
Impagliazzo’s Worlds Through the Lens of Conditional

Kolmogorov Complexity

Zhenjian Lu∗ Rahul Santhanam†

April 25, 2024

Abstract

We develop new characterizations of Impagliazzo’s worlds Algorithmica, Heuristica and Pes-
siland by the intractability of conditional Kolmogorov complexity K and conditional probabilistic
time-bounded Kolmogorov complexity pKt.

In our first set of results, we show that NP ⊆ BPP iff pKt(x | y) can be computed efficiently in
the worst case when t is sublinear in |x|+ |y|; DistNP ⊆ HeurBPP iff pKt(x | y) can be computed
efficiently over all polynomial-time samplable distributions when t is sublinear in |x|+ |y|; and
infinitely-often one-way functions fail to exist iff pKt(x | y) can be computed efficiently over
all polynomial-time samplable distributions for t a sufficiently large polynomial in |x| + |y|.
These results characterize Impagliazzo’s worlds Algorithmica, Heuristica and Pessiland purely
in terms of the tractability of conditional pKt. Notably, the results imply that Pessiland fails to
exist iff the average-case intractability of conditional pKt is insensitive to the difference between
sub-linear and polynomially bounded t. As a corollary, while we prove conditional pKt to be
NP-hard for sublinear t, showing NP-hardness for large enough polynomially bounded t would
eliminate Pessiland as a possible world of average-case complexity.

In our second set of results, we characterize Impagliazzo’s worlds Algorithmica, Heuristica
and Pessiland by the distributional tractability of a natural problem, i.e., approximating the
conditional Kolmogorov complexity, that is provably intractable in the worst case. We show that
NP ⊆ BPP iff conditional Kolmogorov complexity can be approximated in the semi-worst case;
and DistNP ⊆ HeurBPP iff conditional Kolmogorov complexity can be approximated on average
over all independent polynomial-time samplable distributions. It follows from a result by Ilango,
Ren, and Santhanam (STOC 2022) that infinitely-often one-way functions fail to exist iff con-
ditional Kolmogorov complexity can be approximated on average over all polynomial-time sam-
plable distributions. Together, these results yield the claimed characterizations. Our techniques,
combined with previous work, also yield a characterization of auxiliary-input one-way functions
and equivalences between different average-case tractability assumptions for conditional Kol-
mogorov complexity and its variants. Our results suggest that novel average-case tractability
assumptions such as tractability in the semi-worst case and over independent polynomial-time
samplable distributions might be worthy of further study.

∗University of Warwick, UK. E-mail: zhenjian.lu@warwick.ac.uk
†University of Oxford, UK. E-mail: rahul.santhanam@cs.ox.ac.uk

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 85 (2024)

Contents

1 Introduction 3
1.1 Results . 4

1.1.1 Characterizing Both DistNP ⊆ HeurBPP and Non-Existence of One-Way
Functions by Average-Case Easiness of Conditional pKt 4

1.1.2 Characterizing Impagliazzo’s Worlds by Tractability of Conditional Time-
Unbounded Kolmogorov Complexity . 7

1.2 Techniques . 11
1.3 Open Problems . 16

2 Preliminaries 16
2.1 Notation . 16
2.2 Average-Case Complexity . 17
2.3 Kolmogorov Complexity . 17
2.4 Cryptography . 18
2.5 Probability Distributions . 19
2.6 Characterizations through Conditional Coding . 19
2.7 Direct Product Generator . 20

3 Characterizing Non-Existence of One-Way Functions by Average-Case Easiness
of Conditional pKt 20
3.1 Computing Conditional pKt from Inverting One-Way Functions 21
3.2 Inverting One-Way Functions from Computing Conditional pKt 26
3.3 Equivalences between Average-Case Easiness of Approximating and Computing (Con-

ditional) pKt . 27

4 Characterizing DistNP ⊆ HeurBPP by Average-Case Easiness of Conditional pKt

in Sublinear-Time Regime 27
4.1 Technical Tools . 27
4.2 NP-Hardness of Computing Conditional pKt in Sublinear-Time Regime 28
4.3 Proof of Theorem 2 . 33
4.4 Excluding Pessiland via NP-Hardness of Computing Conditional pKt 36

5 Characterizing DistNP ⊆ HeurBPP by Approximating Kolmogorov Complexity 37
5.1 Approximating Kolmogorov Complexity from Average-Case Easiness of NP 37
5.2 Average-Case Easiness of NP from Approximating Kolmogorov Complexity 38
5.3 Kolmogorov Complexity versus Conditional Kolmogorov Complexity 41

6 Characterizing NP ⊆ BPP by Approximating Kolmogorov Complexity 41
6.1 Approximating Kolmogorov Complexity from Worst-Case Easiness of NP 41
6.2 Worst-Case Easiness of NP from Approximating Kolmogorov Complexity 42

6.2.1 Worst-Case Easiness of NP and Semi-Worst-Case Conditional Coding 43
6.2.2 Proof of Lemma 63 . 44

7 Characterizing Auxiliary-Input One-Way Functions by Approximating Kolmogorov
Complexity 45

2

1 Introduction

In his influential survey on average-case complexity [Imp95], Impagliazzo described five possible
computational worlds: Algorithmica, Heuristica, Pessiland, Minicrypt and Cryptomania. Algorith-
mica is a world where NP is easy in the worst case; Heuristica a world where NP is hard in the worst
case but easy on average; Pessiland a world where NP is hard on average but one-way functions
do not exist; Minicrypt a world where one-way functions exist but public-key cryptography does
not; and Cryptomania a world where public-key cryptography exists. The general belief among
complexity theorists and cryptographers is that we live in Cryptomania, but we are very far from
a proof, as even ruling out Algorithmica would involve showing NP ̸= P.

There is the possibility, however, that we might be able to unconditionally rule out some of the
intermediate worlds, such as Heuristica, Pessiland and Minicrypt. Until recently, there was little
progress on ruling out these intermediate worlds. All that was known was that there are various
black-box and relativization barriers to ruling out these worlds.

The study of meta-complexity, i.e., the complexity of computational problems that are them-
selves about complexity, has enabled new attacks on these questions. Examples of meta-complexity
problems are the Minimum Circuit Size Problem (MCSP), which asks whether a Boolean function
represented by its truth table has circuits of a given size, and the problem of computing Kolmogorov
complexity and its resource-bounded variants such as Levin’s time-bounded Kolmogorov complex-
ity. The average-case complexity of meta-complexity problems is of particular interest [HS17].
Hirahara [Hir20] gave an approach via meta-complexity to ruling out the analogue of Heuristica
for the Polynomial Hierarchy. More recently, the Polynomial Hierarchy analogue of Pessiland has
been ruled out [HS22], again using meta-complexity techniques.

There have been several successful efforts to characterize the existence of one-way functions via
meta-complexity. In [San20], a conditional characterization was given, based on a believable but
seemingly hard-to-establish conjecture. Liu and Pass [LP20] unconditionally characterized one-way
functions by the average-case hardness of polynomial-time-bounded Kolmogorov complexity over
the uniform distribution. This characterization was extended to other meta-complexity problems
and notions of one-way function in [LP21, RS21, ACM+21]. A different characterization of one-way
functions via the hardness of approximating Kolmogorov complexity over samplable distributions
was given in [IRS22]. More recently, Hirahara [Hir23] introduced a meta-complexity problem whose
NP-hardness and the worst-case hardness of NP characterize the existence of one-way functions.

These connections between meta-complexity, average-case complexity and one-way functions
raise the following question: Can we characterize Impagliazzo’s worlds Algorithmica, Heuristica
and Pessiland by different notions of hardness for a single computational problem? A positive
answer to this question is implicit in [LP22], who study the problem of conditional polynomial-
time-bounded Kolmogorov complexity. They show that the worst-case hardness of conditional
polynomial-time-bounded Kolmogorov complexity captures worst-case hardness of NP, and the
average-case hardness of conditional polynomial-time-bounded Kolmogorov complexity over the
uniform distribution captures the existence of one-way functions. Their result on worst-case hard-
ness immediately implies that the average-case hardness of NP is equivalent to the hardness of
conditional polynomial-time-bounded Kolmogorov complexity over some samplable distribution.

In this work, we give two new characterizations of Impagliazzo’s worlds by different notions of
hardness for a single problem - first for conditional probabilistic time-bounded Kolmogorov com-
plexity pKt [GKLO22], and second for the standard notion of conditional Kolmogorov complexity.
These new characterizations have some interesting features. The first characterization implies that
ruling out Pessiland corresponds to robustness of the average-case tractability of conditional pKt

over time regimes t that vary from sublinear to polynomial. As a consequence, while we are able

3

to prove (by building on [Hir22]) that pKt is NP-hard to compute exactly when t is sublinear,
Pessiland would fail to exist if pKt were NP-hard to compute for arbitrary polynomial t. This could
be a promising route to ruling out Pessiland, since pKt is a fairly powerful complexity measure
with nice properties such as the coding theorem which could potentially be exploited when showing
hardness, and the computational version is in (promise) AM but is not known to be in NP.

The second characterization is for a fundamental problem that is provably intractable in the
worst case, i.e., the problem of approximating conditional Kolmogorov complexity. A somewhat
surprising aspect of our results (which is also present in the main result of [IRS22] on which
we build) is that conditional Kolmogorov complexity is uncomputable, yet natural average-case
hardness assumptions on conditional Kolmogorov complexity capture complexity worlds related to
average-case hardness of NP. What this indicates is that the distinctions between Impagliazzo’s
worlds can be encoded in a natural way into the distributional assumptions that are made, while
considering a single well-understood problem.

As a corollary of our second set of results together with those in [LP22], we get new equivalences
between hardness assumptions for conditional Kolmogorov complexity and hardness assumptions
for conditional time-bounded Kolmogorov complexity. The proofs of these equivalences crucially use
the various characterizations of Impagliazzo’s worlds, and it seems tricky to show such equivalences
directly.

1.1 Results

We state our results formally in this subsection.

1.1.1 Characterizing Both DistNP ⊆ HeurBPP and Non-Existence of One-Way Func-
tions by Average-Case Easiness of Conditional pKt

We present a meta-complexity problem whose average-case tractability over polynomial-time
samplable distributions can be used to characterize both the non-existence of one-way functions and
DistNP ⊆ HeurBPP, while considering different time regimes in the measure of time-bounded Kol-
mogorov complexity. Specifically, we consider the problem of computing conditional probabilistic
t-time-bounded Kolmogorov complexity.

As defined in [GKLO22], we let pKtλ(x | y) be the smallest integer k such that, with probability
at least λ over the choice of a random string w ∼ {0, 1}t, there is a (deterministic) program of size
k that, when running on w and given oracle access to y, prints x within t steps (see Definition 16
for the formal definition).

For τ : N× N → N, let Cond-pK[τ] be the following promise problem (YES,NO):

YES :=
{
(x, y, 1s) | pKτ(|x|,|y|)2/3 (x | y) ≤ s

}
,

NO :=
{
(x, y, 1s) | pKτ(|x|,|y|)1/3 (x | y) > s

}
.

We will refer to this problem as “computing conditional pKt”.
We will consider two specific settings for the time bound function τ . For the purpose of illus-

tration, let us consider the following simplified problem. For τ : N× N → N, we are given x, y and
s, and the task is to decide whether Kτ(|x|,|y|)(x | y) ≤ s, i.e., whether there is a program of size at
most s such that given oracle access to y, the program outputs x within time τ(|x|, |y|).

A typical setting of τ is τ(n,m) := nc ·mc, where c > 1 is some constant. For this τ , we want
to decide if there is a program of size at most s that, given oracle access to y, outputs x within
time τ(|x|, |y|), and such a program has enough time to read the entire string y.

4

Now consider another setting of τ where τ(n,m) := nc ·m1−1/c for a constant c > 1. In this
case, for a string y ∈ {0, 1}m, where m := n2c

2
, we have

τ(n,m) = nc ·m1−1/c = n2c
2−c ≪ m.

Again, we want to decide if there is a program of size at most s that, given oracle access to y,
outputs x within time τ(|x|, |y|). However, in this case any such program does not have time to
read the entire string y

We will show that the non-existence of one-way functions corresponds to the average-case
tractability of Cond-pK[τ] over polynomial-time samplable distributions for the “polynomial-time
regime” of τ , and that DistNP ⊆ HeurBPP corresponds to that of the “sublinear-time regime”.1

We state our results formally next.
For an algorithm A, x, y ∈ {0, 1}∗, and s ∈ N, we say that A decides Cond-pK[τ] on (x, y, 1s) if

the following holds:

A(x, y, 1s) =

1 if pK

τ(|x|,|y|)
2/3 (x | y) ≤ s,

0 if pK
τ(|x|,|y|)
1/3 (x | y) > s,

either 0 or 1 otherwise.

Theorem 1. The following are equivalent.

1. Infinitely-often one-way functions do not exist.

2. (Computing conditional pKt in the polynomial-time regime is easy-on-average
over samplable distributions.)

For every polynomial-time samplable distribution family {D⟨n,m⟩}n,m supported over {0, 1}n×
{0, 1}m, every polynomial q, and for all large enough constant c, there exists a probabilistic
polynomial-time algorithm A such that for all n,m, s ∈ N,

Pr
(x,y)∼D⟨n,m⟩

[A decides Cond-pK[τ] on (x, y, 1s)] ≥ 1− 1

q(n,m)
,

where τ(n,m) := nc ·mc.

Theorem 2. The following are equivalent.

1. DistNP ⊆ HeurBPP.

2. (Computing conditional pKt in the sublinear-time regime is easy-on-average over
samplable distributions.)

For every polynomial-time samplable distribution family {D⟨n,m⟩}n,m supported over {0, 1}n×
{0, 1}m, every polynomial q, and for all large enough constant c, there exists a probabilistic
polynomial-time algorithm A such that for all n,m, s ∈ N,

Pr
(x,y)∼D⟨n,m⟩

[A decides Cond-pK[τ] on (x, y, 1s)] ≥ 1− 1

q(n,m)
,

where τ(n,m) := nc ·m1−1/c.
1Note that even in the “sublinear-time regime” of τ , the program can still run in polynomial time with respect

to the the length of x; the word “sublinear-time” refers to the fact that the program runs in sub-linear time with
respect to the length of y.

5

In proving Theorem 2, we also show that it is NP-hard to compute conditional pKt in the
sublinear-time regime in the worst case.

Theorem 3 (Informal). For any constant c > 1, Cond-pK[τ] is NP-hard under randomized polynomial-
time reductions, where τ(n,m) := nc ·m1−1/c.

In fact, Theorem 3 holds even if we consider the problem of approximating pKt(x | y) in

the sublinear-time regime within a multiplicative factor of |x|1/ log log |x|O(1)
. This also extends a

result by Liu and Pass [LP22] and Hirahara [Hir22], which showed that the problem of comput-
ing/approximating conditional Kt in the sublinear-time regime is NP-hard.

Theorem 3, Theorem 1 and Theorem 2 together give characterizations of Impagliazzo’s worlds
Algorithmica, Heuristica and Pessiland based on different hardness assumptions for the computation
of conditional pKt.

In particular, Theorem 1 and Theorem 2 imply that the task of ruling out Pessiland2 is equiv-
alent to showing that the problem of computing conditional pKt on average over polynomial-time
samplable distributions is robust with respect to the two different time regimes.

Also, we get that to rule out Pessiland, it suffices to show that it is NP-hard to compute
conditional pKt in the polynomial-time regime in the worst case.

Corollary 4 (Informal. See Corollary 55 for the formal version). If computing conditional pKt in
the polynomial-time regime is NP-hard, then Pessiland does not exist.

A proof sketch of Corollary 4 can be found in Section 4.4.
For comparison, it was observed in [Hir23] that if one can show the NP-hardness of approximat-

ing a certain variant of time-bounded Kolmogorov complexity called qt, then Pessiland does not
exist. It is known that qpoly and pKpoly are equivalent to each other up to an additive logarithmic
factor. This implies that showing the NP-hardness of approximating pKt will allow us to rule out
Pessiland.3 It can also be shown that the problem of approximating pKt is reducible to that of com-
puting conditional pKt.4 On the other hand, Corollary 4 only requires showing the NP-hardness of
computing conditional pKt, which might be easier. Moreover, we note that the barrier of [SS22] to
showing NP-hardness of approximating Kolmogorov complexity and its variants does not seem to
apply directly to exact computation.

Equivalences between Average-Case Easiness of Approximating and Computing (Con-
ditional) pKt. By combining Theorem 1 with existing characterizations of one-way functions, we
get that the average-case easiness of approximating and computing different variants of probabilis-
tic (conditional) time-bounded Kolmogorov complexity are in fact equivalent. We state this result
more formally below.

We say that “approximating pKt is easy-on-average over samplable distributions” if the following
holds.

For every polynomial-time samplable distribution family {Dn}n supported over {0, 1}n,
every polynomial q, and for all large enough polynomial τ , there is a probabilistic
polynomial-time algorithmA that can decide, given as input (x, 1s, 1t), whether pKt(x) ≤

2In this case, we mean basing infinitely-often one-way functions on DistNP ̸⊆ HeurBPP.
3Here, we refer to the problem called Gap-MINpKT. For a polynomial τ , Gap-MINpKT[τ] is the (promise) problem

of deciding, given as input (x, 1s, 1t), whether pKt(x) ≤ s or pKτ(|x|,t)(x) > s+ log τ(|x|, t).
4More precisely, if we can solve Cond-pK[τ] for some polynomial τ , then we can also solve Gap-MINpKT[τ ′] for

some polynomial τ ′.

6

s or pKτ(|x|,t)(x) > s + log τ(|x|, t),5 with probability at least 1 − 1/q(n) over x ∼ Dn

and the internal randomness of A.

The above can be naturally generalized to the conditional setting, where we consider any samplable
distribution family {D⟨n,m⟩}n,m supported over {0, 1}n×{0, 1}m, and for all large enough polynomial

τ , we can decide whether pKt(x | y) ≤ s or pKτ(|x|,|y|,t)(x | y) > s + log τ(|x|, |y|, t) with high
probability over (x, y) sampled from D⟨n,m⟩. In this case, we say that “approximating conditional
pKt is easy-on-average over samplable distributions”

Also, we say that “computing pKt is easy-on-average over samplable distributions” if the fol-
lowing holds.

For every polynomial-time samplable distribution family {Dn}n supported over {0, 1}n,
every polynomial q, and for all large enough polynomial τ , there is a probabilistic

polynomial-time algorithmA that can decide, given as input (x, 1s), whether pK
τ(|x|)
2/3 (x) ≤

s or pK
τ(|x|)
1/3 (x) > s,6 with probability at least 1− 1/q(n) over x ∼ Dn and the internal

randomness of A.

Theorem 5 (Informal). The following are equivalent.

1. Infinitely-often one-way functions do not exist.

2. Approximating pKt is easy-on-average over samplable distributions.

3. Approximating conditional pKt is easy-on-average over samplable distributions.

4. Computing pKt is easy-on-average over samplable distributions.

5. Computing conditional pKt is easy-on-average over samplable distributions.

A sketch of the proof of Theorem 5 can be found in Section 3.3.

1.1.2 Characterizing Impagliazzo’s Worlds by Tractability of Conditional Time-Unbounded
Kolmogorov Complexity

We present a meta-complexity problem, namely approximating conditional Kolmogorov com-
plexity up to an O(log n) additive term, that is unconditionally hard (even uncomputable) in the
worst case, but such that its average-case intractability for different classes of distributions charac-
terize Algorithmica, Heuristica and Pessiland.

Characterizing DistNP ⊆ BPP and DistNP ⊆ HeurBPP by Tractability of Time-Unbounded
Kolmogorov Complexity. To begin, we recall a recent result by Ilango, Ren, and Santhanam
[IRS22] characterizing the non-existence of one-way functions by the tractability of approximating
Kolmogorov complexity over polynomial-time samplable distributions. We consider the following
conditional variant from [HIL+23].

Theorem 6 ([HIL+23, Lemma 27], cf. [IRS22]). The following are equivalent.

1. Infinitely-often one-way functions do not exist.

5Note that this is the problem Gap-MINpKT mentioned in Footnote 3.
6This problem is referred to as MpKτP in [LP23].

7

2. (Approximating conditional Kolmogorov complexity is easy-on-average over
polynomial-time samplable distributions.)

For every polynomial-time samplable distribution family {Dn}n, where each Dn is over {0, 1}n×
{0, 1}n, and every polynomial q, there exist a probabilistic polynomial-time algorithm A and
a polynomial p such that for all n ∈ N,

Pr
(x,y)∼Dn

[K(x | y) ≤ A(x, y) ≤ K(x | y) + log p(n)] ≥ 1− 1

q(n)
.

Note that a one-way function is a function that is efficiently computable but hard to invert on
average; thus, this notion is based on average-case hardness. Theorem 6 characterizes the existence
of one-way functions by the average-case hardness of approximating (conditional) Kolmogorov
complexity. Then, for NP ̸⊆ BPP, which is a worst-case hardness notion, one might think that
it can be characterized by the worst-case hardness of approximating (conditional) Kolmogorov
complexity. However, it is well known that the task of approximating the conditional Kolmogorov
complexity is provably intractable in the worst case, so such a characterization would imply NP ̸⊆
BPP unconditionally.

Consider a polynomial-time samplable distribution D over {0, 1}n×{0, 1}n. Also, let D(2) be the
marginal distribution of D on the second half, and let D(· | y) denote the conditional distribution
of D on the first half given that the second half is y. Now, observe the following equivalent way of
sampling a pair of strings (x, y) from D: We first sample y from D(2) and then x from D(· | y).

Note that Theorem 6 essentially says that one-way functions do not exist if and only if, for every
polynomial-time samplable distribution D, one can approximate K(x | y) on average over (x, y),
where we sample y from D(2) and then x from D(· | y). In order to characterize NP ⊆ BPP, we
consider the tractability of approximating conditional Kolmogorov complexity in the semi-worst
case, meaning that we can approximate K(x | y) on average over x sampled from D(· | y) for all
y ∈ {0, 1}n (instead of an average y from D(2)). Our first result is a characterization of NP ⊆ BPP
by the tractability of approximating conditional Kolmogorov complexity in this semi-worst case.
Formally, we show the following.

Theorem 7. The following are equivalent.

1. NP ⊆ BPP.

2. (Approximating conditional Kolmogorov complexity is easy in the semi-worst
case.)

For every polynomial-time samplable distribution family {Dn}n, where each Dn is over {0, 1}n×
{0, 1}n, and every polynomial q, there exist a probabilistic polynomial-time algorithm A and
a polynomial p such that for all n ∈ N and y ∈ {0, 1}n,

Pr
x∼Dn(·|y)

[K(x | y) ≤ A(x, y) ≤ K(x | y) + log p(n)] ≥ 1− 1

q(n)
.

Theorem 7 shows that NP ⊆ BPP if and only if for every polynomial-time samplable distribution
D, approximating K(x | y) is easy on average over x sampled from D(· | y) for every y ∈ {0, 1}n.
Now, instead of considering every y ∈ {0, 1}n (a worst-case notion), it is also natural to consider an
average y sampled from some polynomial-time samplable distribution C (an average-case notion).
However, the distribution C here can be independent of D. In particular, it does not necessarily
have to be D(2).

8

Next, we show that the average-case tractability of approximating conditional Kolmogorov
complexity over such independent polynomial-time samplable distributions, in fact characterizes the
average-case easiness of NP (i.e., DistNP ⊆ HeurBPP). We first state formally the definition of
independent polynomial-time samplable distributions.

Definition 8 (Independent Polynomial-Time Samplable [HIL+23]). We say that a distribution
family {Dn}n, where each Dn is over {0, 1}n×{0, 1}n, is independent polynomial-time samplable if
there exist two polynomial-time samplable distribution families {An}n and {Bn}n, where each An

is over {0, 1}n and each Bn is over {0, 1}n × {0, 1}n, such that Dn can be equivalently sampled as
follows: sample y ∼ An, sample x ∼ Bn(· | y), and then output (x, y).

It is easy to see that every polynomial-time samplable distribution is also independent polynomial-
time samplable, by letting A be the marginal distribution of D on the second half and letting B
be D. However, the converse is not necessarily true. Nevertheless, Theorem 6 and Theorem 9
(which we state below) imply that the task of ruling out Pessiland is equivalent to showing that
the hardness of approximating conditional Kolmogorov complexity remains unchanged over these
two classes of distributions.

Theorem 9. The following are equivalent.

1. DistNP ⊆ HeurBPP.

2. (Approximating conditional Kolmogorov complexity is easy-on-average over in-
dependent polynomial-time samplable distributions.)

For every independent polynomial-time samplable distribution family {Dn}n and every poly-
nomial q, there exist a probabilistic polynomial-time algorithm A and a polynomial p such that
for all n ∈ N,

Pr
(x,y)∼Dn

[K(x | y) ≤ A(x, y) ≤ K(x | y) + log p(n)] ≥ 1− 1

q(n)
.

Finally, we extend Theorem 6 to characterize the non-existence of auxiliary-input one-way
functions by the tractability of approximating conditional Kolmogorov complexity over P/poly-
samplable distributions.

Theorem 10. The following are equivalent.

1. Auxiliary-input one-way functions do not exist.

2. For every sequence of strings {yn}n where each yn ∈ {0, 1}n, every distribution family {Dn}n
samplable in polynomial time using {yn}n as advice, where each Dn is over {0, 1}n, and every
polynomial q, there exist a probabilistic polynomial-time algorithm A and a polynomial p such
that for all n ∈ N,

Pr
x∼Dn

[K(x | yn) ≤ A(x, yn) ≤ K(x | yn) + log p(n)] ≥ 1− 1

q(n)
.

The results above characterize the non-existence of one-way functions, DistNP ⊆ HeurBPP, and
NP ⊆ BPP by the distributional tractability of approximating the conditional Kolmogorov complex-
ity. They imply that the tasks of ruling out Impagliazzo’s certain worlds are equivalent to showing
that the hardness of this problem is the same with respect to different classes of distributions. For
example, Theorem 6 and Theorem 9 imply that basing one-way functions on DistNP ̸⊆ HeurBPP
(a.k.a., ruling out Pessiland) is equivalent to showing that the hardness of approximating con-
ditional Kolmogorov complexity over polynomial-time samplable distributions is the same as the
hardness over independent polynomial-time samplable distributions.

9

Equivalences between Tractability of Time-Unbounded and Time-Bounded Kolmogorov
Complexity. We first recall the definition of time-bounded Kolmogorov complexity. For x, y ∈
{0, 1}∗ and t ∈ N, we define Kt(x | y) to be the minimum length of a program p ∈ {0, 1}∗ such that
Uy(p) outputs x within t steps. Here, U is a fixed time-optimal universal Turing machine and has
oracle access to the string y.

For τ : N → N and κ : N → N, let McKτP[κ] be the problem where we are given input x ∈ {0, 1}n
and y ∈ {0, 1}κ(n), and we are asked to compute Kτ(|x|)(x | y). Given a polynomial τ and a
polynomial κ, we say that:

• McKτP[κ] is easy in the worst case if McKτP[κ] can be solved in polynomial time.

• McKτP[κ] is easy-on-average over polynomial-time samplable distributions ifMcKτP[κ] admits
a heuristic scheme. That is for any polynomial-time samplable distribution D = {Dn}n,
where each Dn samples (x, z) with x ∈ {0, 1}n and y ∈ {0, 1}κ(n), there exists a probabilistic
polynomial-time algorithm A such that for all n, k ∈ N,

Pr
x,y∼Dn

[
A(x, y; 1n, 1k) = Kτ(|x|)(x | y)

]
≥ 1− 1

k
.

• McKτP[κ] is easy-on-average over the uniform distribution if for every polynomial p, there
exists a probabilistic polynomial-time algorithm A such that for all n ∈ N,

Pr
x∼{0,1}n,y∼{0,1}κ(n)

[
A(x, y) = Kτ(|x|)(x | y)

]
≥ 1− 1

p(n)
.

Theorem 11 (Implicit in [LP22]). The following hold.

• For all polynomial τ(n) ≥ n2, there exists a polynomial κ such that NP ⊆ BPP if and only if
McKτP[κ] is easy in the worst-case.

• For all polynomial τ(n) ≥ n2, there exists a polynomial κ such that DistNP ⊆ HeurBPP if and
only if McKτP[κ] is easy-on-average over polynomial-time samplable distributions.

• For every polynomial τ(n) ≥ 1.1n and polynomial κ, infinitely-often one-way functions do
not exist if and only if McKτP[κ] is easy-on-average over the uniform distribution.

As a corollary, we get the following equivalences between the tractability of conditional Kol-
mogorov complexity and that of conditional time-bounded Kolmogorov complexity.

Corollary 12 (Informal). The following hold.

• For all polynomial τ(n) ≥ n2, there exists a polynomial κ such that approximating conditional
Kolmogorov complexity is easy in the semi-worst case if and only if McKτP[κ] is easy in the
worst-case case.

• For all polynomial τ(n) ≥ n2, there exists a polynomial κ such that approximating condi-
tional Kolmogorov complexity is easy-on-average over independent polynomial-time samplable
distributions if and only if McKτP[κ] is easy-on-average over polynomial-time samplable dis-
tributions.

• For every polynomial τ(n) ≥ 1.1n and polynomial κ, approximating conditional Kolmogorov
complexity is easy-on-average over polynomial-time samplable distributions if and only if
McKτP[κ] is easy-on-average over the uniform distribution.

Proof. This follows directly from Theorem 6, Theorem 7, Theorem 9, and Theorem 11.

10

1.2 Techniques

In this section, we explain the main ideas behind our proofs.

Characterizing Non-Existence of One-Way Functions by Average-Case Easiness of
Conditional pKt. A recent result by Liu and Pass [LP23] characterized the non-existence of
(infinitely-often) one-way functions by the average-case easiness of computing pKt over polynomial-
time samplable distributions. Here, we describe a proof of this result that is slightly different than
the original one and show how to generalize it to conditional pKt.

It will be convenient to think of the pKt complexity of a string as its Kt complexity conditioning
on a random string r (see Proposition 17).

First of all, by employing ideas from [LP20, LP23], one can construct a function, which outputs
the string x produced by a randomly selected (time-bounded) program (resp. conditioning on a
random string r), and show that if this function can be inverted, then we can obtain a shortest
program for x (resp. conditioning on r) “on average”. In particular, it can be shown that if
infinitely-often one-way functions do not exist, then for every time bound function τ(n) = nO(1),
there exists an efficient algorithm A (for simplicity, think of it as being deterministic) such that
with high probability over a uniformly random string r, A(x; r) computes Kτ (x | r) for an average
x sampled from some distribution Eτr , defined as Eτr (x) := 2−Kτ (x|r).

Next, we want to say that, for almost all r, the algorithm A(−; r), which works for the dis-
tribution Eτr , also works for a given polynomial-time samplable distribution D (provided that τ
is a sufficiently large polynomial). To get this, it suffices to show that Eτr dominates7 D, i.e.,
2−Kτ (x|r) ≳ D(x) for every x. The observation here is that this follows from the recently discovered
coding theorem for pKpoly [LOZ22], which asserts that for every string x, pKτ (x) ≲ log(1/D(x))
(again, provided that τ is a sufficiently large polynomial). To see this, note that by the definition
of pKt, we have for a uniform random r, Kτ (x | r) ≤ pKτ (x).

Given the above, we have that with high probability over a uniformly random r, A(x; r) =
Kτ (x | r) for an average x sampled from D. By an averaging argument, we get that with high
probability over x ∼ D, A(x; r) = Kτ (x | r) with high probability over a uniformly random r. For
any such good x, if pKτ2/3(x) ≤ s (resp. pKτ1/3(x) > s), which means Prr[K

τ (x | r) ≤ s] ≥ 2/3 (resp.
Prr[K

τ (x | r) > s] ≥ 2/3), then A(x, r) ≤ s (resp. A(x, r) > s) with high probability over r. This
allows us to solve the problem of computing pKτ on average over the distribution D.

Now we describe how to generalize the above to conditional pKt.
Suppose we want to compute pKτ (x | y) over (x, y) sampled from some polynomial-time distri-

bution D. It will be convenient to consider the following equivalent way of sampling D: We first
sample y ∼ D(2), where D(2) is the marginal distribution of D on the second half, and then sample
x ∼ D(· | y), where D(· | y) is the conditional distribution of Dn on the first half given that the
second half is y. Finally, we output (x, y).

First of all, by modifying the construction of the candidate one-way function described above
(e.g., by incorporating the distribution D(2) into the construction), we can show that if infinitely-
often one-way functions do not exist, then there exists an efficient algorithm A such that with high
probability over a uniformly random string r and over y sampled from D(2), A(x; y, r) computes
Kτ (x | y, r) for an average x sampled from some distribution Eτy,r, where Eτy,r(x) := 2−Kτ (x|y,r).

Now similar to the previous case, we want to say that, with high probability over r and y ∼ D(2),
the algorithm A(−; y, r), which works for the distribution Eτy,r, also works for the distribution

D(· | y). Again, it suffices to show that Eτy,r(x) = 2−Kτ (x|y,r) ≳ D(x | y) for every x. However, this

7Recall that a distribution D dominates another distribution D′ if D(x) ≥ D′(x)/poly(n) for every x.

11

would require a conditional version of the coding theorem for pKpoly applying to the distribution
D(· | y) (which is not necessarily efficiently samplable given y). Such a coding theorem is not known
(in fact, is unlikely to hold).

The key observation is that in order to show that the algorithm A(−; y, r), which works on
average over the distribution Eτy,r, also works for D(· | y), it suffices to have that Eτy,r(x) dominates
D(x | y) on almost all x, instead of every x. Then this weaker condition can be obtained from an
average-case coding theorem for pKpoly, which has been shown under the assumption that infinitely-
often one-way functions do not exist [HIL+23] (see Theorem 29).

More specifically, [HIL+23] showed that if infinitely-often one-way functions do not exist, then
with high probability over y ∼ D(2) and x ∼ D(· | y), it holds that

pKτ (x | y) ≲ log
1

D(x | y)
.

Again, by the definition of pKt and an averaging argument, this yields that with high probability
over a uniformly random r and y ∼ D(2),

Kτ (x | y, r) ≤ log
1

D(x | y)

holds for almost all x ∼ D(· | y). This allows us to say that with high probability over r and
y ∼ D(2), the distribution Eτy,r dominates D(· | y) on average, so the algorithm A(−; y, r), which
works for Eτy,r, also works for D(· | y).

At this point, we get that with high probability over (x, y) ∼ D and over a uniformly random
r, A(x; y, r) = Kτ (x | y, r). By the same argument as described above, this allows us to compute
pKτ (x | y) on average over (x, y) sampled from D.

The converse direction, i.e., that computing conditional pKt on average allows us to break one-
way functions, follows from the standard observation that computing pKt on average over samplable
distributions allows us to distinguish pseudo-random distributions (which are supported on strings
of low pKt complexity) from random strings (which have high pKt complexity).

Characterizing DistNP ⊆ HeurBPP by Average-Case Easiness of Conditional pKt in
Sublinear-Time Regime. To show that the average-case easiness of computing conditional
pKt (in the sublinear-time regime) implies the average-case easiness of NP (both with respect to
polynomial-time samplable distributions), we first show that it is NP-hard to compute conditional
pKt (again, in the sublinear-time regime). Recently, Liu and Pass [LP22] and Hirahara [Hir22]
showed that the problem of computing the conditional Kt in the sublinear-time regime is NP-hard.
We generalize this result to pKt.

At a high level, our proof follows a similar approach but also requires some crucial observations
to address the more complex notion of pKt and to make it applicable to show Theorem 2. In
particular, we adapt the proof in [Hir22] which relies on the use of a secret sharing scheme (see
[Hir22, Section 2.3] for an exposition). More specifically, it reduces the problem of approximating
the hamming weight of a minimum satisfying assignment of a given monotone formula, which is
known to be NP-hard, to that of computing conditional Kt in the sublinear-time regime. That is,
for every constant c > 1 and time bound function τ(n,m) := nc ·m1−1/c, there is a randomized
reduction R such that if a given monotone formula ψ has a satisfying assignment of hamming weight
at most ζ (resp. much larger than ζ), then with high probability, R produces a pair of strings (x, y)
and ρ such that Kτ(|x|,|y|)(x | y) ≤ ρ (resp. Kτ(|x|,|y|)(x | y) > ρ).

Our key observation is that this reduction still works in the presence of any fixed string r.
Roughly put, the reason for this is that a secret sharing scheme remains secure even if an adversary

12

has access to some fixed string. More specifically, we can show that with respect to any string r,
if a given monotone formula ψ has a satisfying assignment of hamming weight much larger than
ζ, then with high probability the algorithm R produces a pair of strings (x, y) and ρ such that
Kτ(|x|,|y|)(x | y, r) > ρ. This allows us to say that if the minimum weight of ψ is much larger
than ζ, then with high probability over a random string r and over the internal randomness of R,
Kτ(|x|,|y|)(x | y, r) > ρ. By an averaging argument, this gives that with high probability over the
internal randomness of R, Kτ(|x|,|y|)(x | y, r) > ρ for more than 2/3 of the r’s, which essentially

means pK
τ(|x|,|y|)
1/3 (x | y) > ρ.

Now we have showed that computing conditional pKt (in the sublinear-time regime) is NP-hard.
To solve an NP problem L over a given polynomial-time samplable distribution D, we can compose
D with the reduction R to obtain a new distribution D′. Then we can show that computing
conditional pKt on average over D′ will allow us to solve L on average over D. However, there is
an additional subtle issue here, the original reduction R depends on the time bound function (i.e.,
for every sublinear time bound τ , there is a reduction R that will work). On the other hand, to
show Theorem 2 (Item 2 =⇒ Item 1), it is required that the reduction works for all time bound
functions τ of the form τ(n,m) = nc ·m1−1/c. We will then need to further modify the reduction
to achieve this. (See Lemma 45 for the details.)

Now we need to show the other direction saying that the average-case easiness of NP implies the
average-case easiness of computing conditional pKt. Unlike the problem of computing (conditional)
Kt, computing (conditional) pKt is not known to be in NP, so we can not get the desired implication
directly. However, it is not hard to see that the problem of computing conditional pKt is in fact in
(promise) AM.8 If we can solve NP, then we can also solve AM (in the randomized setting), by a
standard trick that combines the instance of an AM problem with a random string to produce an
instance for an NP problem. (See Lemma 53 for the details.)

Characterizing DistNP ⊆ BPP and DistNP ⊆ HeurBPP by Tractability of Time-Unbounded
Kolmogorov Complexity. First, we recap the proof of Theorem 6 as presented in [IRS22]. We
will ignore the issue of “infinitely often” in this subsection.

To show that the non-existence of one-way functions implies efficient algorithms for approximat-
ing conditional Kolmogorov complexity on average over polynomial-time samplable distributions,
we use a powerful result from [IL90], which asserts that if one-way functions do not exist, then for
any polynomial-time samplable distribution D over {0, 1}n × {0, 1}n, one can efficiently estimate
D(x | y) on average over (x, y) ∼ D. In addition, we combine two fundamental properties related
to time-unbounded Kolmogorov complexity: The first is called the coding theorem, which roughly
says that for every (x, y) ∈ Support(D),

K(x | y) ≲ log
1

D(x | y)
,

and the second is the incompressibility property, which states that all y ∈ {0, 1}n and for almost
all x ∼ D(· | y),

K(x | y) ≳ log
1

D(x | y)
.

It follows that for almost all (x, y) ∼ D,

K(x | y) ≈ log
1

D(x | y)
.

8Here, we refer to the problem Cond-pK instead of the one that asks to decide whether pKτ(|x|,|y|)(x | y) ≤ s for a
given input (x, y, 1s) and time bound τ .

13

This allows us to approximate K(x | y) by estimating D(x | y), and the latter be done efficiently if
one-way functions do not exist.

For the other direction, the idea is that an efficient algorithm for approximating Kolmogorov
complexity on average can be used to construct a function that distinguishes the output distribution
of a cryptographic pseudorandom generator from the uniform distribution. Intuitively, this is
because the outputs of such a generator have low Kpoly complexity while a random string has
high Kolmogorov complexity. Then such an algorithm implies the non-existence of pseudorandom
generators and hence of one-way functions [HILL99].

Now, let us try to see if we can adapt the above proof paradigm to show Theorem 9, which
characterizes DistNP ⊆ HeurBPP by the tractability of approximating conditional Kolmogorov
complexity on average over independent polynomial-time samplable distributions.

One direction is in fact easy by using tools developed in [HIL+23]. In particular, it is ob-
served in [HIL+23] that if DistNP ⊆ HeurBPP, then every independent polynomial-time samplable
distribution can be simulated by some polynomial-time samplable distribution (see Lemma 26).
Consequently, if DistNP ⊆ HeurBPP (which also implies that one-way functions do not exist), then
we can reduce the task of approximating conditional Kolmogorov complexity over independent
polynomial-time samplable distributions to that of approximating conditional Kolmogorov com-
plexity over polynomial-time samplable distributions, which is tractable if one-way functions do
not exist.

However, for the other direction, it is unclear how we can get DistNP ⊆ HeurBPP from the
tractability of approximating conditional Kolmogorov complexity over independent polynomial-
time samplable distributions, by using ideas from the proof of the characterization for one-way
functions. In that scenario, we use the algorithm for approximating conditional Kolmogorov com-
plexity as a distinguisher to break the security of a cryptographic pseudorandom generator.

Here, we will use a different approach. Specifically, we rely on a recently discovered charac-
terization of DistNP ⊆ HeurBPP by the validity of a certain property called conditional coding
for pKt. More precisely, the authors of [HIL+23] showed that DistNP ⊆ HeurBPP if and only if
conditional coding property for pKpoly holds on average over pairs of strings drawn from indepen-
dent polynomial-time samplable distributions, i.e., for any independent polynomial-time samplable
distribution D over {0, 1}n × {0, 1}n and for almost all (x, y) ∼ D,

pKpoly(n)(x | y) ≲ log
1

D(x | y)

(see Theorem 30).
Now given this characterization of DistNP ⊆ HeurBPP using conditional coding, it suffices

to show that conditional coding property for pKpoly over independent polynomial-time samplable
distributions follows from the tractability of approximating conditional Kolmogorov complexity
over the same class of distributions.

How can we show this? First of all, note that by the coding theorem for time-unbounded
Kolmogorov complexity, we have that for every (x, y) ∈ Support(D),

K(x | y) ≲ log
1

D(x | y)
.

Then to get the desired conditional coding property for pKpoly, it suffices to show that for almost
all (x, y) ∼ D,

pKpoly(n)(x | y) ≤ K(x | y) +O(log n). (1)

Now, let us describe how to show the above, assuming efficient algorithms for approximating con-
ditional Kolmogorov complexity over independent polynomial-time samplable distributions.

14

The key ingredient here is a pseudorandom generator construction with reconstruction property.
Such a generator is instantiated with a target string, it then takes as input a random seed and
outputs a string that is longer than the seed. The reconstruction property allows us to say that if
there exists a function that can distinguish the output distribution of the generator from the uniform
distribution, then it can be used to recover the target string, using an additional advice string. This
enables us to say that given a distinguisher, the target string has poly-time-bounded Kolmogorov
complexity bounded by the length of the advice string. An algorithm for approximating Kolmogorov
complexity can naturally be used as such a distinguisher, since the outputs of the generator have low
Kolmogorov complexity while a random string has high Kolmogorov complexity. By appropriately
configuring the parameters of the generator, we can ensure that the length of the advice string is
comparable to the Kolmogorov complexity of the target string. This allows us to upper bound the
poly-time-bounded Kolmogorov complexity of the target string by its Kolmogorov complexity.

Using this approach, the authors of [HIL+23] showed that if efficient algorithms exist for approx-
imating conditional Kolmogorov complexity over polynomial-time samplable distributions, then for
every polynomial-time samplable distribution D over {0, 1}n × {0, 1}n and almost all (x, y) ∼ D,

rKpoly(n)(x | y) ≤ K(x | y) +O(log3 n). (2)

Here, rKt is a certain randomized variant of time-bounded Kolmogorov complexity measure [BLvM05,
LOS21].

The O(log3 n) additive term in Equation (2) results from the use of a specific pseudorandom
generator construction with an rKt-style reconstruction property (as they need to upper bound
rKpoly by K), and such a generator has sub-optimal “advice complexity” in its reconstruction.
In our case, we need to upper bound pKpoly by K, and we can use a different pseudorandom
generator construction with a pKt-style reconstruction property that is known to have optimal
“advice complexity” (see Section 2.7). This results in only an O(log n) additive term instead of
O(log3 n) as in the previous case.

The description provided above does not address an important technical distinction between
showing Equation (1) and showing Equation (2) in [HIL+23]. In our case, we need to show Equa-
tion (1) over independent polynomial-time samplable distributions, whereas the other case involves
the simpler class of polynomial-time samplable samplable distributions. In fact, in the proof of
Equation (2), a crucial fact used is that the uniform mixture of two polynomial-time samplable
distributions is also polynomial-time samplable. Intuitively, the reason why this is needed is that
we need to obtain a function that can distinguish the output distribution of a pseudorandom gen-
erator (induced by a polynomial-time samplable distribution) and the uniform distribution (also
combined with a polynomial-time samplable distribution), so we need to apply an algorithm to
approximate Kolmogorov complexity over the mixture uniform of those two distributions.

However, in our case, we are dealing with independent polynomial-time samplable distribu-
tions, and the uniform mixture of two independent polynomial-time samplable distributions is not
necessarily independent polynomial-time samplable. The key insight here is that we don’t really
need to be concerned with the uniform mixture of two generic independently polynomial-time sam-
plable distributions. Instead, the two distributions have the property that they are identical when
restricted to the second half. We then show that the uniform mixture of such two distributions
remains independently polynomial-time samplable. (See the proofs of Lemma 59 and Lemma 63
for details.)

We now describe the proof of Theorem 7. Again, the direction of showing the tractability of
approximating conditional Kolmogorov complexity in the semi-worst case from NP ⊆ BPP can be
done in a way similar to that of Theorem 6 (as described earlier in this subsection). This is because

15

if NP ⊆ BPP, then one can estimate D(x | y) for every polynomial-time samplable distribution D
and (x, y) ∈ Support(D), a result due to [Sto85] (see also Lemma 27).

For the other direction, we will employ the same approach as used to to show Theorem 9. In this
case, we will use a similar characterization of NP ⊆ BPP through conditional coding. Specifically,
it has been shown in [HIL+23] that NP ⊆ BPP if and only if worst-case conditional coding for
pKpoly holds, i.e., for every polynomial-time samplable distribution D over {0, 1}n × {0, 1}n and
every (x, y) ∈ Support(D),

pKpoly(n)(x | y) ≲ log
1

D(x | y)
. (3)

Unfortunately, it is unclear how we can obtain the above worst-case conditional coding property
from the tractability of approximating conditional Kolmogorov complexity in the semi-worst case
by following the same approach. To overcome this, we observe that we can modify the original
proof in [HIL+23] to obtain a characterization of NP ⊆ BPP by semi-worst-case conditional coding,
which only requires Equation (3) to hold for almost all x ∼ D(· | y) and for all y ∈ {0, 1}n (see
Lemma 64).

By using this alternative characterization and addressing a similar issue that arises when tran-
sitioning from polynomial-time samplable distributions to semi-worst-case input distributions, as
described above in the case of showing Theorem 9, we can now use efficient algorithms for approxi-
mating conditional Kolmogorov complexity in the semi-worst case to obtain the desired semi-worst-
case conditional coding property, which then yields NP ⊆ BPP.

1.3 Open Problems

Can we show NP-hardness of computing conditional pKt in the polynomial-time regime? By
Corollary 4, this would imply that Pessiland does not exist. Are there any barriers to showing such
an NP-hardness result?

Theorem 9 characterizes the error-prone average-case easiness of NP (i.e., DistNP ⊆ HeurBPP)
by the tractability of approximating conditional Kolmogorov complexity over independent polynomial-
time samplable distributions. Can we obtain a similar characterization for the errorless average-case
easiness of NP (i.e., DistNP ⊆ AvgBPP)?

2 Preliminaries

2.1 Notation

We will primarily consider distributions supported over pairs of strings. Unless specified other-
wise, we use D = {Dn}n∈N to denote a family of polynomial-time samplable distributions9, where
each Dn is supported over {0, 1}n×{0, 1}n. We let PSamp be the collection of distribution families
that can be sampled in polynomial time. When n is clear from context, we might simply write D
instead of Dn. For y ∈ {0, 1}n, we denote by Dn(· | y) the conditional distribution of Dn on the
first half given that the second half is y. Also, we use D(2) to refer to the marginal distribution of
the second half of D.

We use Dn(x, y) to denote the probability that the pair (x, y) is sampled from Dn. Similarly,
Dn(x | y) denotes the probability that x is sampled from the conditional distribution Dn(· | y).

9Recall that D can be sampled in polynomial time if there is a polynomial-time algorithm Samp such that
Samp(1n, r) is distributed according to Dn when r is a uniformly random string of length poly(n).

16

2.2 Average-Case Complexity

Recall that a pair (L,D) is a distributional problem if L ⊆ {0, 1}∗ and D = {Dn}n∈N is a
distribution family, where each Dn is over {0, 1}∗.

We let DistNP denote the set of distributional problems (L,D) with L ∈ NP and D ∈ PSamp.
A distributional problem (L,D) is said to admit a (error-prone) heuristic scheme if there exists

a probabilistic polynomial-time algorithm A such that for every n, k ∈ N,

Pr
x∼Dn,A

[
A(x; 1n, 1k) ̸= L(x)

]
≤ 1/k.

We let HeurBPP denote the set of distributional problems that admit a heuristic scheme. For more
information about average-case complexity, we refer to [BT06].

Lemma 13 ([Imp95, Proposition 3]). If every distributional NP problem has a probabilistic polynomial-
time heuristic algorithm of failure probability at most n−2 over the choice of instances (where n is
an instance size), then DistNP ⊆ HeurBPP.

2.3 Kolmogorov Complexity

We recall the definition of Kolmogorov complexity.

Definition 14 (Kolmogorov Complexity). Let x, y ∈ {0, 1}∗. We define

K(x | y) = min
p∈{0,1}∗

{|p| | Uy(p) halts and outputs x.}

Here, U is a fixed time-optimal universal Turing machine and has oracle access to the string y.

Definition 15 (Time-Bounded Kolmogorov Complexity). Let x, y ∈ {0, 1}∗ and t ∈ N. The
t-time-bounded Kolmogorov complexity of x is defined as

Kt(x | y) = min
p∈{0,1}∗

{|p| | Uy(p) outputs x within t steps.}

We also need the following probabilistic variant of time-bounded Kolmogorov complexity.

Definition 16 ([GKLO22]). Let x, y ∈ {0, 1}∗, t ∈ N, and λ ∈ [0, 1]. The probabilistic t-time-
bounded Kolmogorov complexity of x given y is defined as

pKtλ(x | y) = min

{
k ∈ N

∣∣∣∣ Pr
r∼{0,1}t

[
∃ p ∈ {0, 1}k s.t. Uy(p, r) outputs x within t steps

]
≥ λ

}
.

We omit the subscript λ when λ = 2/3.

The following follows easily from the definition of pKt.

Proposition 17. For any sufficiently large x, y ∈ {0, 1}∗, any t ∈ N, and λ ∈ [0, 1],

Pr
r∼{0,1}poly(t)

[
Kpoly(t)(x | y, r) ≤ pKtλ(x | y) +O(log t)

]
≥ λ.

Theorem 18 (Coding Theorem). There exists a universal constant b > 0 such that for every com-
putable distribution family {En}n, where each En is over {0, 1}n, every n ∈ N and x ∈ Support(En),

K(x | En) ≤ log
1

En(x)
+ b · log n.

17

Lemma 19 (See, e.g., [HIL+23, Lemma 9]). There exists a universal constant b > 0 such that
for every distribution family {En}n, where each En is over {0, 1}n, and every {ym}m, where each
ym ∈ {0, 1}m,

Pr
x∼En

[
K(x | ym) < log

1

En(x)
− α

]
<
nb

2α
.

Lemma 20 ([GKLO22]). For any x, y ∈ {0, 1}∗ and time bound t ∈ N, we have

K(x | y, t) ≤ pKt(x | y) +O(log(|x| · |y|)).

Lemma 21 (Success Amplification [GKLO22]). For any x, y ∈ {0, 1}∗, time bound t ∈ N, and
0 ≤ α < β ≤ 1, we have

pK
O(qt/α)
β (x | y) ≤ pKtα(x | y) +O(log(q/α)),

where q = ln(1/(1− β)).

2.4 Cryptography

We recall the definitions of one-way functions and auxiliary-input one-way functions.

Definition 22 (One-Way Functions). A polynomial-time computable function f : {0, 1}∗ → {0, 1}∗
is said to be a one-way function if for every probabilistic polynomial-time algorithm A and poly-
nomial p, and for every sufficiently large n, we have

Pr
x∼{0,1}n

[f(A(1n, f(x))) = f(x)] <
1

p(n)
. (4)

Also, we say that f is an infinitely-often one-way function if for every probabilistic polynomial-time
algorithm A and polynomial p, there are infinitely many values of n such that Equation (4) holds.

Definition 23 (Auxiliary-Input One-Way Functions). Let s, ℓ be polynomials. We say that a
collection of functions

{
fz : {0, 1}s(|z|) → {0, 1}ℓ(|z|)

}
z∈{0,1}∗ is an auxiliary-input one-way function

if

1. fz is polynomial-time computable given z, and

2. for every probabilistic polynomial-time algorithm A and every polynomial p, there exist in-
finitely many z ∈ {0, 1}n such that

Pr
x∼{0,1}s(n),A

[fz(A(z, fz(x))) = fz(x)] <
1

p(n)
.

We will also need the notion of auxiliary-input pseudorandom generators.

Definition 24 (Auxiliary-Input Pseudorandom Generators). Let s, ℓ be polynomials such that
s(n) < ℓ(n). We say that

{
Gz : {0, 1}s(|z|) → {0, 1}ℓ(|z|)

}
z∈{0,1}∗ is an auxiliary-input pseudorandom

generator if

1. Gz is polynomial-time computable given z, and

18

2. for every probabilistic polynomial-time algorithm D and every polynomial p, there exist
infinitely many z ∈ {0, 1}n such that∣∣∣∣ Pr

r∼{0,1}s(n),D
[D(z,Gz(r)) = 1]− Pr

u∼{0,1}ℓ(n),D
[D(z, u) = 1]

∣∣∣∣ < 1

p(n)
.

It is well known in cryptography that the existence of auxiliary-input one-way functions and
auxiliary-input pseudorandom generators is equivalent [HILL99].

We also need the following technical theorem regarding inverting auxiliary-input one-way func-
tions and estimating the probability of P/poly-samplable distributions.

Theorem 25 (Following [IL90]. See also [Nan21, Lemma 15]). Suppose auxiliary-input one-way
functions do not exist. Let s be a polynomial and {Dn}n be a family distributions samplable by
a family of s-size circuits {Cn : {0, 1}s(n) → {0, 1}n}n. Let α, β ≥ 1 be constants. There exists a
probabilistic polynomial-time algorithm B such that for all n ∈ N,

Pr
z∼Dn,B

[
Dn(z)

β
≤ B(Cn, z) ≤ Dn(z)

]
≥ 1− 1

nα
.

2.5 Probability Distributions

Lemma 26 (Implicit in [HIL+23, Section 5.1]). Assume DistNP ⊆ HeurBPP. Then for ev-
ery independent polynomial-time samplable distribution family {Dn}n∈N, where each Dn is over
{0, 1}n ×{0, 1}n, and for every polynomial q, there exists a polynomial-time samplable distribution
family {D′

n}n∈N such that for every n ∈ N, L1(Dn,D′
n) ≤ 1/q(n).

Lemma 27 ([HIL+23, Lemma 49]). For every polynomial-time samplable distribution family {Dn}n,
where each Dn is over {0, 1}n × {0, 1}n, there exists a polynomial-time deterministic algorithm B
with access to a ΣP

2 -oracle such that for input (x, y) ∈ Support(Dn),

Dn(x | y)/2 ≤ B(x, y) ≤ 2 · Dn(x | y).

Theorem 28 ([IL90, IL89]. See also [IRS21, Theorem 20]). Assume infinitely-often one-way func-
tions do not exist. Let {Dℓ}ℓ be a family of polynomial-time samplable distributions, and let α ≥ 1
be any constant. There exists a probabilistic polynomial-time algorithm A such that for all ℓ,

Pr
z∼Dℓ,A

[
Dℓ(z)

2
≤ A(1ℓ, z) ≤ Dℓ(z)

]
≥ 1− 1

ℓα
,

2.6 Characterizations through Conditional Coding

We will make use of recently discovered characterizations of the (worst-case and average-case)
easiness of NP by the validity of conditional coding properties on probabilistic time-bounded Kol-
mogorov complexity [HIL+23].

Theorem 29 ([HIL+23]). The following are equivalent.

1. Infinitely-often one-way functions do not exist.

2. (Average-Case Conditional Coding) For every polynomial-time samplable distribution
family {D⟨n,m⟩}n,m supported over {0, 1}n × {0, 1}m and every polynomial q, there exists a
polynomial p such that for all n ∈ N,

Pr
(x,y)∼D⟨n,m⟩

[
pKp(n,m)(x | y) ≤ log

1

D⟨n,m⟩(x | y)
+ log p(n,m)

]
≥ 1− 1

q(n,m)
.

19

Theorem 30 ([HIL+23]). The following are equivalent.

1. DistNP ⊆ HeurBPP.

2. (Independent Average-Case Conditional Coding) For every independent polynomial-
time samplable distribution family {Dn}n∈N and every polynomial q, there exists a polynomial
p such that for all n ∈ N,

Pr
(x,y)∼Dn

[
pKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

q(n)
.

Theorem 31 ([HIL+23]). The following are equivalent.

1. NP ⊆ BPP.

2. (Worst-Case Conditional Coding) For every polynomial-time samplable distribution fam-
ily {Dn}n and every polynomial q, there exists a polynomial p such that for all n ∈ N and all
(x, y) ∈ Support(Dn),

pKp(n)(x | y) ≤ log
1

Dn(x | y)
+ log p(n).

2.7 Direct Product Generator

For x, z ∈ {0, 1}n, we let x · z :=
∑n

i=1 xizi (mod 2) denote their inner product modulo 2.

Definition 32 (Direct Product Generator [Hir21, Definiton 3.10]). For k, n ∈ N, we define the
k-wise direct product generator to be the function

DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k

such that
DPk(x; z

1, . . . , zk) := (z1, . . . , zk, x · z1, . . . , x · zk).

Lemma 33 (pKt Reconstruction Lemma [GKLO22]). For every ε > 0, x ∈ {0, 1}n, s ∈ N, and
k ∈ N satisfying k ≤ 2n, let D be a randomized algorithm that takes an advice string β and runs in
time tD such that D ε-distinguishes DPk(x;Unk) from Unk+k. Then there is a polynomial p

DP
such

that
pKÕ(tD)·p

DP
(n/ε)(x | β) ≤ k + log p

DP
(ntD/ε).

3 Characterizing Non-Existence of One-Way Functions by Average-
Case Easiness of Conditional pKt

In this section, we prove Theorem 1, which follows directly from Lemma 34 and Lemma 38,
stated and proved in the following two subsections.

20

3.1 Computing Conditional pKt from Inverting One-Way Functions

Lemma 34. (Item 1 =⇒ Item 2 in Theorem 1). If infinitely-often one-way functions do
not exist, then for every polynomial-time samplable distribution family {D⟨n,m⟩}n,m supported over
{0, 1}n×{0, 1}m, every polynomial q, and for all large enough constant c, there exists a probabilistic
polynomial-time algorithm A such that for all n,m, s ∈ N,

Pr
(x,y)∼D⟨n,m⟩

[A decides Cond-pK[τ] on (x, y, 1s)] ≥ 1− 1

q(n,m)
,

where τ(n,m) := nc ·mc.

The proof of Lemma 34 is inspired by a concurrent work [HKLO24], which extends a related
result of [LP23] on computing Kt to that of conditional Kt, assuming the non-existence of one-way
functions and an improved derandomization assumption.

We will need a few technical lemmas.

Lemma 35. If infinitely-often one-way functions do not exist, then for every polynomial-time sam-
plable distribution family {C⟨n,m⟩} supported over {0, 1}m, every polynomial q, and every constant
c > 1, there exists a probabilistic polynomial-time algorithm A such that for all n,m ∈ N, with prob-
ability at least 1− 1/q(n,m) over y ∼ C⟨n,m⟩, the internal randomness of A, and r ∼ {0, 1}τ(n,m),∑

x∈{0,1}n
2−Kτ(n,m)(x|y,r) · 1[A(x,y,r)=Kτ(n,m)(x|y,r)] ≤

1

q(n,m)
, (5)

where τ(n,m) := nc ·mc.

Proof. Let d > 0 be a constant so that Kt(x) ≤ n + d for every x ∈ {0, 1}n and t ≥ O(n). Let
τ := τ(n,m) = nc ·mc. Let S be the sampler for {C⟨n,m⟩} that uses u := poly(n,m) random bits.

Let f be a polynomial-time computable function defined as follows.

On input (ℓ,Π, r
S
, r), where ℓ ∈ {0, 1}log(n+d), Π ∈ {0, 1}n+d, r

S
∈ {0, 1}u, and r ∈

{0, 1}τ , we first obtain y := S(r). We then run Uy,r(Π[ℓ]) for τ steps and obtain a string
x. If x is of length n, we output (ℓ, x, y, r); otherwise output (ℓ, 0n, y, r).

Since we assume that infinitely-often one-way functions do not exist (which implies infinitely-often
weak one-way functions do not exist), there is a probabilistic polynomial-time algorithm A′ such
that for all n,m, k ∈ N, it holds that

Pr
[
A′(ℓ, x, y, r; rA) succeeds

]
≥ 1− 1

q2(n,m) · nb
,

where rA denotes the internal randomness of A, b > 0 is a constant specified later, (ℓ, x, y, r) is
sampled according to f , and “A′(ℓ, x, y, r) succeeds” means A′(ℓ, x, y, r) outputs a pre-image of
(ℓ, x, y, r).

By an averaging argument, we get that with probability at least 1− 1/q(n,m) over y ∼ C⟨n,m⟩
(i.e., over r

S
∼ {0, 1}u), rA , and r ∼ {0, 1}τ , it holds that

Pr
[
A′(ℓ, x, y, r; rA) succeeds

]
≥ 1− 1

q(n,m) · nb
, (6)

where the above probability is only over ℓ and x. In what follows, fix any good y, rA , and r such
that Equation (6) holds.

21

By a union bound, Equation (6) yields that for all ℓ ∈ {0, 1}log(n+d),

Pr
[
A′(ℓ, x, y, r) succeeds

]
≥ 1− n+ d

q(n,m) · nb
, (7)

where now the probability is over x.
Next, for any fixed ℓ, consider the following distribution D(ℓ,y,r):

1. Pick Π ∼ {0, 1}n+d.

2. Run Uy,r(Π[ℓ]) for τ steps and obtain a string x. If x is of length n, output (x); otherwise
output (0n).

Then Equation (7) implies that for all ℓ ∈ {0, 1}log(n+c),

Pr
x∼D(ℓ,y,r)

[
A′(ℓ, x, y, r; rA) fails

]
<

n+ d

q(n,m) · nb
. (8)

Now consider the following algorithm A:

On input (x, y, r; rA), output the smallest ℓ ∈ [n+ d] such that A′(ℓ, x, y, r, rA) returns
some (ℓ,Π, r

S
, r) for which y = S(r

S
) and Uy,r(Π[ℓ]) outputs x within τ steps.

We will show that for all good y, rA and r, the algorithm A satisfies the condition stated in
Equation (5). For the sake of contradiction, suppose there exists some good y, rA and r such that∑

x∈{0,1}n
2−Kτ(n,m)(x|y,r) · 1[A(x,y)=Kτ(n,m)(x|y,r)] ≤

1

q(n,m)
. (9)

Note that for every fixed ℓ, y, r, and for every x ∈ {0, 1}n with Kτ (x | y, r) = ℓ, D(ℓ,y,r) outputs x

with probability at least 2−Kτ (x|y,r). In other words, for every such x, we have

2−Kτ (x|y,r) ≤ D(ℓ,y,r)(x). (10)

Also, for every x ∈ {0, 1}n with Kt(x | y, r) = ℓ, if A(x, y, r; rA) ̸= ℓ, then it means A′(ℓ, x, y, r; rA)
fails. (To see this, consider the contrapositive.)

Then we have

1

q(n,m)
≤

∑
ℓ∈[n+d]

∑
x∈{0,1}n:

Kτ (x|y,r)=ℓ

2−Kτ (x|y,r) · 1[A(x, y, r; rA) ̸= Kτ (x | y, r)] (by Equation (9))

≤
∑
ℓ

∑
x:Kτ (x|y,r)=ℓ

D(ℓ,y,r)(x) · 1[A(x, y, r; rA) ̸= Kτ (x | y, r)] (by Equation (10))

≤
∑
ℓ

∑
x:Kτ (x|y,r)=ℓ

D(ℓ,y,r)(x) · 1[A′(ℓ, x, y, r; rA) fails].

By averaging, the above implies that there exists some ℓ such that∑
x:Kτ (x|y,r)=ℓ

D(ℓ,y,r)(x) · 1[A′(ℓ, x, y, r; rA) fails] ≥
1

(n+ c) · q(n,m)
,

which contradicts Equation (8) by letting b be a sufficiently large constant.

22

Lemma 36. If infinitely-often one-way functions do not exist, then for every polynomial-time
samplable distribution family {D⟨n,m⟩} supported over {0, 1}n × {0, 1}m, every polynomial q, there
exists a polynomial p such that for all n,m ∈ N, with probability at least 1 − 1/q(n,m) over

y ∼ D(2)
⟨n,m⟩ and r ∼ {0, 1}p(n,m),

Pr
x∼D⟨n,m⟩(·|y)

[
Kp(n,m)(x | y, r) ≤ log

1

D⟨n,m⟩(x | y)
+ log p(n,m)

]
≥ 1− 1

q(n,m)
,

where D(2)
⟨n,m⟩ denotes the marginal distribution of D⟨n,m⟩ on the second half.

Proof. Let {D⟨n,m⟩} be a family of polynomial-time samplable distribution, q be a polynomial. Fix
any n,m ∈ N and let p be a polynomial specified later.

By Theorem 29, we get that there exists a polynomial p′ such that

Pr
(x,y)∼D⟨n,m⟩

[
pKp

′(n,m)(x | y) ≤ log
1

D⟨n,m⟩(x | y)
+ log p′(n,m)

]
≥ 1− 1

q(n,m)4
. (11)

Also, by Lemma 21, we get that for all x ∈ {0, 1}n and y ∈ {0, 1}m,

pK
p′′(n,m)
1−1/q(n,m)4

(x | y) ≤ pKp
′(n,m)(x | y) +O(log q(n,m)), (12)

where p′′ is a sufficiently large polynomial.
Now note that by Proposition 17, we have that for all x ∈ {0, 1}n and y ∈ {0, 1}m,

Pr
r∼{0,1}p(n,m)

[
Kp(n,m)(x | y, r) ≤ pK

p′′(n,m)
1−1/q(n,m)4

(x | y) +O(log p′′(n,m))
]
≥ 1− 1

q(n,m)4
, (13)

provided that p is a sufficiently large polynomial.
By combining Equation (12) and Equation (13), we get that for all x ∈ {0, 1}n and y ∈ {0, 1}m,

Pr
r∼{0,1}p(n,m)

[
Kp(n,m)(x | y, r) ≤ pKp

′(n,m)(x | y) +O(log q(n,m) + log p′′(n,m))
]
≥ 1− 1

q(n,m)4
.

(14)
By a union bound, Equation (11) and Equation (14) imply that

Pr
(x,y)∼D⟨n,m⟩
r∼{0,1}p(n,m)

[
Kp(n,m)(x | y, r) ≤ log

1

D⟨n,m⟩(x | y)
+ log p′(n,m) +O(log q(n,m) + log p′′(n,m))

]

≥ 1− 1

q(n,m)2
.

Finally, by an averaging argument, the above yields that with probability at least 1 − 1/q(n,m)

over y ∼ D(2)
⟨n,m⟩ and r ∼ {0, 1}p(n,m),

Pr
x∼D⟨n,m⟩(·|y)

[
Kp(n,m)(x | y, r) ≤ log

1

D⟨n,m⟩(x | y)
+ log p(n,m)

]
≥ 1− 1

q(n,m)
,

again, provided that p is a sufficiently large polynomial. This completes the proof of the lemma.

Using Lemma 36 Lemma 35, we show the following.

23

Lemma 37. If infinitely-often one-way functions do not exist, then for every polynomial-time
samplable distribution family {D⟨n,m⟩}n,m supported over {0, 1}n × {0, 1}m, every polynomial q,
and for all large enough constant c, there exists a probabilistic polynomial-time algorithm B such
that for all n,m, s ∈ N,

Pr
(x,y)∼D⟨n,m⟩
r∼{0,1}τ(n,m)

[
B(x, y, r) = Kτ(n,m)(x | y, r)

]
≥ 1− 1

q(n,m)
.

Proof. Let {D⟨n,m⟩} be a polynomial-time samplable distribution family. Let {D(2)
⟨n,m⟩} be the family

of marginal distributions of {D⟨n,m⟩} on the second part. Note that {D(2)
⟨n,m⟩} is polynomial-time

samplable and is supported over {0, 1}m. Let q be a polynomial. Let c > 0 be a sufficiently large
constant to be specified later. Also, let τ(n,m) := nc ·mc.

First of all, by Lemma 36, there exists some polynomial p such that for all n,m ∈ N, with
probability at least 1− 1/q(n,m)2 over y ∼ D(2)

⟨n,m⟩ and r
′ ∼ {0, 1}p(n,m),

Pr
x∼D⟨n,m⟩(·|y)

[
Kp(n,m)(x | y, r′) ≤ log

1

D⟨n,m⟩(x | y)
+ log p(n,m)

]
≥ 1− 1

q(n,m)2
.

Note that by letting c be a sufficiently large constant (in particular, τ > p), the above implies that

with probability at least 1− 1/q(n,m)2 over y ∼ D(2)
⟨n,m⟩ and r ∼ {0, 1}τ(n,m),

Pr
x∼D⟨n,m⟩(·|y)

[
Kτ(n,m)(x | y, r) ≤ log

1

D⟨n,m⟩(x | y)
+O(log p(n,m))

]
≥ 1− 1

q(n,m)2
. (15)

Also, by Lemma 35, there exists a polynomial-time algorithm B such that for all n,m ∈ N,
with probability at least

1− 1

q(n,m)2 · p(n,m)b
≥ 1− 1

q(n,m)2

over y ∼ C⟨n,m⟩, r ∼ {0, 1}τ(n,m) and rB ∼ {0, 1}poly(n,m),∑
x∈{0,1}n

2−Kτ(n,m)(x|y,r) · 1[B(x,y,r;r
B
)=Kτ(n,m)(x|y,r)] ≤

1

q(n,m)2 · p(n,m)b
, (16)

where b > 0 is a constant specified later.
Consider any good y, r and rB such that both Equation (15) and Equation (16) hold. (Note

that y, r and rB are good with probability at least 1− 2/q(n,m)2.) We claim that

Pr
x∼D⟨n,m⟩(·|y)

[
B(x, y, r; rB) = Kτ(n,m)(x | y, r)

]
≥ 1− 1

2q(n,m)
. (17)

Suppose, for the sake of contradiction, Equation (17) is not true. Then for some good y, r and rB ,
we have

Pr
x∼D⟨n,m⟩(·|y)

[
B(x, y, r; rB) ̸= Kτ(n,m)(x | y, r)

]
>

1

2q(n,m)
. (18)

Let E(x) be the event that both the following hold.

• B(x, y, r; rB) ̸= Kτ(n,m)(x | y, r)

24

• Kτ(n,m)(x | y, r) ≤ log 1
D⟨n,m⟩(x|y)

+O(log p(n,m)).

Note that by Equation (18) and Equation (15), we get that∑
x∈{0,1}n

D⟨n,m⟩(x | y) · 1E(x) ≥ 1−
(
1− 1

2q(n,m)

)
− 1

q(n,m)2
≥ 1

4q(n,m)
. (19)

Also note that whenever E(x) holds, we have

D⟨n,m⟩(x | y) ≤ p(n,m)O(1)

2K
τ(n,m)(x|y,r)

. (20)

Now we have

1

4q(n,m)
≤

∑
x∈{0,1}n

D⟨n,m⟩(x | y) · 1E(x) (by Equation (19))

≤
∑

x∈{0,1}n

τ(n,m)

2K
p(n,m)O(1)

(x|y,r)
· 1E(x) (by Equation (20))

≤ p(n,m)O(1) ·
∑

x∈{0,1}n
2−Kτ(n,m)(x|y,r) · 1E(x)

≤ p(n,m)O(1) ·
∑

x∈{0,1}n
2−Kτ(n,m)(x|y,r) · 1[B(x,y,r;r

B
)̸=Kτ(n,m)(x|y,r)].

By rearranging, we get∑
x∈{0,1}n

2−Kτ(n,m)(x|y,r) · 1[B(x,y,r;r
B
)̸=Kτ(n,m)(x|y,r)] ≥

2

p(n,m)O(1) · 4 · q(n,m)
.

However, this contradicts Equation (16) by letting b be a sufficiently large constant.
Now we have concluded Equation (17). Note that this means, with probability at least 1 −

2/q(n,m)2 over y ∼ C⟨n,m⟩, r ∼ {0, 1}τ(n,m) and rB ∼ {0, 1}poly(n,m),

Pr
x∼D⟨n,m⟩(·|y)

[
B(x, y, r; rB) = Kτ(n,m)(x | y, r)

]
≥ 1− 1

2q(n,m)
.

By a union bound, we get

Pr
(x,y)∼D⟨n,m⟩
r∼{0,1}τ(n,m)

r
B

[
B(x, y, r; rB) = Kτ(n,m)(x | y, r)

]
≥ 1− 2

q(n,m)2
− 1

2q(n,m)
≥ 1− 1

q(n,m)
.

This completes the proof of Lemma 37.

We are now ready to show Lemma 34.

Proof of Lemma 34. Let {D⟨n,m⟩} be a polynomial-time samplable distribution family. Let c > 0
be any sufficiently large constant, and let τ(n,m) := nc ·mc.

By Lemma 37, there exists a probabilistic polynomial-time algorithm B such that for all
n,m, s ∈ N,

Pr
(x,y)∼D⟨n,m⟩
r∼{0,1}τ(n,m)

[
B(x, y, r) = Kτ(n,m)(x | y, r)

]
≥ 1− 1

q(n,m)2
.

25

By an averaging argument, we get that with probability at least 1 − 1/(2q(n,m)) over (x, y) ∼
D⟨n,m⟩,

Pr
r∼{0,1}τ(n,m),B

[
B(x, y, r) = Kτ(n,m)(x | y, r)

]
≥ 1− 2

q(n,m)
. (21)

Consider the following algorithm A.

On input (x, y, 1s), A picks r ∼ {0, 1}τ(n,m) and accepts if and only if B(x, y, r) ≤ s.

We now argue the correctness of A. Consider any good (x, y) such that Equation (21) holds. If

(x, y, 1s) is a YES instance of Cond-pK[τ], i.e., pK
τ(n,m)
2/3 (x | y) ≤ s, which means

Pr
r∼{0,1}τ(n,m)

[
Kτ(n,m)(x | y, r) ≤ s

]
≥ 2

3
. (22)

By combining Equation (22) and Equation (21), we get that

Pr
r∼{0,1}τ(n,m),B

[B(x, y, r) ≤ s] ≥ 1− 2

q(n,m)
− 1

3
≥ 3

5
. (23)

In this case , A(x, y, 1s) = 1 with probability at least 3/5.

Similarly, if (x, y, 1s) is a NO instance of Cond-pK[τ], i.e., pK
τ(n,m)
1/3 (x | y) > s, which means

Pr
r∼{0,1}τ(n,m)

[
Kτ(n,m)(x | y, r) > s

]
≥ 2

3
. (24)

By combining Equation (21) and Equation (24), we get that

Pr
r∼{0,1}τ(n,m),B

[B(x, y, r) > s] ≥ 3

5
. (25)

In this case, A(x, y, 1s) = 0 with probability at least 3/5.
The above implies that for every s, with probability at least 1−1/(2q(n,m)) over (x, y) ∼ D⟨n,m⟩,

A decides Cond-pK[τ] on (x, y, 1s). The lemma now follows by amplifying the success probability
of A using standard amplification techniques.

3.2 Inverting One-Way Functions from Computing Conditional pKt

Lemma 38. (Item 2 =⇒ Item 1 in Theorem 1). Suppose for every polynomial-time samplable
distribution family {D⟨n,m⟩}n,m supported over {0, 1}n × {0, 1}m, every polynomial q, and for all
large enough constant c, there exists a probabilistic polynomial-time algorithm A such that for all
n,m, s ∈ N,

Pr
(x,y)∼D⟨n,m⟩

[A decides Cond-pK[τ] on (x, y, 1s)] ≥ 1− 1

q(n,m)
,

where τ(n,m) := nc ·mc. Then infinitely-often one-way functions do not exist.

Proof Sketch. The proof is similar to that of Lemma 68, which uses ideas from that of Theorem 6,
as described in Section 1.2. If we have an efficient algorithm for computing (conditional) pKpoly

on average as specified in the assumption of the lemma, then we can construct a function that
distinguishes the output distribution of a cryptographic pseudorandom generator from the uniform
distribution, since the outputs of such a generator have low pKpoly complexity while a random
string has high pKpoly complexity. This then implies that infinitely-often one-way functions do not
exist.

26

3.3 Equivalences between Average-Case Easiness of Approximating and Com-
puting (Conditional) pKt

Theorem 5 (Informal). The following are equivalent.

1. Infinitely-often one-way functions do not exist.

2. Approximating pKt is easy-on-average over samplable distributions.

3. Approximating conditional pKt is easy-on-average over samplable distributions.

4. Computing pKt is easy-on-average over samplable distributions.

5. Computing conditional pKt is easy-on-average over samplable distributions.

Proof Sketch. It can be shown that each of last 4 items is equivalent to the non-existence of
infinitely-often one-way functions.

A result of [IRS22] characterized the non-existence of (infinitely-often) one-way functions by the
tractability of approximating Kolmogorov complexity over polynomial-time samplable distributions.
(See also Section 1.2 for an exposition of the proof in [IRS22].)

By employing ideas in its proof, one can easily show that the non-existence of infinitely-often
one-way functions is equivalent to both the first and second items.

More specifically, the proof in [IRS22] uses the coding theorem for time-unbounded Kolmogorov
complexity. To characterize the non-existence of one-way functions by the first item, one can instead
use the efficient coding theorem for pKt obtained by [LOZ22]. For the second item, one can also use
an average-case conditional coding theorem for pKt (Theorem 29), which can be obtained assuming
the non-existence of infinitely-often one-way functions.

The equivalence between the fourth item and the non-existence of infinitely-often one-way func-
tions was shown in [LP23].

For the last item, the equivalence is given by Theorem 1.

4 Characterizing DistNP ⊆ HeurBPP by Average-Case Easiness of
Conditional pKt in Sublinear-Time Regime

In this subsection, we prove Theorem 2. We first review the notion of secret sharing scheme
and some technical tools.

4.1 Technical Tools

Definition 39 (Access Structure. See also [Hir22, Definition 6.7]). An access structure A ⊆ 2[n]

is a monotone subset. i.e., for every S ∈ A, if T ⊇ S, we have T ∈ A. The minimum weight of an
access structure A is defined as w(A) := min{|T | | T ∈ A}.

Definition 40 (Secret Sharing Scheme. See also [Hir22, Definitions 6.8 and 6.10]). For a family
of access structure {Aψ}ψ∈{0,1}∗ , where each Aψ ⊆ 2[n], a secret sharing scheme for {Aψ} is a pair
(Share, Rec) of a polynomial-time randomized algorithm Share and a deterministic polynomial-time
algorithm Rec with the following properties. For every ψ and every ℓ ∈ N,

1. (Correctness.) For every T ∈ Aψ and every string x ∈ {0, 1}ℓ, Share(ψ, x) outputs a
sequence (y1, · · · , yn) of n strings and Rec(ψ, yT) = x, where yt := {(i, yi) | y ∈ T}.

27

2. (Privacy.) For every T ∈ Aψ and random variable X on {0, 1}ℓ, the random variable X and
Share(X)T are statistically independent.

Lemma 41 ([Hir22, Lemma 6.9]). Let {Aψ}ψ∈{0,1}∗ be a family of access structure, where each

Aψ ⊆ 2[n]. Let (Share, Rec) be a secret sharing scheme for {Aψ}. Then, for every ψ, ℓ, k ∈ N, and
z ∈ {0, 1}∗ it holds that

Pr
X∼{0,1}ℓ,Share

[
min
T ̸∈Aψ

K(X | Share(ψ,X)T , z) ≥ ℓ− n− k

]
≥ 1− 2−k.

For T ∈ [n], we identify T by its characteristic vector, which is the string x ∈ {0, 1}n such that
xi = 1 iff i ∈ T for all i ∈ [n].

Lemma 42 ([BL88]). Let {Aψ}ψ∈{0,1}∗ be a family of access structure, where each ψ is a monotone
formula on n variables and Aψ := {T ⊆ [n] | ψ(T) = 1}. Then {Aψ} admits a secret sharing scheme
(Share, Rec), where both Share and Rec have polynomial running time.

Definition 43 (Minimum Monotone Satisfying Assignment). For a monotone formula ψ on n
variables, the minimum monotone satisfying assignment, denoted by MMSA(ψ), is the minimum
hamming weight of an assignment α ∈ {0, 1}n such that ψ(α) = 1.

Note that for the family of access structure {Aψ} defined in Lemma 41, we have MMSA(ψ) =
w(Aψ) for every ψ.

Lemma 44 (NP-Hardness of GapMMSA [DS04, DHK15]. See also [Hir22, Lemma 6.13]). For

some function g(n) := n1/(log logn)
O(1)

, it is NP-hard to solved the following promise problem
GapgMMSA=(YES,NO):

YES := {(ψ, ζ) | MMSA(ψ) ≤ ζ},
NO := {(ψ, ζ) | MMSA(ψ) > g(|ψ|) · ζ}.

In other words, for the family of access structure {Aψ} defined in Lemma 41, it is NP-hard to
approximate w(Aψ), the minimum weight of Aψ.

4.2 NP-Hardness of Computing Conditional pKt in Sublinear-Time Regime

In this subsection, we prove the following lemma which says that one can reduce the problem
of GapMMSA to that of computing conditional pKt in the “sublinear-time” regime.

Lemma 45. For any constant κ ≥ 1, there exists a randomized polynomial-time algorithm R such
that the following holds for every monotone formula ψ on n variables, ζ ∈ [n], and m ∈ N.

1. R(ψ, ζ, 1m) outputs (x, y, 1ρ), where |x| = |ψ|15κ, |y| = m, and ρ ≤ O(|x|).

2. For every constant c > 1, there exists a constant c′ > c such that if m = |ψ|c′κ and ψ is

sufficiently large, then the following hold for τ(a, b) := ac · b1−1/c, and g(z) := z1/(log log z)
O(1)

is the function in Lemma 44.

• (Completeness.) If MMSA(ψ) ≤ ζ, then with probability 1 over (x, y, 1ρ) ∼ R(ψ, ζ, 1m),

pK
τ(|x|,|y|)
2/3 (x | y) ≤ ρ.

• (Soundness.) If MMSA(ψ) > g(|ψ|) · ζ, then with probability at least 1 − |ψ|−κ over

(x, y, 1ρ) ∼ R(ψ, ζ, 1m), pK
τ(|x|,|y|)
1/3 (x | y) > ρ.

28

The rest of this subsection is devoted to prove Lemma 45. The proof is an adaptation of that of
[Hir22, Theorem 6.6], which showed the NP-hardness of computing (“sublinear-time”) conditional
Kt. However, it requires some crucial modifications both to address the more complex notion of
pKt and to be used to showing Theorem 2. We present the detail for completeness.

We assume without loss of generality that n ≤ |ψ| Let κ > 1 be any constant and let τ(n,m) :=
ac · b1−1/c. We first describe the algorithm R.

The Algorithm R. Fix a monotone formula ψ on n variables, ζ ∈ [n] and m ∈ N.
The procedure involves D := |ψ|5κ iterations. At the i-th iteration, where i ∈ [D], the following

is performed.

1. Pick xi ∼ {0, 1}ℓ, where ℓ := |ψ|10κ.

2. Compute (si1, . . . , s
i
n) := Share(ψ, x), where sij ∈ {0, 1}h for each j ∈ [n] and h = poly(|ψ|).

3. Find λ, if exists, such that m = 2λ · h ·D. Also, let m′ := 2λ · h.

4. Pick ki1, . . . , k
i
n ∼ {0, 1}λ.

5. Let yi ∈ {0, 1}m′
be viewed as a function yi : {0, 1}λ → {0, 1}h and define yi(q) = si if q = kij

and yi(q) = 0h otherwise.

6. Let ki := (ki1, . . . , k
i
n) and s

i := (si1, . . . , s
i
n).

After we finish D iterations and obtain (x1, y1, k1, s1), . . . , (xD, yD, kD, sD), let x := (x1, . . . , xD),
y := (y1, . . . , yD). The output of R(ψ, ζ, 1m) is (x, y, 1ρ), where ρ := 2λDζ.

It is easy to verify the the first item in Lemma 45. Next, we show the second item by a sequence
of lemma.

Let c > 1 be any constant, and let m = 2λ · h ·D for some λ = E · c2 · κ · log |ψ|, where E > 0 is
a constant specified later.

Let k := (kdi | d ∈ [D], i ∈ [n]) and s := (sdi | d ∈ [D], i ∈ [n]).
We first need to make sure that the string y output by R(ψ, ζ, 1m) is well-defined in the sense

that k is pair-wise distinct with high probability.

Lemma 46. With probability at least 1 − |ψ|−2κ, k is pair-wise distinct in which case y is well
defined.

Proof. For any d ∈ [D], any i, j ∈ [n] with i ̸= j, the probability that kdi = kdj is at most 2−κ. By a
union bound over all d ∈ [d] and i, j ∈ [n] with i ̸= j, the probability that k is not pair-wise distinct
is at most D · n2 · 2−λ ≤ |ψ|2κ, by letting the constant E be sufficiently large.

In what follows, we will implicitly assume that Lemma 46 holds. We proceed to show the
completeness and soundness of the algorithm R.

Completeness. The completeness of the algorithm R is given by the following lemma.

Lemma 47. If w(Aψ) ≤ ζ, then pKt(x | y) ≤ ρ, with probability 1 over (x, y, 1ρ) ∼ R(ψ, ζ, 1m).

Proof. The proof is essentially the same as that of [Hir22, Claim 6.19].
Let T ∈ Aψ be a minimum authorized set of parties. Note that |T | = w(Aψ). Consider the

following program M :

29

My first takes T and {kdi | i ∈ T, d ∈ [D]}, and then obtain sdT for every d ∈ [D] by
queering y. Then it takes ψ and runs Rec(ψ, sdT) to obtain xd for every d ∈ [D].

This machine can be described using

(T · log n) + (D · |T | · λ+ |ψ|) +O(logD) ≤ 2λDζ = ρ.

The above implies that
pKt(x | y) ≤ Kt(x | y) ≤ ρ,

where t := |ψ|O(κ) · log(m). Note that we have

τ(|x|, |y|) = |x|c · |y|1−1/c

≥ m1−1/c

≥ |ψ|E·c·κ·(1−1/c)

≥ t,

where the last inequality holds since c > 1 and by letting E be a sufficiently large constant.
Therefore, we get that pKτ(|x|,|y|) ≤ ρ, as desired.

Soundness. We now show the soundness of R, by showing the following.

Lemma 48. If w(Aψ) ≥ g(|ψ|) · ζ, where g(z) := z1/(log log z)
O(1)

is the function in Lemma 44, then

pK
τ(|x|,|y|)
1/3 (x | y) > ρ,

with probability at least 1− 2 · |ψ|−2κ over (x, y, 1ρ) ∼ R(ψ, ζ, 1m).

Proof. Let τ := τ(|x|, |y|).
We first state the condition under which the statement of Lemma 48 holds. This will be given

by the following two claims.

Claim 49. With probability at least 1− |ψ|−2κ over the internal randomness of R, we have

Pr
w∼{0,1}τ

[K(k | s, w) ≥ nDλ− 4κ log |ψ|] ≥ 1− o(1). (26)

Proof of Claim 49. Note that in the algorithm R, k is chosen uniform from {0, 1}nDλ, independent
of s. Then for every fixed w ∈ {0, 1}τ and s sampled by R, we have

Pr
k
[K(k | w, s) ≥ nDλ− 4κ log |ψ|] ≥ 1− 1

|ψ|4κ
.

This implies

Pr
w∼{0,1}τ ,s,k

[K(k | w, s) ≥ nDλ− 4κ log |ψ|] ≥ 1− 1

|ψ|4κ
.

By averaging, we have that with probability at least 1 − |ψ|−2κ over k and s sampled by the
algorithm R, it holds that

Pr
w∼{0,1}τ

[K(k | s, w) ≥ nDλ− 4κ log |ψ|] ≥ 1− |ψ|−2κ,

as desired. ⋄

30

For T ⊆ [n] and V ⊆ [D], we define sVT :=
{
sd

′
i | i ∈ T, d′ ∈ V

}
.

Claim 50. With probability at least 1− |ψ|−2κ over the internal randomness of R, it holds that

Pr
w∼{0,1}τ

[
∀ T ̸∈ Aψ, d ∈ [D],K

(
xd | sdT , s

[D]\{d}
[n] , k, w

)
≥ ℓ− n− 3 logD

]
≥ 1− o(1). (27)

Proof of Claim 50. The proof follows closely to that of [Hir22, Claim 6.21].
Fix d ∈ [D]. Note that with respect tot the algorithm R, the random variable xd is independent

of s
[D]\{d}
[n] and k. Also, sd = Share(ψ, xd). Then by Lemma 41, we get that for every fixed s

[D]\{d}
[n] ,

k sampled by R and w ∈ {0, 1}τ ,

Pr
xd,sdT

[
∀ T ̸∈ Aψ,K

(
xd | sdT , s

[D]\{d}
[n] , k, w

)
≥ ℓ− n− 3 logD

]
≥ 1− 1

D3
.

By union bounding all d ∈ [D], the above implies that

Pr
xd,sdT ,s

[D]\{d}
[n]

,k,w∼{0,1}τ

[
∀ T ̸∈ Aψ, d ∈ [D],K

(
xd | sdT , s

[D]\{d}
[n] , k, w

)
≥ ℓ− n− 3 logD

]
≥ 1− 1

D2

By averaging, we have that with probability at least 1 −D over xd, sdT , s
[D]\{d}
[n] , k sampled by the

algorithm R, it holds that

Pr
w∼{0,1}τ

[
∀ T ̸∈ Aψ, d ∈ [D],K

(
xd | sdT , s

[D]\{d}
[n] , k, w

)
≥ ℓ− n− 3 logD

]
≥ 1− 1

D
,

as desired. ⋄

Let us assume that both Equation (26) and Equation (27) hold, which happens with probability
at least 1− 2 · |ψ|−2κ.

Suppose w(Aψ) ≥ g(|ψ|) · ζ, and for the sake of contradiction, suppose pKτ1/3(x | y) < ρ. This
means with probability at least 1/3 over w ∼ {0, 1}τ , there is a machine M0 of size at most ρ such
that My

0 (w) runs in time τ and outputs x. Let w ∈ {0, 1}τ be such that all of the following hold.

• There exists a machine M of size at most ρ+O(log ℓ) such that for every d ∈ [D], My(d;w)
runs in time 2τ and outputs xd. Note that such a machine can be obtained from M0.

• It holds that
K(k | s, w) ≥ nDλ− 4κ log |ψ|. (28)

• For every T ̸∈ Aψ and every d ∈ [D],

K
(
xd | sdT , s

[D]\{d}
[n] , k, w

)
≥ ℓ− n− 3 logD. (29)

Note that such a w exists since both Equation (26) and Equation (27) hold.
For d ∈ [D], let T (d) be the set of i ∈ [n] such that My(d;w) queries yd(kdi) during its compu-

tation. We claim the following.

Claim 51. There exists some d ∈ [D] such that T (d) ̸∈ Aψ.

31

Proof of Claim 51. Let α :=
∑

d∈[D] T (d). We first observe that

Kw(k | s) ≤ |M |+ (nD − α) · λ+ α(log 2τ + log nD) +O(log nD). (30)

To show this, the idea is to learn k by simulating the program M . More specifically, for every d
and i ∈ T (d), there exists a time step ti,d ∈ [2τ] such that My(−;w) makes a query kdi to y on
input d. Then to recover k given s, we will first explicitly describe those kdi that My(−;w) would
not query on any input d, which is the set

Q := {kdi ∈ {0, 1}λ | (i, d) ∈ [n]× [D], i ̸∈ T (d)}.

Note that this set can be described using a string of length at most

(nD − α) · λ+O(log nD).

Next, for every d, we keep track of the all the time steps ti,d at which My(−;w) queries yd(kdi) on
input d, which yields

R := {(i, d, ti,d) ∈ [n]× [D]× [2τ] | i ∈ T (d)}.

Note that this set can be encoded using a string of length at most

α · (log 2τ + log nD) +O(log nD).

Then given s, we can recover k as follows. For every d ∈ [D], we simulate My(d;w). At some time
step ti,d such that (i, d, ti,d) ∈ R, My(d;w) makes a query kdi , we retrieve this query and answer it
with sdi . By continuing this simulation for 2τ steps, and we will eventually learn all the kdi that are
not in Q. This concludes Equation (30).

By combining Equation (28) and Equation (30), we get

nDλ− 4κ log |ψ| ≤ |M |+ (nD − α) · λ+ α · (log 2τ + log nD) +O(log nD).

By rearranging and simplifying, we get

(λ− log τ − log nD − 1) · α ≤ |M |+O(log nD) (31)

Fist of all, note that

τ = |x|c · |y|1−1/c

= |ψ|15·c·κ ·m1−1/c

= |ψ|15·c·κ · (2λ · h ·D)1−1/c

≤ 2(1−1/c)·λ · |ψ|O(c·κ).

Consider the left hand side of Equation (31), we have

λ− log τ − log nD − 1 = λ− ((1− 1/c) · λ+O(c · κ · log |ψ|))− log nD − 1

≥ λ/c−O(c · κ · log |ψ|)
≥ λ/(2c), (32)

where the last inequality holds if we choose E to be a sufficiently large constant as λ = E·c2·κ log |ψ|.

32

Consider the right hand side of Equation (31), we have

|M |+O(log nD) = ρ+O(log ℓ) +O(κ · log |ψ|)
≤ 2λDζ +O(κ · log |ψ|)
≤ 3λDζ. (33)

Substitute Equation (32) and Equation (33) to Equation (31), we get

α ≤ 2c

λ
· 3λDζ

≤ 6c ·D · ζ

≤ 6c ·D ·
w(Aψ)

g(|ψ|)
< D · w(Aψ).

Where the last inequality holds if ψ is sufficiently large (go that g(|ψ| > 6c)).
By averaging, this means that there exists some d ∈ [D] such that |T (d)| ≤ w(Aψ) and hence

for such d, we have T (d) ̸∈ Aψ, as desired. ⋄

Now by Claim 51 and Equation (29), we get that for some d ∈ [D] and T (d) ̸∈ Aψ,

K
(
xd | sdT (d), s

[D]\{d}
[n] , k, w

)
≥ ℓ− n− 3 logD. (34)

Finally, we show the following claim which will give a contradiction.

Claim 52. For every d ∈ [D], it holds that

K
(
xd | sdT (d), s

[D]\{d}
[n] , k, w

)
≤ |M |+O(logD). (35)

Proof of Claim 52. The proof follows closely to that of [Hir22, Claim 6.23].
Note that My(d;w) outputs xd. Also, My(d;w) does not make any query in {kdi | i ̸∈ T (d)}.

In other words, My(d;w) only makes queries in {kdi | i ∈ T (d)} and in {kd′i | d′ ∈ [D]\{d}, i ∈ [n]}.
For the former, the answers can be obtained from sdT (d) and k, and for the latter, the answers can

be obtained from s
[D]\{d}
[n] and k. Therefore, given sdT (d), s

[D]\{d}
[n] , k, w, d and M , we can simulate

My(d;w) and recover xd. ⋄

Note that from Equation (33), we have |M |+O(logD) ≤ 4λDζ ≤ 4λDn. Then By combining
Equation (34) and Equation (35), we get

ℓ− n− 3 logD ≤ 4λDn.

However, this gives a contradiction by our setting of ℓ, λ and D (provided that ψ is sufficiently
large). This completes the proof of Lemma 48.

4.3 Proof of Theorem 2

In this subsection, we prove Theorem 2, which directly follows from Lemma 53 and Lemma 54,
stated and proved below.

33

Lemma 53. (Item 1 =⇒ Item 2 in Theorem 2). If DistNP ⊆ HeurBPP, then for every
polynomial-time samplable distribution family {D⟨n,m⟩}n,m supported over {0, 1}n × {0, 1}m, ev-
ery polynomial q, and for all large enough constant c, there exists a probabilistic polynomial-time
algorithm A such that for all n,m, s ∈ N,

Pr
(x,y)∼D⟨n,m⟩

[A decides Cond-pK[τ] on (x, y, 1s)] ≥ 1− 1

q(n,m)
,

where τ(n,m) := nc ·m1−1/c.

Proof. Fix a polynomial-time samplable distribution family {D⟨n,m⟩}n,m and a polynomial q. Let
c > 0 be any constant and let τ be defined as τ(n,m) := nc ·mc

We define the following language L ∈ NP.

L :=
{
(x, y, w, 1s) | |w| = |x|c · |y|c and ∃M ∈ {0, 1}≤s s.t. Uw,y(M) outputs x within |w| steps.

}
We then define the following polynomial-time samplable distribution family {D′

⟨n,m,s⟩}, where each
D′

⟨n,m,s⟩ is given by the following sampling procedure.

1. Sample (x, y) ∼ D⟨n,m⟩.

2. Sample w ∼ {0, 1}nc·mc .

3. Output (x, y, w, 1s).

By assumption, the distributional
(
L, {D′

⟨n,m,s⟩}
)

⊆ HeurBPP. That is, there is a probabilistic

polynomial-time algorithm B such that for all n,m, s ∈ N,

Pr
(x,y,w,1s)∼D′

⟨n,m,s⟩

[B(x, y, w, 1s) = L(x, y, w, 1s)] ≥ 1− 1

q(n,m)4
,

which, by the definition of D′ and an averaging argument,

Pr
(x,y)∼D⟨n,m⟩

[
Pr

w∼{0,1}(nm)c
[B(x, y, w, 1s) = L(x, y, w, 1s)] ≥ 1− 1

q(n,m)2

]
≥ 1− 1

q(n,m)2
.

Consider any (x, y) such that the following holds.

Pr
w
[B(x, y, w, 1s) = L(x, y, w, 1s)] ≥ 1− 1

q(n,m)2
. (36)

Note that Equation (36) holds with probability at least 1− 1/q(n,m)2 over (x, y) ∼ D⟨n,m⟩.

Suppose pK
τ(n,m)
2/3 (x | y) ≤ s. Then by the definition of L, we have that L(x, y, w, 1s) = 1 with

probability at least 2/3 over w ∼ {0, 1}(nm)c , which means B(x, y, w, 1s) = 1 with probability at
least 2/3− 1/q(n,m) ≥ 3/5 over w ∼ {0, 1}(nm)c .

Suppose pK
τ(n,m)
1/3 (x | y) > s. Again, by the definition of L, we have that L(x, y, w, 1s) = 1 with

probability less than 1/3 over w ∼ {0, 1}(nm)c , which means B(x, y, w, 1s) = 0 with probability at
least 2/3− 1/q(n,m) ≥ 3/5 over w ∼ {0, 1}(nm)c .

Let A′ be the algorithm defined as A′(x, y, 1s) := B(x, y, U|x|c·|y|c , 1
s). We get that for all n,m, s,

Pr
A′

[A decides Cond-pK[τ] on (x, y, 1s)] ≥ 3

5
.

34

Using standard amplification techniques, we can obtain from A′ a polynomial-time algorithm A
such that

Pr
A
[A decides Cond-pK[τ] on (x, y, 1s)] ≥ 1− 1

q(n,m)2
. (37)

In other words, with probability at least 1− 1/q(n,m)2 over (x, y) ∼ D⟨n,m⟩, we get Equation (37).
This completes the proof.

Lemma 54. (Item 2 =⇒ Item 1 in Theorem 2). Suppose for every polynomial-time samplable
distribution family {D⟨n,m⟩}n,m supported over {0, 1}n × {0, 1}m, every polynomial q, and for all
large enough constant c, there exists a probabilistic polynomial-time algorithm A such that for all
n,m, s ∈ N,

Pr
(x,y)∼D⟨n,m⟩

[A decides Cond-pK[τ] on (x, y, 1s)] ≥ 1− 1

q(n,m)
,

where τ(n,m) := nc ·m1−1/c. Then DistNP ⊆ HeurBPP.

Proof. Let L ∈ NP, {Cv}v be a polynomial-time samplable distribution family, and β ≥ 2 be a
constant.

Fix v, we will show how to solve L in polynomial time with probability at least 1 − v−β over
Cv. Then the lemma follows from Lemma 13.

Let R0 be a reduction from L to Gapg-MMSA, where g is the function in Lemma 44. That is,

for every instance z ∈ {0, 1}v, R0 maps z to (ψ, ζ), where ψ ∈ {0, 1}v′:=poly(v) and ζ ∈ {0, 1}log v′ ,
such that

• if z ∈ L, then w(Aψ) ≤ ζ and

• if z ∈ L, then w(Aψ) ≤ g(|ψ|) · ζ, where g(v′) := (v′)1/(log log z)
O(1)

.

Let R be the randomized algorithm in Lemma 45 instantiated with κ := 4β. Denote by n′(v)
the length of the first part of the output of R(R0(z),−), where z ∈ {0, 1}v.

Define the following polynomial-time samplable distribution family {D⟨n,m⟩}n,m where each

D⟨n,m⟩ is defined by sampling procedure as follows. Given 1⟨n,m⟩, the following is performed.

1. Find v such that n′(v) = n.

2. Sample z ∼ Cv.

3. Compute (x, y, 1ρ) := R(R0(z), 1
m).

4. Output (x, y) ∈ {0, 1}n × {0, 1}m.

By the assumption of the lemma, there exist a constant c > 1 and a probabilistic polynomial-
time algorithm A such that for all n,m, s ∈ N,

Pr
(x,y)∼D⟨n,m⟩

[A decides Cond-pK[τ] on (x, y, 1s)] ≥ 1− 1

(nm)4β
,

where τ(n,m) := nc ·m1−1/c. Also, by a union bound, we have

Pr
(x,y)∼D⟨n,m⟩

[∀s ≤ O(|x|), A decides Cond-pK[τ] on (x, y, 1s)] ≥ 1− O(n)

(nm)4β
. (38)

35

Now consider when n := n′(v), and m := |v′|c′·4β, where c′ > c is the constant such that both
the completeness and soundness conditions stated in the second item of Lemma 45 hold.

Note that by Equation (38) and the definition of by the distribution of D⟨n,m⟩, we obtain

Pr
z∼Cv

(x,y,1ρ)∼R(R0(z),1m)

[A decides Cond-pK[τ] on (x, y, 1ρ)] ≥ 1− O(n)

(nm)4β
.

Also, by averaging, the above yields that with probability at least

1− O(n)

(nm)2β
≥ 1− v−2β

over z ∼ Cv, it holds that

Pr
(x,y,1ρ)∼R(R0(z),1m)

[A decides Cond-pK[τ] on (x, y, 1ρ)] ≥ 1− 1

(nm)2β
. (39)

Now consider any z ∈ {0, 1}v such that Equation (39) holds.
Suppose z ∈ L. Then we get that (ψ, ζ) = R0(z) is a positive instance of Gapg-MMSA, where

g is the function in Lemma 44. This means w(Aψ) ≤ ζ. By the completeness condition of the

algorithm R, as described in the second item in Lemma 45, we get that pKτ(n,m)(x | y) ≤ ρ.
Similarly, if z ̸∈ L, then with probability at least 1 − |v|−4β over (x, y, 1ρ) ∼ R(R0(z), 1

m),
pKτ(n,m)(x | y) > ρ.

In particular, by Equation (39) and a union bound, the above implies that

Pr
(x,y,1ρ)∼R(R0(z),1m)

[A(x, y, 1ρ) = L(z)] ≥ 1− 1

(nm)2β
− 1

|v|4β
≥ 1− 1

v2β
.

Consequently, the following algorithm A′(z) := A(R(R0(z), 1
m)), where m is the correct number

so that the argument above holds (note that m can be efficiently obtained from the length of z),
computes L with probability at least 1− v−β over z ∼ Cv and over the internal randomness of A′.
This completes the proof.

4.4 Excluding Pessiland via NP-Hardness of Computing Conditional pKt

Corollary 55. Suppose there exists an NP-hard problem L such that for every constant κ ≥ 1, there
is a randomized polynomial-time reduction R such that for all polynomial τ , there exist polynomials
n,m : N → N such that for every instance z of L, R(z, 1⟨n(|z|),m(|z|)⟩) outputs (x, y, 1s), where
|x| = n(|z|) and |y| = m(|z|), and with probability at least 1− |z|−κ,

• if z ∈ L, then pK
τ(|x|,|y|)
2/3 (x | y) ≤ s, and

• if z ̸∈ L, then pK
τ(|x|,|y|)
1/3 (x | y) > s.

Then Pessiland does not exist (i.e., DistNP ̸⊆ HeurBPP implies the non-existence of infinitely-often
one-way functions).

Proof Sketch. If computing pKt in the polynomial-time regime is NP-hard, in the sense that there
exist an NP-hard problem L and a randomized polynomial-time reduction R as specified in the
corollary, then using ideas from the proof of Lemma 54, it can be shown that the average-case
easiness of computing pKt over polynomial-time samplable distributions allows us to solve NP on

36

average over any samplable distribution D, and hence DistNP ⊆ HeurBPP. More precisely, this is
done by composing D with the reduction R to obtain a new distribution D′ and then solving the
problem of computing pKt (in the polynomial-time regime) over D′.

Then by Theorem 1, the non-existence of infinitely-often one-way functions, which implies the
average-case easiness of computing pKt over polynomial-time samplable distributions, will also
imply DistNP ⊆ HeurBPP.

5 Characterizing DistNP ⊆ HeurBPP by Approximating Kolmogorov
Complexity

In this section, we prove the following theorem which yields Theorem 9.

Theorem 56. The following are equivalent.

1. DistNP ⊆ HeurBPP.

2. For every independent polynomial-time samplable distribution family {Dn}n and every poly-
nomial q, there exist a probabilistic polynomial-time algorithm A and a polynomial p such that
for all n ∈ N,

Pr
(x,y)∼Dn

[K(x | y) ≤ A(x, y) ≤ K(x | y) + log p(n)] ≥ 1− 1

q(n)
.

3. For every independent polynomial-time samplable distribution family {Dn}n and every poly-
nomial q, there exist a probabilistic polynomial-time algorithm A and a polynomial p such that
for all n ∈ N,

Pr
(x,y)∼Dn

[K(x, y) ≤ A(x, y) ≤ K(x, y) + log p(n)] ≥ 1− 1

q(n)
.

Proof. The equivalence of Item 1 and Item 2 follows from Lemma 57 and Lemma 58, stated and
proved in Section 5.1 and Section 5.2 respectively.

The equivalence of Item 2 and Item 3 follows from Lemma 61, which is proved in Section 5.3.

5.1 Approximating Kolmogorov Complexity from Average-Case Easiness of NP

Lemma 57. If DistNP ⊆ HeurBPP, then Item 2 of Theorem 9 is true, i.e., for every indepen-
dent polynomial-time samplable distribution family {Dn}n and every polynomial q, there exist a
probabilistic polynomial-time algorithm A and a polynomial p such that for all n ∈ N,

Pr
(x,y)∼Dn

[K(x | y) ≤ A(x, y) ≤ K(x | y) + log p(n)] ≥ 1− 1

q(n)
.

Proof. Let {Dn}n be any independent polynomial-time samplable distribution family and q be any
polynomial. By Lemma 26, there is a polynomial-time samplable distribution family {D′

n}n∈N such
that for every n ∈ N,

L1(Dn,D′
n) ≤

1

2q(n)
. (40)

37

Also, DistNP ⊆ HeurBPP implies that infinitely-often one-way functions do not exist. Then by
Theorem 6, there exist a probabilistic polynomial-time algorithm A and a polynomial p such that
for all n ∈ N,

1− 1

2q(n)
≤ Pr

(x,y)∼D′
n

[K(x | y) ≤ A(x, y) ≤ K(x | y) + log p(n)]

≤ Pr
(x,y)∼Dn

[K(x | y) ≤ A(x, y) ≤ K(x | y) + log p(n)] +
1

2q(n)
,

where the second inequality follows from Equation (40). The lemma follows by rearranging the
above inequality.

5.2 Average-Case Easiness of NP from Approximating Kolmogorov Complexity

Lemma 58. Suppose Item 2 of Theorem 9 is true, i.e., for every independent polynomial-time
samplable distribution family {Dn}n and every polynomial q, there exist a probabilistic polynomial-
time algorithm A and a polynomial p such that for all n ∈ N,

Pr
(x,y)∼Dn

[K(x | y) ≤ A(x, y) ≤ K(x | y) + log p(n)] ≥ 1− 1

q(n)
.

Then DistNP ⊆ HeurBPP.

We first show the following technical lemma.

Lemma 59. If Item 2 of Theorem 9 is true, then for every independent polynomial-time samplable
distribution family {Dn}n and for every polynomial q, there exists a polynomial p such that for all
n ∈ N,

Pr
(x,y)∼Dn

[
pKp(n)(x | y) ≤ K(x | y) + log p(n)

]
≥ 1− 1

q(n)
.

Proof. Let D := {Dn}n be any independent polynomial-time samplable distribution family, and
let A and B be the pair of distribution families that witness the independent polynomial-time
samplability of D. Let q be any polynomial.

Let E ′ be the following distribution:

Sample (x, y) ∼ Dn, k ∼ [2n], z ∼ {0, 1}nk, and output (DPk(x; z), y).

Similarly, let E ′′ be the following distribution:

Sample (x, y) ∼ Dn, k ∼ [2n], w ∼ {0, 1}nk+k, and output (w, y).

We claim the following.

Claim 60. There is an independent polynomial-time samplable distribution10 E such that for every
(α, y),

1. E(α, y) ≥ E ′(α, y)/2, and

2. E(α, y) ≥ E ′′(α, y)/2.

10By padding, we can ensure that each of E ′, E ′′ and E always outputs strings of the same length. This will not
affect the correctness of the argument. We omit this technicality for simplicity of presentation.

38

Proof of Claim 60. First note that the independent polynomial-time samplability of D is witnessed
by the pair of distributions A and B. That is, sampling (x, y) ∼ Dn is equivalent to first sampling
y ∼ An and then x ∼ Bn(· | y).

We now define the distribution family E , where each En is given by the following sampling
procedure.

We first sample y ∼ An and then sample v ∼ Fn(· | y), where Fn is the following
polynomial-time samplable distribution:

1. sample (x, y) ∼ Bn, k ∼ [2n], z ∼ {0, 1}nk and w ∼ {0, 1}nk+k;
2. with probability 1/2, output (DPk(x; z), y) and with probability 1/2, output (w, y).

Finally, we output (v, y).

It is easy to see that E is independent polynomial-time samplable (witnessed by A and F). To see
the two conditions stated in the claim, note that En can be equivalently sampled as follows:

We first sample y ∼ An and then sample x ∼ Bn(· | y) (which is the same as sampling
(x, y) ∼ Dn in the first step of sampling E ′ and E ′). We then sample k ∼ [2n]. Fi-
nally, with probability 1/2, we sample z ∼ {0, 1}nk and output (DPk(x; z), y) and with
probability 1/2, we sample w ∼ {0, 1}nk+k and output (w, y).

This completes the proof of Claim 60. ⋄

Now by the assumption that Item 2 of Theorem 9 is true, we have that for the independent
polynomial-time samplable distribution E and for q′ such that q′(n) := 50n · q(n), there exist a
polynomial p′ and a probabilistic polynomial-time algorithm AE such that for all n ∈ N,

Pr
(v,y)∼En

[
K(v | y) ≤ AE(v, y) ≤ K(v | y) + log p′(n)

]
≥ 1− 1

q′(n)
. (41)

Since the direct product generator DPk is computable, we have for every z ∈ {0, 1}nk,

K(DPk(x; z) | y) ≤ K(x | y) + |z|+O(log n) ≤ K(x | y) + nk + log p′(n),

where the last inequality holds by choosing a large enough polynomial p′. Then using Equation (41),
we have

1− 2

q′(n)
≤ Pr

(x,y)∼Dn
k∼[2n]

z∼{0,1}nk

[AE(DPk(x; z), y) ≤ K(DPk(x; z) | y)]

≤ Pr
(x,y)∼Dn
k∼[2n]

z∼{0,1}nk

[
AE(DPk(x; z), y) ≤ K(x | y) + nk + 2 log p′(n)

]
, (42)

where the factor 2 in 2
q′(n) comes from the first item of Claim 60 as we switch from the distribution

E in Equation (41) to E ′.
By averaging, Equation (42) yields that with probability at least 1−20n/q′(n) over (x, y) ∼ Dn,

Pr
k∼[2n]

z∼{0,1}nk

[
AE(DPk(x; z), y) ≤ K(x | y) + nk + 2 log p′(n)

]
≥ 1− 1

10n
.

39

Note that the above implies that for all k ∈ [2n],

Pr
z∼{0,1}nk

[
AE(DPk(x; z), y) ≤ K(x | y) + nk + 2 log p′(n)

]
≥ 1− 1

5
. (43)

By a simple counting argument, we have

K(w | y) ≥ |w| − log q′(n) > |w| − log p′(n)

with probability at least 1− 1
q′(n) over w ∼ {0, 1}nk+k. Following a similar argument as in previous

paragraphs, we can show that with probability at least 1− 30n/q′(n) over (x, y) ∼ Dn,

Pr
w∼{0,1}nk+k

[
AE(w, y) > k + nk − log p′(n)

]
≥ 4

5
, (44)

for all k ∈ [2n].
By a union bound, with probability at least at least 1−50n/q′(n) = 1−1/q(n) over (x, y) ∼ Dn,

both Equations (43) and (44) hold. Fix any such (x, y), and let

k∗ = k∗(x, y) := K(x | y) + 3 log p′(n).

Note that in this case, Equation (43) yields

Pr
z∼{0,1}nk∗

[
AE(DPk∗(x; z), y) ≤ k∗ + nk∗ − log p′(n)

]
≥ 4

5
. (45)

Now let Dk∗,y : {0, 1}nk
∗+k∗ → {0, 1} be such that

Dk∗,y(w) = 1 ⇐⇒ AE(w, y) ≤ nk∗ + k∗ − log p(n).

Note that Dk∗,y has poly(n) (randomized) running time given k∗ and y. It follows from Equa-
tions (44) and (45) that,

Pr
z∼{0,1}nk∗

[Dk∗,y(DPk∗(x; z)) = 1]− Pr
w∼{0,1}nk∗+k∗

[Dk∗,y(w) = 1] ≥ 3

5
.

Applying Lemma 33 to Dk∗,y, we obtain

pKp
′(n)(x | y) ≤ k∗ + log p′(n), (46)

provided that p′ is a large enough polynomial. Since k∗ = K(x, y) + 3 log p′(n), it follows that

Pr
(x,y)∼Dn

[
pKp

′(n)(x | y) ≤ K(x | y) + 4 log p′(n)
]
≥ 1− 1

q(n)
,

which completes the proof by letting p > p′ be a sufficiently large polynomial.

We are now ready to show Lemma 58.

Proof of Lemma 58. We will show that the assumption of the lemma implies Item 2 of Theorem 30,
which then implies DistNP ⊆ HeurBPP. That is, we want to show that for every independent

40

polynomial-time samplable distribution family {Dn}n∈N and for every polynomial q, there exists a
polynomial p such that for all n ∈ N,

Pr
(x,y)∼Dn

[
pKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

q(n)
. (47)

On the one hand, by the coding theorem for time-unbounded Kolmogorov complexity (Theo-
rem 18), we have for every (x, y) ∈ Support(Dn),

K(x | y) ≤ log
1

Dn(x | y)
+O(log n). (48)

On the other hand, by the assumption of the lemma and Lemma 59, we have for some p0,

Pr
(x,y)∼Dn

[
pKp0(n)(x | y) ≤ K(x | y) + log p0(n)

]
≥ 1− 1

q(n)
. (49)

By combining Equations (48) and (49), and letting p to be a large enough polynomial, we get
Equation (47).

5.3 Kolmogorov Complexity versus Conditional Kolmogorov Complexity

Lemma 61. Item 2 and Item 3 of Theorem 56 are equivalent.

Proof Sketch. The idea is to use symmetry of information, which roughly says that for all strings
x and y,

K(x, y) ≈ K(x | y) + K(y).

Suppose Item 2 of Theorem 56 is true. Then for any independent polynomial-time samplable
distribution D, we have an algorithm that approximates K(x | y) over (x, y) ∼ Dn. Also, it is not
hard to show that one can also use Item 2 to obtain an algorithm that approximates K(y) over

y ∼ D(2)
n , where D(2)

n is the marginal distribution of Dn on the second half. (Hint: Consider the

polynomial-time samplable distribution that samples y ∼ D(2)
n and outputs (y, 0n).) This enables

us to approximate K(x, y) by using symmetry of information stated above, which yields Item 3 of
Theorem 56.

The other direction can be shown by a similar argument.

6 Characterizing NP ⊆ BPP by Approximating Kolmogorov Com-
plexity

The goal of this section is to establish Theorem 7, which follows from Lemma 62 and Lemma 63,
stated and proved in Section 6.1 and Section 6.2 respectively.

6.1 Approximating Kolmogorov Complexity from Worst-Case Easiness of NP

Lemma 62. If NP ⊆ BPP, then Item 2 of Theorem 7 is true, i.e., for every polynomial-time
samplable l family {Dn}n, where each Dn is over {0, 1}n × {0, 1}n, and every polynomial q, there
exist a probabilistic polynomial-time algorithm A and a polynomial p such that for all n ∈ N and
y ∈ {0, 1}n,

Pr
x∼Dn(·|y)

[K(x | y) ≤ A(x, y) ≤ K(x | y) + log p(n)] ≥ 1− 1

q(n)
.

41

Proof. Let {Dn}n be any polynomial-time samplable distribution family, where each Dn is over
{0, 1}n × {0, 1}n Let q be any polynomial. Fix any large enough n ∈ N.

From the assumption NP ⊆ BPP, we get PH ⊆ BPP. Then by Lemma 27, there exists a
probabilistic polynomial-time algorithm B such that for all (x, y) ∈ Support(Dn),

Pr
B
[Dn(x | y)/4 ≤ B(x, y) ≤ Dn(x | y)] ≥ 1− 1

2q(n)
. (50)

On the one hand, by the coding theorem for time-unbounded Kolmogorov complexity (Theo-
rem 18) and the fact that given any y, Dn(· | y) is computable, we have for all (x, y) ∈ Support(Dn),

K(x | y) ≤ log
1

Dn(x | y)
+ b · log n, (51)

for some constant b > 0. On the other hand, by using Lemma 19, we can show that for every

y ∈ Support
(
D(2)
n

)
,

Pr
x∼Dn(·|y)

[
K(x | y) ≥ log

1

Dn(x | y)
− log p′(n)

]
≥ 1− 1

2q(n)
, (52)

for some polynomial p′.
Our algorithm A, which aims to approximate K(x | y) for every y and most x ∼ Dn(· | y), does

the following.

On x, y ∈ {0, 1}n, let β := B(x, y) and output log(1/β)+b · log n, where b is the constant
in Equation (51).

It is easy to see that A runs in polynomial time. To see its correctness, note that if all of Equa-
tion (50), Equation (51), and Equation (52) hold, which happens with probability at least 1−1/q(n)
over x ∼ Dn(· | y) (for every y) and the internal randomness of A, we have both

log
1

B(x, y)
+ b · log n ≥ log

1

Dn(x | y)
+ b · log n ≥ K(x | y),

and

log
1

B(x, y)
+ b · log n ≤ log

1

Dn(x | y)
+ b · log n+ 2 ≤ K(x | y) + b · log n+ 2 + log p′(n).

The lemma follows by letting p > p′ be a large enough polynomial.

6.2 Worst-Case Easiness of NP from Approximating Kolmogorov Complexity

Lemma 63. Suppose Item 2 of Theorem 7 is true, i.e., for every polynomial-time samplable dis-
tribution family {Dn}n, where each Dn is over {0, 1}n × {0, 1}n, and every polynomial q, there
exist a probabilistic polynomial-time algorithm A and a polynomial p such that for all n ∈ N and
y ∈ {0, 1}n,

Pr
x∼Dn(·|y)

[K(x | y) ≤ A(x, y) ≤ K(x | y) + log p(n)] ≥ 1− 1

q(n)
.

Then NP ⊆ BPP.

To show Lemma 63, we first observe that for the characterization of “NP ⊆ BPP” in Theorem 31,
it suffices to use a notion of semi-worst-case conditional coding instead of worst-case conditional
coding. We present this characterization in the following subsection.

42

6.2.1 Worst-Case Easiness of NP and Semi-Worst-Case Conditional Coding

Lemma 64. The following are equivalent.

1. NP ⊆ BPP.

2. (Semi-Worst-Case Conditional Coding) For every polynomial-time samplable distribu-
tion family {Dn}n and every polynomial q, there exists a polynomial p such that for all n ∈ N
and all y ∈ Support

(
D(2)
n

)
,

Pr
x∼Dn(·|y)

[
pKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1

q(n)
,

where D(2)
n denotes the marginal distribution of Dn on the second half.

We need the following notion of a universal sampler.

Definition 65 (Universal Time-Bounded Sampler). Let n, t ∈ N and y ∈ {0, 1}∗. The universal
sampler USamp(1n, 1t, y) does the following.

1. Pick a uniformly random k ∼ [2n],

2. Pick a uniformly random r ∼ {0, 1}t,

3. Pick a uniformly random d ∼ {0, 1}k,

4. Outputs x which is the output of a universal oracle Turing machine (fixed in advance) U , on
input d with an oracle to the bits of y and r (i.e., Uy,r(d)), running for t steps.

Note that USamp runs in polynomial time. The following proposition follows easily from the
definitions of pKt and USamp.

Proposition 66. For every n, t, ℓ ∈ N, x ∈ {0, 1}n and y ∈ {0, 1}∗, if pKt(x | y) ≤ k, then
USamp(1n, 1t, y) outputs x with probability Ω

(
1/(n · 2k)

)
, where USamp is the universal sampler

defined in Definition 65.

We now show Lemma 64.

Proof of Lemma 64. (=⇒) This direction follows from Theorem 31, as worst-case conditional
coding implies semi-worst conditional coding.

(⇐=) Without loss of generality (by padding), we show how to solve every language L ∈ NP
where a yes-instance x ∈ L ∩ {0, 1}m admits a witness of length m + 1 (with respect to a fixed
verifier VL).

Consider the distribution family {Dn}n, where each Dn is given by the following sampling
algorithm:

1. Sample a uniformly random x ∼ {0, 1}n−1 ,

2. Sample a uniformly random w ∼ {0, 1}n,

3. Output

{
(w, x1), if w is a VL-witness for x

(0n, x0), otherwise

43

Consider any x ∈ L ∩ {0, 1}n−1, and let W ⊆ {0, 1}n be the set of VL-witnesses for x. Note
that by construction, Dn(· | x1) is uniformly distributed over W . By the assumed semi-worst-case
conditional coding condition (Item 2 of Lemma 64), there exist a polynomial p and a constant c > 0
such that for at least 1/nc of the w ∈W ,

pKp(n)(w | x1) ≤ log
1

Dn(w | x1)
+ log p(n)

= log |W |+ log p(n). (53)

Let W ′ ⊆ W be the set of w that satisfies Equation (53). Note that |W ′| ≥ |W |/nc. By Proposi-
tion 66, for each w ∈W ′, USamp(1n, 1p(n), x1) outputs w with probability at least

1

O(n · p(n) · |W |)
.

Hence the probability that USamp(1n, 1p(n), x1) outputs some w ∈W ′ is at least

|W ′| · 1

O(n · p(n) · |W |)
≥ 1

O(n · p(n) · nc)
.

In other words, USamp(1n, 1p(n), x1) outputs a witness for x with probability at least 1/poly(n).
By standard amplification, this yields an efficient randomized algorithm for solving L with high
probability.

6.2.2 Proof of Lemma 63

Given the characterization of NP ⊆ BPP by semi-worst-case conditional coding (Lemma 64),
we now sketch the proof of Lemma 63.

Proof Sketch of Lemma 63. The proof follows a similar approach to that of Lemma 58.
First of all, by carefully adapting the proof of Lemma 59, we show that using the assumption

of the lemma, for every polynomial-time distribution family D := {Dn}n over {0, 1}n × {0, 1}n, we
can upper bound pKpoly(n)(x | y) by K(x | y) for every y ∈ {0, 1}n and almost all x ∼ Dn(· | y).
More specifically, let

• E ′ be the distribution that samples (x, y) ∼ D, k ∼ [2n], z ∼ {0, 1}n and outputs (DPk(x; z), y),
and

• E ′′ be the distribution that samples (x, y) ∼ D, k ∼ [2n], w ∼ {0, 1}nk+k and outputs (w, y).

Now let E be the following distribution.

Sample (x, y) ∼ D, k ∼ [2n], z ∼ {0, 1}n, w ∼ {0, 1}nk+k. With probability 1/2 output
(DPk(x; z), y), and with probability 1/2 output (w, y).

Note that E is polynomial-time samplable, and for every (α, y), we have E(α, y) ≥ E ′(α, y)/2 (resp.
E(α, y) ≥ E ′′(α, y)/2). Also note that E(2) and (E ′)(2) (resp. (E ′′)(2)) are identical. Then we have
for every (α, y),

E(α | y) = E(α, y)
E(2)(y)

≥ E ′(α, y)/2

(E ′)(2)(y)

=
E ′(α | y)

2
.

44

Similarly, we have E(α | y) ≥ E ′′(α | y)/2.
Now by applying the algorithm in the assumption of the lemma to E and following a similar

argument as in the proof of Lemma 59, we can obtain that for every y and with high probability over
x ∼ Dn(· | y), there is a polynomial-time algorithm that given k∗ and y, distinguishes DPk∗(x;Unk∗)
from Unk∗+k∗ , for k∗ := K(x | y) + O(log n). Then by applying Lemma 33, we get that for every
polynomial q, there exists a polynomial p such that for every y,

Pr
x∼Dn(·|y)

[
pKp(n)(x | y) ≤ K(x | y) + log p(n)

]
≥ 1− 1

q(n)
. (54)

On the other hand, by the coding theorem (Theorem 18), we have

K(x | y) ≤ log
1

Dn(x | y)
+O(log n). (55)

Equations (54) and (55) together yield the semi-worst-case conditional coding condition as stated
in Item 2 of Lemma 64, which implies NP ⊆ BPP.

7 Characterizing Auxiliary-Input One-Way Functions by Approx-
imating Kolmogorov Complexity

We prove Theorem 10 in this section. The proof follows a similar approach to that of Theorem 6
in [IRS22].

Lemma 67. If auxiliary-input one-way functions do not exist, then for every sequence of strings
{yn}n where each yn ∈ {0, 1}n, every distribution family {Dn}n samplable in polynomial time using
{yn}n as advice, where each Dn is over {0, 1}n, and for every polynomial q, there exist a probabilistic
polynomial-time algorithm A and a polynomial p such that for all n ∈ N,

Pr
x∼Dn

[K(x | yn) ≤ A(x, yn) ≤ K(x | yn) + log p(n)] ≥ 1− 1

q(n)
.

Proof Sketch. The proof is similar to that of Lemma 62.
Let yn ∈ {0, 1}n be a sequence of string and {Dn}n be a distribution family samplable in

polynomial-time using {yn}n as advice. Note that {Dn}n can be sampled using a family of s-size
circuits {Cn : {0, 1}s(n) → {0, 1}n}n where s is some polynomial. Also, Cn can be constructed in
poly(n)-time given yn.

On the one hand, we have that with high probability over x ∼ Dn,

K(x | yn) ≈ log
1

Dn(x)
. (56)

This again can be shown using the coding theorem for time-unbounded Kolmogorov complexity
(Theorem 18) and Lemma 19.

On the other hand, by Theorem 28, we have a probabilistic polynomial-time algorithm that given
yn, estimates Dn(x) within a multiplicative constant factor with high probability over x ∼ Dn. This
enables us to estimate K(x | yn) using Equation (56).

Lemma 68. Suppose for every sequence of strings {yn}n where each yn ∈ {0, 1}n, every distribution
family {Dn}n samplable in polynomial time using {yn}n as advice, where each Dn is over {0, 1}n,

45

and for every polynomial q, there exist a probabilistic polynomial-time algorithm A and a polynomial
p such that for all n ∈ N,

Pr
x∼Dn

[K(x | yn) ≤ A(x, yn) ≤ K(x | yn) + log p(n)] ≥ 1− 1

q(n)
.

Then auxiliary-input one-way functions do not exist.

Proof. We show that if the assumption of the lemma is true, then auxiliary-input pseudorandom
generators do not exist.

Let {Gz : {0, 1}s(n) → {0, 1}ℓ(n)}z∈{0,1}∗ be any candidate auxiliary-input pseudorandom gen-
erator, where s, ℓ are polynomials such that s(n) < ℓ(n). Without loss of generality, we assume
ℓ(n) = n. Also, by standard techniques in cryptography for increasing the stretch of a PRG, we
assume that s(n) ≤ ℓ(n)/2.

Fix any large enough n ∈ N and any z ∈ {0, 1}n. Let Dn be the uniform mixture of Gz(Us(n))
and Un, i.e., we sample Dn as follows.

Sample r ∼ {0, 1}s(n) and u ∼ {0, 1}n. With probability 1/2, output Gz(r), and with
probability 1/2, output u.

Note that Dn is polynomial-time sample using z as advice. Let q be a large enough polynomial
specified later. Then by the assumption of the lemma, there exist a probabilistic polynomial-time
algorithm A and a polynomial p such that

Pr
x∼Dn

[K(x | z) ≤ A(x, z) ≤ K(x | yn) + log p(n)] ≥ 1− 1

q(n)
. (57)

Now note that for every r ∈ {0, 1}s(n), we have

K(Gz(r) | z) ≤ s(n) + log p(n),

given that p is a sufficiently large polynomial. Then since Dn samples from Gz(Us(n)) with proba-
bility at least 1/2, by Equation (57), we have

Pr
r∼{0,1}s(n)

[A(Gz(r), z) ≤ s(n) + 2 log p(n)] ≥ 1− 2

q(n)
. (58)

Also, by a simple counting argument, with probability at least 1 − 1/n over u ∼ {0, 1}n, we
have

K(u | z) ≥ n−O(log n) > s(n) + 2 log p(n).

Again, since Dn samples from Un with probability at least 1/2, using Equation (57), we can show
that

Pr
u∼{0,1}n

[A(u, z) > s(n) + 2 log p(n)] ≥ 1− 2

q(n)
− 1

n
. (59)

Now let D : {0, 1}n × {0, 1}n → {0, 1} be the randomized algorithm such that

D(w, z) = 1 ⇐⇒ A(w, z) ≤ s(n) + 2 log p(n).

It follows from Equations (58) and (59) that D distinguishes Gz(Us(n)) from Un, so {Gz}z cannot
be an auxiliary-input pseudorandom generator.

46

Acknowledgment

We thank Shuichi Hirahara, Yanyi Liu, Igor C. Oliveira, and Hanlin Ren for useful discussions.

References

[ACM+21] Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya
Volkovich. One-way functions and a conditional variant of MKTP. In Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS),
pages 7:1–7:19, 2021.

[BL88] Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and monotone
functions. In Annual Cryptology Conference (CRYPTO), pages 27–35, 1988.

[BLvM05] Harry Buhrman, Troy Lee, and Dieter van Melkebeek. Language compression and
pseudorandom generators. Comput. Complex., 14(3):228–255, 2005.

[BT06] Andrej Bogdanov and Luca Trevisan. Average-case complexity. Found. Trends Theor.
Comput. Sci., 2(1), 2006.

[DHK15] Irit Dinur, Prahladh Harsha, and Guy Kindler. Polynomially low error PCPs with
polyloglog n queries via modular composition. In Symposium on Theory of Computing
(STOC), pages 267–276, 2015.

[DS04] Irit Dinur and Shmuel Safra. On the hardness of approximating label-cover. Inf. Process.
Lett., 89(5):247–254, 2004.

[GKLO22] Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira. Probabilistic
Kolmogorov complexity with applications to average-case complexity. In Computational
Complexity Conference (CCC), pages 16:1–16:60, 2022.

[HIL+23] Shuichi Hirahara, Rahul Ilango, Zhenjian Lu, Mikito Nanashima, and Igor C. Oliveira.
A duality between one-way functions and average-case symmetry of information. In
Symposium on Theory of Computing (STOC), pages 1039–1050, 2023.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999.

[Hir20] Shuichi Hirahara. Characterizing average-case complexity of PH by worst-case meta-
complexity. In Symposium on Foundations of Computer Science (FOCS), pages 50–60,
2020.

[Hir21] Shuichi Hirahara. Average-case hardness of NP from exponential worst-case hardness
assumptions. In Symposium on Theory of Computing (STOC), pages 292–302, 2021.

[Hir22] Shuichi Hirahara. Symmetry of information from meta-complexity. In Computational
Complexity Conference (CCC), pages 26:1–26:41, 2022.

[Hir23] Shuichi Hirahara. Capturing one-way functions via NP-hardness of meta-complexity.
In Symposium on Theory of Computing (STOC), pages 1027–1038, 2023.

47

[HKLO24] Shuichi Hirahara, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira. Exact search-
to-decision reductions for time-bounded Kolmogorov complexity. Electronic Colloquium
on Computational Complexity (ECCC), TR24-059, 2024.

[HS17] Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of MCSP and
its variants. In Computational Complexity Conference (CCC), pages 7:1–7:20, 2017.

[HS22] Shuichi Hirahara and Rahul Santhanam. Excluding PH pessiland. In Innovations in
Theoretical Computer Science Conference (ITCS), pages 85:1–85:25, 2022.

[IL89] Russell Impagliazzo and Michael Luby. One-way functions are essential for complex-
ity based cryptography (extended abstract). In Symposium on Theory of Computing
(STOC), pages 230–235, 1989.

[IL90] Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP instances
than picking uniformly at random. In Symposium on Theory of Computing (STOC),
pages 812–821, 1990.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of the
Tenth Annual Structure in Complexity Theory Conference, pages 134–147, 1995.

[IRS21] Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Hardness on any samplable distribu-
tion suffices: New characterizations of one-way functions by meta-complexity. Electron.
Colloquium Comput. Complex., page 82, 2021.

[IRS22] Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Robustness of average-case meta-
complexity via pseudorandomness. In Symposium on Theory of Computing (STOC),
pages 1575–1583, 2022.

[LOS21] Zhenjian Lu, Igor C. Oliveira, and Rahul Santhanam. Pseudodeterministic algorithms
and the structure of probabilistic time. In Symposium on Theory of Computing (STOC),
pages 303–316, 2021.

[LOZ22] Zhenjian Lu, Igor C. Oliveira, and Marius Zimand. Optimal coding theorems in time-
bounded Kolmogorov complexity. In International Colloquium on Automata, Lan-
guages, and Programming (ICALP), pages 92:1–92:14, 2022.

[LP20] Yanyi Liu and Rafael Pass. On one-way functions and Kolmogorov complexity. In
Symposium on Foundations of Computer Science (FOCS), pages 1243–1254, 2020.

[LP21] Yanyi Liu and Rafael Pass. On the possibility of basing cryptography on EXP̸=BPP.
In International Cryptology Conference (CRYPTO), pages 11–40, 2021.

[LP22] Yanyi Liu and Rafael Pass. On one-way functions from NP-complete problems. In
Conference on Computational Complexity (CCC), pages 36:1–36:24, 2022.

[LP23] Yanyi Liu and Rafael Pass. One-way functions and the hardness of (probabilistic) time-
bounded Kolmogorov complexity w.r.t. samplable distributions. In Annual Cryptology
Conference (CRYPTO), pages 645–673, 2023.

[Nan21] Mikito Nanashima. On basing auxiliary-input cryptography on NP-hardness via non-
adaptive black-box reductions. In Innovations in Theoretical Computer Science Con-
ference (ITCS), pages 29:1–29:15, 2021.

48

[RS21] Hanlin Ren and Rahul Santhanam. Hardness of KT characterizes parallel cryptography.
In Computational Complexity Conference (CCC), pages 35:1–35:58, 2021.

[San20] Rahul Santhanam. Pseudorandomness and the minimum circuit size problem. In Inno-
vations in Theoretical Computer Science Conference (ITCS), pages 68:1–68:26, 2020.

[SS22] Michael E. Saks and Rahul Santhanam. On randomized reductions to the random
strings. In Computational Complexity Conference (CCC), pages 29:1–29:30, 2022.

[Sto85] Larry J. Stockmeyer. On approximation algorithms for #P. SIAM J. Comput.,
14(4):849–861, 1985.

49
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

