
Applications of Games to
Propositional Proof Complexity

by

Alexander Hertel

A Thesis Submitted in Conformity With the Requirements
For the Degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2008 by Alexander Hertel

Created on May 13, 2008.

ii

Abstract

Applications of Games to Propositional Proof Complexity

Alexander Hertel
Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

2008

In this thesis we explore a number of ways in which combinatorial games can be used to help prove results

in the area of propositional proof complexity.

The results in this thesis can be divided into two sets, the first being dedicated to the study of Resolution

space (memory) requirements, whereas the second is centered on formalizing the notion of ‘dangerous’

reductions.

The first group of results investigate Resolution space measures by asking questions of the form, ‘Given a

formula F and integer k, does F have a [Type of Resolution] proof with [Type of Resource] at most k?’. We

refer to this as a proof complexity resource problem, and provide comprehensive results for several forms of

Resolution as well as various resources. These results include the PSPACE-Completeness of Tree Resolution

clause space (and the Prover/Delayer game), the PSPACE-Completeness of Input Resolution derivation

total space, and the PSPACE-Hardness of Resolution variable space. This research has theoretical as well

as practical motivations: Proof complexity research has focused on the size of proofs, and Resolution space

requirements are an interesting new theoretical area of study. In more practical terms, the Resolution

proof system forms the underpinnings of all modern SAT-solving algorithms, including clause learning. In

practice, the limiting factor on these algorithms is memory space, so there is a strong motivation for better

understanding it as a resource.

With the second group of results in this thesis we investigate and formalize what it means for a reduction

to be ‘dangerous’. The area of SAT-solving necessarily employs reductions in order to translate from other

domains to SAT, where the power of highly-optimized algorithms can be brought to bear. Researchers have

empirically observed that it is unfortunately possible for reductions to map easy instances from the input

domain to hard SAT instances. We develop a non-Hamiltonicity proof system and combine it with additional

results concerning the Prover/Delayer game from the first part of this thesis as well as proof complexity results

for intuitionistic logic in order to provide the first formal examples of harmful and beneficial reductions,

ultimately leading to the development of a framework for studying and comparing translations from one

language to another.

iii

Acknowledgements

First and foremost, I would like to thank Tanya for all of her love, effort, and support that she gave me
during my time in graduate school at the University of Toronto.

Another major debt which I owe is to my supervisor Alasdair Urquhart. I could not have asked for a
better mentor, and many of the results in this thesis would not have been possible without him. His keen
insights, uncanny research sense, and encyclopedic knowledge of all areas of computer science and logic were
truly invaluable and taught me a great deal about how to be a good researcher. I really enjoyed all of the
good times we spent together and the many interesting conversations we had. KXW!

I would like to thank my brother Philipp for his contributions to the ‘dangerous reductions’ Chapter in
this thesis, and for being such a great teammate during the many classes we took, both at U of T and UVic.

I am also very grateful to my mother for doing such a good job raising us and making so many sacrifices to
give us the good education which ultimately led us here, and to my father for buying us our first computers
so long ago and stimulating our interest in computer science.

Many thanks to all of the members of my Ph.D. committee for their helpful suggestions, and especially
to Toni Pitassi for all of our very useful discussions and for helping with the NP-Hardness of approximating
optimal Input Resolution proof size.

Thank you to Steve Cook who brought the Resolution width problem back with him from a conference
in England, and for his helpful suggestions about where to publish our Tree Resolution clause space results.

Thank you to Charlie Rackoff for chairing every single one of my checkpoint meetings and for the many
stimulating discussions we had. Charlie is without a doubt one of the most creative and insightful thinkers
which I have had the fortune of knowing.

And thank you to Mike Molloy for his suggestions in one of the earlier checkpoints which definitely shaped
the direction of this research and without a doubt improved the quality of this thesis a great deal.

One of the most significant lessons which I learned during my time in graduate school at the University
of Toronto was from just being part of the Theory Group, which is simply saturated with exceptional
researchers and role models. I was fortunate to work and interact with some of the very top researchers in
Canada (or anywhere else, for that matter), and I will surely look back on my years here with a strong sense
of intellectual reminiscence.

I would like to thank Fahiem Bacchus for his many valuable comments and suggestions regarding the
‘dangerous reductions’ chapter and François Pitt for his thesis template and willingness to answer Latex
questions. I would also like to thank Sam Buss for editing his proof tree package at my request to allow
upside-down proofs, and Moshe Vardi for his stimulating conjecture concerning the complexity of Resolution
width.

My sincerest gratitude goes out to Charles Morgan, Valerie King, Ulrike Stege, and Hausi Müller in
Victoria for getting us started in research and encouraging us to go to grad school, and especially to Ulrike
for supporting us in our directed studies research and for the work she did with us leading to our first
publication.

Many thanks also to our family friends Cliff and Liz in Victoria for all of their love and support.

Thanks to all of the friends we met during our studies including Marc, Alan, Kleoni, Vlad, Daniela,
Nazanin, and Mark. Marc, I have fond memories of staying up all night working on assignments, going
skating, playing squash, and working on derivations with you. I also have very fond memories of all of the
different characters Philipp and I worked with and ran into during our time at U of T and UVic.

iv

I am also grateful to Sara Burns, who valiantly came to my rescue on more than one occasion after I had
been defeated by various dangerous creatures such as jammed staplers, photocopiers, and fax machines.

Last but not least, I would like to thank the Department of Computer Science at the University of Toronto
as well as NSERC for supporting me financially. NSERC in particular helped me tremendously with their
many generous scholarships, and I will always be grateful.

v

vi

Contents

I Preliminaries 1

1 Thesis Overview 3
1.1 Summary & Motivation . 3
1.2 Relationship To Games . 5
1.3 Organization . 5
1.4 Future Research . 6

2 An Overview of Proof Complexity & Broad Definitions 7
2.1 Introduction & Motivation . 7
2.2 Proof Complexity Definitions & Terminology . 8
2.3 Polynomially-Bounded Proof Systems & coNP . 8
2.4 A Description of Major Propositional Proof Systems . 9

2.4.1 Truth Tables . 10
2.4.2 Analytic Tableaux . 11
2.4.3 Resolution . 11

Tree Resolution . 11
Ordered Resolution . 11
Regular Resolution . 12
General Resolution . 12
Limited Extension . 13

2.4.4 Gentzen’s System LK . 14
2.4.5 Frege Systems . 15
2.4.6 Bounded-Depth Frege Systems . 15
2.4.7 Extended Frege Systems . 16
2.4.8 Substitution Frege Systems . 16
2.4.9 Extended Resolution . 17

2.5 Non-Propositional Proof Systems . 17
2.5.1 Cutting Planes . 17
2.5.2 Polynomial Calculus & Nullstellensatz . 17
2.5.3 Hajós Calculus . 17
2.5.4 Relating Propositional & Non-Propositional Systems 17

2.6 Summary of the Relationships Between Major Proof Systems 18

II The Complexity of Resolution Space Measures 21

3 Introduction to Part II 23
3.1 History of Resolution Space Research . 23
3.2 Definitions Specific To Part II . 24

3.2.1 Resolution, Size, & Width . 24
3.2.2 Resolution Space . 24

vii

3.2.3 Pebbling Circuits & Games . 26
3.2.4 Pebbling Contradictions . 28
3.2.5 The Prover/Delayer Game . 29
3.2.6 Automatizability . 30

Positive Results . 30
Negative Results . 30

3.3 Previous Results Related to Resolution Space . 31
3.3.1 Pebbling . 31
3.3.2 Space & Games . 32
3.3.3 Space & Width . 33
3.3.4 Width & Size . 34
3.3.5 Tradeoff Results . 34
3.3.6 The Complexity of Pebbling . 35

3.4 Summary of Part II . 36
3.4.1 Chapter Summary . 36
3.4.2 Summary of Results . 38

4 The PSPACE-Completeness of Tree Resolution Clause Space 39
4.1 Introduction & Motivation . 39
4.2 An Easy Case of the Pebbling Game . 40
4.3 Prover Strategy for the GI DAGs . 41
4.4 Prover Strategy for the Lingas Circuits . 43
4.5 Delayer Strategy for All Monotone Circuits . 49
4.6 Black Pebbling, Prover/Delayer Game, & Tree Clause Space Equivalence 50
4.7 The PSPACE-Completeness of The Prover/Delayer Game & Tree Clause Space 51

4.7.1 PSPACE Algorithms for TCSP and PDGAME . 51
4.7.2 The PSPACE-Completeness of TCSP and PDGAME 52

4.8 Related Complexity Results . 52
4.8.1 The Complexities of Resolution Clause Space & Tree Total Space 52
4.8.2 The Complexity of Tree Resolution Size . 53
4.8.3 The PSPACE-Completeness of Regular Tree Resolution Clause Space 54
4.8.4 The PSPACE-Completeness of Clause Learning Clause Space 55

4.9 Open Problems & Conjectures Related to Tree Resolution Clause Space 57
4.9.1 The Complexity of Resolution Clause Space . 57
4.9.2 The Complexities of Tree Resolution Total Space & Tree Resolution Size 57
4.9.3 The Complexity of Resolution Size . 57
4.9.4 The Complexity of Clause Learning Space . 58
4.9.5 The Complexity of Resolution Depth . 58
4.9.6 Approximation Algorithms . 58
4.9.7 Tension Between Size & Space . 58
4.9.8 The Space Complexity of Other Proof Systems . 59

5 The PSPACE-Completeness of Input Resolution Total Space 61
5.1 Introduction & Motivation . 61
5.2 Input Resolution, Horn Formulas, and MU Formulas . 62

5.2.1 Separation Between Input Resolution & Unit Resolution 63
5.2.2 The Relationship Between Input Resolution and Horn Formulas 64
5.2.3 The Relationship Between Input Resolution and MU Formulas 65

Exact Bounds on the Size of Input Resolution Refutations 65
Relating Horn Resolution, Input Resolution, and MU(1) 65
MU(1), MU-IRES-UNSAT, and Unit Propagation . 66

5.2.4 A Matrix Characterization of MU-IRES-UNSAT . 67
5.3 Tractable Aspects of Input Resolution . 68

viii

5.3.1 The Complexities of HORN-UNSAT, IRES-UNSAT, and MU(1) 69
5.3.2 The Tractability of MU-IRES-UNSAT . 70
5.3.3 The Tractability of the MU-IRES-UNSAT Size Problem 70
5.3.4 The Tractability of the MU-IRES-UNSAT Problem with Top Clause 70

5.4 The Automatizability of Input Resolution . 71
5.5 The NP-Completeness of Input Resolution Size . 72
5.6 The PSPACE-Completeness of Input Resolution Derivation Total Space 73

5.6.1 Equivalence of Black Pebbling & Input Resolution Total Space 73
The Equivalence of Black Pebbling & Input Total Space With Weakening 74
The Equivalence of Black Pebbling & Input Derivation Total Space 78

5.6.2 The PSPACE-Completeness of Input Derivation Total Space 80
The PSPACE-Completeness of Input Total Space with Weakening 80
The PSPACE-Completeness of Horn Input Total Space 81
The PSPACE-Completeness of Input Total Space . 81

5.7 Related Complexity Results . 81
5.7.1 The PSPACE-Completeness of the Input Derivation Width Problem 81
5.7.2 An Optimal Size / Space Tradeoff For Input Resolution 82

5.8 Open Problems & Conjectures Related to Input Resolution Total Space 82

6 The PSPACE-Hardness of Resolution Variable Space 85
6.1 Introduction & Motivation . 85
6.2 The Equivalence of Black-White Pebbling & Resolution Variable Space 85
6.3 The PSPACE-Hardness of Resolution Variable Space . 89
6.4 Related Complexity Results . 89

6.4.1 The Complexity of Regular Tree Resolution Variable Space 89
6.4.2 The Complexity of Tree Resolution Variable Space . 90
6.4.3 The Complexity of Input Resolution Variable Space 91

6.5 Open Problems & Conjectures Related to Resolution Variable Space 91

7 The Complexity of Resolution Width 93
7.1 Introduction & Motivation . 93
7.2 A Game Characterization of Resolution Width . 94
7.3 A Game Characterization of Regular Resolution Width . 95
7.4 The Complexities of Several Resolution Width Problems . 97

7.4.1 The Complexities of Resolution and Tree Resolution Width 97
7.4.2 The Complexities of Regular and Regular Tree Resolution Width 98

7.5 Open Problems & Conjectures Related to Resolution Width 99

III Proof Complexity Size Results & Dangerous Reductions 101

8 Introduction to Part III 103
8.1 Description of Dangerous Reductions . 103
8.2 Definitions Specific To Part III . 103

8.2.1 A SAT Encoding For The Hamiltonian Cycle Problem 103
8.2.2 Important Families of Non-Hamiltonian Graphs . 104

The K∗
n Graphs . 104

The Gn
2 , n

2
Graphs . 105

8.3 Summary of Part III . 106
8.3.1 Summary of the Individual Results in Part III . 106
8.3.2 Relationship To Dangerous Reductions . 107

ix

9 A Non-Hamiltonicity Proof System 109
9.1 Introduction & Motivation . 109
9.2 Terminology . 109
9.3 Description of the Non-Hamiltonicity Proof System . 111
9.4 Soundness . 111
9.5 Completeness . 112
9.6 NHPS Simplification . 113
9.7 Exponential Lower Bounds . 114
9.8 Effective Separation From Other Proof Systems . 114
9.9 Open Problems Related to The NHPS . 114

9.9.1 Graph Algorithm Lower Bounds . 115
9.9.2 Strengthening the NHPS . 115

Add More Axioms . 115
Add More Obstructions To Hamiltonicity . 115
Restrict The Input Class . 115
Allow DAG-Like Proofs . 117

9.9.3 Relate the NHPS to Other Proof Systems . 117

10 Prover/Delayer Game Upper Bounds 119
10.1 Introduction & Motivation . 119
10.2 Prover/Delayer Game & Tree Resolution Size Lower Bounds 119
10.3 Prover/Delayer Game & Tree Resolution Size Upper Bounds 120

10.3.1 Non-Constructive Proof . 120
10.3.2 Constructive Proof . 121

10.4 Examples . 123
10.4.1 Example 1: Polynomial Upper Bounds for the H(K∗

n) Formulas 123
10.4.2 Example 2: Polynomial Upper Bounds for the H(Gn

2 , n
2
) Formulas 125

11 Formalizing Dangerous Reductions 127
11.1 Introduction & Motivation . 127
11.2 Formal Examples of Dangerous, Neutral, & Beneficial Reductions 128

11.2.1 Formal Example of a Dangerous Reduction . 128
11.2.2 Formal Example of a Neutral Reduction . 130
11.2.3 Formal Examples of Beneficial Reductions . 130

11.3 Domain Independent Framework for Comparing Encodings 131
11.3.1 Explosivity . 132
11.3.2 Stability . 133
11.3.3 Implosivity . 134
11.3.4 Alternate Hierarchies . 135

11.4 Implications for Proof Complexity . 135
11.5 Open Problems & Conjectures Related to Dangerous Reductions 135

12 The Proof Complexity of Intuitionistic Propositional Logic 137
12.1 Introduction & Motivation . 137
12.2 The System LJ . 138
12.3 Statman’s Translation & LJ[~ES] . 139

12.3.1 LJ Variant . 139
12.3.2 Statman’s Translation . 139
12.3.3 Proof of Correctness . 140

Boolean Truth Trees . 140
BTT Example . 140
P-Simulation Result . 140

12.3.4 The System LJ[~ES] . 142

x

12.3.5 Manipulating the Result of Statman’s Translation . 142
12.4 Cut-Elimination . 144

12.4.1 Definitions . 144
12.4.2 Cut-Elimination Theorem . 144

12.5 The Proof Closure Property . 148
12.6 The Disjunction & Implication Properties . 149
12.7 Main Result . 151
12.8 Related Complexity Results . 153
12.9 Open Problems Related to Intuitionistic Proof Complexity . 153

Bibliography 155

xi

xii

List of Figures

2.1 The relationship between SAT, FAL, UNSAT, and TAUT . 9
2.2 The Proof Complexity p-Simulation Hierarchy . 19

4.1 An Example of a DAG in Which c and Both of its Predecessors Have the Same Pebbling Number 41
4.2 A Decision Tree Showing the Prover’s Strategy for Traversing the Nodes of an Increasing

Binary DAG . 43
4.3 The Monotone Circuit Resulting from Applying Lingas’s Reduction to the True 3-QBF For-

mula F = ∃x0∀x1∃x2∀x3∃x4 (x0∨x1∨¬x2)∧(¬x1∨x2∨x3)∧(¬x0∨¬x3∨¬x4)∧(¬x2∨x3∨x4).
In This Example k = 2U + E + M = 2× 2 + 3 + 4 = 11. 44

4.4 An Example of a Literal Widget from Lingas’s Construction 45
4.5 The Existential Widget From Lingas’s Construction Together with the Decision Tree Showing

the Prover’s Strategy for Traversing it . 46
4.6 The Universal Widget From Lingas’s Construction . 47
4.7 The Decision Tree Showing the Prover’s Strategy for Traversing the Universal Widget 47
4.8 Two Clause Widgets Attached to a Leaf from the Conjunctive Pyramid in Lingas’s Con-

struction, Together with the Decision Tree Showing the Prover’s Strategy for Finishing the
Game . 48

5.1 The Relationship Between I-RES, Horn Formulas, and MU(1) Formulas 66
5.2 An Example of a Pyramid Graph; The Target Node is Vertex 1. 74
5.3 A Pure-Black Pebbling Strategy for G (Left) and its Corresponding I-RES-W− Refutation

(Right) . 75
5.4 An I-RES-W− Derivation of {¬α,¬β} from Peb1(G)∗ (Left) and its Corresponding Pure White

Pebbling Strategy (Right) . 76

8.1 K∗
n (Left) and K∗

4 (Right) . 105
8.2 Graph Families Requiring Exponentially Long NHPS Proofs 105

9.1 Examples of Marked Graphs Containing Forced Edges, a Forced Hub, and a Forced Subcycle 110
9.2 A NHPS Proof of Non-Hamiltonicity . 112
9.3 A Graph Containing a Barricade (left), and a Graph Containing 8 Odd-Forced-Cuts (right) . 116
9.4 A DAG-Like NHPS Proof . 117

10.1 Example of a Game in Which 1 Point is Scored Together with its Corresponding DPLL Tree . 121
10.2 A Path Representing a Game in Which k Points are Scored Together With its Corresponding

DPLL Tree . 122
10.3 A Template for Polynomially-Sized T-RES Proofs for the Unsatisfiability of H(K∗

n)T,O,F For-
mulas . 124

11.1 Part of the Proof Complexity Hierarchy which Relates Various Resolution Refinements 132

12.1 The Template For Cut-Elimination . 144

xiii

xiv

Part I

Preliminaries

1

Chapter 1

Thesis Overview

1.1 Summary & Motivation

This thesis falls in the area of propositional proof complexity, and also contains topics in computational
complexity, graph theory, and circuit complexity. It consists of three parts: Part I provides a thesis summary
as well as an overview of propositional proof complexity. Part II contains research pertaining to Resolution
space measures. Finally, Part III contains results concerning the more traditional resource of proof complexity
size and is focused on the study and formalization of ‘dangerous reductions’. Apart from proof complexity,
which is the topic of every chapter in this thesis, its main recurring theme is the use of combinatorial
games and game characterizations as a technique for proving new results. Our main games of focus are the
Prover/Delayer game, as well as several versions of the black and black-white pebbling games on DAGs and
monotone circuits. An additional motivation tying together Parts II and III is that both sets of results have
strong applications to research in the area of SAT-solvers and automated theorem proving.

Part I of this thesis includes this introductory chapter as well as Chapter 2, in which we give a broad
overview of propositional proof complexity including its most important definitions, results, and descriptions
of the most well-studied proof systems. Results and definitions more specific to Parts II and III are located
in their respective introductory chapters.

Some conventions worth mentioning immediately are that throughout this thesis we use separate fonts
to refer to proof systems (e.g. RES, Frege) and complexity classes (e.g. NP, PSPACE). Formal languages
such as SAT are capitalized in accordance with the usual practice in complexity theory. We assume that the
reader is already somewhat familiar with the basics of proof complexity, complexity theory, graph theory,
circuit complexity, and the Resolution proof system. We shall use [CK01] as our reference for standard proof
complexity terminology, and to [GJ79, Pap94] as our references for computational complexity.

The second part of this thesis contains some of its most important results, namely those pertaining to
the complexity of Resolution space measures. Roughly speaking, space refers to the memory requirements
needed in order to compute a proof. Propositional proofs have many resources associated with them such
as size, width, and several different measures of space. All of these resources are worth studying, and proof
complexity resource problems ask questions of the form, ‘Given a formula F and integer k, does F have
a [Proof System] proof of [Resource] at most k?’. More specifically, we are interested in the complexity of
determining the answer to these questions, and in these chapters we prove that a number of such resource
problems for various forms of Resolution are PSPACE-Complete by applying pebbling formulas in order to
reduce from pebbling games whose complexities are already known. This research is located contiguously in
Chapters 4 through 7, and our main results in this part are the PSPACE-Completeness of Tree Resolution
clause space, the PSPACE-Completeness of Input Resolution total space, and the PSPACE-Hardness of
Resolution variable space. In proving the PSPACE-Completeness of Tree Resolution clause space, we also

3

4 Chapter 1: Thesis Overview

prove the PSPACE-Completeness of the Prover/Delayer game, an important combinatorial game which is
closely related to the Tree Resolution proof system.

There are both academic as well as practical motivations for studying Resolution space and other resources
such as width. Theoretically, Resolution proof size has been well-studied but its space complexity is a
relatively new area of research with many stimulating open problems that have generated interest in the
theory community. However, apart from its relevance to proof complexity, circuit complexity, and general
complexity theory, Resolution space research also has important implications for the areas of automated
theorem proving and SAT-solving. This is because previous results show that Resolution space and width
lower bounds imply size lower bounds. For example, in [BSW01], Ben-Sasson and Wigderson show that
for any unsatisfiable formula, its minimal Resolution refutation size is exponential in its minimum width.
Similarly, by combining the results in [BSIW04] and [ET03], we get a result showing that for any CNF
formula, the size of its minimum Tree Resolution refutation is exponential in its minimum Tree Resolution
clause space. Large minimum refutation size immediately implies long refutation search runtimes, and since
virtually all modern SAT-solving algorithms are based on some form of Resolution, these relationships could
be of great practical value. If efficient algorithms existed for determining Resolution width or Tree Resolution
clause space, researchers would be able to use them as preprocessing steps on formulas to determine whether
or not to even attempt running their SAT-solvers; if a formula has a large minimum width or tree clause
space, then there is no sense in running the SAT-solver because it is guaranteed to take too much time.
Unfortunately, there is little hope for this plan of attack because our results show that determining clause
space requirements for DPLL and clause learning algorithms is PSPACE-Complete. In other words, instead
of trying to use space solvers as preprocessing to predict failure, researchers would be better off simply
solving the formula.

The possibility of approximation algorithms for these problems still exists, but since the relationship
between size and tree clause space is exponential, even an approximation to within a constant factor would
probably be of limited use in practice, since being off by even a tiny amount in the exponent would give
dramatically different answers.

Another practical motivation behind this research has to do with combined resources for SAT-solvers:
The limiting factor on most modern SAT-solving algorithm tends to be memory space, but on the other
hand, if one is too frugal with memory, then proofs can become intractably large. Algorithms must therefore
carefully balance attempts to save memory with a potentially massive increase in minimum proof size and
running time if they are too aggressive in their savings. We hope that future researchers will be able to build
on the results in this part of the thesis in order to better understand the tension between size and space.

The third and final part of this thesis contains a series of interrelated results dedicated to the study
and formalization of a phenomenon from the area of automated theorem proving and SAT-solving called
‘dangerous reductions’. The entire strategy behind SAT-solvers and propositional reasoning is to translate
a diverse range of NP-Hard problems to SAT, where highly-optimized SAT algorithms can be brought to
bear. Researchers have discovered empirically that there is a danger in this strategy, namely that not all
translations are equal, and in fact it is possible for a reduction to map easy instances from the input domain
to very hard SAT instances. In this part of the thesis we combine a variety of research topics including the
development of a new proof system for non-Hamiltonicity, Prover/Delayer game upper bounds, and the proof
complexity of intuitionistic logic to give the first formal examples of dangerous and beneficial reductions,
ultimately allowing us to develop a framework for comparing competing encodings. These results are located
contiguously in Chapters 9 through 12 and are important mainly because they highlight and formalize dangers
and opportunities of which researchers in the area of SAT-solving should be aware.

The other results supporting this main one are also interesting in their own rights. For example, the Non-
Hamiltonicity Proof System is a novelty because it is the first of its kind and it is graphical, whereas most
proof systems for coNP-Complete languages deal with propositional logic. The fact that the Prover/Delayer
game from Part II can be used to prove Tree Resolution size upper bounds is interesting because it is the final
result needed to show that the Prover/Delayer game completely captures both the size and space aspects
of Tree Resolution, and can be used to simplify proofs. Finally, the results concerning intuitionistic logic
are important because it is the most-studied non-classical logic, is currently the subject of a fair amount of

1.2 Relationship To Games 5

research interest, and it provides another formal example of a dangerous reduction.

For more detailed summaries of Parts II and III, please refer to Chapters 3 and 8 respectively.

1.2 Relationship To Games

The results in this thesis explore several ways in which combinatorial games can be used to help prove
results in the area of propositional proof complexity. For instance, in Part II we reduce from the black
pebbling game on monotone circuits, the black pebbling game on DAGs, and the black-white pebbling game
on monotone circuits in order to respectively determine the complexities of calculating Tree Resolution clause
space, Input Resolution total space, and Resolution variable space.

However, the application of games in this thesis runs deeper than simply using them as good starting
points for reductions. For example, in Chapter 4 we do not reduce from the black pebbling game on
monotone circuits directly to the Tree Resolution clause space problem, but rather to the Prover/Delayer
game. However, we know from [ET03] that the Prover/Delayer game is an exact characterization of Tree
Resolution clause space, so our desired results follow immediately. In this case it is much easier to prove
complexity results for the corresponding game than to attack the Resolution resource problem directly. This
suggests that researchers attempting to prove hardness results for future resource problems may find it useful
to first develop game characterizations for the quantities in question and reduce to those games instead.

In Part III of this thesis we make further use of the Prover/Delayer game by showing that it can be
used to give simplified Tree Resolution size upper bounds. We then apply this technique in order to prove
polynomial upper bounds for various formulas. These facts are vital to the main results concerning our
‘dangerous reductions’ research.

In this thesis we therefore make three distinct uses of games in order to prove results in the area of
propositional proof complexity:

1. As starting points for reductions,

2. As game characterizations for problems, making them easier to attack, and

3. As a simplified method for proving proof size upper bounds.

1.3 Organization

As already mentioned, the results in this thesis are organized into two main parts, which are self-contained
but related by the common themes of propositional proof complexity, the use of games and game character-
izations as proof techniques, and their relevance to automated theorem proving and SAT-solvers.

Each part begins with an introductory chapter containing preliminaries such as an overview and important
definitions which shall be used throughout that part. In both parts, this introductory chapter is followed by
four chapters containing the research and main results of this thesis.

Each of the research chapters has a layout similar to a research paper: It starts with a detailed introduction
and motivation for the research, as well as additional definitions, if necessary. This is followed by proofs of
the results, and finally a list of open problems.

As of this writing, two of the chapters have been published, and another has been submitted: Chapter 4
was presented at CSL 2007 in Lausanne [HU07], Chapter 11 was presented at SAT 2007 in Lisbon [HHU07],
while Chapter 5 has been accepted for publication by the Journal on Satisfiability, Boolean Modeling and
Computation [HU08a].

The research paper version of Chapter 7 was accepted by Theory of Computing [HU08b], but unfortu-
nately we discovered a subtle yet fatal flaw in one of the main proofs and were compelled to withdraw its
submission. The corresponding chapter in this thesis has been updated accordingly, and we hope to soon
correct the problem and resubmit it.

1.4 Future Research

Several reviewers have commented that many of the results and ideas in this thesis can be viewed as initial
steps to potentially interesting areas of future research, and lend themselves very well to being extended.
Indeed, it is our hope that this work will indeed be continued. Once again, the primary motivation for this
future research comes from the area of automated theorem proving and SAT-solving. For example:

• The rigorous treatment of space and other Resolution resource problems in Part II of this thesis has
brought many open problems to light (for example, see the problems in the table of Section 3.4.2 for
which a gap still exists). In addition, these results can be viewed as initial steps into the investigation
and understanding of the important tension between size and space for Resolution-based proof systems,
described in Section 4.9.7.

• Another important line of research from Part II of this thesis comes from Section 5.4 in which we prove
that Input Resolution is automatizable. Although in practice this is somewhat limited by the fact that
this proof system is not even complete, the area of automated theorem proving would certainly benefit
from more results of this kind.

• The results from Part III also suggest several open problems and future avenues of research. Although
we were able to formalize the intuitive notions of dangerous and beneficial reductions and use them
to establish a framework for comparing competing SAT encodings, these results are geared towards
classification rather than prediction. As described in Section 11.5, the problem of predicting which
reductions are beneficial or harmful remains an important open problem.

• In addition, the notion of effective p-simulation came up in Part III in relation to dangerous reductions,
but this idea has a great deal of potential, both as a type of preprocessing algorithm for SAT-solvers,
but also as an entirely new way of comparing proof systems. For more information, please refer to
Section 11.5.

These are just a few of the many different research paths the work in this thesis might take. Several
other open problems are described at the end of each chapter.

Chapter 2

An Overview of Proof Complexity &
Broad Definitions

2.1 Introduction & Motivation

In order to provide a context for the later chapters and a motivation for our main results, we begin this
thesis by giving a high-level description of propositional proof complexity, including major definitions as well
as descriptions of important proof systems.

Propositional proof complexity is the study of the lengths of propositional proofs in various different
proof systems and is ultimately aimed at settling the open problem of whether the complexity class NP
is closed under complement (i.e. whether NP and coNP are equal). Although the history of logic and
proofs dates back to antiquity, the formal study of proof complexity is relatively new. Tseitin completed the
first major proof complexity research in the 1960s [Tse70]. This work predated complexity theory by a few
years, but it nevertheless contains many of the fundamental ideas of modern proof complexity. After Cook’s
seminal 1971 paper [Coo71] which established complexity theory, he and Reckhow did the groundbreaking
work [CR74, Rec76, CR79] which also established proof complexity as an important field of research.

Throughout this thesis we will closely follow their definitions, formalizations, and terminology. Unless
otherwise stated, formulas are in conjunctive normal form and interpreted as sets of clauses. We typically
refer to formulas using the letters F or Σ. Similarly, given a formula, we use the letters n and m to respectively
refer to the number of distinct variables and clauses, and N to refer to its symbol length. We refer to graphs
using the letter G and in this context use the letters n and m to refer to |V | and |E| respectively.

If the P vs. NP question is the most important open problem in theoretical computer science, then the
NP vs. coNP question is probably the second most important one. Despite decades of very focused research,
both of these problems remain very much open, and many researchers in the area believe that new ideas and
techniques will be required in order to make any progress. The motivation for studying propositional proof
complexity goes beyond the NP vs. coNP question and could potentially affect both of these open problems.
If NP 6= coNP, then P 6= NP follows as an immediate corollary because P is closed under complement, so
if NP is not, then they cannot be the same sets. These would of course be tremendous results.

Another motivation for studying proof complexity comes from the area of automated theorem proving
and propositional reasoning. More specifically, the results in proof complexity can translate into lower bound
results for algorithms. Creating better SAT-solvers has become a field of research in its own right, and many
of the algorithms used in practice have corresponding proof systems for which exponential lower bounds have
been proven. These lower bounds give us a sense of the inherent limitations of the current implementations.
The motivations for studying proof complexity are therefore both theoretical and practical.

7

8 Chapter 2: An Overview of Proof Complexity & Broad Definitions

2.2 Proof Complexity Definitions & Terminology

Propositional proof systems have been traditionally defined by logicians in a very structural way. For
instance, one way to define a proof system is to provide a set of simple logical axioms together with a
set of inference rules. The Cook-Reckhow definition of a propositional proof system (with good reason) is
somewhat different:

Definition 2.2.1 (Proof System [CR74, Rec76, CR79]). A proof system for a language L ⊆ Σ∗ is a
polytime computable onto function f : Σ∗

p → L where Σp is some alphabet.

Intuitively, Σp is an alphabet of ‘proof symbols’, and f maps proofs to the elements in L that they
prove. One advantage of this definition is that it immediately brings propositional proof systems into the
realm of computer science by formally requiring f to be feasibly computable. Even more importantly, the
words ‘polytime computable’ enforce our intuitive notion that when given a proof, we should be able to tell
whether a proposed proof of a claim is correct or not within a reasonable amount of time. This rules out the
possibility of absurd proof systems which map arbitrary strings to elements in L.

Regardless of whether we follow the Cook-Reckhow definition or the traditional structural definition,
proof systems must be sound; for example, a proof system for tautologies should not be able to prove a non-
tautology. Similarly, proof systems must be complete; for example, a proof system for unsatisfiability must
be capable of proving the unsatisfiability of every possible unsatisfiable formula. Another characteristic
of the Cook-Reckhow definition is that it implicitly demands soundness and completeness. Soundness is
guaranteed because the range of f is contained in L. The fact that f is onto guarantees completeness.

Loosely speaking, complexity theory is focused on the study of the complexity class NP whereas proof
complexity is focused on the study of its complement, the complexity class coNP. The following are equiv-
alent definitions of NP:

Definition 2.2.2 (NP). NP = {L | L is decidable by a nondeterministic Turing Machine in polynomial
time}

Definition 2.2.3 (NP). NP = {L | Each x ∈ L has a poly-length certificate which can be verified by a
deterministic Turing Machine in polynomial time}

For our purposes, the latter definition is more intuitive because certificates are synonymous with proofs.
The other major class that we are interested in is coNP. It is defined as containing the complements of the
languages in NP:

Definition 2.2.4 (coNP). coNP = {L | L ∈ NP}

2.3 Polynomially-Bounded Proof Systems & coNP
By the definition of NP, we know that every language in NP has polynomial-length certificates (proofs).

However, it is totally unclear whether the same can be said for the languages in coNP. This leads us to
another fundamental definition:

Definition 2.3.1 (Polynomially-Bounded Proof System). The proof system f : Σ∗
p → L is said to be

polynomially-bounded if for all y ∈ L there exists an x ∈ Σ∗
p such that y = f(x) and |x| ≤ p(|y|), where p(x)

is some polynomial.

For example, SAT, the canonical NP-Complete language, does have a polynomially-bounded proof sys-
tem: Just take f to map (F, α) to F , where F is a satisfiable formula and α is a truth assignment which
satisfies it. All syntactically incorrect proofs are mapped to an arbitrary formula outside of SAT. By contrast,
nobody knows whether SAT’s complement, SAT has a polynomially-bounded proof system; proofs that a
formula is not satisfiable seem to be inherently longer than proofs for satisfiability. Note that in practice, we
are not actually interested in the language SAT , but rather we are interested in UNSAT. There is a subtle

2.4 A Description of Major Propositional Proof Systems 9

distinction between these languages. Technically speaking, since the complement of a language L is defined
to be Σ∗ −L, SAT contains many strings that do not even encode formulas. UNSAT is SAT without these
‘garbage’ strings; i.e. it contains only the unsatisfiable formulas. In any case, these ‘garbage’ strings are
decidable by a DTM in polytime, so this is not a problematic distinction.

The two coNP-Complete languages that we are most interested in are UNSAT (the set of all logically
false, or unsatisfiable formulas) and TAUT (the set of all logically true formulas, or tautologies). Just as
SAT is NP-Complete, so is UNSAT coNP-Complete. FALSIFIABILITY (FAL for short), the language
consisting of all falsifiable formulas, is another NP-Complete language. Its counterpart in coNP is TAUT.
TAUT and UNSAT are the most studied coNP-Complete languages, and most propositional proof systems
in existence were devised for proving tautologies or refuting unsatisfiable formulas. The relationship between
these languages is shown in the Venn diagram in Figure 2.1 below.

UNSAT

Falsifiable Formulas (FAL)

TAUT

Satisfiable Formulas (SAT)

Figure 2.1: The relationship between SAT, FAL, UNSAT, and TAUT

One of the fundamental theorems of propositional proof complexity formalizes the relationship between
the NP vs. coNP problem and polynomially-bounded proof systems:

Theorem 2.3.2 ([CR79]). NP = coNP if and only if there exists a polynomially-bounded proof system
for some coNP-Complete language.

A proof that there are no polynomially-bounded or ‘super’ proof systems for TAUT would therefore
immediately imply that NP 6= coNP, and would as already stated therefore also imply that P 6= NP. In
contrast, a positive answer to the NP vs. coNP question would not necessarily imply that P = NP, since
it may be the case that all tautologies have short certificates, but they may take exponentially long to find
(similarly, all formulas in SAT have short certificates, but they may take exponentially long to find in the
worst case).

2.4 A Description of Major Propositional Proof Systems

In this section we shall describe a number of the more important proof systems. Many propositional proof
systems have been studied and categorized into a hierarchy based on their relative efficiencies. A portion of
this hierarchy is shown in Figure 2.2 at the end of this section and is based on the concept of p-simulation,
which allows us to objectively compare two proof systems with respect to efficiency.

Informally, a proof system α is said to p-simulate another proof system β if for every unsatisfiable CNF
formula F , there exists an α refutation of F which is at most a polynomial factor larger than F ’s smallest
β refutation.

10 Chapter 2: An Overview of Proof Complexity & Broad Definitions

A proof system α is said to be exponentially separated from another proof system β if there exists some
set of formulas S such that for some constant c and all F ∈ S, |πβ(F)| ≥ 2c|πα(F)|, where πα(F) and πβ(F)
are respectively the shortest α and β proofs of F . Such a separation of course implies that β cannot p-
simulate α. If α p-simulates β and β does not p-simulate α, then we say that α is strictly stronger than β.
More formally p-simulation is defined as follows:

Definition 2.4.1 (P-Simulation & P-Equivalence). Let f1 : Σ∗
1 → L and f2 : Σ∗

2 → L be proof systems
for L. If for all x1 ∈ Σ∗

1, there exists an x2 ∈ Σ∗
2 such that f1(x1) = f2(x2) where |x2| ≤ p(|x1|) for some

polynomial p, then we say that f2 weakly p-simulates f1.
In addition, if there exists a polytime computable function t : Σ∗

1 → Σ∗
2 such that for all x ∈ Σ∗

1,
f1(x) = f2(t(x)), then we say that f2 strongly p-simulates f1.

Proof systems which strongly p-simulate each other are said to be p-equivalent.

The distinction between weak p-simulation and strong p-simulation is that strong p-simulation is more
constructive in that it requires a ‘proof translating function’ t. Since it is therefore a stronger form of
simulation, it is seen more often in positive results, whereas weak p-simulation is seen when referring to
negative results. In the remainder of this thesis, we omit the adjectives ‘strong’ and ‘weak’. Instead, whenever
referring one proof system p-simulating another, we shall implicitly be referring to strong p-simulation, and
whenever referring to a separation between two proof systems, we shall implicitly be referring to a lack of
weak p-simulation.

In fact, we can even compare proof systems over different languages by using a more general definition of
p-simulation called ‘effective p-simulation’:

Definition 2.4.2 (Effective P-Simulation). Let f1 : Σ∗
1 → L1 and f2 : Σ∗

2 → L2 be proof systems. If
there exists a k and a polytime reduction r : L1 → L2 such that y ∈ L1 if and only if r(y) ∈ L2 and for all
x1 ∈ Σ∗

1 there exists an x2 ∈ Σ∗
2 such that r(f1(x1)) = f2(x2) and |x2| ≤ |x1|k, then we say that f2 effectively

weakly p-simulates f1.
If there also exists a polytime computable function t : Σ∗

1 → Σ∗
2 such that for all x ∈ Σ∗

1, r(f1(x)) =
f2(t(x)), then f2 effectively strongly p-simulates f1.

The idea of p-simulation by proof systems for different languages dates back to [Rec76], and shall be
further explored when we discuss our Non-Hamiltonicity Proof System in Chapter 9 and dangerous reductions
in Chapter 11. Intuitively, when dealing with proof systems over different languages, one must necessarily use
a reduction. Unfortunately, this reduction may affect the proof complexity of the formulas being translated,
so the definition of effective p-simulation must take the reduction into account.

However, the applicability of effective p-simulation is not limited to proof systems on different languages.
In fact, it is a potentially powerful tool which can be used to relate proof systems on the same language.
Please refer to Sections 11.3.3 and 11.4 for a description of how effective p-simulation can yield very useful
reductions and preprocessing algorithms for SAT-solvers.

2.4.1 Truth Tables

Truth tables (TT) are perhaps the most obvious way of proving formulas to be tautologies or unsatisfiable.
A truth table for a formula F on n sentence letters is a table in which each row contains one of the 2n

possible truth assignments along with the truth value of F under that assignment. The disadvantage of TT
is that as a proof system they can be extremely inefficient. Since a formula of length N can contain up to
O(N) sentence letters, truth tables require Ω(2N) rows. In effect, TT cannot weakly p-simulate any proof
system that has polynomially-bounded proofs for some family of formulas in which the number of sentence
letters grows linearly with the length of the formula. As such, this proof system is considered to be one of
the weakest, and is often described as a ‘brute-force’ system.

2.4 A Description of Major Propositional Proof Systems 11

2.4.2 Analytic Tableaux

Also called ‘truth trees’, Analytic Tableaux (AT) is another ‘weak’ proof system. It is a refutation system
that is typically used to show that formulas in conjunctive normal form (CNF) are unsatisfiable. When
dealing with CNF formulas, it is equivalent and often simpler to view the formula in question as a set of
clauses. The underlying structure of AT is a tree, and the basic idea is to choose a clause at each node in the
tree and branch on it so that each child is labelled with one of the literals of that clause. The root node is
unique in that it does not contain any literals. As soon as a node v contains a literal such that its negation
is found in one of its ancestors in the tree, then the branch ending in v is closed off and becomes a leaf. Once
all the paths from the root to the leaves are closed off, the proof is complete. The tree that is produced is
called a ‘tableau’.

The size of a tableau refutation is defined to be its number of interior nodes. It should be noted that
in a tableau refutation of minimal size, no path contains repeated literals. The pruning technique used to
eliminate duplicate literals is described in [Urq95].

Exponential lower bounds for AT are due to Cook [Coo75], and further described in [APU01, Urq95].
The idea is to build sets of contradictory clauses based on complete binary trees. These clauses force any
tableau refutation to contain an enormous amount of necessary repetition. A testament to the weakness of
AT is that it cannot even p-simulate TT [D’A92, Urq95]. Similarly, TT cannot p-simulate AT.

2.4.3 Resolution

Resolution in all of its many forms is perhaps the best-studied propositional proof system and it forms
the basis of almost all modern SAT-solving algorithms. Much like AT, Resolution is a refutation system for
unsatisfiable CNF formulas. The resolution rule is as follows: Given two clauses (A ∨ x) and (B ∨ x), we
resolve on the variable x to derive the new clause (A ∨ B). A resolution refutation of a contradictory set
of clauses consists of the application of a sequence of resolution steps until the empty clause ∅ is derived.
This proof can be written as a sequence of clauses in which each is either an initial clause or follows by the
resolution rule from two previous ones. It is also possible to represent a resolution proof as a directed graph
instead of as a sequence of clauses. Each vertex in these graphs is labelled with a clause. Initial clauses have
in-degree 0, whereas all other clauses have in-degree 2, with the edges indicating which clauses they were
derived from.

The size of a Resolution refutation is sometimes used to refer to its length encoded as a string, and is
sometimes used to refer to the number of clauses it contains.

Tree Resolution

If the underlying graph of a resolution proof forms a tree, then we say that the proof is ‘tree-like’.
Intuitively, this implies that each clause may only be resolved on once, so if a clause needs to be used again,
it must be re-derived. Tree Resolution (T-RES) is a very limited form of Resolution, and its exponential
lower bounds are easily understood.

As already mentioned, there is considerable interest in SAT-solvers. One such SAT algorithm, called
DPLL after its authors [DLL62], is widely-used and successful. It turns out that DPLL corresponds almost
exactly to T-RES as a proof system. The DPLL algorithm works by building a binary tree in which the root
contains the original formula, and each edge represents a restriction leading to a node containing the resulting
restricted formula. The algorithm terminates once every leaf contains a clause that has been falsified.

Ordered Resolution

In Ordered Resolution (O-RES), each variable x is systematically eliminated by performing all possible
resolutions involving it. The formula to be solved is therefore reduced from containing n to n − 1 sentence
letters. Whereas the graph structure underlying T-RES is a tree, the graph structure underlying O-RES is
a directed acyclic graph (DAG). This means that clauses may be used as inputs for any arbitrary number
of resolutions. The algorithmic implementation of O-RES is called DP, again after its authors [DP60]. As a

12 Chapter 2: An Overview of Proof Complexity & Broad Definitions

SAT-solver, it motivated the invention of DPLL, and the exponential lower bounds for O-RES correspond to
algorithmic lower bounds for DP.

Regular Resolution

Regular Resolution (R-RES) is resolution in which the underlying structure is a DAG, but irregularities are
disallowed, so once a variable has been eliminated along a branch of the refutation, it may not be introduced
again. Irregularities are formally defined as follows:

Definition 2.4.3 (Irregularity). Let C1, C2, ..., Ck−1, Ck be the clauses along a path in the DAG underlying
a refutation π. If C1 and Ck contain a literal l but C2, ..., Ck−1 do not, then that path is said to contain an
‘irregularity’, and π is said to be irregular.

In what was to become the first major proof complexity lower bound, Tseitin proved superpolynomial
size lower bounds for R-RES [Tse70]. This lower bound is based on families of formulas that are constructed
using odd-charged square grid graphs. These graphs and their corresponding formulas are described well in
[Urq87]. Galil used similar arguments involving bipartite expander graphs to improve this lower bound to
exponential [Gal77].

In much the same way that no branch in an AT refutation contains a repeated literal, all T-RES refutations
of minimal size are regular. That is to say, given an irregular T-RES refutation, it is always possible to remove
all irregularities while shortening the proof [Tse70, Urq95], and clearly a regular proof has a depth of at
most n, since a formula only contains n distinct variables. Since every Regular Tree Resolution (RT-RES)
proof is a T-RES proof, this shows that RT-RES and T-RES are p-equivalent. Similarly, O-RES systematically
eliminates variables one at a time, and therefore trivially produces R-RES proofs. In effect, R-RES subsumes
both T-RES and O-RES, so exponential R-RES lower bounds immediately translate into exponential lower
bounds for these other two Resolution-based systems.

Algorithmically, RT-RES is very important. In the previous section, we commented about how T-RES
is almost identical to DPLL. In fact, DPLL is the exact algorithmic incarnation of RT-RES. This is easy
to see, since all DPLL proofs are binary trees, and they are of course regular, since a variable which has
been eliminated by restriction cannot reappear along a branch. Furthermore, the tree built by the DPLL
algorithm forms an inverted RT-RES proof for exactly the same formula. Size lower bounds for T-RES (such
as the exponential lower bounds for the Pigeonhole Principle) therefore translate directly into algorithmic
size (and time) lower bounds for DPLL (and all other Resolution-based SAT-solving algorithms). This is a
good example of how proof complexity lower bounds can yield algorithmic lower bounds.

General Resolution

General Resolution (RES) is DAG-like resolution without any restrictions such as regularity. For many
years, researchers tried unsuccessfully to apply the Tseitin and Galil techniques in order to extend the R-RES
lower bounds to RES. The breakthrough was made in [Hak85] by Haken. Instead of using graphs to build
contradictory formulas, Haken used the pigeonhole principle (PHP). The PHP is a combinatorial principle
which states that it is impossible to put n pigeons into n− 1 holes such that no two pigeons share the same
hole. The formula encoding the negated PHP is called PHPn

n−1, and its variables are of the form mi,j , with
the intended meaning that mi,j being set to true means that pigeon i is mapped to hole j. The formula
PHPn

n−1 consists of the following clauses:

n∧
i=1

(
n−1∨
j=1

mi,j) i.e. The mapping is total; every pigeon maps to at least one hole.

n−1∧
j=1

n∧
i1=1

n∧
i2=1
i1 6=i2

(¬mi1,j ∨¬mi2,j) i.e. The mapping is 1-1; no hole has more than one pigeon mapped to it.

2.4 A Description of Major Propositional Proof Systems 13

Since the PHP is clearly true, its negated form PHPn
n−1 must be unsatisfiable. Haken showed that

any RES proof of PHPn
n−1 requires exponentially many clauses. Although ingenious, his argument was

somewhat complicated. It has since been simplified and improved by Beame & Pitassi [BP96] as well as
Urquhart [Urq03]. A third very clear simplified exposition is given in [Pit02a]. Although slightly improved,
Haken’s result remains essentially the same:

Theorem 2.4.4. For sufficiently large n, any RES proof of PHPn
n−1 requires at least 2

n
20 clauses.

At a high-level the proof is relatively straightforward: First prove that every RES refutation of PHPn
n−1

contains a clause with at least 2
9n2 literals. Define a ‘large’ clause as being one that has at least 1

10n2 literals.
Assume that there exists a refutation of PHPn

n−1 that contains fewer than 2
n
20 clauses. Repeatedly restrict

this proof and make all obvious simplifications so as to eliminate all large clauses. The resulting restricted
proof is a refutation of PHPn′

n′−1, where n′ is the number of variables in the restricted proof. However,
2
9n′

2 equates to a little bit more than 1
10n2, so the resulting proof must contain a large clause. However, we

eliminated all large clauses, a contradiction.

Variations of the PHP also exist; for example, we can insist that the mapping from pigeons to holes be a
function. The formula encoding the functional PHP is denoted fPHPn

n−1 and includes the following clauses
in addition to those mentioned above:

n∧
i=1

n−1∧
j1=1

n−1∧
j2=1

j1 6=j2

(¬mi,j1 ∨ ¬mi,j2) i.e. The mapping is a function; no pigeon is mapped more than once.

The onto PHP includes all of the above clauses, but also requires that the mapping be onto [CK01]. It
is denoted ontoPHPn

n−1 and includes the following clauses:

n−1∧
j=1

(
n∨

i=1

mi,j) i.e. The mapping is onto; every hole has at least one pigeon mapped to it.

Intuitively, since these variants contain more clauses than the ‘normal’ PHP, and extra clauses could only
help when trying to find shorter proofs, fPHP and ontoPHP should be easier for proof systems to deal
with. Nevertheless, Haken’s original proof generalizes easily to show that even fPHP and ontoPHP require
exponentially long RES proofs.

Exponential lower bounds did not close the book on RES research. In [Urq87], Urquhart applied ideas
from Haken’s argument in order to find essentially optimal graph-based exponential lower bounds for RES.
He showed that RES has 2Ω(|Σ|) size lower bounds, thereby completing the line of research started by Tseitin.

Considerable research has also gone into optimizing the separation between the different versions of
Resolution. In [AJPU07], Alekhnovich, Johannsen, Pitassi, and Urquhart prove an exponential separation
between RES and R-RES. Similarly, in [BSIW04], Ben-Sasson, Impagliazzo, and Wigderson use pebbling
graphs to prove a near-optimal separation between RES and T-RES. More information on this last result
and pebbling graphs can be found in Section 3.3.

Limited Extension

One final concept relevant to Resolution is ‘limited extension’. Apart from his superpolynomial R-RES
lower bound, Tseitin’s other major contribution in [Tse70] was limited extension. It is not hard to see that
proof systems for UNSAT can easily be turned into systems for TAUT (and vice-versa) by simply negating the
formula in question. For example, RES can be used to prove tautologies, even if they use logical connectives
which it cannot handle; just take a tautology F and negate it to produce the unsatisfiable formula ¬F .
Convert this formula to its CNF equivalent, and RES will be able to refute it, thereby proving that the
original formula F was a tautology. Unfortunately, some formulas grow exponentially when converted to

14 Chapter 2: An Overview of Proof Complexity & Broad Definitions

CNF. Tseitin realized that this problem can be overcome by turning ¬F into a new formula F ′ that is not
equivalent to ¬F , but rather is satisfiable if and only if ¬F is. The trick is to introduce a new ‘limited
extension’ variable for every non-atomic subformula of ¬F . For example, let us assume that we want to use
RES to show that the biconditional tautology F = (p ≡ (q ≡ (p ≡ q))) is in fact a tautology. First we negate
it to get ¬(p ≡ (q ≡ (p ≡ q))). Next we recursively create extension variables, one for each subformula:

1. a ≡ (p ≡ q)

2. b ≡ (q ≡ a)

3. c ≡ (p ≡ b)

4. ¬c

Finally, we turn each of these equivalences into clauses by observing that x ≡ (y ≡ z) is logically
equivalent to (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z). Of course, ¬c remains a singleton clause.
By taking a conjunction of all these clauses we have produced the desired CNF formula which is only
linearly longer than F . We therefore have a feasible translation procedure that allows us to use RES to
prove arbitrary tautologies, regardless of the basis. Of course, the introduction of extension variables is by
no means restricted to RES.

2.4.4 Gentzen’s System LK

Gentzen systems refer to the logical proof systems due to Gerhard Gentzen [Gen35a, Gen35b]. Originally
published in German, his work has since been translated into English [Sza69]. Good overviews can be found
in both [Coo02] and [CK01]. Gentzen’s original system, called LK, was formulated for first-order logic, where
LK stands for ‘Logischer Kalkül’. He also formulated a similar system called LJ for intuitionistic logic, which
we shall use extensively in Chapter 12. Interestingly, Gentzen never seems to explain what LJ stands for;
possibly the letter ‘J’ was chosen simply because it precedes ‘K’. Technically speaking, LK is a formulation
for first-order logic, but we are only interested in its propositional fragment. There has been some effort to
distinguish this propositional part of LK by calling it PK, but we shall use the more standard form, since it
is clear that we are dealing with propositional logic.

The LK proof system is called a sequent calculus because every line in a LK proof is a ‘sequent’. A sequent
is a logical implication of the form Γ 7→ ∆ where Γ and ∆ are sets of formulas. Sequents are interpreted
as meaning that a conjunction of all the formulas on the left of the 7→ symbol imply a disjunction of all
the formulas on the right. For example, if Γ = {A1, A2, ..., Ak} and ∆ = {B1, B2, ..., Bk} then Γ 7→ ∆ is
equivalent to the formula (A1 ∧A2 ∧ ... ∧Ak) ⊃ (B1 ∨B2 ∨ ... ∨Bk).

LK is typically used as a proof system for TAUT, and its axioms are all sequents of the form p 7→ p,
where p is some sentence letter. The following are the standard LK inference rules (with the quantifier rules
omitted):

Weakening:

Left
Γ 7→ ∆

A,Γ 7→ ∆
and Right

Γ 7→ ∆
Γ 7→ ∆, A

¬ Introduction:

Left
Γ 7→ ∆, A

¬A,Γ 7→ ∆
and Right

A,Γ 7→ ∆
Γ 7→ ∆,¬A

∧ Introduction:

Left
A,B,Γ 7→ ∆

A ∧B,Γ 7→ ∆
and Right

Γ 7→ ∆, A Γ 7→ ∆, B

Γ 7→ ∆, A ∧B

2.4 A Description of Major Propositional Proof Systems 15

∨ Introduction:

Left
A,Γ 7→ ∆ B,Γ 7→ ∆

A ∨B,Γ, 7→ ∆
and Right

Γ 7→ ∆, A, B

Γ 7→ ∆, A ∨B

Cut:

Γ 7→ ∆, A A, Γ 7→ ∆
Γ 7→ ∆

Although LK is normally formulated over the basis ∧,∨,¬, it is possible to formulate a Gentzen system
which includes rules for any logical connectives. Much like RES, LK can be characterized as being either
DAG-like or tree-like depending on whether derived sequents are allowed to be reused or not. Unlike RES,
however, tree-like and DAG-like LK are p-equivalent, provided that they both include the cut rule [CK01,
p.267]. If the cut rule is not included, then the picture changes dramatically. Both tree-like and DAG-like
LK with cut are p-equivalent to Frege systems, whereas cut-free DAG-like LK can be p-simulated by RES.
This last result is non-trivial, since the resolution rule is so similar to cut, and there are some issues about
the languages being discussed. An interested reader should refer to [Urq92, Urq95]. In addition, cut-free
tree-like LK is very weak; it is only p-equivalent to AT. Whether cut-free LK can p-simulate RES is an open
problem.

2.4.5 Frege Systems

Frege systems (Frege), also called Hilbert-style systems, are a group of robust and powerful proof systems
that are of particular interest in the area of proof complexity. Any sound and complete proof system
that includes a finite number of axiom schemes instead of axioms is considered to be a Frege system. Axiom
schemes are axiom templates that allow for a simultaneous and uniform substitution of any arbitrary formulas
for sentence letters. For example, if a Frege system has an axiom scheme of the form p → p, then a substitution
of the formula (q ∨ r) for p yields the axiom (q ∨ r) → (q ∨ r), which can be introduced at any point in a
proof. In effect, Frege systems have an infinite number of axioms. It appears that tree-like incarnations of
proof systems are weaker than their DAG-like counterparts only among the proof systems low down in the
proof complexity hierarchy, because much like Gentzen’s system LK with cut, tree-like and DAG-like Frege
systems are p-equivalent [CK01, p.372].

It turns out that Frege systems are a bit of a misnomer; Frege’s original system did not use axiom schemes,
but rather defined axioms and explicitly allowed for substitution into those axioms by way of a substitution
rule. Ironically, his original system was therefore not technically a Frege system. The use of axiom schemes
rather than the substitution rule is due to Von Neumann [Neu27].

Related to Frege systems, Natural Deduction systems (ND) are sound and complete proof systems that
include the ‘deduction theorem’ as an inference rule. The deduction theorem takes the form, If Γ, A ` B
then Γ ` A ⊃ B, where ‘⊃’ is standard implication, or some logically equivalent form. In his Ph.D. thesis
[Rec76], Reckhow proves that all Frege systems and ND systems as well as Gentzen’s system with cut are
p-equivalent.

All Frege systems and their p-equivalents are quite powerful, and no superpolynomial (let alone expo-
nential) lower bounds are known. These systems are widely believed to have exponential lower bounds, and
proving this remains a major open problem.

2.4.6 Bounded-Depth Frege Systems

We do have lower bounds for a special weakened class of Frege systems, however. When we place a
restriction on Frege systems requiring that all formulas can have a depth of at most a constant d, we create
a new class of proof systems called Bounded-Depth Frege systems (AC0-Frege).

Definition 2.4.5 (Formula Depth). The depth of a formula F is defined as follows: Convert F into a
tree in the obvious way and push all negations to the leaves. Next, allow unbounded fan-in and produce the
tree-like circuit C by merging all blocks of ∧ and ∨ gates so that no gates of the same type are adjacent. The
depth of F is the number of ∧,∨ alternations along the longest path from the root of C to a leaf.

16 Chapter 2: An Overview of Proof Complexity & Broad Definitions

For example, all CNF and all DNF formulas have depth 2.

Bounded-Depth Frege systems are alternatively called AC0-Frege Systems. This is a reference to the
circuit class AC0, which contains poly-sized bounded (constant) depth circuits. Exponential lower bounds
for AC0-Frege Systems were proved using techniques based on circuit complexity lower bounds for parity
[Ajt83, FSS84]. The relationship between these results is chronicled in [CK01] and [UF96].

The key idea is that of a switching lemma, which allows us to efficiently convert a restricted formula from
DNF to CNF and vice-versa. H̊astad’s switching lemma, published in [H̊as87], but described particularly
clearly in both [Bea94] and [Pit02b], is stated as follows:

Lemma 2.4.6. Let F be any arbitrary DNF formula on n variables with terms of length at most r. Then
for all s ≥ 0, all p ≤ 1

7 , and all l = pn,

|Bl
n|

|Rl
n|

< (7pr)s

Where Rl
n is the set of all restrictions on n variables that leave l unset, and Bl

n is the subset of Rl
n such

that each α ∈ Bl
n causes the canonical decision tree of F �α to have height ≥ s.

Intuitively, the switching lemma is saying that the number of ‘bad’ restrictions in B is insignificant when
compared with the total number of restrictions, so there are many ‘good’ length n−l restrictions β ∈ Rl

n−Bl
n

which allow us to convert F �β from DNF to CNF according to the following argument: Since paths in the
canonical decision tree of F �β leading to 0-leaves correspond to falsifying assignments of F �β ’s terms, these
paths tell us the terms in the DNF of ¬F �β . If we push another negation through this formula, we are
left with F �β in CNF . In effect, the height of the tree is a bound on the length of the terms in the DNF
of ¬F �β as well as the length of the clauses in the CNF of F �β . By controlling the height of the tree, we
control the lengths of the terms and clauses.

H̊astad’s switching lemma can be applied to prove that parity has no bounded-depth circuits [Bea94],
which as already stated was the inspiration for the proof of AC0-Frege exponential lower bounds.

2.4.7 Extended Frege Systems

Frege systems can be augmented to create proof systems that are potentially even more powerful. One way
of augmenting Frege systems is to add an extension rule that is similar to Tseitin’s idea of limited extension,
except that it can be applied arbitrarily to any formula at any point in the Frege proof. More specifically,
extension allows for the arbitrary introduction of the formula p ≡ G, where p is a sentence letter not found in
G, nor any previous location in the Frege proof, nor in the conclusion. Intuitively, the extension rule allows
for formulas to be abbreviated. The proof systems resulting from augmenting Frege systems with extension
are called Extended Frege (E-Frege) systems, and they trivially p-simulate Frege systems. Much like Frege
systems, all E-Frege systems are p-equivalent [Rec76].

2.4.8 Substitution Frege Systems

Another augmented class of Frege systems are called Substitution Frege (S-Frege) systems. These systems
are simply Frege systems augmented with a substitution rule which allows us to take any formula F in the
proof and uniformly substitute any arbitrary formula G for all occurrences of an arbitrary sentence letter p
in F . This rule is written as

F
F (G/p)

In effect, S-Frege systems regard every newly derived formula as being an axiom scheme. Again, S-Frege
systems trivially p-simulate Frege systems. Reckhow also proved that S-Frege systems p-simulate E-Frege
systems [Rec76]. E-Frege systems were later shown to p-simulate S-Frege systems [CK01, p.396], thereby
showing them to be p-equivalent.

2.5 Non-Propositional Proof Systems 17

2.4.9 Extended Resolution

Another powerful proof system, Extended Resolution (E-RES) is RES with the extension rule. E-RES was
formulated by Tseitin in his landmark paper [Tse70]. The distinction between E-RES and RES with limited
extension is that while the latter only allows for the use of extension variables on subformulas in the formula
to be refuted, E-RES allows extension to be used on any subformulas within the proof. E-RES is p-equivalent
to E-Frege and S-Frege [Rec76].

2.5 Non-Propositional Proof Systems

It turns out that the phrase ‘Propositional Proof Complexity’ has become a bit of a misnomer because
proof systems are not necessarily proof systems for propositional logic. For instance, a great deal of work
has gone towards understanding the so-called ‘algebraic proof systems’. Cutting Planes (CP) is a proof
system for refuting inconsistent systems of linear inequalities [BP01, CK01]. The systems Nullstellensatz
(NS) and Polynomial Calculus (PC) [CK01, p.306] are also of great interest to proof complexity researchers.
Exponential lower bounds are known for all of these proof systems.

2.5.1 Cutting Planes

Motivated by integer programming, Cutting Planes (CP) is a proof system that is used to refute a set
of linear inequalities. A linear inequality is of the form Σiaixi ≥ k, where ai and k are integers, and the
underlying variables are xi.

A CP refutation of a set of linear inequalities L = {C1, C2,. . . , Cq} is a sequence of inequalities, S1,
S2,. . . , Sm where each Si is either from L or is an axiom or follows from two previous inequalities by a valid
rule, and the final inequality is Sm = (0 ≥ 1). A CP proof may equivalently be viewed as a DAG. A more
restricted form of CP is tree-like CP (TCP) in which the underlying structure of the proof is required to be
a tree. The leaves of the tree each correspond to one of the initial linear inequalities, the root corresponds
to the final inequality Sm, and the edges correspond to inference rules.

In [BPR97], Bonet, Pitassi, and Raz describe a restricted form of TCP which we shall call TCP∗. It is
identical to TCP except that coefficients must be bounded by a polynomial.

2.5.2 Polynomial Calculus & Nullstellensatz

Although beyond the scope of this thesis, Nullstellensatz (NS) [CK01, p.308] and Polynomial Calculus
(PC) [CK01, p.316] are algebraic refutation systems. We mention them here briefly because like our Non-
Hamiltonicity Proof System in Chapter 9, they are non-propositional systems. PC is strictly stronger than
NS [CK01, p.316]. PC is a refutation system for unsatisfiable sets of polynomial equations. A PC refutation
of a polynomial P is a derivation of 1 from P . For more information on these systems, we refer an interested
reader to [CK01].

2.5.3 Hajós Calculus

Another interesting non-propositional proof system which also has nothing to do with algebra or polyno-
mials is the Hajós Calculus (HC). It is a graph theoretic proof system for proving non-3-colourability, which
is coNP-Complete. Its complexity was an open problem for many years until Pitassi and Urquhart showed
that it is effectively p-equivalent to E-Frege [PU95].

2.5.4 Relating Propositional & Non-Propositional Systems

Some relationships between proof systems are immediately obvious. For example, AC0-Frege systems p-
simulate RES, which in turn p-simulates T-RES. Similarly, CP obviously p-simulates TCP, which p-simulates
TCP∗. It is also not hard to see that CP p-simulates RES (and that TCP p-simulates T-RES) [CK01, p.345].

Furthermore, CP has poly-sized refutations of PHP formulas, which shows that even AC0-Frege cannot p-
simulate it [CK01, p.348].

Perhaps not as obvious is that TCP does not p-simulate RES [CK01, p.365]. Furthermore, AC0-Frege and
TCP∗ do not p-simulate each other [BPR97]. As mentioned before, PC p-simulates NS, but the algebraic
proof systems seem to be incomparable with the others, since AC0-Frege systems cannot p-simulate NS, and
NS cannot even p-simulate T-RES [BP01].

It is not hard to see that since AC0-Frege systems cannot p-simulate TCP∗ or NS, none of the proof
systems below AC0-Frege in the middle column of the Proof System Hierarchy shown in Figure 2.2 can
p-simulate any of the algebraic or polynomial proof systems in the left- or right-most columns.

2.6 Summary of the Relationships Between Major Proof Systems

The following diagram gives a summary of the relationships between the major proof systems discussed in
this chapter. An arrow from proof system A to proof system B indicates that A p-simulates B. Whenever
a slash appears on an arrow, it means that an exponential separation between the two systems is known.
Question marks indicate open problems, and when multiple proof systems appear in the same box, it means
that they are all p-equivalent. In order to minimize clutter, simulation and separation arrows which are
implied by transitivity have been omitted. For more details on the simulations and separations, please refer
to the proceeding sections describing the relevant proof systems. For a more detailed diagram showing the
relationship between Resolution-based proof systems, please refer to Figure 11.1.

No Super-Polynomial Lower Bounds Known

Cutting Planes
(DAG-Like)

Natural Deduction

Gentzen With Cut

Frege Systems

Cutting Planes
(Tree-Like)

Polynomial Calculus

Nullstellensatz

Exponential Lower Bounds Known

DPLL

DP

Tree Resolution

Reg. Tree Resolution

Ordered Resolution

?

?

(DAG-Like)

Regular Resolution

(DAG-Like)

General Resolution

Substitution Frege

Extended Frege

Extended Resolution

Hajós Calculus

Cut-Free Gentzen

?(DAG-Like)

AC0-Frege

Analytic Tableaux

Truth Tables
Cut-Free Gentzen
(Tree-Like)

(Tree-Like)
Cutting Planes∗

Figure 2.2: The Proof Complexity p-Simulation Hierarchy

Part II

The Complexity of Resolution Space
Measures

21

Chapter 3

Introduction to Part II

This chapter serves as an introduction to Part II of this thesis, which is focused on the study of proof
complexity resource problems (see Definition 3.2.7), and especially on space resources for Resolution-based
proof systems, where space intuitively is the amount of memory required to compute a proof. We will start
in Section 3.1 below by giving a brief history of Resolution space research. This is followed by Section 3.2,
which contains definitions specific to this part of the thesis, and Section 3.3, which describes important
previous results. Finally, in Section 3.4 we shall give a summary of the next four chapters, which contain
this part’s research results.

3.1 History of Resolution Space Research

The investigation of proof complexity space requirements is a surprisingly new research area which seems
to have originated independently as separate threads on opposite sides of the Atlantic ocean.

In Europe, the first serious space research was carried out by Juan Luis Esteban and Jacobo Torán, who
were the first to use the term ‘clause space’. However, in fairness they did not invent the concept entirely
on their own, but rather adapted and perfected a previous (but slightly inadequate) definition due to Kleine
Büning and Lettman [BL94]. Their space research begins with Esteban’s M.Sc. [Est95] and Ph.D. [Est03]
thesis work, and also encompasses several papers including [Tor99], and [ET01]. Esteban and Torán were
also the first to observe the intimate and important relationship between Resolution space and pebbling
games.

Meanwhile, in North America, general questions about the space requirements of computing propositional
proofs were first raised by Armin Haken during the 1998 ‘Complexity Lower Bounds’ workshop held at the
Fields Institute in Toronto [ABSRW01]. The first paper to address Haken’s questions was [ABSRW01] by
Alekhnovich, Ben-Sasson, Razborov and Wigderson, who were aware of the research done by Esteban and
Torán, and were the first to define our notion of ‘total space’. In a related paper, Ben-Sasson proved several
tradeoff results between Resolution size and space [BS02], re-emphasizing the connection between space and
pebbling.

At this point the two threads merge with a third from the area of finite model theory. In [AD03], Atserias
and Dalmau investigate RES width in the context of the (∃, k)-pebble game of Kolaitis and Vardi [KV95]
and us it to relate Resolution width and space.

Other important space results include [ET03], which equated the Prover/Delayer game from [PI00,
BSIW04] with T-RES clause space, and Nordström’s more recent work [Nor06], which won the best stu-
dent paper award at STOC 2006, showing that Resolution space research does have a mainstream appeal as
well.

This provides the research setting framing the work in this part of the thesis, and it is easy to see how
our research extends but also continues to unify these previous threads. As for the specific history of the
research in this thesis, we had been investigating the area of Resolution space resource problems for about

23

24 Chapter 3: Introduction to Part II

six months when we were further motivated by a conjecture made by Moshe Vardi which was relayed to
Toronto by Stephen Cook in the early part of July 2006. Vardi conjectured that the problem of determining
whether an arbitrary unsatisfiable formula F has a RES refutation of width k is EXPT IME-Complete. This
stimulating conjecture inspired us to redouble our research efforts into Resolution resource problems.

3.2 Definitions Specific To Part II

As opposed to Chapter 2 in which we gave broad, high-level definitions and major results, this section
contains many of the important recurring definitions and previous results which are relevant specifically to
the research in this part of the thesis, including definitions, concepts such as pebbling formulas, pebbling
games, and Resolution space. Many of these definitions and results are somewhat non-standard and are
not contained in textbooks or survey articles. This section should therefore be used as a reference for the
remainder of this part of the thesis. Note that this section mainly contains recurring definitions and previous
results; those relevant to only a single chapter tend to be included in them rather than here.

Since it is the main focus of this thesis as well as the most generalized form of Resolution, most of our
definitions are given for the RES proof system. However, the majority of these definitions apply equally to
all Resolution-based proof systems such as T-RES and I-RES, and efforts have been made to point out when
significant differences exist.

3.2.1 Resolution, Size, & Width

The notions of size and width can be formalized using a fairly simple definition of what constitutes a RES
proof, whereas the notions of space require slightly more complicated definitions.

Definition 3.2.1 (Resolution Proof). A clause C is a set of literals. We use the notation C ∨D for the
clause C ∪D, and write C ∨ l for C ∪ {l}, where l is a literal. If C ∨ x and D ∨ ¬x are clauses, then the
resolution rule allows us to derive the clause C ∨D, by resolving on the variable x. If F is a set of clauses,
then the sequence of clauses π = C1, C2, ..., Ck is a RES proof of Ck from F if each Ci in π appears in F
(i.e. is an input, or initial clause) or follows from two previous clauses in π by the resolution rule.

If the graph underlying the structure of π is a tree (i.e. each clause in π is a premise for at most
one application of the resolution rule), then the proof is said to be a Tree-Like Resolution (T-RES) proof.
Otherwise it is said to be DAG-Like. A RES refutation of F is a RES proof from F in which Ck = ∅ (the
empty clause).

This allows us to define size and width:

Definition 3.2.2 (Resolution Size & Width). Given a refutation proof system α, if an α proof π of a
formula F contains k occurrences of clauses, then the size of π, denoted Size(π), is k. Similarly, the size of
the smallest α refutation of F is denoted Size(F `α ∅). The width of a clause C refers to how many literals
it contains, and is denoted w(C). The width of a formula F is the width of the widest clause in F , and is
denoted w(F). The width of an α proof π is equal to the width of its widest clause, and is denoted w(π).
Finally, the minimum width of any α refutation of F is denoted w(F `α ∅).

3.2.2 Resolution Space

The definitions of the various different measures of space that we shall be discussing requires an alternative
definition of RES proof which depends on the notion of configuration. Intuitively, a configuration is the set
of clauses stored in memory at any time, and a proof can be viewed as a sequence of configurations.

Definition 3.2.3 (Configuration-Style RES, T-RES, RT-RES, I-RES, and U-RES Proof). A con-
figuration C is a set of clauses. If F is a formula (set of clauses), then the sequence of configurations
π = C0,C1, ...,Ck is a RES proof of C from F if C0 = ∅, C ∈ Ck, and for each i < k, Ci+1 is obtained from
Ci by one of the following rules:

3.2 Definitions Specific To Part II 25

1. Deleting one or more of its clauses,

2. Adding the resolvent of two clauses of Ci, or

3. Adding one or more of the clauses of F (initial clauses).

The proof π is said to be a Tree Resolution (T-RES) proof if we replace rule 2 with the following:

2. Adding the resolvent of two clauses of Ci and deleting both parent clauses.

Similarly, π is said to be a Regular Tree Resolution (RT-RES) proof if it is a T-RES proof in which the
underlying proof tree does not contain any irregularities.
In addition, π is said to be an Input Resolution (I-RES) proof if at least one input to every instance of the
resolution rule is an input clause, and a Linear Resolution (L-RES) if the output of each application of the
resolution rule is one of the inputs to the next application.

Finally, if at least one input to every instance of the resolution rule is a unit clause (i.e. a clause which
contains just one literal), then we say that π is a Unit Resolution (U-RES) proof.

In any type of Resolution proof, the first two clauses resolved on are called the ‘top clauses’ of π. The final
result of the refutation, Ck is called the ‘Goal Clause’. If ∅ ∈ Ck, then we refer to π as a refutation.

This leads us to our different definitions of space. Intuitively, space is the amount of memory required in
order to compute a proof π. For each of these measures, it is important to distinguish between space for
RES, T-RES, RT-RES, and I-RES.

Note that our terminology differs from that introduced by Alekhnovich, Ben-Sasson, Razborov and
Wigderson in [ABSRW01], and Ben-Sasson in [BS02]. Our notions of ‘clause space’ are identical, but what
Ben-Sasson refers to as ‘variable space’, we refer to as ‘total space’. Our notion of ‘variable space’ is not
explicitly defined in [BS02], but does appear implicitly in one of the results (see Theorem 3.3.5 and Corollary
3.3.6 below).

Definition 3.2.4 (Clause Space). Let F be a set of clauses and π be a configuration-style α proof of clause
C from F , where α is RES or one of its refinements. The clause space of a configuration C in π, denoted
CS(C), is the number of clauses in C. The clause space of π, denoted CS(π), is the maximum CS(C) over
all C in π. Finally, the clause space of resolving C from F , denoted CS(F `α C), is the minimum CS(π)
over any α proof π of C from F .

Definition 3.2.5 (Total Space). Let F be a set of clauses and π be a configuration-style α proof of clause
C from F , where α is RES or one of its refinements. The total space of a configuration C in π, denoted
TS(C), is defined as

∑
C∈C w(C). The total space of π, denoted TS(π), is the maximum TS(C) over all C

in π. Finally, the total space of resolving C from F , denoted TS(F `α C), is the minimum TS(π) over any
α proof π of C from F .

Definition 3.2.6 (Variable Space). Let F be a set of clauses and π be a configuration-style α proof of
clause C from F , where α is RES or one of its refinements. The variable space of a configuration C in π,
denoted V S(C), is the number of distinct variables in C. The variable space of π, denoted V S(π), is the
maximum V S(C) over all C in π. Finally, the variable space of resolving C from F , denoted V S(F `α C),
is the minimum V S(π) over any α proof π of C from F .

For example, given the formula F = {{x1, x2}, {¬x2, x1}, {¬x1, x3}, {¬x3,¬x1}}, the following table shows
a step-by-step configuration-style T-RES refutation π of F together with the clause space, total space, and
variable space of each step:

26 Chapter 3: Introduction to Part II

Step Configuration Clause Space Total Space Variable Space

1 {} 0 0 0
2 { {x1, x2} } 1 2 2
3 { {x1, x2}, {¬x2, x1} } 2 4 2
4 { {x1} } 1 1 1
5 { {x1}, {¬x1, x3} } 2 3 2
6 { {x1}, {¬x1, x3}, {¬x3,¬x1} } 3 5 2
7 { {x1}, {¬x1} } 2 2 1
8 { ∅ } 1 0 0

It is not hard to see that CS(π) = 3, TS(π) = 5, and V S(π) = 2. It is similarly easy to see that for
all F , CS(F `RES C) ≤ TS(F `RES C), and w(F `RES C) ≤ V S(F `RES C) ≤ TS(F `RES C). The same
holds for any Resolution refinement such as T-RES or I-RES, and clearly CS(F `RES C) ≤ CS(F `α C),
TS(F `RES C) ≤ TS(F `α C), and V S(F `RES C) ≤ V S(F `α C) for any formula and any Resolution
refinement α.

The measures V S(F `RES C) and CS(F `RES C) are incomparable, since each of these quantities can be
made larger than the other by choosing an appropriate formula for F . For example, let F1 = {{x1}, {¬x1}},
and let F2 = {{x1, x2, x3}, {¬x1}, {¬x2}, {¬x3}}. V S(F1 `RES ∅) = 1, and CS(F1 `RES ∅) = 2, whereas
V S(F2 `RES ∅) = 3 and CS(F2 `RES ∅) = 2.

These definitions of space immediately raise interesting questions about popular proof systems. For ex-
ample, given a formula F and integer k, does F have a RES refutation of clause space at most k? There is
nothing special about space; in fact, we can ask similar questions for any interesting resource such as size,
space, width, or depth. We refer to this type of question as a proof complexity resource problem, and define
it formally as follows:

Definition 3.2.7 (Proof Complexity Resource Problem). A proof complexity resource problem asks
questions of the following form: Given two formulas F and G and an integer k, does there exist a [Type of
Proof System] derivation of G from F with [Type of Resource] at most k?

In Part II of this thesis we settle the complexity of several proof complexity resource problems for
Resolution-based proof systems. We can of course add more constraints to the definition, but usually
consider cases in which F is unsatisfiable, and G is the empty clause ∅.

3.2.3 Pebbling Circuits & Games

The investigation of RES space is closely associated with the well-known pebbling game and pebbling
number of a DAG, originally explored in [Coo73, CS76] as a means of investigating bounds on storage
requirements. There are several different versions of pebbling games, but the most popular ones are captured
by the following generalized description:

Definition 3.2.8 (Pebbling Games on Monotone Circuits). The generalized black-white pebbling game
is a single-player game where the goal is to ‘pebble’ a monotone circuit C in which each node is an AND
gate, an OR gate, or a source. The leaves of C have in-degree 0 and are referred to as ‘source’ nodes. A
single vertex in C is referred to as a ‘target’ or ‘output’ node, and has out-degree 0. All non-target nodes
can have arbitrary out-degree, except of course when C is a tree, in which case the maximum out-degree is
1. In all cases, non-source nodes can have arbitrary in-degree. A circuit in which all non-source nodes have
in-degree 2 is called a ‘binary circuit’. The game involves two different types of pebbles (black and white),
and has the following rules:

1. The game starts with no pebbles on the circuit.

3.2 Definitions Specific To Part II 27

2. A gate may have at most one pebble on it at any time.

3. At any point, the player may place any pebble onto any vacant source node or remove any pebble from
any source.

4. At any point, the player may remove any black pebble from any gate or place a white pebble on any
empty gate.

5. For any unpebbled AND gate v, if all of v’s immediate predecessors have pebbles on them, then the
player may place a black pebble on v. Alternatively, if the sliding rule is present, the player may slide
a black pebble (if present) from u to v, where u is a predecessor of v.

6. For any unpebbled OR gate v, if at least one of v’s immediate predecessors has a pebble on it, then the
player may place a black pebble on v. Alternatively, if the sliding rule is present, the player may slide
a black pebble (if present) from u to v, where u is a predecessor of v.

7. For any AND gate v with a white pebble on it, if all of v’s immediate predecessors have pebbles on
them, then the player may remove the white pebble from v. Alternatively, if the sliding rule is present
and all but one of v’s predecessors are pebbled, then the player my slide the white pebble from v to the
remaining unpebbled predecessor of v.

8. For any OR gate v with a white pebble on it, if at least one of v’s immediate predecessors has a pebble
on it, then the player may remove the white pebble from v. Alternatively, if the sliding rule is present,
then the player may slide the white pebble from v to any unpebbled predecessor of v.

9. The game ends once the circuit has a black pebble on the target node and there are no white pebbles
present on any nodes.

Most of the pebble games found in the literature can be viewed as restricted versions of this generalized
game on monotone circuits. For example, if all nodes in C are AND gates, then we usually refer to it using
the letter ‘G’ and call it a ‘DAG’. The game resulting from this restriction is the standard ‘black-white
pebbling game’. Similarly, we can further restrict the game by disallowing the use of white pebbles, resulting
in the standard ‘black pebbling game’. The black pebbling game and the black-white pebbling game played
on DAGs are the most common forms of the game found in the literature, although pebbling on monotone
circuits has also been investigated. This leads us to the definitions of the ‘black-white pebbling number’ and
the ‘black pebbling number’ of a monotone circuit:

Definition 3.2.9 (Pebbling Numbers of Monotone Circuits). Given a monotone circuit C, the ‘black-
white pebbling number’ of C, denoted BW -Peb(C) is the minimum number of total pebbles that the player
needs in order to complete the black-white pebbling game on C without violating any of its rules.

The ‘black pebbling number’ of C, denoted B-Peb(C) is the minimum number of black pebbles that the
player must be given in order to complete the black pebbling game on C without violating any of its rules.

Note that each version of the pebbling game can either be defined with or without sliding; this is an
important point because allowing sliding has a slight effect on the pebbling number (see Lemma 3.3.1 for
details). Another issue is whether sliding is compulsory or optional, i.e. if one is allowed to place a pebble
even when sliding is possible. For the purposes of this thesis, we will allow sliding unless otherwise stated.

A final concept related to pebbling games is a method of documenting the moves made during a pebbling
game. We refer to such a record as a ‘pebbling history’:

Definition 3.2.10 (Pebbling Histories & Strategies). A pebbling history on a monotone circuit G with
j moves is a sequence of pairs H = (B0,W0), (B1,W1), ..., (Bj ,Wj) in which each (Bi,Wi) pair completely
describes which nodes of G have pebbles on them at step i of the pebbling game; Bi is the set of nodes
having black pebbles on them, and Wi is the set of nodes having white pebbles on them at time i. By the
definition of the game, Bi∩Wi = ∅ for all i. A step in the pebbling game is defined as being one move by the

28 Chapter 3: Introduction to Part II

player consisting of the removal of a pebble, the placement of a pebble, or the sliding of a pebble (if sliding is
allowed).

When dealing with pure black or pure white pebbling histories, we allow H = S0, S1, ..., Sj to be a sequence
of sets in which each Si is the set of nodes at time i having pebbles on them. This simplifies our notation,
since pairs are not necessary in this case.

A ‘pebbling strategy’ is a history which has met the termination condition of the game.

3.2.4 Pebbling Contradictions

A number of important families of unsatisfiable formulas called the ‘pebbling contradictions’ are based on
the various different forms of the pebbling game. A brief history of how these formulas have been used in
the literature is given in [BS02].

Definition 3.2.11 (One-Colour Pebbling Contradictions for Monotone Circuits). The one-colour
pebbling contradiction of a monotone circuit C, denoted Peb1(C), is an unsatisfiable formula constructed by
taking C, and creating the following clauses in which each variable x is interpreted as meaning that vertex x
has a pebble on it:

1. For each source node s, create the singleton clause {s}.

2. For each AND node y0 of degree d with immediate predecessors y1, y2, ..., yd, create the propagation
clause {¬y1,¬y2, ...,¬yd, y0}.

3. For each OR node y0 of degree d with immediate predecessors y1, y2, ..., yd, create the propagation
clauses {¬y1, y0}, {¬y2, y0}, ..., {¬yd, y0}.

4. Finally, for the target node t, create the singleton clause {¬t}.

We say that a formula is minimally unsatisfiable if it is unsatisfiable, but the same cannot be said for any
proper subset of its clauses. It is easy to see that Peb1(G) is minimally unsatisfiable for almost any DAG G
which we might encounter in practice:

Theorem 3.2.12. Let G be any arbitrary DAG. Peb1(G) is minimally unsatisfiable if and only if for every
vertex x in G, there exists a path from x to G’s target node t.

Proof: ⇒ Suppose that Peb1(G) is minimally unsatisfiable, and assume that there exists a vertex y in G
such that there is no path from y to t. Therefore, neither y nor any of its ancestors are predecessors to t
or any of t’s predecessors. Delete y and all of its ancestors from G to produce G′. Peb1(G′) remains un-
satisfiable, but Peb1(G′) ⊂ Peb1(G), contradicting our assumption that Peb1(G) is minimally unsatisfiable.
Therefore for every vertex x in G, there exists a path from x to G’s target node.

⇐ Suppose that for every vertex x in G, there exists a path from x to G’s target node t. We will show
how to satisfy Peb1(G) if we leave out one arbitrary clause C. There are three cases to consider:

Case 1: C is the clause associated with the target node and is of the form {¬t}. In this case we set all
variables in Peb1(G) to True, thereby satisfying all clauses except for C.

Case 2: C is the clause associated with a source node s and is of the form {s}. We know from our assump-
tion that there is a path P from s to t. Set every variable associated with a node on P (including s and t) to
False, and set all remaining variables to True. This truth assignment falsifies C but satisfies all other clauses.

Case 3: C is the clause associated with an AND gate y0 and is of the form {¬y1,¬y2, ...,¬yd, y0}. This case
is similar to Case 2: Set every variable associated with a node on the path from y0 to t (including s and t) to
False, and set all remaining variables to True. This truth assignment falsifies C but satisfies all other clauses.

Therefore, in all cases there exists a truth assignment which satisfies all but one clause, showing that
Peb1(G) is minimally unsatisfiable, as required.

3.2 Definitions Specific To Part II 29

It is interesting to note that this fact does not hold for circuits; that is, even if a circuit C has a path from
every vertex to the target, Peb1(C) may not be minimally unsatisfiable. For example, consider an OR gate
t with two source nodes s1 and s2 as predecessors.

Nevertheless, the above theorem does have a useful corollary:

Corollary 3.2.13. For any DAG G in which there exists a path from every vertex to the target, every
possible pebbling of G must use every vertex in G at some point during the pebbling.

We shall also make use of a more complicated type of contradiction, the two-colour pebbling contradictions:

Definition 3.2.14 (Two-Colour Pebbling Contradictions for Binary Monotone Circuits). The
two-colour pebbling contradiction of a binary monotone circuit C, denoted Peb2(C), is an unsatisfiable for-
mula constructed by taking C, and creating the following clauses in which each variable xi is interpreted as
meaning that vertex x has a pebble on it:

1. For each source node s, create the clause {s0, s1}.

2. For each AND node c with immediate predecessors a and b, create four propagation clauses
{¬a0,¬b0, c0, c1}, {¬a0,¬b1, c0, c1}, {¬a1,¬b0, c0, c1}, and {¬a1,¬b1, c0, c1}.

3. For each OR node c with immediate predecessors a and b, create four propagation clauses {¬a0, c0, c1},
{¬b0, c0, c1}, {¬a1, c0, c1}, and {¬b1, c0, c1}.

4. Finally, for the target node t, create the two singleton clauses {¬t0} and {¬t1}.

These formulas are important for the investigation of clause space because for any monotone circuit C,
CS(Peb1(C) `T-RES ∅) ≤ 2.

It should be easy to see that for any monotone circuit C, both Peb1(C) and Peb2(C) are unsatisfiable;
this is because the source node variables must all be true, and all of the propagation clauses send this truth
towards the target. The target variable must therefore be true, but the negative singleton clause(s) for the
target forces it to be false, ultimately creating a contradiction.

It is also worth noting that the clauses of Peb1(C) are all Horn clauses, which means that each one
contains at most one positive literal.

3.2.5 The Prover/Delayer Game

The Prover/Delayer game, described in [PI00, BSIW04], is a combinatorial game between two players, the
‘Prover’, and the ‘Delayer’, and is played on an unsatisfiable CNF formula F . The point of the game is for
the Prover to falsify some initial clause of F , thereby falsifying the formula. Since the formula is unsatisfiable,
this is inevitable. Roughly speaking, the Delayer’s goal is to delay the falsification of the formula for as long
as possible.

The game proceeds in rounds. Each round starts with the Prover choosing a variable, and asking the
Delayer what the value of that variable is. The Delayer can give one of three answers: ‘True’, ‘False’, or
‘You Choose’.

If the Delayer says ‘You Choose’, then the Prover gets to decide the value of that variable. In addition,
every time ‘You Choose’ is said, the Delayer wins one point. This is the only way in which points can be
scored.

The game finishes when any clause has been falsified. The real goal of the game is not actually to prove
or delay; rather, the Delayer’s aim is to win as many points as possible, while the Prover’s aim is to make
sure that the Delayer wins as few as possible. This leads us to the following definition:

Definition 3.2.15 (Prover/Delayer Number). Let F be an unsatisfiable CNF formula. The Prover/
Delayer number of F , denoted PD(F) is the greatest number of points the Delayer can score on F with the
Prover playing optimally.

30 Chapter 3: Introduction to Part II

3.2.6 Automatizability

First formalized in [BPR97], automatizability is an important concept in proof complexity:

Definition 3.2.16 (Automatizability). A propositional proof system S is automatizable if there exists a
deterministic algorithm A such that for every formula F ∈ UNSAT (or TAUT), A returns an S-proof of F
in time polynomial in |F | and |π|, where |F | is the number of clauses in F , and |π| is the size of the smallest
S-proof of F . If A is as above except that it returns a proof of F that is not an S-proof, then S is said to be
weakly automatizable.

Intuitively, automatizability tells us if a proof system can be automated to always find proofs which are
close to optimal size. If a proof system is not automatizable, then it is impossible to implement a proof search
strategy that is guaranteed to find proofs that are in any way close in length to the shortest possible proof.
In other words, even if we have a powerful proof system that has very short proofs for certain formulas,
if it is not automatizable, then its strengths are inaccessible from the point of view of automated theorem
proving.

Note that if a proof system α p-simulates an automatizable proof system β but β does not p-simulate
α, then that does not let us conclude anything about the automatizability of α. Only when α and β are
p-equivalent does that tell us anything about automatizability; i.e. if α and β are p-equivalent then α is
automatizable if and only if β is automatizable.

By contrast, if α p-simulates β and α is automatizable, then β is weakly automatizable by simply using
α’s algorithm.

Positive Results

The only complete proof systems known to be automatizable are NS and PC [BPR97], but to say that
they are automatizable is not quite correct; there is a caveat. For example, PC is automatizable using the
Groebner basis algorithm [CEI96], which is an O(n3d) algorithm, where d is the largest degree of all equations
in the input set. Since d could be as large as n, PC is only automatizable for certain inputs.

Negative Results

As for negative results, under various cryptographic assumptions, a number of proof systems are known
to be non-automatizable:

Theorem 3.2.17 ([AR02]). If W [P] is not tractable, then neither T-RES nor RES are automatizable.

Theorem 3.2.18 ([CK01, p.393]). If ∀ε > 0 the Diffie-Hellman cryptographic function cannot be computed
by circuits of size 2nε

, then AC0-Frege systems are not automatizable.

Theorem 3.2.19 ([BPR00]). If factoring Blum integers is hard, then Frege systems are not automatizable.

Theorem 3.2.20 ([CK01, p.393]). If RSA is secure, then E-Frege systems are not automatizable.

Each of these is considered to be good evidence of true non-automatizability since these complexity-
theoretic and cryptographic assumptions are widely believed to be true. It is worth noting that most of these
results are proved by first showing that under their respective cryptographic assumptions, the various proof
systems have no feasible interpolation. Since automatizability implies feasible interpolation [CK01, p.298],
the non-automatizability results follow. This is important because CP in fact does have feasible interpolation
[CK01, p.362], which means that we cannot rule out its automatizability. A non-automatizability result for
CP, if possible, would have to be proved using a different strategy.

3.3 Previous Results Related to Resolution Space 31

3.3 Previous Results Related to Resolution Space

Although Resolution space has not been studied nearly as extensively as Resolution size, a number of
space results are known. In addition, several peripheral results concerning pebbling and games have been
proved. In this section we list some previous results from the literature which are most important to this
part of the thesis and extend them where necessary.

3.3.1 Pebbling

An important survey on pebbling by Pippenger [Pip80] is a very good overview of the area. The literature
also contains some useful results for manipulating pebbling strategies which we shall generalize upon. The
first is a connection between normal pebbling and pebbling with sliding. In [GLT80], Gilbert, Lengauer, and
Tarjan prove that any DAG G can be black pebbled using k pebbles with sliding if and only if it can be
black-pebbled using k + 1 pebbles without sliding. We generalize this result to the black-white pebbling of
monotone circuits:

Lemma 3.3.1. Any monotone circuit C can be black-white pebbled using k pebbles with sliding if and only
if it can be black-white pebbled using k + 1 pebbles without sliding.

Proof: ⇒ Suppose that C can be black-white pebbled using k pebbles with sliding. Replace each instance
of the sliding rule from gate x to gate y with two moves; first place a pebble of the same colour as the pebble
on x onto y, and then remove the pebble from x. This substitution increases the number of pebbles used by
1 momentarily during the intermediate step and works regardless of whether the pebble is white or black,
regardless of what type of gate x is, and leaves us with a pebbling strategy that involves no sliding and
requires at most k + 1 pebbles, as required.

⇐ Suppose that C can be black-white pebbled using k + 1 pebbles without sliding, and let H be the
pebbling strategy associated with this pebbling.

Let (Bi, wi) be any time in H containing k + 1 pebbles. Therefore, the move transitioning from step
(Bi−1, wi−1) to (Bi, wi) was the placement of either a black or white pebble on a vertex x. Either this is the
final move in the pebbling or it is not. If this is the final move, then it must be the placement of a black
pebble. Then all of x’s predecessors must be pebbled at step (Bi−1, wi−1), and there are no white pebbles
on C, so simply slide one of the black pebbles from one of x’s predecessors to x instead of placing a new
black pebble on x, thereby saving a pebble.

If this is not the final move in the pebbling, then the pebble being placed on x is either black or white,
and the move transitioning from step (Bi, wi) to step (Bi+1, wi+1) must be the removal of a pebble from
a vertex y. If the pebble being placed on x is white, then it does not require any predecessors, so simply
remove the pebble from y before placing the white pebble on x, thereby saving a pebble.

If the pebble being placed on x is black, then y either is or is not an immediate predecessor of x. If y
is not an immediate predecessor, then it is not needed for the placement of x, so simply remove the pebble
from y first, and then place the black pebble on x, thereby saving a pebble.

If y is an immediate predecessor of x, then the pebble being removed from y is either black or white. If
it is black, then instead of placing a black pebble on x and then removing the black pebble from y, we slide
the black pebble from y to x, thereby saving a pebble and still ending up in the same pebbling configuration
(Bi+1, wi+1).

If the pebble being removed from y is white, then instead of placing a black pebble on x and removing a
white pebble from y, we first remove the white pebble from y, then place a black pebble on y, and then slide
it from y to x, once again saving a pebble and ending up in the same pebbling configuration (Bi+1, wi+1).

We perform this local transformation to save a pebble at every stage of H where k + 1 pebbles are used.
This shows that C can be pebbled using k pebbles with sliding, as required.

Another useful result for manipulating pebblings is found in [Hei81]. In this paper, Meyer Auf Der Heide
proves that for any DAG G, any black-white pebbling strategy (without sliding) using k pebbles can be

32 Chapter 3: Introduction to Part II

turned into its ‘dual’ white-black pebbling strategy using k pebbles by reversing the strategy, converting all
black pebbles to white and all white pebbles to black.

We generalize this result to black-white pebbling monotone circuits with the sliding rule present:

Lemma 3.3.2. Given a black-white pebbling strategy (with sliding) of a monotone circuit C using at most
k pebbles, if one reverses the strategy, converts all black pebbles to white, and all white pebbles to black, then
the resulting strategy is also a valid black-white pebbling strategy of C which uses at most k pebbles.

Proof: From the description of the black-white pebbling game in Definition 3.2.8, it is easy to see that every
possible move in the game has a corresponding countermove which is exactly equivalent to making the move
in reverse with all pebbles having exactly the opposite colour. For example, consider a node v in C with
d ≥ 0 predecessors u1, ..., ud. The following are pebbling moves together with their duals:

1. Let v be an unpebbled AND gate with all predecessors pebbled, and suppose we place a black pebble
on v. In this case the dual move is to start with a white pebble on v, have all other corresponding
nodes contain opposite pebbles, and then remove the white pebble from v.

2. Let v be an unpebbled OR gate with at least one predecessor pebbled, and suppose we place a black
pebble on v. In this case the dual move is to start with a white pebble on v, have all other corresponding
nodes contain opposite pebbles, and then remove the white pebble from v.

3. Let v be an unpebbled AND gate with all predecessors pebbled and suppose that we slide a black
pebble from some predecessor ui to v. In this case the dual move is to start with a white pebble on v
but none on ui, have all other corresponding nodes contain opposite pebbles, and then slide the white
pebble from v to ui.

4. Let v be an unpebbled OR gate with at least one predecessor pebbled and suppose that we slide a
black pebble from some predecessor ui to v. In this case the dual move is to start with a white pebble
on v but none on ui, have all other corresponding nodes contain opposite pebbles, and then slide the
white pebble from v to ui.

5. Suppose that a black pebble is removed from v, where v is either type of gate. In this case the dual
move is to have all other corresponding nodes pebbled with opposite pebbles, and then place a white
pebble on v.

Of course, all of these dual relationships hold in the opposite direction as well, and each of these cases the
number of total pebbles used is identical. It is therefore possible to take any black-white pebbling strategy
(with sliding) and convert it step-by-step into a dual strategy which uses exactly the same number of pebbles,
as required.

3.3.2 Space & Games

In [ET01], Esteban and Torán show that the pebbling game is related closely to RES clause space:

Lemma 3.3.3 ([ET01]). Let F be any arbitrary unsatisfiable formula, let π be a configuration-style RES
refutation of F , and let G be the DAG underlying the structure of π. The clause space required in order to
compute π is exactly equal to B-Peb(G).

Intuitively, this is because the pebbles represent the clauses which must be kept in memory during the
computation of π. This lemma has an immediate and important corollary:

Corollary 3.3.4. For any unsatisfiable formula F , CS(F `RES ∅) = B-Peb(G), where G is the DAG with
the smallest pebbling number of all DAGs underlying valid RES refutations of F .

These results show that both RES clause space as well as T-RES clause space are very closely related to
the pebbling game. In fact, this shows how configuration-style refutations differ from the more standard way
of viewing refutations as sequences of clauses: A sequence-style refutation implicitly describes a proof DAG,
whereas a configuration-style refutation not only has an underlying DAG, but also describes a pebbling on
that DAG.

3.3 Previous Results Related to Resolution Space 33

A particularly relevant result relating black-white pebbling number to space was proved by Ben-Sasson:

Theorem 3.3.5 ([BS02]). For any monotone circuit C, BW -Peb(C) ≤ V S(Peb1(C) `RES ∅), where BW -
Peb(C) is defined without sliding.

In fact, the above theorem was not stated explicitly in [BS02], but rather forms the basis of the following
theorem, which follows from it immediately since variable space is always bounded above by total space:

Theorem 3.3.6 ([BS02]). For any monotone circuit C, BW -Peb(C) ≤ TS(Peb1(C) `RES ∅), where BW -
Peb(C) is defined without sliding.

T-RES clause space is also related closely to the Prover/Delayer game, described in Section 3.2.5. The
results in [ET03] are the definitive work relating the Prover/Delayer number PD(F) of an unsatisfiable CNF
formula to its T-RES clause space CS(F `T-RES ∅):

Theorem 3.3.7 ([ET03]). For any unsatisfiable CNF formula F , CS(F `T-RES ∅) = PD(F) + 1.

In other words, the Prover/Delayer game perfectly captures the notion of clause space for T-RES.

In addition to doing some of the pioneering research in the area of Resolution space, Esteban and Torán
also showed that an upper bound on tree clause space yields an upper bound on the size of T-RES proofs:

Theorem 3.3.8 ([ET01]). Let F be an unsatisfiable formula on n distinct variables. If F has a T-RES
refutation with tree clause space s = CS(F `T-RES ∅), then it has a T-RES refutation of size

(
n+s

s

)
.

The Prover/Delayer game can also be used to give a lower bound on T-RES size; in [PI00], Pudlák and
Impagliazzo show that lower bounds on PD(F) can be used to prove lower bounds on the size of T-RES
proofs:

Corollary 3.3.9 ([PI00, BSIW04]). For any CNF formula F , Size(F `T-RES ∅) ≥ 2PD(F).

When we combine this with Theorem 3.3.7, we also get the following useful result:

Corollary 3.3.10. For any CNF formula F , Size(F `T-RES ∅) ≥ 2CS(F`T-RES∅)−1.

These results motivate why it would be so helpful for researchers working with SAT-solvers to have
algorithms which, given a formula F , are capable of efficiently calculating PD(F) or CS(F `T-RES ∅): These
algorithms could be used as preprocessing steps for SAT-solvers; if PD(F) or CS(F `T-RES ∅) are sufficiently
large, then there is no sense in even attempting to run a Resolution-based SAT-solver on F , since it will take
far too long to terminate.

In [BSIW04], the authors also use the Prover/Delayer game to show that for every pebbling graph G, the
size of the smallest T-RES refutation of the formula Peb2(G) is 2B−Peb(G). Combined with the result from
[CPT77] that there exist pebbling graphs on n nodes requiring Ω(n/log n) pebbles, this yields a T-RES lower
bound of 2Ω(n/log n), where n is the number of pebbles. Since T-RES has an O(n log log n

log n) upper bound for
the pebbling formulas, and RES has an O(n) upper bound, this proves a near-optimal separation between
the two systems.

3.3.3 Space & Width

In an important paper relating space and width [AD03], Atserias and Dalmau prove that for unsatisfiable
k-CNF formulas, space is an upper bound on width:

34 Chapter 3: Introduction to Part II

Theorem 3.3.11 ([AD03]). If F is an unsatisfiable CNF formula, then

CS(F `RES ∅) ≥ w(F `RES ∅)− w(F).

This is a very powerful result, because it can be used to derive space lower bounds for all formulas for
which width lower bounds are known. Of course, since CS(F `T-RES ∅) ≥ CS(F `RES ∅), another corollary
of this result is that RES width is also a lower bound on T-RES clause space.

3.3.4 Width & Size

The relationship between width and size is very important because it shows that lower bounds for width
imply lower bounds for size. This simplifies proofs for size lower bounds by allowing us to focus on lower
bounds for width. The main result linking width and size was proved by Ben-Sasson and Wigderson [BSW01],
and a somewhat more general version is due to Urquhart [Urq06].

Theorem 3.3.12 ([BSW01]). Let F be a contradictory set of clauses with an underlying set of variables
V , and let Size(F `RES ∅) be the minimum size of any RES refutation of F . Then

Size(F `RES ∅) = exp

(
Ω

(
(w(F `RES ∅)− w(F))2

|V |

))

In [BSW01], Ben-Sasson and Wigderson also prove a more exact relationship between T-RES proof size
and width. In fact, a slightly weaker form of the following result can be proved independently by combining
Corollary 3.3.10 and Theorem 3.3.11 above.

Theorem 3.3.13 ([BSW01]). Let F be a contradictory set of clauses and let Size(F `T-RES ∅) be the
minimum size of any T-RES refutation of F . Then

Size(F `T-RES ∅) ≥ 2w(F`T-RES∅)−w(F)

Much like the results above which show that T-RES refutation size is exponential in both PD(F) and
CS(F `T-RES ∅), these result shows that RES refutation size is exponential in w(F `RES ∅) and T-RES
refutation size is exponential in w(F `T-RES ∅), giving a similar motivation for why researchers working with
SAT-solvers might want to have preprocessing algorithms which are capable of calculating the width of a
formula: Such an algorithm could be used a a preprocessing steps for SAT-solvers; if the width of a formula
F is sufficiently large, then there is no sense in even attempting to run a Resolution-based SAT-solver on F ,
since it will take far too long to terminate.

3.3.5 Tradeoff Results

Another important paper is [BS02], in which Eli Ben-Sasson proves a number of interesting tradeoff results.
For example, he provides families of formulas for which there are:

• Linear-sized T-RES proofs and constant width T-RES proofs, but no T-RES proof that has both small
width and small size.

• RES proofs with constant clause space, and RES proofs with constant width, but no RES proof that
has both small width and small clause space.

• Linear-sized RES proofs that also have constant width, but no RES proof that has both small clause
space and small size.

These results rely on the pebbling contradiction formulas from Definition 3.2.11 above.

3.3 Previous Results Related to Resolution Space 35

In a more recent paper [Nor06], Jakob Nordström proves the first non-trivial separation between RES
width and clause space. More specifically, he shows the existence of a family of unsatisfiable formulas with
constant width but clause space which is bounded by Θ(log(n)), where n is the number of variables in the
formulas.

3.3.6 The Complexity of Pebbling

A number of complexity results involving pebbling are known. In [Lin78], Andrzej Lingas uses an ingenious
reduction in order to prove the following interesting result about the black pebbling game on monotone
circuits:

Theorem 3.3.14 ([Lin78]). Given a binary monotone circuit C and an integer k, the problem of deter-
mining if C can be black-pebbled using at most k pebbles (with sliding) is PSPACE-Complete.

This result was later extended to DAGs by Gilbert, Lengauer, and Tarjan in [GLT80]:

Theorem 3.3.15 ([GLT80]). Given a binary DAG G and an integer k, the problem of determining if G
can be black-pebbled using at most k pebbles (with sliding) is PSPACE-Complete.

More recently, the black-white pebbling game on monotone circuits with arbitrary fan-in was also shown
to be PSPACE-Complete by Philipp Hertel and Toniann Pitassi [HP07]:

Theorem 3.3.16 ([HP07]). Given a monotone circuit C and an integer k, the problem of determining if
C can be black-white-pebbled using at most k pebbles (with sliding) is PSPACE-Complete.

They also extend this result to DAGs in [HP07], thereby settling the long-standing open problem of
determining its complexity:

Theorem 3.3.17 ([HP07]). Given a DAG G and an integer k, the problem of determining if G can be
black-white-pebbled using at most k pebbles (with sliding) is PSPACE-Complete.

By Lemma 3.3.1, we get the following Corollary:

Corollary 3.3.18. The PSPACE-Completeness of all four versions of the pebbling game above holds even
when sliding is not allowed.

All of these results are particularly interesting because they are PSPACE-Completeness results for a game
which has only one player, whereas most PSPACE-Complete games have two.

Another important result from [HP07] very closely related to the work in this thesis is that computing
RES total space requirements is PSPACE-Complete. More formally, the RES derivation total space problem
(RTSDP) is defined as follows:

Definition 3.3.19 (RTSDP). RTSDP = {(F,D, k) | F is a formula from which there exists a RES
derivation with total space at most k of the clause D.}

Theorem 3.3.20 ([HP07]). RTSDP is PSPACE-Complete.

This close relationship between pebbling and Resolution space is similarly emphasized in this thesis:
In Chapter 4 we reduce from Lingas’s black pebbling result on monotone circuits to show that calculating
T-RES clause space is PSPACE-Complete. Next, in Chapter 5 we reduce from Gilbert, Lengauer, and
Tarjan’s black pebbling result on DAGs to show that calculating the total space of I-RES derivations is
PSPACE-Complete. Finally, in Chapter 6 we reduce from Hertel and Pitassi’s black-white pebbling result
on monotone circuits to show that calculating RES variable space is PSPACE-Hard.

36 Chapter 3: Introduction to Part II

3.4 Summary of Part II

In the next four chapters we will explore Resolution space, which is essentially the amount of Turing
Machine memory required to compute a Resolution proof. We shall study various space measures for various
forms of Resolution. The following is a brief summary of each of these chapters:

3.4.1 Chapter Summary

In Chapter 4 we prove our first substantial result by settling the complexity of the T-RES clause space
problem as well as that of the Prover/Delayer game. Given a formula F and integer k, the T-RES clause space
problem asks, ‘Does F have a T-RES proof with clause space at most k?’. We reduce from the PSPACE-
Complete black pebbling game on monotone circuits due to Lingas [Lin78] to show that the Prover/Delayer
game is PSPACE-Complete, which immediately yields the PSPACE-Completeness of the T-RES clause space
problem as a corollary, since a previous result by Esteban and Torán [ET03] shows that for any unsatisfiable
formula F , the score from the Prover/Delayer game played on F is identical to the T-RES clause space of
refuting F . As a corollary, this yields the PSPACE-Completeness of a particular (but unfortunately not
very applicable) definition of clause learning clause space.

Since most modern SAT-solvers use variations of DPLL and other Resolution-based algorithms such as
clause learning, the results in this chapter have practical implications for the area of automated theorem
proving, because we show that predicting the memory requirements of DPLL SAT-solvers on a given formula
F is at least as hard as simply solving it. This is important because T-RES proof size is exponential in
T-RES clause space, so researchers developing SAT-solvers will probably not be able to take direct advantage
of the lower bound relationships between space and size for T-RES proofs in order to design preprocessing
algorithms for SAT-solvers which can predict if a formula is even worth attempting to solve. The possibility
of approximation algorithms for T-RES clause space still exists, but since size is exponential in clause space,
anything but an algorithm which can calculate the correct answer to within a small constant would be useless
in practice.

Another practical motivation behind this research has to do with combined resources for SAT-solvers:
The limiting factor on most modern SAT-solving algorithm tends to be memory space, but on the other
hand, if one is too frugal with memory, then proofs can become intractably large (for example, see Section
5.7.2 or [HP07]). Algorithms must therefore carefully balance attempts to save memory with a potentially
massive increase in minimum proof size and running time if they save too much. We hope that future
researchers will be able to build on these present results in order to better understand the tension between
size and space.

The final section of this chapter contains a number of corollaries to the main result. These include
PSPACE algorithms for several resource problems, and, as already mentioned, the PSPACE-Completeness
of clause learning clause space, which hopefully once again is an important first step since clause learning
algorithms are such important SAT-solvers.

Our next substantial result concerns the complexity of I-RES, and is presented in Chapter 5. I-RES is
a very restrictive Resolution refinement which requires that at least one premise for each resolution step
be an input clause. In a sense, this chapter is paradoxical because we show that some aspects of I-RES
are computationally very simple, and others are extremely difficult. We start by exploring a number of its
tractable aspects. For example, given a minimally unsatisfiable formula F and integer k, determining if F
has an I-RES refutation of size at most k is in P. We also give the ultimate testament to the tractability of
I-RES by showing that it is automatizable, and optimally automatizable for minimally unsatisfiable formulas.

However, even though I-RES is considered to be trivial and so many of its aspects are computationally
easy, some of its resource problems are fiendishly complex. For example, we prove that the I-RES size problem
is NP-Complete, and our main result shows that for any binary DAG G, the black pebbling number of G
is equal within a constant to the I-RES total space of refuting a slight modification of the formula Peb1(G).
This has two immediate corollaries. The first is the PSPACE-Completeness of various forms of the I-RES
derivation total space problem which, given a formula F , integer k and clauses C and D, asks if F has an
I-RES derivation of D with top clause C and total space at most k. This result falls in line with our main

3.4 Summary of Part II 37

theme of applying games, since the reduction is from the PSPACE-Complete black pebbling game on DAGs
due to Gilbert, Lengauer, and Tarjan [GLT80].

The second corollary is an extreme (and optimal) size / total space tradeoff for I-RES. More specifically,
we show that there exists an infinite family of formulas whose I-RES proofs with minimum required total
space have size 2Ω(n), where n is the number of variables. However, if just one single additional unit of total
space is permitted, then the size drops to only O(n). Apart from being a massive size / space tradeoff, this is
also a tradeoff similar to those explored by Ben-Sasson in [BS02] because it shows that for certain formulas,
it is not possible to optimize both I-RES size and space at the same time.

All of these results together illustrate the subtle complexities of this interesting Resolution refinement.

Chapter 6 contains results regarding yet another type of RES space measure called variable space. Although
variable space is not as natural a measure as clause space or total space, in this chapter we prove results for
the full-strength RES proof system rather than the T-RES or I-RES refinements which we saw in the previous
two chapters. More specifically, we show that for any monotone circuit C, the black-white pebbling number
of C is exactly equal to the RES variable space of refuting the formula Peb1(C).

This equivalence allows us to prove the PSPACE-Hardness of the RES variable space problem, which,
when given a formula F and integer k asks whether F has a RES refutation with variable space at most k.
The reduction is from the black-white pebbling game on monotone circuits, recently proven to be PSPACE-
Complete by Philipp Hertel and Toniann Pitassi [HP07].

Another interesting aspect of this equivalence comes to light when it is juxtaposed with the equivalence
from the previous chapter; for any binary DAG G, its black pebbling number is almost exactly equal to
the I-RES total space of Peb1(G), and for any monotone circuit C, its black-white pebbling number is equal
to the RES variable space of Peb1(G). This shows how intimately pebbling games and Resolution space
measures are related.

In Chapter 7 we thought that we had proved one of our most important results by settling the complexity
of the RES width problem, but unfortunately discovered a subtle (yet fatal) flaw in one of the main proofs.
Without enough time to repair the proof, and because of the relationship of width to the other results in
this thesis, we decided to retain this chapter in vestigial form rather than deleting it altogether. However,
as it stands, this chapter does not contain any major results.

To briefly describe and motivate the RES width problem, it gives as input a formula F and integer k,
and asks whether F has a RES refutation of width at most k. Because of the important relationship between
RES width and size showed by Ben-Sasson and Wigderson [BSW01], proving RES size lower bounds can be
reduced to proving width lower bounds, which motivates the RES width problem because a polytime width
solver would be of immense practical interest in the areas of automated theorem proving and propositional
reasoning. Researchers developing SAT-solvers often find that there are inputs on which their solvers do
not halt in any reasonable amount of time. A polytime width solver could be used as a preprocessing step
to predict ahead of time which formulas require large width, and therefore large size, allowing SAT-solving
algorithms to avoid high-width formulas rather than trying in vain to solve them. This motivation of course
is very similar to that behind the research in Chapter 4.

The original purpose of this chapter was to confirm a conjecture made by Moshe Vardi that the RES
width problem is EXPT IME-Complete, thereby showing that RES width is provably intractable and that
it is not possible to build a polytime RES width solver.

There is a particularly strong parallel between the results in Chapters 4, 5, and 6, especially with respect
to proof technique. In each of these cases we reduce from a PSPACE-Complete pebbling game problem to
a Resolution resource problem using some version of the pebbling contradiction formulas in order to show
that the resource problem is PSPACE-Hard. The following table summarizes this parallel:

Chapter PSPACE-Hardness Result Reduction From Formula Used

4 T-RES Clause Space Black Pebbling Peb2(C)
Lingas Circuits [Lin78]

5 I-RES Derivation Total Space Black Pebbling Peb1(G)
DAGs [GLT80]

6 RES Variable Space Black-White Pebbling Peb1(C)
Monotone Circuits [HP07]

In the case of T-RES clause space, we use the Peb2(C) formulas rather than Peb1(C) because Peb1(C)
can be refuted in constant space for any circuit C, and therefore cannot possibly be used as a reduction to
at PSPACE-Complete set.

3.4.2 Summary of Results

The following table summarizes many of the results from Part II by listing the complexities of several
proof complexity resource problems for RES and two of its refinements, T-RES and I-RES. In some cases we
are able to prove completeness results; for example, we show that T-RES clause space is PSPACE-Complete
and that I-RES size is NP-Complete. In other cases, we give upper bounds for where the problems lie by
providing algorithms, and lower bounds by proving hardness results; for example, the T-RES size problem is
in PSPACE , and is at least coNP-Hard. By ‘no parameter’, we refer to the basic version of the appropriate
resource problem without a k parameter. The main results by chapter are Corollaries 4.7.7, 5.6.14, and 6.3.2.

Resource RES T-RES RT-RES I-RES

∈ PSPACE
Clause Space coNP-Hard PSPACE-Complete PSPACE-Complete P-Complete

Cor. 4.8.4 Cor. 4.7.7 Cor. 4.8.14 Cor. 5.3.6

∈ PSPACE ∈ PSPACE
Total Space PSPACE-Complete coNP-Hard coNP-Hard PSPACE-Complete

[HP07], Thm. 3.3.20 Cor. 4.8.5 Cor. 4.8.6 Cor. 5.6.14

∈ EXPSPACE ∈ NEXPT IME ∈ NEXPT IME ∈ PSPACE
Variable Space PSPACE-Hard coNP-Hard coNP-Hard P-Hard

Cor. 6.3.2 Cor. 6.4.5 Thm. 6.4.2 Cor. 6.4.7

∈ EXPT IME ∈ EXPT IME ∈ PSPACE
Width coNP-Hard coNP-Hard coNP-Hard PSPACE-Complete

Cor. 7.4.2 Cor. 7.4.5 Cor.7.4.10 Cor. 5.7.1

∈ NEXPT IME ∈ PSPACE ∈ PSPACE
Size coNP-Hard coNP-Hard coNP-Hard NP-Complete

Lem. 4.9.2 Cor. 4.8.10 Cor. 4.8.8 Cor. 5.5.4

No k Parameter coNP-Complete coNP-Complete coNP-Complete P-Complete
[Coo71] [Coo71] [Coo71] Cor. 5.3.4

Chapter 4

The PSPACE-Completeness of Tree
Resolution Clause Space

4.1 Introduction & Motivation

The Tree Resolution (T-RES) proof system has been studied extensively, and is understood quite well. Its
algorithmic incarnation, DPLL, forms the basis of many SAT-solvers including clause learning algorithms.
Any lower bounds proved for T-RES immediately imply lower bounds for real-world DPLL algorithms. How-
ever, compared with Resolution proof size, the amount of space needed to compute a proof has not been
studied nearly as well.

From a practical point of view, DPLL and clause learning algorithms have been very successful at solving
SAT and SAT-related problems. The main limiting factor on these algorithms is space, namely the size
of the cache used for memoization. This has inspired much research into methods for pruning space in a
Resolution search. Thus there are both practical and theoretical motivations for understanding Resolution
space as a resource.

In this chapter we prove that the problems of calculating T-RES clause space requirements and calculating
the number of points that can be scored in the Prover/Delayer game are both PSPACE-complete. This
unfortunately implies that computing the T-RES clause space requirements for a formula is at least as hard
as actually refuting it, and shows that it is therefore probably not feasible for researchers working with DPLL-
based SAT-solvers to predict a formula’s memory requirements. In addition, there are many formulas on
which these SAT-solvers fail because the smallest refutation size is exponential. It would be very useful to be
able to tell ahead of time if this will be the case. From Corollary 3.3.10, we know that for any CNF formula,
the size of its minimum T-RES refutation is exponential in its minimum T-RES clause space, and in fact we
understand this relationship exactly rather than just asymptotically. In other words, if we had a practical
algorithm for calculating T-RES clause space, then we would have a way to predict size (and therefore running
time) lower bounds for DPLL algorithms. If this number is too big, then we would know ahead of time that
there is no sense in even trying to run a SAT-solving algorithm on the input. Unfortunately, the present
result casts serious doubts on this approach. The possibility of approximation algorithms for T-RES clause
space still exists, but since size is exponential in clause space, anything but an algorithm which can calculate
the correct answer to within a small constant would not be very useful in practice.

In practice, researchers are more interested in clause learning space than T-RES space, but T-RES nev-
ertheless forms the underpinnings of the clause learning algorithm, and in fact we also show that predicting
clause learning clause space requirements is PSPACE-Complete, albeit for a definition of clause learning
clause space which is not very practical. We therefore view this work as a first step which future researchers
will hopefully build upon to better understand these important problems.

The key to this chapter’s main theorem is the intimate connection between Resolution space and games,
and we combine three previous results and ideas in order to prove both of our PSPACE-Completeness
results. The high-level idea behind this chapter is as follows: From Theorem 3.3.7 ([ET03]), Prover/Delayer

39

40 Chapter 4: The PSPACE-Completeness of Tree Resolution Clause Space

number is known to equal T-RES clause space, and from Theorem 3.3.14 ([Lin78]), pebbling Lingas circuits
is known to be PSPACE-Complete. But the former deals with formulas, and the latter uses circuits, so we
use pebbling contradiction formulas to bridge this gap. Specifically, we give tight bounds relating the black
pebbling number of any Lingas circuit C to the Prover/Delayer number of the formula Peb2(C), thereby
proving the PSPACE-Completeness of the Prover/Delayer game (which implies the PSPACE-Completeness
of T-RES clause space by the equivalence from Theorem 3.3.7).

This chapter is organized as follows: In Section 4.2 we define a set of binary DAGs called the ‘increasing
binary DAGs’ whose pebbling numbers can be computed in polynomial time. In Section 4.3 we follow up on
this result by giving a Prover strategy for these pebbling graphs. Specifically, we show that for any increasing
binary DAG G, when playing on the formula Peb2(G), the Prover has a strategy which limits the Delayer
to at most B-Peb(G) points.

Next, in Section 4.4 we define a set of monotone circuits called the ‘Lingas circuits’ for which determining
the pebbling number is PSPACE-Complete, and show that much like the increasing binary DAGs, for any
Lingas circuit C, when playing on the formula Peb2(C), the Prover has a strategy limiting the Delayer to at
most B-Peb(C) points. Section 4.5 contains a proof showing that for any monotone circuit C, the Delayer
has a strategy which is guaranteed to score at least B-Peb(C) points when playing on the formula Peb2(C).
We are forced to use the Peb2(C) rather than the Peb1(C) formulas because for any monotone circuit C,
CS(Peb1(C) `T-RES ∅) ≤ 2.

In Section 4.7 we use these results to prove our main results, namely the PSPACE-Completeness of the
T-RES clause space problem and Prover/Delayer game.

Next, in Section 4.8 we give PSPACE algorithms for several problems related to T-RES clause space,
including the RES clause space, T-RES total space, and T-RES size problems. In addition, we show that the
clause space problems for RT-RES and clause learning are both PSPACE-Complete.

Finally, in Section 4.9 we discuss some interesting open problems related to this research.

4.2 An Easy Case of the Pebbling Game

Although pebbling circuits is PSPACE-Complete in general (see Section 3.3.6), in this section we define
an interesting set of binary DAGs whose pebbling numbers can be computed in polynomial time. To this
end, we first need to define the concept of the pebbling number of an internal vertex in a graph.

Definition 4.2.1 (Pebbling Number of a Vertex). In a DAG, the pebbling number of a vertex x, denoted
B-Peb(x), is the pebbling number of the subgraph rooted at x, with x set to be the target node.

Given a binary DAG G, each node can be labelled with its black pebbling number according to the
definition above. Clearly, each source node has a pebbling number of 1. It is impossible for a vertex to
have a pebbling number which is greater than that of both of its predecessors by 2 or more, and it is also
impossible for the pebbling number of a vertex to be less than that of its predecessors.

Consider a vertex c with predecessors a and b where the pebbling number of a is less than or equal to
that of b. There are only three possibilities for their pebbling numbers:

1. If vertex a has a pebbling number of at most k - 1 and vertex b has pebbling number k, then vertex
c also has pebbling number k. To see this, simply pebble b with k pebbles, leave one pebble on b and
remove the rest (if any). Then pebble a with the remaining k - 1 pebbles. Since a has a pebbling
number strictly less than k, even when the extra pebble on b is taken into account, this cannot take
more than k pebbles. Finally, slide one of the pebbles from a or b up to c.

2. If vertices a and b both have pebbling number k, then it is possible for c to have a pebbling number of
k + 1.

3. If vertices a and b both have pebbling number k, then it is possible for c to also have pebbling number
k. (For example, see Figure 4.1 below.)

4.3 Prover Strategy for the GI DAGs 41

ba

c

Figure 4.1: An Example of a DAG in Which c and Both of its Predecessors Have the Same Pebbling Number

The three possibilities above give rise to an interesting class of binary DAGs called the ‘Increasing Binary
DAGs’. This set consists of all binary DAGs in which the pebbling number of each node is strictly greater
than that of at least one of its predecessors. The pyramid graphs from [CS76] shown in Figure 4.4 are good
examples of these graphs.

More formally, the increasing binary DAGs are defined as follows:

Definition 4.2.2 (Increasing Binary DAGs). GI = {(G, k) | G is a binary DAG with pebbling number
k such that there is no c ∈ V (G) with predecessors a and b with a, b, and c all having the same pebbling
number.}

Although in general the pebbling game on binary DAGs is PSPACE-Complete (see Theorem 3.3.15 above),
when we restrict ourselves to inputs from GI , the problem becomes much easier:

Lemma 4.2.3. Given an increasing binary DAG G, the problem of determining if G can be pebbled using
at most k pebbles (with sliding) is in P.

Proof: Start at the source nodes and set each of their pebbling numbers to 1. Then find a vertex c for
which the pebbling numbers of both predecessors a and b have been determined (since G is a DAG, such a
node always exists), and set c’s pebbling number to max(B-Peb(a), B-Peb(b))+1. Repeat until the pebbling
number of the target node has been determined. If it is at most k, then accept, and otherwise reject. The
correctness of this algorithm follows from the fact that the pebbling number of each vertex is uniquely
determined, and it has a running time of O(n2), where n is the number of nodes in G.

This lemma gives some insight into why the pebbling game is so difficult. A close inspection of the
constructions from both Theorem 3.3.14 ([Lin78]) and Theorem 3.3.15 ([GLT80]) shows that the circuits
resulting from the reductions contain a large number of vertices which have the same pebbling numbers as
both predecessors, so the pebbling number of each vertex is not uniquely determined by that of its children,
and the obvious algorithm above fails.

4.3 Prover Strategy for the GI DAGs

In this section we show that for any increasing binary DAG G, when playing the Prover/Delayer game
on Peb2(G), the Prover has a strategy limiting the Delayer to scoring at most k = B-Peb(G) points (with
sliding).

For the purposes of this proof, we will use the DAG G as a ‘scaffold’ to keep track of the Prover’s progress.
As such, we imagine G with the target node t at the top and the sources at the bottom. The Prover’s
strategy is to label each node in G with its pebbling number, and work down from the target towards the
sources. The Prover must only yield a point when moving to a child with a lower pebbling number, and will

42 Chapter 4: The PSPACE-Completeness of Tree Resolution Clause Space

therefore be able to limit the Delayer to at most B-Peb(G) points before Peb2(G) is falsified, since that is
the pebbling number of t.

A contradiction can be obtained (thereby ending the game) in one of four ways:

1. By falsifying a target clause; for target node t, either t0 is set to True or t1 is set to True.

2. By falsifying a propagation clause associated with an AND gate; for some AND node c with predecessors
a and b, both of c’s variables are set to False, and one of a’s variables as well as one of b’s variables is
set to True.

3. By falsifying a propagation clause associated with an OR gate; for some OR node c with predecessors
a and b, both of c’s variables are set to False, and one of a’s variables or one of b’s variables is set to
True.

4. By falsifying a source clause; for some source node s, both of s’s variables are set to False.

Lemma 4.3.1. For any increasing binary DAG G, when playing on the formula Peb2(G), the Prover has a
strategy limiting the Delayer to at most B-Peb(G) (with sliding) points.

Proof: After the nodes have been labelled with their pebbling numbers, the Prover’s strategy proceeds as
follows: Start at the target t and query t0. Since (¬t0) is an initial clause, the Delayer must reply ‘False’, or
else the game would immediately be over with at most one point scored. The Prover then queries t1, which
the Delayer must set to False for the same reason. Now the Prover tries to ‘move down’ the graph by having
both of the variables associated with one of the predecessors of t set to False. In general, suppose that we
are currently on node c which has pebbling number k and predecessors a and b, and both c0 and c1 have
been set to False. These nodes are shown below in Figure 4.2. There are three cases to consider:

1. a has pebbling number < k, and b has pebbling number k

2. a and b both have pebbling number k − 1

3. (Base Case) c has pebbling number 2 and both a and b have pebbling number 1

Although case 3 is just a special case of 2, it is the base case and therefore warrants some extra discussion
and should be considered separately.

In all cases, the Prover follows the same strategy, which is shown as a decision tree below in Figure 4.2.
Nodes in the decision tree represent the variables queried by the Prover, and edges are labelled with the
Delayer’s possible responses. Whenever the Delayer says ‘You Choose’, the Prover always responds ‘True’.
This possibility is represented by the label ‘YC, T’. Similarly, edges labelled ‘F’ correspond with the Delayer’s
responding, ‘False’. Note that there is no need to explore the third option where the Delayer says ‘True’,
because it could only be worse for the Delayer. Please also note that duplicate subtrees are shown by having
two parents.

In all cases where the game terminates, the Delayer wins at most two points, which means that even
if our game is currently rooted in the base case, the Delayer has not scored more than B-Peb(c) points.
Furthermore, whenever the game moves into the subgraph rooted at a by setting both a0 and a1 to false,
the pebbling number has decreased, but the Prover has given up only one point. Similarly, whenever the
game moves into the subgraph rooted at b by setting both b0 and b1 to false, the pebbling number may or
may not have decreased, but no points have been scored.

It is therefore possible to take any increasing binary DAG G, and combine multiple copies of the Prover’s
local strategy for each node from Figure 4.2 in order to give an overall Prover strategy for G which gives
up at most one point whenever the game moves into a subgraph with a lower pebbling number. Since the
Delayer can also only score at most two points in the base case, the Prover can limit the total number of
points scored to B-Peb(G), as required.

4.4 Prover Strategy for the Lingas Circuits 43

Game Over For Pebbling Number Decrease
Cases 1 & 2: Traded 1 Point2 Points

c0 = F
c1 = Fc

ba
Base Case: No Points, Game Over
Case 2: No Points, But Pebbling Number Decreased
Case 1: No Points or Pebbling Number Decrease2 Points

YC, T

F

F

YC, T

YC, T

F

FYC, T

a0?

b0?

b1?

a1?

Game Over

Base Case: 1 Point, Game Over

Figure 4.2: A Decision Tree Showing the Prover’s Strategy for Traversing the Nodes of an Increasing Binary
DAG

4.4 Prover Strategy for the Lingas Circuits

In his 1978 paper [Lin78], Lingas shows that the black pebbling game on monotone circuits is PSPACE-
Complete by reducing from the 3-QBF problem with alternating quantifiers. He does this by providing a
reduction which takes as input a 3-QBF formula F with alternating quantifiers and outputs a binary circuit
C and integer k such that F is True if and only if C has a pebbling number of at most k.

The reduction proceeds by taking F and building a number of ‘widgets’. The example from [Lin78] can
be seen below in Figure 4.3. The construction includes one widget for each quantifier, one for each literal,
one for each clause, and one pyramid graph which acts as a conjunction between the clauses. Each clause
widget is incident on the widgets corresponding to the literals contained in the clause. The literal widgets
are shown using shorthand notation; they are the pyramid graphs from [CS76], and a more detailed example
can be found below in Figure 4.4. The numbers on each shorthand version indicates the pebbling number
of the apex of the pyramid.

The pebbling number output by the reduction is k = 2U + E + M , where U is the number of universal
quantifiers, E is the number of existential quantifiers, and M is the number of clauses in F . In the case of
our example, k = 2× 2 + 3 + 4 = 11.

Intuitively, the reduction works by forcing the pebbling to go through each truth assignment which sets
F to True. Specifically, for each of the universal quantifiers, the pebbling must travel up both of its sides,
requiring that the entire circuit below that point be re-pebbled, thereby ensuring that F is True. If F is
false, then the circuit requires k + 1 pebbles and cannot be pebbled using only k.

We shall refer to the circuits corresponding to true QBF formulas as the ‘Lingas circuits’. Although the
main result in [Lin78] is that pebbling monotone circuits in general is PSPACE-Complete, the reduction
specifically shows that the problem of pebbling the Lingas circuits is PSPACE-Complete. Formally, we
define the Lingas circuits as follows:

Definition 4.4.1 (Lingas Circuits). CL = {(C, k) | ∃ a true 3-QBF formula F with alternating quantifiers
such that applying Lingas’s reduction to F yields (C, k).}

We shall make use of the PSPACE-Completeness of the Lingas circuits to prove the PSPACE-Completeness
of both the Prover/Delayer game as well as the T-RES clause space problem. To this end we must first prove
that when playing on the Peb2(C) formula of any Lingas circuit C, the Prover has a strategy limiting the
Delayer to at most B-Peb(C) points (for more details on the Peb2 formulas, please refer to Definition 3.2.14).
The strategy is quite simple: The Prover starts at the target node, and forces the Delayer to admit that
both variables associated with it must be False. The Prover then proceeds to propagate this ‘Double False’
setting downwards. We shall show that it is possible to traverse each existential widget while only giving
up at most one point, and that it is possible to traverse each universal widget while only giving up at most

44 Chapter 4: The PSPACE-Completeness of Tree Resolution Clause Space

10

c1

q′3

Literal Widgets Clause Widgets

t

Target Node

Conjunctive Pyramid Graph

11

¬b0

b0

¬b1

b1

11

9

9

¬b2

b2

¬b3

b3

8

8

6

6

¬b4

b4

5

5

c′4

c4

c′3

c3

c′2

c2

q′1

q′0

∃ Widget

∀ Widget

q0

q1

q′2

∃ Widget

∀ Widget

q2

q3

q′4

∃ Widget
q4

d0 d′0

d1 d′1

d2 d′2

d3 d′3

d4

Quantifier Widgets

w3

o3

7

o1

w1

c′1

Figure 4.3: The Monotone Circuit Resulting from Applying Lingas’s Reduction to the True 3-QBF Formula
F = ∃x0∀x1∃x2∀x3∃x4 (x0 ∨ x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x0 ∨ ¬x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ x4). In This
Example k = 2U + E + M = 2× 2 + 3 + 4 = 11.

two points. Finally, we shall show that it is possible to traverse the conjunctive pyramid to derive the final
contradictions while giving up at most M points, where M is the number of clauses in the formula underlying
the circuit. This amounts to a total of 2U + E + M points, which is exactly the pebbling number of the

4.4 Prover Strategy for the Lingas Circuits 45

bi

4

bi

Shorthand FormLiteral Widget

Figure 4.4: An Example of a Literal Widget from Lingas’s Construction

Lingas circuits.
Each of these steps shall be proven by giving a decision tree showing the order in which the Prover queries

variables. Each branch in this tree shall terminate with the Delayer scoring no more than B-Peb(C) points.
As in Section 4.3, whenever the Delayer responds ‘You Choose’ to a query, the Prover shall always

respond with ‘True’, and never with ‘False’. Once again, although the Delayer has the choice of three
different responses after each variable is queried, our decision tree only needs to be binary. This is because
if the Prover is willing to give the Delayer one point by responding to the Delayer’s ‘You Choose’ answer,
then there is no sense in exploring the path in which the Delayer gives the same answer without winning a
point, since that path can only be better for the Prover.

Theorem 4.4.2. For any binary circuit and integer pair (C, k) ∈ CL, when playing on the formula Peb2(C),
the Prover has a strategy limiting the Delayer to at most k = B-Peb(C) (with sliding) points.

Proof: The Prover’s strategy proceeds as follows: The first query is on t0, one of the variables associated
with the target node t. If the Delayer says ‘You Choose’, then the Prover sets it to True, and the game is
over with just one point scored. If the Delayer says ‘True’, then the game is over with no points scored, so
the Delayer must set it to False. Next the Prover queries t1, which is set to False for the same reasons. The
Delayer has therefore scored no points, so we enter the first quantifier widget with k points remaining.

Now the Prover inductively traverses the quantifier widgets in order, propagating the ‘Double False’
setting downwards towards the conjunctive pyramid. We will show that the Prover has a strategy which
gives up at most one point while traversing an existential widget, and at most two points when traversing a
universal widget.

We shall first give the Prover’s strategy for traversing the existential widget, shown below in Figure 4.5.
We assume that we have j points remaining before the Delayer reaches k points, and that both variables
associated with the node di−1 have been set to False or that both variables associated with the node d′i−1

have been set to False. The decision tree showing the Prover’s strategy is shown below, beside the widget.
Note that edges are labelled with the different possibilities at each step during the Prover/Delayer game;

‘YC, T’ represents the case when the Delayer says ‘You Choose’, followed by the Prover setting the variable
to True, and ‘F’ represents the case when the Delayer sets the variable to False. Duplicate subtrees are
indicated by having multiple parents. In addition, leaves are labelled in the Prover/Delayer game outcomes
which they lead to. Leaves labelled with numbers represent situations in which the game is over since an
initial clause has been falsified, and the number indicates how many points were scored. Although we said
that the Prover may give up at most 1 point while traversing this widget, some leaves end with the Delayer
scoring 2 points. This is not a problem because even if this is the final quantifier widget, the formula has at
least one clause, so we have at least one extra point’s leeway.

46 Chapter 4: The PSPACE-Completeness of Tree Resolution Clause Space

bi,1?

1 Point, bi set to T

From Pyramid

YC, T F

F

YC, T

YC, T

F

F

F

F

YC, T

YC, T

YC, T

Widget Traversed

2 Points j Points

2 Points

2 Points

2 Points

bi

Next Widget

d′i+1di+1

qi

¬bi
∃ Widget

d′idi

Previous Widget

q′i

Literal Widgets

j

j

bi,0?

qi,0?

qi,1?

di+1,0?

di+1,1?

Figure 4.5: The Existential Widget From Lingas’s Construction Together with the Decision Tree Showing
the Prover’s Strategy for Traversing it

The leaf corresponding to both of bi’s variables being set to False corresponds to the game entering the
pyramid graph associated with variable bi which has pebbling number j. Since pyramid graphs belong to
the GI family, by Lemma 4.3.1 the Delayer can score at most j points on them.

The remaining leaf is the one in which the widget has been traversed with only 1 point scored. Note that
this decision tree corresponds to the strategy in which the Prover traversed the widget while setting one
of the variables associated with bi to True and both of the variables associated with di+1 to False, thereby
leading to the next widget. The case in which the Prover traverses the widget while setting one of the
variables associated with ¬bi to True and both of the variables associated with d′i+1 to False is completely
symmetrical. In other words, the Prover has complete control over which of the literal widgets is set to True
during the traversal. This will be important because it allows the Prover to set the literal widgets in such a
way so as to make the formula underlying the circuit true.

We now give the Prover’s strategy for traversing the universal widget, shown below in Figure 4.6. We
assume that we have j points remaining before the Delayer reaches k points, and that either both variables
associated with the node di have been set to False or that both variables associated with the node d′i have
been set to False. The decision tree showing the Prover’s strategy for the universal widget is shown below
in Figure 4.7.

Just as with the existential widget, leaves in the decision tree are labelled with the number of points
scored in falsifying an initial clause corresponding to that path. Once again, some paths lead to the Delayer
scoring 3 points, but this is not a problem even if this is the final quantifier widget, since the formula
underlying this circuit has at least one clause, thereby giving us leeway of at least one point. Also as before,
the pyramid graphs corresponding to the literal widgets as well as the oi widget belong to the GI family, so
by Lemma 4.3.1, the Delayer can score at most j − 1, j − 1, and j points on them, respectively.

The remaining two leaves are ones in which the widget has been traversed with only 2 points scored. In
one case, one of the variables associated with bi is set to True and both variables associated with di+1 are
set to False, and in the other case one of the variables associated with ¬bi is set to True, and both of the
variables associated with d′i+1 are set to False, thereby leading to the next widget.

4.4 Prover Strategy for the Lingas Circuits 47

di+1

Literal Widgets

j-1

j-1

biqi

¬bi

di d′i

Previous Widget

q′i

j

∀ Widget

oi

wi

d′i+1

Next Widget

Figure 4.6: The Universal Widget From Lingas’s Construction

bi,1?

From Pyramid

1 Point

Widget Traversed
2 Points, ¬bi set to T

From Pyramid
j Points

+ j - 1 Points
From Pyramid

1 Point
¬bi,1?

di+1,
′
1?

di+1,
′
0?

¬bi,0?

qi,
′
1?

qi,
′
0?

qi,0?

3 Points

3 Points
YC, T

YC, T

F

F

2 Points

2 Points

YC, T

YC, T

F

F

FYC, T

YC, T

F

YC, T
F

YC, T

di+1,1?

di+1,0?

wi,1?

wi,0?

bi,0?

oi,0?

qi,1?

F

YC, T

F

FYC, T

YC, T

F

F

3 Points

3 Points

3 Points

3 Points

YC, T

F

F

YC, T

YC, T

Widget Traversed
2 Points, bi set to T

F

YC, T

FYC, T
oi,1?

+ j - 1 Points

Figure 4.7: The Decision Tree Showing the Prover’s Strategy for Traversing the Universal Widget

We now give the Prover’s strategy for traversing the conjunctive pyramid graph. The apex of the con-
junctive pyramid is part of the final quantifier widget, so both of its variables have been set to False. Since
the formula underlying the Lingas circuit has M clauses and we have successfully traversed all of the clause
widgets while giving up only the minimum number of points, we still have M points remaining. The con-
junctive pyramid required to join M clauses has M − 1 AND gates on its base, and therefore has pebbling
number M − 1.

Let us assume for a moment that the leaves of the conjunctive pyramid have no children. Since the
pyramid belongs to the GI family, by Lemma 4.3.1 the Prover has a strategy limiting the Delayer to at most
M − 1 points. However, since each of the conjunctive pyramid’s leaves does have two children, we must

48 Chapter 4: The PSPACE-Completeness of Tree Resolution Clause Space

explore the decision tree rooted at the possibility that the two variables associated with a leaf l are both set
to False. Since the Delayer did not say ‘You Choose’ on either of l’s variables, the number of points scored in
setting them both to False is at most M −2. This is the worst-case scenario branching down the conjunctive
pyramid, so the number of points scored on all other paths to leaves is strictly less than M − 2.

We therefore have at least 2 points left with which to derive a contradiction within the clause widgets,
and shall show how to force a contradiction when given a conjunction pyramid leaf l which has had both of
its associated variables set to False. The Prover’s strategy for doing this is shown below in Figure 4.8.

YC, T

2 Points

ci

c′i

6

54

3

21

l

ci+1

c′i+1 ∗

∗
ci,1?

ci,0?

ci,
′
1?

ci+1,1?

ci+1,0?

ci+1,
′
1?

ci+1,
′
0?

ci,
′
0?

0 Points1 Point

1 Point
YC, T

YC, T

F

F

F

YC, T F

1 Point

2 Points

2 Points

2 Points
YC, T F

F

F

YC, T

YC, T

FYC, T

Figure 4.8: Two Clause Widgets Attached to a Leaf from the Conjunctive Pyramid in Lingas’s Construction,
Together with the Decision Tree Showing the Prover’s Strategy for Finishing the Game

A key observation to make is that it is possible for the Prover to traverse the quantifier widgets such that
the literal widgets attached to the existential widgets are set to True in any arbitrary way. Since the formula
on which the overall circuit is based is a true QBF formula F , it is therefore possible to set them so that
each clause widget is incident on at least one literal widget which has been set to True. This ensures that
the Prover’s strategy given by the decision tree in Figure 4.8 will always work. For example, it is possible for
the Prover to traverse the existential widgets and set the truth values on the literal widgets in such a way
that at least one of the variables associated with the literal widgets labelled 1, 2, and 3 is True, and at least
one of the variables associated with the literal widgets labelled 4, 5, and 6 is True, thereby guaranteeing that
the final contradictions needed can be obtained without exceeding 2 points. Note that the subtrees in the
Prover’s strategy labelled with ∗ may or may not be necessary, depending on which literal widgets were set
to True.

Since each existential widget can be traversed while only giving up 1 point, each universal widget can
be traversed while only giving up 2 points, the conjunctive pyramid can be traversed while only giving up
M − 2 points, and then a final contradiction can always be derived within the clause widgets while giving
up at most 2 points, it follows that all of the above decision trees can be combined to show that the Prover
has a strategy limiting the Delayer to at most B-Peb(C) points (defined with sliding), as required.

The Prover/Delayer tree constructed above encodes a brute-force proof that F is a true QBF formula.
This is particularly apparent when looking at the decision tree associated with the universal widget; it has
two leaves at which we attach the decision tree associated with the next (existential) widget. In other words,
the trivial decision tree proof system for the Prover/Delayer game which we have been using simulates a

4.5 Delayer Strategy for All Monotone Circuits 49

trivial brute force QBF proof system. This can be contrasted to the other brute force QBF proof system
described in Section 12.3.3.

4.5 Delayer Strategy for All Monotone Circuits

We now show that for any monotone circuit C, when playing the Prover/Delayer game on Peb2(C),
the Delayer has a strategy which will always win at least B-Peb(C) points. In [BSIW04], Ben-Sasson,
Impagliazzo, and Wigderson give a Delayer strategy which wins at least B-Peb(G) − 3 points, where B-
Peb(G) is defined without sliding. We improve this argument to show that the Delayer has a strategy which
is guaranteed to win at least B-Peb(G) points, defined with sliding.

In the Delayer’s strategy in [BSIW04], the Delayer maintains a DAG G, with certain nodes marked as
source nodes, and other nodes marked as target nodes. In the improved strategy, which applies to the
more general case of monotone circuits, the Delayer also maintains such a monotone circuit C marked with
source and target nodes, but in addition, certain source nodes have pebbles on them. Thus at each stage
of the game, the Delayer maintains a structure of the form 〈C,S, T, P 〉, where C is a monotone circuit, S
and T are disjoint subsets of C, and P ⊆ S. By B-Peb(C,S, T, P), we mean the pebbling number of the
marked, pebbled circuit 〈C,S, T, P 〉, where the pebbles on the nodes in P can be used as ‘free pebbles’, and
in addition we allow sliding, which seems to simplify the proof.

The Delayer’s strategy proceeds as follows: Initially, at the start of the game, P is empty (there are no
free pebbles on the circuit), S is the set of source nodes of the circuit C, and T contains the unique target
node of C. At the start of each round in the game, the Prover queries a variable vi, associated with a vertex
v in the circuit C. The Delayer’s strategy consists of two stages. In the first stage, the Delayer updates the
sets S and T ; in the second stage, the Delayer answers the Prover’s query and updates P .

For the first stage, assume that the marked, pebbled circuit at the start of the round is 〈C,S, T, P 〉; in
the first stage, the Delayer updates S and T to S′ and T ′ as follows:

Case 1a: If v ∈ S ∪ T , then set S′ := S, and T ′ := T .

Case 1b: If v 6∈ S∪T , and B-Peb(C,S, T, P) = B-Peb(C,S, T ∪{v}, P), then set S′ := S and T ′ := T ∪{v}.

Case 1c: If v 6∈ S∪T , and B-Peb(C,S, T, P) > B-Peb(C,S, T ∪{v}, P), then set S′ := S∪{v} and T ′ := T .

The second stage of the Delayer’s strategy proceeds by updating P to P ′, and responding to the Prover’s
query as follows:

Case 2a: If v ∈ S′, and v has no pebble on it, then respond ‘You Choose’, and place a pebble on v (that is
to say, P ′ := P∪{v}). If v ∈ S′ and v already has a pebble on it, then set the queried variable the value True.

Case 2b: If v ∈ T ′, then set the queried variable the value False, and set P ′ := P .

Lemma 4.5.1. When the game terminates, B-Peb(C,S, T, P) = 0.

Proof: When the game terminates, an initial clause is falsified. Because of the strategy followed by the
Delayer in the second stage of each round, this clause cannot be a clause associated with one of the initial
source nodes of C, nor can it be the clause associated with the target node of C. Consequently, it must be a
pebbling propagation axiom associated with a vertex v and its immediate predecessors u1, . . . , uk if v is an
∧ gate, or just one of its immediate predecessors if v is an ∨ gate.

Let us assume that v is an ∧ gate. Since the clause containing v was falsified, both variables associated
with v must have been set to False, and for each ui, at least one of its two associated variables must have

50 Chapter 4: The PSPACE-Completeness of Tree Resolution Clause Space

been set to True. By Case 2a of the Delayer’s strategy, it is impossible for v to be in S and have both of its
variables set to False, so v must be in T . However, each ui had at least one of its associated variables set to
True. Therefore by Case 2b of the Delayer’s strategy, ui cannot be in T , so ui ∈ S and has a pebble on it.

Therefore we can pebble 〈C,S, T, P 〉 by sliding the pebble on ui to v, showing that B-Peb(C,S, T, P) = 0.
The second case, where v is an ∨ gate, proceeds by essentially the same argument.

Lemma 4.5.2. If 〈C,S, T, P 〉 is a marked, pebbled circuit, and v a vertex in C, then

B-Peb(C,S, T, P) ≤ max{B-Peb(C,S, T ∪ {v}, P),B-Peb(C,S ∪ {v}, T, P ∪ {v}) + 1}.

Proof: We employ the following strategy to pebble T from S, using only the free pebbles in P . First, pebble
T ∪ {v} from S, using B-Peb(G, S, T ∪ {v}, P) pebbles. If the result has a pebble on a node in T , then we
are finished, and otherwise the result has a pebble on v. Keeping this pebble on v, remove the other pebbles,
and then pebble T from S ∪{v}; this final step uses a total of B-Peb(C,S ∪{v}, T, P ∪{v})+1 pebbles.

Lemma 4.5.3. If at the beginning of a round in the game, the marked, pebbled circuit is 〈C,S, T, P 〉, then
the Delayer has a strategy which is guaranteed to score B-Peb(C,S, T, P) more points in the game.

Proof: We argue by induction on the depth of the game tree. Lemma 4.5.1 settles the base case. Assume
that our statement holds for a subtree in which the marked, pebbled circuit is 〈C,S′, T ′, P ′〉; we wish to
show that it also holds for its immediate supertree, associated with the marked, pebbled circuit 〈C,S, T, P 〉.
If B-Peb(C,S, T, P) = B-Peb(C,S′, T ′, P ′), then there is nothing to prove, so we can assume that B-
Peb(C,S, T, P) > B-Peb(C,S′, T ′, P ′). By Lemma 4.5.2, B-Peb(C,S, T, P) = B-Peb(C,S′, T ′, P ′) + 1.

Now consider the round of the game in which the Delayer’s initial circuit is 〈C,S, T, P 〉, and the final
circuit is 〈C,S′, T ′, P ′〉, and the variable queried was vi. If v were in T ′, or if v had a pebble on it at the
start of the round, then B-Peb(C,S, T, P) = B-Peb(C,S′, T ′, P ′). It follows from this that v is in S′, but
does not have a pebble on it at the start of the round, so the Delayer scores a point during this round. This
proves that the condition of the Theorem holds for the supertree as well.

Theorem 4.5.4. For any binary monotone circuit C, when playing on the formula Peb2(C), the Delayer
has a strategy which wins at least B-Peb(C) points (with sliding).

Proof: By Lemma 4.5.3, at the beginning of the first round of the game the Delayer can win B-Peb(C,S, T, P)
points, but P = ∅, so this is exactly B-Peb(C) points.

4.6 Black Pebbling, Prover/Delayer Game, & Tree Clause Space
Equivalence

Since Theorem 4.5.4 applies to all binary monotone circuits, we can combine it with the upper bound on
points from Lemma 4.3.1 to get an exact equivalence between black pebbling number and Prover/Delayer
number for the GI DAGs. However, when we further include the equivalence between CS(F `T-RES ∅)−1 and
PD(F) from Theorem 3.3.7, we get the following three-way equivalence for the polytime solvable pebbling
graphs:

Corollary 4.6.1. For any increasing binary DAG G, if the pebbling game is defined using sliding, then
PD(Peb2(G)) = B-Peb(G) = CS(Peb2(G) `T-RES ∅)− 1.

More importantly, the Delayer’s lower bound on points for binary monotone circuits also includes the
Lingas circuits, for which we already know that the Prover can limit the Delayer to at most B-Peb(C) points
because of the result in Theorem 4.4.2, thereby showing that for these circuits, black pebbling number
and Prover/Delayer number are equivalent. When we further combine this with Theorem 3.3.7, we get the
following three-way equivalence:

Corollary 4.6.2. For any binary circuit C ∈ CL, if the pebbling game is defined using sliding, then
PD(Peb2(C)) = B-Peb(C) = CS(Peb2(C) `T-RES ∅)− 1.

4.7 The PSPACE-Completeness of The Prover/Delayer Game & Tree Clause Space 51

4.7 The PSPACE-Completeness of The Prover/Delayer Game &
Tree Clause Space

This section contains an immediate corollary to the results in the previous sections, namely the PSPACE-
Completeness of both the T-RES clause space problem as well as the Prover/Delayer game. The T-RES
clause space problem (TCSP) is defined as follows: Given a formula F and integer k, does F have a T-RES
refutation with clause space at most k? The Prover/Delayer game problem (PDGAME) is defined as
follows: Given a formula F and integer k, is the Prover/Delayer number of F at most k?

More formally, the languages associated with these problems are defined as follows:

Definition 4.7.1 (TCSP). TCSP = {(F, k) | F is a formula for which there exists a T-RES refutation
with clause space at most k.}

Definition 4.7.2 (PDGAME). PDGAME = {(F, k) | F is a formula for which the Prover/Delayer
number is at most k.}

Given Theorem 4.4.2 and Theorem 4.5.4 from the previous sections, proving the PSPACE-Completeness
of TCSP and PDGAME follows via a fairly straightforward reduction from the PSPACE-Complete black
pebbling problem of Lingas circuits with sliding. However, before proving this result we must first give
PSPACE algorithms for TCSP and PDGAME.

4.7.1 PSPACE Algorithms for TCSP and PDGAME

We first show that TCSP ∈ PSPACE , which is not immediately obvious. In order to do this, we shall
make use of the following Lemma:

Lemma 4.7.3. Every unsatisfiable CNF formula F has an RT-RES (and therefore T-RES and also RES)
refutation with clause space at most n + 1, where n is the number of distinct variables in F .

Proof: Choose some ordering for the variables in F . Build a complete DPLL tree for F , branching on this
ordering. This tree can be viewed as a T-RES proof which can be pebbled with at most n + 1 pebbles,
since any binary tree can be pebbled with h + 1 pebbles, where h is the height of the tree. These pebbles
correspond to which clauses need to be kept in memory in order to verify the proof, showing that for any
unsatisfiable F , CS(F `T-RES ∅) ≤ n + 1, as required.

Lemma 4.7.4. TCSP ∈ PSPACE

Proof: Given an input (F, k) we first determine if F is satisfiable. Since SAT ∈ NP and NP ⊆ PSPACE ,
this is not a problem. If F is satisfiable, then we reject. If it is unsatisfiable, then we look at k. If k ≥ n+1,
where n is the number of distinct variables in F , then by Lemma 4.7.3 we simply accept.

Otherwise F is unsatisfiable and k ≤ n, so if F has a (configuration style) T-RES refutation π with
CS(F `T-RES ∅) ≤ k, then each configuration contains at most k clauses. Since k ≤ n and since each
clause contains at most n variables, each configuration in π only requires space which is polynomial in n.
We nondeterministically guess π as follows: Start with a configuration C0 = {}. Guess configuration C1,
check to ensure that it follows from C0 by a legal T-RES step, and erase configuration C0. Next, guess
configuration C2, check to make sure that it follows from C1, and erase configuration C1. Continue this
way until a configuration containing the empty clause has been derived. Note that at any time, there are
only two configurations in memory, but since each configuration takes only a polynomial amount of space
by Lemma 4.7.3, our computation is in NPSPACE . Finally, we appeal to Savitch’s Theorem [Sav70] to
show that determining whether or not F has T-RES refutation π with CS(F `T-RES ∅) ≤ k is in PSPACE ,
thereby completing our PSPACE algorithm for TCS.

52 Chapter 4: The PSPACE-Completeness of Tree Resolution Clause Space

Since TCSP ∈ PSPACE and it is virtually identical to PDGAME, it is trivial to design a PSPACE
algorithm for PDGAME:

Lemma 4.7.5. PDGAME ∈ PSPACE

Proof: To show that PDGAME ∈ PSPACE , we take the input (F, k) and check if CS(F `T-RES ∅)−1 ≤ k
using the PSPACE TCSP algorithm from Lemma 4.7.4 as a subroutine and give the same answer. By
Theorem 3.3.7, CS(F `T-RES ∅) = PD(F) + 1 for any formula F , which immediately proves the correctness
of this algorithm.

4.7.2 The PSPACE-Completeness of TCSP and PDGAME

We are now ready to prove this section’s main result:

Theorem 4.7.6. PDGAME is PSPACE-Complete under logspace reducibility.

Proof: By Lemma 4.7.5, we know that PDGAME ∈ PSPACE . Next we show that PDGAME is PSPACE-
Hard by reducing from the PSPACE-Complete problem of black pebbling Lingas circuits CL. Our proof
proceeds by taking the input (C, k), and outputting (Peb2(C), k). Clearly this is a logspace reduction, and
it is easy to see that it is correct by showing that (C, k) ∈ CL if and only if (Peb2(C), k) ∈ PDGAME: If
(C, k) ∈ CL, then B-Peb(C) ≤ k, so by Theorem 4.4.2, PD(Peb2(C)) ≤ k, and (Peb2(C), k) ∈ PDGAME.
On the other hand, if (C, k) /∈ CL, then B-Peb(C) > k, so by Theorem 4.5.4, PD(Peb2(C)) > k, and
(Peb2(C), k) /∈ PDGAME.

Therefore PDGAME is PSPACE-Complete.

Since by Theorem 3.3.7 we know that for any formula F , PD(F) = CS(F `T-RES ∅) − 1, the PSPACE-
Completeness of PDGAME immediately yields the PSPACE-Completeness of TCSP as a corollary:

Corollary 4.7.7 (Main Result). TCSP is PSPACE-Complete under logspace reducibility.

Proof: The proof is very similar to Theorem 4.7.6. By Lemma 4.7.4, we know that TCSP ∈ PSPACE .
To show that TCSP is PSPACE-Hard we reduce from PDGAME: Given an input (F, k) for PDGAME,
output (F, k + 1). Clearly this is a logspace reduction, and its correctness is immediate from Theorem
3.3.7.

4.8 Related Complexity Results

In this section we discuss a number of corollaries to the T-RES clause space results in the previous section,
which is worthwhile, since T-RES is such an important proof system in practice, giving a strong motivation
for better understanding as many of its aspects as possible. We shall begin by proving that RES Clause
Space, T-RES Total space, and T-RES size all have PSPACE algorithms, and then prove that the clause
space problem for Regular Tree Resolution (RT-RES) and the form of Resolution corresponding to clause
learning (CL-RES) are both PSPACE-Complete.

4.8.1 The Complexities of Resolution Clause Space & Tree Total Space

Although we are unable to prove completeness results, it is easy to see that the RES clause space problem
(CSP), T-RES total space problem (TTSP), and RT-RES total space problem (RTTSP) are all coNP-Hard,
which gives at least some kind of lower bound, and they are both in PSPACE , giving an upper bound. These
languages are formally defined as follows:

Definition 4.8.1 (CSP). CSP = {(F, k) | F is a formula for which there exists a RES refutation with
clause space at most k.}

Definition 4.8.2 (TTSP). TTSP = {(F, k) | F is a formula for which there exists a T-RES refutation
with total space at most k.}

4.8 Related Complexity Results 53

Definition 4.8.3 (RTTSP). RTTSP = {(F, k) | F is a formula for which there exists a RT-RES refutation
with total space at most k.}

Although a gap still exists, we are able to prove simple hardness results and give upper bound algorithms
for these problems:

Corollary 4.8.4. CSP is coNP-Hard under logspace reducibility, but is also in PSPACE.

Proof: To show that CSP is coNP-Hard, we reduce from UNSAT . It is easy to see that there are 3n

possible clauses on n variables, so any a configuration can contain at most 3n distinct clauses. Given a
formula F , we therefore output (F, k = 3n), and F ∈ UNSAT if and only if (F, k) ∈ CSP .

Showing that CSP ∈ PSPACE is also very easy: Since RES subsumes T-RES in the sense that every
T-RES proof is a RES proof, the PSPACE TCSP algorithm from Section 4.7.1 immediately implies a
PSPACE algorithm for CSP . This is because any formula which is refutable within TCS = k is also
refutable within CS ≤ k, so by Lemma 4.7.3 we can repeat the proof of Lemma 4.7.4 for CS rather than
TCS.

Corollary 4.8.5. TTSP is coNP-Hard under logspace reducibility, but is also in PSPACE.

Proof: The coNP-Hardness of TTSP is very similar to that of CSP in Corollary 4.8.4 above. Once again,
we reduce from UNSAT . We saw that there are 3n different clauses on n variables, but each clause contains
at most n literals, so any unsatisfiable formula is refutable in total space at most n · 3n. For our reduction
we therefore take F and output (F, k = n · 3n), and it is easy to see that F ∈ UNSAT if and only if
(F, k) ∈ TTSP .

The proof that TTSP ∈ PSPACE is almost identical to Lemma 4.7.4. We first check to see if F is
satisfiable, and if so we reject. Otherwise F is unsatisfiable, so by Lemma 4.7.3, every unsatisfiable formula
has a T-RES refutation with clause space at most n + 1, and furthermore each clause can only contain
at most n variables. Therefore if k ≥ n2 + n, then we simply accept. Otherwise F is unsatisfiable, and
k < n2 + n, so we nondeterministically guess the configurations of π as in Lemma 4.7.4, keeping only two
configurations in memory at any time. Since k < n2 + n, each configuration requires only polynomial space,
giving us an NPSPACE algorithm for TTSP . Finally, we appeal to Savitch’s Theorem [Sav70] to show
that TTSP ∈ PSPACE .

An almost identical argument gives corresponding lower and upper bounds for RTTSP :

Corollary 4.8.6. RTTSP is coNP-Hard under logspace reducibility, but is also in PSPACE.

Proof: The reduction showing that RTTSP is coNP-Hard is the same as in Corollary 4.8.5, as is the
PSPACE algorithm, with one exception: Our nondeterministic algorithm for TTSP had no provision in it
for guaranteeing that the proof it found would be regular, and our nondeterministic algorithm for RTTSP
must include such a provision. Luckily, this is not difficult: The key observation to make is that in a tree-like
configuration-style proof, each clause in a configuration implicitly represents a node in the proof’s underlying
tree. We therefore augment each clause C in the configuration with a set S containing all of the variables
which were resolved in the entire subtree which was used to derive C. With each additional resolution step,
we simply take the union of these extra sets. This allows us to detect if a variable has been reintroduced
after being eliminated along any path. Since we keep only two configurations in memory at any time, this
requires at most n2 + n additional space, so our nondeterministic algorithm still only requires polynomial
space, and finally we appeal to Savitch’s Theorem as before to show that RTTSP ∈ PSPACE .

4.8.2 The Complexity of Tree Resolution Size

Another interesting corollary to the PSPACE-Completeness of T-RES clause space from Section 4.7 con-
cerns the size of T-RES proofs.

Given a formula F and integer k, a natural question to ask is whether F has a RT-RES refutation of size
at most k. We shall refer to this as the ‘RT-RES size problem’, and to its associated language as RTRSP ,
which is defined formally as follows:

54 Chapter 4: The PSPACE-Completeness of Tree Resolution Clause Space

Definition 4.8.7 (RTRSP). RTRSP = {(F, k) | F is a formula for which there exists a RT-RES refutation
with size at most k.}

Although we do not prove a completeness result for RTRSP , we make partial progress by showing that
RTRSP is in PSPACE using techniques very similar to those in Lemma 4.7.4.

Corollary 4.8.8. RTRSP is coNP-Hard under logspace reducibility, but is also in PSPACE.
Proof: To prove the coNP-Hardness of RTRSP , we once again reduce from UNSAT as in Corollary 4.8.4.
Since a RT-RES refutation π can be at most as large as the complete binary decision tree on n variables, π
can contain at most 2n+1 − 1 clauses. For our reduction we therefore take F and output (F, k = 2n+1 − 1),
and it is obvious that F ∈ UNSAT if and only if (F, k) ∈ RTRSP .

It is also easy to see that every RT-RES proof tree can be pebbled using at most n + 1 pebbles (with
sliding), where n is the height of π. This is because DPLL is equivalent to RT-RES and every DPLL tree is
a subtree of the complete binary tree of height n, which itself can be pebbled with at most n + 1 pebbles,
since we need to keep at most one pebble at each depth in the tree at any time during the pebbling.

This of course includes the smallest such tree π, making it easy to design an NPSPACE algorithm for
RTRSP : Given a formula F and integer k, first check to see if it is satisfiable, which is not a problem since
NP ⊆ PSPACE . If so, then reject, and if not, then nondeterministically guess configurations containing
clauses corresponding to the pebbling steps in the minimum pebbling of the smallest RT-RES proof tree π of
F , keeping at most two configurations in memory at any time, and all the while keeping track of s, the total
number of clauses in the refutation. Since the pebbling number of π is at most n+1, we need only ever keep
at most n+1 clauses in memory during the refutation of F , which requires only polynomial space, since each
clause can contain at most n variables. In addition, we must ensure that our nondeterministic algorithm
produces only regular proofs, which is accomplished by augmenting each clause C in each configuration with
a set containing all of the variables used in deriving C, as described in Corollary 4.8.6; these extra sets
require at most n2 + n additional space.

Once π is complete, compare s with k. If s ≤ k, then accept, and otherwise reject. We therefore have an
NPSPACE algorithm for RTRSP , which by Savitch’s Theorem [Sav70] gives us a PSPACE algorithm, as
required.

This in turn yields a PSPACE algorithm and coNP-Hardness result for the corresponding size problem
for T-RES without the regularity requirement. The language associated with the T-RES size problem is
formally defined as follows:

Definition 4.8.9 (TRSP). TRSP = {(F, k) | F is a formula for which there exists a T-RES refutation
with size at most k.}

Since T-RES refutations of minimal size are regular [Tse70, Urq95], TRSP = RTRSP , so Corollary 4.8.8
immediately shows that TRSP is coNP-Hard and in PSPACE as well:

Corollary 4.8.10. TRSP is coNP-Hard under logspace reducibility, but is also in PSPACE.

4.8.3 The PSPACE-Completeness of Regular Tree Resolution Clause Space

Yet another interesting corollary to the PSPACE-Completeness of TCSP from Corollary 4.7.7 is that the
corresponding problem for RT-RES is also PSPACE-Complete. Recall from Section 2.4.3 that RT-RES is
simply T-RES in which the underlying proof tree may not contain any irregularities, so a configuration-style
RT-RES proof is a configuration-style T-RES proof in which the underlying proof tree does not contain any
irregularities. Our notion of a configuration-style RT-RES proof is given in Definitions 3.2.3, and RT-RES
clause space is the same as in Definition 3.2.4, only applied to RT-RES.

The language associated with the RT-RES clause space problem (RTCSP) is formally defined as follows:

Definition 4.8.11 (RTCSP). RTCSP = {(F, k) | F is a formula for which there exists a RT-RES refutation
with clause space at most k.}

4.8 Related Complexity Results 55

In order to show that calculating RT-RES clause space is PSPACE-Complete, we will reduce from TCSP .
We shall make use of the following lemma:

Lemma 4.8.12. For any CNF formula F , CS(F `T-RES ∅) = CS(F `RT-RES ∅).

Proof: ⇒ To show that CS(F `RT-RES ∅) ≤ CS(F `T-RES ∅), we use the fact that any T-RES proof π
containing an irregularity can be pruned so as to remove the irregularity, producing a proof π′ which is no
larger than π [Tse70, Urq95]. Editing π in this way simplifies its underlying proof by removing nodes in its
underlying proof tree T to produce T ′. This means that B-Peb(T ′) ≤ B-Peb(T), since deleting nodes in a
pebbling graph removes constraints, which cannot possibly increase its depth or pebbling number. Therefore
T ′ can be pebbled using at most B-Peb(T) pebbles, showing that CS(F `RT-RES ∅) ≤ CS(F `T-RES ∅), as
required.

⇐ Showing that CS(F `T-RES ∅) ≤ CS(F `RT-RES ∅) is trivial, since any RT-RES refutation is a T-RES
refutation.

This lemma shows that the T-RES and RT-RES clause space problems are identical:

Corollary 4.8.13. TCSP = RTCSP

Combining this with Corollary 4.7.7, which showed that TCSP is PSPACE-Complete immediately implies
the PSPACE-Completeness of RTCSP as well:

Corollary 4.8.14. RTCSP is PSPACE-Complete under logspace reducibility.

4.8.4 The PSPACE-Completeness of Clause Learning Clause Space

An interesting corollary to the PSPACE-Completeness of the RT-RES clause space problem in the previous
section is that predicting the space requirements for clause learning algorithms is also PSPACE-Complete.
From a practical point of view, this is probably of more interest than the corresponding result for T-RES
or RT-RES, since the state of the art in automated theorem proving consists of clause learning rather than
strict DPLL algorithms.

In addition to being of practical interest, clause learning algorithms have also been studied from a
formal theoretical point of view. For example, in [BKS03] Beame, Kautz, and Sabharwal formally define
clause learning as a proof system (CL-RES), and compare it to RES. Defining CL-RES formally is somewhat
problematic because the literature contains so many different clause learning implementations, involving
dozens of different characteristics including learning heuristics, restarting conditions, branching orders, and
more. These different variations strongly effect proof size.

However, exploring clause learning space is a much simpler proposition, and it is easy to give a definition
of CL-RES from a space point of view which is robust enough to capture all reasonable variants of the proof
system; from the point of view of space, issues such as random restarts, which learning heuristics are being
used, how the cache is being updated, etc. are all irrelevant. Intuitively, CL-RES is just DPLL (or RT-RES)
with an extra cache in which clauses can be stored or ‘learned’ so that they need not be re-derived. Adding
an extra cache to the configuration-style RT-RES proof system therefore allows us to define a configuration-
style clause learning proof. As before, we first define the concept of a configuration-style clause learning
proof:

Definition 4.8.15 (Configuration-Style Clause Learning Proofs). A configuration C is a set of
clauses. Each step in a clause learning proof is a pair of configurations (Ca,Cb), where Ca is the set of
clauses in memory as in any T-RES proof, and Cb is the cache of learned clauses. If F is a formula (set
of clauses), then the sequence of configuration pairs π = (C0,a,C0,b), (C1,a,C1,b), ..., (Ck,a,Ck,b) is a CL-RES
proof of C from F if (C0,a = ∅, C0,b = ∅), C ∈ Ck,a, and for each i < k, (Ci+1,a,Ci+1,b) is obtained from
(Ci,a,Ci,b) by one of the following rules:

1. Adding one or more of the clauses of F (initial clauses) to Ci,a,

56 Chapter 4: The PSPACE-Completeness of Tree Resolution Clause Space

2. Deleting one or more of the clauses in Ci,a or Ci,b,

3. Adding any clause from Ci,a to Ci,b,

4. Adding any clause from Ci,b to Ci,a, or

5. Adding the resolvent of two clauses of Ci,a to Ci,a and deleting both parent clauses, provided that this
does not introduce an irregularity in the underlying proof tree.

Having established what configurations look like for CL-RES proofs, we can now define our notion of CL-RES
clause space, which is similar to our previous notion of clause space in Definition 3.2.4. This definition is
robust in the sense that it is compatible with any formalization of clause learning, including those in [BKS03],
and is also consistent with our intuitive notion that clause space is a measure of the amount of memory being
used during the execution of a clause learning algorithm.

Definition 4.8.16 (Clause Learning Clause Space). Let F be a set of clauses and π be a configuration-
style CL-RES proof of clause C from F . The CL-RES clause space of a configuration (Ca,Cb) in π, de-
noted CLCS(Ca,Cb), is |Ca| + |Cb|. The CL-RES clause space of π, denoted CLCS(π), is the maximum
CLCS(Ca,Cb) over all (Ca,Cb) ∈ π. Finally, the clause learning clause space of resolving C from F with a
cache of size c, denoted CLCS(F `CL-RES C, c), is the minimum CLCS(π) over all clause learning proofs π
of C from F such that for all configurations (Ca,Cb) in π, |Cb| ≤ c.

Apart from the extra cache, the important difference between CL-RES clause space and our previous
definition of clause space is the c parameter in CLCS(F `CL-RES C, c). We include this parameter in the
definition because it is important to be able to limit the size of the cache being used, as is the case in
real-world implementations of clause learning algorithms.

This brings us to the CL-RES clause space problem (CLCSP), which is given a triple (F, k, c), and asks
if there exists a CL-RES refutation of F with clause space bounded by k and cache size bounded by c. In
other words, it asks if CLCS(F `CL-RES C, c) ≤ k.

Definition 4.8.17 (CLCSP). CLCSP = {(F, k, c) | F is a formula for which there exists a CL-RES
refutation with clause space at most k and a cache size of at most c.}

We shall show that CLCSP is PSPACE-Complete by reducing from the corresponding RT-RES clause
space problem from Corollary 4.8.14:

Corollary 4.8.18. CLCSP is PSPACE-Complete under logspace reducibility.

Proof: We first show that CLCSP ∈ PSPACE by giving an algorithm which is almost identical to the TCS
algorithm from Lemma 4.7.4. Given an input (F, k, c) we first determine if F is satisfiable. Since SAT ∈ NP
and NP ⊆ PSPACE , this is not a problem. If F is satisfiable, then we reject. If it is unsatisfiable, then
we look at k. If k ≥ n + 1, where n is the number of distinct variables in F , then by Lemma 4.7.3 we
simply accept, since CL-RES contains RT-RES as a sub-proof system since we can simply refuse to use the
cache. Otherwise F is unsatisfiable and k ≤ n, so if F has a (configuration style) CL-RES refutation π with
CLCS(F `CL-RES ∅, c) ≤ k, then each configuration contains at most k clauses. Since k ≤ n and since each
clause contains at most n variables, each configuration in π requires only polynomial space. This allows us
to use the same NPSPACE algorithm from Lemma 4.7.4, and then simply appeal to Savitch’s Theorem
[Sav70] to show that CLCSP ∈ PSPACE .

To show PSPACE-Hardness, we give a trivial reduction from RTCSP : Given (F, k), we output (F, k, 0),
which hamstrings our CL-RES proof system by giving it a cache size of zero, effectively turning it into exactly
RT-RES. Since this is clearly a log space reduction and since it is obvious that (F, k) ∈ TCSP if and only if
(F, k, 0) ∈ CLCSP , our hardness result follows, showing that CLCSP is PSPACE-Complete.

4.9 Open Problems & Conjectures Related to Tree Resolution Clause Space 57

4.9 Open Problems & Conjectures Related to Tree Resolution
Clause Space

The research in this chapter has highlighted several interesting open problems:

4.9.1 The Complexity of Resolution Clause Space

Although proving the PSPACE-Completeness of T-RES clause space was an important step, determining
the complexity for the RES clause space problem remains an interesting open proof complexity resource
problem, and is one of the most important unsettled problems from the summary table from Section 3.4.
This problem was given formally by Definition 4.8.1.

One of the issues which makes this problem so difficult is that unlike T-RES clause space, which is known
to be equivalent to the Prover/Delayer game, nobody has yet been able to show that RES clause space has
a natural game characterization which could be used to help prove a PSPACE-Completeness result.

From Corollary 3.3.10 we saw that the minimum size of T-RES refutations is exponential in T-RES clause
space. However, since CS(F `RES C) ≤ CS(F `T-RES C) for all formulas, it follows that the minimum size
of T-RES refutations are exponential in RES clause space as well. This means that although researchers
working with SAT-solvers will probably not be able to build a T-RES clause space algorithm to use as a
pre-processor, the possibility still exists of designing a RES clause space algorithm.

Nevertheless, we consider this to be unlikely, and conjecture that the RES clause space problem is also
PSPACE-Complete. We already saw from Corollary 4.8.4 that it is coNP-Hard, but in PSPACE , and
with the RES total space and T-RES clause space problems both being PSPACE-Complete, it seems safe to
conjecture that RES clause space is PSPACE-Complete as well.

Another related problem worth mentioning which does not fit the paradigm of a proof complexity resource
problem concerns the relationship between RES proof size and clause space. We know that RES proof size
is exponential in width and that T-RES proof size is exponential in T-RES clause space. However, is RES
size exponential in RES clause space, or do there exist formulas with linear RES clause space lower bounds
which have poly-sized proofs?

4.9.2 The Complexities of Tree Resolution Total Space & Tree Resolution Size

Corollaries 4.8.5, 4.8.6, 4.8.8, and 4.8.10 respectively showed us that T-RES total space, RT-RES total
space, RT-RES size, and T-RES size are coNP-Hard, but have PSPACE algorithms. Since RES total
space is PSPACE-Complete [HP07] and I-RES total space is PSPACE-Complete (see Chapter 5), it seems
reasonable to conjecture that the corresponding problems for T-RES and RT-RES are also PSPACE-Complete
and within reach. It is more difficult to gauge whether the T-RES size problem is PSPACE-Complete, but
this is also an interesting open problem.

4.9.3 The Complexity of Resolution Size

Although Corollaries 4.8.8 and 4.8.10 showed that RTRSP and TRSP are both in PSPACE , it is far
from clear that the corresponding size problem for RES has a PSPACE algorithm. This problem is defined
formally as follows:

Definition 4.9.1 (RSP). RSP = {(F, k) | F is a formula for which there exists a RES refutation with size
at most k.}

In fact, we are unable to even show that RSP is in EXPT IME , let alone that it is complete for one
of these complexity classes. However, it is easy to show that this problem has a lower bound of being
coNP-Hard, and an upper bound of being in NEXPT IME :

58 Chapter 4: The PSPACE-Completeness of Tree Resolution Clause Space

Lemma 4.9.2. RSP is coNP-Hard under logspace reducibility, but is also in NEXPT IME.

Proof: The coNP-Hardness of RSP is very similar to that of TRSP from Corollary 4.8.8, and once again
we reduce from UNSAT . Since any unsatisfiable formula has an RT-RES refutation of size at most 2n+1−1,
and since every RT-RES refutation is a RES refutation, we take F and output (F, k = 2n+1 − 1). It is easy
to see that F ∈ UNSAT if and only if (F, k) ∈ RSP .

The following algorithm shows that RSP ∈ NEXPT IME : Given a formula F and integer k, if k >
2n+1 − 1, then run an NP SAT-solver, and return the same answer. Otherwise nondeterministically guess
a RES refutation π of size ≤ k. Since RES has a size of at most 2n+1 − 1, π contains at most an exponential
number of clauses and can therefore be computed in nondeterministic exponential time, as required.

This is one of the most interesting open Resolution resource problems, and its large complexity gap leaves
for a great deal of improvement. We tentatively conjecture that RSP is EXPT IME-Hard, and maybe even
NEXPT IME-Complete.

4.9.4 The Complexity of Clause Learning Space

Corollary 4.8.18 showed us that calculating clause learning clause space is PSPACE-Complete. However,
the proof relied on the presence of the c parameter, which we set to zero in order to eliminate the presence
of the cache. Although this was an important first step, the complexity of the CL-RES clause space problem
without the c parameter would be of great interest to the SAT-solving community, because in practice the
cache uses up so much memory, so predicting its memory requirements is very important. This remains an
important open problem, and we conjecture that it is also PSPACE-Complete.

4.9.5 The Complexity of Resolution Depth

Another Resolution resource problem which has not been addressed in this thesis nor in the literature is
the depth of proofs, which is sometimes referred to as rank. Resolution size, width, and space measures have
all been studied, but they are not the only interesting resources. Depth can also be considered a resource,
and we can easily ask if a formula F has a RES, T-RES, or I-RES refutation of depth at most k. To date, the
complexity of this problem has not been addressed for Resolution. This is somewhat surprising given the
obvious relationship between circuit complexity and bounded-depth proof systems.

In fact, depth is similar to T-RES clause space in that it is not difficult to formulate a new Prover/Delayer
game characterization which captures it. We have done some preliminary work in this area, but have yet to
prove a hardness result for one of the standard complexity classes.

4.9.6 Approximation Algorithms

This area of research also has some natural approximation problems associated with it. In this thesis we
show that several space problems are PSPACE- or EXPT IME-Complete, but do approximation algorithms
exist? The size of T-RES and RES refutations are respectively exponential in T-RES clause space and
RES width, so it is unlikely that approximation algorithms would be very useful in practice, but it would
nevertheless be interesting to develop such algorithms or prove that these problems cannot be approximated
to within a certain factor.

Of course, the same question can be asked of the several different pebbling problems which we used in
our reductions: Does there exist an algorithm for approximating the pebbling number of a graph or circuit
to within a certain factor?

4.9.7 Tension Between Size & Space

Another interesting open problem related to this research has to do with combined resources for SAT-
solvers: The limiting factor on most modern SAT-solving algorithm tends to be memory space, but on the
other hand, if one is too frugal with memory, then proofs can become intractably large (for example, see

Section 5.7.2 or [HP07]). Algorithms must therefore carefully balance attempts to save memory with a
potentially massive increase in minimum proof size and running time if they save too much. We hope that
future researchers will be able to build on these present results in order to better understand the tension
between size and space and perhaps be able to use this to optimize SAT-solvers so that they are able to
strike the right balance between using too much memory and requiring too much time.

4.9.8 The Space Complexity of Other Proof Systems

In this thesis we address many resource problems for Resolution and its refinements, which is appropriate
given the close relationship between Resolution-based proof systems and SAT-solvers, but we could just as
easily ask the same questions about any other proof system. For example, for some appropriate resource
R (e.g. space, width, depth, size, etc.), given a formula F and integer k, does there exist a Frege proof of
F with R bounded above by k? Similarly, we know that all Frege systems are p-equivalent with respect to
proof size, but are they also space-equivalent? Is LK with cut space-equivalent to Frege systems?

Chapter 5

The PSPACE-Completeness of Input
Resolution Total Space

5.1 Introduction & Motivation

When devising SAT-solving algorithms, there is always a tension between proof size and proof search;
more powerful proof systems have shorter proofs, but they are much harder to find, making it difficult
to design proof search algorithms. For this reason, virtually all automated theorem provers implement
weak proof systems such as RES rather than more powerful systems such as Frege. However, automated
proof search is even too complicated in RES, which is why researchers have further developed ‘Resolution
refinements’, weakened forms of Resolution aimed at simplifying proof search at the possible expense of
increasing minimum proof size. Common refinements include T-RES / DPLL and clause learning, which are
both very successful SAT-solving algorithms. The ultimate goal of automated theorem proving is to develop
algorithms capable of finding proofs which are only polynomially larger than the optimal. This property is
referred to as ‘automatizability’ (see Definition 3.2.16).

One particularly extreme refinement is Input Resolution (I-RES), in which we require that at least one
of the inputs to each application of the resolution rule be an initial, or input clause. This clearly restricts
the search space that any I-RES algorithm would have to deal with, but the cost is very high, since I-RES
is not even complete. However, despite its simplicity and obvious limitations, we shall show that the I-RES
proof system is much more interesting than it may first appear. It is of interest theoretically as well as
practically because of a theorem by Chang [Cha70] which states that a formula has an I-RES refutation if
and only if it has a Unit Resolution (U-RES) refutation. Since U-RES is such an important and widely-used
subroutine in SAT-solving as well as other areas of computer science, this gives a strong motivation for better
understanding I-RES. One interesting way of looking at I-RES is through its relationship to Linear Resolution
L-RES. Much like Clause Learning can be viewed as RT-RES with caching, so can L-RES be viewed as I-RES
with caching. Similarly, I-RES can be viewed as tree-like L-RES. For a more formal description of I-RES,
U-RES, and L-RES, please refer to Definition 3.2.3.

In this chapter we prove a number of complexity results for I-RES including P-Completeness, NP-
Completeness, PSPACE-Completeness, and exponential tradeoff results. In addition, we show that I-RES is
automatizable, and optimally automatizable on minimally unsatisfiable formulas. The first part of this chap-
ter contains straightforward results dedicated to investigating the more tractable aspects of I-RES, whereas
the second half investigates its more complex characteristics.

Our results start in Section 5.2, where we show how formulas with I-RES refutations (IRES-UNSAT) are
related to Horn formulas, and minimally unsatisfiable formulas which have I-RES refutations (MU -IRES-
UNSAT) are related to the minimally unsatisfiable formulas in MU(1). In addition, we prove a separation
between I-RES and U-RES and give a matrix characterization of MU -IRES-UNSAT .

61

62 Chapter 5: The PSPACE-Completeness of Input Resolution Total Space

Next, in Section 5.3, we prove a number of tractability results for I-RES. For example, we combine
some previous results to show that IRES-UNSAT is P-Complete, and that the problem of determining if
a formula is minimally unsatisfiable and has an I-RES refutation, as well as the problem of determining if
a formula F is minimally unsatisfiable and has an I-RES refutation of size at most k are both in P. These
results lead us to Section 5.4, in which we develop algorithms for automatizing I-RES and automatizing I-RES
optimally on minimally unsatisfiable formulas.

The second half of this chapter is devoted to the more complicated aspects of I-RES: In Section 5.5,
we note that the problem of approximating optimal I-RES and U-RES refutation size for IRES-UNSAT to
within a linear factor is NP-Hard and that given a formula F and integer k, the problem of determining
whether F has an I-RES refutation of size at most k is NP-Complete. This stands in contrast with the
tractability of the same problem for MU -IRES-UNSAT from the previous section.

The rest of this chapter contains our main results, and is dedicated to the study of I-RES space. These
results are more complicated than the earlier ones.

In Section 5.6 we prove an equivalence between I-RES total space and pebbling, followed immediately
by its implications for complexity theory. More specifically, we show that for any binary DAG G, its black
pebbling number (defined with sliding) is off by exactly a constant from the total space required by any I-RES
proof of a slight modification to the formula Peb1(G). This equivalence allows us to prove this chapter’s
main results, namely the PSPACE-Completeness of various forms of the I-RES total space problem, which
is proved by reducing from the black pebbling game on DAGs, itself shown to be PSPACE-Complete by
Gilbert, Lengauer, and Tarjan [GLT80]. These results demonstrate that although I-RES is very simple in
some ways, with respect to others it is extremely complex.

Next, in Section 5.7 we prove several interesting corollaries to our main results, including the PSPACE-
Completeness of I-RES derivation width and a PSPACE algorithm for the I-RES variable space problem.
However, the most interesting corollary that we prove is an extreme (and optimal) size / total space tradeoff
for I-RES; we show that there exists an infinite family of formulas whose I-RES proofs with the minimum
required total space have size 2Ω(n), where n is the number of distinct variables. However, if only one single
additional unit of total space is permitted, then the size drops to only O(n), where n is the number of
variables. Apart from being a massive size / space tradeoff, this is also a tradeoff similar to those explored
by Ben-Sasson in [BS02] because it shows that for certain formulas, it is not possible to optimize both I-RES
size and space at the same time.

Finally, in Section 5.8 we discuss some interesting open problems related to the research in this chapter.

5.2 Input Resolution, Horn Formulas, and MU Formulas

In this section we define IRES-UNSAT , the set of formulas which have I-RES refutations, as well as
MU -IRES-UNSAT , its minimally unsatisfiable subset, and relate these languages to unsatisfiable Horn
formulas and minimally unsatisfiable (MU) formulas. More specifically, we show that HORN -UNSAT is a
proper subset of IRES-UNSAT , and MU -IRES-UNSAT is a proper subset of MU(1). Before proceeding,
we formally define these languages:

Our first languages are the formulas for which I-RES and U-RES are complete:

Definition 5.2.1 (IRES-UNSAT & URES-UNSAT). IRES-UNSAT is the set of all unsatisfiable
formulas which have I-RES refutations, and URES-UNSAT is the set of all unsatisfiable formulas which
have U-RES refutations.

Our next set of languages are related to Horn formulas and are defined as follows:

Definition 5.2.2 (Horn Formulas, HORN-SAT, & HORN-UNSAT). A formula F is said to be Horn
if each of its clauses contains at most one positive literal. We will refer to the set of all satisfiable Horn
formulas as HORN -SAT , and the set of all unsatisfiable Horn formulas as HORN -UNSAT .

5.2 Input Resolution, Horn Formulas, and MU Formulas 63

Our final set of languages are based on minimally unsatisfiable formulas:

Definition 5.2.3 (MU(k), MU-IRES-UNSAT, & MU-HORN-UNSAT). A formula F is said to be
minimally unsatisfiable if it is unsatisfiable, but the same cannot be said of any proper subset of its clauses.
These minimally unsatisfiable formulas comprise the set MU . We define MU(k) as the set of all minimally
unsatisfiable formulas on n variables which contain exactly n + k clauses. In addition, MU -IRES-UNSAT
contains all of the minimally unsatisfiable formulas in IRES-UNSAT , and MU -HORN -UNSAT contains
all of the minimally unsatisfiable formulas in HORN -UNSAT .

It is worth noting that Peb1(G) ∈ HORN -UNSAT , and that by Corollary 3.2.13, Peb1(G) ∈ MU -
HORN -UNSAT for any DAG G in which every node is essential (i.e. every pebbling of G uses every node
in G at some point during the pebbling).

5.2.1 Separation Between Input Resolution & Unit Resolution

In this section we review a previous result relating IRES-UNSAT and URES-UNSAT , give upper
bounds on the size of I-RES refutations, and prove a separation between the I-RES and U-RES proof systems.

A very important and useful previous result is the relationship between I-RES and U-RES proved by Chang:

Theorem 5.2.4 ([Cha70]). A formula F has an I-RES refutation if and only if it has a U-RES refutation
and therefore IRES-UNSAT = URES-UNSAT .

This equivalence makes it easy to see that I-RES is an incomplete proof system, since there are unsatisfiable
formulas which have no unit clauses, and therefore have no U-RES or I-RES refutations.

The following theorem proves upper bounds on the size of I-RES refutations:

Theorem 5.2.5. For any formula F ∈ IRES-UNSAT there exists an I-RES refutation of F with size at
most 2n + 1, where n is the number of distinct variables in F .

Proof: The proof is by induction on n:

Basis: For n = 0, F = {∅}, which has an I-RES refutation containing 2n + 1 = 1 clauses.

Induction Hypothesis: Suppose that our statement is true for n− 1.

Induction Step: We now show that our statement holds for n. Let F be any arbitrary formula in IRES-
UNSAT with n distinct variables. Since F has a U-RES refutation, it either contains a unit clause (xi)
or (¬xi). Suppose that it contains the unit clause (xi). Restrict F by setting xi to True to produce the
formula F �xi=True, which has n − 1 variables and also has an I-RES refutation. Our induction hypothesis
therefore applies, so F �xi=True has an I-RES refutation π′ of size ≤ 2(n − 1) + 1 = 2n − 1. Lifting the
restriction on F and all corresponding clauses in π′ yields an I-RES derivation π of the empty clause or the
clause (¬xi), where π has size exactly 2n− 1. If π is a derivation of the empty clause, then we are done. In
the case where π proves (¬xi), recall that F contains the input clause (xi), so simply resolve with this in
order to produce the empty clause. In either case we have therefore produced an I-RES refutation containing
≤ 2n− 1 + 2 = 2n + 1 clauses, as required. The case in which F contains the unit clause (¬xi) is completely
symmetrical: Simply restrict by xi = False instead, and then resolve with (¬xi) at the end.

64 Chapter 5: The PSPACE-Completeness of Input Resolution Total Space

However, although I-RES and U-RES are in some sense equivalent by Theorem 5.2.4 and I-RES has linear
size upper bounds by Theorem 5.2.5, the same does not hold for U-RES proof size, and there exists a
separation between the two proof systems. In fact, U-RES has Ω(n2) size lower bounds on the following
family of formulas:

Definition 5.2.6 (FU Formulas). There is one formula Fi in FU for each value of n ≥ 1, where n is the
number of distinct variables. Fi is defined inductively as follows: F1 = {{x1}, {¬x1}}, and each subsequent
Fi is created by taking Fi−1, adding the literal ¬xi to each clause, and finally adding the singleton clause
{xi}.

A simple analysis of these formulas yields a separation between the I-RES and U-RES proof systems:

Theorem 5.2.7. Each Fn ∈ FU requires U-RES refutations of size at least n2 + 3n + 2
2 , where n is the

number of distinct variables in Fn.

Proof: By construction, it is not hard to see that Fn contains exactly n + 1 clauses and that each variable
xi has exactly one positive occurrence, i negative occurrences, and deriving the empty clause requires all
variables in the formula to be eliminated. Eliminating each xi requires exactly i resolutions, although these
resolution steps are only possible after the positive unit clause {xi} has been derived, since we are dealing
with U-RES. Fn therefore requires n + (n − 1) + (n − 2) + ... + 1 applications of the resolution rule, which
sums to exactly n(n+1)

2 clauses derived. In addition, each of the n + 1 initial clauses must be present in the
proof. Any refutation of Fn therefore contains at least n2 + 3n + 2

2 clauses, as required.

5.2.2 The Relationship Between Input Resolution and Horn Formulas

Horn formulas are an important class of formulas which come up rather frequently in computer science.
For example, the algorithm employed by the Prolog programming language is called SLD Resolution, which
is a special case of Horn Resolution. In this section we shall show that HORN -UNSAT is a proper subset
of IRES-UNSAT :

Lemma 5.2.8. HORN -UNSAT (IRES-UNSAT

Proof: We first show that HORN -UNSAT ⊂ IRES-UNSAT by proving that any unsatisfiable Horn
formula F has an I-RES refutation. The proof is by induction on n:

Basis: For n = 1, F contains the clauses {x1} and {¬x1}, and therefore clearly has an I-RES refutation.

Induction Hypothesis: Assume that every Horn formula on n variables has an I-RES refutation.

Induction Step: Let F be any Horn formula on n + 1 variables, and F ′ be any minimally unsatisfiable
subset of its clauses. If F ′ contains fewer than n + 1 variables, then we appeal to our Induction Hypothesis
and are done, so we may assume that F ′ contains n + 1 variables. Any unsatisfiable formula contains at
least one clause which has no positive literals in it, or else it could be satisfied by simply setting all variables
to True. Similarly, it has at least one clause which has no negative literals in it, or else it could be satisfied
by setting all variables to False. However, since F ′ is a Horn formula and it contains an all-positive clause,
it must be a unit clause, so every unsatisfiable Horn formula contains a positive unit clause.

Let x1 be the variable in a positive unit clause of F ′. We restrict F ′ to create F ′ �x1=True, which has
only n variables, so our Induction Hypothesis applies, showing that it has an I-RES refutation π′. Since F ′

is minimally unsatisfiable, lifting the restriction on π′ gives us π, which is an I-RES derivation of the clause
{¬x1}. We resolve this with our positive unit clause {x1} to complete the refutation of F ′. This is also
a refutation of F , since we said that F ′ ⊂ F . Therefore by induction every Horn formula has an I-RES
refutation, so HORN -UNSAT (IRES-UNSAT .

5.2 Input Resolution, Horn Formulas, and MU Formulas 65

It is easy to see that the set inclusion is proper because there are many non-Horn formulas which have
I-RES refutations. For instance, the unsatisfiable formula F = (x ∨ y) ∧ (¬x) ∧ (¬y) is not Horn but has an
I-RES refutation.

This same argument immediately applies to the minimally unsatisfiable versions of these sets as well:

Corollary 5.2.9. MU -HORN -UNSAT (MU -IRES-UNSAT

5.2.3 The Relationship Between Input Resolution and MU Formulas

Having established the relationship between IRES-UNSAT and Horn formulas in the previous section,
we now investigate the relationship between IRES-UNSAT and MU(k). In this section we will prove exact
bounds on the size of I-RES proofs, and relate Horn Resolution, I-RES, and MU(1). Finally, we will prove
some facts about MU(1), MU -IRES-UNSAT , and unit propagation which will be useful in later sections.

Exact Bounds on the Size of Input Resolution Refutations

The smallest k for which MU(k) is interesting is k = 1. This is because a lower bound on the number of
clauses in minimally unsatisfiable formulas is known, showing that the set MU(0) is empty:

Lemma 5.2.10 ([AL86]). Any minimally unsatisfiable CNF formula on n variables contains at least n+1
clauses.

This lower bound also has a useful corollary:

Corollary 5.2.11. Any CNF formula with fewer than n clauses is not minimally unsatisfiable, and any
unsatisfiable formula F containing exactly n + 1 clauses is minimally unsatisfiable (i.e. F ∈ MU(1)).

In addition, Lemma 5.2.10 helps us to prove bounds on the size of refutations for minimally unsatisfiable
formulas which hold for all forms of Resolution:

Corollary 5.2.12. For any minimally unsatisfiable formula F , any refutation of F in any form of Resolution
contains at least 2n + 1 clauses.

Proof: The lower bound is easy to see: Since F is minimally unsatisfiable, each of its clauses must be used
in any refutation of F . Therefore by Lemma 5.2.10, any refutation of F contains at least n + 1 clauses.
However, since every variable in F is introduced into the proof at some point and must be eliminated, we
need to derive at least n more clauses (one for each variable elimination), bringing our total to at least
2n + 1.

Together with the upper bound from Theorem 5.2.5, this gives us tight bounds on the size of I-RES
refutations for MU -IRES-UNSAT :

Corollary 5.2.13. For any formula F ∈ MU -IRES-UNSAT the size of every I-RES refutation of F is at
least 2n + 1, where n is the number of distinct variables in F . In addition, there exists an I-RES refutation
of F with size at most 2n + 1.

Proof: The lower bound follows from Corollary 5.2.12, and the upper bound from Theorem 5.2.5.

Relating Horn Resolution, Input Resolution, and MU(1)

In [DDB98], Davydov, Davydova, and Kleine Büning prove a result corresponding to Lemma 5.2.10, except
that theirs is specific to U-RES and also includes an exact count of the number of clauses for formulas in
MU -IRES-UNSAT :

Theorem 5.2.14 ([DDB98]). Any minimally unsatisfiable formula on n variables which has a U-RES
refutation contains exactly n + 1 clauses.

66 Chapter 5: The PSPACE-Completeness of Input Resolution Total Space

Together, Theorems 5.2.4 and 5.2.14 allow us to relate MU -IRES-UNSAT to MU(1):

Corollary 5.2.15. MU -IRES-UNSAT (MU(1)

Proof: By Theorems 5.2.4 and 5.2.14, MU -IRES-UNSAT ⊂ MU(1). It is easy to see that the set inclusion
is proper because there exist formulas such as F = (x∨ y)∧ (x∨¬y)∧ (¬x∨ z)∧ (¬x∨¬z) in MU(1) which
do not have I-RES refutations.

Combining Lemma 5.2.8, Corollary 5.2.9, and Corollary 5.2.15 allows us to produce a simple set dia-
gram which shows the exact relationship between IRES-UNSAT , MU(1), MU -IRES-UNSAT , HORN -
UNSAT , and MU -HORN -UNSAT . This diagram is shown below in Figure 5.1.

IRES-UNSAT

MU-IRES-UNSAT

UNSAT
MU-HORN-

HORN-UNSAT

MU(1)

Figure 5.1: The Relationship Between I-RES, Horn Formulas, and MU(1) Formulas

MU(1), MU-IRES-UNSAT, and Unit Propagation

We now prove that both MU(1) and MU -IRES-UNSAT are closed under unit propagation, a fact which
will be useful in subsequent sections. In order to do this, we first prove the following lemma:

Lemma 5.2.16. For any CNF formula F , if F contains two clauses C1 and C2 such that C1 ⊂ C2, then
F is not minimally unsatisfiable.

Proof: Let C1 and C2 be clauses of F such that C1 ⊂ C2. If F is satisfiable, then it is not minimally
unsatisfiable, and we are done, so assume that it is unsatisfiable. Let F ′ = F −{C2}. Because C1 ⊂ C2, if F ′

is satisfiable, then the same truth assignment which satisfies it also satisfies F , so F ′ is not satisfiable. But
F ′ contains a proper subset of the clauses of F , therefore showing that F is not minimally unsatisfiable.

We can use this lemma to prove that MU(1) is closed under unit propagation:

Lemma 5.2.17. For any formula F ∈ MU(1), if F contains a unit clause {l} for some literal l, then
F �l=True ∈ MU(1).

Proof: If F ∈ MU(1) contains a unit clause {l} for some literal l, then l does not occur anywhere else in F
by Lemma 5.2.16. Therefore F �l=True contains n − 1 variables and exactly n clauses, which means that it
is minimally unsatisfiable by Corollary 5.2.11, so F �l=True ∈ MU(1), as required.

Combining the previous lemma with Corollary 5.2.15 yields the following corollary which shows that
MU -IRES-UNSAT is closed under unit propagation:

Corollary 5.2.18. For any formula F ∈ MU -IRES-UNSAT , if F contains a unit clause {l} for some
literal l, then F �l=True ∈ MU -IRES-UNSAT .

5.2 Input Resolution, Horn Formulas, and MU Formulas 67

5.2.4 A Matrix Characterization of MU-IRES-UNSAT

Although matrix algebra and propositional formulas may at first glance have very little to do with each
other, matrices can be used to encode formulas. This can be done by giving each cell in the matrix one of
three values: +,−, and 0 such that each row in the matrix represents a distinct variable, and each column
represents a distinct clause. If column j of row i is +, then the literal xi occurs in clause j. Similarly, if
column j in row i is −, then the literal ¬xi occurs in clause j. Finally, if position (i, j) in the matrix is 0,
then the variable i does not occur in clause j.

For example, the formula F = (x1) ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) has the following matrix representation: + − 0
0 + −
0 0 +

In [DDB98] the authors show that the ‘basic matrices’, which are of interest in the area of linear algebra

exactly capture the formulas in MU(1). From Corollary 5.2.15, we know that MU -IRES-UNSAT is a
proper subset of MU(1), so it stands to reason that MU -IRES-UNSAT comprises a proper subset of the
basic matrices. In this section we shall show that this is in fact the case. We begin by defining this subset
of matrices, which we call the ‘sub-basic matrices’:

Definition 5.2.19 (Sub-Basic Matrices). The sub-basic matrices are defined inductively:

1.
(

+ −
)

is a sub-basic matrix.

2. If B is a sub-basic matrix and b is a vector in which each bj ∈ {−, 0} and b contains at least one
−-sign, then the following matrix is also sub-basic:(

+ b
0 B

)
3. If B is a sub-basic matrix and b is a vector in which each bj ∈ {+, 0} and b contains at least one

+-sign, then the following matrix is also sub-basic:(
− b
0 B

)

Having defined the sub-basic matrices, we now show that a formula is in MU -IRES-UNSAT if and only
if it can be encoded by a sub-basic matrix. We begin by proving the forward direction:

Lemma 5.2.20. Any formula F ∈ MU -IRES-UNSAT can be represented as a sub-basic matrix.

Proof: The proof is by induction on n, the number of distinct variables in F :

Basis: For n = 1, F = (x1) ∧ (¬x1), and
(

+ −
)

is sub-basic, so our statement holds for the base case.

Induction Hypothesis: Suppose that any formula F ∈ MU -IRES-UNSAT containing n variables can
be represented as a sub-basic matrix.

Induction Step: Let F be any arbitrary formula in MU -IRES-UNSAT containing n+1 variables. Since
F ∈ MU -IRES-UNSAT , it contains a unit clause. Without loss of generality, let us call this unit clause
{l1}, where l1 = x1 or ¬x1. Let F ′ be F �l1=True, which has n variables and by Corollary 5.2.18 is in
MU -IRES-UNSAT . Therefore our induction hypothesis applies, and F ′ has the sub-basic matrix B. By
Lemma 5.2.16, l1 does not appear in any other clause of F , so if l1 = x1, then F has the sub-basic matrix

68 Chapter 5: The PSPACE-Completeness of Input Resolution Total Space

(
+ b
0 B

)
, where b is a vector in which each bj ∈ {−, 0} and b contains at least one −-sign (because F

is minimally unsatisfiable). The case where l1 = ¬x1 is completely symmetrical, so in either case F has a
sub-basic matrix, and by induction any formula F ∈ MU -IRES-UNSAT can be represented as a sub-basic
matrix.

We now prove the reverse direction:

Lemma 5.2.21. Every sub-basic matrix encodes a formula F ∈ MU -IRES-UNSAT .

Proof: The proof is by induction on n, the number of rows of a sub-basic matrix:

Basis: For n = 1, the only sub-basic matrix is
(

+ −
)
, corresponding to F = (x1) ∧ (¬x1), which is in

MU -IRES-UNSAT .

Induction Hypothesis: Suppose that every sub-basic matrix containing n rows encodes a formula F ∈
MU -IRES-UNSAT .

Induction Step: Let M by any arbitrary sub-basic matrix containing n + 1 rows. By definition, M is(
+ b
0 B

)
, where b is a vector in which each bj ∈ {−, 0} and b contains at least one −-sign, or M is(

− b
0 B

)
, where b is a vector in which each bj ∈ {+, 0} and b contains at least one +-sign. In either

case, B is sub-basic and contains n variables, so our induction hypothesis applies, and it encodes a formula
FB ∈ MU -IRES-UNSAT . In our first case, we add the singleton clause {x1} to FB and add the literal ¬x1

to at least one clause of FB to produce F , which is clearly still unsatisfiable and has a U-RES refutation,
so therefore also has an I-RES refutation by Theorem 5.2.4. However, F contains n + 1 variables and n + 2
clauses, so by Corollary 5.2.11 it is minimally unsatisfiable.

Our second case where we add the singleton clause {¬x1} to FB and add the literal x1 to at least one clause
of FB to produce F is completely symmetrical. Therefore, in either case M encodes a formula F ∈ MU -
IRES-UNSAT , so by induction every sub-basic matrix encodes a formula F ∈ MU -IRES-UNSAT .

Putting these two lemmas together shows that the sub-basic matrices are a perfect characterization of
MU -IRES-UNSAT :

Theorem 5.2.22. A formula F is in MU -IRES-UNSAT if and only if it can be encoded as a sub-basic
matrix.

This result of course has implications for IRES-UNSAT as well, because it shows that any minimally
unsatisfiable subset of clauses from formula which has an I-RES refutation can be encoded as a sub-basic
matrix. In other words, any formula F ∈ IRES-UNSAT can be encoded as a sub basic matrix which has
been augmented with any arbitrary clauses, giving us a matrix characterization of IRES-UNSAT as well.

5.3 Tractable Aspects of Input Resolution

In the previous section we related various languages such as HORN -UNSAT , MU(1), and MU -IRES-
UNSAT to IRES-UNSAT . We shall use these results to explore the complexities of some of the tractable
aspects of the I-RES proof system. First we shall review some previous results showing that HORN -UNSAT
and IRES-UNSAT are P-Complete, and that MU(1) ∈ P. Following this we show that MU -IRES-
UNSAT ∈ P and that the size problem for MU -IRES-UNSAT is in P.

5.3 Tractable Aspects of Input Resolution 69

5.3.1 The Complexities of HORN-UNSAT, IRES-UNSAT, and MU(1)

We now review some previous results about the tractability of HORN -UNSAT , IRES-UNSAT , and
MU(1). For example, the complexity of HORN -UNSAT is well-understood:

Theorem 5.3.1 ([Pla84], [Pap94, p.176]). The problem of determining whether or not a given Horn
formula is satisfiable (i.e. of deciding the language HORN -SAT) is P-Complete.

This shows that determining whether or not Horn formulas are unsatisfiable is coP-Complete, so since P
is closed under complement, this immediately gives us the complexity of HORN -UNSAT :

Corollary 5.3.2. HORN -UNSAT is P-Complete.

Similar P-Completeness results were proved for URES-UNSAT by Jones and Laaser:

Theorem 5.3.3 ([JL77]). The problem of determining whether or not a given formula has a U-RES refu-
tation (i.e. of deciding the language URES-UNSAT) is P-Complete.

Since we know from Theorem 5.2.4 that IRES-UNSAT = URES-UNSAT , this immediately implies
the P-Completeness of IRES-UNSAT :

Corollary 5.3.4. IRES-UNSAT is P-Complete, and furthermore there exists an O(n ·m) algorithm which
takes as input a formula F and determines whether or not it has an U-RES (and therefore I-RES) refutation,
where n is the number of distinct variables in F , and m is the number of clauses.

Proof: Showing that IRES-UNSAT is P-Complete is trivial, since IRES-UNSAT = URES-UNSAT ,
which is P-Complete by Theorem 5.3.3. It can be solved by the following unit propagation algorithm:
Repeatedly pick a unit clause and resolve it with every other clause possible. Since U-RES is closed under
restriction, this algorithm is clearly correct, will take at most O(n ·m) time in total, and will either yield the
empty clause, in which case it has a U-RES refutation (and therefore I-RES refutation by Theorem 5.2.4), or
a formula where no more unit resolutions are possible, in which case it does not.

This also solves the complexity of the clause space problem for IRES-UNSAT , which is formally defined
as follows:

Definition 5.3.5 (ICSP). ICSP = {(F, k) | F is a formula for which there exists a I-RES refutation with
clause space at most k.}

Corollary 5.3.6. ICSP is P-Complete.

Proof: By the very nature of I-RES, a formula has an I-RES refutation if and only if it has an I-RES refutation
of clause space at most 2. Therefore we use the same algorithm as in Corollary 5.3.4, but first check to see
that k ≥ 2. Our reduction is from IRES-UNSAT , and similarly proceeds by outputting (F, k = 2).

In addition, the complexity of MU(k) has been settled for k = 1:

Theorem 5.3.7 ([DDB98]). MU(1) ∈ P and there exists an O(n2) algorithm which decides if any arbitrary
formula F is in MU(1), where n is the number of distinct variables in F .

The complexity of MU(k) for any constant k ≥ 2 remains open.

70 Chapter 5: The PSPACE-Completeness of Input Resolution Total Space

5.3.2 The Tractability of MU-IRES-UNSAT

Having proved that IRES-UNSAT is P-Complete, we now show that MU -IRES-UNSAT ∈ P by
counting clauses:

Corollary 5.3.8. MU -IRES-UNSAT ∈ P and has an O(n·m) algorithm, where n is the number of distinct
variables and m is the number of clauses.

Proof: Given a formula F , we determine if F ∈ MU -IRES-UNSAT . By Corollary 5.2.11 we know that
any formula containing fewer than n variables is not minimally unsatisfiable, so if this is the case, then reject.
Similarly, by Corollary 5.2.15, any formula containing more than n + 1 variables cannot be in MU -IRES-
UNSAT , so if this is the case, then reject. Therefore we are left with the case where F contains exactly
n + 1 clauses, so it is either has an I-RES refutation (in which case it is in MU -IRES-UNSAT) or it does
not (in which case it is not). This can be determined using the O(n ·m) algorithm from Corollary 5.3.4.

5.3.3 The Tractability of the MU-IRES-UNSAT Size Problem

The size problem for MU -IRES-UNSAT takes as input a formula / integer pair (F, k) and asks if F is
minimally unsatisfiable and has an I-RES refutation of size at most k. We now show that this problem is in
P:

Corollary 5.3.9. Given a formula F and integer k, the problem of determining whether or not F ∈ MU -
IRES-UNSAT and has an I-RES refutation of size at most k is in P and has an O(n ·m) algorithm, where
n is the number of distinct variables in F , and m is the number of clauses.

Proof: Simply use the algorithm from Corollary 5.3.8 to determine if F ∈ MU -IRES-UNSAT . If not,
then reject, and otherwise compare k with 2n + 1. If k ≥ 2n + 1, then by Corollary 5.2.13 we can accept,
and otherwise we reject.

5.3.4 The Tractability of the MU-IRES-UNSAT Problem with Top Clause

In previous sections we have seen that various versions of the MU -IRES-UNSAT problem are in P.
We now prove that another generalized form of the problem is also tractable. Instead of asking whether a
minimally unsatisfiable formula F has an I-RES refutation, we can ask if it has an I-RES refutation in which
one of the top clauses is C. We shall refer to this as the MU -IRES-UNSAT problem with top clause. In
order to prove that it is in P, we will first prove a ‘top clause’ lemma:

Lemma 5.3.10 (Top Clause Lemma). If a formula F ∈ MU(1) has an I-RES refutation, then it has an
I-RES refutation with any arbitrary clause C ∈ F as one of the top clauses.

Proof: By induction on n, the number of distinct variables in F :

Basis: In order to simplify later arguments, we will cover the cases of n = 0 and n = 1 as our base cases.
For n = 0, F = ∅, which trivially unsatisfiable, and its only proof contains only the empty clause. For n = 1,
the only minimally unsatisfiable formula is F = (x) ∧ (¬x), in which the only refutation has both of its
clauses as top clauses, so our statement holds for both n = 0 and n = 1.

Induction Hypothesis: Suppose that our statement is true for n− 1.

Induction Step: We now show that our statement holds for n. Let F be any arbitrary formula in MU(1)
on n variables which has an I-RES refutation. By Theorem 5.2.4, F must contain a unit clause, call it {l} for
some literal l. We want to show that F has an I-RES refutation with top clause C, where C is any arbitrary
clause in F . In order to apply our induction hypothesis, we restrict F to produce F ′ = F �l=True. By Lemma
5.2.17, F �l=True ∈ MU(1). In addition, I-RES is closed under restriction, so our induction hypothesis applies

5.4 The Automatizability of Input Resolution 71

to F ′, which therefore has an I-RES refutation with any arbitrary C�x=True ∈ F ′ as top clause; let us call
this proof π′.

There are two cases to consider:

Case 1: Suppose that C 6= {l}. Since F ∈ MU(1) and {l} ∈ F is a unit clause, Lemma 5.2.16 applies,
so the literal l does not occur anywhere else in F , including C. Similarly, C 6= {¬l}, since this is not the
base case. Therefore the restricted clause C �l=True does not disappear from F ′. Furthermore, since F ′ is
minimally unsatisfiable, every clause is used in π′, so lifting the restriction of l = True yields π which is an
I-RES derivation from F of {¬l} with top clause C. We resolve the final clause {¬l} of π with our unit input
clause {l} to complete the refutation.

Case 2: Suppose that C = {l}. We know that F is minimally unsatisfiable, so it must contain a clause of
the form D = E ∪{¬l}, and n ≥ 2, so E ∈ F ′. By our induction hypothesis, there exists an I-RES refutation
π′ from F ′ with top clause E. Lift the restriction of l = True from all clauses of π′, but do not add {¬l} back
to the top clause E. Now resolve {l} with D = E∪{¬x} at the top of π′ to produce E, and if necessary, also
resolve {l} with the singleton clause {¬l} (if it exists) at the bottom of the proof to complete the refutation.
This yields an I-RES refutation from F with top clause C = {l}.

Therefore, in either case we have produced an I-RES refutation from F with top clause C, as required,
and our result follows by induction.

This lemma allows us to prove that the MU -IRES-UNSAT problem with top clause is in P:

Theorem 5.3.11. Given a minimally unsatisfiable formula F and a clause C ∈ F , determining if F has an
I-RES refutation with top clause C is in P.

Proof: To show that this problem is in P, we first determine if F ∈ MU -IRES-UNSAT , which can be
done in polynomial time by Corollary 5.3.8. If not, then reject. Otherwise, by Lemma 5.3.10 F has an I-RES
refutation with C as top clause, so accept.

5.4 The Automatizability of Input Resolution

In this section we show that I-RES is automatizable and that MU -IRES-UNSAT is optimally automa-
tizable. These results form an interesting contrast with the results in the next section which show that the
problem of computing the optimum size of I-RES refutations is NP-Complete.

Informally, a proof system S is automatizable if there exists an algorithm which can always find proofs
which are only polynomially larger than the optimal. Such algorithms are obviously of great practical interest
because they allow us to efficiently automate theorem proving. For a more formal description, please refer
to Definition 3.2.16.

Because they form the basis of so many practical SAT-solving algorithms, RES and its refinement T-RES
are some of the best candidate proof systems which researchers would like to automatize. However, under
widely-believed cryptographic assumptions, they are not automatizable. Please refer to section 3.2.6 for
more information on the relationship between cryptographic assumptions and automatizability.

It is therefore likely that the only possible automatizable Resolution refinements are incomplete. In other
words, results such as the ones in this section are in a sense the best we can hope for.

The most obvious candidate for automatizability is Horn Resolution. Our results from previous sections
make it easy to see that Horn formulas are an automatizable example of restricted SAT inputs:

Corollary 5.4.1. I-RES on HORN -UNSAT is automatizable and there exists an O(n ·m) algorithm which
takes as input any Horn formula F (where n is the number of distinct variables in F and m is the number
of clauses), and either produces an I-RES refutation containing at most 2n + 1 clauses, or returns that no
refutation exists.

72 Chapter 5: The PSPACE-Completeness of Input Resolution Total Space

Proof: We simply use the O(n · m) algorithm from Corollary 5.3.4 to determine if F is unsatisfiable. If
not, then return that no refutation exists. Otherwise use the O(n ·m) algorithm implicit in Lemma 5.2.8 to
produce the desired I-RES refutation containing at most 2n + 1 clauses.

Another restriction which has received much attention is 2-SAT, in which we require the input formula
to have exactly two literals per clause. Unlike Horn-SAT, which is P-Complete, 2-SAT is NL-Complete
[Pap94, p.398]. In addition, 2-SAT is also known to be automatizable [Coo71], and in fact optimal polytime
automatizability algorithms exist for finding the shortest T-RES refutation [Sub04] and the shortest RES
refutation of any unsatisfiable 2-CNF formula [BOM07].

We now prove that for I-RES there exists a polytime algorithm for finding a refutation which is at worst
linearly longer than the optimal, thereby showing its automatizability. In fact, I-RES is strongly automatiz-
able in the sense that we can always find a refutation which is polynomial in the length of the input formula.
Automatizability with respect to formula size is usually not even a reasonable thing to ask for because many
proof systems have exponential size lower bounds, making this impossible. This further shows just how
tractable the I-RES proof system is.

Theorem 5.4.2. The I-RES proof system is automatizable. More specifically, given a formula F containing n
distinct variables and m clauses, there exists an O(n·m) algorithm which finds an I-RES refutation containing
at most 2n + 1 clauses or reports that F has no I-RES refutation.

Proof: First use the O(n ·m) algorithm from Corollary 5.3.4 to determine if F has an I-RES refutation. If
not, then we report that none exists. Next we apply the O(n ·m) DPLL algorithm implicit in the induction
step of Theorem 5.2.5 to produce an I-RES refutation of F containing at most 2n + 1 clauses.

It is worth noting that for any formula in IRES-UNSAT , this algorithm is guaranteed to produce a proof
which is larger than the smallest possible by at most a linear factor. However, by Corollary 5.2.12 minimally
unsatisfiable formulas require refutations containing at least 2n + 1 clauses, so this algorithm produces the
shortest possible proofs for any formula in MU -IRES-UNSAT :

Corollary 5.4.3. The I-RES proof system is optimally automatizable on minimally unsatisfiable formulas.

5.5 The NP-Completeness of Input Resolution Size

In previous sections we saw that I-RES is automatizable, IRES-UNSAT is P-Complete, that I-RES is
optimally automatizable on MU -IRES-UNSAT , and the size problem for MU -IRES-UNSAT is in P.
However, in this section we show an interesting contrast with these tractability results by noting that the
size problem for IRES-UNSAT is NP-Complete. This result follows immediately from an interesting result
proved by Alekhnovich, Buss, Moran and Pitassi [ABMP01]:

Theorem 5.5.1 ([ABMP01]). The problem of approximating the size (regardless of whether size is mea-
sured in total symbols or number of clauses) of the smallest Resolution refutations of formulas from HORN -
UNSAT to within a factor of 2log1−o(1)n is NP-Hard.

Corollary 5.5.2. The problem of approximating the size (regardless of whether size is measured in total
symbols or number of clauses) of the smallest I-RES or U-RES proofs of formulas from IRES-UNSAT to
within a factor of 2log1−o(1)n is NP-Hard.

Proof: There is no need to change the proof in [ABMP01]; it is easy to see that the reduction from Circuit
MMSA produces Horn formulas which have both I-RES and U-RES refutations, so the result holds for these
proof systems as well.

5.6 The PSPACE-Completeness of Input Resolution Derivation Total Space 73

This corollary in turn yields another one, namely that given a formula F and integer k, the problem of
determining if F has an I-RES refutation of size at most k is NP-Complete. The language associated with
this problem is defined as follows:

Definition 5.5.3 (IRES-SIZE). IRES-SIZE = {(F, k) | F is a formula for which there exists a I-RES
refutation with size at most k.}

Corollary 5.5.4. IRES-SIZE is NP-Complete under Turing reducibility.

Proof: We first show that IRES-SIZE is in NP: IRES-UNSAT is in P by Corollary 5.3.4 and is therefore
also in NP, so we first check to see if F has an I-RES refutation. If it does not, then we reject. Otherwise
it has an I-RES refutation of size at most 2n + 1 by Theorem 5.4.2. We therefore compare k with 2n + 1
and if k is greater, then we accept immediately. Otherwise we nondeterministically guess the shortest I-RES
refutation of F , which we know must have a size of at most 2n + 1 and accept if and only if its size is at
most k, thereby completing our NP algorithm.

Next we show that IRES-SIZE is NP-Hard via a Turing reduction from the problem of approximating
minimum I-RES refutation size which was proved NP-hard in Corollary 5.5.2. Assuming that we have an
algorithm for IRES-SIZE, we can use it as a subroutine to create an algorithm for determining the size
of the smallest refutation of F as follows: By Theorem 5.4.2, F has an I-RES refutation containing at most
2n + 1 clauses. We therefore perform a binary search between the range 1 and 2n + 1 using our IRES-
SIZE algorithm to determine the size of the smallest refutation. Since this is only a logarithmic number of
subroutine calls, it follows that IRES-SIZE is NP-Complete, as required.

5.6 The PSPACE-Completeness of Input Resolution Derivation
Total Space

This section contains a number of results pertaining to black pebbling and the total space of I-RES. In
Section 5.6.1 we prove that for any DAG G, B-Peb(G) is equivalent to the total space of any I-RES-W−

derivation of a certain variation of Peb1(G) formulas. Following that we show how to dispense with weakening
and prove the equivalent result for I-RES. In Section 5.6.2 we put these equivalence results to use in order to
prove the PSPACE-Completeness of various forms of the I-RES total space problem. Finally, in Section 5.7.2
we prove another corollary to our equivalence results, namely an optimal I-RES size / total space tradeoff.

5.6.1 Equivalence of Black Pebbling & Input Resolution Total Space

We shall prove that for any DAG G, B-Peb(G) (with sliding) is almost exactly equivalent to the minimum
total space of any I-RES-W− derivation from Peb1(G)∗ with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β}.

In order to proceed, we must first define the I-RES-W− proof system, which is simply I-RES with an added
weakening rule, as well as the Peb1(G)∗ formulas, which are a slight modification of the Peb1(G) formulas:

Definition 5.6.1 (I-RES-W−). I-RES-W− is identical to the I-RES proof system from Definition 3.2.3 except
that it has the following additional rule:

4. replacing one of the clauses C ∈ Ci with the clause C ∪ {¬x}, which was obtained by weakening C with
an arbitrary negative literal ¬x.

The Peb1(G)∗ formulas, closely related to the Peb1(G) formulas from Definition 3.2.11, are defined as
follows:

Definition 5.6.2 (Peb1(G)∗). In the case of binary DAGs without OR gates, in order to ensure that our
resulting formula is a 3-CNF formula, we define Peb1(G)∗ to be just like Peb1(G) except that we include
dummy literals ¬α and ¬β in each singleton clause so that each source clause {s} becomes {s,¬α,¬β} and

74 Chapter 5: The PSPACE-Completeness of Input Resolution Total Space

the target clause becomes {¬t,¬α,¬β}. Note that there are no positive instances of α or β, so a proof of
Peb1(G) ` ∅ will correspond exactly with a proof of Peb1(G)∗ ` {¬α,¬β}.

We make use of the Peb1(G)∗ because unlike the Peb1(G) formulas, they are in 3-CNF .

We shall first show that the equivalence between pebbling number and I-RES space holds for I-RES-W−,
and then we will show that it also holds for standard I-RES by proving that the weakening rule is dispensable.
In order to prove these results, we first need to define the concept of an ‘I-RES Spine’, which is very similar
to the concept of a one-colour pebbling history from Definition 3.2.10:

Definition 5.6.3 (I-RES Spine). Let T be the tree underlying an I-RES refutation π of a formula F . The
spine B of π is the linear portion of T starting at π’s top clause C0 and ending at the goal clause Ck, with
all of the remaining clauses (which are all input clauses) removed from T . B can therefore be written as
a sequence of clauses B = B0, B1, ..., Bk. Depending on our application we may consider B0 to be the top
clause and Bk to be the goal clause, or the other way around.

The Equivalence of Black Pebbling & Input Total Space With Weakening

Our first lemma proves the forward direction of our equivalence and states that it is possible to take a pure
black pebbling strategy of an arbitrary DAG G and from it build an I-RES-W− derivation from Peb1(G)∗

with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β} in which the spine perfectly encodes the strategy.
The intuition behind this translation is illustrated by the following example: Consider the pyramid graph

G shown below in Figure 5.2. We will use the labels on its nodes to correspond to the variable names in its
pebbling formula, so Peb1(G)∗ = (4∨¬α∨¬β)∧ (5∨¬α∨¬β)∧ (6∨¬α∨¬β)∧ (¬4∨¬5∨ 2)∧ (¬5∨¬6∨
3) ∧ (¬2 ∨ ¬3 ∨ 1) ∧ (¬1 ∨ ¬α ∨ ¬β).

6

1

2 3

4 5

Figure 5.2: An Example of a Pyramid Graph; The Target Node is Vertex 1.

Figure 5.3 below shows how to translate the pure black pebbling strategy S0, S1, ..., S8 for G into an
I-RES-W− derivation of from Peb1(G)∗ with top clause {¬1,¬α,¬β} and goal clause {¬α,¬β} in which the
spine perfectly encodes the strategy:

More formally, translating a pebbling strategy into an I-RES-W− proof can be carried out according to
the following lemma:

Lemma 5.6.4. For any DAG G with target node t, if G has a pure black k-pebbling strategy (using sliding)
S = S0, S1, S2..., Sj−1, Sj where t ∈ Sj, then Peb1(G)∗ has an I-RES-W− derivation π with top clause
{¬t,¬α,¬β} and goal clause {¬α,¬β} in which π has a spine B = B0, B1, ..., Bj−1, Bj (where Bj is the top
clause and B0 is the goal clause) such that for all 0 ≤ i ≤ j, Bi =

⋃
v∈Si

{¬v} ∪ {¬α,¬β}.

Proof: Let G be any arbitrary DAG with target node t and let S = S0, S1, S2..., Sj−1, Sj be any pure
black k-pebbling strategy (using sliding) of G. Note that S0 = ∅ and t ∈ Sj . We will show that there is
a corresponding I-RES-W− derivation with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β} by induction
on the number of steps in the pebbling strategy S. It is useful to picture the pebbling strategy as a linear
sequence of sets drawn with the first step at the bottom, and the last step at the top. We will construct

5.6 The PSPACE-Completeness of Input Resolution Derivation Total Space 75

(2 ∨ ¬4 ∨ ¬5)

S8 : {1}

S7 : {1, 3}

S6 : {2, 3}

S5 : {2, 3, 6}

S4 : {2, 5, 6}

S3 : {2, 5}

S2 : {4, 5}

S1 : {4}

S0 : {} (¬α ∨ ¬β)

(4 ∨ ¬α ∨ ¬β)(¬4 ∨ ¬α ∨ ¬β)

(5 ∨ ¬α ∨ ¬β)(¬4 ∨ ¬5 ∨ ¬α ∨ ¬β)

(¬2 ∨ ¬5 ∨ ¬α ∨ ¬β)

(¬2 ∨ ¬5 ∨ ¬6 ∨ ¬α ∨ ¬β) (6 ∨ ¬α ∨ ¬β)

(¬2 ∨ ¬3 ∨ ¬6 ∨ ¬α ∨ ¬β)

(¬2 ∨ ¬3 ∨ ¬α ∨ ¬β)

(¬1 ∨ ¬3 ∨ ¬α ∨ ¬β)

(¬1 ∨ ¬α ∨ ¬β)

Weaken

Weaken

(1 ∨ ¬2 ∨ ¬3)

(3 ∨ ¬5 ∨ ¬6)

Figure 5.3: A Pure-Black Pebbling Strategy for G (Left) and its Corresponding I-RES-W− Refutation (Right)

the I-RES-W− proof and spine from the bottom (goal clause) to the top (top clause). Note that because the
dummy literals ¬α and ¬β are present in every clause of the proof spine, each spine clause has a width that
is two greater than the corresponding step in the pebbling strategy.

Basis: Step 0 of the pebbling strategy contains no pebbles. Therefore S0 = ∅. The corresponding clause
in our spine is the clause that we are trying to derive. Therefore B0 = {¬α,¬β}. Since

⋃
v∈S0

{¬v} = ∅, it
is clear that B0 =

⋃
v∈S0

{¬v} ∪ {¬α,¬β}.

Induction Hypothesis: Suppose that we have been able to translate our pebbling strategy up to and
including step i to I-RES proof steps in which the spine clauses encode the pebbling strategy. More specifically,
Bi =

⋃
v∈Si

{¬v} ∪ {¬α,¬β}, holds for step Si.

Induction Step: We now show how to translate step i + 1 of our pebbling strategy into a corresponding
spine clause. More specifically, we need to show that Bi+1 =

⋃
v∈Si+1

{¬v} ∪ {¬α,¬β} holds for Si+1, step
i+1 in our pebbling strategy. Pebbling step Si+1 could have come from step Si in one of exactly three ways:

1. By pebbling a source node s,

2. By removing a pebble from vertex u, or

3. If nodes a and b are pebbled predecessors of c, by sliding one of the pebbles from a or b to c.

Case 1: In this case, Si+1 = Si ∪ {s}. Let Bi+1 = Bi ∪ {¬s}. Then we can derive Bi from Bi+1 by
resolving Bi+1 with the input clause {s,¬α,¬β}, so this is a valid resolution step resolving on the vari-
able s. By our induction hypothesis, Bi =

⋃
v∈Si

{¬v} ∪ {¬α,¬β}, but Bi+1 = Bi ∪ {¬s}, so Bi+1 =⋃
v∈Si

{¬v} ∪ {¬α,¬β} ∪ {¬s}. Since Si+1 = Si ∪ {s}, we know that Bi+1 =
⋃

v∈Si+1
{¬v} ∪ {¬α,¬β}, as

required.

Case 2: In this case, Si+1 = Si − {u}. Let Bi+1 = Bi − {¬u}. Then we can derive Bi from Bi+1

by weakening Bi+1 to introduce {¬u}, so this is a valid resolution step. By our induction hypothesis,
Bi =

⋃
v∈Si

{¬v} ∪ {¬α,¬β}, but Bi+1 = Bi − {¬u}, so Bi+1 =
⋃

v∈Si
{¬v} ∪ {¬α,¬β} − {¬u}. Since

76 Chapter 5: The PSPACE-Completeness of Input Resolution Total Space

Si+1 = Si − {u}, we know that Bi+1 =
⋃

v∈Si+1
{¬v} ∪ {¬α,¬β}, as required.

Case 3: Without loss of generality, assume that we are sliding the pebble from a to c. In this case,
Si+1 = Si − {a} ∪ {c}. Let Bi+1 = Bi − {¬a} ∪ {¬c}. Then we can derive Bi from Bi+1 by resolving
Bi+1 on variable a with the input clause {¬a,¬b, c}, so this is a valid I-RES-W− step resolving on the
variable c. By our induction hypothesis, Bi =

⋃
v∈Si

{¬v} ∪ {¬α,¬β}, but Bi+1 = Bi − {¬a} ∪ {¬c},
so Bi+1 =

⋃
v∈Si

{¬v} ∪ {¬α,¬β} − {¬a} ∪ {¬c}. Since Si+1 = Si − {a} ∪ {c}, we know that Bi+1 =⋃
v∈Si+1

{¬v} ∪ {¬α,¬β}, as required.

Therefore, in all cases, there exists a valid next step in the spine such that Bi+1 =
⋃

v∈Si+1
{¬v}∪{¬α,¬β},

so by induction we can translate a pure black pebbling into an I-RES-W− proof in which the spine perfectly
encodes the pebbling strategy. In order to ensure that the I-RES-W− proof has top clause {¬t,¬α,¬β}, we
may have to apply several weakenings in reverse. This is because the pebbling strategy may end with more
than just the target node pebbled, in which case we would have to remove the literals corresponding to these
superfluous pebbles in order to ensure that the top clause is indeed at the top of our I-RES-W− proof.

Our next lemma shows the opposite direction, namely that it is possible to take any arbitrary I-RES-W−

derivation π and translate it into a pebbling strategy which uses at most two fewer pebbles than π’s spine
width.

Once again, we use the pyramid graph G from Figure 5.2 above as our example. Figure 5.4 below shows
how to translate the I-RES-W− derivation of from Peb1(G)∗ with top clause {¬1,¬α,¬β} and goal clause
{¬α,¬β} into a pure white pebbling strategy S0, S1, ..., S10 in which the strategy perfectly encodes the spine
of the proof. In fact, weakening is never required in this example, so it actually translates an I-RES derivation
to a pebbling strategy. Note how each resolution step may require up to two corresponding pebbling moves.

S0 : {1}

(4 ∨ ¬α ∨ ¬β)

S6 : {5, 6}

S5 : {3, 5}

S4 : {3, 4, 5}

S2 : {2, 3}

(¬6 ∨ ¬α ∨ ¬β)

(5 ∨ ¬α ∨ ¬β)

(2 ∨ ¬4 ∨ ¬5)

(3 ∨ ¬5 ∨ ¬6)

(1 ∨ ¬2 ∨ ¬3) (¬1 ∨ ¬α ∨ ¬β)

(¬α ∨ ¬β)

(6 ∨ ¬α ∨ ¬β)

S8 : {}

S7 : {6}

(¬5 ∨ ¬6 ∨ ¬α ∨ ¬β)

(¬3 ∨ ¬5 ∨ ¬α ∨ ¬β)

(¬3 ∨ ¬4 ∨ ¬5 ∨ ¬α ∨ ¬β)

S3 : {2, 3, 5}

(¬2 ∨ ¬3 ∨ ¬α ∨ ¬β)

S1 : {1, 3}

Figure 5.4: An I-RES-W− Derivation of {¬α,¬β} from Peb1(G)∗ (Left) and its Corresponding Pure White
Pebbling Strategy (Right)

More formally, translating an I-RES-W− proof into a pebbling strategy can be carried out according to
the following lemma:

Lemma 5.6.5. For any DAG G with target node t, if Peb1(G)∗ has an I-RES-W− derivation π with top clause
{¬t,¬α,¬β} and goal clause {¬α,¬β} in which π has a spine B = B0, B1, ..., Bj (where B0 is the top clause
and Bj is the goal clause), then there exists a pure white pebbling strategy (using sliding) S = S0, S1, S2..., Sl

where l is ≤ 2j with S0 = {t} and Sl = ∅ such that it is possible to translate each Bi into either one pebbling

5.6 The PSPACE-Completeness of Input Resolution Derivation Total Space 77

step Sq such that Sq =
⋃
¬v∈Bi

{v}−{¬α,¬β}, or to translate Bi into two consecutive pebbling steps Sq1 , Sq2

such that |Sq1 | ≤ |Bi| − 2 and Sq2 =
⋃
¬v∈Bi

{v} − {¬α,¬β}.
Proof: Let G be any arbitrary DAG with target node t and let π be an I-RES-W− derivation with top clause
{¬t,¬α,¬β} and goal clause {¬α,¬β} in which π has a spine of width k + 2. We will show how to take
this spine and use it to create a pure white pebbling strategy which uses at most k pebbles. It is useful to
picture π with the top clause at the top and the goal clause at the bottom. We shall move down the spine of
π and show how to build a corresponding pure white pebbling strategy. Note that every clause in the spine
contains the dummy literals ¬α and ¬β and that this accounts for the ‘+ 2’ in k + 2.

Basis: Consider the top clause of π, B0 = {¬t,¬α,¬β}; we create the equivalent first step of a pebbling by
placing a white pebble on node t to create pebbling step S0 = {t}. Therefore S0 =

⋃
¬v∈B0

{v} − {¬α,¬β},
as required.

Induction Hypothesis: Suppose that we have been able to translate our spine into a pebbling strategy
up to and including spine clause Bi and that Bi was translated to Sp such that Sp =

⋃
¬v∈Bi

{v}−{¬α,¬β}.

Induction Step: We will now show how to translate spine clause Bi+1 to create either one or two corre-
sponding pebbling steps. Spine clause Bi+1 could have come from Bi in one of exactly three ways:

1. By resolving Bi with a source clause {u,¬α,¬β} (resolving on variable u),

2. By resolving Bi with a propagation clause {¬a,¬b, c} (resolving on variable c), or

3. By weakening Bi to introduce a negative literal ¬u.

Case 1: By our induction hypothesis, we have translated spine clause Bi into pebbling step Sp such that
Sp =

⋃
¬v∈Bi

{v} − {¬α,¬β}. We now resolve Bi with the input clause {u,¬α,¬β} on variable u to cre-
ate Bi+1 = Bi − {¬u}. Our corresponding pebbling move is to take Sp and create Sq by removing the
white pebble on node u. Therefore Sq =

⋃
¬v∈Bi

{v} − {¬α,¬β} − {¬u}, but Bi+1 = Bi − {¬u}, so
Sq =

⋃
¬v∈Bi+1

{v} − {¬α,¬β}, as required.

Case 2: By our induction hypothesis, we have translated spine clause Bi into pebbling step Sp such that
Sp =

⋃
¬v∈Bi

{v}−{¬α,¬β}. We now resolve Bi with a propagation clause {¬a,¬b, c} on variable c to create
Bi+1 = Bi ∪ {¬a,¬b} − {¬c}. We make one or two corresponding pebbling moves, depending on whether
or not node a already has a pebble on it. If a already has a pebble on it (which means that ¬a ∈ Bi), then
we slide the white pebble on c to b. Therefore Sq = Sp ∪ {b} − {c}. But Sp =

⋃
¬v∈Bi

{v} − {¬α,¬β}, so
Sq =

⋃
¬v∈Bi

{v} − {¬α,¬β} ∪ {b} − {c}, but Bi+1 = Bi ∪ {¬b} − {¬c}, so Sq =
⋃
¬v∈Bi+1

{v} − {¬α,¬β},
as required.

Otherwise, if a does not already have a pebble on it, then we make two corresponding pebbling moves.
The first move is to place a white pebble on a to create an intermediate pebbling step Sq′ which does not
correspond directly to a spine clause. In other words, Sq′ = Sp ∪ {a}, so the size of our pebbling state has
increased by 1. Since Bi+1 = Bi ∪ {¬a,¬b}− {¬c}, and neither a nor b were pebbled in Sp, this means that
the variables a and b do not occur in Bi but we resolved on c, which means that our spine lost one literal
and gained two. Therefore |Bi+1| = |Bi| + 1, so both the spine and the number of pebbles have increased
by exactly 1, and our intermediate step has not violated the maximum number of allowed pebbles.

The second pebbling move is to slide the white pebble on c to b, thereby bringing the pebbling state
in line with the spine clause. This creates state Sq from Sq′ , where Sq = Sp ∪ {a, b} − {c}. But Sp =⋃
¬v∈Bi

{v} − {¬α,¬β} by our induction hypothesis, so Sq =
⋃
¬v∈Bi

{v} − {¬α,¬β} ∪ {a, b} − {c}, but
Bi+1 = Bi ∪ {¬a,¬b} − {¬c}, so Sq =

⋃
¬v∈Bi+1

{v} − {¬α,¬β}, as required.

Case 3: By our induction hypothesis, we have translated spine clause Bi into pebbling step Sp such that
Sp =

⋃
¬v∈Bi

{v}− {¬α,¬β}. We now weaken Bi to introduce the negative literal ¬u, so Bi+1 = Bi ∪ {¬u}.
Therefore our corresponding pebbling move is to take Sp and create Sq by placing a white pebble on u.
Therefore Sq = Sp ∪ {u} =

⋃
¬v∈Bi

{v} − {¬α,¬β} ∪ {u} =
⋃
¬v∈Bi+1

{v} − {¬α,¬β}, as required.

78 Chapter 5: The PSPACE-Completeness of Input Resolution Total Space

Therefore, in all three cases, there exists a valid next step in the pebbling such that Sq =
⋃
¬v∈Bi+1

{v} −
{¬α,¬β}, so by induction we can translate an I-RES-W− spine B into a pure white pebbling strategy S such
that S perfectly encodes B.

The following corollary combines the previous two Lemmas in order to prove an equivalence between the
black pebbling number of DAG G and the I-RES-W− total space of Peb1(G)∗.

Corollary 5.6.6. For any DAG G with target node t, G has a pure black k-pebbling strategy (using sliding)
S = S0, S1, S2..., Sj with j steps where t ∈ Sj and j is O(l) if and only if Peb1(G)∗ has an I-RES-W−

derivation π with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β} in which π has total space k + 5 and the
spine of π contains l clauses where l is O(j).

Proof: Let G be any arbitrary DAG with target node t.

⇒ Suppose that G has a pure black k-pebbling strategy (using sliding) S = S0, S1, S2..., Sj with j steps
where t ∈ Sj and j is O(q). By Lemma 5.6.4, it is possible to translate this pebbling strategy into an
I-RES-W− derivation π of Peb1(G)∗ with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β} such that the
spine of π contains l clauses, each of which has width at most k + 2. However, since Peb1(G)∗ is a 3-CNF
formula, each of the input clauses used to resolve with clauses in the spine has width 3. Since input refuta-
tions only require there to be two clauses in memory at any time, π therefore has total space k + 5 and its
spine contains O(j) clauses.

⇐ Suppose that Peb1(G)∗ has an I-RES-W− derivation π of {¬α,¬β} with top clause {¬t,¬α,¬β} in
which π has total space k + 5 and π’s spine contains l clauses where l is O(j). Since Peb1(G)∗ is a 3-CNF
formula, π has a spine with width k + 2. By Lemma 5.6.5, it is possible to translate this spine into a pure
white pebbling strategy containing l steps which uses at most k pebbles. But by Lemma 3.3.2, it is possible
to convert this pure white pebbling strategy into a pure black pebbling strategy with O(l) steps which uses
exactly the same number of pebbles. Therefore G has a pure black k-pebbling strategy with O(l) steps.

The Equivalence of Black Pebbling & Input Derivation Total Space

We now show that the weakenings in any I-RES-W− proof π can be removed to turn it into a weakening-free
proof π′ with the same spine width.

Lemma 5.6.7. For any unsatisfiable set of Horn clauses F , any C ∈ F , and any goal clause D, there exists
an I-RES-W− proof π from F with top clause C and goal clause D such that the spine width of π is at most
k and the size of π is s if and only if there exists an I-RES proof π′ from F with top clause C and goal clause
D
′ ⊆ D such that the spine width of π′ is at most k and the size of π′ is ≤ s.

Proof: Let F be any unsatisfiable set of Horn clauses, let C be any arbitrary initial clause in F , and let D
be any arbitrary goal clause.

⇒ Suppose that there exists an I-RES-W− proof π from F with top clause C and goal clause D such that
the spine width of π ≤ k and the size of π is O(s). In order to show that there exists an I-RES proof π′ from
F with top clause C and goal clause D

′ ⊆ D such that the spine width of π′ ≤ k and the size of π′ is O(s),
we will show how to translate π into π′ without losing any of these properties. We shall first translate π into
π∗ by removing all of the weakenings in π as well as all applications of the resolution rule which no longer
apply due to the fact that weakened variables (and all other variables derived by Resolving on them) are now
missing. It is important to note that π∗ is not necessarily a legitimate I-RES proof, because our translation
method may cause two successive clauses in the spine of π to be translated into successive duplicate clauses
in the spine of π∗.

We translate π into π∗ via induction on the depth (the top clause having the smallest depth) of π
according to the following inductive procedure / proof. We shall translate each clause Ci in the spine of π
into a clause C∗

i in the spine of π∗ such that ∀i Ci ⊆ C∗
i .

5.6 The PSPACE-Completeness of Input Resolution Derivation Total Space 79

Basis: The top clause in π is C. Set the top clause in π∗ to be C as well. Therefore C0 ⊆ C∗
0 , as required.

Induction Hypothesis: Suppose that Ci ⊆ C∗
i .

Induction Step: We now show how to translate π into π∗ such that Ci+1 ⊆ C∗
i+1:

Case 1: Suppose that Ci+1 came from Ci in π via weakening. In this case, simply omit this weakening
step in π∗. Since Ci ⊆ C∗

i by our induction hypothesis, and Ci+1 has grown, whereas C∗
i+1 has not, we can

conclude that Ci+1 ⊆ C∗
i+1.

Case 2a: Suppose that Ci+1 came from Ci in π by resolving Ci with the input clause I on variable x, but
this resolution step is not possible in π∗ because x /∈ C∗

i . In this case, simply omit this resolution step in
π∗. We know by the induction hypothesis that Ci ⊆ C∗

i , and since x /∈ C∗
i , we can conclude that Ci+1 ⊆ C∗

i+1.

Case 2b: Suppose that Ci+1 came from Ci in π by resolving Ci with the input clause I on variable x, and
x ∈ C∗

i . In this case, simply perform the same resolution step in π∗; i.e. resolve C∗
i with I to get C∗

i+1. By
the induction hypothesis that Ci ⊆ C∗

i , so Ci+1 ⊆ C∗
i+1.

Therefore, in all cases, Ci+1 ⊆ C∗
i+1, showing that by induction, D ⊆ D∗, where D is the goal clause

of π and D∗ is the goal clause of π∗. Finally, since π∗ might contain duplicate clauses along its spine, we
simply remove all but one out of each group of duplicates to create π′, which is now a legitimate I-RES proof.
Therefore there exists an I-RES proof π′ from F with top clause C and goal clause D

′ ⊆ D such that the
spine width of π′ ≤ k and the size of π′ is ≤ s, as required.

⇐ Suppose there exists an I-RES proof π′ from F with top clause C and goal clause D
′ ⊆ D such that

the spine width of π′ ≤ k and the size of π′ is ≤ s. Since every I-RES proof is an I-RES-W− proof, π′ is also
an I-RES-W− proof with goal clause D

′ ⊆ D. We convert π′ to π by weakening D
′
to get D. Therefore there

exists an I-RES-W− proof π from F with top clause C and goal clause D such that the spine width of π ≤ k
and the size of π is O(s), as required.

The following corollary is identical to Corollary 5.6.6 except that instead of proving an equivalence between
the black pebbling number of a DAG G and the I-RES-W− total space of Peb1(G)∗, here we use our weakening
removal Lemma from above to show that this equivalence also holds for I-RES without weakening:

Corollary 5.6.8. For any DAG G with target node t, G has a pure black k-pebbling strategy (using sliding)
S = S0, S1, S2..., Sj with j steps where t ∈ Sj and j is O(l) if and only if Peb1(G)∗ has an I-RES derivation
π with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β} in which π′ has total space k + 5 and size l where l
is O(j).

Proof: Let G be any arbitrary DAG with target node t.

⇒ Suppose that G has a pure black k-pebbling strategy (using sliding) S = S0, S1, S2..., Sj with j steps
where t ∈ Sj and j is O(l). By Corollary 5.6.6, Peb1(G)∗ has an I-RES-W− derivation π with top clause
{¬t,¬α,¬β} and goal clause {¬α,¬β} in which π has total space k + 5 and size l where l is O(j). Because
Peb1(G)∗ is a 3-CNF formula, π’s spine has width ≤ k + 2. By Lemma 5.6.7 there exists an I-RES proof π′

from F with top clause {¬t,¬α,¬β} and goal clause D
′ ⊆ {¬α,¬β} such that the spine width of π′ ≤ k + 2

and the size of π′ is O(j). Since F does not include any positive instances of the variables α or β, we can
conclude that D

′
= {¬α,¬β}. Therefore, since Peb1(G)∗ is a 3-CNF formula, π′ has total space k + 5 and

size O(j), with the same top and goal clauses as π.

⇐ Suppose that Peb1(G)∗ has an I-RES derivation π′ with top clause {¬t,¬α,¬β} and goal clause
{¬α,¬β} in which π′ has total space k + 5 and size l where l is O(j). But every I-RES proof is an I-RES-W−

proof, so there exists an I-RES-W− derivation π with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β} in

80 Chapter 5: The PSPACE-Completeness of Input Resolution Total Space

which π has total space k + 5 and size l, which is O(l). Therefore, by Corollary 5.6.6 G has a pure black
k-pebbling strategy.

5.6.2 The PSPACE-Completeness of Input Derivation Total Space

This section contains some immediate corollaries to the previous results. Here we prove the PSPACE-
Completeness of three slightly different versions of the I-RES derivation total space problem, which is sur-
prising since I-RES seems like such a trivial Resolution refinement.

The I-RES derivation total space problem (ITS) is defined as follows: The input instance is (F , C, D, k),
where F is an unsatisfiable set of clauses, C is any clause in F , D is a goal clause, and k is an integer. The
problem is to determine if there exists an I-RES derivation from F with top clause C, goal clause D, and
total space at most k.

We shall prove the PSPACE-Completeness of three different versions of this problem:

1. The set F is restricted to containing only Horn clauses, and instead of asking whether there exists an
I-RES derivation from F with top clause C, goal clause D, and total space at most k, we ask whether
there exists an I-RES-W− derivation with negative weakening from F with top clause C, goal clause D,
and total space at most k. This is the input derivation with negative weakening total space problem,
and we shall refer to the language associated with it as HWITS, where the ‘HW’ stands for ‘Horn
with Negative Weakening’.

2. This version of the problem is almost identical to the previous one; the set F is still restricted to
containing only Horn clauses, but this time we are dealing with I-RES rather than I-RES-W−. We shall
refer to the language associated with this version of the problem as HITS.

3. Again, this version of the problem is almost identical to the previous one, only this time there is no
restriction on F . We shall refer to the language associated with this version of the problem as ITS.

The PSPACE-Completeness of Input Total Space with Weakening

The language HWITS is formally defined as follows:

Definition 5.6.9 (HWITS). HWITS = {(F,C,D, k) | F is a Horn formula for which there exists an
I-RES-W− refutation with top clause C, goal clause D, and total space at most k.}

The PSPACE-Completeness of HWITS follows from the equivalence between the black pebbling number
of DAG G and the I-RES-W− total space of Peb1(G)∗ given in Corollary 5.6.6 from the previous section.
This language is formally defined as follows:

Theorem 5.6.10. HWITS is PSPACE-Complete under logspace reducibility.

Proof: We first show that HWITS ∈ PSPACE . We are given an input instance (F , C ∈ F , D, k) and
asked to determine if F has an I-RES-W− proof π with top clause C and goal clause D such that π’s total
space is bounded above by k. Since we are dealing with input refutations, we know that if such a π exists,
then each of its configurations contains no more than two clauses. Since each clause contains at most n
literals, it is clear that every configuration in π takes only polynomial space.

Our algorithm proceeds as follows: Start with a configuration C0 = {C}. Guess configuration C1, check
to ensure that it follows from C0 by a legal I-RES-W− step, and erase configuration C0. Next, guess con-
figuration C2, check to make sure that it follows from C1, and that TS(C2) ≤ k. Erase configuration C1,
and continue in this way until the goal clause has been derived. Note that at any time, there are only
two configurations in memory. We are dealing with input refutations, so we know that each configuration
contains no more than two clauses. Since each clause contains at most n literals, it is clear that this non-
deterministic algorithm requires polynomial space. This shows that HWITS ∈ NPSPACE . Finally, we

5.7 Related Complexity Results 81

appeal to Savitch’s Theorem [Sav70] to show that HWITS ∈ PSPACE .

Next we show that HWITS is PSPACE-Hard by giving a reduction from the black pebbling number
problem with sliding (BLACK-PEB) from [GLT80] which was shown to be PSPACE-Complete. We are
given an instance (G, k) where t is the target node in G and we wish to convert it to an instance (F , C ∈ F ,
D, k) such that (G, k) ∈ BLACK-PEB if and only if (F , C ∈ F , D, k) ∈ HWITS. Our reduction proceeds
as follows: Take (G, k) and output (Peb1(G)∗, {¬t,¬α,¬β}, {¬α,¬β}, k + 5), which is clearly a logspace
reduction. The proof of correctness for this reduction is given by Corollary 5.6.6.

The PSPACE-Completeness of Horn Input Total Space

The language HITS is formally defined as follows:

Definition 5.6.11 (HITS). HITS = {(F,C,D, k) | F is a Horn formula for which there exists an I-RES
refutation with top clause C, goal clause D, and total space at most k.}

The PSPACE-Completeness of HITS follows immediately from the equivalence between the black peb-
bling number of DAG G and the I-RES total space of Peb1(G)∗ given in Corollary 5.6.8 from the previous
section.

Corollary 5.6.12. HITS is PSPACE-Complete under logspace reducibility.

Proof: To show that HITS ∈ PSPACE , we simply use the same algorithm given in Theorem 5.6.10.
To show that HITS is PSPACE-Hard, we give a reduction from BLACK-PEB. As in Theorem 5.6.10,

take (G, k) and output (Peb1(G)∗, {¬t,¬α,¬β}, {¬α,¬β}, k +5), which is clearly a logspace reduction, and
its proof of correctness is given by Corollary 5.6.8.

The PSPACE-Completeness of Input Total Space

The language ITS is formally defined as follows:

Definition 5.6.13 (ITS). ITS = {(F,C,D, k) | F is a formula for which there exists an I-RES refutation
with top clause C, goal clause D, and total space at most k.}

The PSPACE-Completeness of ITS follows trivially from the PSPACE-Completeness of ITS:

Corollary 5.6.14 (Main Result). ITS is PSPACE-Complete under logspace reducibility.

Proof: To show that ITS ∈ PSPACE , we simply use the same algorithm given in Theorem 5.6.10.
To show that ITS is PSPACE-Hard, we reduce from HITS. Take the input F for HITS and check to

see if it is a set of Horn clauses. If not, then output a pre-chosen formula which is not in ITS. Otherwise,
simply output F . Clearly this is a logspace reduction, and its correctness is immediate since Horn formulas
are just a special case of what an ITS solver can decide.

5.7 Related Complexity Results

The PSPACE-Completeness of I-RES total space has some interesting corollaries:

5.7.1 The PSPACE-Completeness of the Input Derivation Width Problem

One interesting point of note is that I-RES total space and width are virtually identical. More specifically,
for every k-CNF formula, w(F `I-RES D) = TS(F `I-RES D)− k.

The Peb1(G)∗ formulas are 3-CNF formulas, so by Corollary 5.6.8, for any DAG G with pebbling
number k = B-Peb(G), the width of any I-RES derivation of goal clause {¬α,¬β} from Peb1(G)∗ with
top clause {¬t,¬α,¬β} is k + 2. This implies that the I-RES derivation width problem is therefore also
PSPACE-Complete:

82 Chapter 5: The PSPACE-Completeness of Input Resolution Total Space

Corollary 5.7.1. Given a formula F , a top clause C, goal clause D, and integer k, the problem of deter-
mining if there exists an I-RES derivation of D from F with top clause C with width at most k is PSPACE-
Complete under logspace reducibility.

5.7.2 An Optimal Size / Space Tradeoff For Input Resolution

In this section we describe another corollary to the results in Section 5.6.1. This result also relies closely
on one of the most surprising facts concerning pebbling, namely that there exist infinite families of DAGs
which take an exponential amount of time to be pebbled with the minimum number of pebbles, but if one
is willing to use just one or two more pebbles, then they can be pebbled in linear time. The earliest known
example of this phenomenon can be found in [Lin78], where Lingas gives an infinite family of monotone
circuits such that pebbling any of them with the minimum number of pebbles requires 2Ω(n1/3) time, where
n is the number of nodes in the circuit. However, if given only two more pebbles, the amount of time required
drops exponentially to only O(n), giving a massive pebble / pebbling time tradeoff.

This result was later improved by Gilbert, Lengauer, and Tarjan:

Lemma 5.7.2 ([GLT80]). There exists an infinite family of DAGs G, such that pebbling any G ∈ G with
the minimum number of pebbles takes Ω(2n) time, but if only one more pebble is used, then the amount of
time required to pebble G drops exponentially to only O(n), where n is the number of vertices in G.

Such an exponential separation at the cost of only one pebble is extraordinary, but since Corollary 5.6.8
gives an exact relationship between black pebbling and total space for I-RES derivations, it is possible to
translate this amazing result from the world of pebbling to the realm of Resolution, thereby giving a massive
size / total space tradeoff for I-RES:

Corollary 5.7.3. There exists an infinite family of formulas F = {Peb1(G)∗ | G ∈ G} such that for every
F ∈ F , every I-RES derivation π of F with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β} where π has
the minimum required total space, has size Ω(2n), where n is the number of variables in F . However, if only
one more unit of total space is permitted, then the size of π drops to only O(n).

Proof: Let G be the family of DAGs from Lemma 5.7.2, and let F be any arbitrary formula from F .
Therefore F = Peb1(G)∗ for some G ∈ G. G can be pebbled with k but not with fewer than k pebbles. By
Corollary 5.6.8, F has an I-RES derivation π with top clause {¬t,¬α,¬β} and goal clause {¬α,¬β} such
that π requires total space k + 5, but does not have an I-RES derivation with total space less than k + 5.
We know that to pebble G with k pebbles requires Ω(2n) time, so by Corollary 5.6.8, π has a size of at least
Ω(2n). Similarly, we know that pebbling G with k + 1 pebbles requires O(n) time, so again by Corollary
5.6.8, there exists a proof π′ with total space k + 5 + 1 = k + 6 and size O(n), as required.

Therefore, using just one extra unit of total space yields an exponential decrease in size, giving an optimal
size / total space tradeoff. As with our PSPACE-Completeness results from the previous section, this is
more evidence that the computational complexity of I-RES is underestimated.

5.8 Open Problems & Conjectures Related to Input Resolution
Total Space

Although we have determined the complexities of several problems related to I-RES, this area of research
still has a few open problems. For example, in Section 5.3.2 we showed that several problems such as deciding
MU -IRES-UNSAT and determining if a minimally unsatisfiable formula has an I-RES refutation of size
at most k are in P. However, Corollary 5.3.4 showed us that IRES-UNSAT is P-Complete. It therefore
may be possible to show that many of the problems pertaining to minimally unsatisfiable formulas are also
P-Complete or complete for some other complexity class. One problem in particular which stands out is

the complexity of determining if a formula F has an I-RES refutation with top clause C and goal clause D.
In Corollary 5.6.14 we showed that determining the total space for the corresponding problem is PSPACE-
Complete, and being able to compare the complexities of the same problem, both with and without the k
parameter would be interesting.

This brings up another interesting open problem. We were able to show the PSPACE-Completeness of
the I-RES total space derivation problem with top clause and goal clause, but have not been able to prove
any results about the corresponding refutation problem without these extra clauses as part of the input
instance. We conjecture that this problem is also PSPACE-Complete, and this result would help to tie up
some loose ends.

Another open problem worth mentioning is related to tradeoffs. In Section 5.7.2 we showed that I-RES
derivations have massive size / total space tradeoffs. Given the nature of the results in Part II of this
thesis, it is reasonable to conjecture that many exponential tradeoffs of this nature exist for various forms of
Resolution and various resources such as space, width, and depth. One of the most interesting examples of
a massive tradeoff would be for RES width, and it is somewhat surprising that this problem has not already
been studied.

One final open problem not pertaining to complexity is that of counting the number of formulas in MU -
IRES-UNSAT . Since we have given an exact matrix characterization of these formulas, it may be possible
to give an exact characterization for the number of MU -IRES-UNSAT formulas on n variables as a function
of n.

Chapter 6

The PSPACE-Hardness of Resolution
Variable Space

6.1 Introduction & Motivation

In this chapter we prove the PSPACE-Hardness of another Resolution resource problem, that of RES
variable space, and also show a strong relationship between it and the black-white pebbling game on arbitrary
monotone circuits of unbounded fan-in. These results rely directly on previous work done in [BS02, HP07]
and are proved by once again employing the pebbling formulas as we did in Chapters 4 and 5.

Although variable space is not as practical or natural a measure as clause space or total space, this
result differs from those in the previous two chapters in that it pertains to the full-strength RES proof
system, whereas they contain results for the Resolution refinements T-RES and I-RES. One final point worth
mentioning is that even though we prove that RES variable space is PSPACE-Hard, we are unable to show
that it is in PSPACE , suggesting the possibility that this problem may even be EXPT IME-Hard or worse.

This chapter is organized as follows: In Section 6.2 we show that for any monotone circuit C, the minimum
RES variable space of refuting Peb1(C) is exactly equal to BW -Peb(C). Next, in Section 6.3 we put this
equivalence result to use in order to prove the PSPACE-Hardness of the RES Variable Space problem.
Finally, in Sections 6.4 and 6.5 we respectively discuss related complexity results and open problems.

6.2 The Equivalence of Black-White Pebbling & Resolution Vari-
able Space

In this section we prove that for any monotone circuit C, the minimum RES variable space of refuting
Peb1(C) is exactly equal to BW -Peb(C), where BW -Peb(C) is defined without sliding. Theorem 3.3.5
(proved by Ben-Sasson) gives half of this equivalence, and we prove the other half by showing that for any
monotone circuit C with unbounded fan-in, V S(Peb1(C) `RES-EM ∅) ≤ BW -Peb(C), where BW -Peb(C) is
defined without sliding and RES-EM is a slight variation of RES which allows the use of some trivial axioms.
We then show how to dispense with these axioms to prove that the result also holds for RES. The RES-EM
proof system is defined as follows:

Definition 6.2.1 (RES-EM). The proof system RES-EM is just like RES except that all n clauses representing
the law of excluded middle of the form (a∨¬a) are present as axioms and may be used at any time as if they
were initial clauses.

Before proving our equivalence theorem, we first need to define the notion of a ‘dependency set’. Intu-
itively, the dependency set of a vertex i is the set of all white pebbles that were needed in order to pebble i.
More formally dependency sets are defined as follows:

85

86 Chapter 6: The PSPACE-Hardness of Resolution Variable Space

Definition 6.2.2 (Dependency Set). Given a pebbling strategy S = (B0,W0), (B1,W1), ..., (Bj ,Wj) on a
monotone circuit C, for each integer 0 ≤ k ≤ j and each vertex i ∈ Bk ∪Wk, we define the Dependency Set
of i, denoted ∆(i), as follows:

1. If the difference between (Bk,Wk) and (Bk+1,Wk+1) is that a black pebble was placed on AND gate i
of degree d, with immediate predecessors p1, ..., pd, then set ∆(i) =

⋃
1≤w≤d ∆(pw).

2. If the difference between (Bk,Wk) and (Bk+1,Wk+1) is that a black pebble was placed on OR gate i,
then set ∆(i) = ∆(pw) for some pebbled predecessor pw of i.

3. If the difference between (Bk,Wk) and (Bk+1,Wk+1) is that a white pebble was placed on node i where
i is either an AND gate or an OR gate, then set ∆(i) = {i}.

4. If the difference between (Bk,Wk) and (Bk+1,Wk+1) is that a black pebble was removed from node i
where i is either an AND gate or an OR gate, then ∆(i) becomes undefined, and there is no change in
the other Dependency Sets.

5. If the difference between (Bk,Wk) and (Bk+1,Wk+1) is that a white pebble was removed from AND
gate i of degree d, with immediate predecessors p1, ..., pd, then for all v such that i ∈ ∆(v), ∆(v) =
(∆(v)− {i})

⋃
1≤w≤d ∆(pw).

6. If the difference between (Bk,Wk) and (Bk+1,Wk+1) is that a white pebble was removed from OR gate
i then for all v such that i ∈ ∆(v), ∆(v) = (∆(v)− {i})∪∆(pw) for some pebbled predecessor pw of i.

7. Finally, if a vertex i has no pebble on it, then ∆(i) is undefined.

We now prove a lemma giving the first half of our variable space / black-white pebbling number equiv-
alence. The high-level idea of this proof is as follows: For a monotone circuit C, we take a black-white
pebbling strategy S = (B0,W0), (B1,W1), ..., (Bj ,Wj), and for each (Bk,Wk), we create a special RES-EM
configuration Mk. We then build a RES refutation of Peb1(C) using S by induction on k to create an Mk

for each (Bk,Wk) such that V S(Mk) ≤ |Bk ∪ Wk|. This is done by showing how to derive each Mk+1

from Mk using variable space bounded by max{|Bk ∪ Wk|, |Bk+1 ∪ Wk+1|}. Since (B0,W0) = (∅, ∅), and
since (Bj ,Wj) = ({t}, ∅), the resulting proof is a RES-EM refutation of Peb1(C) bounded by variable space
BW -Peb(C).

This brings us to the final definition that we shall need before proceeding, that of the special configuration
called Mk:

Definition 6.2.3 (Mk). Mk = {(∆(i) ⊃ i) | i is a pebbled vertex in pebbling step (Bk,Wk)}

Lemma 6.2.4. For any monotone circuit C with unbounded fan-in and target t, V S(Peb1(C) `RES-EM ∅) ≤
BW -Peb(C), where BW -Peb(C) is defined without sliding.

Proof: Let C be any arbitrary monotone circuit with unbounded fan-in and target t, and let
S = (B0,W0), (B1,W1), ..., (Bj ,Wj) be any pebbling strategy for C with (B0,W0) = (∅, ∅), and (Bj ,Wj) =
({t}, ∅).

We show by induction on k how to take each pebbling step (Bk,Wk) and build a configuration-style RES
refutation from Peb1(C) which includes the configurations M0,M1, ...,Mj such that for all k, we can derive
Mk+1 from Mk within variable space max{|Bk ∪Wk|, |Bk+1 ∪Wk+1|}.

Of course, we write (∆(i) ⊃ i) for notational purposes only; all clauses are in CNF . The set ∆(i) should
be interpreted as a conjunction and (p1 ∧ ...∧ pm−1 ⊃ pm) is equivalent to the clause {¬p1, ...,¬pm−1, pm}.

Basis: (B0,W0) = (∅, ∅), so M0 = ∅. Clearly the empty configuration can be derived from Peb1(C) via
RES-EM within variable space 0 = |B0 ∪W0|.

Induction Hypothesis: Suppose that for (Bk,Wk), V S(Mk) ≤ |Bk ∪Wk|.

6.2 The Equivalence of Black-White Pebbling & Resolution Variable Space 87

Induction Step: We now show that for (Bk+1,Wk+1), we can derive Mk+1 from Mk all within variable
space max{|Bk ∪Wk|, |Bk+1 ∪Wk+1|}. Since we are not considering sliding, (Bk+1,Wk+1) could have come
from (Bk,Wk) by placing or removing a single pebble according to one of the following 6 cases:

1. By placing a black pebble on AND gate i,

2. By placing a black pebble on OR gate i,

3. By placing a white pebble on node i, where i is either an AND or an OR gate,

4. By removing a black pebble from node i, where i is either an AND or an OR gate,

5. By removing a white pebble from AND gate i (This is the most difficult case.), or

6. By removing a white pebble from OR gate i.

Case 1: Since we placed a black pebble on AND gate i, (Bk+1,Wk+1) = (Bk ∪ {i},Wk), which means that
Mk+1 = Mk ∪ {(∆(i) ⊃ i)}, where ∆(i) =

⋃
1≤w≤d ∆(pw). By our induction hypothesis, we know that for

(Bk,Wk), V S(Mk) ≤ |Bk ∪Wk|, so we need to show how to derive Mk+1 from Mk within variable space
max{|Bk ∪Wk|, |Bk+1 ∪Wk+1|}. This is done as follows: Node i has predecessors p1, ..., pd, all of which
are pebbled. Therefore, (∆(pw) ⊃ pw) ∈ Mk for every predecessor pw of i. We must show how to derive
(∆(i) ⊃ i). Since i has p1, ..., pd as predecessors, Peb1(C) contains the clause (p1 ∧ ...∧ pd ⊃ i) as an initial
clause. Download this clause into memory. Since the variables p1, ..., pd are already all present in Mk, this
adds at most one to our total variable space. Next, resolve (p1 ∧ ... ∧ pd ⊃ i) with (∆(p1) ⊃ p1) on variable
p1 to get (∆(p1) ∧ p2 ∧ ... ∧ pd ⊃ i). Repeat this for every (∆(pw) ⊃ pw) to get {

⋃
1≤w≤d ∆(pw) ⊃ i}. But

since ∆(i) =
⋃

1≤w≤d ∆(pw), we have derived (∆(i) ⊃ i), all within variable space |Bk+1 ∪Wk+1|.

Case 2: This is a simpler form of the previous case. Since we placed a black pebble on OR gate i,
(Bk+1,Wk+1) = (Bk ∪ {i},Wk), which means that Mk+1 = Mk ∪ {(∆(i) ⊃ i)}, where ∆(i) = ∆(pw) for
some pebbled predecessor pw of i. Therefore, (∆(pw) ⊃ pw) ∈ Mk, and Peb1(C) contains the initial clause
(pw ⊃ i). Download this clause into memory, thereby adding at most one to the total variable space. Now we
resolve (∆(pw) ⊃ pw) with (pw ⊃ i) to get (∆(pw) ⊃ i). But ∆(i) = ∆(pw), so we have derived (∆(i) ⊃ i),
all within variable space |Bk+1 ∪Wk+1|.

Case 3: Since we placed a white pebble on node i which is either an AND gate or an OR gate, (Bk+1,Wk+1) =
(Bk,Wk ∪ {i}), which means that Mk+1 = Mk ∪ {i ⊃ i}. By our induction hypothesis, we know that for
(Bk,Wk), V S(Mk) ≤ |Bk ∪Wk|, so we need to show how to derive (i ⊃ i). Since we are using the system
RES-EM, this is an axiom, so simply download it. Clearly this does not exceed variable space |Bk+1 ∪Wk+1|,
since Wk+1 has a pebble on i.

Case 4: Since we removed a black pebble from node i which is either an AND or an OR gate, (Bk+1,Wk+1) =
(Bk− {i},Wk), which means that Mk+1 = Mk− {(∆(i) ⊃ i)}. Therefore, in order to derive Mk+1 from Mk,
simply drop the clause (∆(i) ⊃ i), which can clearly be done without increasing the variable space.

Case 5: This case is more complicated than the others, because i may be in the dependency sets of many
other vertices. Since we removed a white pebble from vertex i, (Bk+1,Wk+1) = (Bk,Wk− {i}). In order
to derive Mk+1 from Mk, we must therefore drop the clause (∆(i) ⊃ i) from Mk, and also show how to
remove the literal ¬i from all other clauses that contain it. Because removing a white pebble requires all
predecessors to be pebbled, there are two sub-cases to consider:

Case 5a: Suppose that i has no predecessors; i.e. i is a source node. In this case we simply drop the
clause (i ⊃ i) from Mk, and resolve every remaining clause in Mk which contains ¬i as part of its dependency
set with the initial clause (i). Clearly this removes the literal ¬i from all clauses containing it, and does not
increase the variable space, since i is already present in Mk.

Case 5b: Suppose that i has in-degree d and has predecessors p1, ..., pd, of which 0 or more have black
pebbles on them in (Bk,Wk). Therefore Mk contains the clause (∆(i) ⊃ i), and for each predecessor pw

88 Chapter 6: The PSPACE-Hardness of Resolution Variable Space

which has a black pebble on it, Mk contains the clause (∆(pw) ⊃ pw). Furthermore, Peb1(C) contains
the clause (p1 ∧ ... ∧ pd ⊃ i) as an initial clause. In order to derive Mk+1 from Mk, first drop the clause
(∆(i) ⊃ i). Next, we need to show how to turn each clause (∆(v) ⊃ v) where i ∈ ∆(v) and turn it into the
clause ((∆(v)− {i})

⋃
1≤w≤d ∆(pw) ⊃ v).

To do this, first download initial clause (p1 ∧ ... ∧ pd ⊃ i) into memory. All of its variables are al-
ready present in Mk, so this does not change the variable space. Then, for each clause (∆(v) ⊃ v)
where i ∈ ∆(v), do the following: Resolve (∆(v) ⊃ v), with the initial clause (p1 ∧ ... ∧ pd ⊃ i) to get
((∆(v)− {i}) ∪ {p1, ..., pd} ⊃ v). Finally, for each pw which is a predecessor of i, if pw has a black pebble
on it in (Bk,Wk), then resolve with (∆(pw) ⊃ pw). For each pw with a white pebble on it, ∆(pw) = {pw}, so
this process results in the derivation of the clause ((∆(v)− {i})

⋃
1≤w≤d ∆(pw) ⊃ v), all without increasing

the variable space.

Case 6: This case is a slightly simpler form of the previous case. Once again, there are two sub-cases to
consider:

Case 6a: This case is identical to 5a.
Case 6b: Suppose that i has in-degree d with predecessors p1, ..., pd. Let pw be one of i’s pebbled

predecessors. Therefore Mk contains the clauses (∆(i) ⊃ i) and (∆(pw) ⊃ pw). To derive Mk+1 from Mk,
first drop the clause (∆(i) ⊃ i). Next, download the initial clause (pw ⊃ i) into memory. All of its variables
are already present in Mk, so this does not change the variable space. Then, for each clause (∆(v) ⊃ v)
where i ∈ ∆(v), turn (∆(v) ⊃ v) into ((∆(v) − {i}) ∪ {pw}) ⊃ v) by taking (∆(v) ⊃ v) and resolving on
variable i with (pw ⊃ i). None of these steps increase the variable space.

Therefore, in all cases, each Mk+1 can be derived in RES-EM from Mk by induction such that the whole
proof uses a variable space of at most BW -Peb(C). This yields the configuration Mj = {(t)} which corre-
sponds to the final pebbling step (Bj ,Wj) = ({t}, ∅). In order to derive the empty clause, simply resolve
with the initial clause (¬t), which does not change the variable space. Hence we can conclude that for any
circuit C with target t, V S(Peb1(C) `RES-EM ∅) ≤ BW -Peb(C) without sliding, as required.

The following Lemma proves that RES and RES-EM are equivalent with respect to variable space:

Lemma 6.2.5. For any CNF formula F and clause C, V S(F `RES-EM C) = V S(F `RES C).

Proof: ⇒ Let π be a RES-EM derivation of C from F . Since resolving with law of excluded middle
axioms (a ∨ ¬a) results in exactly the same clause that we started with, we may remove all such resolution
steps to give us a RES derivation π′ of C. Furthermore, since a must already be present for us to be
able to resolve with (a ∨ ¬a), removing these steps does not change the variable space of π. Therefore
V S(F `RES-EM C) ≤ V S(F `RES C).
⇐ Let π be a RES derivation of C from F . Since every RES derivation is a RES-EM derivation, π is also a
RES-EM derivation of C from F , so V S(F `RES C) ≤ V S(F `RES-EM C).

This allows us to prove our main result in this section, namely that the black-white pebbling number of
monotone circuits and the RES variable space of their pebbling contradictions are equivalent:

Theorem 6.2.6. For any monotone circuit C, BW -Peb(C) = V S(Peb1(C) `RES ∅), where BW -Peb(C) is
defined without sliding.

Proof: ⇒ From Theorem 3.3.5, BW -Peb(C) ≤ V S(Peb1(C) `RES ∅).
⇐ Conversely, by Lemmas 6.2.4 and 6.2.5, V S(F `RES C) ≤ BW -Peb(C).

This result together with Lemma 3.3.1 immediately gives us the corresponding result with sliding as a
corollary:

Corollary 6.2.7. For any monotone circuit C, BW -Peb(C) = V S(Peb1(C) `RES ∅)+1, where BW -Peb(C)
is defined with sliding.

6.3 The PSPACE-Hardness of Resolution Variable Space 89

6.3 The PSPACE-Hardness of Resolution Variable Space

We now prove this chapter’s main result, namely the PSPACE-Hardness of the RES variable space problem,
which follows as an immediate corollary to the results in the previous section. Given a formula F and integer
k, the RES variable space problem asks if F has a RES refutation with variable space at most k. We shall
refer to the language associated with this problem as RV S, and it is formally defined as follows:

Definition 6.3.1 (RV S). RV S = {(F, k) | F is a formula for which there exists a RES refutation with
variable space at most k.}

The proof is a reduction from the PSPACE-Complete black-white pebbling problem BW -PEB on mono-
tone circuits with sliding from [HP07]. In addition to the lower bound, we also give an upper bound, albeit
a weak one, by showing that RV S ∈ EXPSPACE :

Corollary 6.3.2 (Main Result). RV S is PSPACE-Hard under logspace reducibility, and is also in
EXPSPACE.

Proof: To show that RV S is PSPACE-Hard, our reduction proceeds by taking the input (C, k), where C
is a circuit and k an integer, and outputting (Peb1(C), k − 1). Clearly this is a logspace reduction, and the
proof of correctness is immediate from Corollary 6.2.7: If (C, k) ∈ BW -PEB, then BW -Peb(C) ≤ k, so
by Corollary 6.2.7, V S(Peb1(C) `RES ∅) ≤ k − 1, which means that (Peb1(C), k − 1) ∈ RV S. Otherwise,
if (C, k) /∈ BW -PEB, then BW -Peb(C) > k, so by Corollary 6.2.7, V S(Peb1(C) `RES ∅) > k − 1, which
means that (Peb1(C), k − 1) /∈ RV S, thereby showing that RV S is PSPACE-Hard.

To show that RV S ∈ EXPSPACE , we give a simple nondeterministic algorithm: Let F be an arbi-
trary unsatisfiable formula on n variables. Since there are exactly 3n different clauses on n variables, each
configuration in any RES refutation π of F can contain at most 3n clauses. Since each clause can have at
most n literals, each configuration of π requires a total space of at most n · 3n. However, 3n = 2log3(n), so
n · 3n = n · 2log3(n) ≤ 2n · 2log3(n) ≤ 2log3(n)+1. Each configuration in any RES refutation therefore requires
at most exponential space. This fact allows us to create a very simple NEXPSPACE algorithm: Given
a formula F and integer k, simply guess configurations one at a time as in Theorem 5.6.10, all the while
making sure that no configuration has a variables space of more than k, and never keeping more than two of
these at most exponentially-sized configurations in memory at any instant. Finally, we appeal to Savitch’s
Theorem [Sav70] to show that this problem is in EXPSPACE as well.

6.4 Related Complexity Results

There are a few minor problems related to Resolution variable space:

6.4.1 The Complexity of Regular Tree Resolution Variable Space

The RT-RES variable space problem is formally defined as follows:

Definition 6.4.1 (RTRV S). RTRV S = {(F, k) | F is a formula for which there exists a RT-RES refutation
with variable space at most k.}

Although we are unable to give an EXPT IME algorithm for RTRV S, it is not hard to see that this
problem is both coNP-Hard and in NEXPT IME :

Theorem 6.4.2. RTRV S is coNP-Hard under logspace reducibility, but is also in NEXPT IME.

Proof: It is easy to see that RTRV S is coNP-Hard by reducing from UNSAT . Given a formula F , output
(F, k = n). Since any unsatisfiable formula has variable space at most n, F ∈ UNSAT if and only if
(F, k) ∈ RTRV S.

90 Chapter 6: The PSPACE-Hardness of Resolution Variable Space

To show that RTRV S ∈ NEXPT IME , we use the following nondeterministic algorithm: Given a
formula F and integer k, we guess a configuration-style RT-RES refutation π of F . A RT-RES refutation
of a formula F on n variables can contain at most 2n+1 − 1 clauses, since this is the number of nodes in
the complete binary decision tree of height n. Each configuration of π therefore contains at most 2n+1 − 1
clauses, and there are at most 2n+1 − 1 such configurations. This is a gross upper bound, but it still shows
that π can be output in nondeterministic exponential time. This shows that RTRV S ∈ NEXPT IME , so
TRV S ∈ NEXPT IME as well.

An interested reader may recall that RT-RES clause space, total space, and size all have PSPACE al-
gorithms (see Corollaries 4.8.14, 4.8.6, and 4.8.8), and wonder why the same techniques cannot be used to
show that RTRV S ∈ PSPACE . The reason is that although the tree T underlying any RT-RES refutation
is a subtree of the complete binary decision tree on n variables, and therefore can be pebbled using at most
n + 1 pebbles, we have no guarantee that one of the pebblings of T which uses n + 1 pebbles induces a
configuration-style proof with minimal variable space.

6.4.2 The Complexity of Tree Resolution Variable Space

The T-RES variable space problem is very similar to RTRV S, and is formally defined as follows:

Definition 6.4.3 (TRV S). TRV S = {(F, k) | F is a formula for which there exists a T-RES refutation
with variable space at most k.}

At first glance, T-RES variable space appears to be identical to RES variable space, since expanding
the DAG underlying a RES refutation into a tree by copying the necessary subtrees may increase size
exponentially, but appears to have no effect on variable space, since two copies of the same clause use
exactly the same variable space. However, a problem arises when we closely examine the definition of a
configuration-style T-RES proof, because it requires that any two parent clauses being resolved must be
deleted immediately. Therefore, if we want to create multiple parallel copies of clauses in order to expand a
RES proof into a T-RES proof, the extra copies of the parent clauses may violate the variable space of the
corresponding step from the RES proof.

Note that this problem does not arise when expanding a RES refutation into a T-RES refutation in order
to show that RES and T-RES width are identical.

With the following lemma, we are able to prove that the result in Theorem 6.4.2 also holds for TRV S:

Lemma 6.4.4. RTRV S = TRV S

Proof: Given a configuration-style T-RES refutation π with underlying proof tree T (where the nodes are
labeled with clauses) and associated pebbling strategy S containing irregularities, it is possible to prune
those irregularities in the standard way [Tse70, Urq95] to produce an RT-RES refutation π′ with underlying
proof tree T ′ and associated pebbling strategy S′ such that V S(π′) ≤ V S(π). This is because every node v′

in T ′ has a corresponding node v in T such that v′ ⊆ v, and some nodes in T do not have any corresponding
node in T ′ because they were removed by the pruning procedure. This means that every configuration
in π′ contains clauses which are a subset of the clauses in the corresponding configuration of π, and some
configurations in π do not have corresponding configurations in π′ because they were removed by the pruning
procedure. Therefore V S(π′) ≤ V S(π), so for any formula F , V S(F `RT-RES ∅) ≤ V S(F `T-RES ∅), and
TRV S ⊆ RTRV S.

The other direction is trivial, since every RT-RES refutation is a T-RES refutation: Clearly V S(F `T-RES

∅) ≤ V S(F `RT-RES ∅), so RTRV S ⊆ TRV S, and RTRV S = TRV S, as required.

Corollary 6.4.5. TRV S is coNP-Hard under logspace reducibility, but is also in NEXPT IME.

6.4.3 The Complexity of Input Resolution Variable Space

Another interesting related problem is that of I-RES variable space. Its corresponding language is formally
defined as follows:

Definition 6.4.6 (IRV S). IRV S = {(F, k) | F is a formula for which there exists an I-RES refutation with
variable space at most k.}

Corollary 6.4.7. IRV S is P-Hard under logspace reducibility, but is also in PSPACE.

Proof: To see that IRV S is P-Hard, we reduce from the P-Complete IRES-UNSAT problem from Corol-
lary 5.3.4. Given a formula F , output (F, k = n). Since any unsatisfiable formula has variable space at most
n, F ∈ UNSAT if and only if (F, k) ∈ IRV S.

To show that IRV S ∈ PSPACE , we use essentially the same algorithm as in Corollary 5.6.10 by nonde-
terministically guessing configurations one at a time, keeping at most two configurations in memory at any
time, where each contains at most two clauses, and finally appeal to Savitch’s Theorem [Sav70].

6.5 Open Problems & Conjectures Related to Resolution Variable
Space

Although we were able to prove the PSPACE-Hardness of the RV S, we have been unable to show that
it has a PSPACE , EXPT IME , or even NEXPT IME algorithm. Finding a tighter upper bound on RV S
therefore remains an interesting open problem, which is somewhat surprising given that we have very powerful
tools such as Savitch’s Theorem [Sav70] to help us develop such algorithms. This suggests that perhaps RV S
does not have a PSPACE algorithm, and it may be EXPT IME- or even NEXPT IME-Hard.

In addition, significant complexity gaps still exist for RTRV S, TRV S, and IRV S. We conjecture that
RTRV S and TRV S both have PSPACE algorithms, but are hesitant to conjecture what the tightest
hardness lower bounds might be. In any case, it would be interesting to get tighter results for all of these
problems.

Chapter 7

The Complexity of Resolution Width

7.1 Introduction & Motivation

In its original incarnation, this chapter’s main result showed that the problem of calculating RES width
requirements is EXPT IME-Complete. In keeping with the theme of this thesis, the proof proceeded by
reducing from the (∃, k)-pebble game of Kolaitis and Vardi [KV95] which was proved EXPT IME-Complete
by Kolaitis and Panttaja [KP03], itself proved EXPT IME-Complete via a reduction from the KAI game
[KAI79]. Our reduction was from the (∃, k)-pebble game to the k-width game of Atserias and Dalmau
[AD03], which they proved to be equivalent to RES width. In other words, it reduced a game for which
the complexity is known to a game characterization of a proof complexity resource problem, just like the
reduction from the black pebbling game to the Prover/Delayer game characterization of T-RES clause space
in Chapter 4.

Unfortunately, we found a subtle but fatal flaw in our proof which invalidated this main result, leaving us
with a decision to be made: Either delete this chapter completely, or remove the main result but retain its
exposition and minor results. We settled for the latter option, since we believe that what remains ultimately
still adds to this thesis. Even in its vestigial form, this chapter still contains some interesting results,
including a restatement and modification of the width game due to Atserias and Dalmau [AD03] which we
use to show that RES and R-RES width are subtly different, and also to help prove both upper and lower
bounds for the RES and R-RES width problems. In addition, we show that there is no difference between
width for DAG-like and tree-like forms of Resolution, which gives upper and lower bounds for the T-RES
and RT-RES width problems respectively corresponding to those for RES and R-RES width. These results
show that width is blind to the normally important difference between tree-like and DAG-like proofs, but is
sensitive to the normally less-important difference between regular and irregular proofs.

However, before giving these results, we first review the importance of width for Resolution-based proof
systems and explain how the width problem is related to the rest of this thesis:

The width of proofs has played a key part in investigations of the complexity of RES, starting with Tseitin
[Tse70] and Galil [Gal77]. In these early papers, and again in the seminal paper by Haken [Hak85], lower
bounds on the size of RES proofs rest on width lower bounds.

This connection between size and width was systematized and explained in a remarkable paper by Ben-
Sasson and Wigderson [BSW01]. In that article the authors prove a general theorem, of which one conse-
quence is that if Σ is a contradictory set of 3-CNF clauses, then the minimal size of a RES (T-RES) refutation
of Σ is exponential in the minimal RES (T-RES) width of such a refutation. These results are restated in
this thesis as Theorems 3.3.12 and 3.3.13 and provide the major theoretical motivations for understanding
the problem of deciding whether or not a set of clauses has a proof of a given width.

However, there are also strong practical motivations from the areas of automated theorem proving and
propositional reasoning for understanding this problem. As well as their important theoretical results, Ben-
Sasson and Wigderson in [BSW01] propose a simple dynamic programming procedure for automated theorem

93

94 Chapter 7: The Complexity of Resolution Width

proving, one which simply searches for proofs with small width. In addition, the practical motivations for
studying RES width are very similar to those behind studying T-RES clause space in Chapter 4: Although
SAT-solvers have been remarkably successful, there are some inputs on which they fail. Researchers working
with SAT-solvers may therefore be tempted to design preprocessing algorithms which determine the width
required to refute a given unsatisfiable formula F . Since we know from [BSW01] that short proofs are narrow,
if the minimum width of any refutation of F is sufficiently large, then any Resolution-based SAT-solver will
fail by not halting in a feasible amount of time, so researchers would be able to tell ahead of time whether
or not to bother trying to solve F , potentially saving a great deal of time and computer resources. Before
the discovery of the flaw in our main result, any hopes for such a preprocessing algorithm are dashed by this
chapter, but the question of whether or not a width solver exists is once again open.

The width problem for RES is as follows: Given a set of clauses Σ, and integer k as input, determine
whether or not there is a RES refutation of Σ of width at most k. This problem was conjectured to be
EXPT IME-complete by Moshe Vardi and conveyed to us by Stephen Cook.

This chapter is organized as follows: In Section 7.2 we describe the k-width game, which was shown by
Atserias and Dalmau in [AD03] to characterize RES width. Next, in Section 7.3, we modify the RES width
game in order to characterize R-RES width. This is followed by Section 7.4, in which we give both upper and
lower bounds for the RES, T-RES, R-RES, and RT-RES width problems. Finally, in Section 7.5 we review a
number of open problems related to this area of research.

7.2 A Game Characterization of Resolution Width

In this section, we give a slightly modified proof of a result by Atserias and Dalmau which characterizes
the width of RES refutations [AD03]. The characterization is in terms of a two-player game which we shall
call the ‘k-width game’, and it is played between two opponents called the Prover and the Adversary.1 The
game is played as follows:

The players are given a set of clauses Σ, on a set V of variables, and an integer parameter k > 0. They
then together construct a succession of assignments to the variables V . Initially, the assignment is empty; at
every round of the game, all assignments involve at most k variables. Each round of the game proceeds as
follows: First, the Prover can delete zero or more of the variable assignments from a previous round. Second,
the Prover queries an unassigned variable, and the Adversary (re)assigns a value to it.

The Prover wins if the current assignment falsifies an initial clause in Σ. The Adversary wins if an earlier
assignment is repeated during the play of the game. In this we depart slightly from the game as defined by
Atserias and Dalmau; in their version it is possible for the game to continue indefinitely, in which case the
Adversary wins.

Since there are only finitely many possible truth assignments, every play of the game must eventually
terminate in a win for the Prover or for the Adversary. It follows that either the Prover or the Adversary
must have a winning strategy.

Definition 7.2.1 (Extendible k-Family of Assignments). If Σ is a set of clauses on a set V of variables,
then a non-empty family F of V -assignments is an extendible k-family for Σ if it satisfies the following
conditions:

1. No assignment in F falsifies a clause in Σ,

2. Each assignment α in A satisfies the condition |α| ≤ k;

3. If α ∈ F , and β ⊆ α, then β ∈ F , and

4. If α ∈ F , |α| < k, and x ∈ V , then there is a β ∈ F , so that α ⊆ β, and β(x) is defined.

1Atserias and Dalmau, following the tradition of finite model theory, call their players the Spoiler and the Duplicator, but
our terminology seems clearer in the present context.

7.3 A Game Characterization of Regular Resolution Width 95

The next theorem was proved by Atserias and Dalmau [AD03], and shows that a RES refutation of width
k constitutes a winning strategy for the Prover, while an extendible k +1-family provides a winning strategy
for the Adversary in the k + 1-width Resolution game:

Theorem 7.2.2 ([AD03]). Let Σ be a contradictory set of clauses, and k ≥ w(Σ). Then the following are
equivalent:

1. There is no RES refutation of Σ of width k,

2. There exists an extendible k + 1-family for Σ, and

3. The Adversary wins the k + 1-width game based on Σ.

Proof: (1 ⇒ 2): First, let us suppose that there is no RES refutation of Σ of width k. Define C to be
the set of all clauses which have a RES proof from Σ of width at most k; by assumption, Σ ⊆ C. Let F
be the set of all assignments of size at most k + 1 that do not falsify any clause in C. We claim that F is
an extendible k + 1-family for Σ. First, F is non-empty, because it contains the empty assignment (since
C does not contain the empty clause). Second, F satisfies the first three conditions of Definition 7.2.1, by
construction. To prove the fourth condition, let α ∈ F , and |α| ≤ k, x ∈ V , but assume that there is no
extension β of α in H with β(x) defined. It follows that there is a clause D ∈ C that is falsified if we extend
α by setting x to False. Then D = E ∨ x for some E, since otherwise α would falsify D. Similarly, there is
a clause F ∨ x in C that is falsified by the extension of α that sets x to True. Then α must falsify E ∨ F ;
but E ∨ F is in C, contradicting our assumption.

(2 ⇒ 3): Secondly, let us suppose that there exists an extendible k + 1-family F for Σ. Then the
Adversary can play the k + 1-width game on Σ by responding to the Prover’s queries with the appropriate
assignment from the family, starting with the empty assignment. Since no assignment in the family falsifies
an initial clause, this strategy must eventually end in a win for the Adversary, no matter how the Prover
plays.

(3 ⇒ 1, Contrapositive): Finally, let us suppose that there is a RES refutation of Σ of width k. Then
the refutation provides the Prover with a winning strategy in the k + 1-width game based on Σ. Starting
from the empty clause at the root, the Prover follows a path in the refutation to one of the leaves in the
refutation. At each round, the current assignment (after appropriate deletions), is a minimal assignment
falsifying a clause in the path. The variable queried is the variable resolved upon to derive the current clause,
and the next clause in the path is one of the premisses of the clause from the previous round. Since the
refutation has width k, every assignment has size bounded by k +1, so this strategy must result in a win for
the Prover.

7.3 A Game Characterization of Regular Resolution Width

Another interesting Resolution resource problem related to this research is that of determining the com-
plexity of R-RES width. It is not hard to modify Atserias and Dalmau’s width characterization described in
Section 7.2 to give a game characterization of R-RES width. The characterization is again in terms of a two
player game which we shall call the ‘regular k-width game’. The game is exactly the same as the k-width
game, but with the added condition that the Prover can never query a previously queried variable.

Once again, the Adversary can win in two ways: Firstly, if the current assignment assigns values to at
least k variables; secondly, if the Prover has not won up to this point, but there are no unqueried variables,
so the Prover has no legal move. The Prover wins if the current assignment falsifies an initial clause in Σ (if
this clause contains k variables, then we count this as a win for the Adversary). As before, every play of the
game must eventually terminate with a win for the Prover or for the Adversary.

As in the case of RES width, we can characterize R-RES width in terms of extendible families of assign-
ments. However, we need to redefine the notion of an assignment. In the earlier notion of assignment, a
variable could be in three states: Positive (True), negative (False), and unassigned (∗). For the case of
R-RES, we define an extended assignment as follows:

96 Chapter 7: The Complexity of Resolution Width

Definition 7.3.1 (Extended Assignment, Live & Dead Variables). An extended assignment is an
assignment of values in which each variable can be in four states:

1. Positive (True),

2. Negative (False),

3. Unassigned (∗), and

4. Dead (A)

The empty extended assignment to a set V of variables consists of the assignment in which all variables
in V are unassigned (∗), which should be distinguished from assignments where all of the variables are
unassigned or dead (A)).

If α is an extended assignment, then those variables that are assigned the values True or False are the
live variables in α, and we write |α| for the number of live variables in α. If α and β are extended assignments
to a set of variables V , then we write α ⊆ β if α results from β by replacing some unassigned variables by
live variables. We also write α v β if β results from α by replacing some dead variables by live variables.

This brings us to our concept of a regular extendible k-family of assignments; note the similarity to
Definition 7.2.1:

Definition 7.3.2 (Regular Extendible k-Family of Assignments). If Σ is a set of clauses on a set V
of variables, then a family A of extended V -assignments is a regular extendible k-family for Σ if it satisfies
the following conditions:

1. The empty assignment belongs to A,

2. No assignment in A falsifies a clause in Σ,

3. Each assignment α in A satisfies the condition |α| ≤ k,

4. If α ∈ A, and β v α, then β ∈ A, and

5. If α ∈ A, |α| < k, x ∈ V , and α(x) = ∗, then there is a β ∈ A, so that α ⊆ β, and α(x) is defined.

The next theorem is the analogue of Theorem 7.2.2, but for R-RES. Note that the extended assignment
associated with each round of the game acts as follows: At the beginning of a play of the game, the current
extended assignment is empty. Let us suppose that the current extended assignment is α. Then if the Prover
deletes an assignment to a live variable x in α, then x is dead in the next assignment, that is to say, we
change α(x) from True or False to A.

Theorem 7.3.3. Let Σ be a contradictory set of clauses, and k ≥ w(Σ). Then the following are equivalent:

1. There is no R-RES refutation of Σ of width k,

2. There is a regular extendible k + 1-family for Σ, and

3. The Adversary wins the regular k + 1-width game played on Σ.

Proof: (1 ⇒ 2): Let us suppose that there is no R-RES refutation of Σ of width k, and that α is an extended
assignment to the variables in Σ. We define such an assignment to be bad if it satisfies the following condition:
There is a R-RES derivation π of a clause C from Σ so that π has width at most k, α(C) = 0, and if α(x) =A,
then x is never resolved on in π. An assignment is good if it is not bad. Define A to be the family of all good
assignments α, with |α| ≤ k + 1. We claim that A is a regular extendible k + 1-family for Σ.

The fact that A satisfies the first and second conditions of Definition 7.3.2 follows from our assumption
that that there is no R-RES refutation of Σ of width k. The third condition holds by definition. For the

7.4 The Complexities of Several Resolution Width Problems 97

fourth condition, let us assume that α ∈ A, and β v α, but β 6∈ A. Since |β| ≤ |α|, it follows that β is bad.
However, in that case, α must be bad as well, because all of the variables that are dead in α are also dead
in β.

Finally, we need to show that the family A satisfies the fifth and final condition in Definition 7.3.2.
Assume that α ∈ A, |α| ≤ k, and α(x) = ∗, but there is no β ∈ A, so that α ⊆ β, and α(x) is defined. Let
α0 and α1 be the extended assignments that result from α by changing α(x) from ∗ to 0 and 1 respectively.
Then both α0 and α1 must be bad. Thus there are R-RES derivations π0 and π1 of clauses C0 and C1, each
having width at most k, so that for i = 0, 1, αi(Ci) = 0, and no variable that is dead in α is resolved upon
in either of the two derivations.

Since α is good by assumption, it follows that C0 = D ∨ x, and C1 = E ∨ x, for some clauses D and E.
However, if we extend the R-RES derivations π0 and π1 by resolving on x, so that the final clause is D ∨E,
the result is a R-RES derivation of D ∨ E, where α(D ∨ E) = 0. However, since |α| ≤ k, it follows that α
is bad, contrary to assumption. This completes the proof of the fifth condition in Definition 7.3.2, showing
that A is a regular extendible k + 1-family for Σ.

(2 ⇒ 3): Secondly, let us suppose that there is an extendible k +1-family for Σ. Then the Adversary can
play the k-width game on Σ by responding to the Prover’s queries with the appropriate assignment from
the family, starting with the empty assignment. When the Prover removes a live variable from the current
assignment, then the Adversary sets it to A. Because of the regularity restriction, a variable, once dead,
can never be queried again. Since no assignment in the family falsifies an initial clause, this strategy must
eventually end in a win for the Adversary, no matter how the Prover plays.

(3 ⇒ 1, Contrapositive): Finally, let us suppose that there is a R-RES refutation of Σ of width k. Then
the refutation provides the Prover with a winning strategy in the regular k + 1-width game based on Σ:
Starting from the empty clause at the root, the Prover follows a path in the refutation so that at each
round, the assignment (after appropriate deletions) is a minimal assignment falsifying the current clause.
The variable queried is the variable resolved upon to derive the current clause. This strategy must result in
a win for the Prover.

7.4 The Complexities of Several Resolution Width Problems

In this section we give upper and lower bounds for the RES, T-RES, R-RES, and RT-RES width problems.

7.4.1 The Complexities of Resolution and Tree Resolution Width

The language associated with the RES width problem is formally defined as follows:

Definition 7.4.1 (RES-WIDTH). RES-WIDTH = {(F, k) | F is a formula for which there exists a RES
refutation with width at most k.}

Although a gap still exists, we are able to use Theorem 7.2.2 due to Atserias and Dalmau to show both
upper and lower bounds for RES-WIDTH:

Corollary 7.4.2. RES-WIDTH is coNP-Hard under logspace reducibility, but is also in EXPT IME.

Proof: To prove the coNP-Hardness of RES-WIDTH, we reduce from UNSAT as in Corollary 4.8.4. For
our reduction, we are given a formula F and output (F, k = n), where n is the number of distinct variables
in F . Since n is the maximum width of any clause, it follows immediately that F ∈ UNSAT if and only if
(F, k) ∈ RES-WIDTH.

To show that RES-WIDTH ∈ EXPT IME , we show that the k-width game above is in EXPT IME
and appeal to Theorem 7.2.2: On a given play of the game, it is possible to keep track of the number of
current assignments that have appeared up to a given round, and so determine if a repetition has occurred.
Since there are at most N =

(
n
k

)
3k possible assignments, where n is the number of variables in the clause

set Σ employed in the game, when the count reaches N + 1, a repetition must have occurred.

98 Chapter 7: The Complexity of Resolution Width

Consequently, the description of the game given above shows that there is an alternating Turing Machine
operating in polynomial space that determines whether the Prover or the Adversary wins a given instance
of the game. Hence, the problem is in EXPT IME .

Despite the great difference between RES and T-RES with respect to proof size, it turns out that the
T-RES width problem is identical to the RES width problem. We formally define the language associated
with T-RES width as follows:

Definition 7.4.3 (TRES-WIDTH). TRES-WIDTH = {(F, k) | F is a formula for which there exists a
T-RES refutation with width at most k.}

It is not hard to see that RES-WIDTH and TRES-WIDTH are in fact the same language:

Lemma 7.4.4. RES-WIDTH = TRES-WIDTH

Proof: It suffices to show that for any formula F , w(F `RES ∅) = w(F `T-RES ∅). The forward direction
is trivial, since any T-RES refutation is a RES refutation. In the reverse direction, if we are given a RES
refutation π of F with width at most k, then we can easily construct a T-RES refutation of F with width k by
simply turning the DAG underlying the proof tree of π into a tree by duplicating subtrees as necessary in the
obvious way. This may lead to an exponential increase in proof size, but does not introduce any new clauses,
and therefore does not affect the proof width at all. This means that RES-WIDTH = TRES-WIDTH,
as required.

An immediate corollary of this lemma is that the lower and upper bounds for RES-WIDTH from Corol-
lary 7.4.2 also hold for TRES-WIDTH:

Corollary 7.4.5. TRES-WIDTH is coNP-Hard under logspace reducibility, but is also in EXPT IME.

In addition, Lemma 7.4.4 also shows that Theorems 3.3.12 and 3.3.13 by Ben-Sasson and Wigderson
[BSW01] apply equally to RES and T-RES width.

7.4.2 The Complexities of Regular and Regular Tree Resolution Width

If asked whether regularity has any impact on the width of refuting a formula, Lemma 7.4.4 and the fact
that irregularities can often be pruned with no ill effects (see [Tse70, Urq95]) might give one the initial
impression that it does not. After all, the p-simulation hierarchy in Figure 2.2 shows us that RES is strictly
stronger than R-RES, which in turn is strictly stronger than T-RES and RT-RES, so if RES and T-RES width
are identical, then why should R-RES, which is sandwiched between them in terms of p-simulation be any
different? Unfortunately, this intuition is wrong, and it is easy to confuse regular and general width. It
turns out that the width of R-RES and RT-RES is subtly different from that of RES and T-RES, and in this
section we give upper and lower bounds on the complexities of width problems, only this time for the regular
versions.

The width problem for R-RES is formally defined as follows:

Definition 7.4.6 (RRES-WIDTH). RRES-WIDTH = {(F, k) | F is a formula for which there exists a
R-RES refutation with width at most k.}

Just as we used the width game from Section 7.2 and its equivalence to RES width to give bounds on the
computational complexity of RES-WIDTH, so do we now use the regular width game from Section 7.3 and
its equivalence to R-RES width to give bounds on RRES-WIDTH:

Corollary 7.4.7. RRES-WIDTH is coNP-Hard under logspace reducibility, but is also in PSPACE.

7.5 Open Problems & Conjectures Related to Resolution Width 99

Proof: The reduction showing the coNP-Hardness of RRES-WIDTH is identical to that of RES-WIDTH
in Corollary 7.4.2: Simply reduce from UNSAT , taking a formula F , and outputting (F, k = n), where n is
the number of distinct variables in F . Since n is the maximum width of any clause, it follows immediately
that F ∈ UNSAT if and only if (F, k) ∈ RRES-WIDTH.

In order to prove that RRES-WIDTH ∈ PSPACE , we appeal to Theorem 7.3.3, which shows that
this question can be answered by an alternating Turing Machine operating in polynomial time. Alternating
polynomial time is equivalent to PSPACE , so our claim that RRES-WIDTH ∈ PSPACE follows.

With respect to this proof, an important subtlety in the case of RES-WIDTH is that it is not clear
whether it is in PSPACE , because there is no polynomial upper bound on how long the k-width game might
last.

In Section 7.4.1 we saw that RES and T-RES width are identical, and the same holds true for R-RES and
RT-RES; the language associated with the latter is formally defined as follows:

Definition 7.4.8 (RTRES-WIDTH). RTRES-WIDTH = {(F, k) | F is a formula for which there exists
a RT-RES refutation with width at most k.}

The proof that R-RES and RT-RES width are equal is identical to that of Lemma 7.4.4:

Corollary 7.4.9. RRES-WIDTH = RTRES-WIDTH

Since RRES-WIDTH = RTRES-WIDTH, the upper and lower bounds of Corollary 7.4.7 immediately
apply to RTRES-WIDTH as well:

Corollary 7.4.10. RTRES-WIDTH is coNP-Hard under logspace reducibility, but is also in PSPACE.

7.5 Open Problems & Conjectures Related to Resolution Width

With the flaw that we found invalidating our original proof that RES-WIDTH and TRES-WIDTH are
EXPT IME-Complete, this has once again become an interesting open problem. We believe that the result
is still true, and have an idea for how to prove it, but this will have to be a post-thesis project.

The other main open problem related to this research is the complexity of RRES-WIDTH. Dr. Barnaby
Martin at the University of Durham in England has claimed that RRES-WIDTH is PSPACE-Complete
and gave a proof sketch at the 2007 London Algorithmic Workshop (LAW 2007) [Mar07]. We believe that
this statement is correct, and if this is true, then of course RTRES-WIDTH is also PSPACE-Complete by
lemma 7.4.9.

Since T-RES and RT-RES are p-equivalent and R-RES is strictly stronger that T-RES as a proof system,
showing RES / T-RES width to be EXPT IME-Complete, and R-RES / RT-RES width to be PSPACE-
Complete would be an interesting deviation from the standard proof complexity hierarchy.

Another interesting corollary of the potential EXPT IME-Completeness of RES-WIDTH concerns a
special case of the (∃, k)-pebble game of Kolaitis and Vardi [KV95] which was proved EXPT IME-complete
by Kolaitis and Panttaja [KP03]. Albert Atserias has remarked that a reduction from the (∃, k)-pebble
game to RES-WIDTH would also settle the complexity of the fixed template version of the (∃, k)-pebble
game. This remark is based on an observation by Feder and Vardi [FV98] (see also [Ats04]) showing that
the satisfiability problem for formulas in r-CNF can be encoded as a constraint satisfaction problem in the
form where the target structure B, or ‘template’ is fixed, while only the source structure, or ‘instance’ varies.

Yet another interesting corollary of the potential EXPT IME-Completeness of RES-WIDTH concerns
tradeoffs between different resources. If we can prove that RES-WIDTH is EXPT IME-Complete, and
make the assumption that every formula F having a refutation with width w also has a refutation with
width w and clause space |F |O(1), then we can prove that PSPACE = EXPT IME , which is probably
false, thereby showing that there are formulas with minimal width which do not have polynomially-bounded
clause space. The proof is easy: If formulas with minimal width also had polynomially-bounded clause space,
then we could nondeterministically guess the refutations using only polynomial space. Appealing to Savitch’s
Theorem [Sav70] gives us a PSPACE algorithm, thereby showing that there exists an EXPT IME-Complete
problem with a PSPACE algorithm, so PSPACE = EXPT IME .

Of course, this proof also holds for width and total space, and for any resource problem which is at least
EXPT IME-Hard. For example, if RES variable space or size are EXPT IME-Hard, then there is a similar
tradeoff between those resources and clause/total space. This proof therefore has the potential to yield
numerous tradeoff results conditioned on the commonly-believed separations in the standard complexity
hierarchy.

Part III

Proof Complexity Size Results &
Dangerous Reductions

101

Chapter 8

Introduction to Part III

This chapter serves as an introduction to Part III of this thesis, which is focused on the potential danger
that reductions represent from the point of view of proof complexity and SAT-solvers. We start in Section
8.1 below by describing what ‘dangerous reductions’ are and explaining why they are important. This is
followed by Section 8.2 in which we give definitions specific to this part of the thesis. Finally, in Section 8.3
we shall give a summary of the next four chapters in which we prove this part’s main results.

8.1 Description of Dangerous Reductions

Because there are so many NP-Hard problems which come up in practice, it is not feasible for com-
puter scientists to develop and implement algorithms for them all. One established major approach which
researchers have employed for these problems is to focus their efforts on designing and implementing highly-
optimized SAT-solvers, and then rely on the robust expressiveness of the SAT language so that they only
need to implement reductions from the various different domains to SAT. Since reductions are so easy to
develop, and since SAT-solvers have become so sophisticated and powerful, this strategy has proved to be
quite successful.

Nevertheless, this approach is not without its pitfalls. Researchers have noted empirically that not all
reductions from an input domain to SAT are equal, and that it is possible for a poor choice of encoding to
map easy instances from the input language to hard SAT instances. For example, Kautz, McAllester and
Selman investigate numerous approaches for translating planning problems to SAT in [KMS96]. Some of
these translations are found to result in formulas which are much harder to solve than others, and the problem
of better understanding these ‘dangerous reductions’ is listed as one of the ten important and challenging
open problems in the area [KMS97, KS03].

In this part of the thesis we will combine results from several seemingly unrelated areas of research to
give the first formal example of a ‘dangerous reduction’. Of course, this phenomenon also has a flip side,
and we also give a formal example proving that it is possible for reductions to map hard instances from the
input domain to easy SAT instances. This shows that reductions can also be beneficial.

8.2 Definitions Specific To Part III

There are two important definitions which come up repeatedly in this part of the thesis, particularly in
Chapters 9, 10, and 11. The first is an important reduction, and the second is the definition of two important
families of graphs.

8.2.1 A SAT Encoding For The Hamiltonian Cycle Problem

The following reduction is from the NP-Complete Hamiltonian Cycle problem to SAT, and proceeds as
follows: Take a graph G = (V,E) and create a formula F which enforces a mapping from V to the positions

103

104 Chapter 8: Introduction to Part III

p1, p2, ..., p|V | of a Hamiltonian Cycle H. Intuitively, H can be thought of as a cyclic ordering on the |V |
vertices of G, where vertex i can be mapped to the jth position in H if i is adjacent in G to the vertices
mapped to positions j − 1 and j + 1. F contains variables of the form mi,j , each of which is interpreted
as meaning that element i from G (the domain) is mapped to position j in the Hamiltonian Cycle H (the
range). F partially consists of clauses which enforce a bijection between V and H. A conjunction of the
following groups of clauses ensures such a bijection:

Total:
|V |∧
i=1

(
|V |∨
j=1

mi,j) i.e. Every vertex in V maps to at least one position in H.

Onto:
|V |∧
j=1

(
|V |∨
i=1

mi,j) i.e. Every position in H has at least one vertex mapped to it.

1-1:
|V |∧
j=1

|V |∧
i1=1

|V |∧
i2=1
i1 6=i2

(¬mi1,j ∨ ¬mi2,j) i.e. At most one vertex maps to each position.

Fn.:
|V |∧
i=1

|V |∧
j1=1

|V |∧
j2=1

j1 6=j2

(¬mi,j1 ∨ ¬mi,j2) i.e. Every vertex maps to at most one position.

To ensure that F is satisfiable if and only if G is Hamiltonian, we also need to add the following clauses
which place constraints corresponding to the structure of G’s edges on the bijection:

Edge:
|V |∧
j=1

|V |∧
i=1

∧
k:(i,k)6∈E

i6=k

(¬mi,j ∨ ¬mk,(j+1) mod |V |)

Informally, the edge constraint clauses ensure that for every non-edge (i, k), if vertex i has been mapped
to the jth position in the cycle H, then vertex k cannot be mapped to position j + 1 (mod |V |). It is not
hard to see that the reduction is correct: If G is Hamiltonian, then these edge constraints will not cause a
contradiction with the clauses enforcing the bijection, so F will be satisfiable. Likewise, if F is satisfiable,
then it means that there is a bijection from V to H which respects the constraints enforced by the edge
clauses, so G must be Hamiltonian.

Of course, the total, onto, 1-1, and function clauses are more than enough to ensure a bijection. In fact,
the total and 1-1 clauses by themselves are sufficient, as are the onto and function clauses by themselves.
This leads us to define some notation:

Definition 8.2.1 (H(G) Formulas). For any graph G, the formula H(G) is the result of applying the
above reduction. To this we add a subscript showing which clause groups were used in its construction. We
abbreviate total as T , onto as O, 1-1 as 1, and function as F . For example, if we used clauses from the total
and 1-1 groups, then the formula is labelled as H(G)T,1. Since every variation of this encoding requires the
edge clauses, there is no need to specify them among the subscripts.

8.2.2 Important Families of Non-Hamiltonian Graphs

In addition to the reduction described in the previous section, our results in Chapters 9, 10, and 11
repeatedly make reference to certain families of non-Hamiltonian graphs:

The K∗
n Graphs

Definition 8.2.2 (K∗
n Graphs). The graph K∗

n consists of the complete graph on n vertices, Kn, with the
addition of a single degree-0 vertex.

8.2 Definitions Specific To Part III 105

Note that since each K∗
n is disconnected, it is trivially non-Hamiltonian. Examples of K∗

n graphs are shown
below in Figure 8.1.

1 2

nK
xx

Figure 8.1: K∗
n (Left) and K∗

4 (Right)

The Gn
2 , n

2
Graphs

Some other important families of non-Hamiltonian graphs are shown below in Figure 8.2. Although these
graphs are very dense, they are nevertheless non-Hamiltonian. This is obvious for the first two families, but
not quite as obvious for the third. In Chapter 9 we show that our Non-Hamiltonicity Proof System (NHPS)
has exponential size lower bounds for each of these families of graphs.

31 2

BA

A B

B

C

A

Figure 8.2: Graph Families Requiring Exponentially Long NHPS Proofs

The sets labelled ‘A’, ‘B’, and ‘C’ represent complete subgraphs, each containing O(n) vertices. The
family represented by Figure 8.2.1 contains all disconnected graphs containing a constant number of complete
components such that each component contains O(n) vertices. The family represented by Figure 8.2.2
contains all graphs consisting of a constant number of size O(n) complete components separated by a single
cut vertex which is adjacent to all other vertices. Finally, the family represented by Figure 8.2.3 contains all
graphs containing a constant number q ≥ k + 1 of size O(n) complete components which are held together
by k vertices that are incident on all other vertices. A graph is said to be 1-tough if it contains no subset of
k vertices, that, if removed, would disconnect the graph into k + 1 or more components. All of the graphs
in these families are non-Hamiltonian because none of them are 1-tough, which is a necessary condition for
Hamiltonicity [Her04]. In fact, family 3 subsumes families 1 and 2, but the first two families also happen to
violate biconnectivity, making it worthwhile to study them separately.

We are especially interested in a special case of the first family above:

106 Chapter 8: Introduction to Part III

Definition 8.2.3 (Gn
2 , n

2
Graphs). The Gn

2 , n
2

graphs are all graphs containing an even number of vertices
and consisting of two disjoint cliques of size n

2 .

As with the K∗
n graphs, the Gn

2 , n
2

graphs are disconnected and therefore are trivially non-Hamiltonian.

8.3 Summary of Part III

Much like the space results from Part II, the results in this part of the thesis once again apply combinatorial
games to propositional proof complexity, and are strongly-related to and motivated by the area of automated
theorem proving and propositional reasoning. This part of the thesis can be viewed in two ways. On one
hand, the results in its four chapters are quite diverse. For example, it is not immediately obvious how our
Non-Hamiltonicity Proof System, Prover/Delayer game upper bounds, and results concerning intuitionistic
logic are in any way related to dangerous reductions. They are motivated individually, and it is easy to view
them in isolation from each other. However, when combined they contribute to the dangerous reductions
research in interesting ways, and it is useful to look at these results in this context as well.

In Section 8.3.1 below we will give a summary of the results individually, and in Section 8.3.2 we describe
them in the broader context of dangerous reductions.

8.3.1 Summary of the Individual Results in Part III

Our first results in this part of the thesis are found in Chapter 9, which contains a formalization of
a graphical proof system for non-Hamiltonicity, or NHPS for short, together with proofs of soundness,
completeness, exponential lower bounds, and results relating it to other proof systems. The NHPS came
from the analysis of an algorithm for determining non-Hamiltonicity, and the overall motivation behind this
research was to better understand graphical proof systems, as well as general limitations of algorithms of
this type. Specifically, since the NHPS deals with local configurations in the graph, the goal was to prove
lower bounds for graph algorithms which involved ideas such as local search. While we did not achieve this
goal, our investigations motivated the search for a simulation result with T-RES, which necessarily required
the use of a reduction. The development of such a reduction from the Hamiltonian Cycle problem to SAT
led to the result concerning ‘dangerous reductions’ in Chapter 11.

The NHPS is of interest primarily because of its relationship with other parts of this thesis. In particular,
it is important to the results in Chapter 11. That being said, it is also a novelty and of interest in its own right
because most proof systems are for propositional logic, and to date no proof systems for non-Hamiltonicity
have been developed. A version of the NHPS has been implemented, and it performs very well in practice.

Chapter 10 concerns the relationship between T-RES proof size and the Prover/Delayer game from Chapter
4, which has been used in the literature to prove T-RES size lower bounds [BSIW04]. We prove that the
Prover/Delayer game can also be used to prove upper bounds on T-RES size. This is useful several times in
this part of the thesis, and is also interesting because it adds another dimension to the relationship between
T-RES and the Prover/Delayer game, since it is also known that the Prover/Delayer game can be used to
prove both upper and lower bounds on T-RES clause space [ET03]. This chapter shows that it can also be
used to prove upper bounds on T-RES proof size, providing the final result needed to show that it perfectly
captures both the size and clause space characteristics of T-RES. In addition, we use this upper bound to
show that this game can also be used to simplify T-RES proofs.

In Chapter 11 we formalize the concept of dangerous reductions. Much like our space results from Part
II, this research is particularly relevant to the area of automated theorem proving and SAT-solving. As
already mentioned in Section 8.1, SAT’s highly expressive nature has allowed for many NP-Hard problems
to be encoded as SAT instances, enabling research into solving these varied problems to be concentrated
on SAT-solving. In fact, many problems have numerous different SAT encodings to choose from, and some
of them are considerably better than others. Unfortunately, some encodings take easy instances from one
domain and turn them into intractable SAT instances. Similarly, some encodings take very hard instances

from one domain and turn them into easy SAT instances. We respectively refer to these as explosive and
implosive reductions.

Although explosive and implosive reductions have been encountered many times empirically [KMS96,
KMS97, KS03, BB03], in the first part of this chapter we provide the first formally proven non-trivial example
of an explosive reduction by showing that slightly different versions of the reduction from the Hamiltonian
Cycle problem to SAT from Section 8.2.1 give results with drastically different proof complexities. Following
that, we also provide the first formal non-trivial example of an implosive reduction, ultimately leading to
the second part of this chapter, in which we develop a framework for comparing different encodings with
respect to how beneficial or harmful they are.

This research is of interest because it gives the first formal examples of dangerous as well as beneficial
reductions. An exponential separation between two similar and natural reductions is of clear theoretical
interest, but of course has immense practical implications because SAT-solvers are heavily dependent on
translations from other domains, and to date there has been little progress in dealing with the issue of
comparing competing reductions.

Our final result is contained in Chapter 12, where we explore the proof complexity of intuitionistic logic,
probably the best-studied non-classical logic. Intuitionistic logic has long been associated with the notion
of constructivism in mathematics, since it disallows proofs by contradiction, and therefore requires proofs
to be constructive. Recent interest in intuitionistic logic has been sparked by Pavel Hrubeš’s remarkable
lower bounds for intuitionistic Frege systems [Hru07]. Another motivating factor behind this type of logic is
well-known paper by Statman [Sta79], which shows via a natural reduction from QBF (itself shown to be
PSPACE-Complete in [Sto76]) that the problem of determining whether a formula is intuitionistically valid
is PSPACE-Complete.

Consistent with the theme of expanding the arsenal of tools used to prove results in the area of proof
complexity, this chapter uses fairly powerful techniques to show that unless a variant of Gentzen’s famous
proof system LK is a super proof system (and therefore NP = coNP), Statman’s reduction from QBF to
IPL cannot even translate trivial classical instances of the law of excluded middle into intuitionistic formulas
with polynomially-bounded proofs, thereby showing that Statman’s translation is probably dangerous.

8.3.2 Relationship To Dangerous Reductions

The results in this part of the thesis support the dangerous reductions research in the following way: In
Chapter 9 we show that the K∗

n and Gn
2 , n

2
graphs from Section 8.2.2 respectively have trivially small NHPS

proofs and exponential NHPS size lower bounds (see Section 9.8). Next, we apply the reduction from Section
8.2.1 to these graphs and use the Prover/Delayer game upper bound techniques from Chapter 10 to show
that both the H(K∗

n)T,O,F and H(Gn
2 , n

2
)T,O,1,F formulas have polynomially-bounded T-RES refutations.

Chapter 11 unifies these results under the banner of dangerous reductions by showing that the H(K∗
n)T,1,F

formulas have exponential AC0-Frege lower bounds. The K∗
n graphs are easy NHPS instances, and if translated

using the T,O, F version of the reduction, the resulting formulas are easy for T-RES. However, if they are
translated using the T, 1, F version of the reduction (which is extremely similar to the T,O, F version, and
just as natural) we get formulas which can not be solved by any Resolution-based SAT-solver. This is a
formal example of a dangerous reduction, since it maps an easy instance from one domain, in this case
Hamiltonian Cycles, to an intractable SAT instance.

However, reductions can have the opposite effect as well: The Gn
2 , n

2
graphs have exponential NHPS

lower bounds, but the H(Gn
2 , n

2
)T,O,1,F formulas have polynomial T-RES upper bounds. This gives a formal

example of a beneficial reduction, since it maps hard instances from the Hamiltonian Cycle domain to easy
SAT instances.

Finally, Chapter 12 shows that unless the proof system LK[~ES] is a super proof system (and therefore
NP = coNP), Statman’s reduction from QBF to IPL is dangerous because it cannot even translate trivial
instances of the law of excluded middle into intuitionistic formulas with polynomially-bounded proofs.

Chapter 9

A Non-Hamiltonicity Proof System

9.1 Introduction & Motivation

In [PU95], Pitassi and Urquhart prove that the Hajós Calculus proof system for non-3-colourability is as
powerful as any Extended Frege proof system. This surprising result remains the only major graph theoretic
proof system. One goal of this present work is to further diversify the area by exploring a proof system
for another graph theoretic coNP-Complete problem. In this chapter we introduce the Non-Hamiltonicity
Proof System (NHPS), which to our knowledge is the first proof system for this language.

A Hamiltonian Cycle is a simple cycle which passes through every vertex in a graph exactly once. Graphs
containing Hamiltonian Cycles are termed to be ‘Hamiltonian’, and as its name suggests, the NHPS is a proof
system for verifying any graph’s non-Hamiltonicity. In this chapter we give a formal description of this proof
system, provide proofs of soundness, completeness, as well as exponential lower bounds for the NHPS, and
relate it to other proof systems. Our initial formalization is purposefully simplistic and minimal; if any of
the formal characteristics of the NHPS are removed or weakened, then it is no longer complete. This results
in the core proof system being relatively weak and for which it is easy to prove exponential lower bounds,
but in Section 9.9.2 we discuss several ways in which it can be strengthened.

This chapter is organized as follows: In Section 9.2 we define a number of important concepts, and in
Section 9.3 we describe the NHPS proof system. This is followed by Sections 9.4 and 9.4 in which we
respectively prove the soundness and completeness of our proof system. Next, in Section 9.6 we describe a
simplified version of the NHPS which does not require any marked edges.

This is followed in Section 9.7 by a proof that this proof system has exponential size lower bounds. The
results in Section 9.8 are similar. It it we use related research from Chapters 10 and 11 to show that there
exists an effective exponential separation between the NHPS and other proof systems; depending on which
translation is used, it can be exponentially weaker than T-RES or exponentially stronger than AC0-Frege
systems.

Finally, in Section 9.9 we discuss open problems and potential future research in this area.

9.2 Terminology

The NHPS deals with standard undirected graphs that have no self loops nor any multiple edges, as well
as ‘marked’ graphs, which are defined as follows:

Definition 9.2.1 (Marked Graph). A marked graph G = (V,E, M) is an undirected graph where M ⊆ E
is a (possibly empty) subset of special edges with markings on them.

An example of a marked graph is shown below in Figure 9.1.1. The interpretation of marked edges in
a graph G is that anyone searching for a Hamiltonian Cycle in G must include the marked edges in any
Hamiltonian cycle found. In addition, we require the concept of ‘forced edges’, defined as follows:

109

110 Chapter 9: A Non-Hamiltonicity Proof System

Definition 9.2.2 (Forced Edge). An edge is forced if it is necessarily part of every Hamiltonian cycle
occurring in a graph, regardless of whether that edge is marked or not.

Therefore, an otherwise Hamiltonian graph can be turned into a non-Hamiltonian marked graph by
marking some set of edges which disqualifies all Hamiltonian Cycles, but marking forced edges does not
disqualify any Hamiltonian cycles.

For example, the marked edges in Figure 9.1.1 are forced because they are incident on a degree-2 vertex.
However, if three or more edges incident on a single vertex of a graph G are marked or forced, then that
graph is not Hamiltonian:

Definition 9.2.3 (Marked Hubs & Forced Hubs). If three or more marked edges are incident on a
vertex, then that vertex a marked hub. Similarly, if three or more edges incident on a vertex are forced, then
it is a forced hub.

Similarly, if a cycle contains c edges where c < n and all c edges are marked or forced, then that graph
is also not Hamiltonian:

Definition 9.2.4 (Marked Subcycles & Forced Subcycles). A cycle containing fewer than n edges in
which all of them are marked is called a marked subcycle. If they are all forced, then it is called a forced
subcycle.

Marked hubs and subcycles are good examples of obstructions to Hamiltonicity, and are shown below in
Figures 9.1.2 and 9.1.3, respectively. It is important to distinguish between marked hubs and forced hubs,
and similarly important to distinguish between marked subcycles and forced subcycles. The NHPS deals
exclusively with edges which have been marked to indicate that they are forced.

Note that every edge in a non-Hamiltonian graph is vacuously forced because it appears in all 0of the
possible Hamiltonian Cycles; this point cannot be overemphasized, since it forms the basis of the NHPS
proof system.

31 2

Figure 9.1: Examples of Marked Graphs Containing Forced Edges, a Forced Hub, and a Forced Subcycle

In addition, we make use of the following definition:

Definition 9.2.5 (Obivious Non-Hamiltonicity). A marked graph G = (V,E, M) is obviously non-
Hamiltonian if any of the following conditions hold:

1. G contains a forced hub.

2. G contains a forced subcycle.

9.3 Description of the Non-Hamiltonicity Proof System 111

9.3 Description of the Non-Hamiltonicity Proof System

The NHPS is quite simple and has the following characteristics:

1. Every NHPS proof is a tree.

2. Every tree node contains either a marked graph or an unmarked graph.

3. Tree edges are directed towards the root and represent applications of inference rules. It is possible for
multiple edges to correspond with one application of a rule.

4. The root contains an unmarked graph that is to be proven as non-Hamiltonian.

5. Each leaf contains an axiom. The set of axioms consists of all unmarked graphs containing at least
one vertex v such that degree(v) ≤ 1.

6. All proof tree nodes at even depths contain unmarked graphs, whereas all proof tree nodes at odd
depths contain marked graphs.

7. Every subtree rooted at an unmarked graph is an NHPS proof.

8. Rules of inference:

(a) Rule for marking edges: Let G1 = (V,E1), G2 = (V,E2), ..., Gk = (V,Ek) be unmarked graphs
with NHPS proofs of non-Hamiltonicity. If there exist two sets E and M subject to the following
conditions:

i. For each Gi = (V,Ei), there exists exactly one edge ei such that E = Ei ∪ {ei}.
ii. M =

⋃k
i=1{ei}

then M ’s edges are all forced and can be safely marked. Therefore we may infer G = (V,E, M).

(b) Rule for removing markings from all forced edges: If a graph with marked forced edges is obviously
non-Hamiltonian, then the corresponding unmarked graph is also non-Hamiltonian.

Example

Intuitively, the NHPS is used to show that any unmarked non-Hamiltonian graph that is not an axiom
contains forced edges, that if marked, would constitute a forced hub or subcycle, thereby proving that it
is indeed non-Hamiltonian. The first inference rule is based on the fact that any edge added to a non-
Hamiltonian graph is forced [Her04]. The second inference rule states that any graph containing a forced
hub or forced subcycle which has been marked has a corresponding unmarked graph which is also non-
Hamiltonian. Of course, the second rule presupposes that all marked edges in hubs and subcycles are in fact
forced, something that must be proven via NHPS proof sub-trees.

Figure 9.2 below illustrates an example of an NHPS proof of non-Hamiltonicity for the graph in the root.
It is not biconnected, and is therefore not Hamiltonian. Note that all of the graphs in the leaves of the proof
tree are axioms.

9.4 Soundness

In order to prove soundness for the NHPS proof system, we make use of the following lemma:

Lemma 9.4.1. All marked edges in M introduced by Inference Rule a are forced.

112 Chapter 9: A Non-Hamiltonicity Proof System

Rule b

Rule a

Rule b

Rule a

Figure 9.2: A NHPS Proof of Non-Hamiltonicity

Proof: From G1, G2, ... Gk we infer G = (V,E,M). Suppose that G1, G2, ... Gk are all unmarked, non-
Hamiltonian graphs and that for each Gi = (V,Ei), there exists exactly one edge ei such that E = Ei∪{ei}.
Let Gi

′ be Gi with the edge ei added and marked. Gi is non-Hamiltonian, so any single edge added to it
must be in every possible Hamiltonian Cycle of Gi, implying that each marked edge ei in each Gi

′ is forced.
However, for each Gi

′, V i
′ = V , and Ei

′ = E. Therefore, each forced edge in each Gi
′ must also be forced

in G, as required.

Theorem 9.4.2. The NHPS is Sound.

Proof: From Lemma 9.4.1, we know that Inference Rule a is sound; that is, all edges marked by the proof
system are forced. It follows that Inference Rule b is therefore also sound, because all forced hubs and
subcycles are clearly obstructions to Hamiltonicity, and cannot contain edges which are marked but not
forced. Since its axioms are clearly non-Hamiltonian and all of its inference rules are sound, the NHPS is
sound, as required.

9.5 Completeness

In order to prove completeness for the NHPS proof system, we make use of the following lemma:

Lemma 9.5.1. For any non-Hamiltonian graph G = (V,E), at least one of the following holds:

1. G contains a vertex v such that degree(v) ≤ 1

2. G contains a vertex u such that degree(u) ≥ 3

9.6 NHPS Simplification 113

3. G contains a cycle with c vertices, where c < n

Proof: Suppose there exists a non-Hamiltonian graph G = (V,E) which fails all three conditions. By failing
conditions 1 and 2, every vertex of G must have a degree of 2. By also failing condition 3, we know that G
must be a cycle containing n vertices. In other words, G is a Hamiltonian cycle, and is therefore Hamiltonian,
a contradiction.

Theorem 9.5.2. The NHPS is Complete.

Proof: The proof of completeness proceeds by induction on the number of edges in non-Hamiltonian graphs.
We show that every non-Hamiltonian graph has an NHPS proof.

Basis: Consider any non-Hamiltonian graph that has no edges. It contains a vertex of degree 0, and is
therefore a NHPS axiom, which is a NHPS proof, as required.

Induction Hypothesis: Suppose that each non-Hamiltonian graph with m edges has a NHPS proof.

Induction Step: Let G = (V,E) be any arbitrary non-Hamiltonian graph with m + 1 edges. We know
from Lemma 9.5.1 that at least one of the following cases holds:

1. G contains a vertex v such that degree(v) ≤ 1

2. G contains a vertex u such that degree(u) ≥ 3

3. G contains a cycle with c vertices, where c < n

If case 1 holds, then G is an axiom, so it has a NHPS proof. If case 2 holds, then G contains some vertex
that would be a hub if its edges were forced. If case 3 holds, then G contains some proper subset of edges
that if marked would constitute a forced subcycle. Every edge in a non-Hamiltonian graph is vacuously
forced, so regardless of whether case 2 or case 3 is chosen, we need to show that the edges corresponding to
the relevant obstruction are forced, thereby showing G to be non-Hamiltonian. Let us use GM to refer to
G with these edges marked. Let us use G1, G2, ..., Gk each to refer to G with exactly one of these edges
removed. Since G is non-Hamiltonian, and removing edges preserves non-Hamiltonicity, each of G1, G2, ...,
Gk is also non-Hamiltonian. Therefore, by the induction hypothesis, each of G1, G2, ..., Gk has a NHPS
proof of non-Hamiltonicity. By placing G, GM , and G1, G2, ..., Gk inside proof-tree nodes, and creating an
edge corresponding with Inference Rule b from GM to G, edges corresponding with Inference Rule a from G1,
G2, ..., Gk to GM , and nesting their NHPS proofs below, we can create an NHPS proof of non-Hamiltonicity
for G. Therefore, in any case, G has a NHPS proof of non-Hamiltonicity.

Therefore, by induction, every non-Hamiltonian graph has a NHPS proof of non-Hamiltonicity, as re-
quired.

9.6 NHPS Simplification

It is worth noting that the marked edges used by the NHPS are not actually necessary, and can be left
out. They clarified the justification for why the proof system is correct, but with that understood, it is easy
to see that they are dispensable. More specifically, we can combine rules of inference a and b into a single
rule as follows:

Let G1 = (V,E1), G2 = (V,E2), ... Gk = (V,Ek) be unmarked graphs with NHPS proofs of non-
Hamiltonicity. If the following hold:

1. For each Gi = (V,Ei), there exists exactly one edge ei such that E = Ei ∪ {ei}.

2.
⋃k

i=1{ei} constitutes either a hub or a forced subcycle.

Then we may infer G = (V,E).

114 Chapter 9: A Non-Hamiltonicity Proof System

Eliminating marked edges from the system clearly simplifies it.

9.7 Exponential Lower Bounds

This proof system is weak in the sense that there exist infinitely large families of graphs which require
exponentially long NHPS proofs of non-Hamiltonicity. Three such families are described in Section 8.2.2.
Intuitively, these graphs are very dense and require NHPS proofs with large height, and therefore large size.

Theorem 9.7.1. The lengths of NHPS proofs have Ω(3n) size-lower bounds, where n is the number of nodes
in the graph.

Proof: Consider any of the graph families shown in Figure 8.2. Let G be any arbitrary graph chosen from
any of these families. Since the minimum-degree vertex in G has Ω(n) edges incident on it, creating an axiom
containing a degree 0 or degree 1 vertex requires a removal of Ω(n) edges. The number of edges in the nodes
of any NHPS proof decreases linearly with the depth of those nodes, so the leaves in a NHPS proof of G’s
non-Hamiltonicity must all occur at a depth of Ω(n) or greater. Furthermore, every application of Inference
Rule a must cause the proof tree to branch by at least 3, since forced hubs and subcycles both contain at
least 3 edges. Every tree node branches into at least three more nodes for every branch. Since the depth of
the tree is Ω(n), this branching behavior will be repeated recursively for every node at Ω(n) depths. This
corresponds to a minimum proof tree which contains 3Ω(n) = Ω(3n) nodes. The growth rate for NHPS proof
lengths for each of the families shown in Figure 8.2 therefore has exponential lower bounds, as required.

9.8 Effective Separation From Other Proof Systems

As might be expected from the lower bounds above, NHPS is a fairly weak proof system, and as explained
in the beginning of Section 2.4, because a reduction is always required between proof systems over different
languages, and since a reduction can either introduce or reduce complexity, it does not make sense to talk
about two proof systems over different languages p-simulating each other. Since the NHPS and T-RES are
proof systems for entirely different languages, we cannot use p-simulation to compare them and instead need
to make use of the more general notion of effective p-simulation given in Definition 2.4.2.

There exist reductions giving an effective exponential separation between the NHPS and T-RES proof
systems. Recall that that the NHPS has exponential lower bounds for the disconnected graphs described in
Section 8.2.2. In particular, let us consider the Gn

2 , n
2

graphs from that section which consist of two disjoint
cliques of size n

2 . Clearly these graphs are non-Hamiltonian, so applying the reduction from Section 8.2.1
yields an unsatisfiable formula.

As we will see from Corollary 10.4.4, if we apply the reduction which uses the Total, Onto, 1-1, and
Function clauses, the resulting formulas have polynomial T-RES upper bounds. However, from Theorem 9.7.1,
we know that the NHPS has exponential lower bounds for the Gn

2 , n
2

graphs. Since there exist polynomially-
bounded T-RES proofs for the H(Gn

2 , n
2
)T,O,1,F formulas, we have an effective separation between the two

proof systems with T-RES being stronger.
Similarly, the K∗

n graphs from Section 8.2.2 are NHPS axioms, and therefore have trivially small proofs,
but as we shall see in Chapter 11, the H(K∗

n)T,1,F formulas have exponential AC0-Frege lower bounds, giving
another effective separation, this time with NHPS being stronger.

9.9 Open Problems Related to The NHPS

This research has several potential avenues of research:

9.9 Open Problems Related to The NHPS 115

9.9.1 Graph Algorithm Lower Bounds

One high-level motivation for better understanding graph theoretic proof systems is to help develop tech-
niques for proving lower bounds on graph algorithms. For example, just as Resolution lower bounds give
corresponding lower bounds for SAT-solving algorithms, so could lower bounds for graph theoretic proof
systems help to prove lower bounds for a potentially wide range of graph algorithms. Non-3-colourability
and non-Hamiltonicity are just some examples of proof systems which could be used in this way; given the
number of coNP-Complete graph theoretic problems and the importance of graph theory and algorithms,
this is certainly an area of research worth pursuing.

9.9.2 Strengthening the NHPS

There are many ways in which the results in this chapter could be improved. The NHPS as described above
is the most simplistic and weak version; it has only one simple axiom scheme, and both hubs and forced
subcycles are required for completeness. The lower bounds are correspondingly simple. A natural course
of research would be to strengthen the NHPS and develop more interesting and sophisticated lower-bounds
arguments.

The NHPS could be strengthened in several ways. Note that these methods are all disjoint and orthogonal
in the sense that they are very different and do not interfere with each other. In other words, any arbitrary
number of them could be combined in order to maximize the strength of the system.

Add More Axioms

The most obvious way to defeat the lower bounds arguments so that none of the three families of graphs
shown in Figure 8.2 require long proofs is by adding more axiom schemes. Checking for connectivity can be
done in polynomial time, and more importantly, disconnected graphs have polynomially-sized certificates, so
there is no reason why disconnectivity cannot be an axiom. The inclusion of such an axiom scheme would
mean that graphs from the family shown in Figure 8.2.1 would no longer require exponentially large NHPS
proofs, but would rather only require a single proof tree node in order to show that they are not Hamiltonian.
Defeating the lower bounds for the family of graphs shown in Figure 8.2.2 would require a similar axiom
scheme, this time for non-biconnectivity, which also has a polynomially-sized certificate. Finally, the family
of graphs shown in Figure 8.2.3 would require an axiom scheme for non-1-toughness. Recognizing 1-tough
graphs is coNP-Hard [BHS90], so in practice applying such an axiom may be computationally intractable,
but recognizing non-1-tough graphs is in NP, and therefore has a short certificate, allowing us to include
this axiom scheme as well. Since the third family of graphs subsumes the other two, including just the
non-1-toughness axiom would suffice to defeat the lower bounds for all three families. A natural course of
research would be to find lower bounds for the NHPS after it has been strengthened with the non-1-toughness
axiom.

Add More Obstructions To Hamiltonicity

In its simplest form, the NHPS’s definition of ‘obviously non-Hamiltonian’ contains hubs and forced sub-
cycles as its only obstructions to Hamiltonicity. Another way to strengthen the proof system is by adding
more obstructions to this list. Two more examples of obstructions to Hamiltonicity are ‘barricades’ and
‘odd-forced-cuts’ [Her04]. A barricade is a forced edge between the two vertices of any 2-vertex-cut, and is
shown below in Figure 9.3.1. An odd-forced-cut is a cut across an odd number of edges, all of them forced.
Figure 9.3.2 below illustrates a graph containing such cuts.

Adding these obstructions to the NHPS would not help to defeat the established lower bounds, but might
be combined with some other way of strengthening the system to yield an interesting result.

Restrict The Input Class

Strengthening the NHPS does not necessarily involve editing its rules or structure. Instead, we could
restrict its input to classes of graphs for which the Hamiltonian Cycle problem nonetheless remains NP-

116 Chapter 9: A Non-Hamiltonicity Proof System

21

Figure 9.3: A Graph Containing a Barricade (left), and a Graph Containing 8 Odd-Forced-Cuts (right)

Complete. The Hamiltonian Cycle problem has been well-studied, and there are many such classes. For
example, it remains NP-Complete even when restricted to the following inputs:

1. Bipartite Graphs [Kri75],

2. Planar, Cubic, 3-Connected Graphs with no face having fewer than 5 sides [GJT76],

3. Planar, Cubic, 2-Connected, Bipartite Graphs [ANS80],

4. Cubic, 3-Connected, Bipartite Graphs [ANS80],

5. Maximal Planar Graphs (Triangulations) [Chv85, Wig82], and

6. 4-Connected, 4-Regular Graphs (M. Rosenfeld, Personal Communication, November 2003).

As might be expected, more restrictive classes strengthen the NHPS more. For example, if we limit our
inputs to planar, cubic, 3-connected graphs with no face having fewer than 5 sides, then the graph families
shown in Figure 8.2 are immediately excluded from consideration because they are neither planar nor cubic.

Restricting ourselves to cubic graphs is desirable when strengthening the NHPS because it ensures that
each vertex has a constant degree. Since the NHPS depends on edge removals in order to expose degree-1
vertices (axioms), we are guaranteed that each degree-1 vertex can add a depth of at most 2 to the proof
tree. Contrast this with the graph families in Figure 8.2, where each vertex requires a depth of Ω(n). Even
the weakest form of the NHPS appears to be quite useful when constrained to this input class.

Restricting ourselves to planar graphs is further desirable because it allows us to include an axiom scheme
for Grinberg’s Theorem [BM76]. Grinberg’s Theorem only applies to planar graphs, and its usefulness for
proving graphs to be non-Hamiltonian should not be understated.

Theorem 9.9.1 (Grinberg’s Theorem). Every planar graph G = (V,E) containing a Hamiltonian Cycle
C satisfies the following equation:

n∑
i=3

(i− 2)(f ′i − f ′′i) = 0

where f ′i represents the number of faces of degree i on the interior of C, and f ′′i represents the number of
faces of degree i on the exterior of C.

If the Grinberg equation associated with a planar graph is inconsistent, then the graph is non-Hamiltonian.
Proofs showing that equations are inconsistent can be very short, thus allowing us to include Grinberg’s
condition as an axiom scheme if we desire.

One interesting research question is to ask what non-Hamiltonian planar, cubic, biconnected, 1-tough
graphs which obey Grinberg’s condition and have no odd-forced cuts look like. Would they translate to hard
SAT instances?

9.9 Open Problems Related to The NHPS 117

Allow DAG-Like Proofs

In its simplest form, the NHPS is tree-like. A DAG-like NHPS proof is essentially a NHPS proof in which
we allow proof nodes to be re-used an arbitrary number of times. This type of re-use requires us to use
unlabelled graphs, or provide some kind of scheme for certifying isomorphism, neither of which are problems.
For example, Figure 9.4 below shows a DAG-Like proof for the non-Hamiltonian graph consisting of two K4

components.

Isomorphic

K4K4K4K

K4

K44KK4

4K

K4

Isomorphic

4

Figure 9.4: A DAG-Like NHPS Proof

The graph in the root is a member of one of the families that yielded our exponential lower bound. Unlike
with tree-like proofs in which every successive level of the tree sees at least a tripling of the number of nodes
from the level before, the ability to re-use nodes shortens our proof considerably. The argument used to
establish our lower bounds therefore no longer holds.

Establishing lower bounds for the DAG-like NHPS raises some interesting questions. For example, does
the DAG-like NHPS have polynomially-sized proofs for all non-biconnected graphs?

9.9.3 Relate the NHPS to Other Proof Systems

One final result worth pursuing would be to prove that the NHPS can effectively p-simulate (and be
effectively p-simulated by) another proof system. Although we were able to show effective separations
between the NHPS in which it is both stronger and weaker than other proof systems, we have yet to show

that there exists a translation under which T-RES can p-simulate the NHPS. Our Hamiltonian Cycle to SAT
reduction which uses the Total, Onto, 1-1, and Function clauses is a potential candidate of such a reduction.

It would also be interesting to ascertain the strength of the stronger NHPS incarnations. For example,
can any of them effectively p-simulate Frege or Extended Frege?

Chapter 10

Prover/Delayer Game Upper Bounds

10.1 Introduction & Motivation

In this chapter we further investigate the Prover/Delayer game which we described in Section 3.2.5 and
proved PSPACE-Complete in Chapter 4. In addition, Corollary 3.3.9 showed that the Prover/Delayer game
can be used to prove T-RES size lower bounds, and Theorem 3.3.7 showed that it also perfectly captures
T-RES clause space. We now prove that this interesting game can also be used to give upper bounds on the
size of T-RES proofs, thereby providing the final result needed to show that T-RES captures the upper and
lower bounds of both T-RES clause space and T-RES size.

We will prove this in two separate ways: The first proof is non-constructive and follows very easily from
previous results in the literature. The second proof is more constructive in the sense that it explicitly shows
how to translate a playing of the Prover/Delayer game into a DPLL tree. It may seem odd to prove the same
thing twice, but the upper bound conditions given by these two proofs are slightly different; the bounds given
by the non-constructive proof are better under certain situations, and the bounds given by the constructive
version are better under others.

Another motivation for this line of research is its practical applications for researchers publishing their
work. We show that for publishing proofs of T-RES size upper bounds, proving bounds on the Prover/Delayer
game is much simpler than having to draw out entire T-RES proofs or DPLL trees. The examples which
we give illustrating these new upper bound techniques will be very important to the Dangerous Reductions
research in Chapter 11.

In effect, the Prover/Delayer game can be used to simplify both upper and lower bounds for T-RES size
as well as space, showing that this game truly captures the T-RES proof system.

This chapter is organized as follows: In Section 10.2 we review a result by Ben-Sasson, Impagliazzo, and
Wigderson showing that the Prover/Delayer game can be used to prove T-RES size lower bounds. Next, in
Section 10.3 we prove this chapter’s main result, namely that the Prover/Delayer game can also be used to
prove T-RES size upper bounds: In Section 10.3.1 we show how this can be proved non-constructively by
combining previous results, and in Section 10.3.2 we give our corresponding constructive proof. Finally, in
Section 10.4 we give examples of how the Prover/Delayer game can be used to show T-RES upper bounds
for the formulas resulting from applying the Hamiltonian Cycle to SAT reduction from Section 8.2.1 to the
graphs from Section 8.2.2.

10.2 Prover/Delayer Game & Tree Resolution Size Lower Bounds

The Prover/Delayer game was used in [BSIW04] to prove size lower bounds for T-RES proofs. More
specifically, lower bounds on PD(F) can be used to prove lower bounds on the size of T-RES proofs:

119

120 Chapter 10: Prover/Delayer Game Upper Bounds

Theorem 10.2.1 ([PI00, BSIW04]). If an unsatisfiable CNF formula F has a DPLL tree of size ≤ 2k,
then the Prover has a strategy limiting the Delayer to ≤ k points.

Proof: Let F be any arbitrary unsatisfiable formula with a DPLL tree of size ≤ 2k. The Prover uses this
tree as a strategy to limit the Delayer to at most k points as follows: The prover starts by querying the
variable corresponding to the root of the tree. If the Delayer says ‘True’ or ‘False’, then the Prover proceeds
by querying the variable in the corresponding subtree of the root. If the Delayer says ‘You Choose’, then the
Prover chooses the smaller subtree, and next queries on that variable. Therefore, even if the Delayer says
‘You Choose’ at every possible opportunity, 2k can only be split in half at most k times, so the Delayer wins
at most k points, as required.

The contrapositive of this theorem yields the following corollary, giving a direct connection between the
Prover/Delayer game and T-RES size lower bounds. Although this corollary was already stated in Section
3.3.2, it is worth repeating here because it allows researchers interested in proving exponential T-RES size
lower bounds to focus instead on proving linear Prover/Delayer game lower bounds, and is therefore very
similar to this chapter’s main results in the next section.

Corollary 10.2.2 (Restated). If the Delayer has a strategy guaranteed to win > k points on F , then every
DPLL tree for F has size > 2k.

10.3 Prover/Delayer Game & Tree Resolution Size Upper Bounds

In addition to lower bounds, the Prover/Delayer game can be used to prove upper bounds on the size of
T-RES proofs. More specifically, upper bounds on PD(F) yield T-RES size upper bounds. This result can
be proved both constructively and non-constructively. These different proofs give slightly different bounds,
each better than the other under certain conditions. The non-constructive proof follows closely from previous
results, whereas the constructive one is new and gives some interesting insights into the relationship between
the Prover/Delayer game and T-RES size upper bounds because it specifically describes how to translate the
history of a completed game in which k points were scored into a DPLL tree of size O(nk), where n is the
number of distinct variables.

This is interesting because it allows for researchers interested in proving polynomial T-RES size upper
bounds to focus instead on proving constant Prover/Delayer game upper bounds, and is therefore very much
the analog of Corollary 10.2.2.

10.3.1 Non-Constructive Proof

The non-constructive proof relating the Prover/Delayer game to T-RES size upper bounds follows quite
easily as a corollary of results by Esteban and Torán from two separate papers. These results are described
in Section 3.3.2, but we restate them here for convenience:

Theorem 10.3.1 ([ET01], Restated). Let F be an unsatisfiable formula on n distinct variables. If F has
a T-RES refutation with tree clause space s = CS(F `T-RES ∅), then it has a T-RES refutation of size

(
n+s

s

)
.

Theorem 10.3.2 ([ET03], Restated). For any unsatisfiable CNF formula F , CS(F `T-RES ∅) =
PD(F) + 1.

From [Bol85, p.124], we know that
(
a
b

)
≤ (e a

b)s, so the expression
(
n+s

s

)
is bounded above by es(n

s + 1)s.
When we combine this fact with Theorems 10.3.1 and 10.3.2, we immediately prove that an upper bound on
the number of points scored by the Delayer yields an upper bound on T-RES proof size:

Corollary 10.3.3. If the Prover has a strategy limiting the Delayer to at most k points playing on formula
F which contains ≤ n distinct variables, then F has a T-RES refutation of size ≤ ek+1(n

k+1 + 1)k+1.

Proof: Suppose that the Prover has a strategy limiting the Delayer to at most k points playing on formula
F . By Theorem 10.3.2, we know that F has a T-RES proof with CS(F) = k + 1. By Theorem 10.3.1, F has
a T-RES refutation of size

(
n+k+1

k+1

)
, which is bounded above by ek+1(n

k+1 + 1)k+1, as required.

10.3 Prover/Delayer Game & Tree Resolution Size Upper Bounds 121

10.3.2 Constructive Proof

The following theorem constructively allows us to take the history of a Prover/Delayer game played on
a formula F in which k points were scored, and build a DPLL tree of size O(nk), where n is the number
of distinct variables in F . This bound is slightly different than the one from the non-constructive proof.
The non-constructive proof gives better bounds when k is much larger than log(n), whereas the constructive
version gives better bounds when k is O(log(n)), and is particularly good when k is constant, which tends
to be exactly when one would want to apply these techniques to prove T-RES size upper bounds.

Theorem 10.3.4. If the Prover has a strategy limiting the Delayer to at most k points playing on formula
F which contains ≤ n distinct variables, then F has a DPLL tree of size O(nk).

Proof: Proof by (strong) induction on k, the number of points scored by the Delayer.

Basis: For k = 1, let F be any arbitrary formula on which the Prover has a strategy limiting the Delayer
to at most 1 point. We will use the series of queries and answers from the game played between the Prover
and Delayer on F to construct a DPLL tree of size O(n).

Since the Delayer scores at most 1 point, the very last query made by the Prover must result in the
Delayer responding with ‘You Choose’ (YC), and the Prover’s response must falsify the formula, or else the
Delayer would be able to score ≥ 2 points. Therefore all ≤ n − 1 previous variable queries must have been
answered with a ‘True’ or ‘False’.

Rename the variables so that they are queried in the order x1, x2, ..., xj , where xj is the variable for
which the Delayer responds, ‘YC’. Without loss of generality, assume that the Prover sets xj to True (the
False case is analogous). Use this series of questions and answers to build a path from the root of the tree
to a leaf, as shown below in Figure 10.1.1.

We now fill in the rest of the tree. For every ‘True’ or ‘False’ reply, the Delayer could have said ‘YC’,
and we know that this change in strategy could not have increased the number of points scored. This means
that every node in the DPLL tree corresponding to one of these ≤ n− 1 variables must be adjacent to a leaf,
each marked with an ‘x’ in Figure 10.1.2.

2

P : xj?

P : x4?

P : x3?

P : x2?

P : x1?

1

P : xj?

P : x4?

P : x3?

P : x2?

P : x1?

D : Y ou Choose

T1
P : True

D : True

D : False

D : True

Figure 10.1: Example of a Game in Which 1 Point is Scored Together with its Corresponding DPLL Tree

Now we need only construct the subtree labelled T1. If this subtree is a leaf, then we are done. However,
it may be the case that the formula Fj at the root of T1 is one in which the Delayer can win 1 point (the

122 Chapter 10: Prover/Delayer Game Upper Bounds

Delayer cannot win ≥ 2 points on Fj , or else the reply to xj would have been ‘False’ instead of ‘YC’, allowing
for ≥ 2 points to be scored on F). In order to build T1, we therefore recursively play a new game on Fj , and
use exactly the same technique as above to turn this game into a tree. This is repeated as many times as
necessary.

Note that because ‘YC’ was said, preceded by zero or more non-‘YC’ responses, Fj contains strictly
fewer distinct variables than F , and the height of our entire DPLL tree can be at most n, so this process is
guaranteed to terminate, leaving us with a DPLL tree in which each node either is a leaf or is adjacent to at
least one leaf. Our tree therefore has height ≤ n, and contains ≤ 2n + 1 nodes, which is O(n).

Induction Hypothesis: Let F be any arbitrary unsatisfiable formula on ≤ n distinct variables. Assume
that if the Prover has a strategy limiting the Delayer to at most k − 1 points, then F has a DPLL tree of
size O(nk−1).

Induction Step: Let F be any arbitrary formula on which the Prover has a strategy limiting the Delayer
to at most k points. As in the basis, we will again use the series of queries and answers from the game played
between the Prover and Delayer on F to construct a ‘scaffold’ for a DPLL tree, which we will then fill in.

Consider the game played on F up to and including the first ‘YC’ reply to the query on variable xj , as
shown below in Figure 10.2.1. The path corresponding to the remainder of the game in which k − 1 points
are scored is labelled Pk−1.

Tk−1

Tk−1

Tk−1

Tk−1

Tk−1

P : x1?

P : x3?

P : xj?

P : x1?

P : x2?

P : x3?

P : x4?

P : xj?

D : True

D : False

D : True

P : True

Pk−1

P : x4?

P : x2?

2

D : Y ou Choose

1
Tk

Figure 10.2: A Path Representing a Game in Which k Points are Scored Together With its Corresponding
DPLL Tree

We will now fill in the rest of the tree. The first ‘YC’ is preceded by 0 or more non-‘YC’ responses.
Consider any one of the variables for which a non-‘YC’ answer is given. Without loss of generality, let us
examine variable x2. The Delayer could have replied ‘YC’ to the query on x2, and this change in strategy
could not have increased the number of points won. But we have already seen that the false path leads to
a situation where the Delayer can win k more points for a total of k + 1 points, so in response, the Prover
would have to have set x2 to ‘True’.

Let F2 be the formula resulting from setting x2 to true. The Delayer could not win k points here, because
that would mean that saying ‘YC’ on x2 is a better strategy than saying ‘False’. Therefore the Prover has a
strategy limiting the Delayer to at most k− 1 points on F2, and our Induction Hypothesis applies, so F2 has

10.4 Examples 123

a DPLL tree Tk−1 of size O(nk−1). The same argument applies to each of x1, ..., xj−1, as shown in Figure
10.2.2.

Now consider xj , the first variable for which the Delayer says ‘YC’. Without loss of generality, assume
that the Prover decides to set xj to true, resulting in the restricted formula Fj=True. Since one point has
been scored, the Delayer can score a maximum of k − 1 points on Fj=True, so the Induction Hypothesis
applies and it has a DPLL tree of size O(nk−1), as indicated.

The right subtree, however, must be treated similarly to its analogue in the basis. If < k points can be
won in it by the Delayer, then the induction hypothesis applies and we are done. We know that the Delayer
cannot win > k points in it or else the response on xj would have been ‘False’ rather than ‘YC’, allowing
for > k points to be won overall, a contradiction.

Therefore assume that the right subtree is rooted at a restricted formula Fj=False on which the Delayer
can win exactly k points. In other words, it is as if we are recursively starting our tree-building process
all over again. In order to build Tk, we therefore play a new game on Fj=False, and use exactly the same
technique as above to turn this game into a tree. Again, it is important to note that Fj=False contains
strictly fewer distinct variables than F , and the height of our entire DPLL tree can be at most n, so in the
worst case this process can continue until the remaining height is ≤ k, at which point the Delayer must
respond ‘YC’ to every query in order to get up to k points, and the induction hypothesis applies to both
subtrees since each has height ≤ k − 1 and ≥ k points cannot be won in only ≤ k − 1 queries. When this
process finishes, every subtree that we have filled in has size O(nk−1), so we will end up with a tree consisting
of a path of length ≤ n with each child tree hanging off of it having size O(nk−1), therefore showing that
our entire tree has size O(nk).

Therefore, by induction, if the Prover has a strategy limiting the Delayer to at most k points playing on
formula F which contains ≤ n distinct variables, then F has a DPLL tree of size O(nk), as required.

When we combine this result with Corollary 10.2.2, we get interesting T-RES size bounds: For any unsat-
isfiable formula F on n variables with PD(F) = k, the size of any T-RES refutation of F has size at least
Ω(2k) and at most O(nk).

10.4 Examples

Having T-RES size upper bounds based on the Prover/Delayer game is particularly useful because it allows
us to simplify proofs of T-RES size upper bounds in terms of size and ease of writing. We now provide some
examples illustrating how the Prover/Delayer game can be used to simplify T-RES proofs. These examples
will be very important to the results in Chapter 11.

10.4.1 Example 1: Polynomial Upper Bounds for the H(K∗
n) Formulas

In Section 8.2.1 we gave a reduction from the Hamiltonian Cycle problem to SAT. Intuitively, the reduction
takes an input graph G and produces a formula that enforces a mapping from the vertices in G to the positions
of a Hamiltonian Cycle. The mapping must be a bijection, and can include clauses that enforce the mapping
to be Total, 1-1, a Function, and Onto. In addition, there are clauses which enforce the edge structure of
G. The output formula has variables of the form mi,j which are interpreted as meaning that vertex i in G
is mapped to position j in the Hamiltonian Cycle, and the resulting formulas are called H(G). Additional
subscripts are added to this notation to indicate which clauses were used to enforce the bijection. For
example, if the reduction used clauses from the total and 1-1 groups, then the resulting formula is labelled
as H(G)T,1. For more information on this reduction, please refer to Section 8.2.1.

We can apply this reduction to the K∗
n graphs from Section 8.2.2. Each K∗

n graph consists of the complete
graph Kn with the addition of a single degree-0 vertex called x. Since each K∗

n is disconnected, it is clearly
non-Hamiltonian, which in turn means that every formula H(K∗

n) is unsatisfiable.
If our reduction uses the Total, Onto, and Function clauses, then the resulting formula has polynomial

upper bounds:

124 Chapter 10: Prover/Delayer Game Upper Bounds

Theorem 10.4.1. T-RES proofs for the unsatisfiability of H(K∗
n)T,O,F formulas have O(n2) size upper

bounds, where n is the number of distinct variables contained in the formulas.

Proof: For the following argument, please refer to the T-RES proof template shown in Figure 10.3. Note
that some of the leaves are labelled with the specific clauses which are falsified at that position. In addition,
to avoid diagrammatic clutter, the remaining leaves are labelled with the groups containing the clauses which
are falsified.

We initially branch on mx,1. Since x is an isolated vertex in K∗
n, setting mx,1 = True ensures that

assigning any future vertex to position 2 (i.e. setting mi,2 = True for any i 6= x) will falsify an edge clause,
and therefore falsify the formula. Setting mx,2 = True also falsifies H(K∗

n)T,O,F by falsifying a function
clause, because no vertex may be assigned to more than one position. Finally, setting mi,2 = False for
i = 1, 2, ..., n, x will falsify the onto clause requiring that some vertex be mapped to position 2. This subtree
requires 2n + 3 nodes.

When we set mx,1 = False, we next branch on mx,2. Clearly, the formula rooted by setting mx,2 = True,
can be shown to be unsatisfiable with a tree of size 2n + 3 for the same reasons as above.

For each i, after setting mx,i−1 = False, we branch on mx,i. Each positive branching will result in a
subtree of size 2n + 3 as described above.

The all-negative assignment to every mx,i falsifies the total clause ensuring that vertex x is mapped to
some position, after which all branching is complete. This T-RES proof therefore has size (n+1)(2n+3)+1,
which is O(n2), as required.

mx,1

mx,2

¬mx,1

¬mx,2

¬mx,n

¬mn−1,3
m2,1

¬m1,1m1,1

¬m2,3
m2,3

¬m1,3m1,3

m1,2 ¬m1,2

m2,2 ¬m2,2

mn,2 ¬mn,2

mx,2 ¬mx,2

mn,3

mx,3 ¬mx,3

¬mn,3

¬m2,1
(¬mx,1 ∨ ¬m2,2)

(¬mx,1 ∨ ¬mn,2)

(¬mx,1 ∨ ¬mx,2) (m1,2 ∨ m2,2 ∨ ... ∨ mn,2 ∨ mx,2)

(mx,1 ∨ ... ∨ mx,n ∨ mx,n+1)

Function Onto

Edge

¬mn−1,1

mn,1 ¬mn,1

mx,1 ¬mx,1

Function

Function

Total

Onto

Onto

Edge

Edge

Edge

Edge

Edge

Edge

Edge

Edge

¬mn−1,2

mx,n+1 ¬mx,n+1

Figure 10.3: A Template for Polynomially-Sized T-RES Proofs for the Unsatisfiability of H(K∗
n)T,O,F For-

mulas

The proof of Theorem 10.4.1 shown in Figure 10.3 is a fairly standard argument which uses a DPLL
tree template. Although clear enough, these types of proofs are difficult to write-up because drawing proof
templates requires a lot of time and effort. The Prover/Delayer game can be used to significantly simplify
T-RES upper bound arguments. For example, contrast the proof above with the proof of the following lemma:

Lemma 10.4.2. PD(H(K∗
n)T,O,F) ≤ 2

Proof: We describe a Prover strategy which limits the Delayer to at most 2 points: The Prover first tries
to map vertex x to some position in the cycle. This is done by querying mx,1. If the Delayer says ‘False’,
then the Prover queries mx,2, and so on until the Delayer finally says ‘True’ or ‘You Choose’. If the Delayer

10.4 Examples 125

says ‘False’ to every query, then a Total clause is falsified, and the game is over. Therefore the Delayer has
no choice but to concede that x gets mapped somewhere, and can win at most one point during this phase
by saying ‘You Choose’, at which point the Prover says ‘True’.

Next the Prover tries to map every single vertex (including x) to the position adjacent to where x was
mapped. Since x has degree zero, mapping any vertex other than x into an adjacent position would falsify
an Edge clause. Mapping x to two places would falsify a Function clause. However, if no vertex is mapped
to that position, then an Onto clause is falsified. The Delayer’s best strategy is therefore to simply say ‘You
Choose’, and accept the inevitable defeat while winning another point for a total of 2, the most possible
given this Prover strategy, as required.

When we combine this lemma with Theorem 10.3.4, we get Theorem 10.4.1 as an immediate corollary.
It is easy to see that the proof using the Prover/Delayer game is simpler and easier to write than the size
O(n2) diagrammatic DPLL tree given in Figure 10.3.

10.4.2 Example 2: Polynomial Upper Bounds for the H(Gn
2

, n
2
) Formulas

In our next example we use the Prover/Delayer game to prove that the H(Gn
2 , n

2
)T,O,1,F formulas obtained

by applying the reduction in Section 8.2.1 to the non-Hamiltonian graphs from Section 8.2.2. Recall that the
Gn

2 , n
2

graphs each consist of two disjoint cliques of size n
2 . If we take these graphs and apply the reduction

from Section 8.2.1 which uses the Total, Onto, 1-1, and Function clauses, the resulting unsatisfiable formulas
have a Prover/Delayer number of at most 3, which in turn shows that they have polynomial T-RES size
upper bounds by Theorem 10.3.4.

Since it would be too large and complicated, we omit drawing a DPLL proof template for comparison
and instead use the Prover/Delayer game to show polynomial T-RES upper bounds:

Theorem 10.4.3. PD(H(Gn
2 , n

2
)T,O,1,F) ≤ 3

Proof: We describe a strategy for the Prover which limits the Delayer to at most 3 points: Assume that
the vertices in one clique are red, labelled r1, ..., rn

2
, and those in the other are blue, labelled b1, ..., bn

2
.

First the Prover tries to map vertex r1 to some position in the Hamiltonian Cycle. To avoid the Total
clause for r1 being falsified, the Delayer must let it be mapped somewhere, and can win at most 1 point in
doing so by saying ‘You Choose’. Without loss of generality, let us assume that r1 was mapped to position
1.

Next, the Prover tries to map vertex b1 to position 2. If the Delayer says ‘False’, then the Prover tries
to map every remaining blue vertex to position 2. If the Delayer says ‘True’, or ‘You Choose’ (followed by
the Prover saying ‘True’), then a blue vertex and a red vertex are adjacent, which falsifies an Edge clause.
In this case, the Delayer wins at most 2 points.

On the other hand, if the Delayer does not allow any blue vertices to be mapped to position 2, then the
Prover attempts to map every blue vertex to position i = 3, 4, ..., n. This leads to two cases:

Case 1: The Delayer continuously says ‘False’. In this case, the Prover attempts to map all possible blue
vertices to position 1 (the position already occupied by r1). If the Delayer says ‘True’ or ‘You Choose’ for
one of them (followed by the Prover saying ‘True’), then two vertices have been mapped to the same slot,
causing the falsification of a 1-1 clause. If the Delayer again says ‘False’ and does not allow a blue vertex to
be mapped to position 1, then there is a blue vertex which was mapped to nowhere, causing the falsification
of an Onto clause. Within Case 1, the greatest possible number of points scored is 1, for a total of 2.

Case 2: The Delayer allows a blue vertex to be mapped to position i. We may assume that this came
about by the Delayer saying ‘You Choose’, at which point the Prover would say ‘True’, thereby winning
another 1 point for the Delayer. We now have a red vertex in position 1, a blue vertex in position i, and
we know that positions 2, ..., i − 1 do not have blue vertices in them. At this point the Prover attempts to
map all possible red vertices to position i− 1. If the Delayer says ‘False’ to all of them, then an Onto clause
is violated, and the game ends with 2 points. The alternative is that the Delayer allows a red vertex to be
mapped to position i− 1 (by saying ‘You Choose’ for a total of 3 points). Since position i already has a blue
vertex in it, this falsifies an Edge clause. In this case, the Delayer wins 3 points, which is the maximum of
all cases, as required.

Together with Theorem 10.3.4, this result gives us the following Corollary:

Corollary 10.4.4. T-RES proofs for the unsatisfiability of H(Gn
2 , n

2
)T,O,1,F formulas have O(n3) size upper

bounds, where n is the number of distinct variables contained in the formulas.

Once again, this proof is much simpler to understand and create than the alternative of drawing a size
O(n3) DPLL proof tree.

Chapter 11

Formalizing Dangerous Reductions

11.1 Introduction & Motivation

Satisfiability, or SAT, is the archetypal NP-Complete problem. It has long been known that every prob-
lem in NP can be reduced to SAT using Cook’s Theorem [Coo71]. Since propositional formulas are very
expressive, instances of many problems in NP can also be encoded as SAT instances in a much more direct
and intuitive way than via Cook’s Theorem. In fact, many problems have numerous different SAT encodings
to choose from, and this has allowed the area of SAT-solving to become one of the most successful techniques
for tackling NP-Complete problems.

Although the strategy of translating problems from other domains to SAT has proved to be fruitful, this
technique is not without its dangers. Empirical evidence suggests that natural encodings which seem to
conserve much of the structure of the original problem can actually convert simple instances of the original
problem to very difficult SAT formulas. For example, Kautz, McAllester and Selman investigate numerous
approaches for translating planning problems to SAT in [KMS96]. Some of these translations are found to
result in formulas which are much harder to solve than others, suggesting that a great deal of care must be
taken in designing encodings since one cannot assume that they will conserve the simplicity of easy input
instances.

This danger is so well-known to the propositional reasoning community that Kautz, McAllester, and
Selman list understanding it as one of ten important and challenging open problems in the area [KMS97].
A more recent follow-up paper [KS03] reaffirms this problem’s importance and notes that although some
progress has been made, there is still much more work to be done.

We address this problem in two ways. Firstly, we show that the Hamiltonian Cycle to SAT reduction
described in Section 8.2.1 can translate trivial instances of the Hamiltonian Cycle problem to an intractably
difficult one for any Resolution-based SAT-solver. We also show that very minor modifications to this en-
coding can make it produce easy SAT instances, thereby giving the first formal example of an exponential
separation between two very similar and natural encodings. We call this a ‘dangerous reduction’, because it
injects unwanted complexity into the resulting formula, thereby defeating the entire purpose behind trans-
lating problems from other domains to SAT. However, this phenomenon has a brighter side as well, and we
provide a formal example of a reduction which translates intractable instances for the NHPS proof system
from Chapter 9 to easy SAT instances.

The second way in which we address the overall problem of choosing between reductions is by providing
a domain-independent framework for comparing the effectiveness of competing encodings in terms of how
easy it is to solve their outputs. This framework is based on the standard proof-complexity hierarchy shown
in Figure 2.2 as well as the close relationship between SAT-solving and propositional proof complexity.

Ultimately, these results constitute an implicit suggestion to researchers working with SAT-solvers: When
translating problems from other domains to SAT, ideally one should also provide a proof that the reduction
is not dangerous.

127

128 Chapter 11: Formalizing Dangerous Reductions

This chapter is organized as follows: In Section 11.2 we give the first formal example of a dangerous
reduction as well as examples of neutral, and beneficial ones as well. All of these examples depend on
definitions and results from previous chapters of this thesis.

In Section 11.3 we define the formal notions of explosive, stable, and implosive reductions to correspond
with our intuitive notions of dangerous, stable, and beneficial reductions. We use these definitions together
with the standard proof complexity p-simulation hierarchy to design a framework for comparing encodings.

Next, in Section 11.4 we discuss the implications of this research for propositional proof complexity.
Finally, in Section 11.5 we discuss open problems and conjectures related to this area of research.

11.2 Formal Examples of Dangerous, Neutral, & Beneficial Re-
ductions

In this section we apply three very similar versions of the reduction from Section 8.2.1 to the non-
Hamiltonian graphs described in Section 8.2.2. We apply the first two reductions to the K∗

n graphs, and
the remaining reduction to the Gn

2 , n
2

graphs. Since all of these graphs are disconnected, they are non-
Hamiltonian, which in turn means that each resulting formula is unsatisfiable, regardless of which version of
the reduction is used.

We show that the first reduction maps easy instances for the NHPS proof system from Chapter 9 to for-
mulas with exponential lower bounds for all AC0-Frege proof systems. This immediately implies exponential
lower bounds for RES, and all Resolution-based SAT-solvers, including clause learning algorithms. This is
an example of a dangerous reduction.

By contrast, the second reduction, which differs only slightly from the first, maps the same easy instances
for the NHPS proof system to formulas with polynomial T-RES size upper bounds, giving an example of a
neutral reduction.

These reductions are not pathologically designed to create problems, but rather are very intuitive and
straightforward. This is relevant to the open problem in [KMS97, KS03] because as already mentioned,
researchers working with SAT-solvers are aware of empirically tested instances where different reductions
can have a significant impact on the complexity of a problem, but this is the first formal example.

Finally, our third reduction, which again is very similar to the other two, maps intractably hard instances
for the NHPS proof system to formulas with polynomial T-RES size upper bounds, showing that reductions
can be beneficial as well.

11.2.1 Formal Example of a Dangerous Reduction

In this section we show that the version of the Hamiltonian Cycle to SAT reduction from Section 8.2.1
which uses Total, 1-1, and Function clauses when applied to K∗

n graphs results in a formula which no
Resolution-based SAT-solver can solve efficiently, even though the K∗

n graphs are trivially non-Hamiltonian.
In other words, even though the encoding is very natural, it injects an exponential amount of unwanted
complexity into our original problem instance. More specifically, we prove exponential AC0-Frege size lower
bounds for the H(K∗

n)T,1,F formulas:

Theorem 11.2.1. Lengths of AC0-Frege proofs for the unsatisfiability of H(K∗
n)T,1,F formulas have Ω(2

5d√
n)

lower bounds, where n is the number of distinct literals and d is the depth of the Frege proof, and if there
exist size-N AC0-Frege proofs of H(K∗

n)T,1,F , then there exist size-N + O(n3) proofs of fPHPn
n−2.

Proof: The high-level overview of this proof is as follows: Assume that we have a size-N AC0-Frege proof of
H(K∗

n)T,1,F . We show that this proof can be restricted with a specially-chosen truth assignment α to get a
new, smaller proof of H(K∗

n)T,1,F �α. After unit propagation, this formula becomes the functional pigeonhole
principle formula with n pigeons and n − 2 holes, denoted fPHPn

n−2. These formulas are known to have
exponential AC0-Frege lower bounds [BT88]. Since the lower bound is proved for AC0-Frege proof systems,
we show how to model the unit propagations using O(n3) steps in AC0-Frege reasoning. Therefore, if there
exists a sub-exponential AC0-Frege (resp. RES) proof of H(K∗

n)T,1,F , then there exists a sub-exponential

11.2 Formal Examples of Dangerous, Neutral, & Beneficial Reductions 129

AC0-Frege (resp. RES) proof of fPHPn
n−2, which is a contradiction, since fPHPn

n−2 has exponential lower
bounds.

The details of the proof are as follows: The restriction that we apply to H(K∗
n)T,1,F is mx,n = True.

This will guarantee via the edge clauses that we cannot map any vertex to positions n− 1 or n + 1 because
x has no edges incident on it. If we interpret the variables as mappings from pigeons to holes, we now have
two more pigeons than holes. The restriction mx,n = True propagates as follows:

• For every function clause of the form (¬mx,n ∨ ¬mx,j), since we have set mx,n to True, we must set
all of mx,1,mx,2, ...,mx,n−1 as well as mx,n+1 to False.

• For every 1-1 clause of the form (¬mx,n ∨ ¬mi,n), propagating mx,n = True causes us to set all of
m1,n,m2,n, ...,mn,n to False.

• Finally, for every edge clause of the form (¬mx,n∨¬mk,n+1) where (x, k) is a non-edge in G, propagating
mx,n = True causes us to set all of m1,n+1,m2,n+1, ...,mn,n+1 to False. Similarly, for each edge clause
of the form (¬mi,n−1 ∨¬mx,n), propagating causes us to set all of m1,n−1,m2,n−1, ...,mn,n−1 to False.

The effect of these propagations on the various groups is as follows:

• Total Clauses: The restriction mx,n = True satisfies the clause (mx,1 ∨ mx,2 ∨ ... ∨ mx,n ∨ mx,n+1).
Combined with this, the propagations mi,n−1 = False, mi,n = False, and mi,n+1 = False for all i
causes the total clauses to become:
n∧

i=1

(
n−2∨
j=1

mi,j)

• 1-1 Clauses: For each 1 ≤ i ≤ n + 1, i 6= x, there is a clause (¬mx,n ∨¬mi,n). Since every mi,n was set
to False, every 1-1 clause involving any mi,n will be satisfied and eliminated. Due to the edge clause
propagations, for every i 6= x, every clause involving mi,n−1 or mi,n+1 will also be eliminated. The 1-1
clauses therefore become:
n−2∧
j=1

n∧
i1=1

n∧
i2=1
i2 6=i1

(¬mi1,j ∨ ¬mi2,j)

• Function Clauses: For each 1 ≤ j ≤ n + 1, j 6= n there is a clause (¬mx,n ∨ ¬mx,j). Since every mx,j

was set to False, every function clause involving any mx,j will be satisfied and eliminated. Due to edge
clause propagations, for every i 6= x, every clause involving mi,n−1 or mi,n+1 will also be eliminated.
Due to the 1-1 clause propagations, for every i 6= x, every clause/ involving mi,n will also be eliminated.
The function clauses therefore become:
n∧

i=1

n−2∧
j1=1

n−2∧
j2=1

j2 6=j1

(¬mi,j1 ∨ ¬mi,j2)

• Edge Clauses: There are two types of edge clauses, those which contain the literal ¬mx,n, and those
which contain the literal ¬mx,j , j 6= n. Note that this covers all edge clauses because vertex x is
involved in every non-edge of K∗

n. Clauses of the first type are satisfied by unit propagation which
forces the other literal in each such clause to be set to True. Those of the second type are satisfied by
the mx,j propagations from the function clauses. All edge clauses are therefore eliminated.

These remaining clause groups when simplified by unit propagation are exactly the clauses from fPHPn
n−2.

In effect, the size ≤ N proof of H(K∗
n)T,1,F �mx,n=True has been turned into a proof of fPHPn

n−2. It is not
hard to show that AC0-Frege can perform unit propagations in polynomial size for some polynomial p(n).
This turns our size ≤ N proof of H(K∗

n)T,1,F �mx,n=True to a size N + p(n) proof of fPHPn
n−2.

Let d be the depth bound imposed on a Frege system. Since AC0-Frege proof systems are closed under
restriction (i.e. restricting a proof yields a smaller proof), and since they have Ω(2

5d√
n) size lower bounds

130 Chapter 11: Formalizing Dangerous Reductions

for fPHPn
n−2 formulas [UF96], we may conclude that the H(K∗

n)T,1,F formulas also require proofs of size

at least Ω(2
5d√

n). Specifically, if there exist size ≤ N AC0-Frege proofs of H(K∗
n)T,1,F �mx,n=True, then there

exist size ≤ N + p(n) proofs of fPHPn
n−2.

Clearly, this result also holds for all formulas such as H(K∗
n)T,1 which are composed of proper subsets

of the clauses from H(K∗
n)T,1,F , because having fewer initial clauses certainly cannot help to find a shorter

proof. The implications for SAT-solvers are immediate:

Corollary 11.2.2. No SAT algorithm based on AC0-Frege nor any weaker proof system can efficiently solve
H(K∗

n)T,1,F formulas (or formulas containing a proper subset of those clauses). This includes DPLL as well
as SAT-solving algorithms based on clause learning.

We have therefore shown that the H(G)T,1,F reduction can convert trivial instances of the Hamiltonian
Cycle problem to intractable SAT instances.

11.2.2 Formal Example of a Neutral Reduction

In Theorem 10.4.1 of Section 10.4.1 we showed that when applied to K∗
n graphs, the version of our reduction

which uses Total, Onto, and Function clauses results in formulas which have polynomially-bounded T-RES
refutations, providing an example of a neutral reduction. This is particularly interesting because both
H(K∗

n)T,O,F and H(K∗
n)T,1,F are natural encodings of the Hamiltonian Cycle problem, and neither is a

subset of the clauses of the other, but H(K∗
n)T,O,F is easy to solve, while H(K∗

n)T,1,F is intractably difficult.
This formally proves that it is possible to have an exponential separation between two similar natural
reductions applied to the same set of inputs.

Clearly, this result also holds for all formulas such as H(K∗
n)T,O,1,F which are composed of proper supersets

of the clauses from H(K∗
n)T,O,F , because having more initial clauses certainly cannot hurt minimum proof

size:

Corollary 11.2.3. The size of T-RES proofs for the unsatisfiability of H(K∗
n)T,O,1,F formulas have polyno-

mial upper bounds.

Our upper bound result of course has an immediate corollary for SAT-solvers:

Corollary 11.2.4. For any H(K∗
n)T,O,F formula (or formula containing a superset of those clauses), there

is a polynomially-bounded DPLL computation which solves it, assuming that the variables to branch on are
chosen in the correct order.

11.2.3 Formal Examples of Beneficial Reductions

As we saw from the previous two results, reductions can certainly present pitfalls for researchers working
with SAT-solvers. However, they can also present opportunity, as was shown in earlier chapters. In this
section we combine some earlier definitions and results to give a formal example of a beneficial reduction.

In Section 8.2.2 we introduced the Gn
2 , n

2
graphs. Each such graph consists of two cliques of size n

2 , which
are clearly non-Hamiltonian. Nevertheless, these graphs have exponential NHPS size lower bounds, which
was shown in Theorem 9.7.1.

However, Corollary 10.4.4 proves that when we apply our reduction which uses the Total, Onto, 1-1, and
Function clauses to the Gn

2 , n
2

graphs, we get the H(Gn
2 , n

2
)T,O,1,F formulas which have polynomial T-RES

upper bounds.
In other words, this encoding maps an intractably hard input for one proof system to an easy input for

another, and therefore constitutes a formal example of a beneficial reduction.

11.3 Domain Independent Framework for Comparing Encodings 131

One interesting point of note is that the same reduction applied to different inputs can have different
effects. For example, we saw from Corollary 11.2.3 that with the Total, Onto, 1-1, and Function clauses, our
reduction is neutral when applied to the K∗

n graphs. However, as we just saw, the same reduction applied
to the Gn

2 , n
2

graphs is beneficial.

In addition, researchers have empirically shown that adding redundant clauses to formulas can transform
very difficult instances of SAT into very easy ones. We can further weaken the easy formulas from Theorem
10.4.1 with 1-1 clauses to obtain the formulas of Corollary 11.2.3 which contain the clauses of the hard
formulas from Theorem 11.2.1 as a proper subset but now have T-RES refutations of polynomial size. This
provides a formal example of hard T-RES/DPLL instances which can be converted to easy instances by the
addition of redundant onto clauses, giving another example of a beneficial reduction.

11.3 Domain Independent Framework for Comparing Encodings

In this section we describe a formal domain-independent framework which captures our intuitive notions
of what constitute dangerous and safe reductions, and show that not only can reductions increase the
complexity of problems, but they can beneficially reduce their complexity by applying polytime reasoning
which is unavailable to the target proof system. We use this framework to categorize encodings as being
harmful, neutral, or beneficial.

Currently, no system exists to classify encodings according to whether they make problem instances
harder or easier. Such a classification system might prove to be very helpful to researchers who are actively
using SAT-solvers to tackle NP-Complete problems. It might also prove to be beneficial for researchers who
are interested in studying the phenomenon of dangerous encodings more abstractly with an eye to finding
general principles for predicting which encodings will lead to complexity blow-ups on certain families of
formulas. In this section, we provide a framework for such a system.

Although no such system has yet been devised, much work has gone into classifying the power of proof
systems. These proof systems have been organized into a hierarchy based on p-simulations and exponential
separations (see Definition 2.4.1) which is shown in Figure 2.2. A more detailed portion of this hierarchy
dedicated to Resolution-based proof systems is shown below in Figure 11.1. This portion of the proof
complexity hierarchy is particularly relevant to automated theorem proving and SAT-solving.

Each node in the diagram represents all of the families of formulas which have polynomial size refutations
in the system labelling the node. Arrows represent p-simulation relationships between systems. An arrow
from system α to system β means that α p-simulates β. A slash through an arrow from α to β represents
an exponential separation between β and α. An arrow labelled with a question mark denotes an unknown
relationship and open problem. Systems to the left in the diagram are generally stronger than systems to
the right. Though short refutations exist for larger classes of formulas in stronger systems, finding them
is generally more difficult than finding refutations in weaker systems. Hence SAT-solvers based on the
resolution rule generally do not have the full power of RES, but instead implement some form of DPLL which
is equivalent to T-RES and is very low in the hierarchy. It is therefore desirable for instances which we want
to solve to exist in nodes that are low down in the hierarchy. This gives us a better chance of finding a
refutation deterministically in a short amount of time.

We can use this hierarchy to judge the quality of SAT encodings. If some input to an encoding is at
one level of the hierarchy and its corresponding output exists only in higher levels, then the encoding is
dangerous with respect to that input since its result requires more power to solve. If the input and output
of an encoding exist in all of the same levels of the hierarchy, then the encoding is neutral with respect
to that input. If some input to an encoding exists nowhere below a certain level in the hierarchy, but its
output does, then that encoding actually makes a potentially exponential contribution towards solving the
instance. Since every encoding only takes polynomial time to compute, such beneficial encodings can be
used as efficient preprocessing steps and identifying them is of great practical interest. We coin the terms
Explosive, Stable, and Implosive to refer to encodings which are harmful, neutral, and beneficial with
respect to certain families of formulas and certain proof systems. These are defined formally below.

132 Chapter 11: Formalizing Dangerous Reductions

Tree Resolution

Clause Learning

Pool Resolution

DFREG

General Resolution

(DAG-Like)

DP

Ordered Resolution

DPLL

?

Analytic Tableaux

Truth Tables
Cut-Free Gentzen
(Tree-Like)

?

?

?

Linear Resolution

AC0-Frege

Regular Resolution

(DAG-Like)

Reg. Tree Resolution

Figure 11.1: Part of the Proof Complexity Hierarchy which Relates Various Resolution Refinements

11.3.1 Explosivity

Definition 11.3.1 (Explosive Reduction). Let α be a proof system for language L1, let β be a proof
system for language L2, and let R : L1 → L2 be a reduction from L1 to L2. If there exists some family of
strings X = {x1, x2, ...}, X ⊆ L1 such that for all k and for all xi ∈ X there exists an α-proof P1 of xi, but
there exists no β-proof P2 of R(xi) such that |P2| ≤ |P1|k, then we say that the reduction R is (α, β)-explosive
on the set X.

This definition corresponds to our intuitive notion of what constitutes a dangerous reduction, and we can
immediately apply it to our main result:

Corollary 11.3.2. The Hamiltonian Cycle to SAT reduction above which uses the Total, 1-1, and Function
clauses is (α, AC0-Frege)-explosive on the set containing the K∗

n graphs for any non-Hamiltonicity proof
system α which has polynomially-bounded proofs of the K∗

n graphs.

11.3 Domain Independent Framework for Comparing Encodings 133

An example of such a non-Hamiltonicity proof system is the NHPS from Chapter 9.

Another formal example of explosivity comes from a corollary of the main result of Chapter 12 which
proves that the reduction from QBF to Intuitionistic Propositional Logic (IPL) given by Statman in [Sta79]
is probably explosive:

Corollary 11.3.3 (Restated From Chapter 12). Unless the proof system LK[~ES] is super, Statman’s
reduction is (α, LJ[~ES])-explosive for any QBF proof system α which has polynomially-bounded proofs for
any prenex instance of the law of excluded middle (i.e. formulas of the form p ∨ ¬p).

Explosivity is caused when an encoding increases the proof complexity of the input instance. In the case
of RES, if a reduction fails to introduce clauses which are needed in order to provide a short RES proof,
then the reduction is explosive, and there is no hope of solving the translation. The ‘onto’ clauses from our
reduction are an example of ones which have no polynomially-bounded RES derivations themselves and can
make an exponential difference to the proof complexity of the reduction’s output.

In addition, explosivity is trivially associated with exponential separations between proof systems. Every
example of p-simulation between two proof systems on the same language for which there is a superpolynomial
separation implicitly gives an example of (α, β)-explosivity. If proof system α p-simulates proof system β, but
β does not p-simulate α, then the trivial reduction of doing nothing is (α, β)-explosive on the set of formulas
which provides the separation. For this reason, (α, β)-explosive reductions where α is a strictly stronger
proof system than β (for example, (AC0-Frege,T-RES)-explosive reductions) are not nearly as interesting as
(α, β)-explosive reductions in which α is a strictly weaker proof system than β.

11.3.2 Stability

Definition 11.3.4 (Stable Reduction). Let α, β, L1, L2, and R be as in Definition 11.3.1. If there
exist constants k1 and k2 and a family of strings X = {x1, x2, ...}, X ⊆ L1 such that for any α-proof P1

of an xi ∈ X there exists a β-proof P2 of R(xi) where |P2| ≤ |P1|k1 and |P1| ≤ |P2|k2 then we say that the
reduction R is (α, β)-stable on the set X.

An example of stability comes from Theorem 10.4.1 which shows that the H(K∗
n)T,O,F formulas have

polynomial T-RES size upper bounds:

Corollary 11.3.5. The Hamiltonian Cycle to SAT reduction from Section 8.2.1 which uses the Total, Onto,
and Function clauses is (α, T-RES)-stable on the set of K∗

n graphs for any non-Hamiltonicity proof system
α which has polynomially-bounded proofs for the K∗

n graphs.

As already mentioned, the NHPS proof system from Chapter 9 is such an α.

Another interesting example of stability is the relationship between RES and Linear Resolution (L-RES)
shown by Buresh-Oppenheim and Pitassi in [BOP03]. The authors provide a very simple reduction R which
consists of adding trivial clauses of the form (xi ∨ ¬xi ∨ xj) and (xi ∨ ¬xi ∨ ¬xj) for all pairs of variables
xi, xj in the original formula, and show that for every RES refutation of a formula F , there exists an L-RES
proof of R(F) which is only polynomially larger. In other words, R is (RES, L-RES)-stable on all formulas
which have polynomially-bounded RES proofs.

From a proof-complexity point of view, every example of p-equivalence implicitly gives a trivial example
of (α, β)-stability. If α and β are two p-equivalent proof systems for the same language L, then the trivial
reduction of doing nothing is both (α, β)-stable and (β, α)-stable for the entire language L. For this reason,
(α, β)-stable reductions for p-equivalent proof systems are not nearly as interesting as ones for proof systems
for which there is a superpolynomial separation.

134 Chapter 11: Formalizing Dangerous Reductions

11.3.3 Implosivity

In practical terms, an even more interesting characteristic for encodings is that of implosivity. Intuitively,
an encoding which takes hard formulas for one proof system and converts them into easy ones for another
is implosive. In other words, implosive reductions can make otherwise hard instances more accessible to
SAT-solvers. Examples of such beneficial reductions are already known to researchers. For example, Kautz
and Selman show that SAT encodings of constraint satisfaction problem (CSP) instances can be optimized
with respect to local consistency checking and unit propagation [KS03]. In this case the reduction from CSP
to SAT actually has beneficial properties, namely that it reduces the proof complexity of its inputs with
respect to the consistency conditions. Bailleux and Boufkhad give another good example in [BB03], where
they give an encoding that transforms the parity problem, which for many years was considered to be a hard
DIMACS instance, into formulas that are easy for DPLL-based solvers.

More formally, the beneficial property of implosivity is defined as follows:

Definition 11.3.6 (Implosive Reduction). Let α, β, L1, L2, and R be as in Definition 11.3.1. If there
exists some family of strings X = {x1, x2, ...}, X ⊆ L1 such that for all k and for all xi ∈ X there exists a
β-proof P2 of R(xi) but there exists no α-proof P1 of xi such that |P1| ≤ |P2|k, then we say that the reduction
R is (α, β)-implosive on the set X.

As we saw in Section 11.2.3, the Gn
2 , n

2
graphs have exponential NHPS lower bounds, but H(Gn

2 , n
2
)T,O,1,F

has polynomial T-RES upper bounds, making this reduction a formal example of implosivity:

Corollary 11.3.7. The Hamiltonian Cycle to SAT reduction from Section 8.2.1 which uses the Total, Onto,
1-1, and Function clauses is (NHPS,T-RES)-implosive on the Gn

2 , n
2

graphs.

This gives us a clear and formal example of how different inputs to the same system can be simplified
or complicated depending on encoding, because the Total, 1-1, Function version of the reduction is (NHPS,
AC0-Frege)-explosive on the K∗

n graphs.

The other example from Section 11.2.3 which descirbes the addition of redundant clauses is another
example of an implosive reduction:

Corollary 11.3.8. The reduction consisting of the addition of onto clauses is (AC0-Frege,T-RES)-implosive
on the H(K∗

n)T,1,F formulas.

An interesting potential example of implosivity is the L-RES reduction R from [BOP03] mentioned above.
As already stated, R is (RES, L-RES)-stable on the entire SAT language. However, it is unknown whether
an exponential separation exists between L-RES and RES. If so, then R is (L-RES, L-RES)-implosive on the
inputs which give the separation. Such examples of reflexive implosivity are good candidates for beneficial
preprocessing.

Generally speaking, non-trivial implosivity arises when polytime reductions make use of reasoning which
is not available to their target proof system. For example, a polytime reduction might add clauses to an
input which could not otherwise be derived concisely in RES. Given these clauses, Resolution-based solvers
can easily solve the problem, but without them, they require exponential time. In effect, such reductions
allow solvers to ‘cheat’ and do work that cannot be done by their underlying proof systems.

As with explosivity, implosivity is trivially associated with p-simulation. Every example of p-simulation
between two proof systems on the same language for which there is a superpolynomial separation implicitly
gives an example of (α, β)-implosivity. If proof system β p-simulates proof system α, but α does not p-
simulate β, then the trivial reduction of doing nothing is (α, β)-implosive on the set of formulas which gives
the separation. For this reason, (α, β)-implosive reductions where α is strictly weaker than β (for example,
(T-RES,AC0-Frege)-implosive reductions) are not nearly as interesting as (α, β)-implosive reductions in which
α is strictly stronger than β.

11.4 Implications for Proof Complexity 135

11.3.4 Alternate Hierarchies

Although the proof system hierarchy may prove to be useful for classifying encodings, we could also
produce alternative hierarchies for which the notions of explosivity, stability, and implosivity could be used
to classify encodings. In order to use the proof system hierarchy for this task we need to perform a fairly
robust analysis of the family of problem instances being studied, as we did in Sections 11.2.1 and 11.2.2.
A more empirical hierarchy based on the real world performance of specific implementations on families of
inputs may be preferred.

11.4 Implications for Proof Complexity

Whenever a relationship between two proof systems on different languages is studied, there must necessarily
be a reduction involved. Weak proof systems such as RES and its refinements are not powerful enough to
perform polytime reductions. This necessitates the use of a separate polytime algorithm for performing the
reduction. Since the details of the reduction can affect the proof complexity of its output, it does not make
sense to talk about p-simulation or exponential separation between two weak proof systems over different
languages. Rather, one must talk about p-simulation or exponential separation with respect to a specific
reduction and a specific family of inputs. If a reduction exists which allows one proof system to p-simulate
another, then we say that the first proof system effectively p-simulates the second. This notion is formally
described in Definition 2.4.2.

We can just as easily consider this definition applied to two proof systems over the same language. This
yields a generalization of the normal notion of p-simulation. For example, though L-RES is not known
to p-simulate RES, it does effectively p-simulate RES since the polytime reduction in [BOP03] is (RES,
L-RES)-stable on the entire SAT language.

11.5 Open Problems & Conjectures Related to Dangerous Reduc-
tions

The idea that encodings can inject complexity into a problem is disconcerting. It is worrisome to think
that a reduction from one problem to another can negatively affect the proof complexity of the result
and potentially make the instance difficult for proof systems which are located several levels higher in the
proof complexity hierarchy than the intended system. Furthermore, as we have shown in this chapter, this
phenomenon can happen with very natural and even obvious encodings. Even more worrisome is that it
does not seem to be at all obvious which types of reductions have this property. With our example, we were
lucky enough to see that the input graph was translated to a formula which is very similar to the pigeonhole
formulas, but in general we cannot expect to be so lucky. There are probably infinitely many families of
formulas which have no short RES proofs and it would not be easy to identify them lurking within the
output of an encoding. Random formulas, which are very hard to categorize, as well as other combinatorial
problems which have never even been investigated could act very much like the pigeonhole formulas do in
our example. If we do not even know what these formulas look like, then it is probably very difficult to
predict and avoid reductions which might produce them or something similar to them. Further research is
needed in order to characterize which types of reductions have this property.

As a first step towards a characterization, we have outlined a framework for comparing encodings based
on the proof complexity hierarchy. The key idea behind the framework is that encodings can affect the
proof complexity of the result either beneficially or adversely by overcoming the superpolynomial separation
between two proof systems through the use of reasoning that is unavailable to the proof system or by requiring
the proof system to derive clauses which cannot be derived concisely.

Nevertheless, the results in this chapter are geared towards classification rather than prediction. Although
we were able to design a framework for comparing reductions, this is a tool to be used once the complexities
of the reductions are already known, and lacks predictive power. Being able to predict which reductions

are beneficial or harmful would be extremely valuable to researchers working with SAT-solvers, and remains
an important open problem. However, depending on how this problem is formalized, it may not even
be decidable. For example, if we phrase the dangerous reduction prediction problem as taking two Turing
Machines (representing competing reductions) as its input and then determining which one produces formulas
that are easier for SAT-solvers, then this problem is most likely undecidable for the simple reason that
computing almost any non-trivial property of a Turing Machine is undecidable. If we cannot even compute
whether a Turing Machine outputs a formula, then there isn’t much hope in deciding which of two Turing
Machines will output a better formula.

However, if we formalize the dangerous reduction prediction problem slightly differently, then it becomes
very interesting and is closely related to the research in Part II of this thesis. Instead of taking two competing
Turing Machines as inputs, we could take the two formulas which were output by our competing reductions
and ask which of these formulas has a shorter RES refutation. However, this is almost exactly the RES size
problem which we described in Section 4.9.3 as one of the most interesting open Resolution resource problems.
Lemma 4.9.2 shows it to be coNP-Hard, and the best upper bound is a NEXPT IME algorithm. This
unfortunately suggests that the dangerous reduction prediction problem probably does not have a polytime
algorithm. In fact, as we saw from Corollary 5.5.4, even the size problem for I-RES is NP-Complete, which
does not bode well for our predictive abilities for RES size.

In any case, the RES size problem is a very interesting connection between Parts II and III of this
thesis and is probably the most interesting open problems relating to both Resolution resource problem and
dangerous reductions.

Yet another interesting avenue of future research for this work has to do with effective p-simulation. We
saw that the notion of effective p-simulation is important not only when comparing proof systems for different
languages, but also for proof systems on the same language, allowing an apparently weaker proof system to
effectively become as powerful as a stronger one. In other words, effective p-simulation has the potential
to give us very powerful preprocessing algorithms. A good example of this is work done by Philipp Hertel,
Toni Pitassi, Fahiem Bacchus, and Allen Van Gelder [HPBG08] showing that clause learning effectively
p-simulates RES.

However, the importance of effective p-simulation runs even deeper than this, and suggests many in-
teresting open problems in the area of proof complexity. For example, can Frege effectively p-simulate
E-Frege? Can RES effectively p-simulate AC0-Frege or any of the more powerful proof systems? Can T-RES
effectively p-simulate RES? Is there any automatizable proof system which effectively p-simulates any non-
automatizable proof system? All of these are interesting open problems, and positive answers would have a
strong impact in the area of automated theorem proving and SAT-solving.

Chapter 12

The Proof Complexity of
Intuitionistic Propositional Logic

12.1 Introduction & Motivation

Intuitionistic propositional logic (IPL) is perhaps the best-studied non-classical system of logic, and since
it disallows proofs by contradiction, it is associated with constructivism. It contains all of the standard
connectives ∧,∨,⊃,¬, but uses non-classical semantics that rely on Kripke models [TD88]. The validity
problem for intuitionistic logic appears to be intrinsically more complex than the corresponding problem for
classical logic. A well-known paper by Statman [Sta79] shows via a natural reduction from QBF that the
problem of determining whether a formula is intuitionistically valid is PSPACE-Complete.

The purpose of this chapter is to explore the proof complexity of IPL, considered as a proof system
for a PSPACE-Complete set. Since it does not allow proofs by contradiction, intuitionistic logic is weaker
than classical logic. Hence it is reasonable to conjecture that there are classical tautologies that are also
provable intuitionistically, but whose shortest constructive proofs are superpolynomially longer than their
minimal proofs in classical logic. From a complexity-theoretic perspective, IPL is in some regards more
tractable than classical logic. For example, it has feasible interpolation [Pud99, BP01], making it reasonable
for researchers to suspect that IPL lower bounds might be easier to establish than those for classical logic.
This suspicion was recently shown to be correct by Pavel Hrubeš, who in a remarkable paper [Hru07] proved
an exponential lower bound for intuitionistic Frege systems.

Motivated in part by the interest generated by Hrubeš’s result, the main theorem of this chapter provides
more evidence that IPL lower bounds for all proof systems might be within reach. Although we do not
show IPL to be weak in an absolute sense, we do show it to be weak relative to Statman’s translation.
More specifically, we show that unless a variant of the proof system LK called LK[~ES] is super (and therefore
NP = coNP), Statman’s reduction from QBF to IPL cannot even translate trivial classical instances
of the law of excluded middle into intuitionistic formulas which have polynomially-bounded proofs. Since
Statman’s translation is the obvious and natural reduction to use, this result shows that if a more feasible
reduction exists, then it must be quite complicated.

Perhaps even more important than this result itself are the techniques used in proving it. Since these
techniques are particularly powerful, there is hope that they might be adapted to solving other related
problems.

This chapter is organized as follows: Section 12.7 contains the main result, and the sections preceding it
contain various theorems and lemmas which are needed to prove it.

In Section 12.2, we describe LJ, the standard sequent calculus system formulated by Gentzen for IPL.
Section 12.3 describes Statman’s translation from QBF to IPL and introduces the proof system LJ[~ES], an

137

138 Chapter 12: The Proof Complexity of Intuitionistic Propositional Logic

augmented form of LJ which has been strengthened by including the extension variables from the translation
as axioms. This is the proof system that we use in our main result.

In Section 12.4 we show that it is possible to take any proof in LJ[~ES] and eliminate all cuts not involving
extension axioms (thereby producing a new potentially exponential proof) without affecting the closure of
the proof. In Section 12.5 we show that any sequent in the closure of a proof can be derived efficiently.
Together, Sections 12.4 and 12.5 constitute an important proof technique, since they allow us to wander into
the realm of exponentially-large proofs, take advantage of the reasoning which is possible there, and then
extract what was learned back in the polynomially-bounded realm.

Section 12.6 contains two critical lemmas which are closely related to the ‘disjunction property’ of IPL.
Finally, Section 12.7 contains the main result, which is followed by the main theorem’s immediate impli-

cations, described in Section 12.8, and open problems, described in Section 12.9.

12.2 The System LJ

For the purposes of this chapter, we are dealing with a sequent calculus for IPL in the style of Gentzen
[Gen35a, Gen35b, Sza69]. We will use capital letters A,B,C, ... to denote complex formulas, lower-case
letters x, y, z, ... to denote atomic formulas, and Greek letters Γ,∆,Θ, ... to denote sets.

The proof system that we will be using is essentially the same as Gentzen’s system LJ. Our proofs are
tree-like, meaning that each sequent can be an input for at most one inference rule. Unlike LK, each sequent
in LJ has singular right side; that is, there is at most one formula on the right-hand side of each sequent. In
addition, all axioms are of the form x 7→ x, where x is an atomic sentence letter. LJ is formulated as follows:

Axiom:

x 7→ x
where x is atomic

Weakening:

left
Γ 7→ A

B,Γ 7→ A
and right

Γ 7→
Γ 7→ B

Cut:

Γ 7→ A A,∆ 7→ B

Γ,∆ 7→ B

⊥ Introduction:

left
⊥7→

and right
Γ 7→

Γ 7→⊥

¬ Introduction:

left
Γ 7→ A

¬A,Γ 7→
and right

A,Γ 7→
Γ 7→ ¬A

∨ Introduction:

left
A,Γ 7→ C B,∆ 7→ C

A ∨B,Γ,∆ 7→ C
and right

Γ 7→ A

Γ 7→ A ∨B
as well as

Γ 7→ A

Γ 7→ B ∨A

12.3 Statman’s Translation & LJ[~ES] 139

∧ Introduction:

left
A,B,Γ 7→ C

A ∧B,Γ 7→ C
and right

Γ 7→ A ∆ 7→ B

Γ,∆ 7→ A ∧B

⊃ Introduction:

left
Γ 7→ A B,∆ 7→ C

A ⊃ B,Γ,∆ 7→ C
and right

A,Γ 7→ B

Γ 7→ A ⊃ B

One important point of note is that if you remove the requirement of having only a single formula on the
right-hand side of a sequent, then the system LJ becomes the system LK for classical logic [Sza69]. In other
words, every LJ proof is also an LK proof.

12.3 Statman’s Translation & LJ[~ES]

In this section we define an augmented form of LJ that includes extension axioms. We then review
Statman’s reduction from QBF to IPL. Next we define a specific form of LJ augmented with Statman’s
extension axioms. Finally, we prove that it is easy to extract the ultimate y extension axiom from Statman’s
translation.

12.3.1 LJ Variant

We define LJ[~E] as follows:

Definition 12.3.1 (LJ[~E]). We shall use LJ[~E] to denote an augmented form of LJ where ~E = E1, ..., En,
and each Ei contains the pair of sequents A ◦ B 7→ yA◦B and yA◦B 7→ A ◦ B with the restriction that A ◦ B
must be a complex formula, and yA◦B is an atom not appearing in E1, ..., Ei−1. We allow the sequents in
~E to be used as axioms in any LJ[~E] proof. We refer to LJ[~E] as an extended sequent calculus, and the two
sequents in each Ei are referred to as extension axioms. This same augmentation can be defined for the
system LK.

12.3.2 Statman’s Translation

In his paper showing that IPL is PSPACE-Complete [Sta79], Statman proves this result by providing a
reduction from QBF to IPL. This translation is very important to our main result, and proceeds as follows:

1. As input take a QBF formula FQBF = Qnxn, ..., Q1x1B0, where B0 is a quantifier-free prenex formula,
and each Qi = ∀ or ∃.

2. Let y0, ..., yn be entirely new variables not appearing in FQBF . These are extension variables that are
necessary to keep our translation from growing exponentially.

3. Define a series of B
√

i formulas as follows (note that these are not extension variables, but rather are
just shorthand for the purposes of this reduction; similarly, A ↔ B is shorthand for (A ⊃ B)∧(B ⊃ A):

• B
√

0 = ¬¬B0 ↔ y0

• B
√

k = ((xk ∨ ¬xk) ⊃ yk−1) ↔ yk if Qk = ∀

• B
√

k = ((xk ⊃ yk−1) ∨ (¬xk ⊃ yk−1)) ↔ yk if Qk = ∃

4. Output FIPL = B
√

0 ⊃ (B
√

1 ⊃ (...(B
√

n−1 ⊃ (B
√
n ⊃ yn))...))

140 Chapter 12: The Proof Complexity of Intuitionistic Propositional Logic

12.3.3 Proof of Correctness

A full proof of correctness showing that FQBF is true if and only if FIPL is intuitionistically valid does
not add to the understanding of this chapter, so we shall refer the interested reader to [Sta79]. However,
part of the proof is of interest. Specifically, Statman’s proof of correctness implicitly proves that a cut-free
tree-like sequent calculus formulation of LJ p-simulates Boolean Truth Trees (BTT), a brute-force tree-like
system for QBF .

Boolean Truth Trees

The BTT proof system is defined as follows:

• Every BTT proof is a tree in which every node contains a fully-quantified QBF formula. These formulas
may contain constants 0 and 1. The root contains the formula which is to be proven true, and each
leaf contains a formula in which all variables have been replaced by constants, and it consequently
evaluates to 1, thereby showing that the formula is true. (It is most convenient to picture the proof
with the root at the top and the leaves at the bottom).

• Every internal node v in the proof tree has either one or two children. If the outermost quantifier in
the formula F at v is ∃x, then v has one child containing F

′
, which is F with ∃x removed, and every

instance of x replaced by an appropriate constant such that F
′
is true. If the outermost quantifier in

the formula F at v is ∀x, then v has two children, one containing F0, where all instances of x have
been replaced by 0, and the other containing F1, where all instances of x have been replaced by the
value 1.

It is easy to see that BTT is sound; if a BTT tree can be built for a QBF formula F , then F is true. It
is also easy to see that BTT is complete; every true QBF formula has a BTT proof. This is a brute-force
proof system, because it is extremely inefficient; the size of a BTT proof is exponential in the number of ∀
quantifiers contained in the formula to be proved true.

BTT Example

Consider the formula ∀x∃y∀z(((¬x∧¬y)∨ z)∨ ((x∧ y)∨ z)). The following BTT proof shows that it is a
true QBF formula:

∀x∃y∀z(((¬x ∧ ¬y) ∨ z) ∨ ((x ∧ y) ∨ z))
[0/x] [1/x]

∃y∀z(((1 ∧ ¬y) ∨ z) ∨ ((0 ∧ y) ∨ z))
[0/y]

∀z(((1 ∧ 1) ∨ z) ∨ ((0 ∧ 0) ∨ z))
[0/z] [1/z]

((1 ∧ 1) ∨ 0) ∨ ((0 ∧ 0) ∨ 0)

= 1

((1 ∧ 1) ∨ 1) ∨ ((0 ∧ 0) ∨ 1)

= 1

∃y∀z(((0 ∧ ¬y) ∨ z) ∨ ((1 ∧ y) ∨ z))
[1/y]

∀z(((0 ∧ 0) ∨ z) ∨ ((1 ∧ 1) ∨ z))
[0/z] [1/z]

((0 ∧ 0) ∨ 0) ∨ ((1 ∧ 1) ∨ 0)

= 1

((0 ∧ 0) ∨ 1) ∨ ((1 ∧ 1) ∨ 1)

= 1

P-Simulation Result

We shall now make explicit the implicit p-simulation result in Statman’s proof of correctness; this provides
a deeper insight into the mechanisms at play underlying the reduction.

If we forget about the extension variables, then Statman’s translation converts the formula FQBF to an
intermediate formula A+ as follows:

• B+
0 = ¬¬B0

• B+
k = (xk ∨ ¬xk) ⊃ B+

k−1 if Qk = ∀

• B+
k = (xk ⊃ B+

k−1) ∨ (¬xk ⊃ B+
k−1) if Qk = ∃

Note that A+ = B+
n . Statman’s proof of correctness proceeds in two parts. He first shows that FQBF is

true if and only if A+ is intuitionistically provable. Next he proves that A+ is intuitionistically provable if

12.3 Statman’s Translation & LJ[~ES] 141

and only if FIPL is. We are only interested in the forward direction of the first part; the implicit p-simulation
result is given by the proof that FQBF being true implies that A+ is intuitionistically provable.

The overall idea of the simulation is to take the brute-force BTT proof tree TBTT for FQBF , and by way
of very local transformations, build an exactly analogous cut-free tree-like LJ proof TLJ. In order to prove
this result we shall make use of the following Lemma:

Lemma 12.3.2. Let A be any intuitionistically valid formula, let l1, ..., ln be a sequence of literals containing
all of the variables in A, and let V be the classical truth assignment which sets all of l1, ..., ln to true. If A
is true under V , then there exists a cut-free, tree-like LJ proof of l1, ..., ln 7→ A, and if A is false under V ,
then there exists a cut-free, tree-like LJ proof of l1, ..., ln, A 7→; in either case the size of the proof is linear in
the number of logical particles contained in A, and therefore has size O(n).

The proof is by induction on the number of logical particles in A and is completely straightforward; the
basis consists of axioms, which contain no logical particles, and the induction step has eight cases to be
considered, four for when A is true, and four for when A is false. An interesting corollary to this Lemma is
that the double negation in Statman’s translation is unnecessary, and in fact is better omitted.

This brings us to our p-simulation result:

Theorem 12.3.3. Cut-free tree-like LJ p-simulates BTT.

Proof: First build TBTT as follows:

1. The root contains `BTT FQBF , where FQBF = Qnxn, ..., Q1x1B0.

2. For every tree node containing `BTT ∀xi, Qi−1xi−1, ..., Q1x1B0, create two new children
`BTT Qi−1xi−1, ..., Q1x1B0[0/xi] and `BTT Qi−1xi−1, ..., Q1x1B0[1/xi].

3. For every tree node containing `BTT ∃xi, Qi−1xi−1, ..., Q1x1B0, create one new child node,
either `BTT Qi−1xi−1, ..., Q1x1B0[0/xi] or `BTT Qi−1xi−1, ..., Q1x1B0[1/xi], depending on which form
makes the formula true.

Using TBTT as a template, build TLJ as follows (note that unlike with most LJ proofs which have the root
at the bottom, we are building a proof with the root at the top so as to make the relationship with BTT as
clear as possible):

1. The root contains 7→ A+ (which is Statman’s translation of FQBF from step 1 of the TBTT construction
above).

2. For every tree node containing ln, ..., lk+1 7→ (xk ∨ ¬xk) ⊃ B+
k−1, introduce the following three new

nodes:

ln, ..., lk+1 7→ (xk ∨ ¬xk) ⊃ B+
k−1

ln, ..., lk+1, xk ∨ ¬xk 7→ B+
k−1

ln, ..., lk+1, xk 7→ B+
k−1 ln, ..., lk+1,¬xk 7→ B+

k−1

Note that this requires only one application of ∨-Left, and one application of ⊃-Right (remember
that we are looking at the proof upside-down). This step corresponds exactly to step 2 of the TBTT

construction above.

3. For every tree node containing ln, ..., lk+1 7→ (xk ⊃ B+
k−1)∨ (¬xk ⊃ B+

k−1), introduce the following two
new nodes:

142 Chapter 12: The Proof Complexity of Intuitionistic Propositional Logic

ln, ..., lk+1 7→ (xk ⊃ B+
k−1) ∨ (¬xk ⊃ B+

k−1)

ln, ..., lk+1 7→ lk ⊃ B+
k−1

ln, ..., lk+1, lk 7→ B+
k−1

Note that this requires only one application of ⊃-Right, and one application of ∨-Right. This step
corresponds exactly to step 3 of the TBTT construction above.

This construction halts once we reach the leaves of TBTT. Its 1-leaves correspond to sequents of the
form ln, ..., l1 7→ ¬¬B0 in TLJ, but ln, ..., l1 entail ¬¬B0, so by Lemma 12.3.2, each of these sequents has a
size-O(n) cut-free, tree-like LJ proof. In effect, there is a series of local transformations which directly relates
the steps in TBTT to the steps in TLJ such that each local step in TBTT grows at most linearly to become a
local step in TLJ. It is therefore easy to see that the size of TLJ is linear in the size of TBTT. This completes
the p-simulation.

In effect, the obvious brute-force BTT proof translates into a brute-force cut-free, tree-like LJ proof.

It is interesting to note that the Disjunction Property of IPL (see section 12.6) is what allows for this
p-simulation to work. However, it is also the Disjunction Property which allows for the proof of our main
theorem, which ultimately shows that the translation is not feasible. The Disjunction Property therefore
acts as both an aid as well as a hindrance to Statman’s reduction.

12.3.4 The System LJ[~ES]

Given that we have the definition of LJ[~E] as well as the details of Statman’s translation (the full version,
with extension variables), we may now define the system LJ[~ES]. This is the system which we will use for
our main theorem in Section 12.7.

Definition 12.3.4 (LJ[~ES]). We define LJ[~ES] to be LJ augmented with Statman’s extension axioms for a
formula FQBF = Qnxn, ..., Q1x1B0, where B0 is a quantifier-free prenex formula, and each Qi = ∀ or ∃.
More precisely, ~ES = E0, ..., En, where

• E0 = {¬¬B0 7→ y0, y0 7→ ¬¬B0}

• Ek = {(xk ∨ ¬xk) ⊃ yk−1 7→ yk, yk 7→ (xk ∨ ¬xk) ⊃ yk−1} if Qk = ∀, and

• Ek = {(xk ⊃ yk−1) ∨ (¬xk ⊃ yk−1) 7→ yk, yk 7→ (xk ⊃ yk−1) ∨ (¬xk ⊃ yk−1)} if Qk = ∃

12.3.5 Manipulating the Result of Statman’s Translation

For the purpose of our main theorem, instead of working with FIPL, the result of Statman’s translation, we
will need to access its innermost extension variable. We therefore need to show that this extension variable
can be efficiently extracted.

Lemma 12.3.5. Let P be a size-N LJ[~ES]-proof of 7→ FIPL i.e. of 7→ B
√

0 ⊃ (B
√

1 ⊃ (...(B
√

n−1 ⊃ (B
√
n ⊃

yn))...)), where N is the number of bits required to encode P . We can produce a size-O(N3) LJ[~ES] proof P
′

of 7→ yn which contains every possible extension axiom as a sequent.

Proof: First note that although LJ[~ES] does not have the rule of modus ponens, we can simulate it using cut
with nothing more than a polynomial increase in proof-size: Suppose we have proofs of Γ 7→ A, Γ 7→ A ⊃ B,
A 7→ A, and B 7→ B. From these we can produce a proof of Γ 7→ B as follows:

12.3 Statman’s Translation & LJ[~ES] 143

. . .
... . .

.
P1

Γ 7→ A

.. .
... . .

.
P2

Γ 7→ A ⊃ B

.. .
... . .

.
P3

A 7→ A

.. .
... . .

.
P4

B 7→ B ⊃-Left
A,A ⊃ B 7→ B

CutΓ, A 7→ B
CutΓ ∪ Γ 7→ B

...
WeakenΓ 7→ B

Therefore, our size-N LJ[~ES] proof P of 7→ B
√

0 ⊃ (B
√

1 ⊃ (...(B
√

n−1 ⊃ (B
√
n ⊃ yn))...)) corresponds to the

proof P2 of Γ 7→ A ⊃ B, so to simulate modus ponens, we need only show that we can create proofs of the
analogs of Γ 7→ A, A 7→ A, and B 7→ B that are short relative to N , the length of P2.

In our case, Γ 7→ A is of the form 7→ B
√

i for some B
√

i . Each B
√

i is associated with an Ek, which contains
two extension axioms, one of the form Formula 7→ V ariable and the other of the form V ariable 7→ Formula.
In other words, B

√

i = (F ⊃ v) ∧ (v ⊃ F), and can be proved as follows:

F 7→ v ⊃-Right7→ F ⊃ v
v 7→ F ⊃-Right7→ v ⊃ F ∧-Right

7→ (F ⊃ v) ∧ (v ⊃ F)

Therefore we can construct P1 in our modus ponens simulation using a constant-sized proof. Note that
this proof includes both extension axioms associated with B

√

i .

In our case, A 7→ A is of the form B
√

i 7→ B
√

i for some B
√

i . This can be proved by first proving 7→ B
√

i ,
and then using Weakening-L to prove B

√

i 7→ B
√

i . Therefore we can construct P3 in our modus ponens
simulation using a constant-sized proof.

The case of B 7→ B is a little more complicated, and is of the form
B
√

i ⊃ (B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√
n ⊃ yn))...)) 7→ B

√

i ⊃ (B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√
n ⊃ yn))...)). As shorthand,

we will also refer to this sequent as FIPL 7→ FIPL. The proof P4 of this sequent is constructed as follows:

7→ B
√

i

.
.

B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√
n ⊃ yn))...) 7→ B

√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√
n ⊃ yn))...)

Weaken
B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√
n ⊃ yn))...), B

√

i 7→ B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√
n ⊃ yn))...)

⊃-Right
B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√
n ⊃ yn))...) 7→ B

√

i ⊃ (B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√
n ⊃ yn))...))

⊃-Left
B
√

i ⊃ (B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√
n ⊃ yn))...)) 7→ B

√

i ⊃ (B
√

i+1 ⊃ (...(B
√

n−1 ⊃ (B
√
n ⊃ yn))...))

Repeat this process at most n times, each time stripping off one B
√

i from each side. This will yield the
first line of P4 to be yn 7→ yn, an axiom. We already showed that 7→ B

√

i has a constant-sized proof, so the
total length of our proof of P4 will be linear in n, but since FIPL occurs in P , n is O(N), so each P4 adds
at most O(N2) to the size of our modus ponens simulation.

144 Chapter 12: The Proof Complexity of Intuitionistic Propositional Logic

Since P1 and P3 have constant size, P2 has size N , and P4 has size-O(N2), every application of modus
ponens adds one P4 and therefore O(N2) to the size of our proof. In order to get at yn, we must apply
modus ponens n times, but as we already said, n is O(N), so our entire proof of 7→ yn requires size-O(N3).

Therefore, if given a size-N proof of 7→ B
√

0 ⊃ (B
√

1 ⊃ (...(B
√

n−1 ⊃ (B
√
n ⊃ yn))...)), we can repeatedly

apply modus ponens with the 7→ B
√

i sequents to produce a size-O(N3) of 7→ yn. In addition, since each
subproof of 7→ B

√

i contains both extension axioms, and since all 7→ B
√

i s are present, our overall proof of
7→ yn contains each possible extension axiom, as required.

12.4 Cut-Elimination

In this section we extend the cut-elimination technique developed by Buss and Pudlák in [BP01] (which
itself was adapted from [BM99]) so that it holds for any system LJ[~E].

12.4.1 Definitions

We shall make use of the following definitions:

Definition 12.4.1 (Proof Closure). The closure of a proof P , denoted cl(P), is the smallest set of sequents
which includes the sequents of P and is closed under both weakening and cut.

Definition 12.4.2 (Direct Ancestor). In a proof P , the direct ancestors of a formula A are all instances of
A comprising an unbroken path towards the leaves of P from A to the first instance where A was introduced.

Definition 12.4.3 (Principal Cut). A principal cut is a cut in which at least one of its two input sequents
is an extension axiom.

12.4.2 Cut-Elimination Theorem

Theorem 12.4.4 (Cut-Elimination). For any proof P in any system LJ[~E], it is possible to eliminate all
non-principal cuts from P to produce a pseudo-cut-free proof P

′
such that cl(P

′
) ⊆ cl(P).

Proof: We will first show the general technique for eliminating a cut on an arbitrary binary logical connective
◦, and will then provide the details specific to the connectives ⊃,∨,∧. Finally, we will show how to remove
cuts on atoms. While reading this proof, please refer to Figure 12.1 below.

L1 Lk

Cut
Γ1 7→ A ◦B A ◦B, Γ2 7→ C

Γ1, Γ2 7→ C

Lower R

Upper R
RmR1 Rj

Lower L

Upper L
Li

Figure 12.1: The Template For Cut-Elimination

We wish to eliminate a cut on the formula A◦B. Let L be the proof of the left-hand input to the cut, and
let R be the proof of the right-hand input. Let ‘lower L’ be the portion of L which contains sequents with
direct ancestors of A ◦B appearing in the succedent. In other words, each sequent in lower L is of the form
Θ 7→ A◦B. At the upper border of lower L, there are k subproofs labelled Li, each of which introduces A◦B
for the first time along its branch of the proof. More specifically, each Li proves the sequent Πi 7→ A ◦B.

12.4 Cut-Elimination 145

Similarly, ‘lower R’ is the portion of R in which the sequents contain the direct ancestors of A ◦B in the
antecedent. In other words, each sequent in lower R is of the form A ◦ B,Θ 7→ X. Along the upper border
of lower R, there are m subproofs labelled Rj , each of which introduces A ◦ B for the first time along its
branch of the proof. More specifically, each Rj proves the sequent A ◦B,∆j 7→ Dj .

In order to eliminate the cut on A ◦B, we perform the following steps:

1. For i = 1 to k create a proof Ri∗ by taking a copy of R and doing the following: Modify each Rj along
the entire border between upper and lower R so that instead of proving A ◦B,∆j 7→ Dj , each Rj now
proves Πi,∆j 7→ Dj . In the case where A ◦ B was introduced by weakening, simply introduce Πi via
weakening instead. In all other cases, take a copy of Li (which is where Πi comes from) and splice
it into each Rj along the entire border in order to replace A ◦ B with Πi (the details of this splicing
depend on which connective is being eliminated, see below). To be clear, we do this k times; for each
of the k separate Ri∗s that we are building, splice each of the k Lis in once with each of the m Rjs
appearing in upper R.

2. Next, to complete the construction of each Ri∗, replace each sequent A ◦ B,Θ 7→ X in lower R with
the sequent Πi,Θ 7→ X. Each Ri∗ therefore proves Πi,Γ2 7→ C instead of A ◦B,Γ2 7→ C.

3. Modify L: First, replace each Li in upper L with Ri∗. Now every sequent along the border between
upper and lower L is no longer Πi 7→ A ◦B, it is Πi,Γ2 7→ C. Next, replace each sequent Θ 7→ A ◦B in
lower L with Θ,Γ2 7→ C. Therefore, instead of proving Γ1 7→ A ◦B, L now proves Γ1,Γ2 7→ C, which
was precisely the result of our cut, so it has been eliminated.

It is not hard to see that this process of eliminating cuts does not add any new sequents to the closure of
the proof; our cut-elimination produced new sequents in only three ways: Firstly, we created new sequents
while constructing the Ri∗s when we replaced each A◦B,Θ 7→ X with the new sequent Πi,Θ 7→ X. However,
each Li proves the sequent Πi 7→ A ◦ B, and when we cut this with A ◦ B,Θ 7→ X, we get Πi,Θ 7→ X,
showing that it was in the original closure of P .

Secondly, we created new sequents while modifying lower L when we replaced each sequent Θ 7→ A ◦ B
in lower L with the new sequent Θ,Γ2 7→ C. However, when we cut Θ 7→ A ◦B with A ◦B,Γ2 7→ C (which
was the original result of R), we get Θ,Γ2 7→ C, showing that it too was in the original closure of P .

Finally, we created new sequents during the splicing of the Lis into the Rjs. Below, alongside the details
of how to actually perform the splicing, we will show that each of these new sequents is in the closure of the
original proof.

These were the only types of sequents which we introduced during our cut-elimination of binary connec-
tives; all others came from the original proof P . Therefore, the cut elimination technique does not introduce
any new sequents to the closure.

All that remains to be shown is how to splice Li into each Rj to turn A ◦B,Γ2 7→ C into Πi,∆j 7→ Dj for
each binary connective, and that the closure condition is satisfied. Each Li proves the sequent Πi 7→ A ◦B,
which is itself an extension axiom, or was introduced by weakening or ◦-Right. Similarly, each Rj proves
the sequent A ◦B,∆j 7→ Dj , which is itself an extension axiom, or was introduced by weakening or ◦-Left.
We must show how to combine each of these potential Lis with each of the Rjs to get Πi,∆j 7→ Dj :

Usually replacing A◦B by Πi requires splicing, but in the case where Rj introduced A◦B by weakening,
no splicing is required; instead, we weaken to get Πi rather than A ◦B. Each of the remaining combinations
is spliced as follows:

Case 1

If both Πi 7→ A◦B and A◦B,∆j 7→ Dj are extension axioms of the form yA◦B 7→ A◦B and A◦B 7→ yA◦B ,
simply get yA◦B 7→ yA◦B by using a single principal cut.

146 Chapter 12: The Proof Complexity of Intuitionistic Propositional Logic

Case 2

If Πi 7→ A ◦ B is an extension axiom of the form yA◦B 7→ A ◦ B and A ◦ B,∆j 7→ Dj was introduced by
◦-Left, again get yA◦B ,∆j 7→ Dj by using a single principal cut.

Case 3

If Πi 7→ A ◦ B was introduced by ◦-Right and A ◦ B,∆j 7→ Dj is an extension axiom of the form
A ◦B 7→ yA◦B , once again get Πi 7→ yA◦B by using a single principal cut.

Case 4

However, if both Πi 7→ A ◦ B and A ◦ B,∆j 7→ Dj came from introduction rules, then splicing to get
Πi,∆α

j ,∆β
j 7→ Dj is somewhat more complicated and depends on what connective ◦ represents.

Case 4a If A ◦B is the formula A ⊃ B, then Li is of the form

. . .
... . .

.
Li

Πi, A 7→ B ⊃-Right
Πi 7→ A ⊃ B

and Rj is of the form

. . .
... . .

.
Rjα

∆α
j 7→ A

.. .
... . .

.
Rjβ

B,∆β
j 7→ Dj

⊃-Left
A ⊃ B,∆α

j ,∆β
j 7→ Dj

we may therefore splice them together as follows:

. . .
... . .

.
Rjα

∆α
j 7→ A

.. .
... . .

.
Li

Πi, A 7→ B
CutΠi,∆α

j , 7→ B

.. .
... . .

.
Rjβ

B,∆β
j 7→ Dj

Cut
Πi,∆α

j ,∆β
j 7→ Dj

to produce Πi,∆j 7→ Dj , as required. Note that Πi,∆α
j , 7→ B is a new sequent that potentially did not occur

in our original proof, but it was produced via cut from sequents from the original proof, so no new sequents
are added to the closure.

Case 4b If A ◦B is the formula A ∨B, then Li is of the form

. . .
... . .

.
Li

Πi, 7→ A ∨-Right
Πi 7→ A ∨B

and Rj is of the form

12.4 Cut-Elimination 147

. . .
... . .

.
Rjα

A,∆α
j 7→ Dj

. . .
... . .

.
Rjβ

B,∆β
j 7→ Dj

∨-Left
A ∨B,∆α

j ,∆β
j 7→ Dj

we may therefore splice them together as follows:

. . .
... . .

.
Li

Πi, 7→ A

.. .
... . .

.
Rjα

A,∆α
j 7→ Dj

CutΠi,∆α
j , 7→ Dj

Weaken
Πi,∆α

j ,∆β
j 7→ Dj

to produce Πi,∆j 7→ Dj , as required (the case involving Πi, 7→ B is entirely similar; just use Rjβ). Note
that Πi,∆α

j , 7→ Dj is a new sequent that potentially did not occur in our original proof, but it was produced
via cut from sequents from the original proof, so no new sequents are added to the closure.

Case 4c If A ◦B is the formula A ∧B, then Li is of the form

. . .
... . .

.
Liα

Πα
i , 7→ A

.. .
... . .

.
Liβ

Πβ
i , 7→ B

∧-Right
Πα

i ,Πβ
i 7→ A ∧B

and Rj is of the form

. . .
... . .

.
Rj

A,∆j 7→ Dj ∧-Left
A ∧B,∆j 7→ Dj

we may therefore splice them together as follows:

. . .
... . .

.
Liα

Πα
i , 7→ A

.. .
... . .

.
Rj

A,∆j 7→ Dj
CutΠα

i ,∆j , 7→ Dj
Weaken

Πα
i ,Πβ

i ,∆j 7→ Dj

to produce Πi,∆j 7→ Dj , as required (the case involving B,∆j 7→ Dj is entirely similar; just use Liβ). Note
that Πα

i ,∆j , 7→ Dj is a new sequent that potentially did not occur in our original proof, but it was produced
via cut from sequents from the original proof, so no new sequents are added to the closure.

Cases 1−3 above introduce only principal cuts, which do not have to be eliminated. Note that each of the
constructions in Case 4 is working to eliminate a cut on a binary connective, but in the process introduces
at least one new cut. However, this is all right, since the only cuts being introduced are on simpler formulas,
so this process when iterated will inevitably result in a proof in which the only cuts remaining are on atoms.
As our last case, we must therefore show how cuts on atoms may be removed without introducing any new
cuts at all:

148 Chapter 12: The Proof Complexity of Intuitionistic Propositional Logic

The Atomic Case

The atomic case is fairly simple, and does not involve notions such as upper and lower L or R. Suppose
we wish to eliminate a cut on an atomic formula x such as in

. . .
... . .

.
L

Γ1 7→ x

. . .
... . .

.
R

x, Γ2 7→ C
CutΓ1,Γ2, 7→ C

Note that x could be a normal variable, or an extension variable yA◦B . All axioms in L are either of the
form x 7→ x or A ◦ B 7→ yA◦B , and every sequent in L is of the form Θ 7→ x. The atomic cut-elimination
proceeds as follows: First, take L, and replace each sequent Θ 7→ x by Θ,Γ2 7→ C. The result is a proof of
Γ1,Γ2 7→ C in which all of the leaves are either x, Γ2 7→ C or A ◦B,Γ2 7→ C.

For each leaf of the form x,Γ2 7→ C, simply place a copy of R, which proves x, Γ2 7→ C, on top of it. It
is not hard to see that the closure of the proof is not affected; we introduced the sequents Θ,Γ2 7→ C by
modifying Θ 7→ x, but when we cut Θ 7→ x with x, Γ2 7→ C (which was the original result of R), we get
Θ,Γ2 7→ C, showing that it too was in the original closure of P .

For each leaf of the form A ◦B,Γ2 7→ C, rather than adding R on top, add the following subproof on top
instead:

A ◦B, 7→ yA◦B

. . .
... . .

.
R

yA◦B ,Γ2 7→ C
P.Cut

A ◦B,Γ2 7→ C

The cut is a principal cut, so it will not have to be eliminated. In addition, the axiom A ◦ B, 7→ yA◦B

which we introduced is not new; it was the original sequent which we modified in order to require this
subproof in the first place, and therefore is not a new addition to the closure.

In effect, we can eliminate cuts on atoms such that no new non-principal cuts are introduced, thereby
concluding the proof that cuts can be eliminated even in the presence of extension axioms.

12.5 The Proof Closure Property

In this section we formally prove the Proof Closure Property which is stated but never proved in [BM99]
and [BP01]. Informally, the Proof Closure Property guarantees that any sequent in the closure of an LJ[~ES]
proof P can be derived via a polynomial number of cuts and weakenings from the sequents in P . This
property is strongly related to Resolution on Horn clauses. For more information on these topics, please
refer to Section 5.2 or [Sch89]. In particular Horn clauses and formulas are described in Defintion 5.2.2.

Lemma 12.5.1. Every unsatisfiable Horn formula F has a size-O(n) regular I-RES refutation, where n is
the number of distinct variables in F .

Proof: This lemma follows directly from Theorem 5.2.5 and Lemma 5.2.8.

Corollary 12.5.2. Given any set of Horn clauses Σ and any Horn clause H such that Σ `RES H, there
exists a size-O(N) regular I-RES derivation of D ⊆ H from Σ, where N is the number of bits required to
encode Σ.

Proof: Let φ be any minimal truth assignment which sets H to false. Since Σ |=RES H, we know that
Σ�φ is unsatisfiable. Therefore, by Lemma 12.5.1, Σ�φ has a size-O(n) regular I-RES refutation, call it R,
where n is the number of distinct sentence letters in Σ�φ. All of the literals in H were eliminated, so this

12.6 The Disjunction & Implication Properties 149

RES refutation never resolves on H’s literals. It is therefore easy to see that if we create R
′

by replacing
every clause in R that came from Σ�φ with its corresponding clause in Σ, the literals from H are present
and will simply be carried down the proof so that instead of proving ∅ like R did, R

′
proves D ⊆ H, and

its size is clearly bounded by O(n). Since n is bounded above by N , the size of R
′
is bounded by O(N), as

required.

Lemma 12.5.3 (Proof Closure Property). Let P be a size-N LJ[~ES] proof, where N is the number
of bits required to encode P . If Γ 7→ A ∈ cl(P) then there exists a size-O(N2) tree-like and a size-O(N)
DAG-like LJ[~ES]-proof of Γ 7→ A.

Proof: It is easy to see that sequents are very similar to Horn clauses. A singular right-side sequent
Γ 7→ A is interpreted as meaning that a conjunction of all the formulas in Γ implies A. A Horn clause
(¬x1∨¬x2∨ ...∨¬xi∨xj) is equivalent to (x1∧x2∧ ...∧xi ⊃ xj). This gives rise to the following translation
between sequents and Horn clauses: If given a sequent A1, A2, ..., Ai 7→ Aj where the As are formulas or
negated formulas, we convert this sequent to the Horn clause by replacing each Ai with a variable xi to
give (¬x1 ∨ ¬x2 ∨ ... ∨ ¬xi ∨ xj). It is easy to see that a sequent with no formula on the right-hand side
corresponds to a Horn clause containing no positive literal. Furthermore, a cut on two sequents corresponds
to the resolution of two Horn clauses.

Therefore, suppose that we have an LJ[~ES] proof P of size N and we know that Γ 7→ A ∈ cl(P). As
shown above, translate the sequents S1, S2, ..., Sk in P to Horn clauses. These clauses comprise our initial
set of clauses Σ upon which we will resolve. Let H be the Horn clause corresponding to the sequent Γ 7→ A.
Since Γ 7→ A ∈ cl(P), we know by Corollary 12.5.2 that there is a size-O(N) linear I-RES derivation R of
D ⊆ H from Σ. Translate the clauses in R back into sequents. This corresponds to a size-O(N) derivation
of Γ 7→ A from the sequents S1, S2, ..., Sk in P using cut. To complete the proof, simply weaken D to get H.
If our LJ[~ES] proof is required to be tree-like, then add a proof of each S1, S2, ..., Sk immediately above it.
Each of these proofs is a sub-proof of P , and therefore has size at most O(N). Since there are at most O(N)
Sis, this gives an overall size-O(N2) LJ[~ES]-proof of Γ 7→ A for tree-like proofs. If our LJ[~ES] proof can be
DAG-like, then these proofs are not necessary, and we have an overall size-O(N) LJ[~ES]-proof of Γ 7→ A.

12.6 The Disjunction & Implication Properties

Normally the Disjunction Property in intuitionistic propositional logic states that if Γ contains no formula
containing ∨, then Γ `IPL A∨B implies that Γ `IPL A or Γ `IPL B. However, this form of the Disjunction
Property fails when applied to certain extension axioms (for example, just take an extension axiom with
Γ = y on the left where y is an extension variable, and any formula containing ∨ as the major logical particle
on the right). We must therefore prove a weaker form of the Disjunction Property that is still strong enough
to help us prove our main result:

Lemma 12.6.1 (Modified Disjunction Property). If P is a LJ[~ES]-proof of the sequent l1, ..., lk 7→ A∨B
such that the only cuts in P are principal cuts, l1, ..., lk are literals which do not include any y extension
variables, then there either exists a proof P

′
of l1, ..., lk 7→ A or of l1, ..., lk 7→ B in which all cuts are principal

cuts such that cl(P
′
) ⊆ cl(P).

Proof: Suppose that P is a LJ[~ES]-proof of the sequent l1, ..., lk 7→ A ∨B such that the only cuts in P are
principal cuts and l1, ..., lk are literals which do not include any y extension variables as above. Since P does
not contain normal cuts, l1, ..., lk 7→ A ∨B could only have come from one of the following rules:

1. ∨-Right

2. Weaken-Right

3. Weaken-Left

4. Contraction-Left

5. A Principal Cut

150 Chapter 12: The Proof Complexity of Intuitionistic Propositional Logic

In the first case, the penultimate line in P was either l1, ..., lk 7→ A or l1, ..., lk 7→ B, so we are done. In
the second case, the penultimate line in P was l1, ..., lk 7→, which can be weakened to get what we want, and
again we are done.

The next three cases are more complicated. In the weakening-left case, the only difference is that the
left-hand side of the previous sequent contained one fewer literal. In the contraction case, the only difference
is that the left-hand side of the previous sequent contained one more duplicated literal. In our final case, if
l1, ..., lk 7→ A ∨B came from a principal cut, then this cut must have been on the sequent l1, ..., lk 7→ y and
the extension axiom y 7→ A ∨ B. The sequent l1, ..., lk 7→ y could only have come from one of the following
rules:

1. Weaken-Right

2. Weaken-Left

3. Contraction-Left

4. A Principal Cut

In the first case, the previous line was l1, ..., lk 7→, which can be weakened to l1, ..., lk 7→ A, and we are
done. The weakening and contraction cases are similar to the ones before; each just affects the number of
literals on the left by one. Finally, if l1, ..., lk 7→ y came from a principal cut, then this cut must have been
on the sequent l1, ..., lk 7→ A ∨ B and the extension axiom A ∨ B 7→ y, which brings us back to what we
started with.

Therefore, in order to avoid the cases in which we are done, let us assume that P contains no ∨-Right or
Weaken-Right rules. Hence, P has l1, ..., lk 7→ A∨B as its last line, preceded by 0 or more weakenings and
contractions on the left, preceded by a principal cut on the sequent l1, ..., lj 7→ y, which itself was preceded
by 0 or more weakenings and contractions on the left, and a principal cut on l1, ..., li 7→ A ∨ B, as shown
here:

...

...
l1, ..., li 7→ A ∨B A ∨B 7→ y

P.Cut
l1, ..., li 7→ y

... 0 or more Weaken-L or Contraction-L

...
l1, ..., lj 7→ y y 7→ A ∨B

P.Cut
l1, ..., lj 7→ A ∨B

... 0 or more Weaken-L or Contraction-L

...
l1, ..., lk 7→ A ∨B

However, this pattern cannot go on indefinitely, since proofs are only finitely long. Note that every sequent
P must therefore have either y or A∨B on the right-hand side. P cannot begin at a sequent l 7→ A∨B, since
we said that none of the l literals are y extension variables, so l 7→ A ∨ B cannot be an axiom. Similarly,
the proof cannot begin at a sequent l 7→ y. Alternatively, P cannot contain the sequents 7→ A ∨ B or 7→ y
as axioms, since these are not axioms. Therefore P cannot contain any axioms, a contradiction. In other
words, P must contain an application of ∨-Right or Weaken-Right, so the line preceeding this application
allows us to easily show that l1, ..., lk 7→ A ∈ cl(P) or l1, ..., lk 7→ B ∈ cl(P), as required.

12.7 Main Result 151

Lastly, we need one final lemma that is very similar to the modified disjunction property:

Lemma 12.6.2 (Implication Property). If P is a LJ[~ES]-proof of the sequent

l1, ..., lk, (xk+1 ∨ ¬xk+1), ..., (xj ∨ ¬xj) 7→ A ⊃ B

such that the only cuts in P are principal cuts, and l1, ..., lk are literals which do not include any y extension
variables, then there exists a proof P

′
in which all cuts are principal cuts of l1, ..., lk, (xk+1∨¬xk+1), ..., (xj ∨

¬xj), A 7→ B such that cl(P
′
) ⊆ cl(P).

Proof: The proof is almost identical to that of Lemma 12.6.1 with A ⊃ B replacing all instances of A ∨B,
and the rule ⊃-Right replacing all instances of ∨-Right.

12.7 Main Result

We are now ready to prove our main result, which states that if Statman’s reduction can translate trivial
instances of the law of excluded middle into intuitionistic formulas with polynomially-bounded proofs, then
LK[~ES] is a super proof system and NP = coNP.

Theorem 12.7.1 (Main Theorem). Let FProp = A(x1, ...xn) be any arbitrary classical propositional
tautology containing n distinct variables, and consider the formula F

′

Prop = A(x1, ...xn) ∨ ¬A(x1, ...xn).
Let FQBF be the prenex QBF translation of F

′

Prop where each quantifier is ∀, and let FIPL be Statman’s
translation of FQBF . If there exists a size-N DAG-like LJ[~ES] proof of FIPL, where N is the number of bits
required to encode FIPL, then FProp has a DAG-like classical LK[~ES] proof of size-O(N4).

Proof: Since F
′

Prop = A(x1, ...xn) ∨ ¬A(x1, ...xn), its quantified form is

∀xn, ...,∀x1A(x1, ...xn) ∨ ¬∀xn, ...,∀x1A(x1, ...xn).

Therefore, in order to turn F
′

Prop into quantified prenex form, we have to rename the variables in
¬A(x1, ...xn) to produce F

′′

Prop = A(x1, ...xn) ∨ ¬A(xn+1, ...x2n). This means that

FQBF = ∃x2n, ...,∃xn+1,∀xn, ...,∀x1B0

where B0 = F
′′

Prop = A(x1, ...xn) ∨ ¬A(xn+1, ...x2n), and applying Statman’s translation yields

FIPL = B
√

0 ⊃ (B
√

1 ⊃ (...(B
√

2n−1 ⊃ (B
√

2n ⊃ y2n))...)).

The extension axioms associated with FIPL that we will need are:

• y0 7→ ¬¬B0

• yk 7→ (xk ∨ ¬xk) ⊃ yk−1 for k ≤ n (these are the ∀ axioms).

• yk 7→ (xk ⊃ yk−1) ∨ (¬xk ⊃ yk−1) for n + 1 ≤ k ≤ 2n (these are the ∃ axioms).

Suppose that there exists a size-N LJ[~ES] proof P of 7→ FIPL. We will now show how to build a DAG-
like classical LK[~ES] proof of FProp. By Lemma 12.3.5, there exists a size-O(N3) proof of 7→ y2n. Note
that this proof contains every extension axiom. Cut this sequent with the extension axiom y2n 7→ (x2n ⊃
y2n−1) ∨ (¬x2n ⊃ y2n−1) to get 7→ (x2n ⊃ y2n−1) ∨ (¬x2n ⊃ y2n−1), and call this entire proof P1.

By Theorem 12.4.4, we can eliminate all non-principal cuts in P1 to produce P2 such that cl(P2) ⊆ cl(P1).
Note that P2 may be exponentially large. Since all cuts in P2 are principal cuts, Lemma 12.6.1 applies, so
there exists a proof P3 of 7→ x2n ⊃ y2n−1 or of ¬x2n ⊃ y2n−1. Let l2n be the literal such that P3 proves
7→ l2n ⊃ y2n−1, and note that cl(P3) ⊆ cl(P2). Furthermore, note that all cuts in P3 are principal cuts.

152 Chapter 12: The Proof Complexity of Intuitionistic Propositional Logic

By Lemma 12.6.2, there exists a proof P4 of l2n 7→ y2n−1 in which all cuts are principal cuts such that
cl(P4) ⊆ cl(P3). Cut this sequent with the extension axiom y2n−1 7→ (x2n−1 ⊃ y2n−2)∨ (¬x2n−1 ⊃ y2n−2) to
get l2n 7→ (x2n−1 ⊃ y2n−2) ∨ (¬x2n−1 ⊃ y2n−2). Call this proof P5. Since cl(P4) ⊆ cl(P3) ⊆ cl(P2) ⊆ cl(P1),
we know that cl(P4) ⊆ cl(P1). Furthermore, since P1 contains every extension axiom, cl(P5) ⊆ cl(P1).

Now simply repeat this process. After another iteration, we will have a proof P6 of l2n, l2n−1 7→ y2n−2

such that cl(P6) ⊆ cl(P1). We can repeat this n times in total for all of the ∃ extension axioms to get a
proof P7 of l2n, l2n−1, ..., ln+1 7→ yn such that cl(P7) ⊆ cl(P1), and all cuts in P7 are still principal cuts.

We now continue cutting with all of the ∀ extension axioms: Cut l2n, l2n−1, ..., ln+1 7→ yn with yn 7→
(xn ∨¬xn) ⊃ yn−1 to get l2n, l2n−1, ..., ln+1 7→ (xn ∨¬xn) ⊃ yn−1, and call this proof P8. Note that all cuts
in P8 are principal cuts, and cl(P8) ⊆ cl(P1).

By Lemma 12.6.2, there exists a proof P9 of the sequent l2n, l2n−1, ..., ln+1, (xn ∨¬xn) 7→ yn−1 such that
cl(P9) ⊆ cl(P1).

Repeat this process. After another iteration, we will have a proof P10 of ln, l2n−1, ..., ln+1, (xn∨¬xn), (xn−1∨
¬xn−1) 7→ yn−2, where cl(P10) ⊆ cl(P1). We can repeat this n times in total for all of the ∀ extension axioms
to get a proof P11 of l2n, l2n−1, ..., ln+1, (xn ∨ ¬xn), ..., (x1 ∨ ¬x1) 7→ y0 such that cl(P11) ⊆ cl(P1).

Finally, cut this sequent with y0 7→ ¬¬B0, where B0 = A(x1, ...xn) ∨ ¬A(xn+1, ...x2n). This gives us
a proof P12 of l2n, l2n−1, ..., ln+1, (xn ∨ ¬xn), ..., (x1 ∨ ¬x1) 7→ ¬¬(A(x1, ...xn) ∨ ¬A(xn+1, ...x2n)) such that
cl(P12) ⊆ cl(P1).

Since cl(P12) ⊆ cl(P1), we know that l2n, l2n−1, ..., ln+1, (xn ∨ ¬xn), ..., (x1 ∨ ¬x1) 7→ ¬¬(A(x1, ...xn) ∨
¬A(xn+1, ...x2n)) ∈ cl(P1). Therefore by Lemma 12.5.3, since P1 is a proof of size-O(N3), there exists a size-
O(N4) DAG-like proof P13 of the sequent l2n, l2n−1, ..., ln+1, (xn ∨ ¬xn), ..., (x1 ∨ ¬x1) 7→ ¬¬(A(x1, ...xn) ∨
¬A(xn+1, ...x2n)).

Recall that every LJ proof is an LK proof. Therefore P13 is a size-O(N4) DAG-like classical LK[~ES] proof.
Restrict P13 by setting all of the literals l2n, l2n−1, ..., ln+1 to true, and make all obvious simplifications. Since
A(x1, ...xn) is a tautology, ¬A(xn+1, ...x2n) is unsatisfiable. This leaves us with a size-O(N4) proof P14 of
the sequent (xn∨¬xn), ..., (x1∨¬x1) 7→ ¬¬A(x1, ...xn). Since 7→ xi∨¬xi is essentially an LK axiom for each
i, we can simply introduce n such axioms, one for each i, and repeatedly cut with (xn∨¬xn), ..., (x1∨¬x1) 7→
¬¬A(x1, ...xn) to get an O(N4) proof P15 of the sequent 7→ ¬¬A(x1, ...xn).

Finally, remove the double negation as follows:

. . .
... . .

.
P15

7→ ¬¬A(x1, ...xn)

. . .
... . .

.
Px

A(x1, ...xn) 7→ A(x1, ...xn)
¬-Right

7→ A(x1, ...xn),¬A(x1, ...xn)
¬-Left

¬¬A(x1, ...xn) 7→ A(x1, ...xn)
Cut7→ A(x1, ...xn)

It is easy to show that any sequent of the form A(x1, ...xn) 7→ A(x1, ...xn) has a size-O(n) DAG-like
LK proof Px. Since n is O(N), 7→ A(x1, ...xn) has a classical size-O(N4) DAG-like LK[~ES] proof, where
A(x1, ...xn) = FProp is any arbitrary classical tautology on n variables, as required.

12.8 Related Complexity Results

The primary implication of our main result is that Statman’s reduction is ‘dangerous’ in the sense that
unless LK[~ES] is super, it translates some trivial QBF formulas to very difficult IPL instances. In order
to formalize this notion, we take the definitions of what constitute dangerous and safe proof complexity
reductions from Section 11.3 of Chapter 11.

Applying Definition 11.3.1 to this Chapter’s main result yields the following corollary:

Corollary 12.8.1. Unless LK[~ES] is super, Statman’s reduction is (α,LJ[~ES])-explosive for every proof
system α for QBF which has polynomially-bounded proofs for every prenex instance of the law of excluded
middle.

Whereas explosive reductions are considered dangerous, stable reductions, described formally in Definition
11.3.4 are safe. We can apply this concept to get another interesting corollary to this chapter’s main result:

Corollary 12.8.2. If Statman’s reduction is (α,LJ[~ES])-stable for some QBF proof system α which has
polynomially-bounded proofs for every prenex instance of the law of excluded middle, then LK[~ES] is a super
proof system.

12.9 Open Problems Related to Intuitionistic Proof Complexity

The main open problem related to this line of research has to do with the reduction in the reverse direction:
Does there exist an efficient translation from IPL to QBF which does not map easy instances of IPL to
hard instances of QBF? Finding such a translation appears to be difficult, but it is reasonable to conjecture
that the answer is yes.

Bibliography

[ABMP01] M. Alekhnovich, S. Buss, S. Moran, and T. Pitassi. Minimum Propositional Proof Length is
NP-Hard to Linearly Approximate. Journal of Symbolic Logic, 66:171 – 191, 2001.

[ABSRW01] M. Alekhnovich, E. Ben-Sasson, A.A. Razborov, and A. Wigderson. Space Complexity in
Propositional Calculus. SIAM Journal of Computing, Vol. 31, No. 4:1184 – 1211, 2001.

[AD03] A. Atserias and V. Dalmau. A Combinatorial Characterization of Resolution Width. Proceedings
of the 18th IEEE Conference on Computational Complexity, pages 239 – 247, 2003.

[AJPU07] M. Alekhnovich, J. Johannsen, T. Pitassi, and A. Urquhart. An Exponential Separation Be-
tween Regular and General Resolution. Theory of Computing, 3:81 – 102, 2007.

[Ajt83] M. Ajtai. Σ1
1 Formulae on Finite Structures. Annals of Pure and Applied Logic, Vol. 2, No. 1:1

– 48, 1983.

[AL86] R. Aharoni and N. Linial. Minimal Non-Two-Colorable Hypergraphs and Minimal Unsatisfiable
Formulas. Journal of Combinatorial Theory, Series A, 43:196 – 204, 1986.

[ANS80] T. Akiyama, T. Nishizeki, and N. Saito. NP-Completeness of the Hamiltonian Cycle Problem
for Bipartite Graphs. Journal of Information Processing, Vol. 3 No. 2:73 – 76, 1980.

[APU01] N. H. Arai, T. Pitassi, and A. Urquhart. The Complexity of Analytic Tableaux. Proceedings of
the 33rd ACM Symposium on the Theory of Computing (STOC), pages 356 – 363, 2001.

[AR02] M. Alekhnovich and A. Razborov. Resolution is Not Automatizable Unless W[P] is Tractable.
Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2002.

[Ats04] Albert Atserias. On Sufficient Conditions for Unsatisfiability of Random Formulas. Journal of
the Association for Computing Machinery, 51:281 – 311, 2004. Preliminary Version: 17th IEEE
Symposium on Logic in Computer Science (LICS), 2002, pages 275 - 284.

[BB03] O. Bailleux and Y. Boufkhad. Efficient CNF Encodings of Boolean Cardinality Constraints.
International Conference on the Principles and Practice of Constraint Programming, pages 102
– 122, 2003.

[Bea94] P. Beame. A Switching Lemma Primer. Manuscript, 1994.

[BHS90] D. Bauer, S.L. Hakimi, and E. Schmeichel. Recognizing Tough Graphs is NP-Hard. Discrete
Appl. Math., Vol. 28:191 – 195, 1990.

[BKS03] P. Beame, H. Kautz, and Ashish Sabharwal. Understanding the Power of Clause Learning.
Proceedings of the 18th International Joint Conference on Artificial Intelligence, 2003.

[BL94] H. Kleine Büning and T. Lettman. Aussagenlogik: Deduktion und Algorithmen. B.G. Teubner,
Stuttgart, 1994.

155

156 Bibliography

[BM76] J.A. Bondy and U.S.R Murty. Graph Theory With Applications. Macmillan, London, 1976.

[BM99] S. R. Buss and G. Mints. The Complexity of the Disjunction and Existential Properties in
Intuitionistic Logic. Annals of Pure and Applied Logic, 99:93 – 104, 1999.

[Bol85] B. Bollobás. Graph Theory: An Introductory Course. Springer, New York, 1985.

[BOM07] J. Buresh-Oppenheim and D. Mitchell. Minimum 2CNF Resolution Refutations in Polyno-
mial Time. Proceedings of the 10th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2007), pages 300 – 313, 2007.

[BOP03] J. Buresh-Oppenheim and T. Pitassi. The Complexity of Resolution Refinements. Proceedings
of the 18th Annual IEEE Symposium on Logic in Computer Science, 2003.

[BP96] P. Beame and T. Pitassi. Simplified and Improved Resolution Lower Bounds. Proceedings of
the 37th Annual IEEE Symposium on the Foundations of Computer Science (FOCS), pages 274
– 282, 1996.

[BP01] S. R. Buss and P. Pudlák. On The Computational Content of Intuitionistic Propositional
Proofs. Annals of Pure and Applied Logic, 109:49 – 64, 2001.

[BPR97] M. Bonet, T. Pitassi, and R. Raz. Lower Bounds for Cutting Planes Proofs with Small Coeffi-
cients. Journal of Symbolic Logic, Vol. 62, No. 3, 1997.

[BPR00] M. Bonet, T. Pitassi, and R. Raz. On Interpolation and Automatization For Frege Systems.
SIAM Journal of Computing, Vol. 29, No. 6, 2000.

[BS02] E. Ben-Sasson. Size Space Tradeoffs For Resolution. Proceedings of the 34th ACM Symposium
on the Theory of Computing (STOC), pages 457 – 464, 2002.

[BSIW04] E. Ben-Sasson, R. Impagliazzo, and A. Wigderson. Near Optimal Separation of Tree-like and
General Resolution. Combinatorica, Vol. 24, No. 4:585 – 604, 2004.

[BSW01] E. Ben-Sasson and A. Wigderson. Short Proofs are Narrow -Resolution Made simple. Journal of
the Association for Computing Machinery, 48:149 – 169, 2001. Preliminary Version: Proceedings
of the 31st Annual ACM Symposium on Theory of Computing (STOC), 1999, pages 517 - 526.

[BT88] S. Buss and G. Turán. Resolution Proofs of Generalized Pigeonhole Principles. Theoretical
Computer Science, 62:311 – 317, 1988.

[CEI96] M. Clegg, J. Edmons, and R. Impagliazzo. Using the Groebner Basis Algorithm to Find Proofs
of Unsatisfiability. Proceedings of the 28th Annual ACM Symposium on Theory of Computing
(STOC), pages 174 – 183, 1996.

[Cha70] C. L. Chang. The Unit Proof and the Input Proof in Theorem Proving. Journal of the Associ-
ation for Computing Machinery, Vol. 17, No. 4:698 – 707, 1970.

[Chv85] V. Chvátal. Hamiltonian Cycles. In E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and
D.B. Shmoys, editors, The Traveling Salesman Problem: A Guided Tour of Combinatorial
Optimization, pages 403 – 429. John Wiley & Sons Ltd., New York, 1985.

[CK01] P. Clote and E. Kranakis. Boolean Functions and Computation Models. Springer-Verlag, Berlin,
2001.

[Coo71] S.A. Cook. The Complexity of Theorem-Proving Procedures. Proceedings of the 3rd Annual
ACM Symposium on the Theory of Computation, pages 151 – 158, 1971.

[Coo73] S. A. Cook. An Observation on Time-Storage Tradeoff. Proceedings of the 5th Annual ACM
Symposium on Theory of Computing (STOC), pages 29 – 33, 1973.

Bibliography 157

[Coo75] S.A. Cook. An Exponential Example For Analytic Tableaux. Manuscript, 1975.

[Coo02] S.A. Cook. University of Toronto CS 2404 -Computability and Logic Course Notes, 2002.

[CPT77] R. Celoni, W.J. Paul, and R.E. Tarjan. Space Bounds for a Game on Graphs. Math. Systems
Theory, 10:239 – 251, 1977.

[CR74] S.A. Cook and R. A. Reckhow. On the Lengths of Proofs in the Propositional Calculus. Pro-
ceedings of the 6th Annual ACM Symposium on the Theory of Computing (STOC), pages 135
– 148, 1974.

[CR79] S.A. Cook and R. A. Reckhow. The Relative Efficiency of Propositional Proof Systems. The
Journal of Symbolic Logic, Vol. 44, No. 1:36 – 50, 1979.

[CS76] S. Cook and R. Sethi. Storage Requirements for Deterministic Polynomial Time Recognizable
Languages. Journal of Computer & System Sciences, pages 25 – 37, 1976.

[D’A92] M. D’Agostino. Are Tableaux an Improvement on Truth Tables? Journal of Logic, Language,
and Information, 1:235 – 252, 1992.

[DDB98] G. Davydov, I. Davydova, and H. Kleine Büning. An Efficient Algorithm for the Minimal Un-
satisfiability Problem for a Subclass of CNF. Annals of Mathematics and Artificial Intelligence,
23:229 – 245, 1998.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A Machine Program For Theorem Proving. Com-
munications of the ACM, 5:394 – 397, 1962.

[DP60] M. Davis and H. Putnam. A Computing Procedure For Quantification Theory. Communications
of the ACM, 7:201 – 215, 1960.

[Est95] J. Esteban. Complejidad de la Resolucion en Espacio y Tiempo. M.Sc. Thesis, Facultad de
Informatica de Barcelona, 1995.

[Est03] J. Esteban. Complexity Measures For Resolution. Ph.D. Thesis, Universitat Politècnica de
Catalunya, 2003.

[ET01] J. Esteban and J. Torán. Space Bounds for Resolution. Information and Computation, 171:84
– 97, 2001. Preliminary Version: Proceedings of the 16th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), 1999, pages 551 - 561.

[ET03] J. Esteban and J. Torán. A Combinatorial Characterization of Treelike Resolution Space.
Information Processing Letters, 87:295 – 300, 2003. Preliminary Version: Electronic Colloquium
on Computational Complexity (ECCC) Report TR03-044, 2003.

[FSS84] M. Furst, J. Saxe, and M. Sipser. Parity, Circuits, and the Polynomial-Time Hierarchy. Theory
of Computing Systems, Vol. 17, No. 1:13 – 27, 1984.

[FV98] Tomás Feder and Moshe Y. Vardi. The Computational Structure of Monotone Monadic SNP
and Constraint Satisfaction: A Study Through Datalog and Group Theory. Siam Journal on
Computing, 28:57 – 104, 1998.

[Gal77] Z. Galil. On the Complexity of Regular Resolution and the Davis-Putnam Procedure. Theo-
retical Computer Science, 4:23 – 46, 1977.

[Gen35a] G. Gentzen. Untersuchungen Über Das Logische Schließen I. Mathematische Zeitschrift, 39:176
– 210, 1935.

[Gen35b] G. Gentzen. Untersuchungen Über Das Logische Schließen II. Mathematische Zeitschrift, 39:405
– 431, 1935.

158 Bibliography

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability -A Guide to the Theory of NP-
Completeness. Freeman & Company, New York, 1979.

[GJT76] M.R. Garey, D.S. Johnson, and R.E. Tarjan. The Planar Hamiltonian Circuit Problem is
NP-Complete. SIAM Journal of Computing, Vol. 5 No. 4:704 – 714, 1976.

[GLT80] J. R. Gilbert, T. Lengauer, and R. E. Tarjan. The Pebbling Problem is Complete in Polynomial
Space. SIAM Journal of Computing, Vol. 9, No. 3:513 – 524, 1980.

[Hak85] A. Haken. The Intractability of Resolution. Theoretical Computer Science, 39:297 – 308, 1985.

[H̊as87] J.T. H̊astad. Computational Limitations for Small-Depth Circuits. ACM Doctoral Dissertation
Award (1986), MIT Press, 1987.

[Hei81] F. Meyer Auf Der Heide. A Comparison of Two Variations of a Pebble Game on Graphs.
Theoretical Computer Science, 13:315 – 322, 1981.

[Her04] A. Hertel. Hamiltonian Cycles In Sparse Graphs. M.Sc. Thesis, University of Toronto, 2004.

[HHU07] A. Hertel, P. Hertel, and A. Urquhart. Formalizing Dangerous Reductions. In Proceedings of
the 10th International Conference on Theory and Applications of Satisfiability Testing (SAT
2007), pages 159 – 172. Springer, 2007. Lecture Notes in Computer Science 4501.

[HP07] P. Hertel and T. Pitassi. Exponential Time / Space Speedups for Resolution and the PSPACE-
Completeness of Black-White Pebbling. Proceedings of the 48th Annual IEEE Symposium on
the Foundations of Computer Science (FOCS), 2007.

[HPBG08] P. Hertel, T. Pitassi, F. Bacchus, and A. Van Gelder. Clause Learning Can Effectively P-
Simulate General Propositional Resolution. Proceedings of the 23rd Annual Meeting of the
Association for the Advancement of Artificial Intelligence (AAAI), 2008.

[Hru07] P. Hrubeš. A Lower Bound for Intuitionistic Logic. Annals of Pure and Applied Logic, Vol. 146,
No. 1:72 – 90, 2007.

[HU07] A. Hertel and A. Urquhart. Game Characterizations and the PSPACE-Completeness of Tree
Resolution Space. In Proceedings of the 16th EACSL Annual Conference on Computer Science
and Logic (CSL 2007), pages 527 – 541. Springer, 2007. Lecture Notes in Computer Science
4646.

[HU08a] A. Hertel and A. Urquhart. Algorithms & Complexity Results for Input & Unit Resoluution.
Submitted to the Journal on Satisfiability, Boolean Modeling and Computation, 2008.

[HU08b] A. Hertel and A. Urquhart. The Resolution Width Problem is EXPTIME-Complete. Submission
Withdrawn from Theory of Computing, 2008. Preliminary Version: Electronic Colloquium on
Computational Complexity (ECCC) Report TR06-133, 2006.

[JL77] N.D. Jones and W.T. Laaser. Complete Problems For Deterministic Polynomial Time. Theo-
retical Computer Science, 3:105 – 117, 1977.

[KAI79] T. Kasai, A. Adachi, and S. Iwata. Classes of Pebble Games and Complete Problems. SIAM
Journal of Computing, Vol. 8, No. 4:574 – 586, 1979.

[KMS96] H. Kautz, D. McAllester, and B. Selman. Encoding Plans in Propositional Logic. Proceedings
of the 5th International Conference on Knowledge Representation and Reasoning, 1996.

[KMS97] H. Kautz, D. McAllester, and B. Selman. Ten Challenges in Propositional Reasoning and
Search. Proceedings of the 15th International Joint Conference on Artificial Intelligence, 1997.

Bibliography 159

[KP03] Phokion G. Kolaitis and Jonathan Panttaja. On the Complexity of Existential Pebble Games.
In Proceedings of the 12th EACSL Annual Conference on Computer Science and Logic (CSL
2003), pages 314 – 329. Springer, 2003. Lecture Notes in Computer Science 2803.

[Kri75] M.S. Krishnamoorthy. An NP-Hard Problem in Bipartite Graphs. SIGACT News, Vol. 7,
No. 1:26, 1975.

[KS03] H. Kautz and B. Selman. Ten Challenges Redux: Recent Progress in Propositional Reasoning
and Search. Proceedings of the 9th International Conference on Principles and Practice of
Constraint Programming, 2003.

[KV95] Phokion G. Kolaitis and Moshe Y. Vardi. On the Expressive Power of Datalog: Tools and a
Case Study. Journal of Computer and System Sciences, 51:110 – 134, 1995.

[Lin78] A. Lingas. A PSPACE-Complete Problem Related to a Pebble Game. In Proceedings of the 5th

Colloquium on Automata, Languages and Programming, pages 300 – 321, London, UK, 1978.
Springer-Verlag.

[Mar07] B. Martin. The Computational Complexity of the Regular Resolution Width Problem. Available
on the Internet: http://www.dcs.kcl.ac.uk/events/LAW07/LAW2007-slides/martin.pdf, 2007.

[Neu27] J. Von Neumann. Zur Hilbertschen Beweistheorie. Mathematische Zeitschrift, Vol. 2 No. 1:1 –
46, 1927.

[Nor06] J. Nordström. Narrow Proofs May Be Spacious: Separating Space and Width in Resolution.
Proceedings of the 38th ACM Symposium on the Theory of Computing (STOC), pages 507 –
516, 2006. Preliminary Version: Electronic Colloquium on Computational Complexity (ECCC)
Report TR05-066, 2005.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison Wesley Longman, New York, 1994.

[PI00] P. Pudlák and Russell Impagliazzo. Lower Bounds for DLL Algorithms for k-SAT. Proceedings
of SODA 2000, 2000.

[Pip80] N. Pippenger. Pebbling. Proceedings of the 5th IBM Symposium on Mathematical Foundations
of Computer Science, Japan (Technical Report RC8528, IBM Watson Research Center), 1980.

[Pit02a] Toniann Pitassi. University of Toronto CS 2429 -Propositional Proof Complexity Lecture 4
Scribe Notes. Scribe: Mehrdad Sabetzadeh, 2002.

[Pit02b] Toniann Pitassi. University of Toronto CS 2429 -Propositional Proof Complexity Lecture 9
Scribe Notes. Scribe: Sheikh M.N. Alam, 2002.

[Pla84] D.A. Plaisted. Complete Problems in the First-Order Predicate Calculus. Journal of Computer
and System Sciences, Vol. 29, No. 1:8 – 35, 1984.

[PU95] T. Pitassi and A. Urquhart. The Complexity of the Hajós Calculus. SIAM Journal of Discrete
Mathematics, Vol. 8, No. 3:464 – 483, 1995.

[Pud99] P. Pudlák. On The Complexity of Propositional Calculus, Sets and Proofs. In Logic Colloquium
’97, pages 197 – 218. Cambridge University Press, 1999.

[Rec76] R. A. Reckhow. On the Lengths of Proofs in the Propositional Calculus. Ph.D. Thesis, Uni-
versity of Toronto, 1976.

[Sav70] W. Savitch. Relationships Between Nondeterministic and Deterministic Tape Complexities.
Journal of Computer and System Sciences, 4:177 – 192, 1970.

[Sch89] U. Schöning. Logic For Computer Scientists. Birkhäuser, Berlin, 1989.

160 Bibliography

[Sta79] R. Statman. Intuitionistic Propositional Logic is Polynomial-Space Complete. Theoretical
Computer Science, 9:67 – 72, 1979.

[Sto76] L. V. Stockmeyer. The Polynomial-Time Hierarchy. Theoretical Computer Science, 3:1 – 22,
1976.

[Sub04] K. Subramani. Optimal Length Tree-Like Resolution Refutations for 2SAT Formulas. ACM
Transactions on Computational Logic, Vol. 5, No. 2:316 – 320, 2004.

[Sza69] M.E. Szabo. The Collected Papers of Gerhard Gentzen. North-Holland Publishing Company,
Amsterdam, 1969.

[TD88] A.S. Troelstra and D. Van Dalen. Constructivism in Mathematics, An Introduction. Elsevier
Science Publishers B.V., Amsterdam, 1988.

[Tor99] J. Torán. Lower Bounds for Space in Resolution. In Proceedings of the 8th EACSL Annual
Conference on Computer Science and Logic (CSL 1999), pages 362 – 373. Springer, 1999.
Lecture Notes in Computer Science 1683.

[Tse70] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus. In A. O. Slisenko,
editor, Studies in Constructive Mathematics and Mathematical Logic, Part 2, pages 115 – 125.
Consultants Bureau, New York, 1970.

[UF96] A. Urquhart and X. Fu. Simplified Lower Bounds for Propositional Proofs. Notre Dame Journal
of Formal Logic, 37:523 – 545, 1996.

[Urq87] A. Urquhart. Hard Examples For Resolution. Journal of the Association For Computing
Machinery, Vol. 34, No. 1:209 – 219, 1987.

[Urq92] A. Urquhart. The Relative Complexity of Resolution and Cut-Free Gentzen Systems. Annals
of Mathematics and Artificial Intelligence, 6:157 – 168, 1992.

[Urq95] A. Urquhart. The Complexity of Propositional Proofs. The Bulletin of Symbolic Logic, Vol. 1,
No. 4:425 – 467, 1995.

[Urq03] A. Urquhart. Resolution Proofs of Matching Principles. Annals of Mathematics and Artificial
Intelligence, 37:241 – 250, 2003.

[Urq06] A. Urquhart. Width Versus Size in Resolution Proofs. Proceedings of the 3rd Annual Conference
on Theory and Applications of Models of Computation, pages 79 – 88, 2006.

[Wig82] A. Wigderson. The Complexity Of The Hamiltonian Circuit Problem For Maximal Planar
Graphs. Technical Report, Princeton University, Dept. of EECS, Vol. 298, February, 1982.

	I Preliminaries
	Thesis Overview
	Summary & Motivation
	Relationship To Games
	Organization
	Future Research

	An Overview of Proof Complexity & Broad Definitions
	Introduction & Motivation
	Proof Complexity Definitions & Terminology
	Polynomially-Bounded Proof Systems & coNP
	A Description of Major Propositional Proof Systems
	Truth Tables
	Analytic Tableaux
	Resolution
	Tree Resolution
	Ordered Resolution
	Regular Resolution
	General Resolution
	Limited Extension

	Gentzen's System LK
	Frege Systems
	Bounded-Depth Frege Systems
	Extended Frege Systems
	Substitution Frege Systems
	Extended Resolution

	Non-Propositional Proof Systems
	Cutting Planes
	Polynomial Calculus & Nullstellensatz
	Hajós Calculus
	Relating Propositional & Non-Propositional Systems

	Summary of the Relationships Between Major Proof Systems

	II The Complexity of Resolution Space Measures
	Introduction to Part II
	History of Resolution Space Research
	Definitions Specific To Part II
	Resolution, Size, & Width
	Resolution Space
	Pebbling Circuits & Games
	Pebbling Contradictions
	The Prover/Delayer Game
	Automatizability
	Positive Results
	Negative Results

	Previous Results Related to Resolution Space
	Pebbling
	Space & Games
	Space & Width
	Width & Size
	Tradeoff Results
	The Complexity of Pebbling

	Summary of Part II
	Chapter Summary
	Summary of Results

	The PSPACE-Completeness of Tree Resolution Clause Space
	Introduction & Motivation
	An Easy Case of the Pebbling Game
	Prover Strategy for the GI DAGs
	Prover Strategy for the Lingas Circuits
	Delayer Strategy for All Monotone Circuits
	Black Pebbling, Prover/Delayer Game, & Tree Clause Space Equivalence
	The PSPACE-Completeness of The Prover/Delayer Game & Tree Clause Space
	PSPACE Algorithms for TCSP and PDGAME
	The PSPACE-Completeness of TCSP and PDGAME

	Related Complexity Results
	The Complexities of Resolution Clause Space & Tree Total Space
	The Complexity of Tree Resolution Size
	The PSPACE-Completeness of Regular Tree Resolution Clause Space
	The PSPACE-Completeness of Clause Learning Clause Space

	Open Problems & Conjectures Related to Tree Resolution Clause Space
	The Complexity of Resolution Clause Space
	The Complexities of Tree Resolution Total Space & Tree Resolution Size
	The Complexity of Resolution Size
	The Complexity of Clause Learning Space
	The Complexity of Resolution Depth
	Approximation Algorithms
	Tension Between Size & Space
	The Space Complexity of Other Proof Systems

	The PSPACE-Completeness of Input Resolution Total Space
	Introduction & Motivation
	Input Resolution, Horn Formulas, and MU Formulas
	Separation Between Input Resolution & Unit Resolution
	The Relationship Between Input Resolution and Horn Formulas
	The Relationship Between Input Resolution and MU Formulas
	Exact Bounds on the Size of Input Resolution Refutations
	Relating Horn Resolution, Input Resolution, and MU(1)
	MU(1), MU-IRES-UNSAT, and Unit Propagation

	A Matrix Characterization of MU-IRES-UNSAT

	Tractable Aspects of Input Resolution
	The Complexities of HORN-UNSAT, IRES-UNSAT, and MU(1)
	The Tractability of MU-IRES-UNSAT
	The Tractability of the MU-IRES-UNSAT Size Problem
	The Tractability of the MU-IRES-UNSAT Problem with Top Clause

	The Automatizability of Input Resolution
	The NP-Completeness of Input Resolution Size
	The PSPACE-Completeness of Input Resolution Derivation Total Space
	Equivalence of Black Pebbling & Input Resolution Total Space
	The Equivalence of Black Pebbling & Input Total Space With Weakening
	The Equivalence of Black Pebbling & Input Derivation Total Space

	The PSPACE-Completeness of Input Derivation Total Space
	The PSPACE-Completeness of Input Total Space with Weakening
	The PSPACE-Completeness of Horn Input Total Space
	The PSPACE-Completeness of Input Total Space

	Related Complexity Results
	The PSPACE-Completeness of the Input Derivation Width Problem
	An Optimal Size / Space Tradeoff For Input Resolution

	Open Problems & Conjectures Related to Input Resolution Total Space

	The PSPACE-Hardness of Resolution Variable Space
	Introduction & Motivation
	The Equivalence of Black-White Pebbling & Resolution Variable Space
	The PSPACE-Hardness of Resolution Variable Space
	Related Complexity Results
	The Complexity of Regular Tree Resolution Variable Space
	The Complexity of Tree Resolution Variable Space
	The Complexity of Input Resolution Variable Space

	Open Problems & Conjectures Related to Resolution Variable Space

	The Complexity of Resolution Width
	Introduction & Motivation
	A Game Characterization of Resolution Width
	A Game Characterization of Regular Resolution Width
	The Complexities of Several Resolution Width Problems
	The Complexities of Resolution and Tree Resolution Width
	The Complexities of Regular and Regular Tree Resolution Width

	Open Problems & Conjectures Related to Resolution Width

	III Proof Complexity Size Results & Dangerous Reductions
	Introduction to Part III
	Description of Dangerous Reductions
	Definitions Specific To Part III
	A SAT Encoding For The Hamiltonian Cycle Problem
	Important Families of Non-Hamiltonian Graphs
	The Kn* Graphs
	The Gn2,n2 Graphs

	Summary of Part III
	Summary of the Individual Results in Part III
	Relationship To Dangerous Reductions

	A Non-Hamiltonicity Proof System
	Introduction & Motivation
	Terminology
	Description of the Non-Hamiltonicity Proof System
	Soundness
	Completeness
	NHPS Simplification
	Exponential Lower Bounds
	Effective Separation From Other Proof Systems
	Open Problems Related to The NHPS
	Graph Algorithm Lower Bounds
	Strengthening the NHPS
	Add More Axioms
	Add More Obstructions To Hamiltonicity
	Restrict The Input Class
	Allow DAG-Like Proofs

	Relate the NHPS to Other Proof Systems

	Prover/Delayer Game Upper Bounds
	Introduction & Motivation
	Prover/Delayer Game & Tree Resolution Size Lower Bounds
	Prover/Delayer Game & Tree Resolution Size Upper Bounds
	Non-Constructive Proof
	Constructive Proof

	Examples
	Example 1: Polynomial Upper Bounds for the H(Kn*) Formulas
	Example 2: Polynomial Upper Bounds for the H(Gn2,n2) Formulas

	Formalizing Dangerous Reductions
	Introduction & Motivation
	Formal Examples of Dangerous, Neutral, & Beneficial Reductions
	Formal Example of a Dangerous Reduction
	Formal Example of a Neutral Reduction
	Formal Examples of Beneficial Reductions

	Domain Independent Framework for Comparing Encodings
	Explosivity
	Stability
	Implosivity
	Alternate Hierarchies

	Implications for Proof Complexity
	Open Problems & Conjectures Related to Dangerous Reductions

	The Proof Complexity of Intuitionistic Propositional Logic
	Introduction & Motivation
	The System LJ
	Statman's Translation & LJ[]
	LJ Variant
	Statman's Translation
	Proof of Correctness
	Boolean Truth Trees
	BTT Example
	P-Simulation Result

	The System LJ[]
	Manipulating the Result of Statman's Translation

	Cut-Elimination
	Definitions
	Cut-Elimination Theorem

	The Proof Closure Property
	The Disjunction & Implication Properties
	Main Result
	Related Complexity Results
	Open Problems Related to Intuitionistic Proof Complexity

	Bibliography

