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Understanding the process of learning has always fascinated scientists. There are several com-
putational theories of learning. One of oldest theories is inductive inference established by
Gold[10]. This theory considers the process of learning from a viewpoint of the computabil-
ity theory. Unlike other theories of learning (for example, PAC-learning[30, 15]), inductive
inference does not make probabilistic assumptions about the world. However, probabilistic al-
gorithms appear in inductive inference and the study of probabilistic inductive inference creates
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Abstract

We consider inductive inference (learning) of recursive (computable) functions. Here,
the power of probabilistic algorithms increases as the probability of success decrease. The
pattern of this increase depends on the exact requirements about learning algorithm.
Typically, the interval of success probabilities ]0, 1] can be split into subintervals such
that the power of algorithms with the success probabilities in the same subinterval is the
same. The structure of these intervals (called probability hierarchy) is simple in some
cases and very complicated in some other cases.

Finite identification is one of simplest criteria of success for inductive inference. It
was the first criteria for which probabilistic identification was studied. However, it also
generates one of most complicated probability hierarchy and a large part of this structure
remains unknown after 19 years of study (since 1979). The structure is simpler when
larger probabilities of success are required. However, when the probabilities of success
decrease, it becomes more complex and even small advances require large efforts.

We take an approach different from the previous work. Instead of trying to describe the
probability hierarchy by explicit formulas, we study the properties of the whole hierarchy.
We show several interesting results for Popperian finite identification, a special case of
finite identification.

Our main result is a decision algorithm for the probability hierarchy. This algorithm
takes two probabilities as the input and answers whether the learning with these two
probabilities has equal power. We also determine the ordering type of the probability
hierarchy. It is €, the ordering type of all expressions possible in the first-order arithmetic.
This shows how complex the probability hierarchy is and explains why it is not feasible
to describe all cutpoints in the hierarchy explicitly.
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a lot of interesting problems with elements of both computability theory and combinatorics. In
this paper, we survey some of these problems.

We start with a general introduction to inductive inference. Learning can be considered as
a process of gathering an information about an unknown object, processing this information
and obtaining description of the unknown object. Ideally, we would like to obtain a complete
description of the object. There are several things to be specified if we want to make this model
precise[3, 22]. These are:

e What is the class of objects that we consider?
o What data are available? How are these data represented to a learning algorithm?

e What is the form of description that the learning algorithm outputs (Boolean formula,
program, etc.)?

e When does the learning algorithm succeeds? (For example, do we require its output to
match the unknown object exactly or do we allow small differences?)

In the theory of inductive inference, objects are arbitrary recursive (computable) functions
(or recursively enumerable languages). The reason is that any algorithmic behavior can be
represented as a recursive (computable) function and, hence, we obtain a model that includes
any learning situation. Throughout this paper, we shall only consider learning of total recursive
functions. (Learning of partial functions is also studied.)

The natural data about a function f are its values f(0), f(1), f(2), ... and the natural repre-
sentation of these data is the sequence (0, f(0)), (1, f(1)), (2, f(2)), .... The most general type
of description for a computable function is a program in a universal programming language.
Again, any other description can be converted to this form.

Two main criteria of success are finite identification and identification in the limit. In original
Gold’s model[10], the identification in the limit, we allow the learning algorithm to output
several programs and require that the last program output by the algorithm should be correct.
This is motivated by the fact that humans learning a complex behaviour (for example, foreign
language or driving),do not obtain the correct result from the first attempt.

In the finite identification, only one program is allowed and it must be correct. This is more
limited model. In both of these models, we can require the program to match the function f
exactly or allow some amount of differences[4]. We shall mostly consider exact finite learning.
The references to work about other criteria of success are given in section 6.

This gives us the following learning model. A learning algorithm receives the values of an
unknown function f in the natural order: (0, f(0)), (1, f(1)), (2, f(2)), ... and produces a
program h. The algorithm succeeds on f if the program & computes f.

We will compare the classes of functions identifiable by probabilistic algorithms with different
probabilities of correct answer.

2 Definitions

Next, we introduce the formal notation and definitions used in this paper. For more background
information, see [25] for recursive function (computability) theory, [26, 18] for set theory and
[3, 22] for inductive inference.

A learning machine is an algorithmic device that reads values of a function f: f(0), f(1), ....
Having seen finitely many values of the function it can output a conjecture. A conjecture is a



program in some fixed acceptable programming system|[19, 25]. Only one conjecture is allowed,
i.e. learning machine cannot change its conjecture later.

Definition 1  (a) A deterministic learning machine M finitely identifies (FIN-identifies) a
function f if, receiving f as the input, it produces a program computing function f.

(b) M FIN-identifies a set of functions U if it FIN-identifies any function f € U.

(¢c) A set of functions U is called FIN-identifiable if there exvists a deterministic learning
machine that tdentifies U. The collection of all FIN-identifiable sets is denoted FIN.

Definition 2 (a) A probabilistic learning machine M (p)FIN-identifies (FIN-identifies with
probability p) the set of functions U if, for any function f € U the probability that M
FIN-identifies f is at least p.

(b) The collection of all (p)FIN-identifiable sets is denoted (p)FIN.

Team identification is another idea closely related to the probabilistic identification. A team is
just a finite set of learning machines { My, My, ..., M,}.

Definition 3 (a) A team M [r,s]FIN-identifies the function f if at least r of learning ma-
chines My, ..., My FIN-identify f.

(b) The collection of all [r, s|FIN-identifiable sets is denoted [r,s]FIN.

It is easy to see that [r, s]JFIN C (£)FIN. (Just choose one of machines in the team uniformly at
random and simulate.) In some cases, the opposite is also true and every probabilistic machine
can be simulated by a team.

The main goal of research in probabilistic inductive inference is determining how FIN(p) de-
pends on the accepting probability p. Formally, it means describing the probability hierarchy.

Definition 4 The probability hierarchy for FIN is the set of all points p such thatl there is
U € (p)FIN but U ¢ (p+ ¢)FIN for ¢ > 0.

3 Explicit results for FIN

Probabilistic FIN-identification was first studied by Freivalds[9]. He showed that any proba-
bilistic learning machine with the probability of correct answer above 2/3 can be replaced by an
equivalent deterministic machine. He also characterized machines with probabilities of correct
answer between 1/2 and 2/3.

Theorem 1 [9]
(a) If p>2/3, then (p)FIN = FIN.
(b) (2/3)FIN # FIN.
(¢) Ifnf2n—1)>p> (n+1)/(2n +1), then (PFIN = (n/(2n — 1))FIN = [n, 2n — 1]FIN.

(d) {(n+1)/(2n + 1))FIN = (n/(2n — 1))FIN.



It also makes sense to consider probabilistic algorithms with the probability of correct answer
1/2 and below because there are infinitely many outputs and, hence, even designing algorithm
that gives the correct answer with probability € (for an arbitrary small fixed ¢ > 0) may be
nontrivial. Here, the first results were

Theorem 2 [31, 11, 15]
(a) There is a set of functions U such that U € [2,A]FIN but U € [1,2]FIN.
(b) [1,2]FIN = [3,6]FIN = [5, 10]FIN = ... and [2,4]FIN = [4,8]FIN = [6, 12]FIN = . ...
(¢c) FIN(1/2) = [2,4]FIN.

So, at the probability 1/2, the power of a team depends not only on the ratio of programs that
must succeed but also on the number of programs in the team. Probabilistic and team learning
remain equivalent if we choose team size properly. Probabilities below 1/2 were analyzed by
Daley, Kalyanasundaram and Velauthapillai[8, 7]. Their results are summarized below.

Theorem 3 [8} 7] Letpl = %; b2 = %; b3 = %; P4 = %; ps = %; Ps = %; b7 = %; Ps = %;

P = %; Pro = %; P = % and p,, = 2152721__16;4 form >12. Then, for all v € {1,2,...}

(a) For all x €]piy1,pi], (x)FIN = (p))FIN, and
(b) <Pi>FIN 7A <]%+1>FIN-

However, with probabilities getting smaller, progress became more and more difficult. The full
proof of Theorem 3 was more than 100 pages long. On the other hand, it only described the
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situation for a small interval [3Z, 7].

4 Explicit results for PFIN

One of approaches to this situation was considering Popperian FINite identification(PFIN), a
restricted version of FIN. FIN allows two types of errors on functions that are not identified by
a machine. These are

1. Errors of commission. The program output by a machine M produces a value different
from the value of the input function.

2. Errors of omission. The program output by M does not halt on some input.

Definition 5 [21] A learning machine M is Popperian if it does not make errors of omission
(i.e., if all conjectures on all inputs are programs computing total functions).

Definition 6 (a) A set of functions U is PFIN-identifiable if there is a Popperian machine
M that identifies U.

(b) PFIN denotes the collection of all PFIN-identifiable sets.

Probabilistic and team PFIN-identification are introduced similarly. It is important that the
requirement about learners outputting only programs computing total recursive functions is
absolute, 1.e.



1. All conjectures of all machines in a PFIN-team must be programs computing total recur-
sive functions.

2. A probabilistic PFIN-machine is not allowed to output a program which does not compute
total recursive function even with a very small probability.

Daley, Kalyanasundaram and Velauthapillai [6, 5] proved counterparts of Theorems 1, 2 and 3
for PFIN. The situation for probabilities greater than or equal to 1/2 was precisely the same
as for FIN, only proofs became simpler. For probabilities smaller than 1/2, two sequences of
points where power of probabilistic machines changed were discovered. One started at 1/2 and
converged to 4/9, another started at 4/9 and converged to 3/7.

However, even for Popperian learning, things were getting more complicated as the probabilities
decreased and [5] wrote that the prospects of determining all cutpoints are bleak even for the

interval [2/5,1/2].

5 From specific values to general methods

Another approach was proposed in [1]. Instead of the infeasible task of finding all cutpoints
explicitly, [1] focused on studying the general properties of the whole probability structure.
The first step was describing existing diagonalization constructions (i.e. constructions proving

that there is U € (p)PFIN such that U ¢ (p + ¢)PFIN for ¢ > 0) in a general form.

Theorem 4 [1, 17] Let Pppin be the probability hierarchy for PFIN and py,...,ps € Pprin.
Let p € [0,1]. If there are ¢ > 0,...,qs > 0 such that

1. G+q+...+q =p;

P -
2. ql‘+1—p_p2f0rl_17"'78’

then P € PPFIN-

This led to a conjecture that Pppy is equal to the set A defined as follows.
1.1 A

2. If p1,p2y...,ps € A and p € [0,1] is a number such that there exist ¢1,...,q, € [0,1]
satisfying

(@) g +q+...+q¢=0p;

(b) qi_ﬁ_p =p fori=1,...,s,

then p € A;

Indeed, A = Pppyy and the first step in proving that was observing some structural properties
of this set.

Definition 7 [26, 18] A set A is well-ordered if there is no infinite strictly increasing sequence
of elements of A. A set A is well-ordered in decreasing order if there is no infinite strictly
increasing sequence of elements of A.
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Figure 1: The probability hierarchies for EX, FIN and PFIN

Most of known probability hierarchies are well-ordered in decreasing order(see Figure 1, EX
stands for learning in the limit investigated by Pitt and Smith[23, 24, 27]). It is easy to see
that they all are well-ordered in decreasing order. We can also prove that the set A defined
above is well-ordered.

Theorem 5 [1] The set A is well-ordered and has a system of notation.

A system of notations is an algorithmic description for a well-ordered set. It allows to find
preceding elements, given one element. This notion was introduced by Kleene for constructive
ordinals[16] and extended to sets of reals (like A) in [1]. Well-orderedness is crucial to our proof
because it allows to use induction over elements of the set A. Having the system of notation is
important to make this induction algorithmic. Given well-orderedness and system of notations,
it is easy to construct a universal simulation algorithm.

Theorem 6 [1] Let p € A and p' < p be such that there is no p" € A with p' < p". Then,
(pYPFIN = (p'\PFIN.

Corollary 1 [1] A= Pppin.
This approach gives two other interesting results.

Theorem 7 [1] The set PppiN is decidable, i.e. there is an algorithm that receives two proba-
bilities p1 and py and answers whether (p1)PFIN = (p2)PFIN.

Theorem 8 [I] Let p € Pppin. Then, there is an k such that [pk, k]PFIN = (p)PFIN.

Thus, teams of different size can have different learning power (cf. Theorem 2) but we always
have the “best” team size such that team of this size can simulate any probabilistic machine
(and hence, team of any other size with the same success ratio).

Finally, it is also possible to determine the precise ordering type of the probability hierarchy.
The table below shows how the complexity of the ordering increases when probabilities decrease.



‘ Interval H Ordering type of the probability hierarchy ‘

5, 1] w
[%, 1] 2w
[%, 1] 3w
£, 1] w?
[ 1] w’
3, 1] w”
13 1] w*”
[07 1] €0

w is the ordering type corresponding to a single infinite sequence (2/3, 3/5, 4/7, ...), kw is the
ordering type of a set consisting of k infinite sequences. w? is the ordering type of a set consisting
of infinite sequence of sequences and w? is the ordering type of an infinite sequence of w?-type
sets. w® is the limit of w, w?, w? .... Further ordering types can be defined similarly[26, 18].
The last one, ¢ is the limit of

w

w,w’ WL

and is considered to be so big that it is hard to find any intuitive description for it'. This
shows that the explored part of PFIN-hierarchy (the interval [2,1], the ordering type 3w) is
very simple compared to the entire hierarchy. Our result can be also considered as a partial
explanation why it is unrealistic to find explicit values for all points in the probability hierarchy.

6 Conclusions and related work

A good surveys about early results in inductive inference, are [3, 22]. Since then, there has been
a lot of work about probabilistic inductive inference. Most of it has been similar to section 3,
describing points of probability hierarchies explicitly. Good survey papers about this work are
(28, 12].

In last years, the research has gone in two directions: obtaining explicit results for new and new
types of inductive inference (like language identification[14, 20]) and trying to move beyond
that, to more general arguments. Research on more general arguments has concentrated on
PFIN and FIN because these are most well-studied inductive inference types.

Daley and Kalyanasundaram|7] have developed an intricate machinery for obtaining explicit
probability values for FIN in the interval [10/21, 1/2]. These methods may be the beginning
for resolving general questions like explicit results of [5] about PFIN were the starting-point
for general results described in this talk. Another piece of general work is “assymetric teams”
of [2, 29].

The biggest challenge in the area is obtaining general results for unrestricted FIN. It would be
good to prove more general properties about PFIN as well. (For example, how close are points
of the probability hierarchy one to another?)

The probability hierarchy for probabilistic langauge learning[14] has some similarities with FIN-
hierarchy and can be very interesting subject for investigation, too. However, we expect that
it would be more difficult to prove general results for probabilistic language learning because
it is relatively unexplored and there is less methods available for it.

Tt is also known[26] that ¢y is the ordering type of the set of all expressions possible in the first-order
arithmetic but this does not look very relevant to our inductive inference result.
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