldots, g_{k}$ shall compute $\operatorname{hom}_{i}([g])$ for each $i \leq k$, where $[g]$ is the polynomial computed at g. Here and throughout the proof, the degree of a polynomial always refers to its degree in the \mathbf{x}-variables.

The following can now be easily checked, using the fact that $[g]$ is always a monotone polynomial.

- If $[g]$ is a leaf labelled with a 'true' variable x_{i}, then $\left[g_{1}\right]=x_{i}$ and $\left[g_{i}\right]=0$ for all other i.
- If $[g]$ is any other leaf, then $\left[g_{0}\right]=[g]$ and $\left[g_{i}\right]=0$ for all other i.

[^7]- If $[g]=[u]+[v]$, then $\left[g_{i}\right]=\left[u_{i}\right]+\left[v_{i}\right]$ for all i.
- If $[g]=\operatorname{fix}_{(z=b)}[u]$, then $\left[g_{i}\right]=\operatorname{hom}_{i}([g])=\operatorname{fix}_{(z=b)} \operatorname{hom}_{i}([u])=\operatorname{fix}_{(z=b)}\left[u_{i}\right]$.
- If $[g]=[u] \times[v]$, then $\left[g_{i}\right]=\sum_{j \leq i}\left[u_{j}\right] \times\left[v_{i-j}\right]$, for each i.

The last case incurs the largest blow-up in size, which adds $O\left(k^{2}\right)$ many gates in \mathcal{C}^{\prime} for one gate in \mathcal{C}. This finishes the proof.

8 Conclusion

Our work is an attempt at understanding the hardness of transparent polynomials for monotone algebraic models. We observe that the lower bound of Hrubeš \& Yehudayoff [HY21] extends beyond monotone VNP, and therefore turn to exploring the class VPSPACE from the non-monotone world. This exploration reveals that the natural monotone analogues of the multiple equivalent definitions of VPSPACE have contrasting powers. Additionally, transparent polynomials turn out to be as hard for some of these analogues as they are for usual monotone circuits. The following are some interesting open threads from our work.

- We suspect that transparency is a highly restrictive property, especially for monotone computation. Therefore, we conjecture that if f is a transparent polynomial being computed by a size-s monotone circuit with projection gates, then $|\operatorname{supp}(f)| \leq 2^{\text {polylog(s) }}$. It would be interesting (at least to us) to see a proof or a refutation of this conjecture.

An immediate hurdle in extending the techniques in [HY21] (Theorem 3.10) to mVPSPACE, is that unlike summations and productions, 0 -projections do not preserve convex dependencies, even if we restrict to the "true" variables.

- Along similar lines, a possibly simpler goal is to show a non-monotone circuit upper bound for a transparent polynomial. Since transparency only restricts the support of the polynomial, one is free to choose any real coefficients to ensure that it is in VP (Lemma 6.3 works for all real polynomials). In particular, this brings powerful non-monotone tricks like interpolation into play. Among other things, such a result would refute the notoriously open τ-conjecture for Newton polygons.
- Another question we would like to highlight is separating mVNP and quantified monotone circuits. As mentioned in the discussion following Theorem 3.6, such a separation would yield a (high degree) polynomial that is hard for mVNP even as a function over the boolean hypercube. Such a polynomial might be of interest, perhaps, even in the non-monotone setting.

References

[CDGM22] Arkadev Chattopadhyay, Rajit Datta, Utsab Ghosal, and Partha Mukhopadhyay. Monotone Complexity of Spanning Tree Polynomial Re-Visited. In 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 39:1-39:21. Schloss Dagstuhl - LeibnizZentrum für Informatik, 2022.
[CDM21] Arkadev Chattopadhyay, Rajit Datta, and Partha Mukhopadhyay. Lower bounds for monotone arithmetic circuits via communication complexity. In STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 786-799. ACM, 2021.
[CGM22] Arkadev Chattopadhyay, Utsab Ghosal, and Partha Mukhopadhyay. Robustly Separating the Arithmetic Monotone Hierarchy via Graph Inner-Product. In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2022, December 18-20, 2022, IIT Madras, Chennai, India, volume 250 of LIPIcs, pages 12:1-12:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
[CKR20] Bruno Pasqualotto Cavalar, Mrinal Kumar, and Benjamin Rossman. Monotone Circuit Lower Bounds from Robust Sunflowers. In LATIN 2020: Theoretical Informatics - 14th Latin American Symposium, São Paulo, Brazil, January 5-8, 2021, Proceedings, volume 12118 of Lecture Notes in Computer Science, pages 311-322. Springer, 2020.
[Gas87] S.B. Gashkov. The complexity of monotone computations of polynomials. Moscow University Math Bulletin, (5):1-8, 1987.
[Gro17] Joshua A. Grochow. Monotone Projection Lower Bounds from Extended Formulation Lower Bounds. Theory of Computing, 13(18):1-15, 2017.
[GS12] S. B. Gashkov and I. S. Sergeev. A method for deriving lower bounds for the complexity of monotone arithmetic circuits computing real polynomials. Sbornik. Mathematics, 203(10), 2012.
[HY13] Pavel Hrubeš and Amir Yehudayoff. Formulas are Exponentially Stronger than Monotone Circuits in Non-commutative Setting. In Proceedings of the 28th Conference on Computational Complexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 10-14. IEEE Computer Society, 2013.
[HY16] Pavel Hrubes and Amir Yehudayoff. On Isoperimetric Profiles and Computational Complexity. In 43rd International Colloquium on Automata, Languages, and Programming,

ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 89:1-89:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.
[HY21] Pavel Hrubeš and Amir Yehudayoff. Shadows of Newton Polytopes. In 36th Computational Complexity Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference), volume 200 of LIPIcs, pages 9:1-9:23. Schloss Dagstuhl - LeibnizZentrum für Informatik, 2021.
[JS82] Mark Jerrum and Marc Snir. Some Exact Complexity Results for Straight-Line Computations over Semirings. Journal of the ACM, 29(3):874-897, 1982.
[KP09a] Pascal Koiran and Sylvain Perifel. VPSPACE and a transfer theorem over the complex field. Theor. Comput. Sci., 410(50):5244-5251, 2009.
[KP09b] Pascal Koiran and Sylvain Perifel. VPSPACE and a Transfer Theorem over the Reals. Computational Complexity, 18(4):551-575, 2009.
[KPTT15] Pascal Koiran, Natacha Portier, Sébastien Tavenas, and Stéphan Thomassé. A τ Conjecture for Newton Polygons. Foundations of Computational Mathematics, 15:185197, 2015.
[KZ86] O. M. Kasim-Zade. Arithmetic complexity of monotone polynomials. Theoretical Problems in Cybernetics. Abstracts of lectures, page 68-69, 1986.
[Mal11] Guillaume Malod. Succinct Algebraic Branching Programs Characterizing Nonuniform Complexity Classes. In Fundamentals of Computation Theory - 18th International Symposium, FCT 2011, Oslo, Norway, August 22-25, 2011. Proceedings, pages 205-216, 2011.
[MR13] Meena Mahajan and B. V. Raghavendra Rao. Small Space Analogues of Valiant's Classes and the Limitations of Skew Formulas. Computational Complexity, 22(1):1-38, 2013.
[Poi08] Bruno Poizat. A la recherche de la definition de la complexite d'espace pour le calcul des polynomes a la maniere de Valiant. J. Symb. Log., 73(4):1179-1201, 2008.
[RY11] Ran Raz and Amir Yehudayoff. Multilinear formulas, maximal-partition discrepancy and mixed-sources extractors. Journal of Computer and System Sciences, 77(1):167-190, 2011.
[Sch76] Claus-Peter Schnorr. A Lower Bound on the Number of Additions in Monotone Computations. Theor. Comput. Sci., 2(3):305-315, 1976.
[Sri20] Srikanth Srinivasan. Strongly Exponential Separation between Monotone VP and Monotone VNP. ACM Trans. Comput. Theory, 12(4):23:1-23:12, 2020.
[SS77] Eli Shamir and Marc Snir. Lower bounds on the number of multiplications and the number of additions in monotone computations. IBM Thomas J. Watson Research Division, 1977.
[SS80] Eli Shamir and Marc Snir. On the Depth Complexity of Formulas. Math. Syst. Theory, 13:301-322, 1980.
[Val80] Leslie G. Valiant. Negation can be Exponentially Powerful. Theor. Comput. Sci., 12:303314, 1980.
[Yeh19] Amir Yehudayoff. Separating monotone VP and VNP. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 425-429. ACM, 2019.

A Definitions of VPSPACE relying on boolean computation

In this section we briefly address why we did not study monotone analogues of the definitions due to Koiran \& Perifel [KP09a, KP09b], and Mahajan \& Rao [MR13].

Koiran \& Perifel define uniform VPSPACE as the class of families $\left\{f_{n}\right\}$ of poly (n)-variate polynomials of degree at most $2^{\text {poly }(n)}$, such that there is a PSPACE machine that computes the coefficient function of $\left\{f_{n}\right\}$. Here, the coefficient function of $\left\{f_{n}\right\}$ can be seen to map a pair $\left(1^{n}, \mathbf{e}\right)$ to the coefficient of $\mathbf{x}^{\mathbf{e}}$ in f_{n}.

Non-uniform VPSPACE is then defined by replacing PSPACE by its non-uniform analogue, PSPACE/ poly. Since there are no monotone analogues of Turing machines, perhaps the only possible monotone analogue of this definition is to insist on the coefficient function being monotone, which results in an absurdly weak class (the "largest" monomial will always be present).

Mahajan \& Rao [MR13] look at the notion of width of a circuit - all gates are assigned heights, such that the height of any gate is exactly one larger than the height of its highest child. The width of the circuit is the maximum number of nodes that have the same height. They then define $\operatorname{VSPACE}(S(n))$, as the class of families that are computable by circuits of width $S(n)$ and size at $\operatorname{most} \max \left\{2^{S(n)}, \operatorname{poly}(n)\right\}$.

The class uniform $\operatorname{VSPACE}(S(n))$ further requires that the circuits be $\operatorname{DSPACE}(\mathrm{S}(\mathrm{n}))$-uniform. Although their non-uniform definition is purely algebraic, it is a bit unnatural for space $S(n) \gg$ $\log n$ (as also pointed out in their paper), since such circuits may not even have a poly (n)-sized description. We therefore do not analyse a monotone analogue for their definition.

[^0]: *Blavatnik School of Computer Science, Tel Aviv University. Research supported by the Azrieli International Postdoctoral Fellowship, the Israel Science Foundation (grant number 514/20) and the Len Blavatnik and the Blavatnik Family foundation. Part of this work was done as a postdoctoral researcher at the Institute of Mathematics, Czech Academy of Sciences where I was supported by Grant GX19-27871X of the Czech Science Foundation. Part of this work was also done as a PhD student at TIFR, Mumbai (partially supported by a Google PhD fellowship). Email: prerona.ch@gmail.com.
 ${ }^{\dagger}$ Indian Institute of Technology Jodhpur, Rajasthan, India. Part of this work was done as a postdoc at NUS, Singapore (NUS ODPRT Grant WBS No. R-252-000-A94-133). Email: kshitij@iitj. ac.in.
 \ddagger Department of Computer Science, University of Haifa, Israel. Research supported by the Israel Science Foundation (grant No. 716/20). Email: anamay.tengse@gmail.com.

[^1]: ${ }^{1}$ [Yeh19]: "If a monotone circuit-size lower bound for $q(\mathbf{x})$ holds also for all polynomials that are equivalent to $q(\mathbf{x})$ then the same lower bound also holds for every mVNP circuit computing $q(\mathbf{x})$." Here mVNP circuit denotes $\sum_{\mathbf{z} \in\{0,1\}^{m}} \mathcal{C}\left(\mathbf{x}, z_{1}, \ldots, z_{m}\right)$ where $m=\operatorname{poly}(n)$ and $\mathcal{C}(\mathbf{x}, \mathbf{z})$ is a monotone algebraic circuit.

[^2]: ${ }^{2}$ The work of Poizat is written in French, Malod [Mal11] provides an alternate exposition of some of the main results in English.

[^3]: ${ }^{3}$ It is not hard to see that the analogous definition in the non-monotone setting is equivalent to Malod's definition (Definition 2.9). This is essentially because of the connection to Iterated Matrix Multiplication.

[^4]: ${ }^{4}$ That is, the class of bounded degree polynomials computable by monotone algebraic circuits with summation and production gates.

[^5]: ${ }^{5}$ All auxiliary variables only appear with non-negative powers in the circuit.
 ${ }^{6} \mathrm{We}$ assume that copies of the same set $A \in \mathcal{A}$ can be referred distinctly.

[^6]: ${ }^{7}$ Observation in [Yeh19]: Let $g(\mathbf{x}, z)$ be a monotone polynomial and let $c>0$. Then for any monomial $m=\mathbf{x}^{\mathbf{e}} z^{j}$ in the support of $g, \mathbf{x}^{\mathbf{e}} \in \operatorname{supp}(g, z=c)$.

[^7]: ${ }^{8}$ For sets of monomials A and B, their product is defined as $A \times B=\left\{m \cdot m^{\prime}: m \in A, m^{\prime} \in B\right\}$; a non-trivial product is when neither A nor B is just $\{1\}$.

