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Abstract
A fundamental problem in circuit complexity is to find explicit functions that require large depth to
compute. When considering the natural DeMorgan basis of {OR,AND}, where negations incur no
cost, the best known depth lower bounds for an explicit function in NP have the form (3−o(1)) log2 n,
established by Håstad (building on others) in the early 1990s. We make progress on the problem of
improving this factor of 3, in two different ways:

We consider an “algorithmic method” approach to proving stronger depth lower bounds for
non-uniform circuits in the DeMorgan basis. We show that slightly faster algorithms (than
what is known) for counting the number of satisfying assignments on subcubic-size DeMorgan
formulas would imply supercubic-size DeMorgan formula lower bounds, implying that the depth
must be at least (3 + ε) log2 n for some ε > 0. For example, if #SAT on formulas of size n2+2ε

can be solved in 2n−n1−ε logk n time for some ε > 0 and a sufficiently large constant k, then
there is a function computable in 2O(n) time with a SAT oracle which does not have n3+ε-size
formulas. In fact, the #SAT algorithm only has to work on formulas that are a conjunction of
n1−ε subformulas, each of which is n1+3ε size, in order to obtain the supercubic lower bound. As
a proof of concept, we show that our new algorithms-to-lower-bounds connection can be applied
to prove new lower bounds for “hybrid” DeMorgan formula models which compute interesting
functions at their leaves.
Turning to the {NAND} basis, we establish a greater-than-(3 log2 n) depth lower bound against
uniform circuits solving the SAT problem, using an extension of the “indirect diagonalization”
method for NAND formulas. Note that circuits over the NAND basis are a special case of circuits
over the DeMorgan basis; however, hard functions such as Andreev’s function (known to require
depth (3 − o(1)) log2 n in the DeMorgan basis) can still be computed with NAND circuits of
depth (3 + o(1)) log2 n. Our results imply that SAT requires polylogtime-uniform NAND circuits
of depth at least 3.603 log2 n.
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1 Introduction

How deep must Boolean circuits be, in order to compute explicit functions? A simple counting
argument shows that, with high probability, a random function f : {0, 1}n → {0, 1} requires
circuit depth at least Ω(n), for circuits over any bounded fan-in basis. However, finding
specific (interesting) functions that require high depth is a major open problem. For example,
it is open whether there are functions computable with a circuit family of size s(n) that
require circuits of ω(log s(n)) depth: this is essentially equivalent to the famous P vs NC1

question which asks whether every polynomial-time problem can be simulated in parallel in
only O(logn) depth.1 Focusing on the natural case of the DeMorgan basis, where the gates of
our circuits are ANDs and ORs of fan-in two with NOTs for free, it is only known that there
is a function computable in P that requires circuits of depth (3 − o(1)) log2 n. This lower
bound was established thirty years ago by Håstad in FOCS 1993 (following earlier work),
with some low-order improvements since then [3, 26, 39, 22, 46]. (For more general bases,
e.g., where all functions g : {0, 1}2 → {0, 1} are allowed as gates, only a (2 − o(1)) log2 n

depth lower bound is known [38].)
There has been a stream of recent work, motivated by a compelling conjecture of Karcher-

Raz-Wigderson [31], working towards stronger depth lower bounds via communication
complexity [18, 21, 17, 35]. For example, a recent work of Dinur and Meir [18] recovers a
(3− o(1)) log2 n depth lower bound for Andreev’s function using communication complexity
techniques. Mihajlin and Sofronova [35] use communication complexity methods to show
(for instance) that a modified version of Andreev’s function [3] requires 3.15 log2(n) depth
when the top 0.29 log2(n) layers are AND gates.2

Note: All logarithms in this paper will be in base two. From here on, we shall drop the
subscript 2 in our logarithms.

1.1 Our Results
In this paper, we provide two rather different lines of attack on the notorious problem of
finding functions with a provable (3 + α) logn depth lower bound, for some α > 0. We
first give a plausible “algorithmic method” approach for the non-uniform case, showing
how faster algorithms for solving #SAT on subcubic-size DeMorgan formulas would imply
supercubic-size DeMorgan formula lower bounds (thus implying a (3 + α) logn depth lower
bound as well)3, and we present unconditional depth lower bounds against uniform circuits
attempting to solve the SAT problem, based on an extension of “indirect diagonalization”
arguments to formulas.

An Approach via #SAT Algorithms.

Over the last decade, many connections have been shown between non-trivial algorithms
for analyzing small circuits, and the task of constructing non-trivial functions that do
not have small non-uniform circuits (e.g., [41, 24, 56, 57, 52, 15, 37, 28, 12] for a sample).

1 As is standard, we say the size of a circuit is its number of gates, and the size of a formula is its number
of leaves.

2 Similar results (for a different modified Andreev’s function) follow from average-case lower bounds via
restriction-based techniques (Komargodski-Raz-Tal [32]) instead of communication complexity.

3 Note that while an nc size lower bound against formulas implies a c logn depth lower bound, the
converse is not immediately true. One may obtain an nc size lower bound from an αc logn depth lower
bound, where α > 1 depends on the gate basis, by applying the results of Brent [8] and Spira [44].
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The setting most relevant to us is that of subcubic-size DeMorgan formulas. Explicit
lower bounds against them have been known for decades [45, 3, 26, 39, 22] by “shrinkage
arguments”, in which one sets variables to the formula in a careful way, and argues that
the formula must “shrink” drastically in size from a relatively small number of variable
settings. Analogues of these shrinkage arguments have been applied to derive faster algorithms
for the Formula Satisfiability (Formula-SAT) problem and its counting version #Formula-
SAT [41, 15, 14, 16, 47]. For example, it is known that, for ε > 0:

[16] there is a #SAT algorithm running in 2n−nε/1.63 time on n2.63−ε-size formulas, and
[47] there is a #SAT algorithm running in 2n−nε time on formulas of n3−16ε size.

In the case of “slightly superquadratic” formulas of size n2.001 (for example), the above
results imply #SAT algorithms running in 2n−n0.385 time and 2n−n0.06 time, respectively.
Our first main result is that a seemingly minor-looking improvement on the running time of
#SAT algorithms for “slightly superquadratic” formulas would already yield a non-trivial
function with a supercubic DeMorgan formula lower bound.

I Theorem 1.1 (#SAT For “Small” Formulas Implies “Large” Formula Lower Bounds). There
is a universal constant k > 0 such that, for every ε ∈ (0, 1), if #SAT for n2+2ε+o(1) size
formulas can be solved in 2n−n1−ε logk n time (even in zero-error randomized time), then there
is a function in ENP = TIME[2O(n)]SAT that does not have n3+ε size formulas.

In fact, the desired #SAT algorithm only has to succeed against DeMorgan formulas
which are the conjunction of n1−ε+o(1) subformulas, where each subformula has O(n1+3ε)
size. It looks quite plausible that such a #SAT algorithm may be derivable from known
methods: it is already known that such formulas are significantly more limited than general
n2+2ε+o(1)-size formulas [32, 35], and current algorithms [16] can solve #SAT on n1+3ε-size
formulas in time O(2n−n1−1.8ε), for small ε > 0.

The proof of Theorem 1.1 proceeds by first showing that the #SAT algorithmic hypothesis
in fact implies a “non-trivial derandomization” for large, n3+ε-size formulas: for any desired
constant β > 0, there is an algorithm running in 2n/nω(1) time which can distinguish
unsatisfiable n3+ε-size formulas from those with at least β · 2n satisfying assignments (a.k.a.,
a Gap-SAT algorithm, see Section 3 for a definition). Our reduction from Gap-SAT on
“large” formulas to #SAT on “small” formulas works by applying approximating polynomials
for DeMorgan formulas to a significant portion of the given “large” formula, in such a way that
the counting of SAT assignments implicitly performs a portion of the large formula evaluation
for us, allowing us to distinguish between the unsatisfiable and “highly satisfiable” cases.
From there, we carefully adapt known strong connections between Gap-SAT algorithms
for circuits and circuit lower bounds [13], to show an “ultra-fine-grained” connection: a
non-trivial Gap-SAT algorithm for formulas of size O(s(n)) implies size-s(n) formula lower
bounds. That is, the difference between the size handled by the Gap-SAT algorithm and
the size lower bound is only constant factor.

Generalization to Other Circuit Classes.

Along the way to Theorem 1.1, the connection proved between Gap-SAT algorithms and
circuit lower bounds is rather general: any non-trivial Gap-SAT algorithm for a size-O(s(n))
circuit class C such that
(a) C can compute PARITY in size s(n),
(b) C is closed under the OR of 3 copies of C, and
(c) C is closed under negations of their outputs, and projections (0-1 assignments to some of

the variables, and negations to some of the variables),
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implies size-s(n) lower bounds against C. Two other natural examples of such C are n2+ε-size
formulas over the full binary basis, and O(n)-size circuits over any complete basis.

We use this connection to conclude some new unconditional circuit lower bounds. Ka-
banets, Koroth, Lu, Myrisiotis, and Oliveira [28] studied the class Formula[s]◦G of Boolean
functions computed by size-s DeMorgan formulas where the leaves may be any Boolean
functions from a class G. They showed that when the functions in G have low communication
complexity, one can give interesting #SAT algorithms and pseudorandom generators for
Formula[n2−ε] ◦ G, and consequently also lower bounds (where ε > 0 denotes an arbitrarily
small constant). Using our connection, we can prove lower bounds on Formula[n2−ε] ◦ G
for classes G that do not have low communication complexity. The general statement is:

I Theorem 1.2. For every ε > 0 and every class of functions G such that:
G is closed under variable projections,
Formula[n2−ε] ◦ G contains PARITY, and
the acceptance probability of a conjunction of O(n) functions from G, over n variables,
can be additively approximated to within 1/2n1−ε/3 in 2n−Ω(n1−ε/3) deterministic time,

ENP does not have Formula[n2−ε] ◦ G circuits.

Applying Theorem 1.2 and prior work, we can conclude lower bounds against DeMorgan
formulas composed with low-degree F2-polynomials.

I Corollary 1.3. For all ε > 0, ENP does not have Formula[n2−ε] ◦ G circuits, where G is
the class of nε/3-degree polynomials over F2.

Note that such circuits require 2Ω(nε) bits to describe, to encode the polynomials.

An Approach via Indirect Diagonalization Methods.

A line of work initiated by Fortnow [19, 20, 48] proved model-independent time-space
lower bounds (or equivalently, lower bounds against small-space algorithms) for SAT and
related problems within the polynomial-time hierarchy. This approach was extended by
Williams [53, 54, 55] into a framework which culminated in a proof that SAT does not have
an no(1)-space algorithm running in time n2 cos(π/7) ' n1.801. (Buss and Williams [9] later
proved that the 2 cos(π/7) exponent is optimal for this framework.)

An interesting feature of this line of work is that the proofs are highly algorithmic: one
assumes SAT has a sufficiently efficient algorithm, and applies that algorithm in various ways
until a contradiction to a known lower bound (by diagonalization) is reached. This type of
reasoning is sometimes called “indirect diagonalization”; many other examples of such lower
bounds can be found in the literature (e.g., [30, 2, 49, 48, 36]).

Here, we develop an indirect diagonalization method for lower bounds against uniform
O(logn)-depth circuits (and equivalently, O(logn)-depth formulas). We establish supercubic
depth lower bounds on solving SAT with uniform circuits over the NAND basis, where every
gate computes the function

NAND : x, y 7→ ¬(x ∧ y).

There are no internal negations; only input variables can be negated. It is well-known that
the NAND basis is universal (every Boolean function can be computed with a NAND circuit),
and it is surprisingly expressive. For example, it is known that every boolean function on
n variables has NAND formulas of depth n+O(log∗ n) [34], nearly matching the n+O(1)
depth in DeMorgan’s basis. Furthermore, the hard example function for DeMorgan formulas,
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Andreev’s function, has NAND formulas of depth (3 + o(1)) logn (and therefore has NAND
formulas of size n3+o(1)), matching the lower bound for the DeMorgan basis up to low-order
terms [22]. (See Appendix A for a construction of low-depth formulas for Andreev’s function).
Therefore, one cannot use Andreev’s function to prove a significantly stronger depth lower
bound for NAND formulas, and the lower bound proved in this work have deeper implications
than a weak expressiveness of NAND formulas.

Here, our main result is that SAT requires supercubic depth for uniform circuits composed
of NAND gates:

I Theorem 1.4. For every c < 4 cos(π/7) ' 3.603, SAT does not have uniform NAND
formulas of depth (c− o(1)) logn.

Our notion of uniformity can be defined as follows.

I Definition 1.5 (“Input-aware” polylog-time uniform formulas). A family of formulas (ϕn)n≥1
of depth (c + o(1)) logn is polylog-time uniform if there exists a RAM machine Aϕ such
that for every n, every x ∈ {0, 1}n and every b ∈ {0, 1}≤(c+o(1)) logn, Aϕ(x, b, n) outputs a
description of the gate at position b in ϕn in time logO(1) n. The gate at position b in

Here, for a bitstring b of length at most (c+ o(1)) logn, the “gate at position b” in ϕn is
the gate reached by iterating over all bits of b, starting from the root, moving to the left child
of the current gate when reading a 0, and to its right child otherwise. We will see the need
for this stronger definition in Section 4.2, where we need to give O(logn) bits of information
from the input to the descriptor to dynamically select a subformula.

Observe that this is a more general notion than (say) PLOGTIME-uniformity, which is
common in the literature [51], hence the lower bounds that we give against this model also
hold for PLOGTIME-uniform formulas.

Under the hood, indirect diagonalization results often provide an unconditional method
for simulating weak algorithms super-efficiently, using more powerful models. For example,
all proofs that SAT cannot be solved in n1+δ time and poly log(n) space, for various δ > 0,
exploit the fact that algorithms using small space can be quickly simulated by algorithms that
use a small number of alternations [11] (a generalization of nondeterminism). Theorem 1.4 is
obtained from constructing an extremely efficient method for evaluating a uniform NAND
formula, with an algorithm using a small number of alternations. This evaluation method is
combined with other ideas from previous indirect diagonalization lower bounds (in particular,
results on “alternation-trading proofs” [55, 9]) to obtain the result.

Organization of the Rest of the Paper. Section 2 covers some preliminaries. Sec-
tion 3 proves that faster #SAT algorithms for superquadratic-size formulas would imply
supercubic-size lower bounds, along with an “ultra-fine-grained” connection from Gap-SAT
algorithms to circuit lower bounds. Section 4 proves SAT lower bounds against NAND circuits
of depth 3.6 logn. Section 5 concludes with a discussion of further work.

2 Preliminaries

We first recall some basic notions in circuit complexity that are relevant for the paper. Later
in the preliminaries, we discuss some notions particular to the paper.
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Formulas.

A Boolean formula φ over n inputs is a rooted full binary tree4 whose internal nodes, called
gates, are labeled by a function f : {0, 1}2 → {0, 1}, and leaves are labeled with either a
variable xi, its negation ¬xi for some i, 1 ≤ i ≤ n, or a constant c ∈ {0, 1}. The depth of
a formula is the depth of the underlying tree. A formula is read-once if each of its input
variables appears on at most one leaf. Given an input x ∈ {0, 1}n, the value of φ at x can be
defined as the value of its root on input x, where the value of a gate is defined inductively as
follows:

φ(g) =


c if g is labeled with the constant c ∈ {0, 1}
xi if g is labeled with the variable xi
¬xi if g is labeled with ¬xi
f(φ(g1), φ(g2)) if g is labeled f , and g1, g2 are the children of g

Throughout this paper, we are concerned with formulas over the DeMorgan basis of func-
tions f : {0, 1}2 → {0, 1}, including all 2-input Boolean functions except the XOR and
EQUALS function. It is not hard to show that this is equivalent to considering formulas
over AND/OR/NOT, with NOT gates considered to be “free” (zero cost in size and depth).

In the half of this work on SAT lower bounds (4), we focus on NAND formulas, that
is, whose gates are all labeled with the function NAND : x, y 7→ ¬(x ∧ y). DeMorgan’s law
implies that NAND(x, y) = ¬x ∨ ¬y, therefore NAND formulas are equivalent to “alternating
OR/AND” formulas (up to negations of some inputs) where all gates of even depth are ORs,
and odd-depth gates are ANDs (and the root is said to have depth 0). This “alternating”
point of view will be useful when describing procedures to compute the value of a formula.

A formula family is a sequence {φn}n∈N of formulas such that for every n, φn is a formula
on n inputs x1, . . . , xn. A language L ⊆ {0, 1}∗ is computed by5 the formula family {φn}n∈N
if for every n and every x ∈ {0, 1}n, φn(x) = 1⇔ x ∈ L.

Since a separate formula is allowed for each input length, there are formula families of
constant size and depth computing undecidable languages.

The depth complexity of a function f : {0, 1}? → {0, 1} is the function d : N → N such
that d(n) is the minimum depth of any formula computing fn, the restriction of f to n-bit
inputs. Observe that the notion does not change when we replace “formula” with “circuit”:
any circuit of depth d can be simulated by a formula of depth d and size O(2d). For this
reason, formula size lower bounds imply depth complexity lower bounds, but the converse
does not necessarily hold.

Uniformity.

In the half of this paper on SAT lower bounds (Section 4), we restrict our attention to
uniform formulas: formula families such that the description of the n-input formula can be
computed efficiently. We recall here the notion of uniformity, stated in the introduction, that
we use.

I Definition 1.5 (“Input-aware” polylog-time uniform formulas). A family of formulas (ϕn)n≥1
of depth (c + o(1)) logn is polylog-time uniform if there exists a RAM machine Aϕ such

4 Full means that every node has either zero or two children.
5 In what follows, we may use “L has formulas ...” for “L is computed by a formula family...”
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that for every n, every x ∈ {0, 1}n and every b ∈ {0, 1}≤(c+o(1)) logn, Aϕ(x, b, n) outputs a
description of the gate at position b in ϕn in time logO(1) n. The gate at position b in

New to This Paper: An Important Complexity Class.

Finally, for any c ≥ 0, we define NDepth [c logn] to be the class of languages that have
uniform polylog-time NAND formulas of depth(c + o(1)) logn. Observe that uniform log-
depth NAND formulas can be efficiently simulated by random-access machines, due to the
negligible runtime overhead of the description: for every c > 1, we have

NDepth [c logn] ⊆ TISP
[
nc, no(1)

]
,

where TISP
[
nc, no(1)] denotes the class of languages solvable by an algorithm (in a standard

random-access model) running in nc+o(1) time and no(1) space.

Notation for Alternating Complexity Classes

Along with the above notation for NAND formula complexity classes, in Section 4 it will be
extremely convenient to use quantifier notation to express alternating complexity classes,
that define a fined-grained version of the polynomial hierarchy, just as was used in prior work
on alternation-trading proofs [54, 55, 9, 36]).

Given a complexity class C (defined by some machine model) and constants k, (ai)i≤k,
we consider the alternating complexity class (Q1 n

a1) . . . (Qk nak) C, where, for every i, Qi
is one of ∀ or ∃. Computation in an alternating complexity class is defined as follows:

I Definition 2.1 (Alternating computation). A language L is in (Q1 na1) . . . (Qk nak) C
is defined by k RAM machines A1, . . . , Ak and a C machine M such that, given an input
x of length n: for every i ≤ k, Ai takes as input xi along with yi, a string of nai+o(1)

nondeterministic bits, runs in time nai+o(1) and outputs a string xi of length at most
nai+o(1), with the convention that x0 := x. The output of the last stage, xk, is passed to the
machine M .

The computation accepts x starting from stage i if either:
i = k + 1 and M accepts xk,
Qi is ∃, and there exists a yi such that the computation accepts xi starting from stage
i+ 1,
Qi is ∀, and for every yi, the computation accepts xi starting from stage i+ 1.

An input x is in L if the computation x accepts starting from stage 1.

3 Counting SAT Assignments to “Small” Formulas Implies Lower
Bounds for “Large” Formulas

In this section, we prove the following theorem:

Reminder of Theorem 1.1. There is a universal constant k > 0 such that, for every
ε ∈ (0, 1), if #SAT for n2+2ε size formulas can be solved in 2n−n1−ε logk n time (even in
randomized zero-error time), then there is a function in ENP = TIME[2O(n)]SAT that does not
have n3+ε size formulas.

The proof is broken into two parts. First, in Section 3.1, we show that the #SAT
hypothesis of Theorem 1.1 implies that the following promise problem can be solved in
2n/nω(1) time, for all constants β > 0.
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Problem: Gap-Formula-SAT with gap β ∈ (0, 1)
Input: A DeMorgan formula F on n inputs, with n3+ε size.
Promise: Either F is unsatisfiable, or at least β · 2n of its 2n assignments are satisfying.
Decide: which is the case.

Second, in Section 3.2, we show that the resulting algorithm for Gap-Formula-SAT for
all constant β > 0 implies the circuit lower bound, building on prior work [56, 6, 13].

3.1 Obtaining a Gap-Formula-SAT Algorithm
In this section, we prove the following lemma:

I Lemma 3.1. There is a universal constant k > 0 such that, for every ε ∈ (0, 1), if #SAT
for n2+2ε+o(1)-size formulas can be solved in 2n−n1−ε logk n time, then for any β ∈ (0, 1), the
Gap-Formula-Sat problem with gap β on DeMorgan formulas of n inputs and size n3+ε

can be solved in 2n/nω(1) time.

Our Gap-Formula-SAT requires a couple of ingredients. First, we will use the following
fundamental result for approximating DeMorgan formulas with low-degree polynomials,
which built on a long line of prior work.

I Theorem 3.2 (Reichardt [40], Kabanets-Koroth-Lu-Myrisiotis-Oliveira [29]). For every positive
integer s and α ∈ (0, 1/2), and for every DeMorgan formula F of size s, there is a polynomial
PF of degree t ≤ O(

√
s log(1/α)), with rational coefficients of bit-length O(t · log2 s · log(1/α)),

such that for every a ∈ {0, 1}n,

|PF (a)− F (a)| ≤ α.

Furthermore, given the description of F , a description of a PF with the above property and
degree O(

√
s log(1/α) log s) can be constructed in sO(

√
s log(1/α) log(s)) time.

The proof of Reichardt only shows the existence of such a polynomial PF , and does not
consider the cost of constructing it. Kabanets-Koroth-Lu-Myrisiotis-Oliveira [29] credit an
anonymous reviewer with an algorithm for constructing the polynomial PF ; see their paper
for details.

The second ingredient we need (which incidentally, is also used in the algorithm of
Theorem 3.2) is the following decomposition result for formulas:

I Theorem 3.3 (Impaglizzo-Meka-Zuckerman [25], Tal [46]). There is a polynomial-time
algorithm that, given a formula F of size S and a parameter K ∈ [S], outputs a read-once
formula F ′ of size t ≤ O(K) and subformulas G1, . . . , Gt of F of size O(S/K), such that
F is the composition of F ′ with G1, . . . , Gt (that is, inserting Gi into the i-th input of F ′,
yields F ).

We now turn to proving Lemma 3.1. Suppose we are given a formula F of size n3+ε, and
we are promised that F is either unsatisfiable, or has at least β2n satisfying assignments. We
want to determine which is the case, using a #SAT algorithm for formulas of only n2+2ε+o(1)

size.
First, we apply Theorem 3.3 with K := n2−2ε, decomposing F into an F ′ of size O(n2−2ε)

and t = O(n2−2ε) subformulas G1, . . . , Gt of size O(n1+3ε).
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Second, we compute an approximating polynomial PF ′ of degree O(n1−ε logn · log(1/α))
for the polynomial F ′, with error α ∈ (0, 1). (For now, let us leave α as a parameter.)
By Theorem 3.2, such a PF ′ can be computed in 2Õ(n1−ε log(1/α)) time, and has T :=
2Õ(n1−ε log(1/α)) terms.

Over the boolean hypercube, the polynomial PF ′ can be naturally written as a sum
of T conjunctions on t = O(n2−2ε) variables each, where each conjunction has width
O(n1−ε logn log(1/α)). Composing PF ′ with the subformulas G1, . . . , Gt, our n3+ε-size
formula F is close (in the sense of Theorem 3.2) to an expression of the generic form:

S(x) :=
∑

2Õ(n1−ε log(1/α))

c ·
∧

O(n1−ε logn log(1/α))

[formula of O(n1+3ε) size].

That is, S(x) is a sum of T = 2Õ(n1−ε log(1/α)) terms, where each term is a conjunction of
t = O(n1−ε logn log(1/α)) formulas, each formula has O(n1+3ε) size, and each coefficient c
has bit-length O(t · log2 s · log(1/α)) ≤ O(n). By Theorem 3.2, the sum S(x) approximately
computes F (x), in that for all a ∈ {0, 1}n, |F (a)− S(a)| < α.

Now, suppose we have an algorithm that can solve #SAT for formulas of size n2+2ε+o(1)

in time O(2n/T 2) ≤ 2n−n1−ε log(1/α) logk n, for a sufficiently large constant k > 0. Then, as
every summand of S(x), i.e. each expression of the form∧

O(n1−ε)

[formula of O(n1+3ε) size],

has size Õ(n2+2ε) ≤ n2+2ε+o(1), we can compute the sum
∑
a S(a) over all inputs, which has

the form

∑
a∈{0,1}n

S(a) =
∑

2Õ(n1−ε log(1/α))

∑
a

∧
Õ(n1−ε log(1/α))

[formula of O(n1+3ε) size]

 ,

in time T ·O(2n/T 2) ≤ O(2n/T )� 2n/nω(1).
Finally, we observe that computing

∑
a S(a) is enough to determine Gap-Formula-SAT,

for an appropriate choice of the parameters α and β.
Suppose F is UNSAT. Since F (a) = 0 for all a, we have

∑
a S(a) ≤ α2n, because

|S(a)− F (a)| ≤ α.
Suppose F has at least β · 2n SAT assignments. Then, every SAT assignment to F adds
at least 1− α to the sum, while each UNSAT assignment subtracts no more than α from
the sum, in the worst case. So in this case,∑

a

S(a) ≥ (1− α) · β2n − α · (1− β)2n = [(1− α)β − α(1− β)] · 2n.

Provided that (1− α)β − α(1− β) > α, we can distinguish between the two cases using the
value

∑
a S(a). Manipulating the inequality, we find:

(1− α)β − α(1− β) > α ⇔ β − α > α ⇔ β > 2α ⇔ β/2 > α.

Thus for any gap parameter β ∈ (0, 1), the above inequality holds for α := β/3. (We could
even let β := 1/2no(1) , for example.)

This concludes the proof of Lemma 3.1.
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A Generic Tradeoff.

We remark that the above approach is easily generalizable. Letting t� n be a parameter,
every formula of size n3+ε can be converted into a sum of the form

S(x) :=
∑
2Õ(t)

∧
Õ(t)

[formula of O(n3+ε/t2) size].

Note that such a transformation is only meaningful for t� n: otherwise, the running time
of converting the formula into S(x) already exceeds 2n. The above argument shows that if
we can solve #SAT on formulas of O(n3+ε/t) size (in fact, a conjunction of O(t) formulas
of n3+ε/t2 size), in time 2n−Ω(t/(logn)2), then we obtain a nontrivial Gap-Formula-SAT
algorithm.

Discussion: What Can Current Formula-SAT Algorithms Achieve?

Before moving on, let us briefly comment on how known #SAT algorithms based on shrinkage
behave, and speculate on whether they can be generalized to achieve the kind of running
time / formula size tradeoff that we seek.

Roughly speaking, all state-of-the-art algorithms work in the following way. First, they
solve #SAT on all O(n/ log2 n)-size formulas by brute force, building a 2o(n)-size look-up
table for them. Next, they apply a concentration version of a shrinkage lemma to show that,
by setting all possible assignments to some n− k variables, a formula of size s shrinks to size
approximately k2 · s/n2, on all but 2n−Ω(k) assignments. When k2 · s/n2 < O(n/ log2 n), the
algorithm can consult the lookup table in the shrunken case, which means we need

s <
n3

k2 log2 n

to use the lookup table efficiently, and obtain 2n−Ω(k) time. In summary, one might expect
to obtain 2n−Ω(k) time for solving #SAT on formulas of size n3/(k2 log2 n), for the relevant
values of k.

However, for our desired running time in the hypothesis of Theorem 1.1, we require
k > n1−ε. In that case, the algorithm will only work for size

s <
n3

n2−2ε log2 n
= n1+2ε

log2 n
.

In principle, this is not necessarily a major issue: recall that we only need to solve #SAT
on formulas which are conjunctions of n1−ε subformulas of size n1+2ε. It appears plausible
to us that a form of “simultaneous shrinkage”, where we consider the shrinkage of n1−ε

subformulas of size n1+2ε simultaneously under a common random restriction (analogous to
“multi-switching” lemmas that work on a set of formulas [24, 23]), could be applied to obtain
the necessary #SAT algorithm.

3.2 Formula Size Lower Bounds from Gap-Formula-SAT
Next, we show that the Gap-Formula-SAT algorithm derived in the previous subsection
would be sufficient to establish the desired lower bound. Recall in the previous section, we
showed that, under the #SAT algorithm hypothesis of Theorem 1.1, it follows that for every
constant β ∈ (0, 1), we can solve Gap-Formula-SAT on formulas of size n3+ε in time
2n−Ω(n1−ε), in that we can distinguish UNSAT formulas from those satisfied by at least a
(1− β)-fraction of possible assignments.
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Chen and Williams [13] show there is a universal constant β? > 0 such that, for any class
of circuits C that is closed under taking negations of the output, and variable projections
(negating inputs and/or replacing inputs by constants), if there is a Gap-SAT algorithm
running in 2n/nω(1) time for polynomial-size circuits C which are the AND of three circuits
from C, distinguishing UNSAT circuits from those with at least β?2n satisfying assignments,
then NEXP does not have polynomial-size circuits from C.

Here, we will explain how to modify their argument, by combining other ideas from
[56, 6, 13], to show that a faster Gap-Formula-SAT algorithm for formulas of size O(n3+ε)
actually implies that there is a function in ENP = TIME[2O(n)]SAT which does not have
formulas of size n3+ε. The main difficulty is that we have to be very careful to “respect”
the formula size in the argument, so that it does not ever increase by more than a constant
factor. We achieve this by (yet) another level of indirection, using the hypothesis ENP has
formulas of size n3+ε in multiple ways.

Indeed, we start by assuming that ENP does have formulas of size n3+ε. We will eventually
show that every unary language L ∈ NTIME[2n] (languages over the input alphabet {1})
can then be solved in nondeterministic time o(2n), contradicting the Nondeterministic Time
Hierarchy Theorem (which holds for unary languages as well).

Reducing L to Gap-SAT.

In the following, let k > 0 be a sufficiently large universal constant. First, we show (drawing
from prior work) that a non-trivial Gap-Circuit-Sat algorithm for poly(n)-size circuits
would imply our desired lower bound. Next, we will show that a Gap-Formula-Sat
algorithm suffices for the lower bound, even if the algorithm only works on O(n3+ε)-size
formulas.

I Lemma 3.4 ([56, 6, 13]). If Gap-Circuit-Sat on circuits with n + k logn inputs and
size O(nk · n3+ε) can be solved in 2n/nω(1) time, then ENP does not have DeMorgan formulas
of size O(n3+ε). (In fact, circuit lower bounds would follow.)

Proof. Let L ∈ NTIME[2n] be an arbitrary unary language. Our goal is to show that a
nontrivial Gap-Circuit-Sat algorithm, combined with small circuits for ENP, would allow
us to nondeterministically decide L in o(2n) time, contradicting the Nondeterministic Time
Hierarchy theorem [4].

Following prior work [56, 6, 13], we can choose a succinct PCP verifier V for L, with
proofs of length 2n · nk, randomness n + k logn, and for each choice of randomness, the
verifier’s q = O(1) queries can be computed by a fixed nk-size circuit Cn which takes in
the n + k logn bits of randomness as input, and outputs q strings of length n + k logn
corresponding to the indices of the proof bits for each query, along with sign bits (whether
the outcome of the query should be negated, or not). The verifier accepts on a given random
string if and only if the OR of the q queries is true, and the nk-size circuit Cn implementing
the verifier can be constructed in poly(nk) time.

If ENP has formulas of size n3+ε, then for every n, if 1n ∈ L, there exists a family
of formulas Fn of size n3+ε on n + k logn inputs such that the 2n · nk-bit truth table of
Fn encodes a PCP π that the PCP verifier V accepts with probability 1. Indeed, there
exists a 2O(n)-time algorithm with a SAT oracle (a.k.a. an ENP algorithm) that on input
(1n, i) outputs the i-th bit of such a proof π: this follows by a standard reduction from
search-to-decision [56], augmented with exhaustive search over all random strings of length
n+ k logn to verify that the probability that V accepts π is 1.
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We can simulate L on the input 1n as follows. First, nondeterministically guess a formula
Fn of size n3+ε that is intended to encode a PCP πn for the PCP verifier V on 1n. Next,
we construct a nk-size circuit Cn with n + k logn input bits encoding the verifier’s query
computation. Supposing the verifier makes q = O(1) queries, we compose Cn with q copies
of the formula Fn, and take the OR of the q copies of Fn. More precisely, letting the q
output strings of Cn be C(1)

n (r), . . . , C(q)
n (r) be subcircuits of Cn such that C(i)

n (r) prints the
(n+ k logn)-bit index of the i-th query on randomness r, and letting S(i)

n (r) be the sign bit
for the i-th query, we construct the circuit

Ccheck(r) =
q∨
i=1

(Fn(C(i)
n (r))⊕ S(i)

n (r)). (1)

This circuit Ccheck has size at most O(nk · n3+ε), and Ccheck(r) = 1 if and only if the verifier
V on randomness r accepts with proof oracle Fn.

Since V is a PCP, we have two properties:
If 1n ∈ L, then there is a choice of Fn of n3+ε size such that Ccheck is true on all inputs
r. (Note such Fn exists, only assuming ENP has n3+ε size formulas.)
If 1n /∈ L, then for every choice of Fn, Ccheck is false on at least a 1− β fraction of its
possible inputs r, where β ∈ (0, 1) is determined by the soundness probability of the PCP
protocol.

To line this up with our Gap-SAT formulation, we work with the negation of Ccheck:
either ¬Ccheck is unsatisfiable, or ¬Ccheck is satisfiable on at least a (1− β)-fraction of its
possible assignments.

So now we are faced with the following task: given a circuit Ccheck with n + k logn
inputs and O(nk · n3+ε) size, and we wish to distinguish whether Ccheck is unsatisfiable on
all possible inputs, or is satisfiable on at least a β-fraction. So far, everything is analogous to
what one finds in earlier work showing how improving exhaustive search implies circuit lower
bounds [56, 6]. If we can solve this task in o(2n) time, we will contradict the Nondeterministic
Time Hierarchy Theorem. J

From Gap-SAT to Gap-Formula-SAT via PCP of Proximity and ECCs.

Our goal now is to show that, if ENP has n3+ε-size DeMorgan formulas, and Gap-Formula-
Sat can be solved in 2n/nω(1) time on O(n3+ε)-size formulas for arbitrary constant-sized
gaps, then we actually obtain the Gap-Circuit-Sat algorithm needed in the previous part.

We will apply ideas similar to that of the proof of Theorem 5 of Chen and Williams [13],
which shows how to prove super-polynomial C-circuit lower bounds for NEXP from a Gap-
SAT algorithm for the conjunction (AND) of three C-circuits that distinguishes the case where
C is UNSAT from the case where C has a non-zero constant fraction of SAT assignments.
(The following exposition is not entirely self-contained, but it should be quite friendly to a
reader who has [13] open at their proof of Theorem 5.)

We work with a polynomial-time linear constant-rate error-correcting code Enc : {0, 1}n →
{0, 1}cn with a polynomial-time decoder Dec : {0, 1}cn → {0, 1}n, which can decode up to
some relative distance δECC > 0 [43]. We use the ECC to modify the circuit Ccheck we want
to solve Gap-SAT for, so that if Ccheck has a satisfying assignment, then the resulting circuit
D has an assignment that is δECC -far from any of its satisfying assignments. More precisely,
as in [13], we define a circuit

D(y) := ¬Ccheck(Dec(y)),
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where Dec is the decoder for the aforementioned error-correcting code. Since Dec is a
polynomial-time function, it has a circuit of size at most O(nk) for large enough k, and the
circuit D can be implemented in size at most O(n2k).

B Claim 3.5. Let x ∈ {0, 1}n and let y = Enc(x). Then:
If x is a satisfying assignment of Ccheck, then y is δECC -far from any satisfying assignment
of D. That is, one must flip more than a δECC-fraction of bits of y in order to obtain a
satisfying assignment to D.
If x is a non-satisfying assignment of Ccheck, then y satisfies D.

Proof. Let x be such that Ccheck(x) = 1, and let y = Enc(x). For any string z that has
relative distance at most δECC from y, we have Dec(z) = x by the definition of an ECC with
decoding distance δECC . Therefore we also have D(z) = ¬Ccheck(Dec(z)) = ¬Ccheck(x) = 0.
It follows that y must be δECC-far from any z such that D(z) = 1.

For the second item, observe thatD(y) = D(Enc(x)) = ¬Ccheck(Dec(Enc(x))) = ¬Ccheck(x).
So if x does not satisfy Ccheck, then y satisfies D. J

As in [13], we employ a PCP of Proximity (PCPP) for the Circuit-Eval problem [5]:
given a circuit D on n inputs and y ∈ {0, 1}n, the Circuit-Eval problem asks whether
D(y) = 1. The following lemma describes the important properties of this PCPP.

I Lemma 3.6 (3-query PCP of Proximity for Circuit Evaluation with perfect completeness [13,
Lemma 24]). For any proximity parameter δPCP ∈ (0, 1), there exists s ∈ (0, 1) such that
there is a PCP of proximity system for Circuit-Eval with proximity δPCP , soundness s,
randomness r ≤ O(logn), and the following properties:

Given the r random coins, a polynomial-time verifier V computes the OR on three queried
bits (with some bits possibly negated), accepting if and only if the OR is true.
Given a pair (D, y) such that D is a circuit, y is an input of length n, and D(y) = 1,
a proof π can be constructed in poly(|D| + |y|) time that makes the verifier V accept
(D, y, π) with probability 1.
Given (D, y), if y is δPCP -far from all satisfying assignments to D, then for all proofs π,
the verifier V accepts (D, y, π) with probability at most s.

In other words, the PCPP consists of an efficient verifier which is given a circuit D and input
y, queries only three bits of the proof π, and tries to determine if D(y) = 1. If D(y) = 1
is true, then there is a proof π of this fact that always convinces the verifier, and can be
efficiently constructed. If D(y) = 0 is false, and y is in fact far in Hamming distance from
every SAT assignment to D, then the verifier will catch that D(y) 6= 1 with probability at
least 1− s, regardless of the proof π.

We apply this PCPP to the circuit D defined above, with input y = Enc(x), and show
how we can combine it with the algorithm of Lemma 3.1 to decide Gap-SAT for C. The
PCPP has randomness r ≤ O(logn), proximity parameter δPCP > 0, and soundness s < 1,
for fixed constants δPCP and s. Letting V be the verifier for the PCPP, as we vary over the
m := 2r = poly(n) possible random strings, we obtain a set of 3-OR constraints on a given
proof (y, π). Let H1, . . . ,Hm be the corresponding constraints. From the properties of the
PCPP, we find:

If Ccheck(x) = 0, then D(y) = 1, and there is a proof π such that all Hi are satisfied by
the pair (y, π).
If Ccheck(x) = 1, then y is δECC-far from the set of all satisfying assignments to D. By
setting δPCP < δECC , at most an s fraction of the constraints {Hi} are ever satisfied by
(y, π).
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In the case where Ccheck is unsatisfiable, there is a proof π(x) for every y = Enc(x), such
that the verifier V accepts (D, y, π(x)) with probability 1. For our setting, it is crucial that
the proof function π(x) can be computed in ENP (so that it will also have n3+ε-size DeMorgan
formulas, by assumption).

To verify this, we go back to the original argument (before we began to invoke Chen
and Williams [13]). Given an input (n, x, i) of length n+ O(logn), where n is encoded in
O(logn) bits, x is n + O(logn) bits, and i is O(logn) bits, here is an ENP procedure (an
algorithm running in 2O(n) time with a SAT oracle) for constructing a proof π(x) for the
relevant circuit Ccheck defined in (1):

First, use a SAT oracle to construct the lexicographically first formula Fn of size n3+ε

which is a witness for our original PCP verifier for L (if 1n ∈ L, then Fn exists). Then,
build the circuit Ccheck using Fn, evaluate y = Enc(x), and construct the proof π(x)
for (Ccheck, x) in polynomial time (which can be done by the construction of the PCP
of Proximity). Finally, output the i-th bit of the proof π(x).

Since this is an ENP procedure with input of length O(n), there is a formula of size O(n3+ε)
that, given (x, i), outputs the i-th bit of π(x).

Following the notation of [13], we let Ti be the O(n3+ε)-size formula printing the i-th
bit of π(x), and let T (x) be the concatenation of all Ti(x). We let Gi(x) be the constraint
Hi (an OR of 3 literals) evaluated on the pair (Enc(x), T (x)), and recall that there are only
m = poly(n) constraints H1, . . . ,Hm. As our error-correcting code is linear, each bit of
Enc(x) is a parity over some bits of x. Therefore, each Gi is an OR of 3 formulas, some of
which are parities over a subset of the bits of x, and some of which are copies of Tj(x) for
some j. Observe (crucially) that, since PARITY has O(n2)-size DeMorgan formulas, every
formula Gi in fact has size only O(n3+ε).

Finally, we compare the two cases when Ccheck is UNSAT, and when Ccheck has many
satisfying assignments, and show that a non-trivial Gap-Formula-SAT algorithm for
O(n3+ε) size is sufficient for distinguishing these cases.

When 1n ∈ L and we’ve guessed the “good” formula Fn of size O(n3+ε), the constructed
circuit Ccheck is UNSAT. In that case, as we argued above, there exists a polynomial-sized
set of formulas {Ti} that we can guess, each of size O(n3+ε), so that the verifier V always
outputs 1, over all choices of randomness. Therefore for all i ∈ [m], every constraint formula
Gi(x) will be true, over all assignments x. It follows that, if we run a Gap-Formula-SAT
algorithm on ¬Gi for all i = 1, . . . ,m, it will always return an “UNSAT” answer.

When 1n /∈ L, then no matter what formula Fn we guess to construct Ccheck with, the
circuit Ccheck will be satisfied by at least a (1− β)-fraction of its possible assignments. Then,
for all possible choices of the set of formulas {Ti}, over all assignments x, and all i, at most a
β + s fraction of pairs (x, i) are such that Gi(x) is true. By averaging, there must be some i?
such that Gi?(x) has at most a β + s fraction of SAT assignments. Let β > 0 be sufficiently
small, so that (1− β − s) ≥ (1− s)/2. Then, given a Gap-Formula-SAT algorithm that
outputs “MANY-SAT” when at least a (1− s)/2 > 0 fraction of assignments are satisfying,
this algorithm will return “MANY-SAT” on at least one ¬Gi.

Therefore, our Gap-Formula-SAT algorithm (which works for any constant fraction of
SAT assignments) lets us determine whether or not 1n is in L. After poly(n) bits of guessing,
our nondeterministic algorithm for deciding L calls the Gap-Formula-SAT algorithm for
poly(n) times, on formulas of size O(n3+ε). Therefore the entire nondeterministic procedure
runs in only o(2n) time, assuming the Gap-Formula-SAT algorithm runs in 2n/nω(1) time.
Thus we can decide L in NTIME[o(2n)], contradicting the Nondeterministic Time Hierarchy
Theorem. This completes the proof.
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Finally, observe that, even if our Gap-Formula-SAT algorithm was zero-error random-
ized, this would still suffice for constructing a nondeterministic algorithm for L.

Let us summarize this subsection with the tight connection between algorithms and lower
bounds that we have proved:

I Theorem 3.7. Let ε > 0. Suppose for every β > 0, there is a Gap-Formula-SAT
algorithm for O(n3+ε)-size formulas that runs in 2n/nω(1) time, and distinguishes unsatisfiable
formulas from those with at least a β-fraction of satisfying assignments. Then ENP does not
have O(n3+ε)-size formulas.

3.3 Generalization to Other Circuit Classes
It is easy to see that the proof of Theorem 3.7 can be generalized to other circuit classes,
beyond just DeMorgan formulas. The properties we used of DeMorgan formulas are that
they are:

closed under negation of their output,
closed under variable projections (replacing variables with constants or their negations),
closed under the OR of three copies, and
PARITY has subcubic-size DeMorgan formulas—below the size bound of our DeMorgan
formulas.

We can generalize the connection from Gap-Sat algorithms to lower bounds, as follows.
Recall that Formula[n2−ε] ◦ G denotes the functions computable by DeMorgan formulas of
size n2−ε with functions from the class G at their leaves [28].

Reminder of Theorem 1.2. For every ε > 0 and every class of functions G such that:
G is closed under variable projections,
Formula[n2−ε] ◦ G contains PARITY, and
the acceptance probability of a conjunction of O(n) functions from G, over n variables,
can be additively approximated to within 1/2n1−ε/3 in 2n−Ω(n1−ε/3) deterministic time,

ENP does not have Formula[n2−ε] ◦ G circuits.
We confine ourselves to a sketch of the proof of Theorem 1.2, as it closely mimics the

proofs of previous subsections. First, in the proof of Lemma 3.1, we reduced the problem
of computing Gap-SAT for a formula of size n3+ε, to the problem of computing #SAT
on a formula of size n2−2ε. In particular, the reduction produced 2Õ(n1−ε logn) instances of
#SAT on formulas which are conjunctions of Õ(n1−ε) formulas of O(n1+3ε) size. This was
accomplished by first applying Theorem 3.3 to decompose the n3+ε-size formula into an
O(n2−2ε)-size formula of O(n1+3ε)-size formulas, then applying Theorem 3.2 to reduce the
O(n2−2ε)-size formula to a linear sum of 2Õ(n1−ε logn) conjunctions on Õ(n1−ε) variables.

Let C be a circuit from Formula[n2−2ε] ◦ G. (For simplicity of exposition, we consider
size n2−2ε instead of n2−ε, to more closely model the situation in Lemma 3.1.) Performing
exactly the same steps as above on the n2−2ε-sized formula part of C, we can reduce C to a
sum of 2Õ(n1−ε logn) conjunctions of Õ(n1−ε) functions from G. By the same analysis as in
Lemma 3.1, if we have a deterministic 2n−Ω(n1−2ε/3)-time algorithm for approximating the
acceptance probability of a conjunction of functions from G to within a gap of 1/2n1−2ε/3 ,
then we can determine Gap-Sat for the circuit C in time

2Õ(n1−ε logn) · 2n−Ω(n1−2ε/3) ≤ 2n/nω(1).

Next, assuming that G satisfies the hypotheses of Theorem 1.2, it follows that the circuit
class Formula[n2−ε]◦G is closed under negation of the output (because DeMorgan formulas
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are), closed under the OR of three copies (because DeMorgan formulas are), closed under
variable projections (by assumption on G, and contains PARITY (by assumption). Therefore
this class has all the closure properties necessary to apply the proof of Theorem 3.7 directly.
Applying our algorithm for Gap-Sat on Formula[n2−ε]◦G circuits (obtained in the previous
paragraph), we can conclude that ENP does not have Formula[n2−ε] ◦ G circuits.

Here is one example of a canonical class that has high communication complexity, yet we
can still prove circuit lower bounds for it.

Reminder of Corollary 1.3. For all ε > 0, ENP does not have Formula[n2−ε] ◦ G
circuits, where G is the class of nε/3-degree polynomials over F2.

Proof. Observe that Formula[n2−ε]◦G contains PARITY (a degree-one F2-polynomial), and
that G is closed under variable projections. It remains to show that the algorithmic hypothesis
of Theorem 1.2 is satisfied: namely, that we can estimate the acceptance probability of
conjunctions of functions from G in 2n−Ω(n1−ε/3) time.

Building on the randomized algorithm of Lokshtanov, Paturi, Tamaki, Williams, and
Yu [33], Chan and Williams [10] show that the #SAT problem for systems of m degree-d
F2-polynomials in n variables can be solved in deterministic 2n−n/O(d) · poly(m) time. Their
algorithm works for all d < o(

√
n). Therefore we can set d = nε/3 and get a #SAT algorithm

running in 2n−Ω(n1−ε/3) time, satisfying the algorithmic hypothesis of Theorem 1.2. J

Let us remark that we could have also applied known pseudorandom generators for
degree-d F2-polynomials to obtain a good Gap-Sat algorithm, but we would have obtained
a weaker degree bound. Namely, the best-known seed length for a PRG fooling degree-d
F2-polynomials is Ω(2d) [50], so enumerating over all seeds would cost at least 2Ω(2d) time.

4 Uniform Depth Lower Bounds for SAT

4.1 Overview of the methodology
We now give an overview of how we implement “indirect diagonalization” to show that
SAT does not have uniform NAND formulas of depth less than c logn, for a value of c > 3
that we will specify later. Recall (Section 2) that we define NDepth [c logn] to be the
class of languages that have uniform polylog-time NAND formulas of depth (c+ o(1)) logn.
A central component of our proof technique is a construction that allows us to simulate
NDepth [c logn] very efficiently, using alternating machines with a low number of alternations.
Following [54, 9], we call it a “Speedup Rule”.

I Lemma 4.1 (Speedup Rule for NAND Formulas). For every d > 0 and 0 ≤ x ≤ d, we have

NDepth [d logn] ⊆ (∃nx/2)(∀n)NDepth [(d− x) logn] and

NDepth [d logn] ⊆ (∀nx/2)(∃n)NDepth [(d− x) logn]

The preliminaries (Section 2) cover the above complexity class notation in detail, but let
us briefly remind the reader what it means. An inclusion like

NDepth [d logn] ⊆ (∃nx/2)(∀n)NDepth [(d− x) logn]

roughly means that we can evaluate a NAND formula of depth d logn on an input X of
length n by first existentially guessing nx/2+o(1) bits Y , then universally choosing n1+o(1)

bits Z, then evaluating a NAND formula of depth (d− x) logn on the input (X,Y, Z) (with
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some low-overhead computation). That is, NAND formulas of depth d logn can informally
be simulated by “Σ2-type” NAND formulas of depth (d− x) logn, with nx/2+o(1) auxiliary
bits of input.

To prove that SAT does not have NAND formulas of depth less than c logn, we start
by assuming that SAT ∈ NDepth [c logn], and aim to reach a contradiction. As SAT is
NP-complete under polylog-time computable first-order projections [20, 48, 27], this inclusion
extends to every language in NTIME[n] with negligible overhead. Since NDepth [c logn]
corresponds to NAND depth (c+o(1)) logn (and NDepth [c logn] is closed under complement),
we have:

SAT ∈ NDepth [c logn]⇒ NTIME[n] ∪ coNTIME[n] ⊆ NDepth [c logn] .

Using this property, we can derive another important ingredient in the lower bound,
the so-called Slowdown Rule, which allows us to reduce the number of quantifiers in an
alternating computation, at the cost of an increased NAND depth:

I Lemma 4.2 (Slowdown Rule). Assume that SAT is in NDepth [c logn] for some c > 0.
Then, for every a, b ≥ 1 and d > 0, we have:

. . . (Q na)(¬Q nb)NDepth [d logn] ⊆ . . . (Q na)NDepth [c ·max(d/2, a, b) logn] ,

where Q ∈ {∃,∀} and ¬Q is the opposite quantifier.

On the other hand, we show that the assumption NTIME[n] ⊆ NDepth [c logn] allows us
to lift the Nondeterministic Time Hierarchy Theorem to NAND formulas.

I Theorem 4.3 (Conditional Depth Hierarchy Theorem). For every c > 0, if NTIME[n] ⊆
NDepth [c logn], then for all b > a ≥ 1,

NDepth [a logn] ( NDepth [b logn] .

The core of our proof consists in repeatedly applying the rules of Lemmas 4.1 and 4.2 with
suitable parameters, known as alternation-trading proofs, until we obtain a class containment
that contradicts Theorem 4.3.

As a warm-up, let us apply the above rules to show that SAT does not have NAND
formulas of depth less than 2.8284 logn, using a very simple alternation-trading proof. Assume
SAT ∈ NAND-depth[c logn] for some c > 0. Then, we have

NDepth [4 logn] ⊆ (∃n)(∀n)NDepth [2 logn] (Speedup Rule with x = 2)
⊆ (∃n)NDepth [c logn] (Slowdown Rule)
⊆ NDepth

[
(c2/2) logn

]
(Slowdown Rule)

For c2/2 < 4 ⇔ c < 2
√

2 ' 2.8284 . . ., this contradicts the Conditional Depth Hierarchy
(Theorem 4.3). (Those familiar with the proof that SAT does not have algorithms running in
n
√

2−o(1) time and no(1) space [20] may be experiencing a feeling of déjà vu.)
The remainder of this section is organized as follows: Section 4.2 gives a proof of the

above rules and of the hierarchy theorem, while Section 4.3 details the construction of
alternation-trading proofs that extend this result to any c < 4 cos(π/7).

4.2 Speedups, Slowdowns and a Depth Hierarchy
Speedup and Slowdown

We first discuss the Speedup and Slowdown Rules.
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I Lemma 4.1 (Speedup Rule for NAND Formulas). For every d > 0 and 0 ≤ x ≤ d, we have

NDepth [d logn] ⊆ (∃nx/2)(∀n)NDepth [(d− x) logn] and

NDepth [d logn] ⊆ (∀nx/2)(∃n)NDepth [(d− x) logn]

Proof. We prove the statement for ∃∀ computations, the other direction follows since
NDepth [d logn] is closed under complement (recall, we are allowed depth (d+ o(1)) logn; it
is easy to add an extra layer on the top of a NAND circuit which performs negation).

We view the input NAND formula as an alternating OR/AND formula φ, using the
connection described in Section 2. The intuitive idea is to select, for each OR gate (starting
from the output), one of its children which is intended to be true. Furthermore, for every
choice of an “OR child” that we make, the size of the remaining formula that we have to
evaluate drops by half, as we do not have to consider the subformula rooted at the other
child. We use the non-deterministic bits from the existential quantifier to select these “OR
children”, for the OR gates among the top x logn levels of the formula. Then we use a
sublinear number of bits from the universal quantifier to handle the remaining AND gates.

Let y denote the nx/2+o(1) bits received from the universal quantifier. Let us describe
the procedure from the output gate (which is an OR). If the first bit of y is 0, the OR gate
is replaced by its left child, otherwise it is replaced by its right child. In both cases, we
reach an AND gate. We then apply this procedure recursively on the two OR gates below
that AND gate, using the separately the two halves of the rest of y, until we reach depth
x/2 logn. The resulting formula φ′ starts with (x/2) logn levels of AND gates, followed by
smaller alternating OR/AND formulas φi of depth (d − x + o(1)) logn. Using the above
observation, for a given x, there is a choice of yx such that φ′(x) = 1 if and only if φ(x) = 1.
The ∃ stage outputs the input x and the corresponding string yx. Upon receiving (x, y), the
∀ stage universally guesses x

2 logn nondeterministic bits z that represent an index i, and
outputs x and x logn bits that encode a path from the root of φ to the root of φi. As φ′ is
the conjunction of the nx/2 formulas φi, it evaluates to 1 on input x if and only if for every
index i ≤ nx/2, φi(x) = 1.

Finally, recall that the definition of alternating computation requires that there exists
a single machine M ′ that runs the final stage of computation for every possible choice of
nondeterministic bits: that is, the machine cannot depend on the nondeterministic bits. This
is where our strong notion of uniformity comes in (from Definition 1.5), where the descriptor
machine has random access to the input: giving M ′ access to (a few) bits of the input,
allows us to adapt its behavior depending on the nondeterministic bits. If M is a machine
that describes φ, we define the machine M ′, that on input a′ of length n′ = n + x logn
for some n, sets a′ = ab, where a has length n and b has length x logn, and returns
M ′(a′, i, n′) = M(a, bi, n). We use the random access to move x logn bits from the input to
the position of the gate that we want to describe. J

Combining Lemma 4.1 and the simulation of NDepth [d logn] by TISP
[
nd, no(1)] machines

(machines running in time nd and space no(1)) gives us an efficient simulation of formulas by
nondeterministic Turing machines that is faster than the deterministic simulation.

I Corollary 4.4. For every d ≥ 1, we have

NDepth [d logn] ⊆ NTIME[nd/2+o(1)] ∩ coNTIME[nd/2+o(1)].

Proof. Applying Lemma 4.1 with x = d, we obtain

NDepth [d logn] ⊆ (∃nd/2)(∀n)NDepth [0 logn] ⊆ (∃nd/2)(∀n)TISP
[
no(1), no(1)

]
.
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A close inspection of the proof of Lemma 4.1 reveals that the ∀ quantifier here uses only d
2 logn

nondeterministic bits. Therefore, we can use exhaustive search over the nd/2 strings of non-
deterministic bits of length d

2 logn to remove this quantifier. For every such string, we perform
a no(1)-time computation, hence we get that NDepth [d logn] ⊆ (∃nd/2)TIME[nd/2+o(1)] =
NTIME[nd/2+o(1)].

The inclusion in coNTIME[nd/2+o(1)] follows from the closure of NDepth [d logn] under
complement. J

Next, we show that the assumption SAT ∈ NDepth [c logn] extends to every language in
NP without significant overhead.

I Lemma 4.5. If SAT ∈ NDepth [c logn], then for every d ≥ 1, NTIME[nd]∪coNTIME[nd] ⊆
NDepth [c · d logn].

Later, this result will allow us to remove the quantifier from an alternating class, at the cost
of an increased depth of the verifier.

A key idea for the proof of Lemma 4.5 is the fact that any language in NTIME[n] can be
reduced to SAT via so-called uniform poly-log time first-order projections, where instances of
size n can be mapped to formulas of size n1+o(1) [20, 48]. A first-order projection is a depth
0 circuit, i.e., each output bit is either a constant (0 or 1), an input xi, or its negation ¬xi.
For an in-depth exposition of first-order projections, see for example [1, End of Sec. 3].

Proof of Lemma 4.5. We first prove that SAT ∈ NDepth [c logn] implies that NTIME[n] ⊆
NDepth [c logn].

Let L ∈ NTIME[n]. As stated above, L is Karp-reducible to SAT via uniform poly-log
time first-order projections, with instances of size n reduced to formulas of size n1+o(1). Now,
notice that the composition of a NAND formula of depth d with a first-order projection
is also a NAND formula of depth d: it only consists in relabeling leaves of the formula.
Poly-log time uniformity is also preserved. Therefore, we can use (c+o(1)) logn-depth NAND
formulas for SAT on n1+o(1) inputs to decide L by composing them with the first-order
projection; the resulting formula has size (c+ o(1)) log(n1+o(1)) = (c+ o(1)) logn, therefore
L ∈ NDepth [c logn].

We now use a padding argument to lift this result to NTIME[nd]. Let d > 1 and let
L ∈ NTIME[nd]: the padded language L′ = {x1|x|d−|x| | x ∈ L} is in NTIME[n], and therefore
L′ ∈ NDepth [c logn]. We can then use the formula descriptor A for L′ to build a machine B
that describes formulas of depth (c+ o(1)) log

(
nd+o(1)) = (c · d+ o(1)) logn for L as follows.

On input (x, b, n), the machine B calls A on the input (x1|x|d−|x|, b, nd). If A outputs a gate
type or a constant, B outputs the same information. If A outputs a literal x∗i , B outputs the
same x∗i if i ≤ n, and 1 otherwise. Passing x as input to the resulting formula is equivalent
to passing x1|x|d−|x| as input to the formula described by A. This construction shows that
L ∈ NDepth [c · d logn]. In summary, we have shown that

∀d ≥ 1,NTIME[nd] ⊆ NDepth [c · d logn] .

The result follows since NDepth [c · d logn] is closed under complement. J

We need to be careful when applying this result to alternating classes6: the (i+ 1)-th
computation stage takes as input a string of length m = nai , not n. Since the previous result

6 See Definition 2.1 for the definition of alternating classes and of (ai).
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only holds for NTIME[nd] when d is at least 1, we need to take into account the edge case
where the running time of the (i+ 1)-th stage is sublinear in the size of its input. (This is
the case below in the proof of Lemma 4.2.)

While the primary use of the Speedup Rule (Lemma 4.1) is to reduce the depth of the
verifier at the cost of increasing the number of quantifiers, we show that we can combine it with
the above lemma to efficiently remove quantifiers from an alternating NDepth computation.

I Lemma 4.2 (Slowdown Rule). Assume that SAT is in NDepth [c logn] for some c > 0.
Then, for every a, b ≥ 1 and d > 0, we have:

. . . (Q na)(¬Q nb)NDepth [d logn] ⊆ . . . (Q na)NDepth [c ·max(d/2, a, b) logn] ,

where Q ∈ {∃,∀} and ¬Q is the opposite quantifier.

Proof. Without loss of generality, assume that Q = ∀, and therefore ¬Q = ∃. In that case,
for all q, r > 0, we have (∃nq)NTIME[nr] ⊆ NTIME[nmax(q,r)]. Applying Corollary 4.4 on the
NDepth [d logn] part, and applying the above observation, leads to the following:

. . . (∀na)(∃nb)NDepth [d logn] ⊆ . . . (∀na)(∃nb)NTIME[nd/2+o(1)]

⊆ . . . (∀na)NTIME[nmax(d/2,b)+o(1)].

Now, consider the NTIME[nmax(d/2,b)+o(1)] language L that corresponds to the last stage
of the alternating computation, and its corresponding nondeterministic machine M . This
M takes as input a string of length m = na, and its runtime, as a function of m, is
mmax(d/2,b)/a+o(1). We apply the Slowdown Rule (Lemma 4.2) to M . There are two possible
cases:

If max(d/2, b)/a < 1, then we have

L ∈ NTIME[mmax(d/2,b)/a] ⊆ NTIME[m] ⊆ NDepth[c logm] ⊆ NDepth [c · a logn] .

Since max(d/2, b) < a, we have a = max(d/2, a, b) and therefore NDepth [c · a logn] =
NDepth [c ·max(d/2, a, b) logn].
Otherwise, max(d/2, b) ≥ a, and applying the Slowdown Rule yields

L ∈ NTIME[mmax(d/2,b)/a] = NTIME[nmax(d/2,b)] ⊆ NDepth [c ·max(d/2, a, b) logn] .

J

Conditional Depth Hierarchy for NAND Formulas

We now prove the Conditional Depth hierarchy theorem, stated without proof in Section 4.1.

I Theorem 4.3 (Conditional Depth Hierarchy Theorem). For every c > 0, if NTIME[n] ⊆
NDepth [c logn], then for all b > a ≥ 1,

NDepth [a logn] ( NDepth [b logn] .

Proof. Assume that there exists c such that NTIME[n] ⊆ NDepth [c logn]. In that case, the
hypotheses of Lemma 4.5 are satisfied.

We prove the theorem by contradiction. Assuming there exists 1 ≤ a < b such that
NDepth [b logn] ⊆ NDepth [a logn], we show this implies for every d ≥ a that NDepth [d logn] ⊆
NDepth [a logn]. Indeed, a padding argument shows that NDepth [r · a logn] ⊆ NDepth [a logn]
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implies NDepth
[
r2 · a logn

]
⊆ NDepth [r · a logn] ⊆ NDepth [a logn] for any r > 1. Taking

r = b/a > 1 and iterating this argument t = dlog2 logr(d/a)e times, we get

NDepth [d logn] ⊆ NDepth
[
r2t logn

]
⊆ NDepth [a logn] .

Now, assuming that there exists c ≥ 1/2 such that NTIME[n] ⊆ NDepth [c logn], we have:

NTIME[n2a] ⊆ NDepth [2ca logn]
⊆ NDepth [a logn]

⊆ NTIME[na+o(1)].

The first inclusion follows Lemma 4.5, whereas the second inclusion follows from the above
argument, as 2c > 1. The last inclusion uses the efficient simulation of NDepth by (non-
deterministic) RAMs. The proof for c < 1/2 is similar, except that the second inclusion
follows from 2c < 1. We have proven NTIME[n2a] = NTIME[na+o(1)] for some a ≥ 1, which
contradicts the Nondeterministic Time Hierarchy Theorem. J

Note that this theorem relies heavily on the assumption that SAT ∈ NDepth [c logn], hence
this theorem is conditional, but it is sufficient for our use case. It is an open problem to give an
unconditional depth hierarchy theorem that separates NDepth [a logn] from NDepth [b logn]
for any a < b.

4.3 The Structure of Good Proofs
In this section, we show how to construct alternation-trading proofs that reach a contradiction
from the assumption SAT ∈ NDepth [c logn] for any c < 4 cos(π/7). While these proofs might
not be the shortest that yield a contradiction for a given c, they present a very simple
inductive structure that makes them easier to analyze.

We introduce here the proof annotation notation of Williams [36], that succinctly de-
scribes an alternation-trading proof: let 1x denote an application of the Speedup Rule with
parameter x, and let 0 denote an application of the Slowdown Rule. The proof annotation
of an alternation-trading proof is the string corresponding to the concatenation of the rep-
resentations of each step. For example, the proof annotation corresponding to the short
alternation-trading proof presented in Section 4.1 is 1200 (one application of the Speedup
Rule with parameter x = 2, followed by two applications of the Slowdown Rule).

I Observation 4.6. Consider an alternation-trading proof starting from

. . . (Qk nak)NDepth [d logn]

and that never goes below k quantifiers and ends with the class

. . . (Qk nak)NDepth [d′ logn] .

Then we have d′ ≥ c · ak.

This is due to the presence of ak, the exponent of the last quantifier, inside the max that
defines the depth of the class obtained after an application of the Slowdown Rule (Lemma 4.2).
In what follows, we aim to reach d′ = c · ak, and want to apply this process inductively, i.e.,
the last line before . . . (Qk nak)NDepth [d logn] will be

. . . (Qk+1 n
ak+1)NDepth [c · ak+1 logn] ,

which implies that d = c2

2 ak+1. Not all values can be reduced to c · ak: a study of necessary
and sufficient conditions will give us a lower and an upper bound on ak+1 in terms of c and
ak, from which we will derive an explicit construction of an optimal choice of values for (ak)k.
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4.3.1 Reducing the Depth

The critical part is managing to reduce the depth of the verifier from
(
c2

2 · ak+1

)
logn to

cak logn, while preserving the last quantifier exponent to ak. One way to do this is by
applying a sequence of Speedup-Slowdown alternation. One application of Speedup then
Slowdown proves the following:

. . . (Qk nak)NDepth [d logn] ⊆ . . .
(
Qk n

max(ak,x)
)

(Qk+1 n)NDepth [(d− 2x) logn] (Speedup with x)

⊆ . . .
(
Qk n

max(ak,x)
)
NDepth [c ·max(ak, x, (d− 2x)/2, 1) logn] (Slowdown)

Since we do not want to increase the exponent of the Qk quantifier, we get the following
constraint:

x ≤ ak (2)

Moreover, assuming that ak is at least 1 allows us to reformulate the last class as

. . . (Qk nak)NDepth [c ·max(ak, (d− 2x)/2) logn] .

From here, we can get the following:

I Lemma 4.7 (“Squiggle rule”). Let a, d be positive real numbers such that ac < d < 2ca
c−2 .

Then, the proof (1a0)t for t =
⌈

d
(4−c)a

⌉
+ 1 proves that

. . . (Q na)NDepth [d logn] ⊆ . . . (Q na)NDepth [ca logn] .

Proof. If d/2 − a ≤ a, or equivalently, d ≤ 4a, then we get the desired result using an
application of the Speedup Rule with x = d/2− a, followed by the Slowdown Rule.

We now assume that d > 4a, and show that we can get to d′ ≤ 4a in a finite number
of steps. When d ≥ 4a, applying the Speedup Rule with parameter x = a followed by the
Slowdown Rule transforms d is into c · (d/2− a).

This is an improvement whenever d is such that:

d <
2ca
c− 2 (3)

Moreover, as long as c < 4, we have 2c
c−2 > 4, hence there is a gap between 4a and 2ca

c−2 where
we can get a non-trivial improvement.

The improvement is d(1− c/2) + ca, which is at least (4− c)a, since we are in the case
d > 4a. Therefore, as the improvement is bounded below by a constant independent of d,
iterating this process starting from d reaches a value below 4a in at most

⌈
d

(4−c)a

⌉
steps,

after which one more step with parameter x = d/2− a yields the desired ca logn depth. J

4.3.2 Putting it all together
Lemma 4.7 shows that, in order to reach depth cak logn starting from depth d logn, we
need d < 2cak

c−2 . As we aim for an inductive structure with d = c2

2 ak+1, we obtain:

ak+1 <
4ak

c(c− 2) (4)

Notice that 4
c(c−2) < 1 whenever c > 2φ = 1 +

√
5, where φ denotes the golden ratio.

Equation (4) captures most of the requirements for the parameters of an alternation-
trading proof that yields a contradiction under the assumption SAT ∈ NDepth [c logn], which
leads us to the following definition:
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I Definition 4.8. Let c > 2φ. A sequence of real number (ak)k=0,...,t is well-behaved for c
if the following holds:
1. for every k = 0, . . . , t, ak ≥ 1,
2. at = 1,
3. for every k = 0, . . . , t, cak+1/2 ≥ ak, and
4. for every k = 0, . . . , t− 1, ak+1 <

4ak
c(c−2) .

Notice that constraint 4 above implies that ak+1 < ak, since 4
c(c−2) < 1 when c > 2φ.

The following lemma gives a formal proof of the intuition that the conditions of Defini-
tion 4.8 are sufficient to obtain a contradiction using an alternation-trading proof.

I Lemma 4.9. Let c > 2φ, let (ak)k=0,...,t be a sequence well-behaved for c, and let d0 =
2
(

1 +
∑t
k=0 ak

)
. Then there exists an alternation trading proof that shows

NDepth [d0 logn] ⊆ NDepth
[
c2

2 a0 logn
]
.

Proof. The proof starts by applying t speedups, with respective parameters 2a1, 2a2, . . . , 2at.
We obtain the following:

NDepth [d0 logn] ⊆ (∃na0)(∀n)NDepth [d0 − 2a0 logn]
⊆ (∃na0)(∀na1)(∃n)NDepth [d0 − 2a0 − 2a1 logn]

⊆
...

⊆ (∃na0) . . . (Qtnat)(Qt+1n)NDepth
[
d0 − 2

t∑
k=0

ak logn
]

= (∃na0) . . . (Qtnat)(Qt+1n)NDepth [2 logn]

The last equality follows from the definition of d0.
Then, applying the Slowdown Rule yields the class

(∃na0) . . . (Qtnat)NDepth [c · at logn] .

We will now repeat t successive applications of the Slowdown Rule and Squiggle rule.
Informally, it will give us the following inclusions:

(∃na0) . . . (Qtnat)NDepth [c · at logn] ⊆ (∃na0) . . . (Qt−1n
at−1)NDepth

[
c2

2 · at logn
]

(Slowdown)

⊆ (∃na0) . . . (Qt−1n
at−1)NDepth [c · at−1 logn] (Squiggle)

...
⊆ (∃na0)NDepth [c · a0 logn]

⊆ NDepth
[
c2

2 a0 logn
]

(Slowdown)

This can be shown formally by induction, using the fact that (ak)k is well-behaved for c:
during the i-th step (i = 0, . . . , t− 1), we have the following properties:
1. before applying the Slowdown Rule, the depth of the verifier is c · at−i logn,
2. after applying the Slowdown Rule, the depth is c2

2 at−i logn,
3. after applying the Squiggle rule, the depth is c · at−i−1 logn.
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At step i = t, we only apply the Slowdown Rule (we cannot apply the Squiggle Rule: there
is no leading quantifier).

Property 1 is true for i = 0, and then holds by induction when Property 3 holds for
i − 1. Property 2 holds whenever Property 1 holds, by definition of the Slowdown Rule
(Lemma 4.2), and using the fact that ai ≥ 1 and cai > ai−1. Finally, Property 3 hold when
Property 2 holds: we can apply the Squiggle rule (Lemma 4.7) as a is well-behaved for c,
which ensures that i = 0, . . . , t− 1, ai+1 <

4ai
c(c−2) . J

Given c < 4 cos(π/7), the last step is to construct a sequence of parameters that is
well-behaved for c and such that d0 >

c2

2 a0, which yields the desired contradiction. Using
the insight gained in this section, we can construct such a sequence explicitly.
I Lemma 4.10. Let c ∈ (2φ, 4 cos(π/7)), and let τ = c(c−2)

4 . Then there exists an integer t
such that, for ε = 1/(t+ 1),

the sequence (ak = r · τ t−k − ε)k=0,...,t, where r = 1 + ε, is well-behaved for c,
d0 = 2

(
1 +

∑t
k=0 ak

)
is greater than c2

2 a0.

Proof. We first check that (ak)k is well-behaved for c. First, as r = 1 + ε, we have at = 1,
and since τ > 1, we have ak ≥ 1 for every k = 1, . . . , t. Now, for every k < t, we have
ak + ε = τ · (ak+1 + ε), which, combined with τ > 1 implies that

ak+1 = ak/τ + ε(τ−1 − 1) < ak
τ

= 4ak
c(c− 2) .

The constraint cak+1 ≥ ak can be rewritten as

ak+1

( c
2 − τ

)
≥ ε(τ − 1).

As ε = 1/(t+ 1) and τ is independent of t, the RHS of this inequality goes to 0 as t goes to
infinity, and ( c2 − τ) > 0 when c is greater than 3 (which is the case here since c > 2φ > 3).
Therefore, there exists a t such that the inequality holds for every k, and the sequence
(ak)k=1,...,t is well-behaved for c.

We now show that there exists a t such that d0 >
c2

2 a0. We have:

d0 = 2
(

1− (t+ 1)ε+
t∑

k=0
rτk

)

= 2
(

1− 1 + r

t∑
k=0

τk

)

= 2r τ
t+1 − 1
τ − 1

Therefore, we have

d0 >
c2

2 a0 ⇔ 2r τ
t+1 − 1
τ − 1 >

c2a0

2

⇔ r
ττ t − 1
τ − 1 >

c2(rτ t − ε)
4

⇔ rτ t
[
c2

4 −
τ

τ − 1

]
<
−1
τ − 1 + ε

c2

4

⇔ c2

4 τ −
c2

4 − τ < (rτ t)−1
[
−1 + c2(τ − 1)

4(t+ 1)

]
⇔ c2

4 τ −
c2

4 − τ <
−1

(1 + ε)τ t + c2(τ − 1)
4(t+ 1)(1 + ε)τ t (∗)
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We can rewrite the LHS of the last inequality (∗) as follows:

c2

4 τ −
c2

4 − τ = c3(c− 2)
16 − c2

4 −
c(c− 2)

4

= 1
4

(
c4

4 −
c3

2 − 2c2 + 2c
)

= c

16
(
c3 − 2c2 − 8c+ 8

)
This allows us to rewrite the inequality (∗) as:

c3 − 2c2 − 8c+ 8 < 16
c

−1
(1 + ε)τ t + c2(τ − 1)

4(t+ 1)(1 + ε)τ t (5)

The LHS of Inequality (5) does does not depend on t, while the RHS is negative and goes
to 0 as t goes to infinity. Therefore, for every δ < 0, there exists a t such that the RHS is
greater than δ, and therefore Inequality (5) is satisfied as soon as we have:

c3 − 2c2 − 8c+ 8 < δ.

The polynomial P = X3 − 2X2 − 8X + 8is negative whenever X is between its 2nd largest
root r2 ' 0.89 and its largest root r1 = 4 cos(π/7): our parameter c satisfies this condition.
Therefore, if we choose δ = P (c)/2, there exists a t such that we have

P (c) < δ <
16
c

−1
(1 + ε)τ t + c2(τ − 1)

4(t+ 1)(1 + ε)τ t ,

i.e. Inequality (5) is satisfied, and d0 >
c2

2 a0.
As the alternation-trading proof with parameters (ak)k shows that

NDepth [d0 logn] ⊆ NDepth
[
c2

2 a0 logn
]
,

we get a contradiction of Theorem 4.3 from the assumption SAT ∈ NDepth [c logn]. J

Lemma 4.10 proves Theorem 1.4 for c ∈ (2φ, 4 cos(π/7)). To extend this result to c ≤ 2φ,
it suffices to notice that in that case, we have NDepth [c logn] ⊆ NDepth [(2φ+ ε) logn],
hence it reduces to the former case.

Optimality of the Results.

Finally, we comment briefly on the potential optimality of our results (within known tech-
niques). In the case of SAT vs small-space algorithms, Buss and Williams [9] proved that
the result SAT /∈ TISP

[
nc, no(1)] for c < 2 cos(π/7) is optimal for the alternation-trading

proofs framework. This was later extended and simplified by Mudigonda and Williams [36],
who showed lower bounds against randomized and quantum classes. As far as we can tell, it
appears that their generalization covers our framework as well, therefore we cannot prove
SAT /∈ NDepth [c logn] for c ≥ 4 cos(π/7) without finding a new (and improved) way to speed
up NDepth computation using alternations.

5 Conclusion

In this paper, we have considered two rather disparate approaches to proving stronger depth
lower bounds: one for the non-uniform setting, and another for the uniform case. Let us
highlight a few interesting steps for further work.
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The Non-Uniform Setting.

Obviously the most pressing open problem is to design faster #SAT algorithms for DeMorgan
formulas. Until now, researchers designing faster SAT algorithms for formulas and other weak
classes have generally stated their time bounds in the form 2n−nδ where δ > 0 is unspecified.
Our work has shown that improving these δ factors, even for slightly-superquadratic formulas,
would have interesting lower bound implications.

Another open problem is to consider other forms of circuit-analysis algorithms, and
understand their implications. It is surprising (to us) that #SAT for formulas can be so
powerful. The main intuition is that, by using low-degree approximate polynomials for
formulas, the act of counting SAT assignments actually performs a non-trivial amount of the
formula evaluation itself. Are there other representations of formulas which can be similarly
exploited?

The Uniform Setting.

As mentioned in the introduction, the uniform lower bounds we have proved are “merely”
depth lower bounds, which are weaker than size lower bounds, since the latter directly imply
the former. However, Spira [44], Brent [8], and Bonet and Buss [7] have given a partial
converse, that allows converting a cα logn depth lower bounds into an nc size lower bound,
where α > 1 depends on the computational basis. Unfortunately, for NAND formulas, the
best known conversion theorems have α > 2, making them useless for our purposes. For most
families of formulas, the current best constants in the depth-to-size conversion theorems are
not known to be tight.7 So it might be possible to improve them, and use our result to prove
nontrivial (and even super-cubic) size lower bounds.

The depth hierarchy theorem that we use in this work is conditional, and to our knowledge
there is no unconditional equivalent. The diagonalization arguments used for uniform
computational models are hard to translate to low-depth formulas, as there is no known
efficient universal simulation of NAND gate formulas by a slightly larger NAND gate formula.

Finally, another immediate open problem is to lift our lower bounds for NAND gates to
other computational bases. For example, one may allow AND/OR gates in any arrangement,
or one might allow layers of XOR and ¬XOR (equality) gates, along with layers of OR/AND
gates.
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A Andreev’s Function in Low NAND Depth

In this section, we show that Andreev’s function, known to require depth (3− o(1)) log2(n)
for DeMorgan formulas, can be implemented by NAND formulas of (3 + o(1)) log2(n) depth.
This makes our depth lower bound against the Satisfiability problem all the more compelling.

Andreev’s function is the composition of two functions: the “indexing function” or
“storage address function”, which takes as input a bitstring of length n = 2k and an index i
encoded in binary on k bits and outputs xi, the i-th bit of x, and the PARITY function. In
particular, In Andreev’s function, each bit of the index i in the indexing function is replaced
by a PARITY on 2k/k bits, so that the overall function takes O(2k) inputs.

We claim that the indexing function on bitstrings of length n has a NAND formula of
depth (1 + o(1)) log2(n), and the PARITY function on n variables has a NAND formula of
depth (2+o(1)) log2(n). It follows that Andreev’s function has NAND depth (3+o(1)) log2(n).

First, we observe the depth bound for PARITY. In fact, the natural recursive construction
works. For n = 2, PARITY on x, y is equivalent to

(x ∧ ¬y) ∨ (¬x ∧ y)

and ¬PARITY is equivalent to

(x ∧ y) ∨ (¬x ∧ ¬y).

Since

(a ∧ b) ∨ (c ∧ d) ≡ NAND(NAND(a, b),NAND(c, d)),

https://eccc.weizmann.ac.il/report/2015/114
http://arxiv.org/abs/TR15-114
https://doi.org/10.1561/0400000012
https://doi.org/10.1016/j.tcs.2005.09.020
https://doi.org/10.1007/s00037-009-0273-5
https://doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.4086/toc.2018.v014a017
https://doi.org/10.4086/toc.2018.v014a017


G. Bathie and R. R. Williams 29

there is an NAND formula of depth 2 for n = 2 variables. Let us inductively assume that
PARITY and its negation on 2k variables both have NAND formulas of depth 2k. Then,
PARITY on n = 2k+1 variables can be expressed as

(X ∧ ¬Y ) ∨ (¬X ∧ Y ) ≡ NAND(NAND(X,¬Y ),NAND(¬X,Y )),

where X and Y denote parities on 2k variables. This corresponds to a NAND formula of
depth 2k + 2. Similarly, ¬PARITY on 2k variables has NAND depth 2k + 2.

We now show that the indexing function has NAND depth close to log2 n.

I Lemma A.1. For every n = 2k, the indexing function over length-n bitstrings has NAND
formulas of depth log2(n) +O(log logn).

Proof. We first show by induction over k a slightly different statement: for every n = 2k,
the indexing function over length-n bitstrings has a formula that is a NAND tree of depth
log2 n composed with n (arbitrary) formulas of size k = O(logn), each of these formulas
having a single bit of x among their inputs (along with bits of i).

For k = 1, given x ∈ {0, 1}2 and i ∈ {0, 1}, we have

Index(x, i) = (x0 ∧ ¬i) ∨ (x1 ∧ i) = NAND(NAND(x0,¬i),NAND(x1, i))

, hence the indexing function over 2 inputs can be written as a NAND tree of depth 1
composed with formulas of size 1 (which happen to be NANDs in that case).

Now, assume that we have such a formula for some k. To build a formula for k + 1, we
compose with a NAND gate the tree T0 for indexing ¬x0, . . . ,¬x2k−1 with i0, . . . , ik−1 and
the tree T1 for indexing ¬x2k , . . . ,¬x2k+1 with i0, . . . , ik−1. If i0, . . . , ik−1 encode the integer
t, the output of this formula is NAND(¬xt,¬x2k+t) = xt ∨ x2k+t. By replacing the literals
x∗l in the formulas at the leaves of the tree by x∗l ∧¬ik in T0 and by x∗l ∧ ik in T1 for every l,
we obtain a formula equivalent to

(xt ∧ ¬ik) ∨ (x2k+t ∧ ik),

which is equal to xt if ik is 0, and to x2k+t otherwise: this is exactly xi. Notice that, since
each leaf formula contains a single xl as input, this transformation adds at most one gate to
each leaf formula, which has size at most k + 1. This concludes the induction.

To obtain the desired result, notice that an arbitrary formula of size s can be turned into
an equivalent NAND formula of size O(s), and using the result of Brent [8] and Spira [44],
one can turn a NAND formula of size s′ into an equivalent NAND formula of depth O(log s′).
Applying these transformations to the formulas of size O(k) at the leaves of the NAND
tree, we obtain a formula of depth log2 n+O(log k) = log2(n) +O(log logn) for the indexing
function. J

Notice that this implies in particular that any boolean function on n variables has NAND
formulas of depth n + O(logn), as any function can be written as indexing over its truth
table. This result can be improved to n+O(log∗ n), see [34, Theorem 3.6] for further details.
This is similar to what can be achieved in the DeMorgan basis, and shows the expressiveness
of NAND formulas.
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