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Abstract

A language L is self-reducible if for every word w, the question “w ∈ L?” can be reduced

in polynomial time to questions “q ∈ L?” such that every word q is smaller than w. For

example, most NP-complete languages are self-reducible.

A partial information algorithm for a language L computes in polynomial time partial

information about the membership of its input words in L. Such algorithms are classified

depending on the type of partial information they compute. In the literature, languages

with many interesting types of partial information algorithms have been studied exten-

sively, for example p-selective, strongly membership comparable, p-cheatable and easily

countable languages.

Buhrman, van Helden, and Torenvliet showed that the languages in P can be charac-

terized as self-reducible p-selective languages. We show that this also holds for languages

with other types of partial information algorithms. For example, this holds for easily

2-countable languages and languages which are strongly 2-membership comparable as

well as its complement. On the other hand, we discuss whether there are self-reducible

languages that are not in P and have partial information algorithms.

Zusammenfassung

Eine Sprache L ist selbstreduzierbar, wenn die Frage ,,w ∈ L?” für jedes Wort w in

Polynomialzeit auf Fragen der Art ,,q ∈ L?” reduziert werden kann, so dass jedes Wort

q kleiner als w ist. Beispielsweise sind viele NP-vollständige Sprachen selbstreduzierbar.

Ein Teilinformationsalgorithmus für eine Sprache L berechnet für gegebene Worte

in Polynomialzeit Teilinformation darüber, welche dieser Worte in L liegen und welche

nicht. Solche Algorithmen werden danach klassifiziert, welche Art von Teilinformation sie

berechnen. Aus der Literatur sind bereits Sprachen mit vielen interessanten Arten von

Teilinformationsalgorithmen bekannt, wie zum Beispiel die so genannten p-selektiven,

strongly membership comparable, p-cheatable und leicht zählbaren Sprachen.

Buhrman, van Helden und Torenvliet zeigten, dass die Sprachen in P dadurch charak-

terisiert sind, dass sie selbstreduzierbar und p-selektiv sind. Wir zeigen, dass das auch

für Sprachen mit anderen Arten von Teilinformationsalgorithmen gilt. Zum Beispiel gilt

dies für alle leicht 2-zählbaren Sprachen und Sprachen L, für die L und das Komple-

ment strongly 2-membership comparable ist. Auf der anderen Seite diskutieren wir, ob es

selbstreduzierbare Sprachen mit Teilinformationsalgorithmen gibt, die nicht in P liegen.
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Chapter 1

Introduction

Computational complexity theory is concerned among other things with classifying lan-

guages with respect to the resources needed to decide them. Languages decidable by

deterministic polynomial-time Turing machines make up the complexity class P. Many

interesting languages are not known to be in P, but in the class NP of languages decid-

able by non-deterministic Turing machines in polynomial time. The question whether

NP equals P is one of the most important open questions in complexity theory.

The hardest languages in NP are called NP-complete. It is interesting that if an

arbitrary NP-complete language is in P, then NP equals P. Many of these languages

are self-reducible as pointed out by Selman in [Sel82a]. Intuitively, this means that for a

word w one can find in polynomial time smaller words such that the question of whether

w belongs to the language can be reduced to the question of which of these smaller words

belong to the language. There are a lot of self-reducible languages in NP that are not

known to be NP-complete, and self-reducible languages that are even not known to be

in NP. This makes self-reducibility an interesting concept in its own.

Also, Selman introduced in [Sel82a] the p-selective languages. For such a language L

there exists an algorithm that selects in polynomial time from every two given words

one word that is in L if at least one of these words is in L. He showed that p-selective

languages can be arbitrary complex. This raises the question of whether there can

be p-selective languages that are, for example, NP-complete. For the case P 6= NP,

Buhrman, van Helden, and Torenvliet [BvHT93] gave a negative answer by showing

that every self-reducible p-selective language is contained in P. As a by-product they

obtained a characterization of the languages in P as self-reducible p-selective languages.

For a p-selective language L we can compute for each pair of words partial informa-

tion about the membership of these words in L, in particular that the selected word

is in L if the other word is in L. Languages which admit computation of other types

of partial information are known from the literature. For example, Hoene and Nick-
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2 Chapter 1 Introduction

elsen considered in [HN93] easily m-countable languages L for which we can exclude in

polynomial time one possibility for the number of m given words in L. Further exam-

ples are p-cheatable [Bei87], easily approximable [BKS95a], and strongly m-membership

comparable languages [Köb95].

In general, a partial information algorithm for a language L computes on input of

a sequence of words in polynomial time some type of partial information about the

membership of these words in L. Partial information classes contain languages with

specific types of partial information algorithms. A framework to study partial informa-

tion classes in a uniform way has been introduced by Nickelsen [Nic01] who extended

the work done in [Bei87], [BKS95b], and [BGK95].

In this thesis, we try to give answers to the following type of question: Given a partial

information class C, is every self-reducible language in C contained in P? This question

is motivated by the result of Buhrman, van Helden, and Torenvliet mentioned above

which answers this question for the p-selective languages in a positive way. Several

other results appeared already in the literature. For example, in [ABG00, GJY93] it

is shown that every self-reducible p-cheatable language is in P. Another result from

[BKS95a] shows that all self-reducible easily approximable languages are contained in P.

Although we mainly focus on general self-reducibility, we also consider restricted types

of self-reducibility such as truth-table and disjunctively self-reducibility.

1.1 Contributions of the Thesis

In [BKS95a] it is asked whether every self-reducible easily m-countable language belongs

to P. We answer this question for the case that m equals 2. So, we get a characterization

of the languages in P as self-reducible easily 2-countable languages.

On the way toward a solution for the case m > 2, it has been proved in [BKS95a] that

Turing reductions to easily m-countable languages can be converted into truth-table re-

ductions1. We extend this to languages in the partial information class P[NONSELm].

This class includes the easily m-countable languages, where the inclusion is proper for all

m > 2. A corollary from the proof is that the question of whether all self-reducible lan-

guages in P[NONSELm] belong to P reduces to the question of whether all truth-table

self-reducible languages in this class belong to P. Another corollary which addition-

ally uses a result from [BKS95a] is that all disjunctively self-reducible languages in

P[NONSELm] belong to P.

1Reducibilities are introduced in Section 2.3. Self-reducibilities are special reducibilities.



1.2 Structure of the Thesis 3

On the other hand, we extend the result from Buhrman, van Helden, and Torenvliet

mentioned above to a partial information class that properly includes the p-selective

languages: the class of all languages which are strongly 2-membership comparable as

well as its complement. We do not know whether the condition for the complement

is necessary. Indeed, we argue that self-reducible strongly 2-membership comparable

languages might be candidates for self-reducible languages not in P. However, we show

that they are at least contained in the complexity class UP.

1.2 Structure of the Thesis

Chapter 2 gives an overview over basic concepts and results in complexity theory. It in-

troduces necessary complexity classes and the notions of reducibility and self-reducibility.

We also mention variations such as truth-table and disjunctive (self-) reducibility as well

as known results about the complexity of self-reducible languages.

Chapter 3 is an introduction into the theory of partial information classes as presented

in [Nic01]. We provide the definitions of pools and families to model pieces and types,

respectively, of partial information. Based on these notions we then introduce partial

information classes. Section 3.2 discusses some important families. The remaining sec-

tions deal with the inclusion structure of partial information classes. For this purpose,

we introduce normal forms of families and present known results about their properties.

In these sections, we also introduce further families which are defined based on notions

related to normal forms.

Chapter 4 deals with closures of partial information classes under various reducibilities.

For partial information classes C and reducibilities, we ask whether C is closed under

this reducibility or whether we can somehow reduce the complexity of reductions to

languages in C. Since self-reducibilities are special reducibilities, these results often

yield results for self-reducibilities. The first two sections review known results regarding

basic reducibilities. In the last section, we show that Turing reductions to languages in

P[NONSELm] are not more powerful than truth-table reductions.

In Chapter 5, we combine self-reducibility and partial information, and show that

self-reducible languages in specific partial information classes are in P. First, we ask in

Section 5.1, for which partial information classes C it holds that self-reducible languages

in C are already truth-table self-reducible. This allows us to concentrate in the remaining

sections on truth-table self-reducibilities, which are much more convenient. In Section

5.2, we then present partial information classes C for which self-reducible languages in C
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are contained in P. Finally, in Section 5.3, we discuss whether there can be self-reducible

partial information languages that are not in P.

Chapter 6 concludes and gives some open questions.

1.3 Basic Definitions and Notation

The natural numbers including zero are denoted by N, the natural numbers without zero

by N+. For each n ∈ N+ we write [n] as an abbreviation for {1, 2, . . . , n} and B for the

set of the binary digits 0 and 1.

The cardinality of a finite set A is denoted by |A|, where the empty set ∅ has cardinality

zero. We write A ⊆ B if A is a subset of B, and A ( B if the inclusion is proper.

Union, intersection, difference, and the Cartesian product are denoted by ∪, ∩, \ and

×, respectively. We define An := A × A × . . . × A, where the set A occurs n times in

the product on the right side. If � is a partial ordering, we write a ≺ b for a � b with

a 6= b, and a � b (a � b) for b � a (b ≺ a).

We use Σ := {0, 1} as the standard alphabet. The set of all words over Σ is denoted

by Σ∗. For n ∈ N we denote the set of all words w ∈ Σ∗ of length n by Σn, and the

set of all words w ∈ Σ∗ of length at most n by Σ≤n. The length of a word is denoted

by |w|. The empty word is denoted by λ. For two words w1 and w2 we write w1w2

for the concatenation of these words. The function 〈·, ·〉 : Σ∗ × Σ∗ → Σ∗ is a stan-

dard pairing function which we extend to more than two words by 〈w1, w2, . . . , wn〉 :=

〈. . . 〈〈w1, w2〉, w3〉, . . . , wn〉. For functions f which take arguments from Σ∗ we often

write f(w1, w2, . . . , wn) as an abbreviation for f(〈w1, w2, . . . , wn〉).

A subset L of Σ∗ is called a language (over Σ). Its complement is given by L := Σ∗\L.

The characteristic function of L is a function χL : Σ∗ → B defined by

χL(w) :=







1 if w ∈ L

0 else.

We extend it to arbitrary many words by defining for all n ∈ N+,

χL(w1, w2, . . . , wn) := χL(w1)χL(w2) . . . χL(wn).

Sometimes we fix the number of words to a constant n ∈ N+ in which case we write χn
L.

The cardinality function of a language L counts how many words given as arguments to
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the function are in L and is defined for all n ∈ N+ by

#L(w1, w2, . . . , wn) := |{w1, w2, . . . , wn} ∩ L| .

Again, we write #n
L if n is fixed.

Words over B are referred to as bitstrings when we want to emphasize that they

are considered as possible values of characteristic functions. For a bitstring b ∈ Bn

and a number i ∈ [n] we denote by b[i] the symbol at the i-th position of b, or the

projection of b onto the i-th position. We extend this to sequences i1, i2, . . . , ik of numbers

by b[i1, i2, . . . , ik] := b[i1]b[i2] . . . b[ik], and to subsets B of Bn by B[i1, i2, . . . , ik] :=

{b[i1, i2, . . . , ik] | b ∈ B}. For c ∈ B, the number of positions i with b[i] = c is counted

by #c(b).



Chapter 2

Preliminaries from Complexity

Theory

The results presented in this thesis are based on several results from computational

complexity theory. This chapter gathers definitions and results from this field which will

form the basis of the following chapters. Most of the topics are covered in more detail,

for instance, in the books of Hopcroft, Motwani and Ullman [HMU01], Papadimitriou

[Pap94], Du and Ko [DK00], and Balcázar, Dı́az and Gabarró [BDG88]. They also give

excellent introductions into this field.

2.1 Turing Machines and Complexity Classes

This thesis deals mainly with algorithms. To formalize algorithms and to analyze their

running time and space usage we use the Turing machine model. We consider deter-

ministic Turing machines and non-deterministic Turing machines.

For a Turing machine M , let L(M) be the language accepted by M . We say that

M is polynomially time-bounded (or a polynomial-time Turing machine) if there exists

a polynomial p such that M stops on every input w after at most p(|w|) steps. The

complexity class P is the set of all languages accepted by deterministic polynomial-time

Turing machines. The corresponding complexity class for non-deterministic polynomial-

time Turing machines is NP. The class co-NP is the set of the complements of lan-

guages in NP. A non-deterministic Turing machine is unambiguous if it has on ev-

ery input at most one accepting computation. Languages accepted by unambiguous

non-deterministic polynomial-time Turing machines are exactly the languages in UP.

We denote by FP the set of all (total) functions that are computed by deterministic

polynomial-time Turing machines.

6
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We also consider polynomially space-bounded Turing machines. For such machines

there exists a polynomial p such that they visit on every input w at most p(|w|) tape

cells. Languages that are accepted by deterministic polynomially space-bounded Turing

machines form the class PSPACE.

2.2 Relativized Computations

In many cases, we are interested in the complexity of a language L under the hypothesis

that another language K can be solved efficiently. We then pretend to know for all

possible words whether they are in K or not and analyze the complexity of L with this

additional knowledge. For this purpose, the Turing machine model can be extended so

that questions about the membership of words in a given language may be asked during

a computation and the correct answers are provided by a so called oracle in the next

step. Such machines are therefore known in the literature as oracle Turing machines.

Definition 2.2.1 (oracle Turing machine). An oracle Turing machine M is a Turing

machine with a special tape, the query tape, and two special states: the query state q?,

and the answer state qa. The computation of M on input w with an arbitrary language

L as oracle proceeds like in an ordinary Turing machine, except for the case that M

reaches the query state. Then, the word q currently being on the query tape is replaced

by χL(q) and the computation of M continues in the answer state. We say that M

queries a word q. The language accepted by M with oracle L is denoted by L(M,L).

For arbitrary languages L, the complexity classes PL and NPL are defined as the

corresponding classes without the superscript, except that the Turing machines are oracle

Turing machines that have access to the oracle L. For example, the class PL consists of all

languages decidable by deterministic oracle Turing machines with oracle L. Sometimes

we say that a statement A is true relative to some language L. We then mean that A is

true if all machines have access to L. For example, there are languages L and K such

that P = NP holds relative to L, and P 6= NP holds relative to K [Pap94, p. 340]. This

means that PL = NPL and PK 6= NPK .

We will mostly be concerned with deterministic oracle Turing machines. Therefore,

all oracle Turing machines are deterministic in the remaining part of this thesis, unless

otherwise stated.

In general, the sequence of queries posed by an oracle Turing machine M on an input

w depends on the language plugged in as oracle. The query tree of M on an input w
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contains for each possible language L a path such that the sequence of labels along this

path corresponds to the sequence of queries posed by M on input w with oracle L.

Definition 2.2.2 (query tree). Let M be a polynomial-time oracle Turing machine.

The query tree of M on an input w, for short QTM(w), is a rooted binary tree which

satisfies the following conditions.

1. Every interior node is labeled with exactly one word, and each edge is labeled with

0 or 1.

2. IfM poses on input w with an oracle L exactly the sequence q1, q2, . . . , qk of queries,

then there exists a path of length k from the root to a leaf such that for all i ∈ [k],

the i-th node on this path is labeled with qi, and the i-th edge on this path is

labeled with χL(qi). This path is called the path determined by L.

3. Every path from the root to a leaf is determined by some language.

Example 2.2.3. We consider an oracle Turing machine M that queries on an input

w a word q1. If q1 is in the oracle language, then another word, q2, is queried. The

machine accepts w if and only if both words are in the oracle language. Figure 2.1

shows QTM(w). The node labeled q1 is the root node. The bold marked path is the

q1

q2

0 1

0 1

Figure 2.1: The query tree of M on input w.

path determined by any language which contains q1 and q2, whereas the path which

starts at the root and visits the edges labeled 1 and 0 in this order is determined by any

language which contains q1, but not q2. 4

Observe that for every polynomial-time oracle Turing machine M and every word w,

the depth of QTM(w) is bounded by a polynomial in |w|. This is because every path

from the root to a leaf is determined by some language L, i.e. the sequence of labels
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along this path corresponds to the sequence of words queried by M on input w with

oracle L. Since M is polynomially time-bounded, say by some polynomial p, the length

of such a sequence is at most p(|w|).

For the next section, we need a special type of oracle Turing machines, called non-

adaptive oracle Turing machines. Oracle Turing machines as in Definition 2.2.1 are

called adaptive, because in general each query depends on the answers to the queries

made before. This is not allowed for non-adaptive oracle Turing machines. Formally, a

non-adaptive oracle Turing machine is allowed to enter the query state only once, but

on the other hand it may ask a sequence of words in parallel (or non-adaptively). To do

this, it writes this sequence onto the query tape, for instance “〈w1, w2, . . . , wn〉”. The

answers are provided by replacing this sequence with the bitstring χL(w1, w2, . . . , wn),

where L is the oracle.

2.3 Reducibilities

A reducibility is a tool to compare the computational complexity of two languages. In

general, it is a binary relation on languages which is reflexive and transitive. We say that

a language L is reducible to another language K with respect to a reducibility ≤ (for

short, L is ≤-reducible to K) if L ≤ K. Reducibilities are usually defined in terms of

oracle Turing machines which decide the reduced language by using the other language

as oracle. The type of a reducibility is determined by the time or space the machine may

consume, the way it is allowed to access the oracle, the number of queries it is allowed

to make, and the way it may evaluate the answers. We only consider polynomial-time

reducibilities where the oracle Turing machines are polynomially time-bounded. The

prefix “polynomial-time” is omitted in the following.

2.3.1 Many-One and Turing Reducibility

The most restrictive reducibility is the many-one reducibility. In a many-one reduction

the oracle Turing machine is allowed to make at most one query and it must accept

its input if the answer is positive, and it must reject if it is negative. Essentially, the

machine transforms an instance w1 of one problem, L, into an instance w2 of another

problem, K, such that w1 is in L if and only if w2 is in K. If there was an efficient

algorithm to solve K, then we could easily construct an efficient algorithm to solve L.

Therefore L can be seen as “at most as hard” as K.
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Definition 2.3.1 (many-one reducibility). A language L is many-one reducible to a

language K, denoted by L ≤p
m K, if there is a function f ∈ FP such that for all words

w it holds that w ∈ L if and only if f(w) ∈ K.

Many-one reducibility is just a special case of Turing reducibility. In a Turing reduc-

tion the oracle Turing machine is allowed to make as many queries as possible, where a

query may depend on the preceding ones, and they can be evaluated arbitrarily. It is

formally defined as follows.

Definition 2.3.2 (Turing reducibility). A language L is Turing reducible to a lan-

guage K, denoted by L ≤p

T K, if there is a polynomial-time oracle Turing machine M

with L(M,K) = L.

There are many other reducibilities between many-one and Turing reducibility. Truth-

table reducibility and its variations as well as positive reducibilities are the most inter-

esting ones there.

2.3.2 Truth-Table, Positive, and Bounded Reducibilities

Truth-table reducibility is a special case of Turing reducibility. Words are queried in

parallel instead of sequentially. Based on the mechanism to evaluate the oracle’s answers,

we distinguish several variations of truth-table reducibility. The most important ones

are given in the following definition.

Definition 2.3.3 (truth-table reducibilities).

• A language L is truth-table reducible to a language K, denoted by L ≤p
tt K, if there

is a non-adaptive polynomial-time oracle Turing machine M with L(M,K) = L.

• A language L is disjunctively reducible to a language K, denoted by L ≤p

dtt K, if L

is truth-table reducible to K via an oracle Turing machine M such that for every

word w, if M queries on input w at least one word then w ∈ L if and only if at

least one of the queried words is in K.

• A language L is conjunctively reducible to a language K, denoted by L ≤p
ctt K,

if L is truth-table reducible to K via an oracle Turing machine M such that for

every word w, if M queries on input w at least one word then w ∈ L if and only

if all queried words are in K.
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The following equivalent definition of truth-table reducibility appears in [DK00]: A

language L is defined to be truth-table reducible to a language K if there exist two

functions f, g ∈ FP which satisfy the following conditions. On the one hand, the value

of f on an input w is a tuple of arbitrary many words. On the other hand, g corresponds

for every w to a boolean function gw : Bk → B, where k is the number of words in f(w),

such that gw(χK(f(w))) = χL(w).

Disjunctive and conjunctive reducibilities are special cases of positive truth-table re-

ducibility which are itself special truth-table self-reducibilities. In general, positive re-

ducibilities are defined in terms of positive oracle Turing machines as follows.

Definition 2.3.4 (positive reducibilities). An oracle Turing machine M is a positive

oracle Turing machine if for every two languages L and K with L ⊆ K it holds that

L(M,L) ⊆ L(M,K). A language L is positive Turing reducible to a language K, denoted

by L ≤p
pos K, if L is Turing reducible to K via a positive oracle Turing machine. A

language L is positive truth-table reducible to a language K, denoted by L ≤p
ptt K, if L

is truth-table reducible to K via a positive oracle Turing machine.

Finally, every reducibility ≤p
r can be restricted in the number of queries that the

corresponding oracle Turing machines are allowed to make. We write L ≤p

k–r K to

denote that L is ≤p
r-reducible to K via an oracle Turing machine that makes on every

input at most k queries. We should note that for k > 1, the reducibility ≤p

k–tt is in

general not transitive.

2.3.3 Hardness, Completeness, and Reduction Closures

For a reducibility ≤, a language L to which all languages of a given complexity class C

are ≤-reducible is called ≤-hard for C. In case that ≤ is the Turing reducibility we write

that L is C-hard. If L is ≤-hard for C and belongs itself to C, then L is called ≤-complete

for C. For the case that ≤ is the many-one reducibility we write that L is C-complete.

Cook showed that the satisfiability problem for boolean expressions that are built from

boolean variables, and the boolean connectives ∧, ∨, and ¬ is NP-complete [Coo71]. The

problem is to find out whether there exists a truth assignment which satisfies a given

boolean expression or not. The corresponding language is

SAT := {ϕ | ϕ is a satisfiable boolean expression} 1.

1We assume that all objects such as strings, expressions, or graphs that occur in the definition of
languages are encoded appropriately as words over Σ∗.
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Since then, many other languages have been shown to be complete for certain complexity

classes. One of them is the satisfiability problem for quantified boolean expressions which

is PSPACE-complete. Such expressions are build from boolean variables, the boolean

connectives ∧, ∨, and ¬, and the quantifiers ∃ and ∀. The corresponding language is

QBF-SAT := {ϕ | ϕ is a satisfiable quantified boolean expression} .

The closure of a complexity class C under a reducibility ≤ (for short, ≤-closure of C) is

the set of all languages that are ≤-reducible to some language in C. The class C is closed

under ≤-reducibility if the ≤-closure of C equals C. Examples of complexity classes that

are closed under many-one reducibility are P, NP, co-NP, and PSPACE. Furthermore, P

and PSPACE are closed under Turing reducibility. This is not known for NP. However,

Selman [Sel82b] showed that NP is closed under positive Turing reducibility.

Complexity classes C that are closed under some reducibility ≤ are interesting, because

if there is a language in C that is ≤-hard for a complexity class D, then D ⊆ C. For

instance, if the language SAT belongs to the class P then we have NP ⊆ P. Since P ⊆ NP

it would follow that P = NP. However, at this time it is not known whether the latter

statement is true or false. The associated problem is known in the literature as the so

called P versus NP problem.

2.4 Self-Reducibilities

This section deals with a special case of reducibility, called self-reducibility. In contrast

to reducibilities, self-reducibilities are not binary relations on languages, but can be

considered as properties of languages that describe some kind of internal structure.

Informally, a language is self-reducible if it is reducible to itself and the machine which

carries out the reduction queries on every input w only words that are smaller than w.

For example, most NP-complete languages including SAT are self-reducible as well as

the PSPACE-complete language QBF-SAT (see Examples 2.4.3 and 2.4.4). This may be

the main motivation to study self-reducible languages.

2.4.1 Introduction to Self-Reducibility

Informally, a language L is self-reducible if it is reducible to itself. However, we restrict

the oracle Turing machines which carry out the reductions such that on every input w

only words are queried which are shorter than w. This condition prevents the machines
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from querying its own input to decide whether it is in L or not. According to Beigel

[Bei87], this was how self-reducibility was defined originally by Schnorr in [Sch76].

In this thesis we will work with a generalization employed by Meyer and Paterson

[MP79]. The queries must be smaller than the input word with respect to some poly-

nomially related partial ordering on Σ∗. The following definition of such orderings is

essentially the same one as in their work. One must note that the name polynomially

related has been used also by Ko [Ko83] for partial orderings on Σ∗ which must be in

addition to the requirements in Definition 2.4.1 polynomially decidable.

Definition 2.4.1 (polynomially related). A partial ordering � on Σ∗ is polynomially

well-founded and length-related (for short, polynomially related) if there is a polynomial

p such that

• for all words w1 and w2 it holds that w1 � w2 implies |w1| ≤ p(|w2|), and

• for every strictly �-decreasing chain w1 � w2 � . . . � wn we have n ≤ p(|w1|).

An example of a polynomially related partial ordering on Σ∗ is the one based on word

length used in Schnorr’s definition of self-reducibility. Originally, self-reducibility has

been defined using Turing reducibility. Other variations of self-reducibility appear in

the literature. We give a definition of self-reducibility based on reducibilities introduced

in Section 2.3.

Definition 2.4.2 (self-reducibility). Let ≤p
r be any reducibility defined in Section 2.3.

A language L is r-self-reducible if there exists a polynomially related partial ordering �

such that

• L is ≤p
r-reducible to itself via an oracle Turing machine M , and

• M queries on input of a word w only words q with q ≺ w.

We write that L is r-self-reducible via M (and �). The machine M is called a self-

reduction machine (for L).

Whenever we write self-reducibility, we mean T-self-reducibility. Instead of tt-self-

reducibility we also say truth-table self-reducibility. Similarly, ptt-, dtt-, and ctt-self-

reducibility are called positive, disjunctive, and conjunctive self-reducibility, respectively.

From the definition given above, it follows immediately that every 1-tt-self-reducible

language is truth-table self-reducible. This implies that it is Turing reducible. However,
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it is not positive self-reducible. The other way round, every positive (truth-table) self-

reducible language is (truth-table) self-reducible. Every disjunctively or conjunctively

self-reducible language is positive truth-table self-reducible. Conjunctively self-reducible

languages are the complements of disjunctively self-reducible languages.

2.4.2 Examples of Self-Reducible Languages

Before we proceed we want to look at some examples of typical self-reducible languages.

We start by considering the NP-complete language SAT. The property of SAT to be

disjunctively self-reducible has been exploited in many works in complexity theory. See,

for instance, the chapter “The Self-Reducibility Technique” in [HO02].

Example 2.4.3 (SAT is dtt-self-reducible). The language SAT has been mentioned

in Section 2.3. Words of this language are satisfiable boolean expressions which are built

in the usual way from boolean variables, and the boolean connectives ∧, ∨ and ¬.

A possible self-reduction machine M for SAT works on every input w as follows. It

checks whether w encodes a boolean expression ϕ, and if not, it rejects w. Otherwise, a

truth assignment which satisfies ϕ must assign either the value true or false to the first

variable v in ϕ. Let ϕv:=t denote the formula obtained from ϕ when setting v to the

truth value t and simplifying. Then,

ϕ ∈ SAT if and only if ϕv:=true ∈ SAT or ϕv:=false ∈ SAT.

The machine M determines membership of ϕv:=true and ϕv:=false in SAT by querying the

oracle or by direct evaluation of the resulting formulas. It accepts ϕ if and only if at

least one of these formulas is in SAT. This can be done in polynomial time.

It remains to define an appropriate polynomially related partial ordering. For this,

we assume without loss of generality that formulas are encoded such that ϕv:=true and

ϕv:=false yield formulas with shorter encodings. Then, each word queried by M is shorter

than its input. It follows that SAT is dtt-self-reducible. 4

Similarly, QBF-SAT is positive truth-table self-reducible by nearly the same machine

as in Example 2.4.3.

Example 2.4.4 (QBF-SAT is ptt-self-reducible). The language QBF-SAT has also

been mentioned in Section 2.3. Words in this language encode satisfiable quantified

boolean expressions built from boolean variables, the boolean connectives ∧, ∨, ¬, and

the quantifiers ∃ and ∀.
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A possible self-reduction machine M for QBF-SAT works very similar to the machine

from Example 2.4.3 for SAT. If w is an input which represents a quantified boolean

expression ϕ, then one of the following two cases occurs. In case that there is no

quantifier in ϕ, M acts like the machine for SAT mentioned above. The second case

is that ϕ equals Qv.ψ for some quantifier Q, a variable v, and a quantified boolean

expression ψ. We assume without loss of generality that v is not quantified again in

ψ. If Q = ∃ then it holds that ϕ ∈ QBF-SAT if and only if ψv:=true ∈ QBF-SAT or

ψv:=false ∈ QBF-SAT, and if Q = ∀ then ϕ ∈ QBF-SAT if and only if ψv:=true ∈ QBF-SAT

and ψv:=false ∈ QBF-SAT. Again, M checks these conditions by querying the oracle or

by direct evaluation.

As polynomially related partial ordering � we use the one based on length. Then,

QBF-SAT is ptt-self-reducible via M and �. 4

The fact that SAT is dtt-self-reducible can be exhibited to show that other NP-

complete languages are dtt-self-reducible. Berman and Hartmanis [BH77] observed that

all NP-complete problems they knew are p-isomorphic to SAT. This means that for

every such language L there exists a polynomial-time computable bijective function

f : Σ∗ → Σ∗ whose inverse f−1 is also polynomial-time computable and which has the

property that a word w is in L if and only if f(w) is in SAT. So, a self-reduction machine

M for L can transform an input word w into a formula ϕ := f(w), compute the two

queries ϕ1, ϕ2 posed by the self-reduction machine for SAT from Example 2.4.3, query

the two words f−1(ϕ1) and f−1(ϕ2), and accept w if and only if at least one of these

words is in L. If we define the polynomially related partial ordering � by w1 � w2 if

and only if f(w1) �SAT f(w2), where �SAT is the partial ordering defined in Example

2.4.3, then L is dtt-self-reducible via M and �.

In general, whenever a language L is p-isomorphic to an r-self-reducible language,

then L is itself r-self-reducible by the same argument as above. This way, the language

which corresponds to the graph isomorphism problem (GI) – which is not believed to be

in P nor that it is NP-complete – can be shown to be dtt-self-reducible.

Example 2.4.5 (GI is dtt-self-reducible). A graph is a tuple (V,E) such that V is

a finite set whose elements are called nodes, and E is a set of two-element subsets of

V whose elements are called edges. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are

isomorphic if there exists a bijective mapping f from V1 to V2 such that for every two

nodes v, w ∈ V1 it holds that {v, w} ∈ E1 if and only if {f(v), f(w)} ∈ E2. We say that

f defines an isomorphism between G1 and G2. The graph isomorphism problem (GI)

asks whether two given graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic.
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We consider the following variation of GI. We name it GI′. For two given graphs

G1 = (V1, E1) and G2 = (V2, E2), and a bijective mapping f from W1 ⊆ V1 to W2 ⊆ V2

we are asked whether there exists a bijective mapping f ′ from V1 to V2 such that f ′

defines an isomorphism between G1 and G2 and f ′ extends f , i.e. for all v ∈ W1 we have

f ′(v) = f(v). This problem can be seen p-isomorphic to GI.

Furthermore, in [MP79] it is shown that GI′ is dtt-self-reducible. Let G1 = (V1, E1)

and G2 = (V2, E2) be two graphs, and f be a bijective mapping from W1 ⊆ V1 to

W2 ⊆ V2. If |V1| = |V2| and W1 = V1, then f defines an isomorphism between G1

and G2 if and only if for each node v, w ∈ V1 it holds that {v, w} ∈ E1 if and only if

{f(v), f(w)} ∈ E2. On the other hand, if |V1| 6= |V2|, then no extension of f defines an

isomorphism between G1 and G2. Both conditions can be checked by an oracle Turing

machine M in polynomial time without querying the oracle.

Suppose that |V1| = |V2| and W1 ( V1. Then M picks an arbitrary node v ∈ V1 \W1,

and defines for all nodes w ∈ V2 \W2 a bijective mapping fw from W1 ∪{v} to W2 ∪{w}

by

fw(x) :=







f(x) if x ∈ W1

w if x = v.

Clearly, f can be extended to a mapping that defines an isomorphism between the two

graphs if and only if fw can be extended to such a mapping for some w ∈ V2 \W2. The

machine M determines whether the latter condition holds by querying the oracle.

If we define the polynomially related partial ordering � by 〈G1, G2, f〉 � 〈G′
1, G

′
2, f

′〉

if and only if G1 = G′
1, G2 = G′

2, and f is an extension of f ′, then GI′ is dtt-self-reducible

via M and �. 4

2.4.3 Complexity of Self-Reducible Languages

An interesting question is that of the complexity of self-reducible languages. Are they

contained in any of the complexity classes introduced in Section 2.3, or can they be arbi-

trary complex? An answer has been given by Ko [Ko83]: They are contained in PSPACE,

and languages which are self-reducible under special truth-table self-reducibilities are

contained in NP, co-NP, or even in P.

Before we give the corresponding theorem, it is convenient to introduce self-reduction

trees. Such trees are very similar to query trees of deterministic oracle Turing machines.

The difference is that not the paths correspond to sequences of queries, but the successors

of a node.
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Definition 2.4.6 (self-reduction tree). Let M be a self-reduction machine for a

language L. The self-reduction tree of M on an input w, for short STM(w), is a rooted

tree which satisfies the following conditions.

1. Every node is labeled with exactly one word, where the root node is labeled w.

2. If an interior node is labeled w0, then it has k successor nodes labeled with

w1, w2, . . . , wk if and only if M queries on input w0 with oracle L exactly k words,

and for all i ∈ [k] it holds that wi is the i-th queried word.

Example 2.4.7. We consider the self-reduction machine M for SAT from Example 2.4.3

and the boolean expression ϕ = (v1 ∨ v2) ∧ v3. Figure 2.2 shows a possibility for the

self-reduction tree STM(ϕ) of M on input ϕ when M substitutes always the leftmost

variable. We see that the root node is labeled with the input word. Its successor nodes

(v1 ∨ v2) ∧ v3

v2 ∧ v3 v3

v3

Figure 2.2: A possible self-reduction tree of the oracle Turing machine from Example
2.4.3 on input of the boolean expression (v1 ∨ v2) ∧ v3.

are labeled with v2 ∧ v3 and v3, the two queries of M on input ϕ. The node labeled

ϕ′ = v2 ∧ v3 has only one successor. This is because M queries only ϕ′
v2:=true = v3 on

input ϕ′; ϕ′
v2:=false can be directly evaluated and is false in this case. 4

Note that self-reduction trees are also defined for adaptive self-reduction machines.

In this case, if a node in this tree is labeled w, then the label of the i-th successor

corresponds to the i-th word queried by the machine on input w with the corresponding

oracle. In contrast to self-reduction trees for non-adaptive self-reduction machines which

can be traversed in a breadth-first fashion, this tree can only be traversed in a depth-first

fashion. This is exploited in Theorem 2.4.9 to show that all self-reducible languages are

contained in PSPACE.

Finally, let us make the following observation about the depth of self-reduction trees.

Lemma 2.4.8. For every self-reduction machine M there exists a polynomial p such

that for every word w the depth of STM(w) is at most p(|w|).
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Proof. Let M be a self-reduction machine for some language L, and let w be an arbitrary

word. We show that each path in STM(w) has a length of at most p(|w|) for some

polynomial p. For this, let P be a path from the root to a leaf, and let w = w1, w2, . . . , wk

be the labels of the nodes along P . For every i ∈ [k − 1] it holds that wi+1 labels

a successor of the node labeled wi, and by Definition 2.4.6, it follows that wi+1 is a

word queried by M on input wi. Since M is a self-reduction machine there exists a

polynomially related partial ordering � such that wi+1 ≺ wi for every such i. This way

we obtain a �-decreasing chain w1 � w2 � . . . � wk which has by Definition 2.4.1 at

most a length of p(|w1|) for some polynomial p. So there are at most p(|w|) many words

on each path.

Now we state Ko’s theorem mentioned above and give a proof.

Theorem 2.4.9.

1. Every self-reducible language is in PSPACE.

2. Every dtt-self-reducible language is in NP.

3. Every ctt-self-reducible language is in co-NP.

4. Every 1-tt-self-reducible language is in P.

Proof. (1) Let L be a self-reducible language and let M be the corresponding self-

reduction machine. To see that L is in PSPACE note that we can determine membership

of a word w in L by processing STM(w) in a depth-first fashion as follows. We simulate

M on input w, and if it queries a word q, then we recursively determine whether q ∈ L

or not. Finally, we continue the simulation of M on input w until it makes another

query, or until it stops in which case we accept w if and only if M accepts it. If d is the

depth of STM(w), then we have to maintain at most d simulations of M in parallel each

requiring space polynomial in |w|. Since d is bounded by a polynomial in |w| by Lemma

2.4.8, we conclude that the whole algorithm just described runs within space polynomial

in |w|, hence it follows that L ∈ PSPACE.

(2 and 3) Let L be a dtt-self-reducible language and let M be the corresponding self-

reduction machine. Then, it is easy to see that a word w is in L if and only if there is

a leaf in STM(w) that is labeled with a word in L. So, a non-deterministic polynomial-

time oracle Turing machine M ′ can guess a path from the root to a leaf (where the label

of a successor of a node v is determined by simulating M on v’s label and choosing one

of the words queried by M) and check whether its label, w′, belongs to L or not (again,
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by simulating M on input w′). It accepts w if and only if w′ is in L. So, it is clear that

L(M ′) = L and we have therefore L ∈ NP. By symmetry, we also have L ∈ co-NP, if L

is ctt-self-reducible.

(4) Just note that if a language is 1-tt-self-reducible, then the self-reduction tree of the

corresponding self-reduction machine M on an input w is in fact a path whose length is

bounded by a polynomial in |w|. This path can be computed by a deterministic Turing

machine (where the label of a node’s successor is computed by simulating M on the

node’s label). Having this path we can determine for each node v from the leaf to the

root whether v’s label belongs to L or not. Therefore, this language is in P.
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Partial Information

Let us consider the following problem. For a language L we have to decide which of

m given words w1, w2, . . . , wm belong to L and which do not. If L is in P then this

problem can be solved in polynomial time by running for each word the corresponding

polynomial-time algorithm. However, many interesting languages such as SAT, QBF-SAT

or GI are not known to be in P.

In some cases we might be happy to compute some kind of partial information about

the membership of these words in L. For instance, a clever partial information algorithm

might find out that one word is in L if another one is, or that under no circumstances

it can be the case that exactly two of these words are in L. Either this information is

sufficient to solve the underlying problem or we could try to infer further information

from it. For instance, in Chapter 5 we show that if L is self-reducible then partial

information algorithms of specific types can be used to decide membership of all given

words in L.

When we talk about partial information we have to describe how it is represented.

In his PhD-thesis, Nickelsen [Nic01] employs sets of bitstrings for this purpose. A

set of bitstrings can be seen as a pool of possibilities for the characteristic string of

(w1, w2, . . . , wm) with respect to L. In this framework, a partial information algorithm

is a function that computes on input of m words a pool that contains the correct char-

acteristic string. The collection of all pools computed by such an algorithm is called

a family. Families also describe types of partial information. Finally, for every family

F he defines a partial information class P[F ] that contains all languages with partial

information algorithms that output only pools of this family.

The purpose of this chapter is to give an introduction into the theory of partial infor-

mation and partial information classes as presented in Nickelsen’s PhD-thesis [HN93].

All definitions and results in this chapter are taken from his thesis unless otherwise

stated. The chapter is structured as follows. In Section 3.1, we introduce pools, fami-

20
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lies, and partial information classes. In Section 3.2, we mention some basic families and

look at the corresponding partial information classes. In Section 3.3, normal forms of

families are introduced. An important result is that every family has a family in normal

form which produces the same class. Also, we mention some families that are defined

using notions related to normal forms. Finally, in Section 3.4, we present known results

on the inclusion structure of partial information classes. We close this section with a

diagram that displays all 2-families in normal form and their inclusion structure.

3.1 Pools, Families, and Classes

In this section we show how to model partial information by pools, and types of partial

information by families. We also introduce partial information classes.

Whenever we talk about partial information we mean partial information on the mem-

bership of a number of words in some language. For this, recall the problem from the

introduction where m words w1, w2, . . . , wm and a language L are given and it is asked

which of these words belong to L and which of these do not. If nothing is known about

these words and L, there are a priori 2m bitstrings that could match the characteristic

string χL(w1, w2, . . . , wm), namely the bitstrings in Bm. Excluding bitstrings that can

not be correct characteristic strings gives us some kind of partial information about

this string. The set of bitstrings that remain possible make up a pool for the correct

characteristic string.

Definition 3.1.1 (pool). For m ∈ N+, an m-pool is a subset of Bm. If (w1, w2, . . . , wm)

is a tuple of words and L is a language then an m-pool is said to be a pool for

(w1, w2, . . . , wm) and L if it contains χL(w1, w2, . . . , wm).

Having introduced pools we want to give a convenient notation for them – the stacking

notation. Instead of writing the bitstrings in the pool one behind the other, we stack

them. For example, the pool {00, 01, 11} is written in this notation as
{

00
01
11

}

. In light

of this notation it makes sense to talk about the i-th column of a pool P . This column

refers to the i-th position of each bitstring in P .

As we have seen, partial information for m words and a language L is modeled by

m-pools. A certain type of partial information is modeled by a family of pools. Such a

family gathers all pools that are necessary and sufficient to describe this type of partial

information. For instance, the type “there exists a k ∈ [m] such that the number of

words from w1, w2, . . . , wm in L is not k” is described by a family which contains only

m-pools with bitstrings that do not contain exactly k 1-bits for some k ∈ [m].
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Families are also considered as collections of pools that a specific partial information

algorithm is allowed to output. As we will see soon, a partial information algorithm for

a language L is required to output only pools which contain the correct characteristic

value of the input words with respect to L. Since for every possible bitstring b there is

a sequence of words whose characteristic string equals b we additionally require that a

family must contain for every such bitstring a pool that contains this bitstring.

Definition 3.1.2 (family). For m ∈ N+, an m-family F is a set of m-pools such that

for every bitstring b ∈ Bm there exists at least one pool in F that contains b. We also

say that F is an m-ary family and that m is the arity or tuple length.

For each type of partial information modeled by some family F we can now define

a corresponding class of languages which have partial information algorithms over F .

We call such a class a partial information class and a language in this class a partial

information language.

Definition 3.1.3 (partial information class). Let F be an arbitrary m-family for

some m ∈ N+.

• A language L is in the partial information class P[F ] if there exists an m-ary func-

tion f ∈ FP such that for all m-tuples (w1, w2, . . . , wm) of words, f(w1, w2, . . . , wm)

is a pool for (w1, w2, . . . , wm) and L.

• A language L is in the partial information class Pdist[F ] if there exists an m-ary

function f ∈ FP such that for all m-tuples (w1, w2, . . . , wm) of pairwise distinct

words, f(w1, w2, . . . , wm) is a pool for (w1, w2, . . . , wm) and L.

In both cases, L is called a partial information language and the function f a partial

information function (over F).

In [Nic01], subset complete families are used as a standard form for families. A family

F is subset complete if every subset of a pool in F is already contained in F . Subset

complete families are sometimes more convenient when analyzing certain properties of

partial information classes. However, sometimes, especially in proofs, it is convenient to

have partial information algorithms that only output maximal pools.

Definition 3.1.4 (maximal pool). Let F be an m-family for some m ∈ N+. A

maximal pool from F is a pool P ∈ F such that there exists no pool P ′ ∈ F with

P ( P ′.
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For every partial information language there exists a partial information function that

outputs only maximal pools from the corresponding family. To see this, we consider

a language L in P[F ] for some family F . By Definition 3.1.3 there exists a partial

information function f for L that computes partial information of type F . We convert

this function into a function f ′ that outputs only maximal pools as follows: If P =

f(w1, w2, . . . , wm) is no maximal pool then we search for a maximal pool P ′ in F that

is a superset of P and output this maximal pool instead of P . Clearly, P ′ is a pool for

(w1, w2, . . . , wm) and L.

3.2 Basic Families

In this section we look at some interesting families and their corresponding partial infor-

mation classes. All of these families and classes are covered in more detail in Nickelsen’s

PhD-thesis [Nic01].

We start by considering SIZE-families. Although these families contain only pools

that are bounded in their size they are expressive enough to capture many types of

partial information studied already in the literature, for example approximability and

p-cheatability. We then proceed with SEL-families where the corresponding partial in-

formation classes equal the class of p-selective languages. Finally, we look at the families

CARD and NONSEL. The first one represents partial information on the cardinality of

words in a language whereas the second one is a special superset of CARD.

Throughout this thesis we denote a family by writing its name in capital letters along

with an index m that indicates that the family is an m-family. Some families such as the

SIZE-families need another parameter k which is written in front of the name followed

by a dash, for example k–SIZEm. This differs slightly from the notation used in [Nic01]

and [Tan99].

3.2.1 SIZE-Families

A SIZE-family contains pools that have at most k bitstrings for some constant k given

as parameter to the family. So each pool excludes at least 2m − k out of 2m possibilities

for the characteristic string, where m is the arity of the family.

Definition 3.2.1 (k–SIZEm). For fixed m, k ∈ N+ let k–SIZEm be the m-family con-

sisting of all m-pools of size at most k.
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Languages which admit computation of partial information of type k–SIZEm for some

m and k were studied extensively in the literature. Beigel, Kummer, and Stephan in-

troduced them under the notion of (k,m)p-verbose languages [BKS95a, BKS95b], where

the parameters k and m are as in Definition 3.2.1.

It is easy to see that the class P[1–SIZEm] equals P for every possible m ∈ N+. This

is because a polynomial-time partial information algorithm over 1–SIZEm must output

pools which contain exactly the correct characteristic string. On the other hand, if a

language is in P then the corresponding polynomial-time algorithm can be used to decide

all given words and to output an appropriate pool for them. Pools in (2m − 1)–SIZEm

give the minimum partial information we can get for characteristic strings of length m.

Languages that are in P[(2m − 1)–SIZEm] for some m ∈ N+ are called approximable.

Languages that are not approximable are called p-superterse.

3.2.2 CHEAT-Families

Another interesting family is CHEATm which is defined by m–SIZEm. Languages in

CHEATm are called m-cheatable, and if a language is m-cheatable for some m ∈ N+ then

it is called cheatable. Beigel introduced cheatable languages in his PhD-thesis [Bei87],

although not under this definition. Under his definition, a language L is 2m-cheatable if

there exists a language K such that χL(w1, w2, . . . , w2m) can be computed in polynomial-

time with at most m queries to K. So we “cheat” while computing this value, which

motivates the name cheatable.

There are two maximal pools in CHEAT2 that have special names. The first one is

the equivalence pool equ2 := { 00
11 }. If equ2 is a pool for a tuple (w1, w2) of words and a

language L, then the partial information represented by this pool is that w1 is in L if

and only if w2 is in L. The second one is the xor-pool xor2 := { 01
10 }. If xor2 is a pool for

(w1, w2) and L, then the partial information represented is that w1 is in L if and only if

w2 is not in L.

3.2.3 SEL-Families

In 1979, Selman [Sel79] introduced p-selective languages. For a p-selective language L

there exists a polynomial-time computable function that selects on input of two words

w and u a word such that if at least one of the words, w and u, is in L then the selected

word is in L, too. This function is therefore called a selector for L. If this selector

outputs u then we have w ∈ L implies u ∈ L, and if it outputs w we have u ∈ L implies
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w ∈ L. Equivalently the function could output the pool {00, 01, 11} in the first case,

and the pool {00, 10, 11} in the second case. These two pools are the maximal pools of

the family SEL2.

Definition 3.2.2 (SEL2). Let sel2 := {00, 01, 11} denote the selectivity pool, and let

co-sel2 := {00, 10, 11} denote its negation. The 2-family SEL2 contains all 2-pools that

are subsets of sel2 or co-sel2.

As argued above, every p-selective language is in P[SEL2]. The converse is also true:

Let L be a language in P[SEL2] and f the corresponding partial information function

then on input (w, u), if f(w, u) is a subset of sel2 we output u, and if it is a subset

of co-sel2 we output w1. Therefore we call languages in P[SEL2] p-selective and denote

the class of all such languages by P–sel. As pointed out by Selman [Sel79], the class

P–sel contains arbitrarily complex languages. In particular, it contains non-recursive

languages.

Fact 3.2.3. The class P–sel contains non-recursive languages.

If sel2 is a pool for a tuple (w1, w2) of words and a language L, then w1 ∈ L implies

w2 ∈ L. If instead co-sel2 is a pool for this tuple and L, then w1 ∈ L. In general, a

maximal pool from SEL2 can be interpreted as a re-ordering of the two words w1 and w2

such that if wi is smaller as wj with respect to this ordering, then wi ∈ L implies wj ∈ L.

This idea can be extended to more than two words: For an m-tuple (w1, w2, . . . , wm)

we want to compute a re-ordering of these words such that if a word wi is smaller in

this ordering than wj, then wi ∈ L implies wj ∈ L. This type of partial information is

represented by ascending chains.

Definition 3.2.4 (ascending chain, SELm). A subset {b0, b1, b2, . . . , bm} of Bm is

called an ascending chain if b0 = 0m, and for all i ∈ [m] the bitstring bi is obtained from

bi−1 by flipping one 0 to 1. For fixed m ∈ N+, the family SELm contains all m-pools

that are subsets of some ascending chain.

As it turns out it holds that for m > 2 the classes P[SEL2] and P[SELm] are equivalent,

and so P–sel = P[SELm] for all m ≥ 2. This will be more clearer in Section 3.4, when

we discuss translations of families to other tuple lengths.

1If f(w, u) is a subset of both pools then we can output either w or u.
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3.2.4 CARD- and NONSEL-Families

An important type of partial information is that of the number of m given words

w1, w2, . . . , wm in a language L, i.e. partial information on #m
L . This number is deeply

connected with the characteristic string of these words with respect to L, since we have

#m
L = #1 ◦ χ

m
L . So, a pool for (w1, w2, . . . , wm) and L that contains no bitstrings with

exactly k 1-bits excludes the possibility that #L(w1, w2, . . . , wm) equals k. The families

k–CARDm contain only pools such that at most k of the values of #m
L remain possible,

i.e. at least m− k + 1 values are excluded.

Definition 3.2.5 (k–CARDm). For fixed m ∈ N+ and k ∈ [m + 1] the m-family

k–CARDm contains all m-pools P for which there is a set N ⊆ {0, 1, 2, . . . , m} of size at

most k such that for all bitstrings b ∈ P it holds that #1(b) ∈ N .

Languages in Pdist[m–CARDm] are called easily m-countable. This name is motivated

by the fact that, if m = 2k for some k ∈ N+ then there exists a language K such that

#m
L can be computed in polynomial time with at most k queries to K (see [Nic01, p.

19]). A language that is easily m-countable for some m is called easily countable.

Kummer [Kum92] proved that every easily countable language is recursive. This

result was extended by Nickelsen [Nic01, Theorem 4.20] to languages in the larger class

P[NONSELm]. He also noted that NONSELm is the largest m-family F in normal form
2 such that P[F ] contains only recursive languages.

Definition 3.2.6 (NONSELm). For fixed m ∈ N+ the m-family NONSELm contains

all pools that are no supersets of an ascending chain.

The name NONSELm stems from the fact that it is the largest m-family in normal

form that is no superset of SELm. The relation of m–CARDm to NONSELm is as follows:

For the case that m is equal to 2 both families are equal, but the first family is strictly

included in the second one for any m larger than 2. The latter relation holds because

for m ≥ 3 the family NONSELm contains the pool {0m−i1i | i 6= 1} ∪ {10m−1} that is no

ascending chain and contains for every k ∈ {0, 1, 2, . . . , m} a bitstring with exactly k

1-bits. So, this pool can not be contained in m–CARDm.

3.3 Normal Forms

In this section we introduce the notion of a family being in normal form. Families

in normal form are very convenient in the study of the inclusion structure of partial

2We will introduce normal forms in the next section.
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information classes. For instance, as stated in the next section, for any two m-families F1

and F2 in normal form we have P[F1] ⊆ P[F2] if and only if F1 ⊆ F2, and P[F1] = P[F2]

if and only if F1 = F2. Moreover, families in normal form are already sufficient to

produce all possible partial information classes.

To define normal forms we first have to define what it means for a family to be closed

under permutations, projections and copy operations.

Definition 3.3.1 (permutation, projection, copy operation). Let F be an arbi-

trary m-family for some m ∈ N+.

1. If σ is a permutation of (1, 2, . . . , m) and b is a bitstring of length m, then

σ(b) := b[σ(1), σ(2), . . . , σ(m)].

For all m-pools P we define σ(P ) := {σ(b) | b ∈ P}. The family F is closed under

permutations if and only if for all permutations σ of (1, 2, . . . , m) and for all pools

P ∈ F we have σ(P ) ∈ F .

2. For a bitstring b of length m, an index i ∈ [m] and a bit c ∈ B we define the

projection of c on i by

πc
i (b) := b[1] . . . b[i− 1]cb[i + 1] . . . b[m].

For all m-pools P we define πc
i (P ) := {πc

i (b) | b ∈ P}. The family F is closed under

projections if and only if for all indices i ∈ [m], bits c ∈ B and pools P ∈ F we

have πc
i (P ) ∈ F .

3. For a bitstring b of length m and two indices i, j ∈ [m] we define a copy operation

ρi,j by

ρi,j(b) = b′1b
′
2 . . . b

′
m,

where b′j = b[i], and for all k ∈ [m] with k 6= j it holds that b′k = b[k]. For all

m-pools P we define ρi,j(P ) := {ρi,j(b) | b ∈ P}. The family F is closed under

copy operations if and only if for all indices i, j ∈ [m] and pools P ∈ F we have

ρi,j(P ) ∈ F .

Now we can define what it means for a family to be in normal form.

Definition 3.3.2 (normal form). A family is in normal form if it is subset complete

and closed under permutations, projections and copy operations.
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Before we proceed, we mention a nice property of families in normal form taken from

[Nic01].

Fact 3.3.3. If F is in normal form, then Pdist[F ] = P[F ].

All families introduced in the last section are in normal form, except the CARD-

families which are in general not in normal form but subset complete. However, the

following theorem states that every language that is subset complete has a family in

normal form that produces the same partial information class. Moreover, there is ex-

actly one such family. This has been proved by Nickelsen in [Nic01, Theorem 2.27 and

Corollary 2.31].

Fact 3.3.4. For all subset complete families F there exists exactly one family F ′ in

normal form such that F ′ ⊆ F and P[F ′] = P[F ].

So, in general we can restrict our studies on partial information classes to classes that

are produced by families in normal form. An easy way to define families in normal form

is to use generators.

Definition 3.3.5 (generated family). For a sequence of m-pools P1, P2, . . . , Pn let

F = 〈P1, P2, . . . , Pn〉 denote the smallest m-family in normal form that contains all

these pools. The family F is called the family generated by P1, P2, . . . , Pn.

The family SEL2 can now be described by 〈sel2〉 which can be generalized to the

families SELm by 〈{0i1m−i | 0 ≤ i ≤ m}〉. Furthermore we have 2m–SIZEm = 〈Bm〉. Two

interesting families which are especially easy to define using generators are BOTTOMm

and TOPm which represent partial information of the type “at most one word is in the

language” and “at least one word is in the language”.

Definition 3.3.6 (BOTTOMm, TOPm). For fixed m ∈ N+, let bottomm be defined

by {b ∈ Bm | #1(b) ≤ 1}, and topm by {b ∈ Bm | #0(b) ≤ 1}. We define BOTTOMm :=

〈bottomm〉 and TOPm := 〈topm〉.

It is not hard to see that 2–CARD2 is the union of BOTTOM2 and TOP2, and that it

can be generated from the two pools bottom2 and top2. With the help of BOTTOM-

and TOP-families we can even describe the class of strongly m-membership comparable

languages and its complement for fixed m. Such languages were defined by Köbler in

[Köb95], however in a more general form with m replaced by a special function from N

to N+.
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Definition 3.3.7 (SMCm, COSMCm). For fixed m ∈ N let SMCm denote the m-

family containing all m-pools that are no supersets of topm, and let COSMCm denote

the m-family containing all m-pools that are no supersets of bottomm.

The languages in P[SMCm] are exactly the strongly m-membership comparable lan-

guages, those in P[COSMCm] the complements of strongly m-membership comparable

languages. We observe that SMC2 = SEL2 ∪ BOTTOM2 and COSMC2 = SEL2 ∪ TOP2.

The intersection SMC2 ∩ COSMC2 of both families forms the family SEL2 ∪ {xor2} =

SEL2 ∪ CHEAT2.

3.4 Inclusion Structure

This last section deals with the inclusion structure of partial information classes. We

first consider inclusions between classes produced by families of the same arity. That

is, given two m-families F1 and F2, we present anwers for the question whether P[F1]

is included in P[F2] or whether both classes are equal. Then we will consider inclusions

between partial information classes produced by families of different arity. We conclude

with a diagram that displays the inclusion structure of all partial information classes

produced by 2-families in normal form.

Given two m-families F1 and F2 with F1 ⊆ F2 it is easy to see that P[F1] ⊆ P[F2].

Furthermore, if F1 = F2, then it follows that P[F1] = P[F2]. If both families are in

normal form even the converse holds: Nickelsen gives in [Nic01, p. 24f] a nice criterion

when we can say that P[F1] is included in P[F2], and when we can say that both classes

are equal. We state his result in the following fact.

Fact 3.4.1. For all m-families F1 and F2 in normal form we have:

• P[F1] ⊆ P[F2] if and only if F1 ⊆ F2.

• P[F1] = P[F2] if and only if F1 = F2.

Sometimes we want to compare partial information classes that are produced by fami-

lies of different arity. For instance, if we have two families F1 and F2 with different arity

we could ask whether P[F1] is included in P[F2] or whether both classes are equal. To

solve this problem we could transform one family to a family with the same arity as the

other one and then use the criterion given in Fact 3.4.1. In general, we will transform

the family with the smaller arity to a family with a larger arity. Such a transformation

is called an upward translation. For the sake of completeness we also give the definition

of downward translation.
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Definition 3.4.2 (upward and downward translation). The upward translation of

an m-family F to tuple length n ≥ m, denoted by dFen, is an n-family such that for

all pools P ∈ dFen and for all numbers i1, i2, . . . , im with 1 ≤ i1 < i2 < . . . < im ≤ n it

holds that P [i1, i2, . . . , im] ∈ F . The downward translation of F to tuple length n ∈ N+

with n < m is defined by dFen := {P [1, 2, . . . , n] | P ∈ F}.

The following theorem which is once more taken from [Nic01, p. 32f] shows that we

are not wrong in solving the inclusion problem for families of different arity as described

above. It states that upward translations do not change the corresponding partial infor-

mation classes and preserve normal forms.

Fact 3.4.3. Let F be an arbitrary subset complete m-family for some m ∈ N+. Then,

for all n ≥ m it holds that P[F ] = P[dFen], and if F is in normal form then also dFen

is in normal form.

We will now consider upward translations of families already defined in the last two

sections. All of the following results can be found in more detail in [Nic01, p. 37ff]. The

statement of the first item has also been obtained implicitly by Selman in [Sel79].

Fact 3.4.4. For all n ≥ 2 the following statements hold.

• dSEL2em = SELm.

• dBOTTOM2em = BOTTOMm.

• dTOP2em = TOPm.

• dCHEAT2em = 2–SIZEm.

In Section 3.2 we stated that P–sel = P[SELm] for every m ≥ 2. This can now be

easily proved by the two preceding theorems: They are equal because P–sel = P[SEL2] =

P[dSEL2em] = P[SELm] for everym ≥ 2. Similarly we get P[BOTTOM2] = P[BOTTOMm]

and P[TOP2] = P[TOPm] for every m ≥ 2.

Suppose we know that a language L is in P[F ] for some m-family F . An interesting

question is whether we can compute for n ∈ N+ given words in polynomial time a pool

from dFen for these words and L. This question is answered positively in [Nic01, p. 42].

We state the corresponding theorem with an extension to downward translations.

Fact 3.4.5. Let L be a language in P[F ] for some m-family F in normal form. Then

there is a function f ∈ FP such that for every n ∈ N+ and every tuple (w1, w2, . . . , wn)

of words, f(w1, w2, . . . , wn) is a pool from dFen for (w1, w2, . . . , wn) and L.
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We finish this section with Figure 3.1 that shows all partial information classes pro-

duced by 2-families in normal form and its inclusion structure. Each class is represented

by the 2-family that produces it. An arc from a family F1 to a family F2 denotes strict

inclusion of F1 in F2, and due to the results in the last section also strict inclusion of

P[F1] in P[F2]. The family 〈{00, 01}〉 is usually called MIN2 and represents the maxi-

mum partial information we can get on two words without actually deciding them. It

is interesting to note that all classes on the left side contain non-recursive languages

whereas those on the right side do not.
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1–SIZE2

〈{00, 01}〉

CHEAT2

BOTTOM2 TOP2

2–CARD2

SEL2

SMC2 ∩ COSMC2

SMC2 COSMC2

3–SIZE2

4–SIZE2

Figure 3.1: Inclusion structure of partial information classes produced by 2-families in
normal form. Each class is represented by the corresponding 2-family. If
there is an arrow from a family F1 to another family F2, then P[F1] is
strictly included in P[F2].
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Reduction Closures of Partial

Information Classes

To study the effect of partial information on self-reductions, it is reasonable to look at

reductions in general first. We will consider in this chapter closures of partial information

classes under various reducibilities. Given a family F and a reducibility ≤p
r , we are

especially interested in answers to the following two questions.

1. Is P[F ] closed under ≤p
r-reducibility?

2. For another reducibility ≤p

r′ , do the closures of P[F ] under ≤p
r-reducibility and

under ≤p

r′-reducibility coincide?

Answers to these questions often yield results for self-reductions. For example, if we

know that self-reducible languages in P[F ] belong to P, and that P[F ] is closed under

≤p
r-reducibility, then also every self-reducible language ≤p

r-reducible to some language

in P[F ] belongs to P. In case that the ≤p
r-closure of P[F ] coincides with the ≤p

r′-closure,

we can sometimes conclude that r-self-reducible languages in P[F ] are exactly the r ′-

self-reducible languages in P[F ].

We start in Section 4.1 by considering closure of partial information classes under

basic reducibilities such as many-one, 1-tt and Turing reducibility. Often there are good

characterizations of those families F in normal form for which P[F ] is closed under one of

these reducibilities. For example, Nickelsen [Nic01] showed that all partial information

classes produced by families in normal form are closed under many-one reducibility.

Although this is not the case for 1-tt and Turing reducibility, he also obtained good

characterizations for families in normal form that produce partial information classes

closed under 1-tt and Turing reducibility, respectively.

33
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In Section 4.2, we then consider positive reducibilities. An interesting result that

has been obtained in [BTvEB93] says that positive Turing reductions to p-selective

languages are not more powerful than many-one reductions. Nickelsen [Nic01] showed

that a similar result holds for the class P[SMC2∩COSMC2] when “Turing” is replaced by

“truth-table”. From these results it follows that both classes are closed under positive

Turing and positive truth-table reducibility, respectively. This is surprising because they

are even not closed under 1-tt-reducibility.

In Section 4.3, we show that every language that is Turing reducible to a language L in

P[NONSELm] is already truth-table reducible to L. This extends the corresponding result

for easily m-countable languages obtained by Beigel, Kummer, and Stephan in [BKS95a].

Moreover, combined with a result of Toda [Tod91], this gives a characterization of the

families F in normal form for which Turing and truth-table closures of P[F ] coincide.

4.1 Closure under Basic Reducibilities

In this section, we consider closure of partial information classes under many-one, 1-

tt, 2-tt, truth-table, and Turing reducibility. For each of these reducibilities, except for

truth-table reducibility, there are good characterizations of the families F in normal form

for which P[F ] is closed under that reducibility. The following results and definitions

are taken from [Nic01, Section 3.2].

We start with closure under many-one and 1-tt-reducibility. All partial information

classes produced by families in normal form are closed under many-one reducibility.

Families F for which P[F ] is closed under 1-tt-reducibility are characterized as families

in normal form closed under bit-flip.

Definition 4.1.1 (bit-flip, closed under bit-flip). For a bitstring b ∈ Bm and an

index i ∈ [m], we define the bit-flip at the i-th position of b by

flipi(b) := b[1] . . . b[i− 1](1 − b[i])b[i + 1] . . . b[m].

We extend this to m-pools P by flipi(P ) := {flipi(b) | b ∈ P}. An m-family F is closed

under bit-flip if and only if for all indices i ∈ [m] and for all pools P ∈ F we have

flipi(P ) ∈ F .

We summarize the characterizations given above for many-one and 1-tt-reducibility

in the next fact.

Fact 4.1.2. Let F be a family in normal form. Then:
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• P[F ] is closed under many-one reducibility.

• P[F ] is closed under 1-tt-reducibility if and only if F is closed under bit-flip.

A consequence is that several classes introduced in Chapter 3 are closed under many-

one reducibility, but not under 1-tt-reducibility. For example, consider the class P[SEL2].

The pool sel2 = {00, 01, 11} is contained in SEL2, but flip1(sel2) = {10, 11, 01} = top2 is

not. Therefore, SEL2 is not closed under bit-flip and hence not under 1-tt-reducibility.

On the other hand, P[k–SIZEm] is closed under 1-tt-reducibility for all m, k ∈ N+,

because bit-flipping does not increase the size of pools.

For 2-tt and Turing reducibility, there is the following characterization which is a

bit surprising, because it states among other things that P[F ] is closed under 2-tt-

reducibility if and only if it is closed under Turing reducibility.

Fact 4.1.3. Let F be an m-family in normal form with F 6= 2m–SIZEm. Then, the

following statements are equivalent.

1. P[F ] is closed under 2-tt-reducibility.

2. P[F ] is closed under Turing reducibility.

3. F = k–SIZEm for some k ≤ m.

Finally, for truth-table reducibility there is the following result. In the proof of The-

orem 2.9 in [BKS95a], Beigel, Kummer, and Stephan constructed languages L and K

with L ≤p
tt K such that L is not approximable and K ∈ P[TOP3]. As noted in [Nic01,

Section 3.2], this yields the following fact.

Fact 4.1.4. Let F be an m-family in normal form with F 6= 2m–SIZEm. Then, P[F ] is

not closed under tt-reducibility if BOTTOMm ⊆ F or TOPm ⊆ F .

4.2 Closure under Positive Reducibilities

As we have seen in the last section, P[SEL2] is closed under many-one (which is equivalent

to 1-ptt-reducibility), but not under 1-tt-reducibility (see the discussion below Fact

4.1.2). The same applies to the slightly larger class P[SMC2 ∩ COSMC2].

Is many-one reducibility the “largest” reducibility these classes are closed under? The

question must be answered negatively for P[SEL2], because it is closed under positive

Turing reducibility. This has been proved by Buhrman, Torenvliet, and van Emde Boas

in [BTvEB93], where they actually obtained the following result.
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Fact 4.2.1. Let L be ≤p
pos-reducible to a p-selective language K via some oracle Turing

machine M . Then, L is many-one reducible to K via a function f such that for every

word w, f(w) is a word queried by M on input w with some oracle.

From Fact 4.2.1 and the fact that all families in normal form are closed under many-

one reducibility (Fact 4.1.2) we obtain the following corollary.

Corollary 4.2.2. For all families F in normal form with P[F ] ⊆ P[SEL2], the class

P[F ] is closed under positive Turing reducibility.

For P[SMC2∩COSMC2], there exists a result similar to Fact 4.2.1. The only difference

are the classes itself and that “Turing” is replaced by “truth-table”. This has been

shown by Nickelsen in [Nic01, p. 66]. As for P[SEL2], it follows that every subclass

of P[SMC2 ∩ COSMC2] produced by a family in normal form is closed under positive

truth-table reducibility, because it is closed under many-one reducibility by Fact 4.1.2.

Moreover, Nickelsen gave the following characterization of 2-families in normal form that

produce partial information classes closed under positive truth-table reducibility.

Fact 4.2.3. Let F be a 2-family in normal form with F 6= 4–SIZE2. Then, the following

statements are equivalent.

1. P[F ] is closed under ptt-reducibility.

2. P[F ] is closed under 2-ptt-reducibility.

3. F ⊆ SMC2 ∩ COSMC2.

4. BOTTOM2 * F and TOP2 * F .

4.3 Converting Turing into Truth-Table Reductions

Beigel, Kummer and Stephan showed in [BKS95a] that every language that is Turing

reducible to an easily countable language K is already truth-table reducible to K. In

this section, we extend this result to the larger class P[NONSELm].

Theorem 4.3.1. If a language is Turing reducible to a language K ∈ P[NONSELm],

then it is truth-table reducible to K.

We use essentially the same proof as in [BKS95a]. The phenomenon that results origi-

nally proved for easily countable languages also hold for P[NONSELm] by nearly the same
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proof is not new. For example, Kummer’s Cardinality Theorem [Kum92] states that if for

a language L there is an algorithm that enumerates for every m-tuple (w1, w2, . . . , wm)

of pairwise distinct words a pool from m–CARDm for (w1, w2, . . . , wm) and L, then L

is recursive. Nickelsen showed that m–CARDm can be replaced by NONSELm [Nic01,

p. 78] by using nearly the same proof. In Section 5.2.3, we obtain as a corollary from

Theorem 4.3.1 and another result from [BKS95a] that disjunctively self-reducible lan-

guages in P[NONSELm] already belong to P. Alternatively, we could use the proof of the

corresponding result for easily countable languages obtained by Hoene and Nickelsen in

[HN93].

The idea for the proof of Theorem 4.3.1 is as follows. Let L be Turing reducible

to a language K ∈ P[NONSELm] via some oracle Turing machine M , and let w be an

arbitrary word. We show how to compute in polynomial time a subtree T of QTM(w)

such that the number of nodes of T is polynomial in |w|. This tree contains the path

determined by K, i.e. the path whose labels correspond to words queried by M on input

w with oracle K. So, we can query all words in T in parallel and obtain information

about the membership of each word of T in K, and therefore for each word queried by

M on input w with oracle K. This allows us to convert the Turing reduction into a

truth-table reduction.

Binary trees are represented in [BKS95a] as languages over B. Based on this rep-

resentation, they define embeddings and the rank of binary trees. We introduce these

notions in Section 4.3.1. Binary trees with bounded rank have the nice property that

the number of nodes is bounded by a polynomial in their depth. In Section 4.3.2, we

introduce the width of a pool to be the largest rank of any labeled binary tree that is

consistent with that pool. Query trees are labeled binary trees, so this notion allows us

to bound the rank of any subtree of a query tree that is consistent with a given pool.

Finally, in Section 4.3.3, we prove Theorem 4.3.1.

4.3.1 Binary Trees as Languages, Embeddings, and Rank

Let B be a rooted binary tree with the set V of nodes. We call a node v1 ∈ V a

descendant of a node v2 ∈ V if v2 lies on the path from the root to v1. If v1 is a

descendant of v2, then v1 is called a successor of v2 if the path from the root to v1 is

exactly one node longer than the path from the root to v2. Since B is a binary tree,

there are at most two successors for every node in V . Without loss of generality we

assume that the edges between a node v and its successors are labeled with elements

from B such that the label of the edge between v and one successor is different from the
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label of the edge between v and the other successor, if there is any.

A node v ∈ V can now be represented as a word b over B as follows. Let P be

the path from the root to v and m its length. Then, b is a word over B of length m

such that the i-th symbol in b corresponds to the label of the i-th edge on P . The

language T consisting of binary representations of nodes in V as described above is then

a representation of B. For example, the tree shown in Figure 4.1 can be represented by

the language T = {λ, 0, 1, 01, 10, 11, 100, 101}.

λ

0 1

01 10 11

100 101

0 1

1 0 1

0 1

Figure 4.1: A binary tree B. The labels at the edges induce a representation of B as a
language T over B. For example, the node reachable from the root node by
walking the edges labeled 1, then 0, and finally 1, is represented by the word
101. The language T is given by {λ, 0, 1, 01, 10, 11, 100, 101}.

In the remaining part of this section, by writing that T is a binary tree we mean

that T is a language over B that represents the corresponding binary tree. We call the

elements of a binary tree nodes. The edges are given implicitly by the prefix relation.

This means, there is an edge between two nodes v1, v2 ∈ T if one of these nodes, say vi,

is a prefix of the other one, vj, and vi is exactly one symbol shorter than vj. Then, it

is easy to see that a node v1 is a descendant of a node v2 if and only if v2 is a prefix of

v1, and if v1 is a descendant of v2 then v1 is a successor of v2 if and only if v2 is exactly

one symbol shorter than v1. The root node is represented by the empty word. A leaf is

a node which is no prefix of another node in T , and an interior node is a node which is

a prefix of at least one other node in T .

A special binary tree is the full binary tree of depth d, defined by Bd := B≤d. An

embedding ε of Bd into a binary tree T is a mapping from Bd into T with the following

property. For every interior node v ∈ Bd, it maps the “left” successor v0 to a node in

the “left” subtree of ε(v), and the “right” successor v1 to a node in the “right” subtree.
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More formally, it is defined as follows.

Definition 4.3.2 (embedding, embeddable). An embedding of Bd into a binary tree

T is a mapping ε : Bd → T such that for all interior nodes v ∈ Bd it holds that ε(v0) is

a descendant of ε(v)0 and ε(v1) is a descendant of ε(v)1. We say that Bd is embeddable

into T if there exists an embedding of Bd into T .

Example 4.3.3. Figure 4.2 shows an embedding ε of B2 into the binary tree T =

{λ, 0, 1, 01, 10, 11, 010, 011, 100}. An arc from a node v1 ∈ B2 to a node v2 ∈ T means

B2 λ

0 1

00 01 10 11

Tλ

1

01 11

010 011 100

0

10

Figure 4.2: An embedding of B2 into the tree T = {λ, 0, 1, 01, 10, 11, 010, 011, 100}.

that v1 is mapped to v2. For example, the root node of B2 is mapped to the root node

of T , the node 0 is mapped to the node 01, and the node 1 is mapped to the node 1.

We observe that ε(0) = 01 is a descendant of ε(λ)0 = 0 and ε(1) = 1 is a descendant of

ε(λ)1 = 1. The condition given in Definition 4.3.2 is thus satisfied for the root node of

B2. Moreover, it is satisfied for all interior nodes of B2. 4

Definition 4.3.4 (rank). The rank of a binary tree T , written rk(T ), is the maximum

d such that Bd is embeddable into T .

Example 4.3.5. Figure 4.3 shows binary trees with ranks 0, 1 and 2. The first tree

from the left is a path and has rank zero since it has no node with two successors which

would allow an embedding of B1. The other way round, a binary tree with rank zero

is a path since otherwise there is a node v with two successors v0 and v1 such that B1

is embeddable into the subtree consisting of v, v0 and v1; hence the rank is one which

contradicts the fact that it is zero. It is also easy to see that the second tree has rank
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Figure 4.3: Binary trees with rank 0, 1 and 2 (from left to right).

one. Note that the third tree is the tree T shown in Figure 4.2. As it is shown there,

B2 is embeddable into T . However, there is no way to embed B3 into it. It follows that

the rank of T is two. 4

As shown in [BKS95a], binary trees with bounded rank have the nice property that

the number of nodes is bounded by a polynomial in its depth. We state this result in

the following fact.

Fact 4.3.6. A binary tree of depth d and rank less than r has at most pr(d) :=
∑r−1

i=0

(
d+1
i+1

)

many nodes. In particular, pr is a polynomial in d.

4.3.2 Bounding the Rank in Terms of Pools

We now introduce the notion of the width of a pool P . It is an upper bound on the rank

of any labeled binary tree that is consistent with P . First, let us define labeled binary

trees and what it means to be consistent with P .

Definition 4.3.7 (labeling, labeled binary trees). Let L be an arbitrary non-empty

set. A labeling of a binary tree T with labels from L (for short, an L-labeling of T ) is a

mapping from the interior nodes of T to L. A binary tree together with an L-labeling is

called an L-labeled binary tree. For m ∈ N+, we write m-labeling and m-labeled binary

tree instead of [m]-labeling and [m]-labeled binary tree, respectively.

The query tree of a polynomial-time oracle Turing machine M on an input w is a

Σ∗-labeled binary tree. We make the convention, that the representation as a language

over B is induced by the labeling of the edges as described in Definition 2.2.2. That is,

if M queries on input w with oracle L the sequence q1, q2, . . . , qk of words, then the path

determined by L is the path from the root to the leaf χL(q1, q2, . . . , qk). For example,
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consider the machine M , the word w, and the query tree from Example 2.2.3. We have

QTM(w) = {λ, 0, 1, 10, 11} as visualized in Figure 4.4. The corresponding Σ∗-labeling ϕ

λ

0 1

10 11

q1

q2

0 1

0 1

Figure 4.4: The query tree QTM(w) = {λ, 0, 1, 10, 11} from Example 2.2.3. The repre-
sentation as language over B is induced by the corresponding edge labeling.

is defined by ϕ(λ) = q1 and ϕ(1) = q2. Then, the path determined by any language L

containing q1 and q2 leads to the leaf χL(q1, q2) = 11, and the path determined by any

language L′ containing q1, but not q2, leads to the leaf χL′(q1, q2) = 10.

Let M be a polynomial-time oracle Turing machine and w a word. Let w1, w2, . . . , wm

be an enumeration of all words that label some node in QTM(w). Suppose we have

a pool P for (w1, w2, . . . , wm) and a language L. Since every path from the root to

a leaf v is determined by some language K, we have v = χK(wi1, wi2, . . . , wik), where

wi1 , wi2, . . . , wik are the labels along this path. We call this path consistent with P if

v ∈ P [i1, i2, . . . , ik]. A tree is called consistent with P if every path from the root to a

leaf is consistent with P . Therefore, a maximal subtree of QTM(w) that is consistent

with P contains the path determined by L.

It is convenient to define the notion of consistency with a pool only for m-labeled

trees. The idea is to interpret labels as columns in the pool. Then, it is easy to see that

every Σ∗-labeled binary tree T can be converted into an m-labeled binary tree T ′ (where

m is the number of words in T ) such that T ′ has the same topology as T and that T ′

is consistent with a pool P if and only if T is consistent with P : We simply replace a

word labeling some node by the index of the corresponding column of P .

Definition 4.3.8 (consistent). Let P be an m-pool. An m-labeling ϕ of a binary tree

T is consistent with P if for every leaf v ∈ T there exists a bitstring b ∈ P such that for

all i ∈ [|v|] we have b
[
ϕ
(
v[1, 2, . . . , i− 1]

)]
= v[i]1. We say that b certifies consistency of

ϕ with P with respect to v. An m-labeled binary tree is consistent with P if its labeling

is consistent with P .
1For this section, let b[1, . . . , 0] defined by λ for any bitstring b.
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Example 4.3.9. Let q1 and q2 be the two words in the query tree T from Figure 4.4. We

consider the following 2-labeling ϕ of T : ϕ(λ) = 1 and ϕ(1) = 2. Then, ϕ is consistent

with co-sel2, but not with sel2. However, the tree obtained by removing the node 10 and

its incident edge from T is consistent with co-sel2 and sel2. 4

Our aim is to bound the rank of m-labeled binary trees that are consistent with a

pool P in terms of P . This can be done by using the notion of the width of a pool that

gives this bound as we shall show.

Definition 4.3.10 (width). The width of an m-pool P , written wd(P ), is the maximum

d such that there is an m-labeling of Bd that is consistent with P .

Lemma 4.3.11. If P is an m-pool with wd(P ) ≤ w, then for every m-labeled binary

tree T that is consistent with P we have rk(T ) ≤ w.

Proof. Let P be an m-pool with wd(P ) ≤ w. Let T be a binary tree and ϕ be an m-

labeling of T that is consistent with P . Assume that rk(T ) > w, i.e. that there exists an

embedding ε of Bw+1 into T . We show that the m-labeling ψ of Bw+1 that is defined by

ψ(v) = ϕ(ε(v)) for all interior nodes v ∈ Bw+1 is consistent with P . Thus, wd(P ) > w

which contradicts wd(P ) ≤ w.

Let v be an arbitrary leaf of Bw+1 and u := ε(v) its embedding. By Definition 4.3.2

we have ε(λ)v[1] v ε(v[1])v[2] v . . . v ε(v[1, 2, . . . , |v| − 1])v[|v|] v u. Hence, for every

i ∈ [|v|] there exists a number ji ∈ [|u|] such that ε(v[1, 2, . . . , i− 1])v[i] = u[1, 2, . . . , ji].

Since ϕ is consistent with P it follows that there exists a bitstring b ∈ P such that for

all i ∈ [|v|] it holds that

b
[
ψ

(
v[1, 2, . . . , i− 1]

)]
= b

[
ϕ
(
ε(v[1, 2, . . . , i− 1])

)]

= b
[
ϕ
(
u[1, 2, . . . , ji − 1]

)]

= u[ji]

= v[i]

So, b certifies consistency of ψ with P with respect to v. It follows that ψ is consistent

with P , which completes the proof.

The next lemma is useful in the remaining part of this section and gives an upper

bound on the width of pools in terms of their tuple length.

Lemma 4.3.12. If P is an m-pool, then wd(P ) ≤ m.
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Proof. Suppose for a contradiction that for some d > m there exists anm-labeling ϕ of Bd

that is consistent with P . Let v be an arbitrary leaf of Bd. Since the path from the root

to v contains d > m interior nodes there must be two numbers i and j with 1 ≤ i < j ≤ d

such that v[1, 2, . . . , i−1] and v[1, 2, . . . , j−1] are assigned the same label by ϕ. Let v ′ be

a leaf (not necessarily distinct to v) of Bd such that v′[1, 2, . . . , j − 1] = v[1, 2, . . . , j − 1]

and v′[i] 6= v′[j]. Then, v′[1, 2, . . . , i − 1] and v′[1, 2, . . . , j − 1] are still assigned the

same label by ϕ, but no bitstring b in P satisfies b
[
ϕ
(
v′[1, 2, . . . , i − 1]

)]
= v′[i] and

b
[
ϕ
(
v′[1, 2, . . . , j − 1]

)]
= v′[j]. So, ϕ can not be consistent with P .

4.3.3 Proof of the Theorem

We now prove Theorem 4.3.1. First, we show that if the width of pools in dFen for some

family F in normal form is bounded by some constant for all n ∈ N+, then Turing and

truth-table closures of P[F ] coincide. This result has been obtained by Beigel, Kummer,

and Stephan in [BKS95a] (see their Lemma 6.7). Finally, we show that the width of all

pools in dNONSELmen is bounded by 4m − 2 for all n.

Lemma 4.3.13. Let F be an m-family in normal form such that for some constant c,

for all n ∈ N+, and for all pools P ∈ dFen it holds that wd(P ) < c. Then, for any

language L and any language K ∈ P[F ], if L ≤p

T K then L ≤p
tt K.

Proof. Let L ≤p

T K via a deterministic polynomial-time oracle Turing machine M .

Furthermore, let K be in P[F ] via a function f ∈ FP that computes for every n ∈ N+

and for every n-tuple of words partial information of type dFen. Such a function exists

by Fact 3.4.5.

We show how to compute on an input w in polynomial time a subtree T of QTM(w)

that contains the path determined by K, that is, the path which contains all words

queried by M on input w with oracle K. This allows us to decide whether w is in

L or not by asking the oracle K about all of the polynomially many words in T in a

non-adaptive way and by simulating M on input w with oracle K properly. This can be

made by a deterministic polynomial-time oracle Turing machine, hence L ≤p
tt K.

It remains to describe how to compute T in polynomial time. This is done inductively

as follows. At the beginning, let T0 be a binary tree which consists only of the root node

labeled with the first word queried by M on input w. If there is no such word, then

the root node is left unlabeled. Now suppose that for some s ∈ N+ we have already

constructed Ts−1. If all leaves in the (s− 1)-th level of Ts−1 are unlabeled, then we are

done and we define T := Ts−1.
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Otherwise we extend in step s the tree Ts−1 to a tree Ts as follows. Let w1, w2, . . . , wk

be an enumeration of all words that label some node of Ts−1 and P = f(w1, w2, . . . , wk)

a pool for these words and K. We consider from left to right all leaves in the (s − 1)-

th level of Ts−1 that are labeled with a word. Let v be the current leaf. For every

i ∈ [s] let wji
be the label of the i-th node on the path from the root to v. There

can be two potential successors of v in Ts: v0 := v0 and v1 := v1. For each of these

successors vi we do the following. If vi ∈ P [j1, j2, . . . , js] then we add vi as a node to

Ts and label it with the (s + 1)-th word queried by M on input w with an oracle X

satisfying χX(wj1, wj2, . . . , wjs
) = vi. If there is no such (s + 1)-th query, then vi is

left unlabeled. This finishes the construction of Ts. Note that if vi is not contained

in P [j1, j2, . . . , js], then the path from the root to vi can not be an initial segment of

the path determined by K since P is a pool for (w1, w2, . . . , wk) and K, and therefore

χK(wj1, wj2, . . . , wjs
) ∈ P [j1, j2, . . . , js].

How many nodes have to be processed in step s, i.e. how many leaves are there at

most in the (s− 1)-th level of Ts−1? If s = 1, there is only one such leaf. To answer this

question for the case of s > 1, we consider the tree T ′
s−1 that consists only of paths in Ts−1

from the root to leaves in level s− 1. This tree is consistent with the pool P computed

in step s− 1 for the words (w1, w2, . . . , wk) and K: If we consider a leaf v such that the

words on the path from the root to v are wj1, wj2, . . . , wjs−1
, then v ∈ P [j1, j2, . . . , js−1]

because v has been added to Ts−1 in step s − 1. This means that the k-labeling ϕ of

T ′
s−1 which is defined by ϕ(v) := i if and only if the label of node v is wi is consistent

with P . From Lemma 4.3.11 and the fact that wd(P ) < c we derive that rk(T ′
s−1) is

smaller than c, and from Fact 4.3.6 we know that there exists a polynomial p such that

T ′
s−1 has at most p(s−1) many nodes. So, the number of leaves in the (s−1)-th level of

T ′
s−1 which equals the number of leaves in the (s− 1)-th level of Ts−1 is bounded above

by p(s− 1).

The above observation implies that for each s > 0, the tree Ts can be computed

in time polynomial in the depth of Ts−1. However, as mentioned in Section 2.2, since

M is polynomially time-bounded the depth of QTM(w) is bounded by q(|w|) for some

polynomial q, and because Ts is a subtree of QTM(w) we have that the depth of Ts is

also bounded by q(|w|). So, for every s the tree Ts can be computed in time polynomial

in |w|. Since s is at most as large as the depth of QTM(w) we conclude that T can be

computed in time polynomial in |w|, and T contains the path determined by K, because

no initial segment of this path has been removed at any time.

We now show that NONSELm satisfies the hypothesis of Lemma 4.3.13. For this,
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we state two useful lemmas from [Kum92]. The first one deals with monochromatic

embeddings of full binary trees into 2-colored full binary trees of double depth. Here, a

2-coloring of a binary tree is a mapping from the nodes of this tree to some two element

set whose elements are called colors.

Lemma 4.3.14. For every 2-coloring c of B2d there exists an embedding ε of Bd into

B2d such that for every two nodes v and u of Bd it holds that c(ε(v)) = c(ε(u)).

The next lemma is actually a modification of Lemma 3 from [Kum92] from trees to

pools. It plays an important role in the proof of Lemma 6.6 in [BKS95a], but is not

proved there. Instead, they point out that it can be obtained by modification of Lemma

3 from [Kum92]. We prove it here.

Lemma 4.3.15. For every m-pool P with wd(P ) ≥ 4n − 2, there exist n numbers

i1, i2, . . . , in with 1 ≤ i1 < i2 < . . . < in ≤ m such that P [i1, i2, . . . , in] contains an

ascending chain as a subset.

Proof. Let P be an m-pool with wd(P ) ≥ 4n − 2. By Definition 4.3.10 there exists an

m-labeling of Bwd(P ) which is consistent with P . Choose a subtree under the root of

Bwd(P ). The labels in this subtree form an m-labeling of Bwd(P )−1 which is consistent

with P , too. By iterating this process wd(P )− 4n + 2 times we obtain an m-labeling ϕ

of B4n−2 which is consistent with P .

The numbers are constructed in 2n−1 steps. In step s ∈ [2n−1] we choose a number

is ∈ [m] and a bitstring bs ∈ P such that both are distinct to the numbers, or bitstrings

respectively, which have been chosen before. The number is is interpreted as the index

of a column of P . At the end of this proof we define a subset of P which consists of n

of the 2n− 1 bitstrings and one from the remaining bitstrings in P , and argue that the

projection of this set onto n of the 2n− 1 columns forms an ascending chain.

To make the proof easier to follow we additionally define m-pools Ps (which contain

bitstrings that can be chosen in the (s + 1)-th step), sets Is (which contain column

indices that can be chosen in the (s + 1)-th step), labelings ϕs, and numbers cs ∈ B,

which satisfy the following conditions.

• For all s ∈ [2n− 1] it holds that Ps ⊆ Ps−1, and for all bitstrings b ∈ Ps we have

b[is] = 1 − cs. We define P0 := P .

• For all s ∈ [2n − 1] it holds that Is ⊆ Is−1, and for all i ∈ Is we have bs[i] = cs.

We define I0 := [m].
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• Let h0, h1, . . . , h2n−1 be a sequence of natural numbers with h0 := 4n − 2, hs :=

2(hs+1 +1) for 1 ≤ s ≤ 2n− 2, and h2n−1 := 0. For all s ∈ {0, 1, . . . , 2n− 1}, ϕs is

an Is-labeling of Bhs
which is consistent with Ps. We define ϕ0 := ϕ which clearly

satisfies this condition.

Suppose we finished the first s − 1 steps (1 ≤ s ≤ 2n − 1). In the s-th step we are

given sets Ps−1, Is−1 and a labeling ϕs−1 which satisfy the conditions above. Let bs

be a bitstring in Ps−1 which certifies consistency of ϕs−1 with Ps−1 with respect to an

arbitrary leaf of Bhs−1
. This bitstring induces a 2-coloring c of Bhs−1

with colors from B

as follows: Every leaf v is colored arbitrarily, for instance, c(v) := 0, and every interior

node v is colored by c(v) := bs[ϕs−1(v)]. By Lemma 4.3.14, there exists an embedding ε

of B 1

2
hs−1

= Bhs+1 into Bhs−1
such that for every two nodes v1 and v2 of Bhs+1 we have

c(ε(v1)) = c(ε(v2)). Let is be the label of the embedded root and cs its color, i.e.

is := ϕs−1(ε(λ)) and cs := c(ε(λ)) = bs[ϕs−1(ε(λ))] = bs[is]. (4.1)

Note that ε(λ) is an interior node of Bhs−1
, because otherwise ε would not be an embed-

ding by Definition 4.3.2 since ε(λ)0 v ε(0) and ε(λ)1 v ε(1) can not be satisfied. So, cs

is defined. Note also that for all interior nodes v ∈ Bhs+1 it holds that

bs[ϕs−1(ε(v))] = c(ε(v)) = c(ε(λ)) = cs. (4.2)

Now we define the sets Ps, Is, and the labeling ϕs. The set Ps is defined by Ps :=

{b ∈ Ps−1 | b[is] = 1 − cs}. From the definition it is immediate that Ps ⊆ Ps−1 and that

for all b ∈ Ps we have b[is] = 1− cs. Before we define the set Ps we define the labeling ϕs

of Bhs
and show that it is consistent with Ps. The labeling ϕs is defined for all interior

nodes v of Bhs
by

ϕs(v) := ϕs−1(ε((1 − cs)v)).

Clearly, ϕs is a labeling of Bhs
. It remains to show that ϕs is consistent with Ps.

That is, we show that for every leaf v of Bhs
there exists a bitstring b ∈ Ps such that

b[ϕs(v[1, 2, . . . , j − 1])] = v[j] for all possible indices j ∈ [hs]. Fix such a leaf v and an

index j. Let v′ be a leaf of Bhs−1
such that the path from the root to this leaf contains the

node ε((1−cs)v). Because ε is an embedding it follows that ε(λ)(1−cs) v ε(1−cs)v[1] v

ε((1− cs)v[1])v[2] v . . . v ε((1− cs)v) v v′. Therefore we find two indices j ′1 and j ′2 with

ε(λ)(1 − cs) = v′[1, 2, . . . , j ′1] (4.3)
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and

ε((1 − cs)v[1, 2, . . . , j − 1])v[j] = v′[1, 2, . . . , j ′2]. (4.4)

Since ϕs−1 is consistent with Ps−1 there is a bitstring b ∈ Ps−1 such that for all j ′ ∈ [hs−1]

it holds that b[ϕs−1(v
′[1, 2, . . . , j ′−1])] = v′[j ′]. Using equation (4.1) and (4.3) we obtain

b[is] = b[ϕs−1(ε(λ))] = b[ϕs−1(v
′[1, 2, . . . , j ′1 − 1])] = v′[j ′1] = 1 − cs which implies b ∈ Ps.

From the definition of ϕs and equation (4.4) it follows that b[ϕs(v[1, 2, . . . , j − 1])] =

b[ϕs−1(ε((1 − cs)v[1, 2, . . . , j − 1]))] = b[ϕs−1(v
′[1, 2, . . . , j ′2 − 1])] = v′[j ′2] = v[j]. Hence,

ϕs is consistent with Ps.

Finally, the set Is is the set of all labels from ϕs, or to be more precisely, Is :=

{ϕs(u) | u is an interior node of Bhs
}. Therefore, ϕs is an Is-labeling of Bhs

which is

consistent with Ps. Since ϕs labels a subtree of the one labeled by ϕs−1 it follows that

Is ⊆ Is−1. Furthermore, if i ∈ Is then there exists an interior node v of Bhs
such that

bs[i] = bs[ϕs(v)] = bs[ϕs−1(ε((1 − cs)v))] = cs by equation (4.2). This finishes the s-th

step.

Now let s ∈ [2n − 1] be arbitrary. We consider the bitstring bs. By construction we

have bs ∈ Ps−1 ⊆ . . . ⊆ P0. Since b[ij ] = 1 − cj for all b ∈ Pj (1 ≤ j ≤ 2n − 1) we

obtain bs[i1, i2, . . . , is−1] = (1 − c1)(1 − c2) . . . (1 − cs−1). On the other hand, each ij

(s + 1 ≤ j ≤ 2n − 1) has been defined such that ij ∈ Ij−1 ⊆ . . . ⊆ Is. Using the fact

that bs[i] = cs for all i ∈ Is we obtain bs[is+1, is+2, . . . , i2n−1] = c2n−s−1
s . Putting this all

together, and using equation (4.1), we have

bs[i1, . . . , is−1, is, is+1, . . . , i2n−1] = (1 − c1) . . . (1 − cs−1) cs . . . cs
︸ ︷︷ ︸

2n−s
times

.

By the pigeonhole principle, there exists a number c ∈ B and n distinct numbers

j1, j2, . . . , jn ∈ [2n−1] such that cj1 = cj2 = . . . = cjn
= c. Hence, for all k ∈ [n] we have

bjk
[ij1, ij2 , . . . , ijn

] = (1 − cj1) . . . (1 − cjk−1
) cjk

. . . cjk
︸ ︷︷ ︸

n−k+1
times

= (1 − c) . . . (1 − c)
︸ ︷︷ ︸

k−1 times

c . . . c
︸ ︷︷ ︸

n−k+1
times

Choose bjn+1
out of Pjn

. By construction of Pjn
it holds that

bjn+1
[ij1, ij2 , . . . , ijn

] = (1 − cj1) . . . (1 − cjn
) = (1 − c) . . . (1 − c)

︸ ︷︷ ︸

n times

.

The set P ′ :=
{
bj1 , bj2 , . . . , bjn+1

}
is a subset of P , and by the preceding observations,
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P ′[ij1 , ij2, . . . , ijn
] is an ascending chain. Every permutation of the positions of an as-

cending chain yields an ascending chain again. Thus, with π being a permutation of

(j1, j2, . . . , jn) with iπ(j1) < iπ(j2) < . . . < iπ(jn), P [iπ(j1), iπ(j2), . . . , iπ(jn)] contains an

ascending chain.

Let P be a pool in dNONSELmen for some n ∈ N+. In case n < m, Lemma 4.3.12

tells us that wd(P ) < m ≤ 4m − 2. If n ≥ m, then for every sequence of m numbers

i1, i2, . . . , im with 1 ≤ i1 < i2 < . . . < im ≤ n it holds that P [i1, i2, . . . , im] is in NONSELm

(Definition 3.4.2) and therefore contains no ascending chain. The bound wd(P ) < 4m−2

then follows from Lemma 4.3.15. So, the width of all pools in dNONSELmen is bounded

by 4m − 2 for every n ∈ N+. By Lemma 4.3.13, every language that is Turing reducible

to some language K ∈ P[NONSELm] is truth-table reducible to K. This finishes the

proof of Theorem 4.3.1.

It is known [Tod91] that there exists a language L that is Turing reducible to some

language in P[SELm], but not truth-table reducible to any language in P[SELm]. Since

NONSELm is the largest m-family in normal form that does not include SELm, we obtain

the following corollary from this fact and Theorem 4.3.1.

Corollary 4.3.16. Let F be an m-family in normal form. Then, the following state-

ments are equivalent.

1. If a language is Turing reducible to a language K ∈ P[F ], then it is truth-table

reducible to K.

2. F ⊆ NONSELm.



Chapter 5

Combining Self-Reducibility and

Partial Information

In Section 2.4, we introduced self-reducibility and learned that self-reducible languages

are contained in PSPACE. Moreover, there are self-reducible languages that are ≤p
m-

complete for NP or PSPACE. Therefore, it is unlikely that all self-reducible languages

belong, for instance, to P. But does this apply to self-reducible languages with partial

information algorithms?

In the first two sections of this chapter, we will show for specific families F that

self-reducible languages in P[F ] belong to P. This is achieved in two or more steps.

In the first step – which is handled in Section 5.1 – we show that Turing self-reducible

languages in P[F ] are already truth-table self-reducible. In the remaining steps – which

are handled in the corresponding subsections of Section 5.2 – we then show that this

implies membership in P.

In Section 5.3, we finally discuss whether there are or can be self-reducible partial

information languages that are not contained in P.

5.1 Converting Turing into Truth-Table

Self-Reductions

In this section we try to answer the question, for which families F it holds that self-

reducible languages in P[F ] are already truth-table self-reducible. This allows us to

concentrate in the remaining sections on truth-table self-reductions which are much

more convenient than Turing self-reductions.

From Section 4.3 we know already that Turing reductions to languages in P[NONSELm]

can be replaced by truth-table reductions. A closer look at the proof of this fact shows

49



50 Chapter 5 Combining Self-Reducibility and Partial Information

that only words are queried in the truth-table reduction that are also queried in the

Turing reduction. Thus, if the oracle Turing machine which carries out the Turing

reduction queries on every input w only words that are smaller than w with respect to

some polynomially related partial ordering �, then the oracle Turing machine which is

responsible for the truth-table reduction queries on input w only words that are smaller

than w with respect to �, too. This gives the following corollary.

Corollary 5.1.1. Every self-reducible language in P[NONSELm] is tt-self-reducible.

From this corollary it follows, for instance, that every self-reducible easily countable

language, and every self-reducible p-cheatable language is tt-self-reducible. But there

are many partial information classes which are not subsets of P[NONSELm] for any m.

One of them is the class of p-selective languages. However, it was shown by Buhrman,

van Helden, and Torenvliet that if a self-reducible language is contained in this class,

then it is truth-table self-reducible [BvHT93].

Their result can be generalized to a larger partial information class. For this, recall

that for every p-selective language L we can compute on input of m ≥ 2 words a

pool from SELm for these words and L. In particular, this pool contains at most m + 1

bitstrings. The following lemma states that even if we only require that the pool contains

at most 2m − 1 bitstrings we can convert self-reducible languages to truth-table self-

reducible languages.

Lemma 5.1.2. Every self-reducible language in P[(2m− 1)–SIZEm] is tt-self-reducible.

Proof. Let L be self-reducible via an oracle Turing machine M and a polynomially

related partial ordering �. We assume further that L is in P[(2m − 1)–SIZEm] and

that f is the corresponding partial information function. We show how a non-adaptive

polynomial-time oracle Turing machine M ′ decides L by asking the oracle L only for

words that are smaller than the input with respect to �.

On an input w, it processes QTM(w) with a breadth-first extend-and-prune algorithm.

Pruning means removing a subtree and replacing it by a leaf node labeled “χA(x) = 1”

or “χA(x) = 0”. Extending means adding successors to nodes labeled with words. That

is, M ′ adds two successors to a node labeled w′, and by simulating M it finds out the

corresponding labels of these successors in QTM(w). If a successor v is a leaf in QTM(w),

then M ′ labels it with “χL(w) = c”, where c ∈ B is chosen to be 1 if and only if M

accepts w with any oracle that determines the path to v. This way, M ′ always keeps

a tree T which is up to the labels at the leaves a subtree of QTM(w). Additionally, it

ensures the following invariants for T .
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1. On every path from the root to a leaf in T there are at most m− 2 nodes having

two interior nodes as successors.

2. If a leaf v is labeled “χL(w) = c” for some c ∈ B, then M accepts w for all oracles

K which have the following property. Let wi be the label of the i-th node on the

path from the root to v, and ai the label of the i-th edge. Then, {wi | ai = 1} ⊆ K

and {wi | ai = 0} ⊆ K.

Initially, T is the full query tree up to depth m−1. Suppose T has been extended such

that there is a path v1v2 . . . vk on which m−1 nodes have two interior nodes as successors.

Let vi1 , vi2, . . . , vim−1
be these nodes in ascending order. For every j ∈ [m− 1], let wj be

the label of vij , and for every j ∈ [m−2], let aj be the label of the edge from vij to vij+1.

Then, M ′ computes a pool P := f(w,w1, w2, . . . , wm−1) and splits it into two pools

defined by Pc := {b ∈ P | b[1] = c} for c ∈ B. Observe that |P0| + |P1| = |P | ≤ 2m− 1.

Hence, there must be a c ∈ B with |Pc| ≤ m− 1. Now M ′ can find an index j ∈ [m− 1]

such that ca1a2 . . . aj−10 or ca1a2 . . . aj−11 is not a prefix of a bitstring in Pc. We consider

the first case. The other one is analogous.

If ca1a2 . . . aj−10 is not a prefix of a bitstring in Pc, then wj must be in L if χL(w) = c.

In other words we have χL(w) = 1−c if wj is not in L. Let v be the successor of vij such

that the edge from vij to v is labeled 0. Then, M ′ prunes T by replacing the subtree with

v as root by a new leaf node labeled “χL(w) = 1− c”. This leaf must not be considered

further. Observe that when the path determined by L (i.e. the path from the root to

a leaf with the following property: if the i-th interior node is labeled w′, then the i-th

edge is labeled χL(w′)) ends in this leaf, then we have χL(w) = 1 − c.

When QTM(w) has been processed up to some depth, only a constant number of

nodes of this depth with two interior nodes as successors remain in T . Therefore the

whole processing can be completed in polynomial time and in the end only polynomially

many words are left in T . These are the words that M ′ now queries in parallel. Finally,

if the path determined by L leads to a node labeled “χL(w) = 1”, then M ′ accept w,

else it reject it.

We conclude that M ′ is able to determine in polynomial time whether w ∈ L or not

by using only non-adaptive queries to L. The words queried are words also queried by

M on input w. So, L is tt-self-reducible via M ′ and �.

We do not know whether the result of Lemma 5.1.2 is optimal. For all m > 2, there are

still many m-families that properly include (2m − 1)–SIZEm, and whose corresponding

partial information classes are therefore not covered by this lemma. For example, the
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family SMCm includes (2m − 1)–SIZEm and contains the pool Bm \ {1m}. This pool

consists of 2m − 1 bitstrings, hence for every m > 2 the family SMCm is larger than

(2m− 1)–SIZEm. Even the family SMCm ∩ COSMCm is larger than (2m− 1)–SIZEm for

all m > 2 since it contains the pool Bm \ {1m, 0m} which consists of 2m − 2 bitstrings.

5.2 Self-Reducible Partial Information Languages

that are in P

In this section, we show that self-reducible languages in specific partial information

classes belong to P. Since every language in P is trivially self-reducible and contained in

every such partial information class, languages in P are characterized as self-reducible

languages in those classes. The results presented here are motivated by the following

results which appeared in [BvHT93], [ABG00, GJY93], and [BKS95a], respectively.

Fact 5.2.1.

• A language is self-reducible and p-selective if and only if it is in P.

• A language is self-reducible and p-cheatable if and only if it is in P.

• A language is self-reducible and easily approximable1 if and only if it is in P.

The first two results can be strengthened to the following results by using Corollary

4.2.2 and Fact 4.1.3.

Corollary 5.2.2.

• A language L is self-reducible and ≤p
pos-reducible to a p-selective language if and

only if L is in P.

• A language L is self-reducible and Turing reducible to a p-cheatable language if and

only if L is in P.

In the next two subsections, we will extend the first result presented in Fact 5.2.1

to the classes P[SMC2 ∩ COSMC2] and P[NONSEL2]. In the third and last one, we will

discuss results where disjunctive and conjunctive self-reducibilities are involved.

1Easily approximable languages have partial information algorithms that compute for m pairwise
distinct input words a pool from k–FREQ

m
for some m and k < m

2
. Every pool in k–FREQ

m

contains only bitstrings with hamming distance at most k from a fixed bitstring.
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5.2.1 Self-Reducible Languages in P[SMC2 ∩ COSMC2] are in P

We show that every self-reducible language in P[SMC2 ∩ COSMC2] belongs to P. Since

SMC2 ∩ COSMC2 forms a subset of 3–SIZE2, it suffices to show by Lemma 5.1.2 that all

truth-table self-reducible languages in P[SMC2 ∩COSMC2] belong to P. Before we prove

the corresponding lemma, we state Lemma 3.24 from [Nic01] as a known fact which will

be very helpful.

Fact 5.2.3. Let L be a language in P[SMC2∩COSMC2]. Then we can compute for every

tuple (w1, w2, . . . , wk) of words in polynomial time a partition of X = {w1, w2, . . . , wk}

into disjoint sets of one of the following two types:

1. X = IN ∪ OUT ∪ S1 ∪ . . . ∪ Sl with l ≤ k such that

• IN ⊆ L and OUT ⊆ L,

• for 1 ≤ i ≤ l we have Si 6= ∅, and Si ⊆ L or Si ⊆ L, and

• for 1 ≤ i < j ≤ l, x ∈ Si and y ∈ Sj we have x ∈ L =⇒ y ∈ L.

2. X = IN ∪ OUT ∪X1 ∪X2 such that

• IN ⊆ L and OUT ⊆ L,

• for i ∈ {1, 2} we have Xi 6= ∅, and Xi ⊆ L or Xi ⊆ L, and

• for x ∈ X1 and y ∈ X2 we have x ∈ L ⇐⇒ y /∈ L.

Lemma 5.2.4. Every tt-self-reducible language in P[SMC2 ∩ COSMC2] belongs to P.

Proof. Suppose that L is tt-self-reducible via M and �. Let L be in P[SMC2∩COSMC2].

We show how an oracle Turing machine M ′ decides L with at most one query to L that

is smaller than the input word with respect to �. This will imply that L is 1-tt-self-

reducible and therefore in P by Theorem 2.4.9.

On input w it computes by simulation of M on input w the set Q of words queried

by M on input w. If this set is empty, then M ′ accepts w if and only if M accepts it.

Otherwise there is at least one word in Q and M ′ computes, according to Fact 5.2.3, in

polynomial time a partition of X = Q ∪ {w} of one of the two types.

Case 1. Assume that a partition of the first type has been computed. That is, we obtain

pairwise disjoint sets IN,OUT, S1, . . . , Sl such that X is their union and it holds that

• IN ⊆ L and OUT ⊆ L,
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• for 1 ≤ i ≤ l we have Si 6= ∅, and Si ⊆ L or Si ⊆ L, and

• for 1 ≤ i < j ≤ l, x ∈ Si and y ∈ Sj we have x ∈ L =⇒ y ∈ L.

If w ∈ IN, then it holds that w ∈ L and M ′ accepts w. The case for w ∈ OUT is

analogous except that w is rejected. In any other case let i be the index of the set Si

that contains w. If w is not the only word in Si then M ′ chooses a word x ∈ Si distinct

to w which has, by definition of Si, the property that w ∈ L if and only if x ∈ L. So,

M ′ only has to query x in order to determine whether w ∈ L or not. Now suppose that

w is the only word in Si. The following three cases arise.

1. If i = 1, then w ∈ L implies x ∈ L for every x ∈ S2. The only case in which w can

be in L is the case that S2 ⊆ L which implies Sj ⊆ L for all j ∈ {2, . . . , l}. Now

M ′ simulates M on input w for this possibility. If M rejects w, then we know that

w /∈ L. Otherwise we have w ∈ L if and only if S2 ⊆ L and we only have to query

a word x ∈ S2 in order to determine membership of w in L.

2. If i = l, then x ∈ L implies w ∈ L for every x ∈ Sl−1. This is very similar

to the first case. We only have to query a word x ∈ Sl−1 in order to determine

membership of w in L.

3. If 1 < i < l, then x ∈ L =⇒ w ∈ L =⇒ y ∈ L for every x ∈ Si−1 and y ∈ Si+1.

Three possibilities for inclusion of Si−1 and Si+1 in L and L, respectively, remain:

(1) Si−1 ⊆ L and Si+1 ⊆ L, (2) Si−1 ⊆ L and Si+1 ⊆ L, and (3) Si−1 ⊆ L and

Si+1 ⊆ L. The first two possibilities imply w ∈ L and w ∈ L, respectively. Now

M ′ simulates M on input w for the third possibility. If M accepts w, then w ∈ L

if and only if Si+1 ⊆ L, and otherwise w ∈ L if and only if Si−1 ⊆ L. In each case,

membership of w in L can be determined by querying a word x ∈ Si+1 (or Si−1,

respectively).

Case 2. Assume that a partition of the second type has been computed. That is, we

obtain pairwise disjoint sets IN,OUT, X1 and X2 such that X is their union and it holds

that

• IN ⊆ L and OUT ⊆ L,

• for i ∈ {1, 2} we have Xi 6= ∅, and Xi ⊆ L or Xi ⊆ L, and

• for x ∈ X1 and y ∈ X2 we have x ∈ L ⇐⇒ y /∈ L.
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If w ∈ IN, then we have w ∈ L and M ′ accepts w. The case for w ∈ OUT is analogous

except that w is rejected. Otherwise we may assume without loss of generality that

w ∈ X1 (if w ∈ X2 we swap X1 and X2). Since X2 6= ∅ we can choose a word x ∈ X2

which has the property that w ∈ L if and only if x /∈ L. Hence, M ′ can determine

whether w ∈ L or not by querying x.

Clearly, M ′ decides L with oracle L in polynomial time. Note that M ′ makes at most

one query. This is one of the words queried by M on input w. Hence, this query is

smaller than w with respect to the polynomially related partial ordering �.

From this lemma we can derive the following two corollaries. The second one is a

stronger version of the first one, which additionally uses Fact 4.2.3.

Corollary 5.2.5.

• A language is self-reducible and in P[SMC2 ∩ COSMC2] if and only if it is in P.

• A language L is self-reducible and ≤p
ptt-reducible to a language that is contained in

P[SMC2 ∩ COSMC2] if and only if L belongs to P.

5.2.2 Self-Reducible Languages in P[NONSEL2] are in P

We now show that self-reducible languages in P[F ] belong to P for all 2-families F in

normal form with SEL2 * F . In particular, we show that self-reducible languages in

P[NONSEL2] are in P2. This partially answers an open question from Beigel, Kum-

mer, and Stephan in [BKS95a]. They ask whether all self-reducible easily m-countable

languages – which are contained in NONSELm – belong to P.

By Corollary 5.1.1 and also by Lemma 5.1.2, self-reducible languages in P[NONSEL2]

are already truth-table self-reducible. We show that every truth-table self-reducible

language in P[NONSEL2] belongs to P. This is achieved in two steps. In the first step we

show that tt-self-reducible languages in P[NONSEL2] are nor-nand self-reducible, and in

the second step we show that this implies already membership in P.

Before we proceed, we define nor-nand self-reducibility. This is a variation of truth-

table self-reducibility, where the corresponding boolean functions αw (see Section 2.3.2)

are for all words w either special negated disjunctions or special negated conjunctions.

2Although NONSEL2 equals 2–CARD2 as mentioned in Section 3.2.4, we prefer to write NONSEL2

to emphasize that the result obtained here holds for the largest 2-family F in normal form with
SEL2 * F .
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Definition 5.2.6 (nor-nand self-reducibility). A language L is nor-nand self-reduc-

ible if it is tt-self-reducible via an oracle Turing machine M with the following property.

If M makes on an input w at least one query then either

• at most one query is in L, where w /∈ L if and only if one query is in L, or

• at most one query is in L, where w ∈ L if and only if one query is in L.

It is immediate that every nor-nand self-reducible language is truth-table self-reduc-

ible, but not positive truth-table self-reducible. We show that non-selective partial

information suffices to reduce the complexity of truth-table self-reducible to nor-nand

self-reducible languages.

Lemma 5.2.7. All tt-self-reducible languages in P[NONSEL2] are nor-nand self-reduci-

ble.

Proof. Let L be tt-self-reducible via some self-reduction machine M , and let L be in

P[NONSEL2] via some partial information function f . Without loss of generality, we

assume that f outputs only maximals pools from NONSEL2. These maximal pools are

equ2, bottom2, and top2. We describe how a polynomial-time oracle Turing machine

M ′ decides for every word w whether it belongs to L or not by using L as oracle. This

machine will satisfy the conditions given in Definition 5.2.6 and shows therefore that L

is nor-nand self-reducible.

Membership of a word w in L is determined by M ′ in three steps. In the first step,

it finds a node v in STM(w) such that the label of v is in L if and only if w is in L,

and for all words q labeling some successor of v it holds that f(w, q) ∈ {bottom2, top2}.

In the second step, it determines all words labeling some successor of v which have the

property that w is in L only if either all or at least one of these words are in L. These

words are then used in the third step to decide whether w is in L or not.

Step 1. The purpose of this step is to find a node v in STM(w) such that the label of

this node is in L if and only if w is in L and for every word q labeling some successor

of v it holds that f(w, q) ∈ {bottom2, top2}. Let w′ := w. As long as v has not been

found, M ′ does the following. It computes by simulation of M the list of queries posed

by M on input w′ (if M makes no query, then M ′ accepts w if and only if M accepts w′).

Let q1, q2, . . . , qk be this list. If there exists an i ∈ [k] such that f(w, qi) = equ2, then it

holds that w ∈ L if and only if qi ∈ L, and we repeat the whole procedure with w′ := qi.

Otherwise, w′ is the label of the desired node v and the words q1, q2, . . . , qk have the

property that f(w, qi) ∈ {bottom2, top2} for every i ∈ [k]. Since the self-reduction tree
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of M is by Lemma 2.4.8 bounded by a polynomial p in |w|, M ′ has to repeat this process

at most p(|w|) times.

Step 2. Suppose that q1, q2, . . . , qk are the labels of the successors of v computed in Step

1. Then, M ′ computes with the following procedure three sets IN, OUT and X such

that

• IN ∪ OUT ∪X = {q1, q2, . . . , qk},

• IN ⊆ L,

• OUT ⊆ L, and

• either f(w, x) = bottom2 or f(w, x) = top2 for all x ∈ X.

Initially, it sets IN = OUT = ∅ and X = {q1, q2, . . . , qk}. As long as there are two words

x1, x2 ∈ X with f(w, x1) = bottom2 and f(w, x2) = top2, it computes P = f(x1, x2).

If P = bottom2, then x1 /∈ L (if x1 were in L, then w would not be in L, because

f(w, x1) = bottom2, and therefore x2 would not be in L which contradicts f(w, x2) =

top2). So, it moves x1 from X into OUT. If P = top2, then x2 ∈ L (if x2 were not in L,

then w would be in L, because f(w, x2) = top2, and therefore x1 would be in L which

contradicts f(w, x1) = bottom2). So, it moves x2 from X into IN. If P = equ2, then

w ∈ L if and only if x1 /∈ L. In this case, M ′ stops and χL(w) is determined by querying

x1.

Step 3. Suppose that w′ is the label of the node v computed in Step 1, and that the

sets IN, OUT, and X form the partition of {q1, q2, . . . , qk} computed in Step 2. We

only consider the case that f(w, x) = bottom2 for all x ∈ X. The case for top2 is

symmetric. If there are two words x1, x2 ∈ X with f(x1, x2) = top2, then w can not be

in L (otherwise x1, x2 /∈ L which contradicts f(x1, x2) = top2). In this case, M ′ stops

and rejects w. Otherwise it computes a partition of X into disjoint sets X1, X2, . . . , Xk

such that for all i ∈ [k] we have Xi ⊆ L or Xi ⊆ L, and for at most one i we have Xi ⊆ L.

It makes this inductively: In the (i+1)-th step, it picks a word x from the set X ′ = X \

(X1∪X2∪. . .∪Xi) and defines Xi+1 := {x}∪{y ∈ X ′ | f(x, y) = equ2}. If X ′\Xi+1 = ∅,

then the sets X1, X2, . . . , Xk with k = i+1 form the desired partition. Let x1, x2, . . . , xk

be representants from those sets, i.e. xi ∈ Xi for every i ∈ [k]. Then, at most one word in

{w, x1, x2, . . . , xk} is in L by construction of the Xi and the fact that f(w, xi) = bottom2

for all i. The only possibility where w can be in L is when {x1, x2, . . . , xk} is a subset

of L. So, if M rejects w′ for the possibility that {x1, x2, . . . , xk} ⊆ L, then M ′ rejects w
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since it can not be in L. Otherwise, w ∈ L if and only if all words in {x1, x2, . . . , xk} do

not belong to L. In this case, M ′ queries all words in {x1, x2, . . . , xk} and accepts w if

and only if they are not in L.

By construction, the conditions in Definition 5.2.6 are satisfied. If a single word q is

queried, then only if w ∈ L ⇐⇒ q /∈ L. More than one word is only queried in Step 3,

where the condition is clearly satisfied.

Having shown that every tt-self-reducible language in P[NONSEL2] is nor-nand self-

reducible, we show that this already implies membership in P.

Lemma 5.2.8. Every nor-nand self-reducible language in P[NONSEL2] is in P.

Proof. Let L be nor-nand self-reducible via M and a polynomially related partial order-

ing �. Furthermore, let L be in P[NONSEL2] via a partial information function f which

outputs without loss of generality on every input only maximal pools from NONSEL2.

These maximal pools are equ2, bottom2, and top2. We show how an oracle Turing ma-

chine M ′ decides whether a given input is in L or not by asking the oracle L at most

one time for a word that is smaller than the input word with respect to �. Thus, L is

1-tt self-reducible via M ′ and �, which implies that L is in P by Theorem 2.4.9.

On input w, it computes STM(w) up to level three and uses f to determine membership

of w in L directly or to find a word to ask in order to determine it. More precisely, it

simulates M on input w to obtain the set Q of all words queried by M on input w (if

this set is empty, it accepts w if and only if M accepts it). To find out which of the

cases in Definition 5.2.6 holds, it simulates M once more on input w for the case that

all words in Q are in L. If it accepts w, then the first condition holds and otherwise the

second one. We assume that the first condition holds, i.e. that

at most one query is in L, where w ∈ L if and only if Q ⊆ L. (5.1)

The other case is symmetric to this one.

Next, M ′ considers each word q ∈ Q and does the following. It computes all words

queried by M on input q. Let q1, q2, . . . , qk be an enumeration of these words. Then, as

described above M ′ finds out which of the conditions in Definition 5.2.6 holds. In both

cases, M ′ is able to determine membership of w or q in L with at most one query to L

which is smaller than w with respect to �.

Case 1. Assume that the first condition holds, i.e.

at most one query is in L, where q ∈ L if and only if qi ∈ L for all i ∈ [k] (5.2)
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For every i ∈ [k], M ′ computes a pool P = f(w, qi). If P = equ2, then w ∈ L if and only

if qi ∈ L and it queries qi in order to determine whether w ∈ L or not. Since this word

has been queried by M on input q, and q has been queried by M on input w, it holds

that qi ≺ w. If P = top2, then q must not be in L. Assume that this is not the case,

i.e. q ∈ L. Then, w /∈ L by Equation (5.1) which implies qi ∈ L because f(w, qi) = top2.

But then, q must not be in L by Equation (5.2) which is a contradiction to q ∈ L as

assumed. In the worst case, we have P = bottom2 for every i ∈ [k]. In this case, w can

not be in L since if w ∈ L we would have qi /∈ L for all i ∈ [k] which implies q ∈ L by

Equation (5.2), and this implies w /∈ L by Equation (5.1) which is a contradiction.

Case 2. Assume that the second condition holds, i.e.

at most one query is in L, where w ∈ L if and only if qi /∈ L for one i ∈ [k]. (5.3)

For every i ∈ [k], M ′ computes a pool P = f(w, qi). If P = equ2, then w ∈ L if and

only if qi ∈ L and it queries qi in order to determine whether w ∈ L or not. Since this

word has been queried by M on input q, and q has been queried by M on input w, it

holds that qi ≺ w. If P = bottom2, then at most one of both words, w or qi, can be in

L. Assume that w is in L. Then, qi must not be in L which implies q ∈ L by Equation

(5.3), and this implies once more by Equation (5.1) that w /∈ L. This is a contradiction,

hence if P = bottom2, then M ′ must reject w. If P = top2, then at least one of both

words, w or qi, must be in L. In this case, we have qi ∈ L since if qi is not in L, then

w has to be in L, and also q by Equation (5.3). This contradicts Equation (5.1). In the

worst case M ′ computes for all i ∈ [k] the pool top2. We have seen that in this case we

can decide membership of each word qi in L. Thus, M ′ is able to determine membership

of w or q in L as described above.

We have seen that M ′ can decide membership in L for w directly or for all words

q ∈ Q by querying at most one word that is smaller than w with respect to �. In the

latter case, deciding membership for w is possible as well by simulating M on input w

while answering each query q ∈ Q as determined. It is not hard to see that M ′ runs in

time polynomial in |w|. Hence, L is 1-tt-self-reducible via M ′ and �.

Since every language in P is trivially self-reducible and contained in P[NONSEL2] we

obtain from Lemma 5.1.2 and the preceding two lemmas the following corollary.

Corollary 5.2.9. A language is self-reducible and contained in P[NONSEL2] if and only

if it is in P.
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We do not know whether self-reducible languages in P[NONSELm] are contained in P.

But we will present a result for disjunctively and conjunctively self-reducible languages

in P[NONSELm] in the next subsection.

5.2.3 Results for Disjunctive and Conjunctive

Self-Reducibilities

In Section 5.2.1, we proved that every self-reducible language in P[SMC2 ∩ COSMC2]

belongs to P. It would be nice to know whether this also holds for self-reducible lan-

guages in P[SMCm ∩COSMCm] for all m. If we replace “self-reducible” by “disjunctively

or conjunctively self-reducible”, then they are contained in P. This follows from the

following two facts. The first one has been proven in [Tan99, Theorem 1.20], whereas

the second one is actually a corollary of it because conjunctively self-reducible languages

in P[SMCm] are complements of disjunctively self-reducible languages in P[COSMCm].

Fact 5.2.10.

• A language is dtt-self-reducible and in P[COSMCm] if and only if it belongs to P.

• A language is ctt-self-reducible and in P[SMCm] if and only if it belongs to P.

Corollary 5.2.11. A language is disjunctively or conjunctively self-reducible and con-

tained in P[SMCm ∩ COSMCm] if and only if it belongs to P.

Similarly, it would be nice to generalize the result from Section 5.2.2 to arbitrary tuple

lengths and answer the open question from Beigel, Kummer, and Stephan mentioned

above. At this time, we know only of a result which uses disjunctive or conjunctive

self-reducibility. It is stated in the following corollary of Lemma 4.3.13, Lemma 4.3.15,

Theorem 6.9 in [BKS95a], and the fact that P[NONSELm] is closed under complement

(see Section 3.1 in [Nic01]).

Corollary 5.2.12.

• A language is disjunctively or conjunctively self-reducible and in P[NONSELm] if

and only if it belongs to P.

• A language L is disjunctively or conjunctively self-reducible and Turing reducible

to a language in P[NONSELm] if and only if L belongs to P.



5.3 Can Self-Reducible Partial Information Languages be not in P? 61

5.3 Can Self-Reducible Partial Information

Languages be not in P?

In the last section we have seen that self-reducible languages in certain partial infor-

mation classes are in P. Is this the case for all self-reducible languages that belong to

some partial information class? If not, we would have separated PSPACE from P since

all self-reducible languages are in PSPACE by Theorem 2.4.9. Similarly, if we replace

“self-reducible” by “disjunctively self-reducible” we would have separated NP from P.

It is assumed that P is a proper subclass of NP. So, it is possible that some partial

information class contains a disjunctively self-reducible language which is not in P.

A candidate for such a class could be P[SMC2]. We do not know whether all disjunc-

tively self-reducible languages in this class belong to P. However, as the next theorem

tells us, they are at least contained in UP. I want to thank Arfst Nickelsen who pointed

out that the original proof which included only 2-dtt-self-reducible languages (the self-

reduction machine queries at most two words on every input) can be generalized to the

present form.

Theorem 5.3.1. Every dtt-self-reducible language in P[SMC2] is contained in UP.

Proof. Let L be dtt-self-reducible via M and in P[SMC2] via a partial information func-

tion f . We are going to construct an unambiguous non-deterministic polynomial-time

Turing machine M ′ that accepts L.

On an input w, M ′ walks a path in STM(w), and uses f to choose the next node to

visit. It accepts w if and only if the last node on this path is in L. Note that w ∈ L if

and only if there exists a path from the root to a leaf such that the leaf is labeled with

a word in L. Assume, M ′ already visited nodes with labels w1, w2, . . . , wk. Then, the

label wk+1 of the next node to visit is determined as follows. If M poses on input wk

queries q1, q2, . . . , ql, then M ′ computes f(qi, qj) for all i, j with 1 ≤ i < j ≤ l. If for such

a pair f(qi, qj) = sel2, then qj is in L if qi is in L. In this case, M ′ removes qi from the

list of queries. Let qi1 , . . . , qim be the queries remaining after these removals. If m = 1,

then M ′ sets wk+1 := qi1 . Otherwise we have f(qij1
, qij2 ) = bottom2 for all j1, j2 with

1 ≤ j1 < j2 ≤ m. This means, at most one of these queries is in L. Then, M ′ chooses a

j ∈ [m] nondeterministically and sets wk+1 := qij .

Clearly, M ′ has on input w at most one accepting computation and is therefore un-

ambiguous.

As mentioned above, it is unknown whether every disjunctively self-reducible language
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in P[SMC2] belongs to P. However, there exists a language L such that relative to L

every disjunctively self-reducible language in P[SMC2] belongs to P. We can choose L

to be any PSPACE-complete language. Then we have PL = NPL by Theorem 14.4 in

[Pap94] and the claim follows from the fact that relative to L every disjunctively self-

reducible language is in NP (by nearly the same proof as for Theorem 2.4.9). On the

other hand, in the proof of Theorem 7.1 in [BKS95a], a language K is constructed such

that relative to K there exists a disjunctively self-reducible language in P[SMC2] that

does not belong to P. We summarize these results in the following fact.

Fact 5.3.2.

1. There is a language L such that relative to L every dtt-self-reducible language in

P[SMC2] belongs to P.

2. There is a language K such that relative to K there exists a dtt-self-reducible

language in P[SMC2] that is not in P.

Like the proof of Theorem 2.4.9, many proofs in complexity theory still work in the

presence of arbitrary oracles. We say that they relativize. It is often seen as evident

that statements that are true relative to some language and false relative to another

one are hard to prove. For those ones, we need non-relativizing proofs since otherwise

we would end up in a contradiction. I feel that any constructive proof of the statement

“disjunctively self-reducible languages in P[SMC2] belong to P” would relativize (like

all proofs in this thesis relativize) as well as any proof of the opposite statement by

diagonalization. So, alternative proof techniques have to be found first to show its truth

or falsehood. For more on relativization and its role in complexity theory there is an

interesting paper written by Hartmanis et al. [HCC+92].
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Conclusion

This thesis is about self-reducible languages with partial information algorithms. Given

a family F , we asked whether all self-reducible languages in P[F ] belong to P. Pos-

itive answers to this question have been given for most 2-families. Answers for some

families with tuple lengths greater than two can be found in the literature. However,

we obtained no results for such families, except for disjunctively or conjunctively self-

reducible languages in partial information classes produced by some of those families.

Negative answers to the above question were unlikely to be given since this would imply

that P is a proper subclass of PSPACE, NP, or co-NP. Therefore, results in this respect

have only been obtained for some relativized world.

In the following sections we summarize the main results of this thesis and present

questions that are left open as well as conjectures.

6.1 Summary of Main Results

We showed that self-reducible languages in P[NONSEL2] and P[SMC2 ∩ COSMC2] char-

acterize the languages in P. The first result is interesting since NONSEL2 is the largest

2-family in normal form that does not include SEL2 and therefore completely answers

the above question for all those families. It furthermore gives a partial answer to an

open question from [BKS95a], which asks whether all self-reducible easily m-countable

languages are in P. The second result extends the corresponding result for p-selective

languages obtained in [BvHT93].

The proofs were in two steps. First, self-reducible languages in those classes have

been shown to be truth-table self-reducible. Then, truth-table self-reducible languages

in those classes were broken down to 1-tt-self-reducible languages which implies mem-

bership in P. For the first step, we proved two results which are interesting in its own.

63
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The first one – that does not only hold for self-reducibilities, but for reducibilities in gen-

eral – says that Turing and truth-table reduction closures of languages in P[NONSELm]

coincide. A corollary is that self-reducible languages in P[NONSELm] are truth-table

self-reducible. The second result has been obtained in Section 5.1 and tells us that

self-reducible languages in P[(2m−1)–SIZEm] are already truth-table self-reducible. For

example, p-selective languages are in P[(2m − 1)–SIZEm] for all m, and for m = 2 it

contains all partial information classes produced by 2-families distinct to 4–SIZE2. Both

results might be very helpful for future research in this direction.

For families with tuple lengths larger than two we obtained no results which answer

the question posed at the beginning of this thesis. However, some results concerning p-

selective, p-cheatable, and easily approximable languages can be found in the literature

(see [BvHT93], [ABG00, GJY93], and [BKS95a], respectively). We were able to obtain as

a corollary that disjunctively and conjunctively self-reducible languages in P[NONSELm]

characterize the languages in P. That disjunctively and conjunctively self-reducible

languages in P[SMCm ∩ COSMCm] characterize P was known before.

We also considered self-reducible languages in P[SMC2], but had to learn that it is

possibly very hard to show that they are in P by the same techniques employed for

the other results. We would end up in a contradiction if we use relativizing proofs:

Beigel, Kummer, and Stephan constructed a language L such that relative to L there

is a disjunctively self-reducible language in P[SMC2] that is not in P, and relative to

any PSPACE-complete language K every such language belongs to P. The problem is

that a lot of proofs in complexity theory relativize. At least, we were able to show that

disjunctively self-reducible languages in P[SMC2] belong to UP.

We finish this section with Figure 6.1 that shows results regarding 2-families obtained

in this thesis.

6.2 Open Questions and Conjectures

The question whether self-reducible languages in P[F ] are truth-table self-reducible has

been fully answered by Corollary 5.1.1 for all m-families F in normal form with SELm *

F . Lemma 5.1.2 gives a positive answer for some families F with SELm ⊆ F ⊆ (2m −

1)–SIZEm. However, we do not know whether this is optimal, i.e. whether (2m−1)–SIZEm

is the largest or the only m-family F for which self-reducible languages in P[F ] are truth-

table self-reducible. Therefore, we pose the following question.

Open Question 6.2.1. Is the result of Lemma 5.1.2 optimal? If not, for which m-
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1–SIZE2

〈{00, 01}〉

CHEAT2

BOTTOM2 TOP2

2–CARD2

SEL2

SMC2 ∩ COSMC2

SMC2 COSMC2

3–SIZE2

4–SIZE2

self-reducible
languages are
in P

dtt-self-reducible
languages are
in UP

self-reducible
languages are

tt-self-reducible

Figure 6.1: This diagram shows all partial information classes produced by 2-families
in normal form as in Figure 3.1. Dotted lines separate partial information
classes which contain only (disjunctively) self-reducible languages that are in
P, UP or are tt-self-reducible, respectively, from partial information classes
where this is not known. All classes below a line have the property that is
written directly under that line.
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families F with SELm ⊆ F that are larger than or distinct to (2m − 1)–SIZEm are

self-reducible languages in P[F ] tt-self-reducible?

In Section 5.2.1, we showed that self-reducible languages in P[SMC2∩COSMC2] charac-

terize P. What about self-reducible languages in P[SMC2]? Showing that such languages

belong to P or not might be hard as argued in Section 5.3. As also argued, it might

even be hard if we restrict to disjunctively self-reducibility. Nevertheless, I think that it

is interesting to further investigate the complexity of such languages.

Open Question 6.2.2. Does every (disjunctively) self-reducible language in P[SMC2]

belong to P?

Another question is whether the result from Section 5.2.1 can be generalized to other

tuple lengths. That is, do self-reducible languages in P[SMCm ∩ COSMCm] belong to

P? We know already that disjunctively and conjunctively self-reducible languages in

P[SMCm ∩ COSMCm] belong to P. The next goal could be to show that (positive)

truth-table self-reducible languages in P[SMCm ∩ COSMCm] are also in P.

Open Question 6.2.3. Does every (positive) truth-table self-reducible language that is

in P[SMCm ∩ COSMCm] belong to P?

We finish this thesis with a conjecture that I strongly believe to be true.

Conjecture 6.2.4. Every self-reducible language in P[NONSELm] belongs to P.

It is motivated by the following results obtained in this thesis. Firstly, in Section

5.2.2 we proved that self-reducible languages in P[NONSEL2] belong to P. Secondly,

we know for other tuple lengths that disjunctively and conjunctively self-reducible lan-

guages in P[NONSELm] are in P. And finally, we also know that self-reducible languages

in P[NONSELm] are truth-table self-reducible. All what is left to show the truth of

this conjecture is to show that truth-table self-reducible languages in P[NONSELm] are

disjunctively or conjunctively self-reducible, or in P.
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