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Abstract
The concept of redundancy in SAT lead to more expressive and powerful proof search techniques,
e.g. able to express various inprocessing techniques, and to interesting hierarchies of proof systems
[Heule et.al’20, Buss-Thapen’19].

We propose a general way to integrate redundancy rules in MaxSAT, that is we define MaxSAT
variants of proof systems such as SPR, PR, SR, and others. The main difference compared to the
recent alternative approach in [Ihalainen et.al’22] is that our redundancy rules are polynomially
checkable. We discuss the strength of the systems introduced and we give a short cost-SR proof
that any assignment for the weak pigeonhole principle PHPm

n falsifies at least m − n clauses.

2012 ACM Subject Classification Theory of computation → Proof complexity; Theory of computation
→ Complexity theory and logic
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1 Introduction

This paper investigates new proof systems for MaxSAT that incorporate redundancy inferences
tailored to work for MaxSAT. Redundancy inferences were introduced as extensions to SAT
solvers to allow non-implicational inferences that preserve satisfiability and non-satisfiability.
For resolution and SAT solvers, the first redundancy inferences were based on blocked
clauses (BC) [19] and RAT inferences [17, 11]. Other work on redundancy reasoning includes
[10, 12, 15, 18, 9]; and, of particular relevance to the present paper, are the work of Heule,
Kiesl, and Biere [14], and the work of Buss and Thapen [6]. Redundancy inference formalize
“without loss of generality” reasoning [21] and can substantially strengthen resolution and,
in some cases, the effectiveness of SAT solvers for hard problems such as the pigeonhole
principle (PHP) [15]. Indeed, in their full generality, redundancy inferences allow resolution
to polynomially simulate extended resolution.

MaxSAT is a generalization of SAT; it is the problem of determining a truth assignment
for a CNF formula that minimizes the number of falsified clauses. Although the MaxSAT
problem is inherently more difficult than SAT, in some cases MaxSAT can be adapted to be
more efficient in practice than CDCL solvers for hard problems such as PHP [3]. There are
several approaches to MaxSAT solvers, including MaxSAT resolution, core-guided MaxSAT,
and maximum-hitting-set MaxSAT; the present paper discusses only MaxSAT resolution.
The MaxSAT resolution proof system was first defined by [20] and proved completed by [5].

Recent work of Ihalainen, Berg and Järvisalo [16], building on [2], introduced new versions
of redundancy inferences that work with MaxSAT. These redundancy inferences introduce
only clauses which are cost-preserving. Their new inferences included CPR, CLPR and CSPR,
which are cost-preserving versions of propagation redundancy (PR), subset propagation
redundancy (SPR), and literal propagation redundancy (LPR).
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2 Redundancy rules for MaxSAT

The present paper provides an alternative approach to defining cost-perserving redundancy
inferences. We define inferences called “cost-BC”, “cost-LPR”, “cost-SPR”, “cost-PR”, and
“cost-SR” (see Definition 3.2). The strongest of these is “cost-SR” based on the substitution
redundancy (SR) [6]. In contrast to the system CPR of [16], all of our “cost-” inferences are
polynomial-checkable for validity, and thus all give traditional Cook-Reckhow proof systems
for MaxSAT. All five of these new inferences are sound for MaxSAT reasoning (Theorem 4.2).
Furthermore, we prove that cost-SPR, cost-PR and cost-SR are complete for MaxSAT
(Theorem 4.3). On the other hand, we prove that cost-LPR and cost-BC are incomplete for
MaxSAT (Theorem 4.4). We illustrate the power of cost-SR by giving polynomial size proofs
of the cost of the blocking-variable version of weak pigeonhole principle bPHPm

n for arbitrary
numbers m > n of pigeons and holes (Theorem 5.3).

Structure of the paper

Section 2 contains all the necessary preliminaries, including notation on MaxSAT and the
blocking variables encoding of MaxSAT instances (blocking variables also used by [16]).
Section 3 introduces the redundancy rules for MaxSAT, proves their basic propertie, and
defines calculi based on those rules. Section 4 shows their soundness, and their completeness
or (for cost-BC and cost-LPR) their incompleteness. Section 5 gives examples of applications
of the redundancy rules, including a polynomial size proof of the optimal cost of the weak
Pigeonhole Principle and a general result about the polynomial size provability of minimally
unsatisfiable formulas. To deal with the incompleteness of cost-BC and cost-LPR, Section 6
describes proof systems augmenting MaxSAT resolution and the systems defined in Section 3.
Section 7 gives some concluding remarks.

2 Preliminaries

For a natural number n, let [n] be the set {1, . . . , n}. Sets and multi-sets are denoted with
capital Roman or Greek letters.

Propositional logic notation

A Boolean variable x takes values in {0, 1}. A literal is either a variable x or its negation x.
A clause is a finite disjunction of literals, i.e., C =

∨
i ℓi. The empty clause is ⊥. A formula

in Conjunctive Normal Form (CNF) is a conjunction of clauses Γ =
∧

j Cj . We identify a
CNF with the multiset of its clauses, and denote as |Γ| the number of its clauses (counted
with multiplicity). We denote as Var(Γ) the set of variables in Γ.

Substitutions and assignments

A substitution σ for a set of variables X is a function so that σ(x) is either 0, 1 or some
literal defined on X. For convenience, we extend a substitution σ to constants and literals,
setting σ(0) = 0, σ(1) = 1, and σ(x) = σ(x) for any variable x ∈ X. The composition of two
substitutions σ, τ is the substitution σ ◦τ , where σ ◦τ(x) = σ(τ(x)) for x ∈ X. A substitution
σ is an assignment when σ(x) ∈ {0, 1, x} for any x ∈ X. The domain of an assignment
σ is dom(σ) = σ−1({0, 1}), and σ is a total assignment over X if X is its domain, i.e., σ

maps all variables in X to Boolean values. Given a clause C =
∨

i ℓi and a substitution σ,
the clause C restricted by σ, is C|σ =

∨
i σ(ℓi) , simplified using the usual logic rules, i.e.,

D ∨ 0 = D, D ∨ 1 = 1, and D ∨ ℓ ∨ ℓ = D ∨ ℓ. If σ(C) = 1 or σ(C) is tautological we say
that σ ⊨ C, i.e., σ satisfies C.
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The restriction of a CNF formula Γ by σ, denoted as Γ|σ, is the conjunction of all
clauses C|σ where C ∈ Γ and σ(C) ̸= 1. The CNF Γ|σ is also a multiset. We say that σ

satisfies Γ (σ ⊨ Γ) if for every C ∈ Γ, σ ⊨ C, i.e., Γ|σ = ∅. We say that Γ ⊨ C if for every
substitution σ, if σ ⊨ Γ then σ ⊨ C.

We identify a literal ℓ with the substitution that assign ℓ to 1 and leaves all other variables
unassigned. Hence we use notations like Γ|ℓ. Likewise, given a clauses C we denote as C the
assignment that maps all literals in C to false, and we use the notation Γ|C .

Unit propagation

A unit clause is a clause of just one literal. Unit propagation works as follows. Start with
a CNF Γ: if Γ has no unit clauses, the process ends, otherwise pick some unit clause ℓ in
Γ arbitrarily, and continue the process using restricted the formula Γ|ℓ. Regardless of the
choice of the unit clause, the process always ends with the same formula.

We say that Γ ⊢1 C when the application of unit propagation to the formula Γ|C produces
the empty clause. For two CNF formulas Γ, ∆ we say that Γ ⊢1 ∆ if for every D ∈ ∆, Γ ⊢1 D

. Clearly, if Γ ⊇ ∆ then Γ ⊢1 ∆, and if Γ ⊢1 ∆, then Γ ⊨ ∆. It is important to stress that
the ⊢1 relation is efficiently checkable.

▶ Observation 2.1 ([6, Fact 1.3]). Let σ be a substitution and Γ, ∆ be CNF formulas, if
Γ ⊢1 ∆, then Γ|σ ⊢1 ∆|σ. (For a proof of this fact see Appendix A.)

Resolution

Resolution is a well-studied propositional deduction system with two inference rules: (i) from
a clause A we can deduce any B s.t. A ⊆ B; (ii) from clauses A ∨ x and B ∨ x we can deduce
A ∨ B. A resolution proof from a set of clauses Γ is a sequence of clauses D1, D2, . . . , Dt

where each Di is either already in Γ or is deduced from earlier clauses in the sequence using
one of the two inference rules. Resolution is complete, thus deciding whether a clause C can
be deduced from Γ is the same as deciding whether Γ ⊨ C.

MaxSAT

Given a CNF formula F , MaxSAT asks to find the maximum number of clauses in F which
can be simultaneously satisfied. In applications, it is useful to consider a generalization
for which we divide the clauses into hard or soft (partial MaxSAT). Hard clauses must be
satisfied, while soft clauses can be falsified with a cost. Consider F = H ∧ S where H is
the multiset of hard clauses and S is the multiset of soft ones. In this model, MaxSAT asks
to find the maximum number of clauses in S that can be simultaneously satisfied by an
assignment that satisfies all clauses in H. Observe that the optimization problem is not well
defined if H is not satisfiable.1 It is not relevant whether H is a set or a multiset. In S, on
the other hand, the multiplicity of soft clauses must be accounted for.

Proof systems for MaxSAT aim to show lower bounds on the cost of (partial) MaxSAT
instances, one such system is MaxSAT resolution (see Section 6).

1 An even more general version is weighted MaxSAT, where we would consider weighted set of clauses
(F, w), i.e., each clauses C ∈ F has an associated weight w(C) where w : F → N ∪ {∞}. In this model
the goal is to minimize the weight of the falsified clauses. The role of the weight ∞ is to model hard
clauses. In this paper we do not focus on this model.
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MaxSAT with blocking variables

Without loss of generality we can assume that all soft clauses in a MaxSAT instance are
unit clauses; indeed, using a new variable b, a soft clause C can be replaced with a hard
clause C ∨ b and a soft clause b, without affecting the cost. The variable b is usually called a
blocking variable. This appears in [8], but it might have been used even earlier.

▶ Definition 2.2. Let F = H ∧ S with soft clauses S = C1 ∧ · · · ∧ Cm. The blocking variables
formulation of F is F ′ = H ′ ∧ S′ where

H ′ = H ∧ (C1 ∨ b1) ∧ · · · ∧ (Cm ∨ bm),
S′ = b1 ∧ · · · ∧ bm,

and b1, . . . , bm are new variables (blocking variables) not appearing in F . We say that Γ is a
MaxSAT instance encoded with blocking variables, when it is given as a set of hard clauses of
the form as in H ′ above. The soft clauses, then, are implicit.

▶ Observation 2.3. Let F = H ∧ S be a MaxSAT instance and F ′ = H ′ ∧ S′ be the blocking
variables formulation of F . Any assignment that satisfies H and falsifies k clauses in S can
be extended to an assignment that satisfies H ′ and sets k blocking variables to true. Vice
versa, any assignment that satisfies H ′ and sets k blocking variables to true satisfies H too
and falsifies at most k clauses in S.

Because of Observation 2.3, for the rest of this work we consider Γ to be a MaxSAT
instance encoded with blocking variables usually named {b1, . . . , bm}. The goal is to satisfy
Γ while setting to true the least number of blocking variables. More formally, given a total
assignment α for Γ, we define

cost(α) =
m∑

i=1
α(bi) and cost(Γ) = min

α : α ⊨ Γ
cost(α)

and the goal is to find the value of cost(Γ). Notice that, the notation cost(α) is defined even
for assignments not satisfying Γ.

3 Redundancy rules for MaxSAT

In the context of SAT, a clause C is redundant w.r.t. a CNF instance Γ if Γ and Γ ∪ {C} are
equisatisfiable, that is either they both are satisfiable or both unsatisfiable [19]. The natural
adaptation of this notion to MaxSAT is a clause C that does not affect the cost of Γ.

▶ Definition 3.1 (redundant clause, [16]). A clause C is redundant w.r.t. a MaxSAT instance
Γ when

cost(Γ) = cost(Γ ∪ {C}) . (1)

Clauses that logically follow from Γ are obviously redundant, but there may be other useful
clauses that do not follow logically, and yet do not increase the cost if added.

The condition in eq. (1) is not polynomially checkable (unless, say P = NP). Therefore,
we consider efficiently certifiable notions of redundancy, i.e. ways to add redundant clauses
(in the sense of eq. (1)) while certifying efficiently their redundancy. This is done showing
how to extend in a systematic way the notions of efficiently certifiable redundancy already
studied in the context of SAT (BC, RAT, LPR, SPR, PR, SR) [14, 6] to the context of
MaxSAT. This is an alternative to the approach of [16].
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▶ Definition 3.2. A clause C is cost substitution redundant (cost-SR) w.r.t. to Γ if there
exists a substitution σ such that

1. Γ|C ⊢1 (Γ ∪ {C})|σ (redundancy)
2. for all total assignments τ ⊇ C, cost(τ ◦ σ) ≤ cost(τ) (cost).

If the substitution σ has some additional structure, we have the following redundancy
rules listed in decreasing order of generality:

Cost propagation redundant (cost-PR) if σ is a partial assigment.
Cost subset propagation redundant (cost-SPR) if σ is a partial assigment with the same

domain as C. In other words, σ flips some variables in C.
Cost literal propagation redundant (cost-LPR) if σ is a partial assignment with the same

domain as C, but differs from C on exactly one variable.
Cost blocked clause (cost-BC) if σ is a partial assignment with the same domain as C, which

differs from C on exactly one variable v, and moreover, for every clause D ∈ Γ containing
the variable v, σ ⊨ D.2

Item 1 in Definition 3.2 claims that adding C does not make Γ unsatisfiable, unless it
was already the case. Together with Item 2, it ensures that any assignment that falsifies the
new clause C can be patched with a substitution σ so that C is satisfied without increasing
the minimum cost (see Lemma 3.4).

Item 1 in Definition 3.2 is the same as the one in [6]. Indeed this notion and the other
three special cases correspond to the rules of proof systems SR, PR, SPR, and LPR from [6],
adapted here to consider cost. Since LPR is the same as RAT (see [6, Theorem 1.10]), the
notion of cost literal propagation redundancy could as well be called cost-RAT redundancy.
▶ Remark 3.3. It is important to compare Definition 3.2 with [16, Definition 2]. Redundancy
conditions are very similar and the main differences are in the cost conditions. Let us
compare their CPR rule with our cost-PR. In cost-PR, the cost condition requires the witness
σ to be at least as good as all possible extensions of C, while in CPR the requirement is
enforced only on those extensions of C that satisfy Γ. This latter condition is more expressive
but unlikely to be polynomially checkable, while the condition in cost-PR is polynomially
checkable (see Lemma 3.5). In [16], the authors also define two polynomially checkable rules
where the cost condition is not present, but implicitly enforced via restrictions on the type
of assignments used. Those rules are special cases of cost-LPR and cost-SPR respectively.

▶ Lemma 3.4. If C is cost-SR w.r.t. to Γ, then C is redundant w.r.t. Γ.

Proof. It is enough to show that cost(Γ) ≥ cost(Γ ∪ {C}). Let cost(Γ) = k. To show that
adding C to Γ does not increase the cost, consider an optimal total assignment α that
satisfies Γ and sets to true exactly k blocking variables. If α ⊨ C we already have that
α ⊨ Γ ∪ {C} and cost(α) = k. Otherwise, α extends C and, by assumption, there is a
substitution σ such that cost(α ◦ σ) ≤ k. To show that cost(Γ ∪ {C}) ≤ k, is then enough to
show that α ◦ σ ⊨ Γ ∪ {C}. By assumption,

Γ|C ⊢1 (Γ ∪ {C})|σ ,

and, since α ⊨ Γ and extends C, then α ⊨ (Γ ∪ {C})|σ too. Equivalently, α ◦ σ ⊨ Γ ∪ {C}. ◀

2 The definition of blocked clause is written to match the previous definitions. For the equivalence with
the usual notion of blocked clause see Appendix B. In this case, the redundancy condition is always
satisfied.
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Both Item 1 and Item 2 of Definition 3.2 are stronger than what is actually needed for
Lemma 3.4 to hold. Indeed, for Item 1, it would be enough that Γ|C ⊨ (Γ ∪ {C})|σ, and, for
Item 2, it would be sufficient to check it for any τ ⊇ C such that τ ⊨ Γ. Unfortunately, these
latter versions of Item 1 and Item 2 are in general not polynomially checkable. Instead, our
conditions are checkable in polynomial time.

▶ Lemma 3.5. Let Γ be a MaxSAT instance, C a clause and σ a substitution. There is a
polynomial time algorithm to decide whether C is cost-SR w.r.t. Γ, given the substitution σ.

Proof. The redundancy condition in Definition 3.2 is polynomially checkable, since it is a
unit propagation. To check the cost condition we need to compute

max
τ⊇C

(cost(τ ◦ σ) − cost(τ)), (2)

and decide whether this value is at most zero. The value of cost(τ) is by definition the number
of variables or constants in the sequence R = ⟨b1, b2, . . . , bm⟩ that evaluate to 1 after applying
the assignment τ . The value of cost(τ ◦ σ) is the same, but for the sequence of literals (or
constants) L = ⟨σ(b1), σ(b2), . . . , σ(bm)⟩. All the expresions in the sequences L and R are
either constant values or literals, hence each of their evaluations is either independent from
τ or is completely determined by the value assigned to the occurring variable. It is useful to
highlight how much a single variable assignment increases the number of 1’s in L and R.

For any sequence E of expressions that can either be 0, 1 or some literal, we use the
following notation to indicate how many new 1’s occur in E as a consequence of assigning
some variable v to a value.

ValueE(v 7→ 0) = number of occurrences of v in E

ValueE(v 7→ 1) = number of occurrences of v in E

And with this notation we can write

cost(τ ◦ σ) = |{i : σ(bi) = 1}| + |{i : σ(bi) ̸∈ {0, 1} and τ ◦σ(bi) = 1}|

= |{i : σ(bi) = 1}| +
∑

v

ValueL(v 7→ τ(v))

cost(τ) =
∑

v

ValueR(v 7→ τ(v))

Let us rewrite our objective function and separate the part that is fixed on all τ ⊇ C,

cost(τ◦σ)−cost(τ) =

Fixed part V︷ ︸︸ ︷
|{i : σ(bi) = 1}| +

∑
v∈dom (C)

(
ValueL(v 7→ τ(v)) − ValueR(v 7→ τ(v))

)
+

+
∑

v ̸∈dom (C)

(ValueL(v 7→ τ(v)) − ValueR(v 7→ τ(v))) .

It is crucial to observe that to achieve the maximum value of the objective (2), the variables
not in dom(C) can be set independently from each other. Hence

max
τ⊇C

(cost(τ ◦ σ) − cost(τ)) = V +
∑

v ̸∈dom (C)

max
k∈{0,1}

(ValueL(v 7→ k) − ValueR(v 7→ k)) .

In the last equation V and the summands are easily computable in polynomial time, given
C and σ. ◀
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Lemma 3.5 allows the definition of proof systems that extend resolution using cost
redundancy rules in the sense of Cook-Reckhow [7].

▶ Definition 3.6 (cost-SR calculus). The cost-SR calculus is a proof system for MaxSAT. A
derivation of a clause C from a MaxSAT instance Γ (encoded with blocking variables) is a
sequence of clauses D1, D2, . . . , Dt where, C ∈ Γ ∪ {Di}i∈[t], each Di is either already in Γ
or is deduced from earlier clauses in the sequence using a resolution rule, or Di is cost-SR
w.r.t. to Γ ∪ {D1, . . . , Di−1} with Var(Di) ⊆ Var(Γ).3 The length of such derivation is t, i.e.,
the number of derived clauses. To check the validity of derivations in polynomial time, any
application of the cost-SR rule comes accompanied by the corresponding substitution that
witnesses its soundness.

If the goal is to certify that cost(Γ) ≥ s, we can accomplish this deriving s distinct unit
clauses of the form {bi1 , . . . , bis

} (see Theorem 4.2). If the goal is to certify that cost(Γ) = s,
we can accomplish this deriving s distinct unit clauses of the form {bi1 , . . . , bis

} together
with the unit clauses {bj : j /∈ {i1, . . . , is}} (see Theorem 4.2).

In a similar fashion we define cost-PR, cost-SPR, cost-LPR, and cost-BC calculi. A
remarkable aspect of these calculi is that a proof must somehow identify the blocking
variables to be set to true. When there are multiple optimal solutions, it is quite possible
that none of the bi follows logically from Γ. Nevertheless, the redundancy rules, often used
to model “without loss of generality” reasoning, can reduce the solution space.

4 Soundness and completeness

The calculi cost-SR/cost-PR/cost-SPR are sound and complete. Before proving the soundness
we show an auxiliary lemma, that shows that when the calculus certifies the lower bound for
the optimal values, it can also certify the optimality.

▶ Lemma 4.1. Let Γ be a MaxSAT instance encoded with blocking variables b1, . . . , bm, of
cost(Γ) = k, and suppose Γ contains the unit clauses bi1 , . . . , bik

. Then cost-PR can prove
bj for each j /∈ {i1, . . . , ik} in O(km) steps.

Proof. Let σ be a total assignment satisfying Γ with cost(σ) = k, that is σ maps all the biℓ
s

to 1 and the other blocking variables to 0. We derive all the clauses

Cj = bi1 ∨ · · · ∨ bik
∨ bj

with j /∈ {i1, . . . , ik} using the cost-PR rule. For all clauses Cj , the substitution witnessing
the validity of the cost-PR rule is always σ. The redundancy condition from Definition 3.2
is trivially true since Γ union an arbitrary set of Cjs is mapped to 1 under σ. The cost
condition is true because for every τ ⊇ Cj , cost(τ) ≥ k + 1 and cost(τ ◦ σ) = cost(σ) = k.

To conclude, by resolution, derive bj from Cj and the unit clauses bi1 , . . . , bik
. ◀

▶ Theorem 4.2 (soundness of cost-SR). Let Γ be a MaxSAT instance encoded with blocking
variables. If there is a cost-SR proof of k distinct blocking variables, then cost(Γ) ≥ k. If
there is a cost-SR proof of k distinct blocking variables {bi1 , . . . , bik

} and all the unit clauses
bj for j /∈ {i1, . . . , ik}, then cost(Γ) = k.

3 We only consider the case where no new variables are added via cost-SR rules. To be coherent with [6],
cost-SR should be cost-SR−, following the notational convention of adding an exponent with “−” to
denote SR, PR and SPR when the systems are not allowed to introduce new variables. We ignore that
convention to ease an already rich notation.
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Proof. Let b1, . . . , bm be the blocking variables of Γ. Let Γ′ the set of clauses in Γ plus all
the clauses derived in the proof of cost(Γ) ≥ k. That is Γ′ also contains contains k distinct
unit clauses bi1 , . . . , bik

, hence cost(Γ′) ≥ k. By Lemma 3.4, the cost is preserved along
proof steps, therefore cost(Γ) = cost(Γ′) ≥ k. In the case where we have all the bjs then
cost(Γ′) = k and therefore cost(Γ) = k. ◀

As an immediate consequence of Theorem 4.2, also all the cost-PR, cost-SPR, cost-LPR
calculi are sound.

Even if there are multiple optimal solutions, we show that in cost-SPR calculus is sufficient
to identify a specific set of blocking variables and prove the optimal lower bound.

▶ Theorem 4.3 (completeness of cost-SPR). Let Γ be a MaxSAT instance encoded with
blocking variables, of cost(Γ) = k. There is a cost-SPR derivation of the unit clauses
bi1 , . . . , bik

for some distinct k blocking literals and all the bj for j /∈ {i1, . . . , ik}.

Proof. Let b1, . . . , bm be the blocking variables of Γ. Take αopt a to be an optimal assignment,
that is αopt ⊨ Γ, cost(αopt) = k, and for every total assignment β that satisfies Γ, cost(β) ≥ k.
Without loss of generality we can assume αopt sets variables b1, . . . , bk to 1 and the remaining
bjs to 0.

Given any assignment γ, let γ̄ the largest clause falsified by γ. Let Σ be the set of all
clauses γ̄ where γ is a total assignment that satisfies Γ and sets γ(bi) = 0 for some 1 ≤ i ≤ k.
We want to derive Σ from Γ, essentially forbidding any satisfying assignment except for αopt.

We show that we can add all clauses in Σ one by one by the cost-SPR rule. Indeed, for
any clause γ̄ ∈ Σ and any Σ′ ⊆ Σ, the clause γ̄ is cost-SPR w.r.t. Γ ∪ Σ′. The redundancy
condition

(Γ ∪ Σ′)|γ ⊢1 (Γ ∪ Σ′ ∪ γ̄)|αopt

holds because αopt ⊨ Γ ∪ Σ′ ∪ γ̄ and the RHS is just true. Indeed by assumption αopt ⊨ Γ,
and all the clauses in Σ contain some variable from b1, . . . , bk appearing positively that by
construction αopt sets to 1. The cost condition holds by optimality of αopt. We show that
for every i ∈ [k],

(Γ ∪ Σ)|bi=0 (3)

is unsatisfiable. To see this, assume by contradiction that for some bi with 1 ≤ i ≤ k the
corresponding CNF formula (3) was satisfiable by a total assignment β. Observe that bi is
not assigned by b. Then γ = β ∪ {bi = 0} would satisfy Γ ∪ Σ, and therefore γ̄ ∈ Σ. That is
we would have γ satisfying γ̄ which is not possible.

Therefore, for each i, the CNF formula in (3) being unsatisfiable implies Γ ∪ Σ ⊨ bi, and
by the completeness of resolution then from Γ ∪ Σ we can derive bi for each i ∈ [k]. By
Lemma 4.1, we can also derive all the bjs for j /∈ [k]. ◀

Theorem 4.3 gives the completeness of the cost-SPR calculus (and the stronger systems
cost-PR and cost-SR calculi as well), but does not give the completeness of cost-LPR calculus,
which, indeed, is not complete.

▶ Theorem 4.4. Let Γ be a MaxSAT instance encoded with blocking variables, of cost(Γ) = k,
and let A be the set of optimal total assignments for Γ, i.e., α ∈ A when α ⊨ Γ and
cost(α) = k. We claim that if A is such that

1. all pairs of assignments in A have hamming distance at least 2, and
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2. for every blocking variable b there are α, β ∈ A s.t. α(b) = 0 and β(b) = 1,

then cost-LPR cannot derive any blocking literal b.
An example is Γ = {x ∨ y ∨ b1, x ∨ b2, y ∨ b3} that has cost 1 and the corresponding set of
optimal assignments for the variables x, y, b1, b2, b3 is A = {10001, 01010, 00100}.

Proof. Consider a cost-LPR derivation from Γ as a sequence Γ0, Γ1, . . . , Γs where each
Γi+1 := Γi ∪ {C} with C either derived by resolution from clauses in Γi, or C is cost-LPR
w.r.t. Γi. For 0 ≤ j ≤ s, let µ(j) be the number of the optimal assignments for Γj .

At the beginning µ(0) = |A| by construction. If at some point Γj contains some clause bi,
then the value µ(j) must be strictly smaller than |A| because A contains at least some
assignment with {bi 7→ 0}. We show that µ(j) = |A| for the whole proof, therefore no clauses
bi can be ever derived.

Suppose, towards a contradiction, that µ drops below |A| for the first time at step j. The
clause C introduced at that moment must be cost-LPR w.r.t. Γj−1, because the resolution
steps do not change the set of optimal assignments. Since µ(j) dropped below |A|, clause C

must be incompatible with some α ∈ A, that is α ⊆ C.
By definition of cost-LPR we have that there exists some assignment σ such that

Γj−1|C ⊢1 (Γj−1 ∪ {C})|σ (4)

and

cost(α ◦ σ) ≤ cost(α) = k . (5)

By Observation 2.1, eq. (4) implies that

Γj−1|α ⊢1 (Γj−1 ∪ {C})|α◦σ .

Since j was the first moment when µ(j) < |A| we have that α ⊨ Γj−1 and therefore
α ◦ σ ⊨ Γj−1 ∪ {C}. In particular, α ◦ σ ⊨ Γ. By eq. (5) then it must be α ◦ σ ∈ A. But then,
by assumption α and α ◦ σ have hamming distance at least 2, which is incompatible with
the cost-LPR condition that σ must flip at most one variable in C. ◀

The previous result also implies that cost-BC is also incomplete. In Section 6 we show a
way to generalize Definition 3.6 to have calculi complete also for the cost-LPR and cost-BC
redundancy rules.

5 Short proofs using redundancy rules

We show applications of the redundancy rules on notable families of CNF formulas. In Section 5.1
we consider minimally unsatisfiable formulas, while in Section 5.2 we consider the weak
Pigeonhole Principle.
▶ Remark 5.1. Due to Theorem 4.2 and Theorem 4.3, we refer to a cost-SPR (resp. cost-PR,
cost-SR) derivation from Γ of bi1 , . . . , bik

for some distinct k blocking literals and all the bj

for j /∈ {i1, . . . , ik}, as a proof of cost(Γ) = k in cost-SPR (resp. cost-PR, cost-SR).

5.1 Short proofs of minimally unsatisfiable formulas
Recall the definition of PR from [6, Definition 1.16]. A PR calculus refutation of a CNF
formula Γ is a sequence of clauses D1, . . . , Dt where Dt = ⊥, and each Di+1 is either a clause
in Γ, or derived by resolution, or is PR w.r.t. Γi = Γ ∪ {D1, . . . , Di}, that is Di+1 satisfies

Γi|Di+1
⊢1 (Γi ∪ {Di+1})|σ ,
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that is, Item 1 of Definition 3.2 for a σ which is a partial assignment. A PR refutation is a
PR derivation of ⊥. The size of a refutation is the number of clauses in it.

▶ Theorem 5.2. If a minimally unsatisfiable CNF formula {C1, . . . , Cm} has a PR refutation
of size s, then there is a cost-PR proof of cost({C1∨b1, . . . , Cm∨bm}) = 1 of at most O(s+m)
many clauses.

Proof. Let F = {C1, . . . , Cm}, and Γ = {C1 ∨ b1, . . . , Cm ∨ bm} the corresponding MaxSAT
instance. Let π = (D1, . . . , Ds) be a PR refutation of F , that is, in particular Ds = ⊥. First
we show that

πB = (D1 ∨ B, . . . , Ds ∨ B) ,

with B =
∨

i∈[m] bi, is a valid cost-PR derivation of B from Γ. In particular, assuming we
already derived the first i steps of πB , we show how to derive Di+1 ∨ B.

When Di+i ∈ F , the clause Di+i ∨ B is the weakening of some clause in Γ. If Di+1 was
derived using a resolution rule on some premises in π, then Di+i ∨ B can be derived in the
same way from the corresponding premises in πB . The remaining case is when Di+1 is PR
w.r.t. Fi = F ∪{D1, . . . , Di}. Let α be the assignment that witnesses it. This assignment only
maps variables from the original formula F , so we extend it to α′ = α∪{b1 7→ 0, . . . , bm 7→ 0},
and then use α′ to witness that indeed Di+1∨B is cost-PR w.r.t. Γi = Γ∪{D1∨B, . . . Di∨B}.
For the cost condition in Definition 3.2, just observe that any extension of α′ has cost 0.
For the redundancy condition, just observe that, by construction, Γi|Di+1∧B = Fi|Di+1

,
(Fi ∪ {Di+1})|α = (Γi ∪ {Di+1 ∨ B})|α′ , and Fi|Di+1

⊢1 (Fi ∪ {Di+1})|α.
The last clause of πB is B. Let αopt be an optimal assignment of Γ. Since F is minimally

unsatisfiable, cost(αopt) = 1. W.l.o.g. assume αopt sets bm = 1 and all bi = 0 for i < m.
Now, for each i < m, the clause Ei = bi ∨ bm is cost-PR w.r.t. πB ∪ {Ej : j < i}, using

αopt itself as the witnessing assignment: redundancy holds since αopt satisfies every clause
in πB and all clauses Ej . The cost condition follow since cost(τ) ≥ 1 for any τ ⊇ Ei and
cost(τ ◦ αopt) = cost(αopt) = 1.

In the end we use O(m) steps to derive bm from B and E1, . . . , Em−1, and to derive in
cost-PR calculus all the units b1, . . . , bm−1 via Lemma 4.1. ◀

Theorem 5.2 shows that the upper bounds for minimally unsatisfiable formulas in [6]
translate immediately to the setting of this article. In particular, as a corollary of Theorem 5.2,
we have that cost-PR proves in polynomial size that

the Pigeonhole Principle with n + 1 pigeons and n holes [6, Theorem 4.3] and [14, Section
5],
the Bit-Pigeonhole Principle [6, Theorem 4.4],
the Parity Principle [6, Theorem 4.6],
the Tseitin Principle on a connected graph [6, Theorem 4.10],

have all cost 1, since they are all minimally unsatisfiable.

5.2 Short proofs of the minimum cost of PHPm
n

Let m > n ≥ 1. The pigeonhole principle from m pigeons to n holes, with blocking variables,
has the following formulation, that we call bPHPm

n∨
j∈[n] pi,j ∨ bi for i ∈ [m], (totality)

pi,j ∨ pk,j ∨ bi,k,j for 1 ≤ i < k ≤ m and j ∈ [n]. (injectivity)
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We use bk,i,j as an alias of the variable bi,k,j , given that i < k.

▶ Theorem 5.3. cost-SR proves cost(bPHPm
n ) = m − n in polynomial size.

This is the main result of the section. Before proving it we show two useful lemmas. The
first lemma is used to “clean up” the set of clauses during a derivation. For each new step
in a cost-SR calculus derivation the redundancy condition must be checked against an ever
increasing set of clauses. It turns out that some already derived clauses can be completely
ignored for the rest of the derivation under some technical conditions. This makes up for the
lack of a deletion rule, that we do not have, and in the context of SAT seems to give more
power to the systems [6].

▶ Lemma 5.4. Let Γ and Σ be two sets of clauses. Any cost-SR derivation D1 . . . , Dt from
Γ is also a valid derivation from Γ ∪ Σ if either of the two cases applies

1. Variables in Σ do not occur in Γ ∪ {D1, . . . , Dt}.
2. For every clause C ∈ Σ there is a clause C ′ ∈ Γ so that C ′ ⊆ C.

Proof. The cost condition does not depend on the set of clauses, therefore we only need to
check the validity of the redundancy condition. In the first case, the redundancy condition
applies because the clauses of Σ are unaffected by the substitutions involved.

For the second case, consider the derivation of a clause Di witnessed by σi. The clauses
in Σ|Di

and Σ|σi
are subsumed by clauses in Γ|Di

and Γ|σi
, respectively. Hence

(Γ ∪ {D1, . . . , Di−1})|Di
⊢1 (Γ ∪ Σ ∪ {D1, . . . , Di−1, Di})|σi

which implies the validity of the redundancy condition. ◀

The second lemma is used as a general condition to enforce clauses to be cost-SR.

▶ Lemma 5.5. Let C be a clause and Γ a set of clauses. If there exists a permutation π

such that

1. π maps the set of blocking variables to itself,
2. the substitution C ◦ π satisfies C, and Γ|C ⊇ Γ|C ◦ π,

then C is cost-SR w.r.t. Γ. Notice that the condition in item (2) is automatically satisfied if
π is a symmetry of Γ, i.e. Γ = Γ|π.

Proof. The cost condition follows from Item 1. The redundancy condition is immediate by
Item 2 using as σ the substitution C ◦ π. ◀

Now we prove Theorem 5.3.

Proof of Theorem 5.3. The proof is by induction. The goal is to reduce the formula to
m − 1 pigeons and n − 1 holes. First we do some preprocessing: from bPHPm

n we derive a
slightly more structured formula Fm

n . Then we show how to derive Fm−1
n−1 in a polynomial

number of steps. The results follows because after n such derivations we obtain the formula
Fm−n

0 that contains the clauses b1, . . . , bm−n. Moreover, we also derive bm−n+1, . . . , bm along
the way.

We derive Fm−1
n−1 from Fm

n using the rules of cost-SR calculus. We divide the argument
into several steps, but first we show how to derive Fm

n from bPHPm
n .
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Preprocessing 1.“Make bi full-fledged extension variables”. 4 Turn all the variables bi

into full-fledged extension variables that satisfy bi ↔ ¬(pi,1 ∨· · ·∨pi,n), by adding the clauses

Ext = {pi,j ∨ bi : i ∈ [m], j ∈ [n]}

one by one in cost-LPR. We need to derive clause Dj = p1,j ∨ b1 for every j ∈ [n]. Assume
that we already got D1, . . . , Dj−1, we derive Dj as a cost-LPR clause w.r.t. bPHPm

n ∪
{D1, . . . , Dj−1}. The witnessing assignment is σj := {p1,j = 1, b1 = 0}. Since Dj =
{p1,j = 1, b1 = 1}, the cost condition is satisfied. The redundancy condition follows from

bPHPm
n |Dj

⊇ (bPHPm
n ∪ {D1, . . . , Dj})|σj .

Indeed, on clauses of bPHPm
n that do not contain the variable bj , the assignments Dj and σj

behave identically, while all the clauses containing bj are satisfied by σj . Repeat the previous
argument to get all the clauses pi,j ∨ bi. The current database of clauses is bPHPm

n ∪ Ext.
Preprocessing 2.“Enforce injectivity”. Optimal assignments for bPHPm

n can have
unassigned pigeons or have collisions between pigeons. We enforce the latter to never occur
by deriving all the unit clauses bi,k,j by cost-PR. These clauses can be derived in any particular
order: to show that bi,k,j is cost-SR w.r.t. Γ0 and the previously derived bi′,k′,j′ we pick one
of the two pigeons involved (say k) and use σ = {bi,k,j = 0, bk = 1, pk,1 = · · · = pk,n = 0} as
the witnessing assignment. The cost is not increased, and to check the redundancy condition
observe that σ satisfies all the clauses that touches, so on the right side of the redundancy
condition has a subset of bPHPm

n ∪ Ext with no occurrences bi,k,j , while the left side has the
same set of clauses, but restricted with bi,k,j = 0.

Now that we have all clauses bi,k,j we resolve them with the corresponding clauses
pi,j ∨ pk,j ∨ bi,k,j to get the set of clauses

Inj = {pi,j ∨ pk,j : 1 ≤ i < k ≤ m and j ∈ [n]} ,

for all holes j and pair of pigeons i and k.
We do not need variables bi,k,j anymore. By one application of Lemma 5.4, from now on

we can ignore all clauses pi,j ∨ pk,j ∨ bi,k,j . By another application, we can also ignore the
clauses bi,k,j . We will do induction on the current database of clauses. For clarity we list all
its clauses again.

Formula Fm
n

∨
j∈[n] pi,j ∨ bi for i ∈ [m] (totality 1 ),

pi,j ∨ bi for i ∈ [m] and j ∈ [n] (totality 2 ),

pi,j ∨ pk,j for 1 ≤ i < k ≤ m and j ∈ [n] (injectivity).

The core idea of the induction is that if a pigeon flies to a hole, we can assume without loss
of generality that it is pigeon m that flies into hole n.

Step 1.“If some pigeon i flies, we can assume it is pigeon m who flies”. We want to
derive, in this order, the set of clauses

∆1 = {bm ∨ b1, bm ∨ b2, . . . , bm ∨ b(m−1)}

from Fm
n , to claim that if some pigeon is mapped, then pigeon m is mapped too. For each

Ci = bm∨bi we apply Lemma 5.5 using as the witnessing permutation πi, the permutation that

4 This is true in general: if a MaxSAT instance contains a clause C ∨ b then it is possible to make the
blocking variable b a full-fledged extension variable (b ↔ C) by cost-LPR, see Appendix C.
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swaps pigeons m and i. Namely, πi(pm,j) = pi,j , πi(pi,j) = pm,j , πi(bm) = bi, πi(bi) = bm,
and πi is the identity on all other variables, therefore πi satisfies the first requirement for the
lemma. Likewise Ci ◦ πi ⊨ Ci, and we need to check that

(Fm
n ∪ {C1, . . . , C(i−1)})|Ci

⊇ (Fm
n ∪ {C1, . . . , C(i−1)})|Ci ◦ πi

.

By symmetry Fm
n |Ci

= Fm
n |Ci ◦ πi

, and for 1 ≤ i′ < i, Ci′ |Ci ◦ πi
= 1, hence the inclusion is

true. The current database of clauses is Γ1 = Fm
n ∪ ∆1.

Step 2.“If pigeon m flies to some hole, we can assume it flies to hole n”. We want to
derive, in this order, the clauses

∆2 = {pm,1 ∨ pm,n, pm,2 ∨ pm,n, . . . , pm,(n−1) ∨ pm,n}

from Γ1, to claim that if pigeon m flies to some hole, this hole is the last one.
For each Cj = pm,j ∨ pm,n we apply Lemma 5.5 with the witnessing permutation

πj swapping holes n and j. Namely πj(pi,n) = pi,j and πj(pi,j) = pi,n, and πj is the identity
on all other variables. By construction πj satisfies the first requirement for the lemma, and
likewise Cj ◦ πj ⊨ Cj , and, again, we need to check

(Γ1 ∪ {C1, . . . , C(j−1)})|Cj
⊇ (Γ1 ∪ {C1, . . . , C(j−1)})|Cj ◦ πj

.

By symmetry Γ1|Cj
= Γ1|Cj ◦ πj

, and for 1 ≤ j′ < j, Cj′ |Cj ◦ πj
= 1, hence the inclusion is

true. The current database of clauses is Γ2 = Γ1 ∪ ∆2 = Fm
n ∪ ∆1 ∪ ∆2.

Step 3.“Obtain pk,n for every 1 ≤ k < m via resolution”. Resolve the clause (pm,1 ∨
pm,2 ∨ · · · ∨ pm,n ∨ bm) (totality 1) with pm,n ∨ pk,n, the resulting clause with all clauses
pm,j ∨ pm,n from step 2, to get bm ∨ pm,n ∨ pk,n. Then resolve bm ∨ pm,n ∨ pk,n again with
the injectivity clause pm,n ∨ pk,n, then the result with clause bm ∨ bk (from step 1), and again
this latter result with clause bk ∨ pk,n (totality 2). The final result is pk,n.

The clauses pk,n subsume the clauses in Inj of the form pm,n ∨pk,n and all the intermediate
clauses from the previous resolution steps. Therefore we use Lemma 5.4 to be able to ignore
the subsumed clauses. The current database of clauses is Γ3 is equal to

Fm
n ∪ ∆1 ∪ ∆2 ∪ {pk,n : 1 ≤ k < m} \ {pm,n ∨ pk,n : 1 ≤ k < m}.

Step 4.“Assign pigeon m to hole n: derive unit clauses pm,n and bm”. The goal is to
enforce pigeon m to be mapped to hole n, by deriving the clause pm,n using the cost-PR
rule. Then we get bm immediately by resolving pm,n with pm,n ∨ bm (totality 2).

The unit clause pm,n is cost-PR w.r.t. Γ3, using partial assignment σ = {pm,n = 1, bm = 0}
as witness. Clearly σ satisfies the cost condition. To see that the redundancy condition holds
as well, we need to show that Γ3|C ⊢1 D|σ for all D in Γ3 that contain pm,n, but the only
such clause that remains in Γ3 is pm,n ∨ bm, which is satisfied by σ. The current database of
clauses is Γ4 = Γ3 ∪ {pm,n, bm}.

Step 5.“Derive pm,1, . . . , pm,(n−1) by cost-SR”. We can derive them in any order
using as witnessing substitution of the cost-SR rule the assignment σ setting pm,n = 1,
pm,1 = · · · = pm,(n−1) = 0, and bm = 0. The cost condition is immediate, and the
redundancy condition follows from the fact that Γ4|σ ⊆ Γ4.

Step 6.“Reduction to m−1 pigeons and n−1 holes”. First we derive by unit propagation
all the the totality clauses of Fm−1

n−1 . That is, we remove the hole n from the totality axioms
of the pigeons 1, . . . , m − 1 in the current database. Now, the current database is Fm−1

n−1 , the
unit clauses bm, pm,n, pk,n for k ̸= m and pm,j for j ̸= n, and clauses that are subsumed by
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one of these unit clauses. Therefore by Lemma 5.4 we can ignore all the unit clauses and all
the clauses subsumed by them. That is we can carry on the derivation using only Fm−1

n−1 .
Thus steps (1)–(6) are repeated n − 1 times, up to derive Fm−n

0 .
The unit clauses derived in the whole process include

b1, . . . , b(m−n) (totality clauses in Fm−n
0 ).

bn+1, . . . , bm (derived at each step of the induction),
bi,k,j for all i < k and j (derived at the preprocessing).

Therefore cost(bPHPm
n ) = m − n. ◀

6 MaxSAT Resolution + Redundancy

We conclude this article showing a natural strengthening of MaxSAT resolution, based on
the redundancy rules and calculi from Section 3.

In MaxSAT resolution [5] a proof starts from a set H0 of hard clauses and a multiset of
soft clauses S0. At each step i a new sets Hi, Si are derived according to some rules that
keep invariant the minimum number of clauses in Si that must be falsified for any truth
assignment satisfying H0.

If at some step there are k copies of ⊥ among the soft clauses, it means that at least k

clauses from S0 will be falsified by any assignment satisfying H0. Resolution rules are not
good enough, for example if A ∨ x and B ∨ x are in Si, just setting Si+1 := Si ∪ {A ∨ B}
does not guarantee cost invariance. There are several equivalent ways to describe the rules
of MaxSAT resolution. We use those from [1], first used in the context of MaxSAT in [4].
From Observation 2.3 we can assume MaxSAT instances to be of the form H0 ∧ S0, where
H0 is a set of hard clauses and the multiset of soft clauses S0 equals the set of unit clauses
{b1, . . . , bm}.

A MaxSAT resolution derivation is then a sequence of pairs (Hi, Si) such that

(a) Hi := Hi−1 ∪ {C}, where C is deduced by resolution from Hi−1;
(b) Si := Si−1 ∪ {C} where C ∈ Hi−1;
(c) Si := Si−1 \ {C} ∪ {C ∨ x, C ∨ x} where C ∈ Si−i;
(d) Si := Si−1 \ {C ∨ x, C ∨ x} ∪ {C} where {C ∨ x, C ∨ x} ⊆ Si−i.

If the derivation obtains k copies of ⊥ in some Si, then this is a certificate of the fact that
the original instance has cost at least k. This system is complete as well, in the sense that
from an instance of minimum cost k there is always a derivation of k copies of ⊥. Soundness
and completeness of MaxSAT resolution are proved in [5].

As a deduction system on the soft clauses, MaxSAT resolution is simulated by resolution [5,
Theorem 17]. Therefore, to build inference systems stronger than MaxSAT resolution, we
introduce redundancy rules (Definition 3.2).

▶ Definition 6.1 (MaxSAT resolution + cost-SR). Let F = H ∧S be a MaxSAT instance with
hard clauses H = {C1 ∨ b1, . . . , Cm ∨ bm} and soft clauses S = {b1, . . . , bm}. A derivation
in the system MaxSAT resolution + cost-SR is a sequence of pairs of multisets of clauses
(Hi, Si), where Hi and Si are obtained from Hi−1 and Si−1 either using one of the MaxSAT
resolution rules (a)–(d) above or

(a’) Hi := Hi−1 ∪ {C}, where C is cost-SR w.r.t. Hi−1.
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Assuming H0 to be satisfiable, we say that the system proves that the instance has cost
at least k if there is some step i where Si contains k copies of ⊥. Analogous systems can
be defined strengthening MaxSAT resolution with any of cost-PR, cost-SPR, cost-LPR,
cost-BC.

Definition 6.1 extends the systems from Section 3, but those systems formally prove that
cost is at least k by deriving k hard unit clauses bi1 , bi2 , . . . , bik

, while here we want to prove
k copies of ⊥ instead. This is not an issue since we can copy these bi1 , bi2 , . . . , bik

in the
database of soft clauses, using rule (b), and resolve them with the corresponding soft clauses
bi1 , bi2 , . . . , bik

, using rule (d), to get k empty clauses ⊥. That is, the extension MaxSAT
resolution + P p-simulates the original calculus P and therefore is also complete when
P is either cost-SPR, cost-PR, or cost-SR (Theorem 4.3). The completeness of MaxSAT
resolution + cost-BC and cost-LPR follows instead from the completeness of MaxSAT
resolution itself [5].

▶ Theorem 6.2 (completeness). Let P denote any of cost-SR, cost-PR, cost-SPR, cost-LPR,
cost-BC. The system MaxSAT resolution + P is complete.

The soundness of the systems is proved by manipulating the proofs so that all the
redundancy rules (a) and (a’) are applied in a first block, followed by a second block of rules
(b)–(d). Then the soundness of the two blocks follows from the soundness of cost-SPR and
MaxSAT resolution respectively. See details in Appendix D.

▶ Theorem 6.3 (soundness). The system MaxSAT resolution + cost-SR is sound, i.e., if
MaxSAT resolution + cost-SR can derive ⊥ as a soft clause with multiplicity k from a
formula F = H0 ∧ S0 with satisfiable hard clauses H0 = {C1 ∨ b1, . . . , Cm ∨ bm} and soft
clauses S0 = {b1, . . . , bm}, then the number of clauses that need to be falsified in S0 is at
least k, or equivalently cost(H0) ≥ k.

7 Conclusions and open problems

We proposed a way to extend redundancy rules, originally introduced for SAT, into polynomially
verifiable rules for MaxSAT. We defined sound and complete calculi based on those rules and
we showed the strength of some of the calculi giving short derivations of notable principles.
We then showed how to integrate such calculi with MaxSAT resolution. We conclude this
article with a list of open problems:

1. The cost constraint for the redundancy rules is very strict, for example compared to the
rule CPR in [16]. Indeed, cost-PR enforces the check on the cost even on assignments
falsifying the hard clauses of the formula. Is it possible to relax cost-PR without giving
up on efficient verification as in [16]?

2. Does cost-SR simulate MaxSAT Resolution? That is, if we have a MaxSAT instance Γ
with blocking variables and MaxSAT Resolution proves in size s that cost(Γ) = k, is
there a proof of cost(Γ) = k in cost-SR of size poly(s)?
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Appendix

A Extra material for Section 2

▶ Observation 2.1 (restated from page 3). Let σ be a substitution and Γ, ∆ be CNF formulas,
if Γ ⊢1 ∆, then Γ|σ ⊢1 ∆|σ.

Proof. By assumption, for every clause D ∈ ∆, Γ|D ⊢1 ⊥. Let D =
∨

i∈I ℓi. Saying that
Γ|D ⊢1 ⊥ is equivalent to saying Γ ∧

∧
i∈I ℓi ⊢1 ⊥. This in turn implies

(Γ ∧
∧
i∈I

ℓi)|σ ⊢1 ⊥, (6)

since σ maps unit literals into unit literals (or 1, 0). By basic properties of substitutions we
have (Γ ∧

∧
i∈I ℓi)|σ = Γ|σ ∧

∧
i∈I(ℓi)|σ and (ℓi)|σ = (ℓi|σ), that is (6) implies

Γ|σ|
D|σ ⊢1 ⊥

and Γ|σ ⊢1 D|σ. ◀

B Extra material for Section 3

▶ Definition B.1. A clause C ∨ ℓ is a blocked clause (BC) w.r.t. a set of clauses Γ and a
literal ℓ if for every clause D ∨ ℓ ∈ Γ, C ∨ D is a tautology.

▶ Observation B.2. A clause C ∨ ℓ is BC w.r.t. Γ and literal ℓ if and only if the assignment
C ∪ {ℓ = 1} is such that for every clause D ∈ Γ containing the underlying variable of ℓ,
C ∪ {ℓ = 1} satisfies D.

Proof. Let C ∨ ℓ be BC w.r.t. Γ and ℓ. Let D be a clause in Γ containing the underlying
variable of ℓ, i.e. either D = D′ ∨ℓ or D = D′ ∨ℓ. In the first case it is trivial that C ∪{ℓ = 1}
satisfies D. In the second case, since C ∨ ℓ is BC, we have that C ∨ D′ is a tautology, i.e.
again C satisfies D′.

Vice versa, assume that given a clause C ∨ ℓ, for every clause D ∈ Γ containing the
underlying variable of ℓ, the assignment C ∪ {ℓ = 1} satisfies D. That is, in particular
C ∪ {ℓ = 1} satisfies the clauses of Γ of the form D′ ∨ ℓ. Which is only possible if C satisfies
D′, which is equivalent to saying C ∨ D′ is a tautology. ◀

C Extra material for Section 5

To satisfy Γ with a clause C ∨ b, where b is the corresponding blocking variable, b must be
true whenever C is false. To minimize cost, though, it makes sense to set b to false whenever
C is satisfied. Namely, to have b ↔ C. This does not follow logically from Γ, but can be
derived in cost-LPR.

▶ Lemma C.1. Let Γ contain a clause {C ∨ b}, so that b is a blocking variables and that
clause is its unique occurrence in Γ. It is possible to introduce all the clauses of the form ℓ ∨ b,
for every literal ℓ in C, using the cost-LPR rule. That is, we can turn b into a full-fledged
extension variable such that b ↔ C.

Proof. Let Γ be as in the statement, let C = ℓ1 ∨ · · · ∨ ℓt. We need to show we can derive
clause Di = ℓi ∨ b for every 1 ≤ i ≤ t. Assume that we derived D1, . . . , Di−1, we derive Di
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in cost-LPR using witnessing assignment σi := {ℓi 7→ 1, b 7→ 0}. Since Di = {ℓi 7→ 1, b 7→ 1},
the cost condition (item 2 of Definition 3.2) is satisfied. To show the redundancy condition
(item 1 of Definition 3.2) we prove something stronger, that is

Γ|Di
⊇ (Γ ∪ {D1, . . . , Di})|σi

.

Indeed, on clauses of Γ that do not contain the variable b, the assignments Di and σi behave
identically, while all the clauses containing b are satisfied by σi since those clauses are {C ∨ b}
and D1, . . . , Di. ◀

D Extra material for Section 6

It is easier to prove the soundness of MaxSAT resolutiuion + cost-SR if we first put the
derivations in a convenient normal form.

▶ Proposition D.1 (normal form). In a MaxSAT resolution + cost-SR derivation we can
always assume, at the cost of a polynomial increase in size of the derivations, that the rules
(a) and (a’) are applied before the rules (b)–(d).

Proof. Having more hard clauses in the database never prevents applications of the rules
(b)–(d), and furthermore rules (a) and (a’) do not depend in any way on the soft clauses in
it. Therefore we can assume all the hard clauses to be derived before any manipulation of
the soft clauses. ◀

▶ Theorem 6.3 (restated from page 15). The system MaxSAT resolution + cost-SR is sound,
i.e., if MaxSAT resolution + cost-SR can derive ⊥ as a soft clause with multiplicity k from
a formula F = H0 ∧ S0 with satisfiable hard clauses H0 = {C1 ∨ b1, . . . , Cm ∨ bm} and soft
clauses S0 = {b1, . . . , bm}, then the number of clauses that need to be falsified in S0 is at
least k, or equivalently cost(H0) ≥ k.

Proof. Consider a MaxSAT instance resolution + cost-SR derivation (H0, S0), . . . , (Ht, St)
where St contains k copies of ⊥.

Given a total assignment α, let c(α, Si) be the number (counted with multiplicity) of
clauses in Si falsified by α. That is, in particular, for any total assignment α, c(α, St) ≥ k.
By induction on i, we will show that

min
α : α ⊨ Hi

c(α, Si) = cost(H0) . (7)

Because of Proposition D.1 we can assume that up to some step t0, included, the proof only
uses rules (a) or (a’), and from step t0 + 1 to t, the proof only uses rules (b)–(d).

By the soundess of cost-SR (Lemma 3.4) we have that when i ≤ t0, Hi is satisfiable and
cost(Hi) = cost(H0). Furthermore Si = S0. Hence

min
α : α ⊨ Hi

c(α, Si) = min
α : α ⊨ Hi

c(α, S0) = cost(Hi) = cost(H0) .

for i ≤ t0. For i > t0 we applied one of rules (b)–(d) above, and

min
α : α ⊨ Hi

c(α, Si) = min
α : α ⊨ Hi−1

c(α, Si−1) IH= cost(H0) ,

where the first equality is the soundness of MaxSAT resolution. ◀
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