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Abstract

We consider inductive inference �learning� of recursive �computable� functions� Here�
the power of probabilistic algorithms increases as the probability of success decrease� The
pattern of this increase depends on the exact requirements about learning algorithm�
Typically� the interval of success probabilities ��� �� can be split into subintervals such
that the power of algorithms with the success probabilities in the same subinterval is the
same� The structure of these intervals �called probability hierarchy� is simple in some
cases and very complicated in some other cases�

Finite identi	cation is one of simplest criteria of success for inductive inference� It
was the 	rst criteria for which probabilistic identi	cation was studied� However� it also
generates one of most complicated probability hierarchy and a large part of this structure
remains unknown after �
 years of study �since �
�
�� The structure is simpler when
larger probabilities of success are required� However� when the probabilities of success
decrease� it becomes more complex and even small advances require large e�orts�

We take an approach di�erent from the previous work� Instead of trying to describe the
probability hierarchy by explicit formulas� we study the properties of the whole hierarchy�
We show several interesting results for Popperian 	nite identi	cation� a special case of
	nite identi	cation�

Our main result is a decision algorithm for the probability hierarchy� This algorithm
takes two probabilities as the input and answers whether the learning with these two
probabilities has equal power� We also determine the ordering type of the probability
hierarchy� It is ��� the ordering type of all expressions possible in the 	rst
order arithmetic�
This shows how complex the probability hierarchy is and explains why it is not feasible
to describe all cutpoints in the hierarchy explicitly�

� Introduction

Understanding the process of learning has always fascinated scientists� There are several com�
putational theories of learning� One of oldest theories is inductive inference established by
Gold����� This theory considers the process of learning from a viewpoint of the computabil�
ity theory� Unlike other theories of learning �for example	 PAC�learning�
�	 ����	 inductive
inference does not make probabilistic assumptions about the world� However	 probabilistic al�
gorithms appear in inductive inference and the study of probabilistic inductive inference creates
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a lot of interesting problems with elements of both computability theory and combinatorics� In
this paper	 we survey some of these problems�
We start with a general introduction to inductive inference� Learning can be considered as
a process of gathering an information about an unknown object	 processing this information
and obtaining description of the unknown object� Ideally	 we would like to obtain a complete
description of the object� There are several things to be speci
ed if we want to make this model
precise�
	 ���� These are�

� What is the class of objects that we consider�

� What data are available� How are these data represented to a learning algorithm�

� What is the form of description that the learning algorithm outputs �Boolean formula	
program	 etc���

� When does the learning algorithm succeeds� �For example	 do we require its output to
match the unknown object exactly or do we allow small di�erences��

In the theory of inductive inference	 objects are arbitrary recursive �computable� functions
�or recursively enumerable languages�� The reason is that any algorithmic behavior can be
represented as a recursive �computable� function and	 hence	 we obtain a model that includes
any learning situation� Throughout this paper	 we shall only consider learning of total recursive
functions� �Learning of partial functions is also studied��
The natural data about a function f are its values f���	 f���	 f���	 � � � and the natural repre�
sentation of these data is the sequence h�� f���i	 h�� f���i	 h�� f���i	 � � �� The most general type
of description for a computable function is a program in a universal programming language�
Again	 any other description can be converted to this form�
Two main criteria of success are 
nite identi
cation and identi
cation in the limit� In original
Gold�s model����	 the identi
cation in the limit	 we allow the learning algorithm to output
several programs and require that the last program output by the algorithm should be correct�
This is motivated by the fact that humans learning a complex behaviour �for example	 foreign
language or driving�	do not obtain the correct result from the 
rst attempt�
In the 
nite identi
cation	 only one program is allowed and it must be correct� This is more
limited model� In both of these models	 we can require the program to match the function f
exactly or allow some amount of di�erences���� We shall mostly consider exact 
nite learning�
The references to work about other criteria of success are given in section ��
This gives us the following learning model� A learning algorithm receives the values of an
unknown function f in the natural order� h�� f���i	 h�� f���i	 h�� f���i	 � � � and produces a
program h� The algorithm succeeds on f if the program h computes f �
We will compare the classes of functions identi
able by probabilistic algorithms with di�erent
probabilities of correct answer�

� De�nitions

Next	 we introduce the formal notation and de
nitions used in this paper� For more background
information	 see ���� for recursive function �computability� theory	 ���	 ��� for set theory and
�
	 ��� for inductive inference�
A learning machine is an algorithmic device that reads values of a function f � f���	 f���	 � � ��
Having seen 
nitely many values of the function it can output a conjecture� A conjecture is a



program in some 
xed acceptable programming system���	 ���� Only one conjecture is allowed	
i�e� learning machine cannot change its conjecture later�

De�nition � �a� A deterministic learning machine M 
nitely identi
es �FIN�identi
es� a
function f if� receiving f as the input� it produces a program computing function f �

�b� M FIN�identi�es a set of functions U if it FIN�identi�es any function f � U �

�c� A set of functions U is called FIN�identi
able if there exists a deterministic learning
machine that identi�es U � The collection of all FIN�identi�able sets is denoted FIN�

De�nition � �a� A probabilistic learning machine M hpiFIN�identi�es �FIN�identi�es with
probability p� the set of functions U if� for any function f � U the probability that M
FIN�identi�es f is at least p�

�b� The collection of all hpiFIN�identi�able sets is denoted hpiFIN�

Team identi�cation is another idea closely related to the probabilistic identi
cation� A team is
just a 
nite set of learning machines fM��M�� � � � �Msg�

De�nition � �a� A team M �r� s�FIN�identi�es the function f if at least r of learning ma�
chines M�� � � �� Ms FIN�identify f �

�b� The collection of all �r� s�FIN�identi�able sets is denoted �r� s�FIN�

It is easy to see that �r� s�FIN� h r
s
iFIN� �Just choose one of machines in the team uniformly at

random and simulate�� In some cases	 the opposite is also true and every probabilistic machine
can be simulated by a team�
The main goal of research in probabilistic inductive inference is determining how FINhpi de�
pends on the accepting probability p� Formally	 it means describing the probability hierarchy�

De�nition � The probability hierarchy for FIN is the set of all points p such that there is
U � hpiFIN but U �� hp � �iFIN for � � ��

� Explicit results for FIN

Probabilistic FIN�identi
cation was 
rst studied by Freivalds���� He showed that any proba�
bilistic learning machine with the probability of correct answer above ��
 can be replaced by an
equivalent deterministic machine� He also characterized machines with probabilities of correct
answer between ��� and ��
�

Theorem � �	


�a� If p � ��
� then hpiFIN � FIN�

�b� h��
iFIN �� FIN �

�c� If n���n � �� � p � �n� �����n � ��� then hpiFIN � hn���n � ��iFIN � �n� �n� ��FIN�

�d� h�n � �����n � ��iFIN � hn���n � ��iFIN�



It also makes sense to consider probabilistic algorithms with the probability of correct answer
��� and below because there are in
nitely many outputs and	 hence	 even designing algorithm
that gives the correct answer with probability � �for an arbitrary small 
xed � � �� may be
nontrivial� Here	 the 
rst results were

Theorem � ���� ��� ��


�a� There is a set of functions U such that U � ��� ��FIN but U � ��� ��FIN�

�b� ��� ��FIN � �
� ��FIN � ��� ���FIN � � � � and ��� ��FIN � ��� ��FIN � ��� ���FIN � � � ��

�c� FINh���i � ��� ��FIN�

So	 at the probability ���	 the power of a team depends not only on the ratio of programs that
must succeed but also on the number of programs in the team� Probabilistic and team learning
remain equivalent if we choose team size properly� Probabilities below ��� were analyzed by
Daley	 Kalyanasundaram and Velauthapillai��	 ��� Their results are summarized below�
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and pm � ��m�
�

�	m����
for m � ��� Then� for all i � f�� �� � � �g

�a� For all x ��pi��� pi�� hxiFIN � hpiiFIN� and

�b� hpiiFIN �� hpi��iFIN�

However	 with probabilities getting smaller	 progress became more and more di�cult� The full
proof of Theorem 
 was more than ��� pages long� On the other hand	 it only described the
situation for a small interval ���

�	
� �
�
��

� Explicit results for PFIN

One of approaches to this situation was considering Popperian FINite identi
cation�PFIN�	 a
restricted version of FIN� FIN allows two types of errors on functions that are not identi
ed by
a machine� These are

�� Errors of commission� The program output by a machine M produces a value di�erent
from the value of the input function�

�� Errors of omission� The program output by M does not halt on some input�

De�nition � ���
 A learning machine M is Popperian if it does not make errors of omission
�i�e�� if all conjectures on all inputs are programs computing total functions��

De�nition � �a� A set of functions U is PFIN�identi�able if there is a Popperian machine
M that identi�es U �

�b� PFIN denotes the collection of all PFIN�identi�able sets�

Probabilistic and team PFIN�identi
cation are introduced similarly� It is important that the
requirement about learners outputting only programs computing total recursive functions is
absolute	 i�e�



�� All conjectures of all machines in a PFIN�team must be programs computing total recur�
sive functions�

�� A probabilistic PFIN�machine is not allowed to output a program which does not compute
total recursive function even with a very small probability�

Daley	 Kalyanasundaram and Velauthapillai ��	 �� proved counterparts of Theorems �	 � and 

for PFIN� The situation for probabilities greater than or equal to ��� was precisely the same
as for FIN	 only proofs became simpler� For probabilities smaller than ���	 two sequences of
points where power of probabilistic machines changed were discovered� One started at ��� and
converged to ���	 another started at ��� and converged to 
���
However	 even for Popperian learning	 things were getting more complicated as the probabilities
decreased and ��� wrote that the prospects of determining all cutpoints are bleak even for the
interval ����� �����

� From speci�c values to general methods

Another approach was proposed in ���� Instead of the infeasible task of 
nding all cutpoints
explicitly	 ��� focused on studying the general properties of the whole probability structure�
The 
rst step was describing existing diagonalization constructions �i�e� constructions proving
that there is U � hpiPFIN such that U �� hp � �iPFIN for � � �� in a general form�

Theorem � ��� ��
 Let PPFIN be the probability hierarchy for PFIN and p�� � � � � ps � PPFIN �
Let p � ��� ��� If there are q� � �� � � � � qs � � such that

�� q� � q� � � � �� qs � p�

�� p

qi���p
� pi for i � �� � � � � s�

then p � PPFIN �

This led to a conjecture that PPFIN is equal to the set A de
ned as follows�

�� � � A

�� If p�� p�� � � � � ps � A and p � ��� �� is a number such that there exist q�� � � � � qs � ��� ��
satisfying

�a� q� � q� � � � �� qs � p�

�b� p

qi���p
� pi for i � �� � � � � s	

then p � A�

Indeed	 A � PPFIN and the 
rst step in proving that was observing some structural properties
of this set�

De�nition 	 ���� �

 A set A is well�ordered if there is no in�nite strictly increasing sequence
of elements of A� A set A is well�ordered in decreasing order if there is no in�nite strictly
increasing sequence of elements of A�
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Figure �� The probability hierarchies for EX	 FIN and PFIN

Most of known probability hierarchies are well�ordered in decreasing order�see Figure �	 EX
stands for learning in the limit investigated by Pitt and Smith��
	 ��	 ����� It is easy to see
that they all are well�ordered in decreasing order� We can also prove that the set A de
ned
above is well�ordered�

Theorem � ��
 The set A is well�ordered and has a system of notation�

A system of notations is an algorithmic description for a well�ordered set� It allows to 
nd
preceding elements	 given one element� This notion was introduced by Kleene for constructive
ordinals���� and extended to sets of reals �like A� in ���� Well�orderedness is crucial to our proof
because it allows to use induction over elements of the set A� Having the system of notation is
important to make this induction algorithmic� Given well�orderedness and system of notations	
it is easy to construct a universal simulation algorithm�

Theorem � ��
 Let p � A and p� � p be such that there is no p�� � A with p� � p��� Then�
hpiPFIN � hp�iPFIN�

Corollary � ��
 A � PPFIN �

This approach gives two other interesting results�

Theorem 	 ��
 The set PPFIN is decidable� i�e� there is an algorithm that receives two proba�
bilities p� and p� and answers whether hp�iPFIN � hp�iPFIN�

Theorem 
 ��
 Let p � PPFIN � Then� there is an k such that �pk� k�PFIN � hpiPFIN�

Thus	 teams of di�erent size can have di�erent learning power �cf� Theorem �� but we always
have the �best� team size such that team of this size can simulate any probabilistic machine
�and hence	 team of any other size with the same success ratio��
Finally	 it is also possible to determine the precise ordering type of the probability hierarchy�
The table below shows how the complexity of the ordering increases when probabilities decrease�



Interval Ordering type of the probability hierarchy
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� is the ordering type corresponding to a single in
nite sequence ���
	 
��	 ���	 � � ��	 k� is the
ordering type of a set consisting of k in
nite sequences� �� is the ordering type of a set consisting
of in
nite sequence of sequences and �� is the ordering type of an in
nite sequence of ���type
sets� �� is the limit of �	 ��	 ��	 � � �� Further ordering types can be de
ned similarly���	 ����
The last one	 �� is the limit of

�� ��� ��� � � � �

and is considered to be so big that it is hard to 
nd any intuitive description for it�� This
shows that the explored part of PFIN�hierarchy �the interval ��

�
� ��	 the ordering type 
�� is

very simple compared to the entire hierarchy� Our result can be also considered as a partial
explanation why it is unrealistic to 
nd explicit values for all points in the probability hierarchy�

� Conclusions and related work

A good surveys about early results in inductive inference	 are �
	 ���� Since then	 there has been
a lot of work about probabilistic inductive inference� Most of it has been similar to section 
	
describing points of probability hierarchies explicitly� Good survey papers about this work are
���	 ����
In last years	 the research has gone in two directions� obtaining explicit results for new and new
types of inductive inference �like language identi
cation���	 ���� and trying to move beyond
that	 to more general arguments� Research on more general arguments has concentrated on
PFIN and FIN because these are most well�studied inductive inference types�
Daley and Kalyanasundaram��� have developed an intricate machinery for obtaining explicit
probability values for FIN in the interval ������	 ����� These methods may be the beginning
for resolving general questions like explicit results of ��� about PFIN were the starting�point
for general results described in this talk� Another piece of general work is �assymetric teams�
of ��	 ����
The biggest challenge in the area is obtaining general results for unrestricted FIN� It would be
good to prove more general properties about PFIN as well� �For example	 how close are points
of the probability hierarchy one to another��
The probability hierarchy for probabilistic langauge learning���� has some similarities with FIN�
hierarchy and can be very interesting subject for investigation	 too� However	 we expect that
it would be more di�cult to prove general results for probabilistic language learning because
it is relatively unexplored and there is less methods available for it�

�It is also known�	�� that �� is the ordering type of the set of all expressions possible in the 
rst�order
arithmetic but this does not look very relevant to our inductive inference result�
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