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Abstract
We solve the derandomized direct product testing question in the low acceptance regime, by constructing

new high dimensional expanders that have no small connected covers. We show that our complexes have
swap cocycle expansion, which allows us to deduce the agreement theorem by relying on previous work.

Derandomized direct product testing, also known as agreement testing, is the following problem. Let
X be a family of k-element subsets of [N ] and let {fs : s → Σ | s ∈ X} be an ensemble of local functions,
each defined over a subset s ⊂ [N ]. Suppose that we run the following so-called agreement test: choose a
random pair of sets s1, s2 ∈ X that intersect on

√
k elements, and accept if fs1 , fs2 agree on the elements

in s1 ∩ s2. We denote the success probability of this test by Agree({fs}). Given that Agree({fs}) = ε > 0,
is there a global function G : [N ] → Σ such that fs = G|s for a non-negligible fraction of s ∈ X ?

We construct a family X of k-subsets of [N ] such that |X| = O(N) and such that it satisfies the low
acceptance agreement theorem. Namely,

Agree({fs}) > ε =⇒ ∃G : [N ] → Σ, P
s
[fs

0.99
≈ G|s] ⩾ poly(ε).

A key idea is to replace the well-studied LSV complexes by symplectic high dimensional expanders (HDXs).
The family X is just the k-faces of the new symplectic HDXs. The later serve our needs better since their
fundamental group satisfies the congruence subgroup property, which implies that they lack small covers.
We also give a polynomial-time algorithm to construct this family of symplectic HDXs.

1 Introduction
Any function f : [N ] → Σ can be encoded by specifying its restrictions to certain subsets s1, s2, . . . ⊂ [N ].
The direct product encoding specifies the restriction of f to all k-element subsets. While certainly redundant,
this encoding allows an algorithm such as a PCP verifier to access k inputs of f with only a single query to
the direct product encoding. But, this is only useful as long as the encoding is valid. An agreement test is a
property tester for the validity of this encoding. The natural two-query test, called the V-test, is as follows:
choose a random pair of sets s1, s2 with prescribed intersection size (

√
k in our case) and accept if fs1 , fs2

agree on the elements in s1 ∩ s2.
Direct product tests were introduced by Goldreich and Safra in [GS97] as an abstraction of PCP low

degree tests. A sequence of works analyzed direct product tests, [GS97; DR06; DG08; IKW12; DS14b; DL17].
There are two main parameter regimes of interest. The “99%” or high acceptance regime which is natural in
the world of property testing, and the “1%” or low acceptance regime, which is the main regime of interest in
the world of PCPs, and is often more challenging. In this regime the goal is to show that given an ensemble
of local functions {fs}s∈X , where X is some family of subsets, even if the test accepts with a small but
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non-negligible probability ε, the given encoding is ε′ correlated to a valid one, for some ε′ that depends
favorably on ε. Denoting the success probability of the test by Agree({fs}),

Agree({fs}) > ε =⇒ ∃G : [N ] → Σ, P
s
[fs≈G|s] ⩾ ε′. (1.1)

The high redundancy of the direct product encoding, taking N symbols to (N
k ) ≈ Nk symbols, has lead

researchers to look for derandomized direct product tests. Derandomization means, in this context, coming up
with a family of k-sets that is much smaller than (N

k ), and with an appropriate testing distribution, such that
the new encoding supports an agreement test just like in the fully redundant direct product case. Goldreich
and Safra [GS97] showed a certain derandomized direct product test in the 99% regime, and Impagliazzo,
Kabanets, and Wigderson [IKW12] showed a derandomized direct product test in the 1% regime, with a
family of k-sets whose size is N c for some c > 2 that is independent of k.

The recent emergence of the area of high dimensional expansion gave hope for a derandomized direct
product test using a family of subsets that is based on high dimensional expanders. One of the early works
that involve high dimensional expanders within theoretical computer science [DK17] has shown that indeed,
local spectral expanders provide an optimal derandomization for direct product tests in the 99% regime (the
work [DK17] has some restrictions which were later removed in [DD19]).

The works of [DK17; DD19] combine spectral techniques from high dimensional expansion with combina-
torial machinery from the non-derandomized setup. For a while it wasn’t clear why these techniques fail to
go beyond the 99% regime and into the 1% regime.

It turns out that unlike the case of the 99% regime, not every high dimensional expander supports a 1%
agreement test. The obstacle was discovered recently, in two concurrent works [DD23a; BM23]: complexes X
that have small covers do not support an agreement test (for a definition of a covering map, see Section 2.2),
since the cover itself provides a counterexample.

Both [BM23] and [DD23a] show that an agreement theorem holds for any high dimensional expander
that lacks small covers1. Moreover, embracing the cover obstacle, [DD23a] proved a modified agreement test
theorem which shows that for high dimensional expanders, covers are the only obstacle. The theorem, whose
details are given in full below in Theorem 1.4, holds under an additional condition on the complex, which
is called swap cocycle expansion. Swap cocycle expansion of a complex X pertains to cocycle expansion of
a related complex, called the faces complex, and denoted FX (see Definition 2.16). It was further shown
in [DD23c] that the spherical building An associated with SLn(Fp) is a swap cocycle expander2. Spherical
buildings lack any connected covers, so the above theorems suffice for deducing a derandomized direct product
test (see [DD23a, Corollary 1.6]) with parameters improving upon the previously best known from [IKW12].
Nevertheless, the complex An is not bounded-degree, so it still does not solve the main problem, which is to
find a family of subsets of [N ] whose size is linear in N , and which supports a 1% agreement test.

1.1 Results
We construct new high dimensional expanders with no small covers, and show that they support 1% agreement
tests. Our complexes are constructed as quotients of the affine Bruhat-Tits building associated with the
symplectic group Sp(2g, Qp), denoted Let C̃g = C̃g(Qp). We provide some background in Section 2.2. Our
main theorem is as follows,

Theorem 1.1. For every ε > 0, there exist c > 0 and large enough integers k < g and a prime p such that the
following holds. There exists an infinite family of constant degree connected g+ 1-partite simplicial complexes
{XN }N that are finite quotients of C̃g such that XN has N vertices and Og(N) faces, and such that the
following holds. Let Σ be a finite alphabet, and let {fs : s → Σ | s ∈ X(k)} be an ensemble of local functions
on X(k) (where X is any complex in the family {XN }). Let Agree({fs}) denote the success probability of
the agreement test with respect to the distribution that chooses s1, s2 ∈ X(k) conditioned on |s1 ∩ s2| =

√
k.

Then
Agree({fs}) > ε =⇒ ∃G : X(0) → Σ, P

s
[fs ≈ G|s] ⩾ εc. (1.2)

1[BM23] don’t use the language of covers but rather of UG coboundary expansion, with respect to non-abelian group
coefficients. It is known, see e.g. [DM22], that coboundary expansion with non abelian coefficients is related to covers and their
stability.

2In previous works, this was termed a swap cosystolic expander.
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where f ≈ f ′ indicates that the two functions agree on 0.99 of their domain.

This theorem was also concurrently proved by [BLM24].
In Section 5.3 we will show that one can choose the complexes in Theorem 1.1 to be polynomially

constructible.
In previous work, [DD23a] showed a similar conclusion under the assumption that X is a quotient of the

building associated with SLn(Qp), and assuming that it has no small covers. Unfortunately, it is not known
how to construct such a quotient. The novel idea of the current paper is to replace SLn(Qp) by Sp(2g, Qp)
and to construct complexes that are analogous to those of [LSV05b; LSV05a] with the additional property of
having no small cover.

Theorem 1.2. Let m ⩾ 2 and g ⩾ 100
√
m log(m). For every prime p, there exists an infinite family of

connected simplicial complexes X that are finite quotients of C̃g(Qp) such that every X has no connected
m′-covers for any 1 < m′ ⩽ m.

The case of m = 2 follows from [CL23b]. Given Theorem 1.2, the remaining work is to show swap
coboundary expansion (a key requirement for the agreement theorem to hold, see Definition 2.17) for buildings
of symplectic type. This was previously shown [DD23c] for buildings associated with SLn. We adapt those
techniques for the symplectic case, and show,

Theorem 1.3. Let d be an integer. There is some p0 = p0(d) such that for all primes p > p0 the following
holds. Let X be a quotient of C̃g(Qp), the affine symplectic building associated with Sp(2g, Qp), for g ⩾ d5.
Then X is a (d, exp(−O(

√
d)))-swap cocycle expander.

We rely on the following low soundness agreement theorem from [DD23a].

Theorem 1.4 (Informal version of Theorem 4.10). Let k ∈ N, and let ε > Ω(1/ log k). There exists λ > 0
and a sufficiently large d > k such that the following holds. Let X be a d-dimensional λ-high dimensional
expander with (d, exp(−O(

√
d))-swap-cocycle-expansion. Let {fs : s → Σ | s ∈ X(k)} be an ensemble of local

functions on X(k).

Agree({fs}) > ε =⇒ ∃Y ρ−→→ X, ∃G : Y (0) → Σ, P
s
[fs is explained by G] ⩾ poly(ε). (1.3)

where ρ : Y → X is a ℓ = poly(1/ε) covering map.

Here by “explained” we formally mean that there exists some s̃ ∈ ρ−1(s) such that fs ≈ G ◦ ρ|s̃. We
remark that a similar result was shown in [BM23] for the simplified case where X has no connected covers of
size poly(1/ε), which still suffices to prove Theorem 1.1.

Since we construct in Theorem 1.2 complexes X with no connected m-covers, for m ⩽ poly(1/ε), we
deduce that Y must be a collection of disjoint copies of X and this proves our main result.

1.2 Proof overview
Our main theorem, Theorem 1.1, is stated in terms of agreement testing. We rely on Theorem 1.4 from
[DD23a] which translates the problem into constructing a complex that is a swap cocycle expander with
no non-trivial covers of size ⩽ m = poly(ε). If X is such a complex, then the cover Y appearing in (1.3) is
necessarily disconnected into m disjoint copies of X. It follows easily that in such a situation there exists at
least one disjoint copy of X such that the restriction of the function G to that copy also satisfies (1.2), thus
proving Theorem 1.1.

Previous work on the quotients of Ãn, the SLn-affine building, showed that they are sufficient swap
cocycle expanders on which one can apply Theorem 1.4, [DD23c]. These complexes include the [LSV05a]
complexes. Unfortunately, it is not known whether there exist such complexes that have no small covers. In
fact, by [KKL14] some [LSV05a] complexes are known to have 2-covers. Therefore we searched for complexes
that are similar enough to those of [LSV05a], so that we could argue about the swap cocycle expansion, but
distinct enough so that we could also show that they have no small covers.

The solution to our problem is going symplectic. An [LSV05a] complex X is a quotient of Ãn(Qp), the
affine SLn-building by some lattice Γ ⩽ SLn (i.e. a discrete cocompact subgroup). As Ãn(Qp) is simply
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connected, a classical fact from topology is that X has a connected m-cover if and only if Γ has a subgroup
Γ′ ⩽ Γ of index m. This observation appeared in [KKL14], which showed that [LSV05a] complexes with no
2-covers exist, relying on a special case of Serre’s conjecture [Ser70], namely, the congruence subgroup property
on SLn. Recent work [CL23b], used the fact that this conjecture is known to hold in the symplectic group,
Sp(2g, Qp), to construct such complexes with no connected 2-covers and to show that they are coboundary
expanders over F2. These complexes are quotients of C̃g, the affine symplectic building. Our work extends
this idea to any m > 1 by choosing carefully different parameters. That is, for any fixed m, we construct
quotients of C̃g that have no connected m′-covers for all m′ < m.

Constructing the complexes We construct a family of subgroups Γ ⩽ Sp(2g, Qp) and quotient C̃g by
them to construct our family of agreement testers. As a first step, we use [LD81] which says that there is
a 1 − 1-correspondence between m-index subgroups of Γ and m-index open subgroups of Γ̂, the profinite
completion of Γ (see Section 5 for the precise definition of the profinite completion). For Γ ⩽ Sp(2g, Qp) as
above, the congruence subgroup problem has an affirmative solution (proven by Rapinchuk [Rap89]), from
this solution one obtains a clear structure of the profinite completion from which one can describe all small
index open subgroups.

Using the identification of Sp(2g, Qp) with a unitary group over a suitable quaternion algebra, we construct
a discrete cocompact arithmetic subgroup of Γ0 ⊆ Sp(2g, Qp). We call this lattice Γ0 and search for our
subgroups inside Γ0. Inside this Γ0, we are able to show existence of normal subgroups Γ0 ⩾ Γ1 ⩾ Γ2 ⩾ . . .
whose profinite completion is well structured - it is a product Γ̂i = Hi ×

∏
q Sp(2g, Zq) for some primes q.

The group Hi is pro-ℓ for a prime ℓ so it has no open subgroups of index less than ℓ (here we can take ℓ > m).
We show by using [Wei96] that the groups Sp(2g, Zq) do not have open subgroups of index less than m, and
that this implies that the product also has no such subgroups. This is enough to obtain Theorem 1.2.

Swap cocycle expansion Our work is not done. We still need to argue that the complexes we constructed
are swap cocycle expanders to apply Theorem 1.4. Fortunately, in a previous work, swap cocycle expansion
was proven for quotients of Ãn [DD23c]. We extend the proof of [DD23c] to quotients of C̃g. But in order
to do this, we need to show that color restrictions (certain subcomplexes) of links of C̃g are coboundary
expanders. For an overview of the extension itself, we refer the reader to Section 6.2; for the rest of the
overview we focus on the main new component, which is showing coboundary expansion of the links of C̃g.

The color restrictions we need to analyze are the following family of three partite complexes Ci1,i2,i3
g . To

define this complex we consider F
2g
p together with an asymmetric bilinear form denoted by ⟨·, ·⟩. An isotropic

subspace is a subspace v ⊆ F
2g
p such that for every two vectors x, y ∈ v, ⟨x, y⟩ = 0. The complex Ci0,i1,i2

g has
three types of vertices,

Ci0,i1,i2
g [ij ] =

{
v ⊆ F2g

p

∣∣ dim(v) = ij and v is isotropic
}

.

We have a triangle {v0, v1, v2} ∈ Ci0,i1,i2
g (2) if v0 ⊂ v1 ⊂ v2. Henceforth we denote by I = {i0, i1, i2} and the

complex CI
g for short. A technique in [DD23c] allows us to reduce to the case where i0 ≪ i1 ≪ i2 ≪ g so we

assume so.
To show coboundary expansion of this complex, we use the well known cone method. This method first

appeared implicitly in [Gro10], and by now is one of the main tools for showing coboundary expansion
[LMM16; KM19; KO21; KM18; DD23b; DD23c]. This method is based on the observation that isoperimetric
inequalities in symmetric complexes imply coboundary expansion. In other words, if one can show that
O(1)-length cycles in CI

g have triangle tilings with O(1)-triangles, then link is a coboundary expander. See
Section 2 for the precise definitions and statement.

Let f = (v0, v1, . . . , vt = v0) be a cycle where t is a constant. For simplicity we assume our cycles only
contain vertices in CI

g [i0] and CI
g [i1] (the proof reduces to this case). The tiling is simple so we describe it

here:

1. We find an isotropic subspace u∗ of dimension i1 that is perpendicular to every subspace participating
in f . Here we use the assumption that the sum of all subspaces in the cycle has low enough dimension
so one such subspace exists by dimension considerations. To do so we rely on the fact that vi + u∗ is
isotropic.
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Figure 1: The contraction

2. We fix an arbitrary “middle vertex” u∗∗ ⊆ u∗ such that u∗∗ ∈ CI
g [i0], and decompose the t-cycle

to many t-cycles touching u∗∗. These six cycles have three of the original subspaces in the cycle
(vi ⊆ vi+1 ⊇ vi+2), and three ‘new’ subspaces: u∗∗ and two ui,ui+2 that are formed by adding to
vi + u∗∗ new vectors from u∗ until reaching an i1-dimensional isotropic subspace.

3. We tile every such 6-cycle separately. We observe that the sum of spaces in a 6-cycle as above is
contained in an isotropic subspace u∗+ vi+1. A classical fact is that every isotropic subspace is contained
in a maximal isotropic subspace, and in particular one can find some x ∈ Cg [i2] that contains u∗ + vi+1.
This implies that x contains all vertices in the 6-cycle, and we can therefore tile the cycle with triangles
connected to x.

We illustrate this in Figure 1. Local spectral expansion of these complexes is also needed so that we can
apply Theorem 1.4. This property of the quotients is already known to experts in the field, but we include a
proof here for completeness.

1.3 Related works
This work touches upon different fields of study.

Agreement testing and PCPs A main motivation behind agreement tests in the low acceptance “1%”
regime, is for constructing PCPs. Works such as [RS97] and [AS97] showed agreement in this regime that
was translated into PCPs with low soundness. The most popular application of agreement tests is in relation
to the parallel repetition theorem [Raz98], where an agreement theorem on the complete complex is used to
construct a large gap PCP. Work by [IKW12] gave a black-box conversion from an agreement-test theorem to
a parallel repetition theorem, see also [DS14b; DS14a]. The work [IKW12] constructed a more derandomized
family X that satisfies (1.2); and later work by [DM11] transformed it into an length-efficient PCP with a
large gap. Agreement tests on subspaces played a role in the proof of the 2-to-1 theorem [Din+18; KMS18].
Although in this setup the set system at hand did not have (1.2), a weaker guarantee sufficed to make these
tests useful in the 2:2 inner verifier. Agreement tests on high dimensional expanders were studied first by
[DK17]. Work by [GK22] suggested a connection between list agreement and coboundary expansion. The
works [BM23] and [DD23a] independently showed that swap coboundary expanding HDXs are good for
agreement tests as in Theorem 1.4.

Coboundary expansion Coboundary expansion was defined by Linial, Meshulam and Wallach [LM06],
[MW09], and indpendently by Gromov [Gro10]. Kaufman, Kazhdan and Lubotzky [KKL14] introduced
a local to global argument for proving cocycle expansion of 1-cochains in the bounded-degree complexes
of [LSV05b; LSV05a], solving a 2-dimensional case of the Gromov topological overlap problem. This was
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generalized later by Evra and Kaufman [EK16] to cocycle expansion in all dimensions, thus solving the
problem in all dimensions. Following ideas that implicitly appeared in Gromov’s work, Lubotzky Mozes and
Meshulam analyzed the coboundary expansion spherical buildings [LMM16], using what was later known
as the cone method. Works by [KM19] and [KO21] abstracted this notion of cones. Techniques for lower
bounding coboundary expansion were further developed in [DD23b] and [DD23c]. Dinur and Meshulam
observed the connection between cocycle expansion and cover-stability. Later on, this connection was used by
[GK22] to analyze the problem of list-agreement on coboundary expanders. Work by Chapman and Lubotzky
implemented a version of cocycle expansion to group stability [CL23a]. Another work by [CL23b] constructed
bounded degree coboundary expanders over F2, by using a similar construction to the one presented in this
work.

Buildings and their quotients The theory of buildings is extremely important for understanding the
structure of classical groups. They were introduced by Jacques Tits [Tit74]. For more about buildings see
[AB08] or [Wei08] and references therein. In the early 00’s a lot of work was done to construct quotients
of the SLn-Bruhat Tits building to get Ramanujan complexes such as [Bal00], [CSŻ03], [Li04], [LSV05b]
and [LSV05a]. After the work of [KKL14], these complexes caught the attention of the TCS community
due to their local properties. The local spectral expansion of these objects was put to a good use in the
seminal work of Garland [Gar73]. This was further used in [KM17] and [EK16]. The notion of local spectral
expansion we use today due to [DK17], was tailored to suit these complexes.

Bafna, Lifshitz and Minzer concurrently proved a theorem similar to Theorem 1.1 [BLM24]. Their
construction also uses quotients of C̃g and relies on a theorem similar to Theorem 1.4 (which appeared in
independent previous work [BM23], concurrent to [DD23a]) and on swap cocycle expansion of the quotients
of C̃g.

1.4 Open Questions
We constructed a family of bounded degree complexes with sound agreement tests in the 1%-regime. These
tests sometimes appear as a combinatorial gadget in PCP constructions. However, there is still no construction
of a PCP that uses high dimensional expanders. It seems that constructing such a PCP may improve the
tradeoff between set size, degree and soundness, possibly leading to an advancement on the famous sliding
scale conjecture (see e.g. [MR10]). However to do so, one must first improve upon the somewhat modest
parameters in Theorem 1.4, and figure out a way to embed hard constraint satisfaction problems into high
dimensional expanders.

Most prior work on bounded degree high dimensional expanders use quotients of SLn-buildings (or other
constructions such as the one suggested by [KO18]). The complexes we construct, coming from a different
infinite object C̃g, have similar expansion properties but a different link structure. Are there other desirable
properties of these complexes, that quotients of Ãn do not possess? For instance, can other buildings provide
a better degree-to-expansion tradeoff?

Finally, we mention that this work showed cocycle expansion, and got coboundary expansion with respect
to small groups (it is not a priori clear, but this is an equivalent statement to saying that the complex has
no small covers). However, we do not know whether there exists bounded degree local spectral expanders
X that are coboundary expanders with respect to all possible groups. In particular, X is simply connected
[Sur84]. Current constructions of bounded degree local spectral expanders are all quotients of some infinite
object by some group acting on the object. Any such complex is not a coboundary expander with respect to
the acting group. Hence such a construction is an interesting open problem in this area. As an intermediate
step, could one construct a complex that is a coboundary expander with respect to all finite groups?

1.5 Organization
Section 2 contains the necessary preliminaries for the paper. We describe the buildings we work with in the
paper in Section 3. Theorem 1.1 is proven in Section 4, and follows directly from Corollary 4.12. Section 5
contains the new construction of expanders with no small covers, proving Theorem 1.2. We prove the swap
cocycle expansion theorem, Theorem 1.3, in Section 6 where we also bound the coboundary expansion and
the local spectral expansion of buildings of type C.
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2 Preliminaries
Most of this section follows definitions used in previous works [DD23a], [DD23b] and [DD23c].

A pure d-dimensional simplicial complex X is a hypergraph that consists of an arbitrary collection of sets
of size (d+ 1) together with all their subsets. The i-faces are sets of size i+ 1 in X, denoted by X(i).

A simplicial action of a group Γ on a complex X is a homomorphism ϕ : Γ → Aut(X). Sometimes instead
of writing ϕ(γ)(v) we write γ.v or even γv for short.

We denote the set of oriented k-faces in X by
→
X(k) = {(v0, v1, ..., vk) | {v0, v1, ..., vk} ∈ X(k)}. We

denote by diam(X) the diameter of the graph underlying X. A (d+ 1)-partite d-dimensional simplicial
complex is a complex X such that one can decompose X(0) = A0 ·∪A1 ·∪ · · · ·∪Ad such that for every s ∈ X(d)
and 0 ⩽ i ⩽ d it holds that |s∩Ai| = 1. The color of a vertex is col(v) = i such that v ∈ Ai. More generally,
the color of a face s is c = col(s) = {col(v) | v ∈ s}. We denote by X [c] the set of faces of color c in X, and
for a singleton {i} we sometimes write X [i] instead of X [{i}]. We also denote by XI , for I ⊂ {0, . . . , d}, the
complex induced on vertices whose colors are in I.

Definition 2.1 (Join of complexes). Let Si be an ℓi dimensional complex, for i = 1, ..., k. Let n =

(
∑k

i=1 ℓi) + k− 1. The join S =
∨
Si is the n-dimensional complex whose faces are all the s1 ·∪ s2 ·∪ . . . sk

so that si ∈ Si. The distribution over top-level faces is to (independently) choose si ∼ Si(ℓi) and output
s1 ·∪ s2 ·∪ · · · ·∪ sk.

Observe that if each Si is (ℓi + 1)-partite, then S is (n+ 1)-partite. Moreover, if we restrict S to a set I
of colors so that every two distinct colors j1, j2 ∈ I come from different complexes Si1 and Si2 , then SI is a
complete (|I| + 1)-partite complex.

Definition 2.2 (local spectral expander). Let X be a d-dimensional simplicial complex and let λ ∈ (0, 1).
We say that X is a λ-one sided local spectral expander if for every s ∈ X⩽d−2 it holds that λ(Xs) ⩽ λ. We
say that X is a λ-two sided local spectral expander if for every s ∈ X⩽d−2 it holds that |λ|(Xs) ⩽ λ.

Here λ(Xs) is the normalized second largest eigenvalue of the adjacency operator of the graph X⩽1
s , and

|λ|(Xs) is the second largest eigenvalue in absolute value.

We stress that this definition includes s = ∅, which also implies that the graph X⩽1 should have a small
second largest eigenvalue.

We will use the ‘trickle down’ theorem [Opp18].

Theorem 2.3 ([Opp18]). Let λ, τ ⩾ 0. Let X be a connected simplicial complex and assume that for any
vertex v ∈ X(0) it holds that the non-trivial eigenvalues of Xv are between [−τ ,λ]. Then the non-trivial
eigenvalues of X are between

[
τ

1+τ , λ
1−λ

]
. In particular, X is a λ

1−λ -one or two sided high dimensional
expander (respectively).

As a corollary of reiterating this theorem, one gets the following.

Corollary 2.4. Let X be a d-dimensional λ-one sided local spectral expander. Then X⩽k is a max{λ, 1
d−k+1}-

local spectral expander

Walks on local spectral expanders

Let k, ℓ, d be integers such that ℓ+ k ⩽ d− 1. The k, ℓ-swap walk Sk,ℓ = Sk,ℓ(X) is the bipartite graph
whose vertices are L = X(k),R = X(ℓ) and whose edges are all (t, s) such that t ·∪ s ∈ X. The probability
of choosing such an edge is the probability of choosing u ∈ X(k + ℓ+ 1) and then uniformly at random
partitioning it to u = t ·∪ s. This walk has been defined and studied independently by [DD19] and by [AJT19],
who bounded its spectral expansion.
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Theorem 2.5 ([DD19; AJT19]). Let X be a λ-two sided local spectral expander. Then the second largest
eigenvalue of Sk,ℓ(X) is upper bounded by λ(Sk,ℓ(X)) ⩽ (k+ 1)(ℓ+ 1)λ.

For a d-partite complex and two disjoint sets of colors J1, J2 ⊆ [d] one can also define the colored swap
walk SJ1,J2 as the bipartite graph whose vertices are L = X [J1],R = X [J2]. and whose edges are all (s, t)
such that t ·∪ s ∈ X [J1 ·∪ J2]. The probability of choosing this edge is PX [J1 ·∪J2] [t ·∪ s].

Theorem 2.6 ([DD19]). Let X be a d-partite λ-one sided local spectral expander. Then the second largest
eigenvalue of SJ1,J2(X) is upper bounded by λ(SJ1,J2(X)) ⩽ |J1| · |J2| · λ.

We note that this theorem also make sense even when J1 = {i}, J2 = {i′}, and the walk is between X [i]
and X [i′] that are subsets of the vertices.

We mention that subsequent work proved [GLL22] a tighter bound on the spectral expansion of this walk.

Coboundary and Cocycle Expansion

For a more thorough introduction, we refer the reader to [DD23b].
Let X be a d-dimensional simplicial complex for d ⩾ 2 and let Γ be any group. For i = −1, 0 let

Ci(X, Γ) = {f : X(i) → Γ}. We sometimes identify C−1(X, Γ) � Γ. For i = 1, 2 let

C1(X, Γ) =
{
f :
→
X(1) → Γ

∣∣∣∣ f(u, v) = f(v,u)−1
}

and

C2(X, Γ) =
{
f :
→
X(i) → Γ

∣∣∣∣ ∀π ∈ Sym(3), (v0, v1, v2) ∈
→
X(2) f(vπ(0), vπ(1), vπ(2)) = f(v0, v1, v2)

sign(π)
}

.

be the spaces of so-called anti symmetric functions on edges and triangles. For i = −1, 0, 1 we define the
coboundary operators δi : Ci(X, Γ) → Ci+1(X, Γ) by

1. δ−1 : C−1(X, Γ) → C0(X, Γ) is δ−1h(v) = h(∅).

2. δ0 : C0(X, Γ) → C1(X, Γ) is δ0h(v,u) = h(v)h(u)−1.

3. δ1 : C1(X, Γ) → C2(X, Γ) is δ1h(v,u,w) = h(v,u)h(u,w)h(w, v).

Let 1 = 1i ∈ Ci(X, Γ) be the constant function that always outputs the identity element. It is easy to check
that δi+1 ◦ δih ≡ 1i+2 for i = −1, 0 and h ∈ Ci(X, Γ). Thus we denote by

Zi(X, Γ) = ker δi ⊆ Ci(X, Γ),

Bi(X, Γ) = Imδi−1 ⊆ Ci(X, Γ),
and have that Bi(X, Γ) ⊆ Zi(X, Γ).

Henceforth, when the dimension i of the cochain f is clear from the context we denote δif by δf .
Let f , g ∈ Ci(X, Γ). Then

dist(f , g) = P

s∈
→
X(i)

[f(s) , g(s)] . (2.1)

We also denote the weight of the function wt(f) = dist(f , 1).

Definition 2.7 (Cocycle expansion). Let X be a d-dimensional simplicial complex for d ⩾ 2. Let β > 0.
We say that X is a β-cocycle expander if for every group Γ, and every f ∈ C1(X, Γ) there exists some
g ∈ Z1(X, Γ) such that

β dist(f , g) ⩽ wt(δf). (2.2)
In this case we denote h1(X) ⩾ β.

We note that in previous works this definition was referred to as cosystolic expansion.

Definition 2.8 (Coboundary expansion). Let X be a d-dimensional simplicial complex for d ⩾ 2. Let β > 0.
We say that X is a β-coboundary expander if it is a β-cocycle expander and in addition Z1(X, Γ) = B1(X, Γ)
for every group Γ.
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Cones

The cone method, appearing in [Gro10], was used in many previous works for bounding coboundary expansion
(see e.g. [LMM16], [KM19], [KO20], [DD23b]). The following adaptation to non-abelian cones is due to
[DD23c]. We follow similar notation and definitions.

Fix X, a simplicial complex and some v0 ∈ X(0). We define two symmetric relations on loops around v0:

(BT) We say that P0
(BT )∼ P1 if Pi = Q0 ◦ (u, v,u) ◦Q1 and P1−i = Q0 ◦ (u) ◦Q1 for i = 0, 1 (i.e. going

from u to v and then backtracking is trivial).

(TR) We say that P0
(T R)∼ P1 if Pi = Q0 ◦ (u, v) ◦Q1 and P1−i = Q0 ◦ (u,w, v) ◦Q1 for some triangle

uvw ∈ X(2) and i = 0, 1.

Let ∼ be the smallest equivalence relation that contains the above relations (i.e. the transitive closure of
two relations).

We denote by P ∼1 P ′ if there is a sequence of loops (P0 = P ,P1, ...,Pm = P ′) and j ∈ [m− 1] such that:

1. Pj
(T R)∼ Pj+1 and

2. For every j′ , j, Pj′
(BT )∼ Pj′+1.

I.e. we can get from P to P ′ by a sequence of equivalences, where exactly one equivalence is by (TR).
Let P = (u0,u1, ...,um) be a walk in X. We denote by P−1 the walk (um, . . . ,u1,u0).

Definition 2.9 (Decoding cone). A decoding cone is a triple C = (v0, {Pu}u∈X(0), {Tuw}uw∈X(1)) such that

1. v0 ∈ X(0).

2. For every v0 , u ∈ X(0) Pu is a walk from v0 to u. For u = v0, we take Pv0 to be the loop with no
edges from v0.

3. For every uw ∈ X(1), Tuw is a sequence of loops (P0,P1, ...,Pm) such that:

(a) P0 = Pu ◦ (u,w) ◦ P−1
w ,

(b) For every i = 0, 1, ...,m− 1, Pi ∼1 Pi+1 and
(c) Pm is equivalent to the trivial loop by a sequence of (BT ) relations.

We call Tuw a contraction, and we denote |Tuw| = m.

The definition of Tuw depends on the direction of the edge uw. We take as a convention that Twu has the
sequence of loops (P−1

0 ,P−1
1 , . . . ,P−1

m ), and notice that P−1
0 = (Pu ◦ (u,w) ◦ P−1

w )−1 = Pw ◦ (w,u) ◦ P−1
u .

Thus for each edge it is enough to define one of Tuw,Twu. The diameter of the cone is

diam(C) = max
uw∈

→
X(1)

|Tuw|.

Equivalently, this is the maximal number of triangle relations required in the contraction of any Tuw.
There is a direct connection between the diameter of the cone to coboundary expansion.

Lemma 2.10. Let X be a simplicial complex such that Aut(X) is transitive on k-faces. Suppose that there
exists a cone C with diameter R. Then X is a 1

(k+1
3 )·R

-coboundary expander.
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Figure 2: Contraction of the interesting case

Coboundary expansion of joins

We record the following claim on the coboundary expansion of joins of complexes.
Claim 2.11. Let Z = A1 ∨A2 be a join of two complexes A1,A2 of dimensions d1, d2 respectively. Assume
that there is a group that acts on Z so that the action on Z(d1 + d2 + 1) is transitive. Then there exists a
constant β = β(d1, d2) such that h1(Z) ⩾ β

diam(A1)
.

Proof of Claim 2.11. By Lemma 2.10 it is enough to show that there is a cone whose diameter in O(diam(A1)).
We construct the cone as follows. Fix v∗1 ∈ A1 and v∗2 ∈ A2. Our base of the cone is v∗1 . For every u ∈ A2 we
take the path Pu = (v1,u), for every u ∈ A1 we take the path Pu = (v1, v2,u).

Now we consider an edge u1u2 ∈ Z. If u1u2 ∈ A2 then the cycle C0 = Cu1u2 = Pu1 ◦ (u1,u2) ◦ P−1
u2 =

(v1,u1,u2, v1) is a triangle in Z so we can contract it in one step to C1 = (v1,u1, v1) which contracts to
the trivial loop using only backtrack relations. Similarly, if u1u2 ∈ A1 then the loop we need to contract is
C0 = Cu1u2 = (v1, v2,u1,u2, v2, v1) which can also be contracted using a single triangle v2u1u2 ∈ Z only.

The interesting case is if (say) u1 ∈ A1 and u2 ∈ A2 so C0 = (v1,u2,u1, v2, v1). In this case we take some
shortest path in A1 from v1 to u1, which we denote Q = (v1 = x1,x2,x3, . . . ,xm = u1), where m ⩽ diam(A1).
From here we recommend to view Figure 2 that illustrates the contraction. We define for i = 1, 2, . . .m− 1
Ci = (v1,x2,x3, . . . ,xi,u2,u1, v2, v1), where we go from Ci to Ci+1 via the triangle xixi+1u2 ∈ Z(2). And
similarly we define Cm = (v1,x2, . . . ,xm, v2, v1) (where again we use xm−1u2xm ∈ Z(2)). Similarly, we define
Cm+1,Cm+2, . . . ,C2m where Cm+i = (v1,x2,x3, . . . ,xm−i, v2, v1) where we use the triangle xm−i+1v2xmi

to go from Cm+i to Cm+i+1. We end up with C2m = (v1, v2, v1) which contracts to the trivial loop with a
backtracking relation. Finally, note that we use 2m ⩽ 2diam(A1) so the claim follows. □

2.1 Additional coboundary expansion machinery
In this subsection we survey some of the machinery we need on coboundary expansion from previous works
that we need in order to prove Theorem 6.11.

2.1.1 Local to global coboundary expansion

The following lemma is a local-to-global theorem that deduces cocycle expansion of a complex from coboundary
expansion of the links. The first to show such a theorem were [KKL14] (for 1-cochains) and [EK16] (for
arbitrary i-cochains). We use a quantitatively stronger version, due to [DD23c].

Lemma 2.12 ([DD23c]). Let X be a exp(−O(i+ 1))-high dimensional expander so that every non-empty
link in X is simply connected. Then

h1(XJ ) ⩾ exp(−O(i)) · min
s∈X(i)

h1(XJ
s ).

2.1.2 Colored complexes

We also use the following color restriction lemma, that deduces coboundary expansion of a partite complex,
from coboundary expansion of its color restrictions.
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Theorem 2.13 ([DD23b]). Let ℓ, d be integers so that 3 ⩽ ℓ ⩽ d and let β, p,λ ∈ (0, 1]. Let Γ be some group.
Let X be a d-partite simplicial complex so that

P
F∈([d]ℓ )

[
XF is a β-coboundary expander and ∀s ∈ X(0) XF

s is a λ-spectral expander
]
⩾ p.

Then X is a coboundary expander with h1(X) ⩾ p(1−λ)β
6e . Here e ≈ 2.71 is Euler’s number.

We note that Theorem 2.13 is proven in [DD23b] assuming that the spectral expansion of the graph is
1 − β. This assumption is not needed in the proof; following the same steps with a separate parameter λ
gives us a bound of h1(X) ⩾ p(1−λ)β

6e .
Claim 2.14 (Color Swap). For every ℓ ⩾ 4 there is a universal constant cℓ > 0 so that the following holds. Let
I, I ′ ∈ ([n]ℓ ) be two sets of size ℓ such that their symmetric difference I∆I ′ = {i, i′} where i ∈ I, i′ ∈ I ′. Let
X be a n-partite λ-local spectral expander for λ < 1

100 . h1(XI ) ⩾ cℓh
1(XI′

)minv∈X [i′] h
1(XI

v ).
We denote by Kn1,n2,...,nm the complete partite complex with ni vertices on every side.

Claim 2.15. Let m ⩾ 5. Let X be a m-partite simplicial complex, such that h1(X) ⩾ β. Assume that the
colored swap walk between vertices to triangles is an η-spectral expander. Then Y = X ⊗Kn1,n2,...,nm is a
coboundary expander and h1(Y ) ⩾ (1 −O(η)) exp(−O(ℓ))β where ℓ = |{i ∈ [m] | ni > 1}|.

The faces complex

Definition 2.16. Let X be a d-dimensional simplicial complex. Let r ⩽ d. We denote
by FrX the simplicial complex whose vertices are FrX(0) = X(r) and whose faces are all{

{s0, s1, ..., sj}
∣∣ s0 ·∪ s1 ·∪ · · · ·∪ sj ∈ X((j + 1)(r+ 1) − 1)

}
.

It is easy to verify that this complex is
(

⌊d+1
r+1 ⌋ − 1

)
-dimensional and that if X is a clique complex then

so is FrX. The distribution on the top-level faces of FrX is given by the following. Let m =
(

⌊d+1
r+1 ⌋ − 1

)
1. Sample a d-face t = {v0, v1, . . . , vd} ∈ X(d).

2. Sample s0, s1, . . . , sm ⊆ t such that |si| = r+ 1, si ∩ sj = ∅ and output {s0, s1, . . . , sm}.

Definition 2.17 (Swap coboundary expansion). A simplicial complex X is said to have (β, r)-swap coboundary
(cocycle) expansion if FrX is a β coboundary (cocycle) expander for 1-cochains.

It is convenient to view the faces complex as a subcomplex of the following complex.

Definition 2.18 (Generalized faces complex). Let X be a simplicial complex. The generalized faces complex,
denoted FX, has a vertex for every w ∈ X, and a face s = {w0, . . . ,wi} ∈ FX iff wi ∩ wj = ϕ and
·∪s := w0 ·∪w1 ·∪ · · · ·∪wi ∈ X.

This complex is not pure so we do not define a measure over it. One can readily verify that links of the
faces complex correspond to faces complexes of links in the original complex. That is,
Claim 2.19. Let s ∈ FX. Then FXs = F (X∪s) where ∪s =

⋃
t∈s t. The same holds for FrXs = F r(X∪s).

□

We are therefore justified to look at generalized links of the form FX∪s,

Definition 2.20 (Generalized Links). Let w ∈ X. We denote by FXw = F (Xw). We also denote by
FrXw = FrX ∩ FXw. Note that this is not necessarily a proper link of FrX.
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Colors of a faces complex

Definition 2.21 (Simplicial homomorphism). Let X,Y be two simplicial complexes. A map φ : X → Y
is called a simplicial homomorphism if φ : X(0) → Y (0) is onto and for every s = {v0, . . . , vi} ∈ X(i),
φ(s) = {φ(v0), . . . ,φ(vi)} ∈ Y (i).

Claim 2.22. Let φ : X → Y be a simplicial homomorphism. Then there is a natural homomorphism
φ : FX → FY given by φ({s0, . . . , si}) = {φ(s0), . . . ,φ(si)}.

Proof. Suppose s = {s0, . . . , si} ∈ FX(i). By definition this means that ·∪s ∈ X so φ( ·∪s) ∈ Y . But
φ( ·∪s) = φ(s0 ·∪ · · · ·∪ si) = φ(s0) ·∪ · · · ·∪φ(si) (because for a simplicial homomorphism φ : X → Y whenever
a ·∪ b ∈ X, φ(a ·∪ b) = φ(a) ·∪φ(b) ∈ Y ). Thus {φ(s0), . . . ,φ(si)} ∈ Y . □

Let Y = ∆n be the complete complex on n vertices. Observe that X is n-partite if and only if there is a
homomorphism col : X → ∆n. We say that a complex is n colorable if its underlying graph is n colorable,
namely one can partition the vertices into n color sets such that every edge crosses between colors.
Claim 2.23. Let X be an n-colorable complex. Then FrX is ( n

r+1)-colorable.
We denote the set of colors of FrX by C = Fr∆(0) (supressing n from the notation). This is the set of all

subsets of [n] of size r+ 1.
Fix a set J ∈ F∆, namely J = {c1, . . . , cm} and cj ⊂ [n] are pairwise disjoint. Let FJX =

{s ∈ FX | col(s) ⊆ J} be the sub-complex of FX whose vertex colors are in J , so FJX(0) =
⋃m

j=1 X [cj ].
We abuse notation in this section allowing multiple cj ’s to be empty sets. In this case X [cj ] are copies of {∅},
and every such copy of ∅ participates in every top level face of FJX. The measure induced on the top level
faces of FJX is the one obtained by sampling t ∈ X [∪J ] and partitioning it to t = s1 ·∪ s2 ·∪ · · · ·∪ sm such
that si ∈ X [ci].

Finally, throughout the paper we use the following notation. Let J ′, J ⊆ F∆ We write J ′ ⩽ J , if
J = {c1, c2, . . . , cm} and J ′ = {c′1, . . . , c′m} where c′j ⊆ cj .

Coboundary expansion of the faces complex

The following two statements will be used in Section 6.2 to prove lower bounds on swap coboundary expansion
of the quotients of C̃g defined below.

Lemma 2.24 (Color restriction for faces complex). Let X be an n-partite complex for n ⩾ d5. Let
m ∈ [3,n0.5/d] and let J ⊆ Fr∆d(m) be set of relative size p. Assume that for every J ∈ J , h1(F dXJ ) ⩾ β
then h1(FdX) ⩾ Ω(βp2).

The following proposition bounds the (color-restricted) faces complex using bounds on (color-restrictions
of) its links.

Proposition 2.25. Let X be a n-partite complex that is a λ-local spectral expander for λ ⩽ 1
2r2 . Let ℓ ⩾ 5

and let J = {c1, c2, . . . , cℓ} be a set of mutually disjoint colors cj ⊆ [n], |cj | ⩽ r. Denote by R =
∑ℓ

j=1 |cj |.
Let β > 0 and assume that for every I = {i1, i2, . . . , iℓ} such that ij ∈ cj and every w ∈ X∪J\I , h1(XI

w) ⩾ β.
Then h1(FJX) ⩾ βR

1 for β1 = Ωℓ(β).

2.2 Covers and quotients of simplicial complexes
Definition 2.26 (Covering map). Let Y ,X be simplicial complexes. We say that a map ρ : Y (0) → X(0) is
a covering map if the following holds.

1. ρ is a surjective homomorphism.

2. For every v ∈ X(0), and (v, i) ∈ ρ−1({v}) it holds that ρ|Y(v,i) : Y(v,i)(0) → Xv(0) is an isomorphism.

We often denote ρ : Y → X. We say that ρ is an ℓ-cover if for every v ∈ X(0) it holds that
∣∣ρ−1({v})

∣∣ = ℓ.
If there exists such a covering map ρ : Y → X we say that Y covers X.
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Covers are intimately connected to the fundamental group. For a thorough definition and discussion see
[Sur84].

In this subsection we give a description (and proof sketch) of a general technique for constructing topological
spaces with a given fundamental group and other local properties. For this we use deck transformations and
quotient maps. For a general and more formal setup the reader is referred to [Hat02, Section 1.3].

Recall that for an action of a group Γ on a set B we denote by Γ \B the set of orbits of the action. We
denote by [v] the orbit of a vertex v ∈ B(0).

Let B be a locally finite, connected and simply connected simplicial complex. Let Γ be a group that acts
simplicially on B. We say that the action is proper if for every v ∈ B(0) and γ ∈ Γ \ {1}, dist(v, γ.v) ⩾ 4.3

The quotient of B by Γ is the following simplicial complex X = Γ \B.

X = {{[v0], [v1], . . . , [vi]} | {v0, v1, . . . , vi} ∈ B} .

We denote the quotient map ρ : B → X by ρ({v0, v1, . . . , vi}) = {[v0], [v1], . . . , [vi]}. By definition every face
s̃ ∈ B maps to a face s ∈ X.

The properties of the action promise that dimension is maintained, that is, that every s̃ ∈ B(i) maps to a
face s ∈ X(i). Indeed, this follows because every v,u ∈ s have dist(u, v) = 1 so they must be in different
orbits.
Claim 2.27. Let B be as above. Then ρ : B(0) → X(0) is a covering map.

Proof. Fix [v0] ∈ B(0). We need to show that for every v0 ∈ [v0], the restriction of ρ to the link of v0
is a simplicial isomorphism between Bv0 and X[v0]. Fix v0 ∈ [v0] as well. First, we note that indeed
ρ(Bv0) ⊆ X[v0]: for every v1 ∈ Bv0(0), {v0, v1} ∈ B(1) so {[v0], [v1]} ∈ X(1) or equivalently [v1] ∈ X[v0](0).

Next we show that this is a bijection. Surjectivity is because if [v1] ∈ X[v0](0) then v1 is a neighbor
of some γ.v0, and in particular, γ−1.v1 ∈ [v1] ∩Bv0(0). Injectivity is due to the distance assumption: two
neighbors v1, v2 of v0 have dist(v0, v1) ⩽ 2 and therefore they must belong to different orbits.

This is also an isomorphism between the links as complexes: It is clear that every {v1, . . . , vi} ∈ Bv0 maps
to {[v1], . . . , [vi]} ∈ X[v0]. Let us show for every {[v1], . . . , [vi]} ∈ X[v0] there exists a set {v1, . . . , vi} ∈ Bv0

such that ρ({v1, . . . , vi}) = {[v1], . . . , [vi]}. Indeed, if {[v1], . . . , [vi]} ∈ X[v0] then there is some v′0 ∈ [v0] and
face {v′0, v′1, . . . , v′i} ∈ B(i). There is also an element γ sending v′0 to v0. Thus by setting vj = γv′j we have
that {v1, . . . , vi} ∈ Bv0 has that ρ({v1, . . . , vi}) = {[v1], . . . , [vi]}. □

Our agreement theorem requires as a technical property, that the have clique complexes. Let us show
that if the action is proper then the resulting complexes are clique complexes.
Claim 2.28. Let B be an infinite clique complex and let Γ be a group acting on B. Then X = Γ \B is a
clique complex.

Proof of Claim 2.28. Let {[v0], [v1], . . . , [vi]} ⊆ X(0) be a clique. Let v0 ∈ [v0] be a representative and let
v1, v2, . . . , vi ∈ Xv0(0) be the representatives of [v1], [v2], . . . , [vi] respectively. We claim that properness
implies that {v0, v1, . . . , vi} are a clique in B. If this holds then {v0, v1, . . . , vi} ∈ B(i) and therefore the set
{[v0], [v1], . . . , [vi]} ∈ X(i). Assume towards contradiction that, without loss of generality, {v1, v2} < B(1).
We note that {[v1], [v2]} ∈ X(1) so there exists v′1 , v1 such that {v′1, v2} ∈ B(1) and v′1 ∈ [v1]. In this
case we observe that (v′1, v2, v0, v1) is a path in B and therefore there are two distinct vertices of distance
dist(v1, v′1) < 4 in the same orbit, contradicting properness. □

Recall that covers of a complex are connected to its fundamental group.

Fact 2.29. Let X be a connected simplicial complex and locally finite simplicial complex. Let π1(X, v0) be
the fundamental group of X (with v0 ∈ X(0) an arbitrary vertex). Then X has a connected ℓ-cover if and
only if π1(X, v0) has a subgroup of index ℓ.

The main fact we use is the following.
3This requirement implies that v and γ.v have disjoint neighborhoods. One can weaken this requirement, but we use this

stricter definition to make some of the arguments simpler. For more details, see [Hat02].
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Theorem 2.30 ([Hat02, Section 1.3]). Let B be a simply connected simplicial complex. Let Γ be a group
acting simplicially and properly on B. Then the fundamental group of Γ \B is Γ.

To conclude this subsection, let us the following claim that reduces finding groups that act properly on B,
to finding groups that act freely on B.
Claim 2.31. Let B be a locally finite simplicial complex. Let Γ be a group acting simplicially and freely on B
such that Γ \B is finite. Let Γ = Γ1 ⩾ Γ2 ⩾ Γ3 . . . be a chain of subgroups such that

⋂∞
i=1 Γi = {1}. Then for

every r > 0 there exists i0 such that for every i > i0, every γ ∈ Γi \ {1} and every v ∈ B(0) it holds that
dist(v, γ.v) > r.

For r = 4 this shows that we can find a subsequence of groups that act properly on B.

Proof of Claim 2.31. Fix r > 1. An element γ ∈ Γ \ {1} is ‘bad’ if there exists some v ∈ B(0) such that
dist(v, γ.v) ⩽ r. We will show that there is only a finite number of ‘bad’ elements. If this holds then by the
fact that the intersection is trivial, for every ‘bad’ every element γ there is a maximal iγ such that γ ∈ Γiγ ,
since it is not in

⋂∞
i=1 Γi. Taking i0 = max {iγ | γ is bad} will give the result.

Let F ⊆ B(0) be a fundamental domain of Γ (namely, a set of representatives of the orbits of B(0) under
Γ). If for every v ∈ F , dist(v, γ.v) > r, then the same holds for every v ∈ B(0). Indeed, assume towards
contradiction that there exists some v ∈ B(0) and γ ∈ Γ such that dist(v, γ.v) ⩽ r. Let γ′ ∈ Γ such that
γ′.v ∈ F . As γ′ preserves distances, dist(γ′.v, γ′.γ.v) ⩽ r. We observe that γ′.γ = γ′.γγ′−1γ′ so with u = γ′.v
we have that u ∈ F and for γ′′ = γ′.γγ′−1 , 1, dist(u, γ′′.u) ⩽ r.

Thus we need to show that there is a finite number of elements γ ∈ Γ \ {1} such that dist(v, γ.v) ⩽ r
for some v ∈ F . By assumption that |F | = |Γ \B(0)| < ∞. Denote by F̃ the union of r-balls around the
vertices in F . It suffices to show that the set of elements of Γ that send some v ∈ F̃ to v′ ∈ F̃ is finite. By
local finiteness of B, F̃ is also finite. By freeness of the action, there are at most |F̃ |2 elements in Γ sending
some v ∈ F̃ to v′ ∈ F̃ . Otherwise, by the pigeonhole principle there is a pair (v, v′) and two distinct γ1, γ2
that send γi.v = v′ contradicting freeness. □

3 Spherical and affine buildings
In this section we give a brief survey of the buildings we deal with in this paper. Most of the material in this
section is well known, and we bring it here just to introduce the notation and to stay self contained.

3.1 The SL case (type A)
Definition 3.1 (Spherical building - type A). We denote by An = An(Fp) the n partite spherical building
associated with SLn+1(Fp). This is an (n− 1)-dimensional complex whose vertices are all non-trivial linear
subspaces of Fn+1

p . A t-face in this complex is a set of subspaces {v1, . . . , vt} so that v1 ⊂ v2 ⊂ · · · ⊂ vt.
Previous work has shown that this complex is both a local spectral expander, and a (swap) coboundary

expander.
Claim 3.2 ([EK16], [DD19] for the color restriction). The spherical building An is a O( 1√

p )-one sided local
spectral expander. Moreover, A⩽k

n is a max{O( 1√
p ),

1
d−k }-two sided local spectral expander. The same holds

for AJ
n for all subsets J ⊆ [d].

The following claim is elementary, it is proved in full in [DD23c].
Claim 3.3 ([DD23c]). Let A = An be an SL-spherical building. Let I ⊆ [n], |I| ⩾ 2. Then for every flag w
including the empty flag, diam(AI

w) = O( max I
max I−min I ). In particular, for every i1 > i0 in I, diam(AI

w) =

O( i1
i1−i0

).
The ‘in particular’ part follows from standard calculus.
We will also need the following bound on color restrictions of the spherical building of type A.

Lemma 3.4 ([DD23c]). Let I = {i0 < i1 < i2 < i3} such that i3 > 21 and such that ij − ij−1 ⩾ 3. Let A be
an SL-spherical building. Then for every flag w including the empty flag,

h1(AI
w) ⩾ exp

(
−O

(
log
(

i3
i1 − i0

)
· log

(
i3
i1

)))
.
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3.2 The symplectic case (type C)
In this subsection we use definitions from symplectic geometry, see e.g. [Art57, Chapter III] for an introduction
to the subject. Let g ∈ N, and let V = F2g. For x, y ∈ (Fp)g we denote (x, y) ∈ V the vector whose first
g-coordinates are x and the last g coordinates are y. Let ⟨·, ·⟩ : V → Fp be the following skew-symmetric
bilnear form.

⟨(x, y), (z,w)⟩ = x ·w− y · z (3.1)

where a · b =
∑g

i=1 aibi is the usual inner product over F
g
p.

A subspace v ⊆ V is called isotropic if for every x1,x2 ∈ v, ⟨x1,x2⟩ = 0. By Witt’s theorem (cf. [Art57,
Theorem 3.10]) all maximal isotropic spaces have the same dimension. For this form, the maximal dimension
is g, and a maximal isotropic subspace is Span({(ei, 0) : i = 1, 2, . . . g}) where ei ∈ F

g
p are the standard basis

vectors.

Definition 3.5 (Spherical building - type C). For g ∈ N, the symplectic spherical building over Fp denoted
Cg is the g-partite (g− 1)-dimensional simplicial complex whose vertices are all non-trivial isotropic subspaces.
Its faces are all flags of isotropic subspaces. That is {v0, v1, . . . , vk} ∈ C(k) if v0 ⊆ v1 ⊆ · · · ⊆ vk and every
vi is isotropic. By the fact that all maximal isotropic subspaces have the same dimension, it follows that C is
g-partite and we denote C[i] = {v ∈ C | dim(v) = i}.

We comment that C1 = A1 but the buildings differ for larger g > 1. Let us study the structure of links in
the spherical building of type C. We note that the function x 7→ ⟨x, ·⟩ gives an isomorphism between V and
V ∗, where V ∗ is the space of linear forms on V . A bilinear form with this property is called non-degenerate.
Claim 3.6 ([Art57, Theorem 3.5]). Let ⟨·, ·⟩ be a non-degenerate bilinear form. Let v ⊂ V be a linear subspace.
v⊥ = {x ∈ V | ∀y ∈ v, ⟨x, y⟩ = 0}. Then dim(v⊥) = dim(V ) − dim(v) and (v⊥)⊥ = v. □

Let v be an isotropic subspace. The fact that v is isotropic is the same as saying that v ⊆ v⊥. Let
v′ = v⊥/v be the quotient space. Let us define the following skew-symmetric bilinear form ⟨·, ·⟩v′ : v′ → Fp

by
⟨[x], [x′]⟩v′ = ⟨x,x′⟩

for any two [x], [x′] ∈ v′.
Claim 3.7. The form ⟨·, ·⟩v′ is a well-defined skew-symmetric bilinear form. Moreover, it is non-degenerate.

Proof of Claim 3.7. We need to show that the definition does not depend on choice of representatives. Namely,
for every x1,x2 ∈ [u1] and x′ ∈ [u′] it holds that ⟨x1,x′⟩ = ⟨x2,x′⟩ (we need to show it also for representatives
on the right but this just holds from skew-symmetry). Indeed, note that x1 − x2 ∈ v hence ⟨x1 − x2,x′⟩ = 0
as x′ ∈ v⊥.

Bilinearity just follows from the fact that the quotient map is linear. Let us show that this form is
non-degenerate. Let [x] ∈ v′ be so that ∀[x′] ∈ v′ it holds that ⟨[x], [x′]⟩v′ = 0. By definition this implies
that ∀x′ ∈ v⊥, ⟨x,x′⟩ = 0. Thus x ∈ (v⊥)⊥. By Claim 3.6 (v⊥)⊥ = v so x ∈ v or equivalently [x] = 0. □

With Claim 3.7 we can understand the structure of the subset of isotropic subspaces that contains a fixed
subspace v ∈ C(0).

Proposition 3.8. Let t ⩽ g − 1. Let v ∈ Cg [t]. Let ρ : v⊥ → v′ be the quotient map taking x ∈ V to
[x] = x+ v ∈ v′. Then ρ|v⊥ induces an isomorphism between isotropic subspaces that contain v with respect
to ⟨·, ·⟩, to isotropic subspaces in v′ with respect to ⟨·, ·⟩v′ . This isomorphism takes subspaces of dimension
t+ i to subspaces of dimension i.

As a corollary we get a concrete description of the link of v.

Corollary 3.9. 1. Let v ∈ Cg [t]. Then the link of v is isomorphic to At−1 ∨Cg−t.

2. In particular, for every set I ⊆ {t+ 1, t+ 2, . . . , g}, the complex (Cg)I
v is isomorphic to CI

g−t.

3. Let w = {v0 ⩽ v1 ⩽ . . . ⩽ vi} ∈ C(i). Then the link of w is isomorphic to Aj0 ∨Aj1 ∨ · · · ∨Ajt ∨Cjt+1 .
Here j0 = dim(v0) − 1, jt+1 = g− dim(vi) and for all i = 1, 2, . . . , t, ji = dim(vi) − dim(vi−1) − 1.
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Proof of Proposition 3.8. Any isotropic subspace u ⊇ v is in v⊥. It is well known by the correspondence
theorem that the poset of subspaces of v⊥ containing v and the subspaces in v′ = v⊥/v are isomorphic and
that this isomorphism sends subspaces of dimension t+ i to subspaces of dimension i. Thus we need to show
that a subspace v ⊆ u ⊆ v⊥ is isotropic if and only if ρ(u) is isotropic (with respect to the respective inner
products).

Indeed u ⊇ v is isotropic if and only if for every x, y ∈ u, ⟨x, y⟩ = 0. By definition ρ(u) = {[x] ∈ v′ | x ∈ u}
and ⟨[x], [y]⟩v′ = ⟨x, y⟩ so u is isotropic if and only if ρ(u) is. □

Proof of Corollary 3.9. Let I1 = {0, 1, . . . , t− 1}, I2 = {t+ 1, t+ 2, . . . , g}. We first note that (Cg)v =

(Cg)
I1
v ∨ (Cg)

I2
v since choosing a top level face in the link corresponds to choosing a flag contained in v and

(independently) a flag that contains v and taking the union of the two flags. Clearly any subspace contained
in v is itself isotropic so clearly (Cg)

I1
v � At−1. Moreover, by Proposition 3.8, (Cg)

I2
v � Cg−t−1. This proves

the first and second items.
The third item follows from the inducting over the first item, using the fact that (Cg)w =

((. . . (Cg)v0)v1) . . . )vi □

In Section 6.3 we prove that the building is a local-spectral expander.

Lemma 3.10. There exists c > 1 such that the following holds for every g ∈ N and prime power p such
that for every w ∈ Cg and i, j < col(w), the bipartite graph ((Cg)w[i], (Cg)w[j]) is an c√

p -one sided spectral
expander. Moreover, Cg is a c√

p -one sided local spectral expander.

3.3 The affine symplectic building
In this section we define and describe the infinite simplicial complex known as the affine symplectic building
C̃g = C̃g(Qp). This is complex is a close relative of the complex of type Ãg which was used in [LSV05a]
to construct the well known Ramanujan complexes. It is a well-studied complex, so we only give a brief
introduction here. For proofs and a more in depth discussion see [AB08] or [Wei08].

In particular, we will see that this is a (g+ 1)-partite complex and that Sp(2g, Qp) acts transitively on
the top level faces in a color preserving manner. We will also give the following description of its links.

Proposition 3.11. Let w ∈ C̃g(i). Then the link of w is a join of at most i+ 2 spherical buildings of type A
or C.

We call complexes with such a property symplectic-like complexes.
Let p be any prime and let Zp =

{∑∞
j=0 ajp

j
∣∣∣ aj ∈ {0, 1, . . . , p− 1}

}
and Qp = Zp[

1
p ] be the p-adic

integers and p-adic numbers, respectively.
Let V = Q

2g
p = span(e1, e2, . . . , eg, f1, f2, . . . , fg), and let ⟨·, ·⟩ be the skew symmetric non-degenerate

bilinear form defined by the following relations:⟨ei, fj⟩ = −⟨fj , ei⟩ =

{
1 i = j

0 i , j
,

⟨ei, ej⟩ = ⟨fi, fj⟩ = 0
. (3.2)

The group Sp(2g, Qp) is defined with respect to this bilinear form to be all linear operators preserving the
bilinear form.

A Zp-lattice is a set of the form L =
{∑2g

j=1 αjbj

∣∣∣ αj ∈ Zp

}
= spanZp

(b1, b2, . . . , b2g) where
{b1, b2, . . . , b2g} is a basis for V (i.e. spanQp

(b1, b2, . . . , b2g) = V ). The standard lattice is Lstd =

spanZp
(e1, e2, . . . , eg, f1, f2, . . . , fg). A lattice is primitive if there exists some A ∈ Sp(2g, Qp) such

that AL = Lstd. An alternative and equivalent definition for a primitive lattice, is that L =
spanZp

(e′1, e′2, . . . , e′n, f ′1, f ′2, . . . , f ′n) such that (3.2) holds (for the {e′i} ∪ {f ′j} instead of {ei} ∪ {fj} re-
spectively).
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Recall that Zp/pZp � Fp by
∑∞

j=0 ajp
j 7→ a0, which we also write as z 7→ z (mod p). This induces an

isomorphism of L/pL � F
2g
p in the natural way. We can endow L/pL with a bilinear form given by

⟨u1 + pL,u2 + pL⟩ := ⟨u1,u2⟩ (mod p). (3.3)

One may verify that this does not depend on the choice of representatives and that when L is primitive
then this is a a skew symmetric non-degenerate bilinear form.

We also define an equivalence class over the set of lattices, where L ∼ L′ if L = pjL′ for some j ∈ Z. We
denote an equivalence class of lattices by [L]. We say a lattice class [L] is primitive if there exists a primitive
representative L ∈ [L].

Obviously the group Sp(2g, Qp) acts on lattices in the natural way. This action respects the lattice class,
i.e. L ∼ L′ if and only if for every A ∈ Sp(2g, Qp), AL ∼ AL′. Therefore the action of the group is well
defined on lattice classes.

We are ready to define C̃g.

Definition 3.12. The g-dimensional affine building over Qp is the following simplicial complex. The vertices
of C̃g(0) are all equivalence classes of lattices [L] so that:

1. There exists L ∈ [L] and some primitive lattice L0 such that pL0 ⊆ L ⊆ L0 and

2. The subspace L/pL0 is isotropic inside L0/pL0, with the bilinear form defined in (3.3).

The top-level faces are all {[L0], [L1], . . . , [Lg ]} ∈ C̃g(g) such that there exist representatives L0 ∈
[L0],L1 ∈ [L1], . . . ,Lg ∈ [Lg ] such that L0 is primitive and

pL0 ⊊ L1 ⊊ L2 ⊊ · · · ⊊ Lg ⊊ L0 (3.4)

and all the Li/pL0 are isotropic.

We shall not prove all facts we need on the symplectic building, but in Appendix A we show a few
properties of C̃g to gain some intuition on it. In particular, in Appendix A we prove the following claim.
Claim 3.13.

1. The group Sp(2g, Qp) acts simplicially on C̃g.

2. The action is transitive on C̃g(g).

3. The complex C̃g is (g+ 1)-partite. The color of a lattice class [L] is i such that [L] is in i-th place in
(3.4).4

4. Let v = [L0] be primitive. Then (C̃g)v � Cg, the g-partite symplectic spherical building.

With Claim 3.13 in hand, we comment that a posteriori we can also define C̃g [i] differently. Let

L∗i = span((e1, e2, . . . , ei) ∪ (pei+1, pei+2, . . . , peg) ∪ (pf1, pf2, . . . , pfg)).

The group Sp(2g, Qp) acts transitively on C̃g(g), so it also acts transitively on C̃g [i] (see Appendix A).
Therefore, C̃g [i] = Orbit([L∗i ]). Equivalently, these are all lattice classes [Li] that have a representative

Li = span(e′1, e′2, . . . , e′i,hi+1,hi+2, . . . ,hg, f ′1, f ′2, . . . , f ′g)

such that the skew symmetric bilinear form acts the same as in L∗i with respect to the above basis. That is,

⟨ei,hj⟩ = ⟨ei, ej⟩ = ⟨hi,hj⟩ = ⟨fi, fj⟩ = 0,

⟨ei, fj⟩ =

{
p i = j

0 i , j
,

4In particular, every vertex is contained in some top-level face and the place of [L] does not depend on a choice of face or
representative.
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and

⟨hi, fj⟩ =

{
p2 i = j

0 i , j
.

The link structure of every [Li] ∈ C̃g [i] is the same because of the transitive action of Sp(2g, Qp). The
following fact gives a complete characterization of the links of vertices in this complex.

Fact 3.14. Every link of v ∈ C̃[i] is isomorphic to Ci−1(Fp) ∨Cg−i(Fp).5

This fact together with Corollary 3.9 that shows how links of faces in Cg−i decompose into joins of smaller
spherical buildings, immediately imply Proposition 3.11.

Using Proposition 3.11 we also prove the following.

Theorem 3.15. For every g ∈ N, a prime p and a quotient X of C̃g(Qp), the complex X is a O( 1√
p )-one

sided local spectral expander. The skeleton X⩽k is a max{O( 1√
p ),

1
d−k+1}-two sided local spectral expander.

The same holds true for any symplectic-like complex.

We mention that the phenomenon observed in Proposition 3.11 is more general. In fact, one can read the
structure of the links of an affine building via its associated Coxeter-Dynkin diagram. Every building has an
associated Coxeter-Dynkin diagram (the type of the building is named after it). A link of a vertex of color i is
a building whose diagram is obtained by removing the i-th vertex from the original Coxeter-Dynkin diagram.
If the removal of a vertex disconnects the diagram, this corresponds to the link being a join of complexes
whose respective diagrams are the different connected components. For more details see [AB08] or [Wei08].

Towards taking quotients of C̃g we mention the following fact.

Fact 3.16. For every g ⩾ 1, the complex C̃g is a connected clique complex. Moreover, it is simply connected
and contractible.

Finally, we need a criterion for when subgroups of Sp(2g, Qp) act freely on C̃g. The group Sp(2g, Qp)
comes with a topology induced by the topology of Qp. For this we need the following fact.

Fact 3.17. Let v ∈ C̃g(0). Then its stabilizer Stab(v) ⊆ Sp(2g, Qp) is an open compact subgroup.

We note that if [L] ∈ C̃g [0] then the stabilizer is conjugate to Stab([Lstd]) = Sp(2g, Zp), so in this case
the fact is clear. For other colors the stabilizer is commensurable to Sp(2g, Zp), hence also open compact.

Corollary 3.18. Let Γ ⩽ Sp(2g, Qp) be a subgroup.

1. If Γ is discrete and cocompact then Γ \ C̃g(0) is finite.

2. If Γ is discrete and torsion free then the action of Γ is free on the vertices of C̃g.

Proof of Corollary 3.18. We start with the first item. It is enough to show that Γ \ C̃g [i] is finite for every
color i. By Claim 3.13 the action of Sp(2g, Qp) is transitive on top-level faces. This shows it also acts
transitively on every C̃g [i]: given v1, v2 ∈ C̃g [i], find top level faces s1 ∋ v1, s2 ∋ v2. There is an element
A ∈ Sp(2g, Qp) so that As1 = s2. The action preserves colors hence Av1 = v2. Thus the action of Γ on C̃g [i]
is the same as the left multiplication action of Γ on the right cosets Sp(2g, Qp)/Stab(v) for any v ∈ C̃g [i].
By Fact 3.17 the stabilizer is open, and therefore Sp(2g, Qp)/Stab(v) is discrete. On the other hand, the
orbits of this action are Γ \ Sp(2g, Qp)/Stab(v). The space Γ \ Sp(2g, Qp) is compact, so this quotient
Γ \ Sp(2g, Qp)/Stab(v) is compact and discrete, and therefore finite.

We now show the second item. Let γ ∈ Γ and assume that there exists some v ∈ C̃g(0) so that γ ∈ Stab(v);
let us show that γ = 1. Obviously for every m ∈ N, γm ∈ Stab(v). By Fact 3.17, Stab(v) is compact,
therefore the sequence γm has a converging subsequence. By assumption Γ is discrete, thus any converging
sequence must be constant after some finite point. In particular, there exists m2 > m1 such that γm2 = γm1 ,
or equivalently γm2−m1 = 1. By torsion freeness of Γ this implies that γ = 1. □

5For i = 0 or i = g one of the complexes is empty, i.e. this is a single symplectic spherical building of dimension g.
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4 Proof of the Agreement Theorem
In this section we prove Theorem 1.1, in a more general setup. In fact we prove a more general version of
this theorem, Theorem 4.11. We first repeat some definitions from [DD23a]. We begin with the definitions
required for our agreement tests, then we define “suitable complexes” which are needed for stating the main
theorem of [DD23a]. Finally we prove that quotients of C̃g satisfy these requirements and use Theorem 1.4 to
conclude our main theorem.

4.1 Agreement Tests Definitions
Let k < d and let X be a d-dimensional simplicial complex. Let Σ be some fixed alphabet and suppose we
have an ensemble of functions F = {fs : s → Σ | s ∈ X(k)}.

A two-query agreement test is a distribution D over pairs s1, s2 ∈ X(k). The agreement of an ensemble is

AgreeD(F) = P
s1,s2∼D

[fs1 = fs2 ] . (4.1)

When writing fs1 = fs2 we mean that fs1(v) = fs2(v) for every v ∈ s1 ∩ s2.
More generally, a q-ary agreement test is a distribution of s1, s2, ..., sq ∈ X(k), where the agreement of

the ensemble
AgreeD(F) = P

s1,s2,...sq∼D

[
∀i, j fsi = fsj

]
. (4.2)

Let ∆d(k) be the k-dimensional complete complex over d vertices.

Definition 4.1 (Extension). Let D be a symmetric6 q-ary agreement test on ∆d(k). Let X be any d-
dimensional simplicial complex. We define the extension DX of D to an agreement test on X, as follows:

1. Sample t ∈ X(d).

2. Query s1, s2, ..., sq ⊆ t according to ∆d(k).

We note that by the symmetry of D the second step doesn’t depend on the way we identify the vertices of
t with the vertices of ∆d(k). Here are some classical examples.

Definition 4.2 (Two-query V -test). Let d = 2k−
√
k+ 1 + 1.

1. Sample some t ∈ X(d).

2. Sample uniformly s1, s2 ∈ X(k) such that s1, s2 ⊆ t, conditioned on |s1 ∩ s2| =
√
k+ 1.

Definition 4.3 (Three-query Z-test). Let d = 3k− 2
√
k+ 1 + 2).

1. Sample some t ∈ X(d).

2. Sample three s1, s2, s3 ∈ X(k) such that s1, s2, s3 ⊆ t, conditioned on |s1 ∩ s2|, |s2 ∩ s3| =
√
k+ 1 and

s1 ∩ s3 = ∅.

A sound distribution is a distribution that supports an agreement theorem.

Definition 4.4. Let X be a simplicial complex and let D be an agreement distribution on X. Let
η, ε0, e > 0 be constants. We say that D is (η, ε0, e)-sound if for every ensemble of functions F such that
AgreeD(F) = ε ⩾ ε0, there exists a function G : X(0) → Σ, such that

P
r1,r2,...,rq∼D

[
∀j G|rj

1−η
≈ frj and ∀i, j fri = frj

]
⩾

1
2ε

e. (4.3)

Here f
1−η
≈ g means that f , g differ on at most a η-fraction of their coordinates, or stated differently

dist(f , g) ⩽ η.
Examples of such distributions include:

6i.e. for every permutation π : [d]→ [d], P [s1, s2, ..., sq ] = P [π(s1), π(s2), ..., π(sq)] .

19



Example 4.5. 1. The V -test extended to X = ∆n(k) is (1/
√
k, k−c, 1)-sound for d ⩾ k3 and c > 0

[DG08] (see also [IKW12]).

2. The Z-test extended to X = ∆n(k) in [IKW12] show that the Z-test is (k−0.2, exp(−Ω(k1/2),O(1))-
sound. For constant λ > 0, this was improved to (λ, exp(−Ω(k)),O(1))-soundness by [DL17].

The works mentioned in the second item prove a weaker soundness guarantee than that of Definition 4.4 but
[DG08, Theorem 5.1] give a general technique to lift this weaker guarantee into the soundness in Definition 4.4.

We also need the definition of cover soundness.

Definition 4.6 (Cover sound). Let X be a simplicial complex and let D be an agreement distribution on
X. Let η, ε0, e > 0 be constants. We say that D is (η, ε0, e)-cover-sound if for every ensemble of functions
F = {fs : s → Σ | r ∈ X(k)} such that AgreeD(F) = ε ⩾ ε0, there exists a simplicial 1

εe -cover ρ : Y → X
and a global function G : Y (0) → Σ such that

P
s̃∈Y (k)

[
fρ(s̃) ◦ ρ

1−η
≈ G|s̃

]
⩾

1
2ε

e. (4.4)

The probability in (4.4) is equivalent to choosing s ∈ X(k) and then a random preimage s̃ ∈ Y (k).
Therefore this inequality implies that for at least 1

2ε
e-fraction of the fs’s, fs agrees with G|s̃ for one of the

preimages s̃ ∈ ρ−1(s) (i.e. using ρ to send vertices from s̃ to s).

4.2 Suitable Complexes
The main theorem of [DD23a] requires certain conditions from the complexes to get a sound agreement test.

Definition 4.7 (Well connected). Let X be a d-dimensional simplicial complex. Let d1 ⩽ d− 2. We say that
X is d1-well-connected if for every r ∈ X⩽d1 it holds that Fd1(Xr) is connected. Moreover, if r ∈ X(0) then
we require that Fd1(Xr) is simply connected. When d1 is clear from context we omit it and say that X is well
connected.

Definition 4.8 (Suitable complex). Let d > k > 0 be integers, and let α > 0. Let X be a d-dimensional
simplicial complex. We say that X is (d, k,α)-suitable if it has the following properties:

1. There exists some integer d1 ⩽ d− 2 with the following properties:

(a) k3 ⩽ d1 ⩽ d exp(−αd1
k ).

(b) X has (exp(−αd1
k ), d1)-swap-cocycle expansion.

(c) X is d1-well connected as in Definition 4.7.

2. X is a 1
d2 -two-sided local spectral expander.

3. X is a clique complex.

We remark that if one assumes swap coboundary expansion (not only swap cocycle expansion), then one
can relax the requirements for well connectivity and clique complexes. These are required so to construct
a cover, which in the swap coboundary case is immediate, since the cover is just many disjoint copies of
the original complex. However, to stay as close to the statement in [DD23a] as possible, we verify the full
requirements.
Claim 4.9. For every α > 0 and k and large enough d, there exists p0(d) and g0(d) such that for g ⩾ g0 and
prime p ⩾ p0, the d-skeleton of any finite quotient of C̃g(Qp) is (d, k,α)-suitable.

Proof of Claim 4.9. We first find d1 ⩾ k3 such that Theorem 6.11 shall imply our quotients are
(exp(−αd1

k ), d1)-cocycle expanders.
Let C > 0 be the constant such that any finite quotient X of C̃g(Qp) is a (exp(−C

√
d1), d1)-swap cocycle

expander for all d1 provided that g > d5
1 and p is large enough. Such a constant exists by Theorem 6.11.
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Let d1 be the smallest integer such that exp(−αd1
k ) < exp(−C

√
d1) and such that d1 ⩾ k3 (this is

d1 = max{k3, ⌈C2

α2 k
2⌉}).

Let d ⩾ exp(αd1
k )d1 (this is required for item 1(a) in the definition of suitable). Recall that by Lemma 3.10,

two-sided spectral expansion of the d-skeleton X goes to 0 as p, g go to infinity, so let p, g be large enough so
that Theorem 6.11 holds and so that X is 1

d2 two-sided local spectral expander. We claim that for quotients
of C̃g, the d-skeleton is (d, k,α)-suitable.

1. Swap cocycle expansion follows from Theorem 6.11.

2. Connectivity of the links of the faces complex follows from their spectral expansion. By Lemma 3.10
these complexes are local spectral expanders. The quotients are partite, so the swap walks between
different colors are local spectral expanders by Claim 2.14 (for large enough p). This implies connectivity
of the faces complex itself when g is large enough, because given two faces s1, s2 in the face complex, we
can find a face s3 whose colors are disjoint from the colors of s1 and s2. Then we can use the color-swap
walk to go from s1 to s3 and from s3 to s2.
Coboundary expansion of the faces complexes of Xv for vertices v ∈ X(0), implies simple connectivity.
The links, which are isomorphic to some links in C̃g itself, are symplectic like as in Proposition 3.11.
Therefore by Theorem 6.11, they are coboundary expanders for some positive constant and therefore
simply connected.

3. As explained above, local spectral expansion is by Lemma 3.10.

4. The building C̃g is a clique complex by Fact 3.16 and hence its quotient is a clique complex by Claim 2.28.

□

4.3 Proof of the main theorem
We can now state the formal version of Theorem 1.4. This theorem is essentially a reduction from a sound
agreement test on ∆d(k) to a sound agreement test on a complex X, assuming that X is suitable.

Theorem 4.10 ([DD23a, Theorem 3.1]). For every k > 0, ε0 > Ω(1/ log k), and C > 1 there exists
α = poly(ε0) and d0 ∈ N such that the following holds for any d ⩾ d0. Let η ⩽ exp(− poly(1/ε0)) be
sufficiently small. Let D be an agreement distribution on ∆Ck(k) such that its extension to ∆m(k) is
(η, poly( 1

k ),O(1))-sound for every m ⩾ k3. Let X be a (d, k,α)-suitable complex and let DX be the extension
of D to X. Then DX is (ε0, γ, e)-cover sound where γ = exp(poly(1/ε0))η and e = O(1) depends only on
ε0.

We use this to prove our main theorem, the formal version of Theorem 1.1.

Theorem 4.11 (Main). For every k > 0, ε0 > Ω(1/ log k) η ⩽ exp(− poly(1/ε0)), and C > 1 there
exists a family of Ck-dimensional simplicial simplicial complexes X so that DX is (ε0, γ, e)-sound where
γ = exp(poly(1/ε0))η and e = O(1) depends only on ε0. These complexes are skeletons of quotients of C̃g.

A more concrete corollary is this.

Corollary 4.12 (Theorem 1.1). For every k > 0, ε > Ω(1/ log k) and γ > 0 there exists a family of
complexes X such that the extensions of the V -test and Z-test on k-sets are (ε0, γ,O(1)) sound. These
complexes are skeletons of quotients of C̃g.

Proof of Theorem 4.11. The family of complexes we construct are Ck-skeletons of the complexes in Theo-
rem 1.2.7 Let m = 1

εe . We find g, p sufficiently large so that the family of k-skeletons in Theorem 1.2 (which
are quotients of C̃g(Qp)) have the following two properties.

1. They are (d, k,α)-suitable for a sufficiently small α and large d required in Theorem 4.10 (such g, p
exists by Claim 4.9).

7Technically, the analysis of these complexes require higher dimensional sets, but the test itself only requires Ck-sets.
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2. They do not have connected m′-covers for any 1 < m′ ⩽ m.

By cover soundness,

Agree({fs}) > ε =⇒ ∃Y ρ−→→ X, ∃G : Y (0) → Σ, P
s
[fρ(s) ◦ ρ

1−γ
≈ G|s] ⩾

1
2ε

e.

where ρ is an m′-cover for some m′ ⩽ m. By assumption any m′-cover is trivial, i.e. just disjoint copies of X.
Therefore there exists some connected component in Y ′ ⊆ Y isomorphic to X such that

P
s∈X,s̃∈Y ′∩ρ−1(s)

[fρ(s) ◦ ρ
1−γ
≈ G|s] ⩾

1
2ε

e.

Thus G|Y ′(0) is the global function showing the distribution is (ε0, γ, e)-sound. □

Proof of Corollary 4.12. Apply Theorem 4.11 together with the tests in Example 4.5. □

5 Complexes with no small covers
In this section we will prove Theorem 1.2.

It is well known that every m-cover of X corresponds to an m-index subgroup in the fundamental group
of X [Sur84]. Thus Theorem 1.2 follows directly from this proposition.

Proposition 5.1 (Main). Let m ⩾ 2 be an integer and let g ⩾ 100
√
m logm. Then for every prime p the

p-adic group G = Sp(2g, Qp) has infinitely many cocompact and torsion free lattices {G ⩾ Γ1 ⩾ Γ2 ⩾ . . . }
that intersect trivially, satisfying that for every i, Γi has no proper subgroup of index ⩽ m.

We spell out the proof of Theorem 1.2 for completeness.

Proof of Theorem 1.2, assuming Proposition 5.1. Let {Γi}∞i=1 be as in Proposition 5.1. By Corollary 3.18
their action on C̃g is free. By Claim 2.31 there is a subsequence {Γi}∞i=i0

so that for every v ∈ C̃g(0), i ⩾ i0
and non-zero element γ ∈ Γi, dist(v, γ.v) ⩾ 4. Without loss of generality let us assume that all Γi have this
property. By cocompactness, the quotients Xi = Γi \ C̃g are finite. By Claim 2.27 and Theorem 2.30, their
universal cover is C̃g and their fundamental groups are Γi respectively. By Fact 2.29 and the fact that every
Γi has no subgroups of index ⩽ m, we get that all the complexes Xi have no connected m′-covers for m′ ⩽ m.
Hence the complexes {Xi}∞i=1 are the desired family. □

See Section 5.3 for a modification of this proof that gives a family of polynomially constructible complexes
as such.

5.1 Background
5.1.1 Profinite groups

Before we prove Proposition 5.1, let us give some necessary background.

Definition 5.2 (Profinite topology). Let Γ be a finitely generated group. Its profinite topology is defined as
the topology generated by the basis of open sets {γH | γ ∈ Γ,H ⩽ Γ, [Γ : H ] < ∞}.

One can verify that in this topology the multiplication and inverse operations are continuous.

Definition 5.3 (Profinite completion). Let Γ be a finitely generated group. Its profinite completion is the
group Γ̂, which is the topological completion of Γ with respect to the profinite topology.

An equivalent definition is to say that

Γ̂ = lim
←

{Γ/N | N ⊴ Γ, [Γ : N ] < ∞} .
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This means that
Γ̂ ⊆

∏
N⊴Γ,[Γ:N ]<∞

Γ/N

where (γN )N ∈ Γ̂ if for all N1 ⩽ N2, πN1,N2(γN1) = γN2 , where πN1,N2 : Γ/N1 → Γ/N2 is the natural
projection (see e.g. [RZ00]).

We say that a group K is profinite if it is an inverse limit of finite groups, an obvious example is that
profinite completions are profinite groups. One can equivalently define profinite groups as topological groups
where the topology is compact, totally disconnected and Hausdorff [Dix+99].

There is a homomorphism p : Γ → Γ̂ where p(γ) = (γN)N . This homomorphism is injective exactly when
Γ is residually finite (because then for every γ , γ′ there is a normal subgroup N such that γN , γ′N). We
will only work with residually finite groups so we hence assume that Γ ⊆ Γ̂ (and the inclusion is via this
homomorphism).

Proposition 5.4 ([LD81]). Let Γ be a finitely generated, residually finite group. Then there is a bijection
between the finite index subgroups of Γ, and the open subgroups in Γ̂. This bijection preserves indexes. It is

H ⩽ Γ 7→ H

and in the inverse direction by
H ′ ⩽ Γ̂ 7→ H ′ ∩ Γ.

Moreover, we note that in this case for every finite index subgroup H ⩽ Γ, H = Ĥ.

5.1.2 Preliminary observations

The following observations are elementary but we prove them here for concreteness.
Claim 5.5.

1. A group Γ has no proper subgroup of index ⩽ m if and only if the only homomorphism from Γ to
Sym(m) is the trivial one.

2. A profinite group K has no proper open subgroup of index ⩽ m if and only if the only continuous
homomorphism from K to Sym(m) (equipped with the discrete topology) is the trivial one.

Proof. Let us prove the contrapositive. I.e., that there is a proper subgroup of index ⩽ m if and only if there is
a non-trivial homomorphism ϕ : Γ → Sym(m). For the first item, observe that if H ⩽ Γ is of index ⩽ m, then
Γ acts transitively on the cosets of H. This action gives rise to a non-trivial homomorphism to Sym(Γ/H)
which is (isomorphic to) a subgroup of Sym(m). In the other direction, suppose there is a non-trivial
homomorphism to Sym(m). Then there is an element i ∈ [m] such that Orb(i) = {ϕ(γ).i | γ ∈ Γ} , {i}. It
is easy to see that the stabilizer of i, i.e. H = {γ ∈ Γ | ϕ(γ).i = i} is indeed a subgroup, and its index is the
size of the orbit. In particular, this is a proper subgroup of index ⩽ m.

Let us move on to the second item. Note that if H ⩽ K is an open subgroup, then the homomorphism from
K to Sym(K/H) as above is a continuous one. To show continuity we need to show that for any σ ∈ Sym(m),
ϕ−1(σ) is closed. ϕ−1(σ) is a coset of the kernel, hence it is equivalent to show that ker(ϕ) = ϕ−1(1) is
closed. It can be verified that ker(ϕ) =

⋂
g∈K g−1Hg. Let us explain why this is closed. As this is an

intersection, it is enough to show that every g−1Hg is closed. Multiplication is continuous, if H is closed
then every g−1Hg is also closed, so it suffices to show that H is closed. But indeed, if H is open, then its
complement is a union of cosets, which are also open - thus H is closed.

For the other direction, let ϕ be the homomorphism. The ⩽ m-index subgroup H constructed above
contains ker(ϕ), which is open (from continuity of ϕ). Thus H is a union of cosets of an open subgroup,
which implies it is open. □

Claim 5.6. Let {Ki}i∈I be profinite groups and let K =
∏

i∈I Ki. The group K has a non-trivial continuous
homomorphism to Sym(m) if and only if there exists j ∈ I such that Kj has a non-trivial continuous
homomorphism to Sym(m).
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Proof. For the first direction, observe that we can embed every Kj in K where every k ∈ Kj corresponds to
k̃ ∈ K where

k̃i =

{
k i = j

1 i , j
.

Let T = ⟨Kj⟩j∈I ⊆ K. It is easy to see that T consists of all elements that are not the identity on a finite
number of components. We note that T is dense inside K. Thus every continuous homomorphism of Sym(m)
that is non-trivial, must also be non-trivial on T . This implies that it must be non-trivial on one of the sets
generating T , i.e. that there exists a j such that ϕ|Kj

is non-trivial.
The other direction is simple. If ϕ : Kj → Sym(m) is a non-trivial homomorphism, then ϕ ◦ pj :

K → Sym(m) is also a continuous and non trivial homomorphism, where pj is the projection to the j-th
coordinate. □

An immediate corollary from the two claims is:

Corollary 5.7. Let {Ki}i∈I be profinite groups and let K =
∏

i∈I Ki. Then K has a proper open subgroup
of index ⩽ m if and only if there exists Kj that has a proper open subgroup of index ⩽ m.

Finally, we also need the notion of Frattini subgroups.

Definition 5.8 (Frattini subgroup). Let K be a profinite group. Its Frattini subgroup Φ(K), is the
intersection of all maximal open subgroups M ⩽ K.

The subgroup Φ(K) is a normal subgroup since every conjugate of a maximal open group is also a
maximal open subgroup. It is also closed, since it is an intersection of closed sets (recall that every open
subgroup is also closed since its complement is a union of cosets, which are themselves open).

This is the main observation we need about Frattini subgroups.
Observation 5.9. Let K be a profinite group. Then K has a proper subgroup of index ⩽ m if and only if
K/Φ(K) has a proper subgroup of index ⩽ m.

Proof. Let L ⩽ K be a proper subgroup of index ⩽ m. It is contained in a maximal proper subgroup M with
index ⩽ m. By definition Φ(K) ⩽M ⩽ K and by the correspondence theorem M/Φ(K) has the same index
in K/Φ(K). The other direction follows from the same argument, reversed. □

5.1.3 Quaternion Algebras

In this subsection we present without proof some classical material from the theory of quaternion algebras
and arithmetic groups. For more on this and complete references see [PRR23], [Mor01] and [MR].

Definition 5.10 (Quaternion Algebra). Let F be a field of characteristic , 2 and let a, b ∈ F∗. The
Quaternion algebra is the F-algebra(

a, b
F

)
=
〈

1, i, j, k
∣∣∣i2 = a, j2 = b, ij = −ji = k

〉
.

When a = b = −1 and F = R this is the Hamilton’s Quaternion algebra. If F ⊆ L are two fields and
a, b ∈ F∗ then

(
a,b
F

)
⩽
(

a,b
L

)
.

The F-algebra can be either a division algebra (e.g.
(
−1,−1

R

)
) or it is isomorphic to M2(F), the 2 × 2

matrices over F (e.g.
(
−1,−1

C

)
). In the first case we say that it ramifies over F and in the second case we say

that it splits.
The algebra

(
a,b
F

)
splits over F if and only if the quadratic form ax2 + by2 = 1 has a solution in F (see

[MR, Theorem 2.3.1 p.87]).
Let us concentrate at quaternion algebras over Q. The field Q has infinitely many completions - the

p-adic fields Qp (one for every prime p) and the reals R, which we sometimes consider as p = ∞ and write
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Q∞ = R. Given
(

a,b
Q

)
we can extend it to every Qp (p ⩽∞). A given algebra ramifies only at a finite even

set of completions [MR, Theorem 2.7.3 p.99].
For concreteness look now at the algebra Hℓ(F) =

(
−1,−ℓ

F

)
where F ⊇ Q and ℓ is a prime and

ℓ ≡ 3 (mod 4).

Proposition 5.11. The algebra Hℓ ramifies over R and Qℓ and splits over Qp for every p , ℓ, ∞.

Proof. Assume first that p , 2, ℓ, ∞. In this case −1, −ℓ ∈ Zp, the p-adic integers, but not in pZp. By [MR,
Theorem 2.6.6, item (1), p. 97] the algebra Hℓ splits over Qp.

In the other hand, by the second item of the same theorem there,
(
−1,−ℓ

Qℓ

)
does not split as −1 is not a

square mod ℓZℓ, since ℓ � 3 (mod 4).
Now, the quadratic form −x2 − ℓy2 = 1 has no solution in R, thus

(
−1,−ℓ

R

)
ramifies.

Finally, by [MR, Theorem 2.7.3 p.99] the algebra
(
−1,−ℓ

Qp

)
must split since the number of ramified

completions of Hℓ is even. □

For α = w+ xi+ yj + zk we define the involution α = w+ xi+ yj + zk = w− xi− yj − zk. For every
F ⊇ Q we also denote the hermitian form

⟨, ⟩ : Hℓ(F)g ×Hℓ(F)g → Hℓ(F); ⟨α,β⟩ =
g∑

t=1
αtβt.

With this form in mind we denote by G(F) = SUg(Hℓ(F)), i.e.

SUg(H
ℓ(F)) =

{
A ∈ Mg×g(H

ℓ(F))
∣∣∣ ∀x, y ∈ Hℓ(F)g, ⟨Ax,Ay⟩ = ⟨x, y⟩

}
.

When F = Qp, then G(Qp)), being a closed group of some GLm(Qp) is locally compact, totally
disconnected and Hausdorff. This implies that every compact subgroup of it is profinite.

Fact 5.12. Let ℓ be a prime. Then

1. For every prime p , ℓ, SUg(Hℓ(Qp)) � Sp(2g, Qp).

2. The group SUg(Hℓ(R)) is a compact Lie group.

3. The group SUg(Hℓ(Qℓ)) is an ℓ-adic Lie group, and therefore it has a torsion-free pro-ℓ open subgroup
H0. In particular, the index of an open subgroup in H0 is a power of ℓ [Dix+99]. Hence there is an
infinite sequence of open compact subgroups,

H0 ⊵ H1 ⊵ . . .

such that every Hi+1 is a normal subgroup inside Hi, the index [Hi : Hi+1] = ℓ and the intersection⋂∞
i=0 Hi = {1}.

Let us fix g ⩾ 1 and two primes p , ℓ. Denote the algebraic group G(·) = SUg(Hℓ(·)). The ring of
Adeles of Q, denoted A = AQ, is the restricted product

∏∗
p⩽∞Qp (including Q∞ = R). This is the subring

of
∏

p⩽∞Qp where a sequence (xp)p is in A if for all but a finite number of elements, xp ∈ Zp (there is
no restriction on the real coordinate). The Adeles come with a natural topology (cf. [PRR23]) in which
R ×

∏
p<∞Zp is an open subring.

Consider now G(A). This is the restricted product
∏∗

p⩽∞G(Qp), that is, this is a subgroup of the∏
p⩽∞G(Qp) where (gp)p ∈

∏∗
p⩽∞G(Qp) if for all but a finite number of elements, gp ∈ G(Zp). This group

comes with a topology induced by A. The group G(Q) is diagonally embedded in G(A) as a discrete subgroup
but for every p , ∞, the projection of G(Q) into G(A)/G(Qp) is dense by the Strong Approximation
Theorem [PRR23].
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Let K0 ⩽ G(A) be
K0 = G(R) ×H0 ×G(Qp) ×

∏
q,p,ℓ,∞

G(Zq),

and let Γ0 = K0 ∩G(Q).
Recall that by Item 3 in Fact 5.12, G(R) is compact. As a subgroup of G(Q), the group Γ0 is also discrete,

and so is its projection to G(Qp) since the kernel of the projection K0 → G(Qp) is compact (this is because
all other factors in the product are compact). However, the projection of Γ0 to H0 ×

∏
q,p,ℓ,∞G(Zq) �

H0 ×
∏

q,p,ℓ,∞ Sp(2g, Zp) is dense, again by the Strong Approximation Theorem. Now the affirmative
solution to congruence subgroup problem (see [Rap89]) says that in such a situation, this profinite group
H0 ×

∏
q,p,ℓ,∞G(Zq), is isomorphic to the profinite completion of Γ0. In summary:

Fact 5.13.

1. The group Γ0 is a discrete cocompact lattice of SUg(Hℓ(Qp)) � Sp(2g, Qp).

2. The profinite completion Γ̂0 � H0 ×
∏

q,ℓ,p Sp(2g, Zq) as above. Here Zq are the q-adic integers and H1
is the pro-ℓ group. The group Γ0 is embedded diagonally in H1 ×

∏
q,ℓ,p Sp(2g, Zq), and the projection

of this embedding to every factor is injective.

5.2 Proof of Proposition 5.1
Proof. Fix some two primes p, ℓ such that ℓ > m. Let Γ0 be as above. Let H̃i � Hi ×

∏
q,ℓ,p Sp(2g, Zq) be

open subgroups of Γ̂0, where Hi are the subgroups from Fact 5.12. Let Γi = Γ0 ∩ H̃i. By Proposition 5.4,
Γi ⊆ Γ0 is a finite index subgroup of Γ0. In particular, by Fact 5.13 it is a discrete cocompact lattice of
Sp(2g, Qp). In addition, by Proposition 5.4, H̃i � Γ̂i, so instead of showing that Γi has no subgroups of index
⩽ m, we will show that H̃i has no open subgroups of index ⩽ m.

Let us fix i. As above, H̃i = Γ̂i is an infinite product of profinite groups. By Corollary 5.7 showing that
H̃i has no open subgroup of index ⩽ m is equivalent to showing that none of the groups in the product have
open subgroups of index ⩽ m.

The group Hi is a pro ℓ-group so all proper open subgroups must have index at least ℓ > m. Let us
consider Sp(2g, Zq). Fix some q , p, ℓ. Assume towards contradiction that K = Sp(2g, Zq) has a subgroup
of index at most m. By Observation 5.9, K/Φ(K) also has a subgroup of index at most m. By [Wei96]

K/Φ(K) � PSp(2g, Fq).

It is well known that PSp(2g, Fq) is a simple group. By Claim 5.5, if it has a non-trivial homomorphism
to Sym(m) the kernel of this homomorphism is a proper normal subgroup of index at most m!. But the only
proper normal subgroup in PSp(2g, Fq) is the trivial subgroup, which has index larger than m!, since the
order of PSp(2g, Fq) is |PSp(2g, Fq)| > |PSp(2g, F2)| ⩾ 2g2−g−1 > m! for g ⩾ 100

√
m logm.

Finally, the groups Γi have no torsion, because by Fact 5.13, they are embedded in H ′ which has no
torsion. This diagonal embedding also promises that the intersection

⋂∞
i=1 Γi = {1} since by the definition

this is equal to

Γ0 ∩
∞⋂

i=1

Hi ×
∏

q,ℓ,p
Sp(2g, Zq)

 = Γ0 ∩

{1} ×
∏

q,ℓ,p
Sp(2g, Zq)

 .

By Fact 5.13, Γ0 is diagonally embedded inside H1 ×
∏

q,ℓ,p Sp(2g, Zq), this implies that this intersection is
{1}. □

5.3 Constructing a Family of Quotients in Polynomial Time
In this section we prove a polynomially constructible version of Theorem 1.2. Recall that a family {XN }N is
polynomially constructible if there is an algorithm that is given n in unary input, and it produces a member
in the family XN with at least n vertices in poly(n)-time.
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Proposition 5.14. Let m ⩾ 2 and let g ⩾ 100
√
m logm. There exists a family of polynomially constructible

complexes {XN }N that are finite quotients of C̃g(Qp) such that every XN has no m′-connected covers for
1 < m′ ⩽ m.

We fix m as in the proposition and a sufficiently large prime ℓ as in the construction above. Let G be
a finite group acting on [ℓ]. To understand the algorithm, we must explain how to construct a cover for a
clique complex X, given a cocycle ϕ :

→
X(1) → G. Let Xϕ be the following complex.

1. The vertices of the cover are Xϕ(0) = X(0) × [ℓ].

2. The edges are all {(v, i), (u, j)} such that {v,u} ∈ X(1) and j = ϕ(uv).i.

3. The higher dimensional faces are all cliques in the graph (Xϕ(0),Xϕ(1)).8

This construction indeed results in an ℓ-cover of X for any cocycle ϕ. For a proof see [Sur84, Proposition 2.1].
Given X and such a coycle ϕ :

→
X(1) → G, the construction of Xϕ can clearly be done in Oℓ(|X|) time.

We will use this construction with G = Z/ℓZ that is, G = {0, 1, . . . , ℓ− 1} with addition modulo ℓ. For this
special case we state the following fact.

Fact 5.15. Let X be a connected clique complex and let ϕ ∈ Z1(X, Z/ℓZ) \B1(X, Z/ℓZ). Then Xϕ is
a connected ℓ-cover of X, and moreover the fundamental group of Xϕ is a normal index ℓ subgroup of the
fundamental group of X.

The first part is by [Sur84, Theorem 5.3]. The “moreover” is by [Hat02, Proposition 1.39, item (a)]. Before
proving the proposition, we will also use the following claim in the analysis.
Claim 5.16. Let Γ be a subgroup of Γ0 above such that Γ̂ = H ×

∏
q,ℓ,p Sp(2g, Zq), where H ⩽ H1 is a finite

index subgroup of H1, the pro-ℓ group constructed above. Then

1. Γ has no proper subgroup of index < m.

2. There exists a normal subgroup Γ′ ⊴ Γ of index ℓ.

3. Every normal subgroup Γ′ ⊴ Γ of index ℓ has that Γ̂′ = H ′ ×
∏

q,ℓ,p Sp(2g, Zq) for some H ′ ⊴ H of
index ℓ.

Proof of Claim 5.16. The proof of the first item is just to repeat the proof of Proposition 5.1. The proof for
the second item is by observing that H, as a finite index subgroup of H1, is also pro-ℓ, and therefore a maximal
subgroup H ′ ⩽ H is normal in H and has index ℓ. Therefore, the group Γ′ ⩽ Γ whose profinite completion is
Γ̂′ = H ′ ×

∏
q,ℓ,p Sp(2g, Zq) is an index ℓ subgroup in Γ (because of Proposition 5.4 and [Γ̂ : Γ̂′] = ℓ). It is

normal because H ′ ⊴ H which implies that Γ̂′ ⊴ Γ̂, and this in turn shows that Γ̂′ ∩ Γ0 ⊴ Γ̂ ∩ Γ0, but these
are equal to Γ′, Γ respectively by Proposition 5.4.

Finally, let us prove the third theorem. Let Γ′ ⊴ Γ be a normal subgroup of index ℓ. Therefore the same
holds for Γ̂′ ⊴ Γ̂. Thus the quotient map ψ : Γ̂ → Γ̂/Γ̂′ is non-trivial and by Claim 5.6, this implies that ψ
is non-trivial when restricted to one of the factors of the product Γ̂ = H ×

∏
q,ℓ,p Sp(2g, Zq)9. However,

for every factor Sp(2g, Qq) the homomorphism is trivial. Indeed, fix K = Sp(2g, Qq), and assume for sake
of contradiction that ψ|K is not trivial. As Imψ � Z/Zℓ, if it is not trivial, then the kernel of ψ|K is an
index ℓ subgroup inside K and because ℓ is prime this is a maximal subgroup, and so it contains the Frattini
subgroup of K, which we denoted Φ(K). In other words, ker(ψ|K)/Φ(K) is a normal subgroup of index ℓ
inside K/Φ(K). But by [Wei96], K/Φ(K) � PSp(2g, Fq) which is simple and whose order is not a prime
when g ⩾ 2, thus it has no normal subgroup of index ℓ reaching a contradiction.

Thus Γ̂′ ⩽ H ′ ×
∏

q,ℓ,p Sp(2g, Zq) and because both subgroups have the same finite index ℓ inside Γ̂, we
have that Γ̂′ = H ′ ×

∏
q,ℓ,p Sp(2g, Zq). □

8This construction could be modified to work over complexes that are not clique complexes, but we omit the details for
simplicity.

9Formally Claim 5.6 is about the non-trivial homomorphism that a proper subgroup induces from Γ̂ to the group of symmetries.
In the normal subgroup case, one can repeat the same proof for the quotient map.
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Proof of Proposition 5.14. Let Γ = Γj ⩽ Γ0 be a subgroup of the chain of groups defined above that acts
properly cocompactly on C̃g(Qp) (there exists such a subgroup by Claim 2.31). The algorithm we present is
the following.

Algorithm 5.17. Input: Number of vertices n.

1. Set X0 := Γ \ C̃g(Qp) and i := 0.

2. While |Xi(0)| < n:

(a) Find an arbitrary cocycle ϕi :
→
Xi(1) → Z/ℓZ that is not a coboundary. If there is no such cocycle,

output ‘FAIL’.
(b) Construct Xi+1 := Xϕ

i and increment i := i+ 1.

3. Output Xi.

We will show the following to prove the proposition.

1. Assuming the algorithm has not output ‘FAIL’ up to the i-th iteration, the complex Xi+1 is a quotient
of C̃g(Qp) with no proper covers of index < m.

2. The algorithm never outputs ‘FAIL’. That is, for every i ⩾ 0, there exists a cocycle ϕi :
→
Xi(1) → Z/ℓZ

that is not a coboundary.

3. The algorithm terminates in poly(n) time.

Item 1 We prove by induction on i that Xi = Γ′i \ C̃g(Qp) for some Γ′i ⩽ Γ0 such that its profinite completion
Γ̂′i = H ′i ×

∏
q,ℓ,p Sp(2g, Qq) as in Claim 5.16. Then we will conclude by Claim 5.16 that Γ′i has no proper

subgroup of index < m, which by Fact 2.29 implies that Xi has no non-trivial m′-covers for m′ < m.
For X0 this is simply by the choice of complex. Assuming this is true for Xi, then Xi+1 = Xϕi

i is a
connected cover by Fact 5.15. Thus by this fact its fundamental group is an index ℓ normal subgroup
Γ′i+1 ⊴ Γ′i. As a connected cover of a quotient of C̃g, this complex is also a quotient of C̃g(Qp), that is,
Xi+1 = Γ′i+1 \ C̃g(Qp). The profinite completion of Γ′i+1 is Γ̂′i+1 = H ′i+1 ×

∏
q,ℓ,p Sp(2g, Qq) as in Claim 5.16.

Item 2 Fix Xi and recall that its fundamental group is some Γ′i ⩽ Γ0 whose profinite completion Γ̂′i =
H ′i ×

∏
q,ℓ,p Sp(2g, Qq) is as in Claim 5.16. By Claim 5.16 the group Γ′i has a normal subgroup Γ′ ⊴ Γ′i of

index ℓ. By [Sur84, Theorem 5.3] the normal subgroup Γ′ induces a connected ℓ-cover that can be realized
via the cocycle construction described above, using a cocycle ϕ′i :

→
Xi(1) → Γ′i with the action of Γ′i on

Γ′i/Γ′ by left multiplication. Because the subgroup Γ′ ⊴ Γ′i is normal, this realization is the same as the
realization given by ϕi :

→
Xi(1) → Γ′i/Γ′ with ϕi(uv) = ϕ′i(uv)Γ

′. The index ℓ is prime, thus Γ′i/Γ′ � Z/ℓZ so
ϕi ∈ Z1(Xi, Z/ℓZ). It is not a coboundary because for coboundaries the construction Xϕ is not connected.

Item 3 There are at most
⌈

log n
log ℓ

⌉
iterations of the loop in Algorithm 5.17, because the size |Xi+1(0)| =

ℓ|Xi(0)|. As we saw above the construction time of Xi+1 is Oℓ(|Xi+1|). By the first item all these complexes
are quotients of C̃g and are therefore bounded degree complexes of a fixed dimension g, hence this is
Oℓ,g(|Xi+1(0)|) = O(n).

Finding a ϕi :
→
Xi(1) → Z/ℓZ that is not a coboundary is done via linear algebra. The group Z/ℓZ is

actually a field. The space of cocycles is a linear subspace of all functions ϕ on the edges satisfying

ϕ(uv) + ϕ(vw) + ϕ(wu) = 0

for every {u, v,w} ∈ Xi(2). There are O(n) edges and triangles so finding the space of all cocycles could
be done in O(n3)-time via Gauss elimination. Moreover, the subspace of coboundaries is also a linear
subspace B1(X, Z/ℓZ) = Im(δ0), so finding ϕ ∈ Z1(X, Z/ℓZ) \B1(X, Z/ℓZ) can be done in O(n3) by
linear algebraic means. □
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We end this subsection with an open question. Let {XN } be a family of simplicial complexes and without
loss of generality identify the vertices of every complex XN with {1, 2, . . . , |XN (0)|}. We say that the family
{XN } is strongly explicit, if there is an algorithm that takes as input N , a vertex i ∈ XN (0) and a number j.
The algorithm runs in poly log |XN (0)| and outputs the j-th neighbor of i in the underlying graph of XN ,
where we order the neighbors with the natural number ordering <.

Algorithm 5.17 does not suffice for this definition because in order to find Xi+1 we need a full description
of Xi. In comparison, the quotients of Ãn in [LSV05a] are proven there to be a strongly explicit family by
using the fact that they are also Cayley graphs.

Is there a strongly explicit construction of the complexes we present as well?

6 Expansion Properties of the Symplectic Building
In this section we prove that the symplectic spherical building is a Ω(1)-coboundary expander and use this
to show that quotients of the affine symplectic building are (d, exp(−O(

√
d)))-swap cocycle expanders.

6.1 Coboundary expansion of the symplectic spherical building
In this subsection we show that the spherical symplectic building is a Ω(1)-coboundary expander for
1-cochains.

Theorem 6.1. There exists an absolute constant β > 0 such that for all g ∈ N and all finite fields h1(Cg) ⩾ β.

We note that [LMM16] already gave a bound that depends on the rank g (for coefficients in F2, but the
same technique applies for all coefficients). So without loss of generality we may assume that g is sufficiently
large.

Proof of Theorem 6.1. By Theorem 2.13 it suffices to give a lower bound to a noticeable fraction of color
restrictions. The colors we use are

C =

{
{i0, i1, i2} ∈

(
[2g]
3

) ∣∣∣∣ i1 ⩾ 2i0, i2 ⩾ 3i1, 17i1 ⩽ 2g
}

.

We will prove below the following lemma.

Lemma 6.2. Let I ∈ C. Then h1(CI
g ) ⩾ Ω(1).

Ordering the colors of C by their size, we have that

C ⊇ {{i0, i1, i2} | i0 ∈ [0, 0.01g], i1 ∈ [0.02g, 0.1g], i2 ∈ [0.3g, g]}

so |C| = Ω
(
(n

3)
)
, or equivalently p = |C|

(n
3)

= Ω(1). Thus by Theorem 2.13 h1(S) = Ω(1). □

Our main effort will be proving Lemma 6.2. We will do so using non-abelian cones. For constructing
them we will need the following claim, that will imply that the diameter of CI

g is constant.
Claim 6.3. Let i < j, and let G be the bipartite containment graph between Cg [i] and Cg [j], namely
connecting u ∈ Cg [i] to v ∈ Cg [j] iff u ⊂ v as subspaces. Let H be the bipartite containment graph between
C ′g [i] and C ′g [j] where C ′g [x] = {u ⊆ V | dim(u) = x} (i.e. all subspaces, not just isotropic subspaces). Then
for every v1, v2 ∈ S[i] it holds that distG(v1, v2) ⩽ 2 distH(v1, v2). In particular, diam(G) ⩽ 2diam(H).

For intuition, the reader is encouraged to verify the claim for the case where i = 1 and j = 2.

Proof of Claim 6.3. The claim will follow if we show that for every v1, v2 ∈ Cg [i] that are of distance 2 in H
have distance at most 4 in G. We will use the following easy fact that holds for every two subspaces u,u′,

dim(u+ u′) = dim(u) + dim(u′) − dim(u∩ u′). (6.1)

Let u1 ⊃ v1 be a j-dimensional isotropic subspace. Let w = u1 + v2. By (6.1),

dim(w) = dim(u1) + dim(v2) − dim(u1 ∩ v2) = j + i− dim(v1 ∩ v2)
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We claim that there exists a j-dimensional isotropic subspace u2 ⊆ w such that u2 ⊇ v2: a corollary from
Witt’s theorem says that every maximal isotropic subspace has the same dimension (see e.g. [Art57, Theorem
3.10]). We will use this corollary on the bilinear form restricted to w. In particular, u1 ⊆ w is an isotropic
subspace in w of dimension j, so a maximal isotropic subspace inside w has dimension ⩾ j. Thus there is
also an isotropic subspace v2 ⊆ u2 ⊆ w of dimension j (that is contained in a maximal isotropic subspace
that contains v2).

Next, observe that

dim(u1 ∩ u2) = 2j − dim(u1 + u2) ⩾ 2j − dim(w) ⩾ 2j − (j + i− dim(v1 ∩ v2) = j − i+ dim(v1 ∩ v2) ⩾ i

where the last inequality follows from the fact that distH(v1, v2) = 2 so j ⩾ dim(v1 + v2) = 2i− dim(v1 ∩ v2),
again using (6.1). This means that there some i-space v ⊆ u1 ∩u2 and a length 4 path v1 → u1 → v → u2 → v2
in G as needed. □

Proof of Lemma 6.2. The symplectic group induces a transitive action on the triangles of CI
g (for every

I ∈ C), therefore by Lemma 2.10, it is enough to find a constant sized cone for CI
g , and we can conclude that

h1(CI
g ) = Ω(1).

We define the following cones. Fix v0 ∈ Cg [i0] as a base point.
For any u ∈ Cg [i0], dim(v0 + u) ⩽ 2i0 ⩽ i1 so there is some i1-space (not necessarily isotropic) that

contains both v0 and u. By Claim 6.3, there must be a 4-path between them in G. This implies that there
exists a 5-path from v0 to any u ∈ CI

g so that for any u′ , u in this path it holds that u′ < Cg [i2] (first go
from u to some i0-dimensional subspace of u′ and then traverse from that subspace to v0 in four steps).

Hence, for every u , v0 we fix an arbitrary shortest path Pu from v0 to u so that for every vertex u′ , u
in the path, u′ ∈ Cg [i0] ∪Cg [i1].

Now for every edge {w1,w2} ∈ CI
g (1) we need to define a contraction of f = Pw1 ◦ (w1,w2) ◦ P−1

w2 to the
trivial loop around v0. We begin by showing how to contract f assuming that w1,w2 ∈ Cg [i0] ∪Cg [i1] and
then we show how to reduce from the general case to this case. Observe that f is a cycle of length ⩽ 11
with at most 5 subspaces of dimension i1 (and these contain all subspaces of dimension i0), so the sum of all
subspaces in f has dimension ⩽ 5i1. We will contract f in four steps:

1. We find an isotropic subspace u∗ of dimension 6i1 that is perpendicular to every subspace participating
in f . Here we use the assumption that the sum of all subspaces in the cycle has low enough dimension
⩽ 5i1. It follows that for every v ∈ f , u∗ + v is isotropic.

2. Fix an arbitrary “middle vertex” u∗∗ ⊆ u∗ such that u∗∗ ∈ Cg [i0].

3. We will connect every vertex vj of color i0 in the cycle to u∗∗ by finding an isotropic subspace uj ∈ Cg [i1]
that contains vj + u∗∗ ⊆ uj . We can do this since u∗∗ is chosen to be isotropic and perpendicular to vj .

4. We separately tile every cycle of the form (u∗∗,uj , vj , vj+1, vj+2,uj+2,u∗∗). Here we use the fact (proven
below) that the sum of the subspaces in this cycle is contained in the subspace u∗ + vj+1 which is
isotropic.

The first step is the content of this claim, which we postpone to later.
Claim 6.4. There exists an isotropic subspace u⊥ of dimension 6i1 such that for every x ∈

⊕
v∈f v and y ∈ u⊥,

⟨x, y⟩ = 0.
In particular, we can find an isotropic subspace u∗ ⊆ u⊥ of dimension i1 that also intersects all subspaces

in f trivially. Choose some arbitrary i0-subspace u∗∗ ⊆ u∗ as in the second step.
Let us relabel f = (v0, v1, v2, v3, . . . , vm, v0) for m ⩽ 11, where v2j ∈ Cg [i0] and v2j+1 ∈ Cg [i1]. We

note that for any v2j , there exists some isotropic space u2j ∈ Cg [i1] so that v2j ,u∗∗ ⊆ u2j : we start from
u∗∗ ⊕ v2j which is isotropic since u∗∗, v2j are both isotropic and perpendicular to one another, and then we
add independent vectors to it from u∗ until getting an i1-dimensional subspace u2j .

We denote by

f ′ :=(v0,u0,u∗∗,u0, v0, v1, (6.2)
v2,u2,u∗∗,u2, v2, v3 (6.3)
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Figure 3: The case where w1 ∈ Cg [i0] is on the left. The case where w1 ∈ Cg [i1] is on the right.

v4,u4,u∗∗,u4, v4, v5, (6.4)
. . . (6.5)
vm, v0), (6.6)

i.e. from every v2j ∈ f we add (v2j ,u2j ,u∗∗,u2j , v2j) before going to v2j+1. and note that f (BT )∼ f ′ so we
can contract f ′ instead of f . We have just completed the third step.

We note that f ′ (shifted to start and end at w0) is composed from a constant number of loops of the form
fj = (u∗∗,u2j , v2j , v2j+1, v2j+2,u2j+2,u∗∗). Thus if we can contract any such loop to the trivial loop with a
constant number of steps, then we can find a contraction of all f with a constant number of steps.

Indeed, fix fj , and note that by construction v2j+1 ⊕ u∗ ⊃
⊕

y∈fj
y. This is because v2j , v2j+2 ⊆ v2j+1

and by construction, the vectors in u2j ,u2j+2 and u∗∗ all lie in v2j+1 ⊕ u∗ as well. We note that u∗ ⊕ v2j+1
is isotropic since both subspaces are isotropic and perpendicular to one another. Thus there is an i2-
dimensional subspace xj that contains all subspaces in fj (there is a g-dimensional maximal isotropic space
that contains v2j+1 ⊕ u∗ so we take an i2-subspace of it containing this subspace as well. Here we have used
i0 + i1 ⩽ 3i1 ⩽ i2). Hence for every edge (a, b) in fj the triangle {a, b,xj} is in SI (2). We have shown that
with a constant number of triangles fj could be contracted to

(w0,xj ,u2j ,xj , v2j ,xj , v2j+1,xj , v2j+2,xj ,u2j+2,xj ,w0)

which is equivalent to the trivial loop around w0 by a sequence of (BT ) relations.

For the general case we can do the following contraction to a path that contains only subspaces from i0, i1
as above (we also recommend looking at Figure 3). For the case where {w1,w2} is such that w2 ∈ Cg [i2] and
w1 ∈ Cg [i0] we denote by w′ the other neighbor of w2 in f and note that w′ ∈ Cg [i0]. Thus we can find an
i1-dimensional (isotropic) subspace w′2 ⊆ w2 such that w′2 ⊇ w1 +w′ (by assumption that i1 ⩾ 2i0). Thus
using the triangles {w1,w2,w′2}, {w′,w2,w′2} ∈ CI

g (2) we can contract (w1,w2,w′) to (w1,w′2,w′) removing
the subspace w2 resulting in the previous case (using 2 triangles).

For the case where w1 ∈ Cg [i1],w2 ∈ Cg [i2] we denote by w′′ ∈ Cg [i0] the other neighbor of w1 in f . By
containment we have that {w′′,w1,w2} ∈ CI

g (2) so we can contract (w′′,w1,w2) to (w′′,w2) using a single
triangle. We then do the same contraction as above (using 2 triangles) to remove w2 and get to a cycle of the
same length with vertices only from i0, i1. □

Proof of Claim 6.4. We find a basis for u⊥ one vector at a time as follows. Let B0 = ∅, and for j = 1, 2, . . . 6i1
the set Bj will denote the basis vectors that we found thus far. Let tj = span(Bj)⊕

(⊕
v∈f v

)
. We note that
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dim(tj) ⩽ j+ dim(t0). Moreover, t0 =
⊕

v∈f v =
⊕

v∈f :v∈S[i1]
v since every subspace in this path is contained

in an i1-dimensional subspace. As we saw, there are at most 5 such spaces, therefore dim(tj) ⩽ j + 5i1 ⩽ 11i1.
In particular, the subspace perpendicular to tj always contains at least 2g − 11i1 independent vectors.

This is greater or equal 6i1 from the assumption that 17i1 ⩽ 2g which is due to the fact that {i0, i1, i2} ∈ C.
Thus given Bj we take Bj+1 = Bj ·∪ {xj+1} where xj+1 is perpendicular to tj and independent from Bj . We
note that by construction the vectors of Bj are perpendicular to one another, so u⊥ = span(B6i1) is indeed
an isotropic subspace of dimension 6i1. □

6.1.1 Bounds for additional color restrictions

Towards proving swap cocycle expansion we show that various color restrictions also have coboundary
expansion. Our goal is to prove the following lemma which we will use later on in Section 6.2.

Lemma 6.5. Let I = {i0 < i1 < i2 < i3} ∈ ([2g]
4 ) such that i0 < i1 − 79. Then

h1(CI
g ) ⩾ exp

(
O

(
log
(

i3
i1 − i0

)
min

(
log( i1 − i0

i3 − i0
), log( i1 − i0

i0
)

)))
.

Our starting point is triples of colors as in Lemma 6.2, i.e. colors such that i1 ⩾ 2i0, i2 ⩾ 3i1 and
17i1 ⩽ 2g. Then we will gradually relax the requirements from the the colors until we reach Lemma 6.5. For
technical reasons, we will need to introduce a fourth color, since we intend to use Theorem 2.13. The theorem
Theorem 2.13 says that adding another color decreases the coboundary expansion by at most a multiplicative
constant.

We start by removing the requirements from i1.
Claim 6.6. Let I = {i0, i1, i2, i3} be such that 80i0 ⩽ i3 then

h1(CI
g ) ⩾ Ω

(
min{ i1 − i0

i0
, i3 − i1

i3
}
)

.

Proof of Claim 6.6. First, we notice that by the Theorem 2.13, h1(CI
g ) = Ω(C

{i0,i1,i3}
g ). The reason is

that the set {i0, i1, i3} is a constant fraction (1
4 -fraction) of the subsets of I of size 3. Similarly, h1(CI

g ) =

Ω(C
{i0,i2,i3}
g ). Therefore, we obtain that if i1 ⩾ 2i0, i3 ⩾ 3i1 and 17i1 ⩽ 2g then by Lemma 6.2 h(CI

g ) = Ω(1).
Let I ′ = {i0, i′1 = 2i0, i2, i3}. By Claim 2.14, h1(SI ) = Ω(h1(SI′

)) · minv∈S[i′
1]
h1(SI

v ). By Lemma 6.2,
h1(SI′

) = Ω(1) (if i′1 = 2i0 ⩽ i3/40 then in particular 17i′1 ⩽ 2g so the lemma applies in this case). As
for SI

v , note that this is the join of the complex whose vertices are subspaces that are contained in v, and
isotropic subspaces that contain v (for clarity we emphasize that one of these joins may be one sided, i.e.
contain only subspaces of v of dimension i0, or only isotropic subspaces of dimension i3). Claim 2.11 tells us
that in this case, the coboundary expansion is bounded by O of one over the diameter, so let us find the
diameter in this case.

If i′1 < i1 then by Claim 6.3 the complex that has isotropic spaces that contain v has diameter that is at
most 2 times the diameter of the complex of all subspaces that contain v. This complex is isomorphic to the
complex that contains subspaces of dimension i1 − i′1, i2 − i′1 and i3 − i′1 and by Claim 3.3 it has diameter at
most O( i3−i′

1
i3−i1

) = O( i3
i3−i1

).
Otherwise, the complex that has (all) subspaces contained in v has diameter O( i0

i1−i0
): Indeed, this

complex contains all subspaces of dimensions i0, i1 inside a space of dimension i′1 = 2i0. This is isomorphic to
the graph of subspaces of dimensions 2i0 − i1, 2i0 − i0 inside a space of dimension 2i0, the isomorphism goes
from a subspace of dimension ij to its perpendicular subspace with respect to the standard bilinear form
(this isomorphism v 7→ v⊥ takes subspaces of dimension x to dimension i′1 − x, and reverses the containment
relation). Thus its diameter is O( 2i0−i0

(2i0−i0)−(2i0−i1)
) = O( i0

i1−i0
) by Claim 3.3.

In both cases the diameter is at most the maximum between the two expressions. By Claim 2.11,
h1((Cg)I

v) = Ω(min{ i0
i1−i0

, i3−i1
i3

}). The claim follows. □
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Our main effort in going from Claim 6.6 to Lemma 6.2 is to relax the inequality on i0. To do so we will
apply Claim 2.14 multiple times to go from i0 to i′0, to i′′0 etc. until we finally reach a complex for which
we can apply Claim 6.6. Given i0, we would like to choose i′0 as small as possible while allowing us to use
Claim 2.14. It will be apparent in the proof of Lemma 6.2 that the following function T (x) will give us the
smallest possible index.

Let T (x) = Ti3(x) = max{1,
⌈

80x−i3
79

⌉
}. We denote by Tm(x) the m-fold composition of T (and let

T 0(x) = x). Let us note that for every x < i0, T (x) < x, which implies that Tm+1(x) ⩽ Tm(x) for every
m ⩾ 0, and the inequality is sharp while Tm(x) , 1.

We record the following claim that bounds the number T ’s needed to go from x = i0 to x = 1. We prove
it after proving the lemma.

Claim 6.7. Let n = n(I) = log
(

i3
i3−i0

)
. Then Tn(i0) = 1.

Proof of Lemma 6.5. Let n(I) = log
(

i3
i3−i0

)
. By Claim 6.7, Tn(I)

i3
(i0) = 1 ⩽ 80i3. In every iteration we will

show the following guarantee below.

Proposition 6.8. Let c = Ω(min{ i1−i0
i0

, i3−i1
i3

}). Then for every m ⩾ 0,

h1(C
{T m(i0),i1,i2,i3}
g ) ⩾ c · h1(C

{T m+1(i0),i1,i2,i3}
g ).

By using Proposition 6.8 n(I) times we have that

h1(CI
g ) ⩾ c

n(I)h1(S1,i1,i2,i3)

⩾
i1
i3

· cn(I)

⩾ exp
(

log
(
i1
i3

)
+ n(I) log c

)
⩾ exp

(
O

(
log
(

i3
i1 − i0

)
min

(
log( i3 − i1

i3
), log( i1 − i0

i0
)

)))
.

The second inequality is due to Claim 6.6 (where we also use the fact that i1
i3
⩽ i1−1

1 is the minimum in
the expression).

Proof of Proposition 6.8. Fix m ⩾ 0. and let Im = {Tm(i0), i1, i2, i3}, Im+1 = {Tm+1(i0), i1, i2, i3}. The
complex SIm is a high dimensional expander so by Claim 2.14

h1(CIm
g ) ⩾ h1(CIm+1

g )Ω( min
v∈Cg [T m+1(i0)]

h1((Cg)
Im
v )).

It remains to show that for every v ∈ Cg [Tm+1(i0)], h1((Cg)Im
v ) = Ω(min{ i1−i0

i0
, i3−i1

i3
}). Fix v ∈

Cg [Tm+1(i0)] and denote by J = {j0, j1, j2, j3} where j0 = Tm(i0) − Tm+1(i0) and for t = 1, 2, 3,
jt = it − Tm+1(i0). Let us here recall that Tm+1(i0) ⩽ Tm(i0) so these constants are indeed positive.
We have seen in the second item of Proposition 3.8 that (Cg)

Im+1
v � (Cg′)J where Cg′ for g′ = g− Tm+1(i0).

Let us show that we can use Claim 6.6 on C ′g, i.e. that 80j0 ⩽ j3. By definition of T ,

79Tm+1(i0) = 79T (Tm(i0)) = max{79
⌈

80Tm(x) − i3
79

⌉
, 79} ⩾ 80Tm(i0) − i3

where the inequality comes from the first term in the maximum. Equivalently this implies that 80Tm(i0) ⩽
79Tm+1(i0) + i3 so

80j0 = 80
(
Tm(i0) − Tm+1(i0)

)
⩽ i3 − Tm+1(i0) = j3.

Thus 80j0 ⩽ j3 and we are justified to use Claim 6.6 and deduce that h1((Cg)I
v) = Ω(min{ j1−j0

j0
, j3−j1

j3
}) =

Ω(min{ i1−i0
i0

, i3−i1
i3

}). The inequality min{ j1−j0
j0

, j1
j3

}) = Ω(min{ i1−i0
i0

, i3−i1
i3

}) uses the following:
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1. The inequality j1−j0
j0

= i1−i0
j0
⩾ j1−j0

i0
.

2. The inequality j3−j1
j3

= i3−i1
i3−T m+1(i0)

⩾ i3−i1
i3

.

In both inequlities we just increased the denominator. □

□

It remains to prove Claim 6.7.

Proof of Claim 6.7. Let T̃ (x) = 80x−i3
79 + 1. We note the following facts that allow us to bound the number

of iterations needed to apply on T̃ instead of T :

1. The inequality T (x) ⩽ T̃ (x) holds for every x < i0 while T (x) > 1.

2. while x ⩽ i0, T̃ (x) < x.

3. One can show by induction on m that while Tm(x) > 1 (and therefore for all m′ < m, Tm′
(x) ⩾

Tm(x) > 1), Tm(x) ⩽ T̃m(x). Indeed, for m = 1 this holds by the above observation. Assuming for m
the proof for m+ 1 is direct-

Tm+1(x) ⩽ T̃ (Tm(x)) ⩽ T̃ (T̃m(x)) = T̃m+1(x).

Thus if we show that after m = O(log i3
i3−i0

), it holds that T̃m(i0) ⩽ 1, then it follows that Tm(i0) = 1.
Indeed, solving a recursion relation yields T̃m(i0) = (i0 + 79 − i3)

(80
79
)m

+ (i3 − 79). The term i0 + 79 −
i3 < 0 by the assumption on i0. Thus,

T̃m(i0) ⩽ 1 ⇔ m ⩾ log 80
79

i3 − 80
i3 − i0 + 79 .

The constant m ⩾ log 80
79

i3−80
i3−i0+79 so we are done. □

6.1.2 Coboundary expansion of bounds of joins of spherical buildings

In the next subsection we will prove swap coboundary expansion of the faces complexes of links of the affine
symplectic building. These links are (isomorphic to) joins of complexes, some of type A and some of type C.
Towards a bound on the faces complex of some link, we will need to bound the coboundary expansion of the
link itself (and its sub-links).

Towards this, let us introduce some notation for joins of complexes. Let S1, S2, . . . , Sk be spherical
buildings of either type A or type C, of dimensions ℓ1, ℓ2, . . . , ℓm. Let S =

∨k
i=1 Si. Every such building is

(ℓi + 1)-partite, so S is also a partite complex. We denote its colors by (i, j) where i indicates the subcomplex
Si and j indicates the color inside Si. For two distinct colors (i1, j1) and (i2, j2) define their distance to be
the number of colors between them,

dist((i1, j1), (i2, j2)) = | {(i, j) | (i1, j1) < (i, j) ⩽ (i2, j2)} |.

Definition 6.9. A set of colors {(i1, j1) < . . . < (ir, jr)} is (a1, a2)-spread if the distance of every two
consecutive colors is between a1 and a2. Namely, letting (i0, j0) = (0, 0),

∀t = 0, . . . , r− 1, a1 < dist((it, jt), (it+1, jt+1)) ⩽ a2.

Let us denote
∑k

i=1(ℓi + 1) = d and fix S to be the above join. We prove the following lemma.

Lemma 6.10. Let a1 = n
(m(d+1))3 and a2 = 100n log(d+1)

(d+1)m and let c = {(i1, j1) < . . . < (ir, jr)} be an
(a1, a2)-spread set of colors. Let I ⊂ c be a set of 5 colors, and let w ∈ S be such that col(w) ⊂ c \ I. Then
h1(SI

w) ⩾ exp(−O(log2(d))).
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Proof of Lemma 6.10. It is enough to prove that for any I ′ = {(i1, j1) < (i2, j2) < (i3, j3) < (i4, j4)} ⊂ I,
SI′

w is a β-coboundary expander. By Theorem 2.13, it follows that h1(SI
w) ⩾ Ω(β). So from now on we just

re-annotate I = {(i1, j1) < (i2, j2) < (i3, j3) < (i4, j4)}. The coboundary expansion h1(SI
w) depends on

I and w. We address first the easier “direct” cases, and then move to the general case which is gradually
reduced to the easier cases, via decomposition steps.

If SI
w is a join of three complexes (or more), i.e. we can write SI

w = A1 ∨ (A2 ∨A3). The diameter of
(A2 ∨A3) is constant so by Claim 2.11 h1(SI

w) ⩾ Ω( 1
diam(A2∨A2)

) = Ω(1). If SI
w is a join of exactly two

complexes then one of the complexes is a color restriction of a spherical building. Without loss of generality let
us assume that (i1, j1), (i2, j2) belong to the same complex (i.e. i1 = i2) and let us assume that the complex
has dimension t. By Claim 3.3 and Claim 6.3 the diameter of this complex is O( j2

j2−j1
). The dimension of the

complex t is bounded from above by the maximal distance of two consecutive colors of ∪s which is at most
a2 = 100n log(d+1)

(d+1)m (and the link of w can only split to more complexes of lower dimension). On the other
hand j2 − j1 is at least a1 = n

(m(d+1))3 by assumption. Therefore the diameter is bounded by poly(d). By
Claim 2.11 in this case h1(SI

w) = exp(−O(log(d))).
If SI

w is a color restriction of a single type A spherical building then by Lemma 3.4

h1(SI
w) ⩾ exp

(
−O

(
log
(

j3
j1 − j0

)
· log

(
j3
j1

)))
.

Similarly, if SI
w is a color restriction of a single type C spherical building then by Lemma 6.5

h1(SI
w) ⩾ exp

(
O

(
log
(

j3
j1 − j0

)
min

(
log( j3 − j1

j3
), log( j1 − j0

j0
)

)))
.

As before, the quantities j3
j1

, j3
j1−j0

, j3
j3−j1

and j1−j0
j0

are poly(d) from the spreadness assumption, so in both
cases h1(SI

w) ⩾ exp(−O(log2(d))). □

6.2 Swap coboundary expansion of the of the links of C̃

In this section we modify the proof in [DD23c] to show that the finite quotients of the affine symplectic
building’s faces complex is a (exp(−O(

√
r)), r)-swap coboundary expander. The proof follows the same lines

as [DD23c], where the main difference is that in some cases we need to use Lemma 6.5 instead of Lemma 3.4.
As we saw in Section Section 2, the link of every j-face in a quotient of an affine building is a join of

j′ ⩽ j + 2 spherical buildings (as in the definition of a join in Section 2). If the building is symplectic then
these buildings are either symplectic or special linear. The following theorem deals with swap coboundary
expansion of such complexes.

Theorem 6.11. Let d be an integer. There is some p0 = p0(d). Let p > p0 be any prime power. Let k ⩾ 1
and let {Si}k

i=1 be so that for every i = 1, 2, . . . , k, Si are either SLℓi
(Fp) or Sp(2ℓi, Fp) spherical buildings.

Assume that
∑k

i=1 ℓi = n ⩾ d5. S =
∨k

i=1 Si. Let Z = FdS be its faces complex. Then Z is a coboundary
expander and h1(Z) ⩾ exp(−O(

√
d)).

From this theorem we immediately derive swap cocycle expansion of the quotients of the affine symplectic
building.

Theorem (Restatement of Theorem 1.3). Let d be an integer. There is some p0 = p0(d) such that for all
primes p > p0 the following holds. Let X be a quotient of C̃g(Qp), the affine symplectic building associated
with Sp(2g, Qp), for g ⩾ d5. Then X is a (d, exp(−O(

√
d)))-swap cocycle expander.

Proof of Theorem 1.3 from Theorem 6.11. Let Z = FdX. For every s ∈ Z(0), Zs, being itself a faces complex
of Xs, is a faces complex of a complex that satisfies the conditions of Theorem 6.11 so it is a exp(−O(

√
d))-

coboundary expander. In addition, for p0 large enough Z is a sufficiently good spectral high dimensional
expander, so by Lemma 2.12 (applied to the two skeleton of Z for i = 0) , it holds that h1(Z) ⩾ exp(−O(

√
d))

(as a cocycle expander). □
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Notation for this section

Fix S =
∨k

i=1 Si and d,n as in the theorem statement. Denote by Z = FdS and Z̃ = FS. Fix m =
√
d+ 1.

All Si’s are partite and come with colors associated with the dimension of the subspace. The color of a
vertex v in S (denoted by col(v) = colS(v)), is a pair (i, j) such that v ∈ Si is a subspace of dimension j
(i.e. j = colSi

(v)). We let C0 = {(i, j) | i ∈ [k], j ∈ [ℓi]} be the possible colors of S and we order the colors
lexicographically, that is (i, j) ⩽ (i′, j) if i ⩽ i′ or i = i′ and j ⩽ j′. We set C = ( C0

d+1) be the set of possible
colors of vertices of Z.

We use u, v to denote vertices of S, and w to denote vertices of Z, which are faces of S. Faces of Z are
denoted by s. We denote subsets of colors of FS that are mutually disjoint by the letters J , I (so J , I ∈ F∆).

Well spread colors

In light of Lemma 2.24, it suffices to show swap coboundary expansion of certain color sets of the quotients
of the affine building, in order to deduce swap coboundary expansion of the quotients themselves. We now
describe which colors interest us. These are exactly the same colors which were used in [DD23c].

Let N be an ordered set. Let c = {i1 < i2 < · · · < iT } ⊆ N be any subset. A c-bin is one of the following
sets

B0 = {i ∈ N | i < i1} , BT = {i ∈ N | i > iT }

or
∀t = 1, 2, . . . ,T − 1 Bt = {i ∈ N | it < i < it+1} .

Let J = {c1, c2, . . . , cm} be mutually disjoint and disjoint from c. We say that a c-bin Bt is J-crowded if
there are two distinct cj1 , cj2 ∈ J such that Bt ∩ cj1 ,Bt ∩ cj2 , ∅. If there is only a single cj ∈ J such that
Bt ∩ cj , ∅ we say that Bt is J-lonely. Otherwise, if for all cj ∈ J , Bt ∩ cj = ∅ we say that Bt is J-empty.

We define a well-spread color to have good pseudo-random properties, that is, all indices are roughly
equally spaced, and interlaced with one another so that many colors will be isolated. This will facilitate the
lower bounds in the next sections.

Let C = ( N
d+1). Let J ⊆ C. Recall that ·∪J =

⋃
c∈J c.

Definition 6.12 (Well-spread subsets of colors). Let m > 5 and let J be a set of m colors in C. We say that
J is well-spread if the following properties hold.

1. Every c1, c2 ∈ J are disjoint.

2. Renaming the colors N = {0, 1, . . . ,n} (with the usual order), for every ℓ1, ℓ2 ∈ (∪J) ∪ {0,n} it holds
that |ℓ1 − ℓ2| ⩾ n

(m(d+1))3 .

3. For every J ′ ⊆ J , |J ′| = 5, let c∗ = ∪(J \ J ′):

(a) Every c∗-bin has size at most 100n log(d+1)
(d+1)m .

(b) For every c ∈ J ′, the number of colors i ∈ c that are in J ′-crowded c∗-bins is at most
100(d+1) log(d+1)

m log m .

(c) For every c ∈ J ′ and every c∗-bin B, it holds that |B ∩ c| ⩽ 20 log(d+1)
log m .

We denote by J ⊂ Fd∆ the set of well-spread color sets.

The following proposition was proven in [DD23c].

Proposition 6.13 ([DD23c]). Let d be an integer. Let 6 ⩽ m ⩽ d+ 1. The probability that m uniformly
chosen colors out of n colors are well-spread tends to 1 as d,n → ∞ as long as d5 ⩽ n.
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Roadmap and proof of Theorem 1.3

Let us explain the proof idea. Swap coboundary expansion of S is, by definition, coboundary expansion of Z.
We begin with two reductions.

1. Using Lemma 2.24 we deduce that to show exp(−Ω(
√
d))-coboundary expansion of Z it is enough to

show coboundary expansion of ZJ where J is a set of well-spread colors as in Definition 6.12.

2. Using Lemma 2.12 we deduce that in order to show exp(−Ω(
√
d))-coboundary expansion of ZJ it is

enough to show coboundary expansion of ZJ
w for every w ∈ ZJ (m− 6).

The reason we reduce to a link of a complex that has well spread colors, is because we can decompose such a
link to a tensor product of a complete partite complex and a “remainder” complex which itself is a faces
complex with 5-colors of size O(

√
d) (see Claim 6.14). Claim 2.15 allows us to bound the expansion of the

complete tensor part, and Proposition 2.25 gives an exponential lower bound on the remainder part. Note
that the exponent is

√
d since this is the size of the remaining color sets. In order to use Proposition 2.25

we need to bound the coboundary expansion of (color-restrictions of) the links of S. For this we turn to
Lemma 6.10 proven in the previous subsection.

Using the quasi-polynomial bounds we get in Lemma 6.10 together with Proposition 2.25, we get a bound
of

h1(Z) ⩾ exp(−
√
dpoly(log d)). (6.7)

This bound is almost as strong as claimed in Theorem 1.3, and is already strong enough for proving
Theorem 1.1. However, we claimed in Theorem 6.11 (and in Theorem 1.3) a slightly stronger bound that
doesn’t suffer from the the poly-logarithmic factors. Proving this stronger bound requires a more complicated
version of Proposition 2.25. We do this in full in Section 6.2.4. We encourage the readers to go over the proof
below of the weaker bound (6.7), and save Section 6.2.4 for a second read.

Proof of Equation (6.7). To bound h1(Z) we follow the steps of the decomposition. Let J be the set of
well-spread J ’s per Definition 6.12. By Proposition 6.13, at least half of the sets J are in J . Therefore, by
Lemma 2.24,

h1(Z) ⩾ Ω(1) · min
J∈J

h1(ZJ ). (6.8)

Fix J ∈ J . We note that every link of Z is simply connected by Claim 6.16 (proven in Section 6.2.3). We
use Lemma 3.10 to deduce that such a complex is a sufficient local spectral expander for large enough prime
p, so by Lemma 2.12

h1(ZJ ) ⩾ exp(−O(m)) · min
s∈ZJ (m−6)

h1(ZJ
s ). (6.9)

The well-spreadness of J allows us to bound the right hand side by a much smaller color-restriction,
Claim 6.14. Let J be a set of well-spread colors and let s ∈ ZJ (m− 6). Then there exists a set of colors
J̃ = {c̃1, c̃2, . . . , c̃5} ⩽ J so that

∑5
j=1|c̃j | = O

(
d log d

m log m

)
and

h1(ZJ
s ) ⩾ const · h1(Z̃ J̃

s ). (6.10)

Next, we wish to use Proposition 2.25 to bound the coboundary expansion of Z̃ J̃
s = FS J̃

∪s. For this we
need to bound β = minw,I h

1(SI
∪s∪w) where I = {i1, . . . , i5} such that ij ∈ c̃j for j = 1, . . . , 5 and where

w ∈ S∪J̃\I
∪s . By Proposition 2.25,

h1(Z̃ J̃
s ) ⩾ const · (β1)

R (6.11)

where β1 = Ω(β) and R =
∑5

j=1 |c̃j | = O
(

d log d
m log m

)
.

By Lemma 6.10,
β = min

w,I
h1(SI

∪s ·∪w) ⩾ exp(−O(log2 d)) (6.12)
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We are justified in applying this lemma since the well-spreadness of J implies that ∪J is
( n
(m(d+1))3 , 100n log(d+1)

(d+1)m )-spread. We now plug in each equation into the previous one, to get the desired
bound,

h1(Z) ⩾ const · exp
(

−O
(
m+

dpoly log d
m logm

))
= exp(−O(

√
d log2 d)).

□

6.2.1 Links of the spherical building

In the next two subsections we proceed towards proving Claim 6.14. Towards this, let us understand how a
link of a join of spherical bulding looks like.

Let v ∈ Si(0) be a vertex, and let j = col(v). We can write (Si)v = (Si)v [[j − 1]] ∨ (Si)v [[ℓi] \ [j]].
The reason is that (Si)v [[j − 1]] consists of the subspaces contained in v, and (Si)v [[ℓi] \ [j]] consists of the
subspaces that contain v, and containment is transitive. This holds for spherical buildings of types both A
and C, where in the later case we only consider isotropic subspaces.

Therefore, it is immediate to see that the join S has the same structure, joined with the other complexes,
i.e.

Sv =

 k∨
t=1,t,i

St

∨ (Si)
[j−1]
v ∨ (Si)

[ℓi]\[j]
v ).

We observe that in particular, if col(v) = (i, j), then we can write Sv as a join of two complexes: one contains
vertices whose colors are < (i, j) and the other contains vertices whose colors are > (i, j).

Let us understand how this generalizes to links of arbitrary faces. Fix a general face w = {v1, · · · , vT } ∈ S
and let us study Sw. Let the colors of w be c = {(i1, j1) < (i2, j2) < · · · < (iT , jT )}. Recall the notion of a
c-bin from Section 6.2.

We can write Sw as

Sw =
T∨

t=0
SBt

w (6.13)

where the Bt’s are c-bins as above (and it is possible that SBt
w is itself also a join of complexes).

6.2.2 A tensor decomposition of the faces complex of a join

Let w ∈ S(T − 1), let c = col(w) and let the c-bins be B0, . . . ,BT as in Section 6.2. Let SBt
w for t = 0, . . . ,T

be the components of the decomposition of Sw as in (6.13). Let J = {c1, c2, . . . , cm} be subsets of mutually
disjoint colors in Z that are also disjoint from c. We denote by ct

j = cj ∩Bt, and let Jt = {ct
1, ct

2, . . . , ct
m} be

the corresponding subsets of mutually disjoint colors in SBt
w (technically this should be a multiset but only

the empty set can appear more than once).
Claim 6.15.

Z̃J
w =

T⊗
t=0

Z̃Jt
w . (6.14)

Verifying this is a direct calculation:

Proof. Recall that by (6.13), Sw =
∨T

t=0 SBt
w . In particular, for every cj ,

Sw[cj ] =
T∏

t=0
SBt

w [ct
j ]

since specifying a cj-colored face in Sw corresponds to independently specifying a face of color ct
j in each part

of the join (and taking disjoint union).
Next consider a top-level face s = {w1,w2, . . . ,wm} ∈ Z̃w[J ] so that col(wj) = cj for each j ∈ [m]. Let

w̄ = ·∪j∈[m]wj and let c̄ = ·∪j∈[m]cj = ∪J . Specifying s corresponds to specifying a c̄-colored face w̄ ∈ Sw[∪J ]
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and then partitioning it to m parts according to the colors J . By properties of the join, this is the same as
sampling st = {wt

1,wt
2, . . . ,wt

m} ∈ Sw[Jt] for every t = 0, 1, . . . ,T and taking the partite disjoint union of
these faces (i.e. wj = w0

j ·∪w1
j · · · ·∪wT

j ). This is, in turn, the same as sampling a top-level face in
⊗T

t=0 Z̃Jt
w .

Complexes with the same vertex sets and same distribution on top level faces are equal and the claim is
proven. □

We can refine this decomposition by separating the bins to empty, lonely, and crowded, as defined in
Section 6.2. Recall that a c-bin Bt is J-crowded if there are two distinct cj1 , cj2 ∈ J such that ct

j1
, ct

j2
, ∅. If

there is exactly one ct
j , ∅ then we say that Bt is J-lonely and if all ct

j = ∅ we say that Bt is J-empty.
Let us use this separation to crowded and lonely/empty bins to prove Claim 6.14.

Proof of Claim 6.14. Let s ∈ ZJ (m− 6), let w = ·∪s and recall that Z̃s = Z̃w. Let c = col(w) and let
B0, . . . ,BT be the c-bins which we partition into crowded and not crowded. Let

I1 = {0 ⩽ t ⩽ T | Bt is J-crowded}

and let I2 = {0, . . . ,T} \ I1. We can write (6.14) as

Z̃J
w =

⊗
t∈I1

Z̃Jt
w

⊗

⊗
t∈I2

Z̃Jt
w

 .

For every t ∈ I2, Jt has at most one non-empty set of colors, so Z̃Jt
w is a complete partite complex. Therefore,⊗

i∈I2
Z̃Ji

w is also a complete partite complex. For every cj ∈ J \ col(s), Let c̃j = cj ∩
⋃

t∈I1
Bt and let

J̃ = {c̃1, c̃2, . . . c̃5}. By Claim 2.15 (and the fact that this is a sufficiently local spectral expander for large
enough primes p Lemma 3.10),

h1(Z̃s) ⩾ const · h1

⊗
t∈I1

Z̃Jt
w

 = const · h1(Z̃ J̃
s ).

Finally, by definition of well spread colors, the number of crowded bins for every c̃j is O
(

d log d
m log m

)
and

|C̃j ∩Bt| = O(1) by Definition 6.12, item 3(c). Thus
∑5

j=1|c̃j | = O
(

d log d
m log m

)
. □

6.2.3 Simple connectivity of the links

Claim 6.16. Let J be a set of well-spread colors. For every i ⩽ d and s ∈ ZJ (i), the complex ZJ
s is simply

connected.

Proof of Claim 6.16. Showing simple connectivity is equivalent to showing that the complex is a coboundary
expander with some positive constant. We do so using Proposition 2.25 on ZJ

s .
Recall that ZJ

s = F J (Sw1), where w1 = ·∪s. By Lemma 6.10, for every I = {i1, i2, i3, i4, i5} such that
ij ∈ cj and w ∈ S∪J\I

w1 , we have h1(SI
w1∪w) > β. We are justified in applying this lemma because the

well-spreadness of J implies that ∪J is ( n
(m(d+1))3 , 100n log(d+1)

(d+1)m )-spread.
In addition, for large enough q, Sw1 is a 1

2d2 -local spectral expander and hence we are justified to apply
Proposition 2.25 deducing that h1(F J (S∪w)) = h1(ZJ

s ) > 0 which implies ZJ
s is simply connected. □

We remark that the well-spreadness is most probably unneeded, but it shortens our proof.
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6.2.4 Proof of the full version of the theorem

In the beginning of Section 6.2 we have proven (d, exp(−Ω̃(
√
d)))-swap cocycle expansion. In this subsection

we shave off the log factors.
For this we need a stronger version of Proposition 2.25, for which we need some terminology. Let q ⩽ R

be an integer. Jq = Jq(J) be all the J ′ = {c′1, c′2, . . . , c′ℓ} ⩽ J such that
∑

j∈J ′ |c′j | = q. Let

Tq(X, J) = min
(J ′,Xw),J ′∈Jq ,w∈X [∪J\∪J ′]

(
max

i1,i2,...,iℓ s.t. ij∈c′
j

(
h1(X

{i1,i2,...,iℓ}
w )

))
.

It may not be clear why this quantity is the correct thing to look at to improve Proposition 2.25. A full
explanation appears in [DD23c, Section 8].

Proposition 6.17. Let X be a partite λ-one sided local spectral expander for λ ⩽ 1
2d2 . Let J = {c1, c2, . . . , cℓ}

and let R =
∑ℓ

j=1 |cj | ⩽ d. Then h1(FJX) ⩾
∏R

q=1 Ωℓ(Tq(X, J)).

The following claim is the same as [DD23c, Claim 8.8.1] for this setup. The proof is also exactly the same
so we omit it.
Claim 6.18. Let J ⊆ F∆(4). Let w ∈ S be such that col(w) ∩ (∪J) = ∅. Let

q0 = max
B,c

|c∩B|

where B is a col(w)-bin and c ∈ J . Then for all q > 10q0, Tq(Sw, J) = Ω(1).
Note that when J is well spread, and w = ∪s for s ∈ ZJ (m− 6), then q0 = O(1).

Proof of Theorem 6.11 (full version). Our starting point is, combining (6.8),(6.9), and (6.10) in the proof of
the weaker version, is that

h1(Z) ⩾ . . . ⩾ exp(−O(m)) min
J∈J ,s∈ZJ (m−6)

h1(Z̃ J̃
s ).

Recall that J is a set of well-spread colors, s ∈ ZJ (m− 6), and J̃ is a set of five colors from Claim 6.14. Note
that by Claim 2.19, Z̃ J̃

s = F J̃ (S∪s). By Proposition 6.17

h1(FJ̃S∪s) ⩾ exp(−O(R)) ·
R∏

q=1
Tq(S∪s, J̃)

where R =
∑5

j=1 |c̃j |. By Claim 6.14, R = O( d log d
m log m ). By definition,

Tq(S∪s, J̃) ⩾ min
w,I

h1(SI
∪s ·∪w).

We could use Lemma 6.10 to deduce Tq(S∪s, J̃) ⩾ exp(−O(log2 d)).
However, by Claim 6.18 we can obtain a tighter bound on Tq(S∪s, J̃). Let

q0 = max
B,c

|c∩B|

where B is a col(∪s)-bin and c ∈ J̃ . By Definition 6.12 q0 = O
(

log d
log m

)
and by Claim 6.18 for every q > 10q0,

Tq(S∪s, J̃) = Ω(1). Thus

FJ̃S∪s ⩾ exp(−O(R)) · exp(−O(log2 d))10q0 · exp(−O(R− 10q0)).

Plugging in m =
√
d we have that q0 = O(1) so this is at least exp(−O(R+ log2 d)) = exp(−O(

√
d)). In

conclusion, we have that h1(Z) = exp(−O(
√
d)). □
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6.3 Local Spectral Expansion of the Symplectic Buildings
In this section we prove Lemma 3.10 and Theorem 3.15, showing local spectral expansion of C and quotients
of C̃g. The main proposition we need is the following one.

Proposition 6.19. Let 0 ⩽ j < ℓ ⩽ g, then Cg [j],Cg [ℓ] is a cℓ−j
√

pℓ−j -spectral expander where c > 1 is some
universal constant independent of p. In particular this is a O( 1√

p )-spectral expander.

The theorem follows quite easily from Proposition 6.19 and the following elementary claim:
The proof of the theorem and corollary rely on the following elementary claim (see e.g. [Dik22, Claim 2.9]

for a proof of a more general statement).
Claim 6.20. Let X be a d-partite complex and suppose that for every two parts (X [i],X [j]) the induced
bipartite graph is a λ-spectral expander. Then the underlying graph of X is a λ-spectral expander.

Proof of Lemma 3.10. Fix g and denote by C := Cg. Let w ∈ Cg and we consider Cw[i],Cw[j]. By
Corollary 3.9 Cw is a join of lower dimensional spherical buildings. If Cw[j],Cw[ℓ] belong to different
complexes with respect to the join, then the graph between the two sides is a complete bipartite graph which
is a 0-one sided spectral expander. If Cw[j],Cw[ℓ] both belong to belong to a building of type A, then the
vertices of Cw[j] are (isomorphic to) subspaces of dimension j′ in Fm

p , the vertices of Cw[ℓ] are subspaces
of dimension ℓ′ in Fm

p . There is an edge between u1 and u2 if and only if u1 ⊆ u2. It was shown by e.g.
[Dik+18] that this graph is an O( 1√

p )-expander (where the constant is independent of p).
The remaining case is when Cw[j],Cw[ℓ] belong to a part in the join which is itself isomorphic to a

spherical building associated with Sp(2m, Fp) for some m ⩽ g. In this case the graph is a O( 1√
p )-one sided

spectral expander by Proposition 6.19.
By Claim 6.20 the itself if c√

p -one sided spectral expander so Cg is also a c√
p -one sided local spectral

expander. □

The Theorem 3.15 is just a consequence of the theorem.

Proof of Theorem 3.15. By Fact 3.16 C̃g is connected, thus X is also connected. The links of C̃g are joins of
spherical buildings of type C. For every v ∈ X(v) the bipartite graph between two colors (Xv [i],Xv [j]) is
either the complete bipartite graph (if i, j belong to differend parts of the join) or a graph as in Lemma 3.10.
In both cases this graph is a c√

p -spectral expander. By Claim 6.20 the links are are c√
p -spectral expanders

so by Theorem 2.3 X is a λ-one sided spectral expander for λ =
c√

p

1− c√
p
= O( 1√

p ). By Corollary 2.4 the

k-skeleton is a max{O( 1√
p ),

1
d−k+1}-two sided local spectral expander. □

The proof of Proposition 6.19 follows from the theory developed in [Dik+18] regarding expanding posets.
We give a brief discussion of the parts of the theory we need.

6.3.1 Sub Posets of the Grassmann

The (n, p, d)-Grassmann poset is the poset

Gr(n, p, d) =
{
u ⊆ Fn

p

∣∣ dim(u) ⩽ d
}

,

where the order is by containment.
A simplicial sub-poset of Gr(n, p, d) is a subset P ⊆ Gr(n, p, d) such that for every v ∈ P and u ⊆ v. We

denote the i-dimensional subspaces in P by P (i). A simplicial sub-poset is pure if for every u ∈ P there
exists some v ∈ P (d) such that u ⊆ v.

The measure on flags in P is via sampling a uniform vd ∈ P (d) and then a uniform flag {v0, v1, . . . , vd}
where vi ∈ P (i).

For every i < j we consider the containment graph C(P , i, j) between P (i) and P (j) where the probability
of an edge {vi, vj} is the probability of sampling a flag containing {vi, vj}.
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Fix i. We denote the bipartite graph operator of the containment graph between P (i) and P (i+ 1) by
Ui. That is, for every f : P (i) → R, Uif : P (i+ 1) → R is given by Uif(v) = Eu∈P (i),u⊆v [f(u)]. Denote its
adjoint by Di+1.

The bipartite graph operator of the containment graph between P (i) and P (j) is the composition
Uj−1 ◦ . . . Ui+1 ◦Ui. Therefore

λ2(C(P , i, j)) ⩽
j−1∏
t=i

λ2(C(P , t, t+ 1)). (6.15)

There are two natural two-step walks on P (i) using these containment graphs.

1. The upper walk that chooses a pair v, v′ ∈ P (i) by choosing u ∈ P (i+ 1) and then two v, v′ ⊆ u. The
graph operator for this walk is Di+1Ui. We also denote its non-lazy version by Mi (i.e. the walk that
samples v, v′ conditioned on v , v′). It holds that Di+1Ui =

p−1
pi+1−1I +

(
1 − p−1

pi+1−1

)
Mi.

2. The lower walk is the one that chooses a pair v, v′ ∈ P (i) by choosing u ∈ P (i− 1) and then two
v, v′ ⊇ u. The graph operator for this walk is UiDi.

The following notion generalizes graph expansion to posets.

Definition 6.21 (eposet). Let γ = (γ0, γ1, . . . ) be a vector of non-negative numbers. A sub-poset of the
Grassmann is a γ-eposet if for every i = 1, . . . , d− 1

∥Mi −UiDi∥ ⩽ γi.

The following theorem is by [Dik+18].

Theorem 6.22 (Theorem 8.23 in [Dik+18]). Let P be a pure d-dimensional sub-poset of the (n, p, d)-
Grassmann. Then if P is a γ-eposet then.

λ(Di+1Ui) ⩽
i∑

t=1

1
pt

+
i∑

t=0
γt.

Work in [Dik+18] also proposes a criterion for showing γ-eposetness.
Let w ∈ P (i− 1). Its link graph Pw is the graph whose vertices are all Pw(0) = {w′ ∈ P (i) | w′ ⊇ w}.

The edges are sampled by sampling some u ∈ P (i+ 1),u ⊇ w and then sampling w ⊆ w′,w′′ ⊆ u conditioned
on w′ , w′′. We say that a poset P is a γ-expander if for every i = 0, 1, . . . , d and every w ∈ P (i) λ(Pw) ⩽ γi.

Theorem 6.23 (Theorem 8.21 in [Dik+18]). Let P be a γ-link expander. Then P is a γ-eposet.

6.3.2 Proof of Proposition 6.19

Recall that the graph between the two parts is the containment graph between istropic spaces of dimension
j, ℓ respectively, inside some 2g-dimensional space V . Hence the poset P we consider is the poset of isotropic
subspaces, with respect to some non-degenerate skew symmetric bilinear form.

We observe that P is a pure n-dimensional sub-poset of the (2n, q,n)-Grassmann poset. Also the measure
on edges in any containment graph is uniform.

Proof of Proposition 6.19. With the notation Uℓ in Section 6.3.1. To prove the proposition it suffices to show
that there exists a universal constant c > 1 such that λ(Uℓ) ⩽

c√
p . If we show that P is a γ̄-eposet for

γℓ =
c′

pg−ℓ−1 then this follows from Theorem 6.22. To prove this we will show that P is a γ̄-link expander and
invoke Theorem 6.23.

Fix w ∈ P (ℓ). By Proposition 3.8 the link graph is isomorphic to the link of {0} in Cg−ℓ. That is, the
vertices are all 1-dimensional subspaces inside a 2(g− ℓ)-dimensional space (which are all subspaces since
the bilinear form is skew-symmetric), and we connect two subspaces via traversing through a 2-dimensional
isotropic subspace - i.e. two subspaces are connected if and only if their sum is an isotropic subspace. If v⊕ u
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is isotropic we write v⊥u. Recall we denote the adjacency operator of this graph by M0. It will be more
convenient to analyze this graph once we add a self loop to every vertex, i.e. add laziness. This corresponds
the graph whose matrix is M ′0 = 1

∆I +
∆−1

∆ M0 where ∆ is the regularity of the graph. As we will see shortly,
in this case ∆ = Ω(pg−ℓ−1), so ∥M ′0 −M0∥ = O( 1

pg−ℓ−1 ) and we can analyze M ′0 instead of M0. We note
that this is not D0U0, since the amount of laziness we add is much smaller. It corresponds to the number of
neighbors a one-dimensional space has, and not the number of one-dimensional spaces are contained in a
two-dimensional space.

Let us consider the double cover of M ′0, i.e. the bipartite graph whose vertices are all V × {0, 1} and there
is an edge between (v, i) and (u, j) if v⊥u and i , j. This graph is isomorphic to the containment graph of
the Grassmann between subspaces of dimension 1 and 2(g − ℓ) − 1, and v ∼ u if and only if v ⊆ u⊥. The
isomorphism is given by (v, 0) 7→ v and (u, 1) 7→ u⊥ = {x ∈ V | ∀y ∈ u, ⟨x, y⟩ = 0}. It is well known that
this graph is an O(1/

√
p2(g−ℓ−1)) = O(1/pg−ℓ−1) = γℓ one-sided spectral expander (see e.g. [Dik+18]).

As for the degree of every vertex, one observes from the double cover that the degree ∆ of a subspace
v (in either M ′0 or the double cover), is the number of co-dimension 1 subspaces that contain v, i.e.
∆ = Ω(pg−ℓ−1). □
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A Affine building proofs
Before proving Claim 3.13, we show the following.
Claim A.1. Let {[L0], [L1], . . . , [Lg ]} ∈ C̃g(g). The representatives Li ∈ [Li] such that (3.4) holds (i.e. such
that L0 is primitive and such that Li/pL0 are isotropic), are unique.

Proof of Claim A.1. First let us prove that there are no two primitive lattices L1,L2 such that L1 ⊊ L2.
Indeed, assume otherwise. By translating via Sp(2g, Qp), we can assume that L2 = Lstd. That is

L2 = spanZp
(e1, e2, . . . , eg, f1, f2, . . . , fg)

the standard basis. We also write

L1 = spanZp
(e′1, e′2, . . . , e′g, f ′1, f ′2, . . . , f ′g)

so that (3.2) holds for this basis. There exists v ∈ {e1, e2, . . . , eg, f1, f2, . . . , fg} such that in the linear
combination v =

∑g
j=1 αje

′
j + βjf

′
j one of the αj or βj are in Qp \ Zp. Without loss of generality v = e1

and α1 ∈ Qp \ Zp (the proof is the same for every choice). On the one hand, from primitivity of L2,
⟨e1, f ′j⟩ = α1 < Zp. On the other hand, as f ′j ∈ L2 then f ′j =

∑g
j=1 γjej + δjfj with γj , δj ∈ Zp. It follows

that ⟨e1, f ′j⟩ = δ1 ∈ Zp, a contradiction.
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This shows that if [L0] is primitive, then no other [Li] is primitive. This is because there are representatives
such that Li ⊊ L0, and if there were some primitive representative L′i ∈ [Li], i.e. L′i = pjLi, then L0 ⊊ L′i or
vice versa, which contradicts the above. In addition, the above also shows that there is a unique L0 ∈ [L0]
that is primitive.

Thus, by the definition of the relation, there is a unique representative Li ∈ [Li] such that pL0 ⊊ Li ⊊ L0
and in particular, there is a unique choice for the flag to hold. The claim is proven. □

Claim (Restatement of Claim 3.13).

1. The group Sp(2g, Qp) acts simplicially on C̃g.

2. The action is transitive on C̃g(g).

3. The complex C̃g is (g+ 1)-partite. The color of a lattice class [L] is i such that [L] is in i-th place in
(3.4).10

4. Let v = [L0] be primitive. Then (C̃g)v � Cg, the g-partite symplectic spherical building.

Proof of Claim 3.13.

First item First we note that L1 ∼ L2 if and only if for every A ∈ Sp(2g, Qp), AL1 ∼ AL2. Thus
Sp(2g, Qp) acts on lattice classes. Moreover, it is easy to verify that for every [L] ∈ C̃g(0) and A ∈ Sp(2g, Qp),
[AL] ∈ Cg(0): if pL0 ⊆ L ⊆ L0, then pAL0 ⊆ AL ⊆ AL0 where AL0 is primitive. Finally, we note that by
definition of Sp(2g, Qp), for any A ∈ Sp(2g, Qp) and u1,u2 ∈ L, ⟨Au1,Au2⟩ = ⟨u1,u2⟩. In particular for
every u1,u2 ∈ L and primitive lattice L0,

⟨u1 + pL0,u2 + pL0⟩ = ⟨Au1 + pAL0,Au2 + pAL0⟩.

Thus L/pL0 is isotropic if and only if AL/pAL0 is isotropic. Finally, as A ∈ Sp(2g, Qp) clearly preserves
containment between lattices, it also preserves flags as in (3.4), and even sends the unique representatives of
the flag {[L0], [L1], . . . , [Lg ]} to the unique representatives of {[AL0], [AL1], . . . , [ALg ]}.

Second item The group Sp(2g, Qp) acts transitively on primitive lattices since these are exactly the orbit
of a Lstd. Thus they also act transitively on primitive lattice classes. Let us show that the stabilizer of [Lstd]
acts transitively on (C̃g)[Lstd]

. This shows that Sp(2g, Qp) acts transitively, since given a pair s1, s2 ∈ C̃g(g)

we can send them to a pair of faces s′1, s′2 containing [Lstd] via some A1,A2 ∈ Sp(2g, Qp). Then we find some
B ∈ Stab([Lstd]) that sends s′1 to s′2. This will show that A−1

2 BA1s1 = s2.
By Claim A.1 the space of flags is isomorphic to all the lattice flags {L1 ⊊ L2 ⊊ · · · ⊊ Lg} such that

L1/pLstd ⊊ L2/pLstd ⊊ · · · ⊊ Lg/pLstd ⊊ Lstd/pLstd

is a flag of isotropic subspaces. There is a bijection between the flags {L1 ⊊ L2 ⊊ · · · ⊊ Lg} with this isotropic
quotient, and the quotent itself

{L1/pLstd ⊊ L2/pLstd ⊊ · · · ⊊ Lg/pLstd}.

So it is enough to show that the action A.(L1/pLstd) := (A.L1)/pLstd is transitive on flags of isotropic
subspaces11.

It is easy to verify that Stab(Lstd) = Sp(2g, Zp). Moreover, using the projection from Zp to Fp on the
matrices Sp(2g, Zp) entrywise, gives a surjective homomorphism to ψ : Sp(2g, Zp) → Sp(2g, Fp). Finally,
one can verify directly that A.(L1/pLstd) = (ψ(A).L1)/pLstd. The action of Sp(2g, Fp) is transitive on flags,
so we can conclude the proof.

10In particular, every vertex is contained in some top-level face and the place of [L] does not depend on a choice of face or
representative.

11I the proof of the first item, we saw that this action is well defined.
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Third item We note that every vertex [L] has some primitive L′ so that pL′ ⊆ L ⊆ L′ (for some L ∈ [L]).
Inside the link of [L′] there is a flag containing L and L′ (because there is a maximal flag in L/pL containing
L′). The action of Sp(2g, Qp) is transitive on g-faces and preserves the dimension of every [L] with respect
to every primitive lattice that it shares a face with. Thus the colors are well defined.

Fourth item This is a direct conclusion of the above; we already concluded that set of flags containing
some primitive [L0] is (isomorphic to) the set of {L1/pL0,L2/pL0, . . . ,Lg/pL0} such that

L1/pL0 ⊊ L2/pL0 ⊊ · · · ⊊ Lg/pL0

is an isotropic flag inside L0/pL0 (where L0 ∈ [L0] is the primitive element). □
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