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Abstract

Systems of bounded arithmetic from descriptive complexity

Antonina Kolokolova
Doctor of Philosophy
Graduate Department of Computer Science
University of Toronto
2005

In this thesis we discuss a general method of constructing systems of bounded arith-
metic from descriptive complexity logics of known complexity. We discuss the conditions
under which the resulting systems capture the same complexity class in the bounded
arithmetic setting as the corresponding logic in the descriptive complexity setting. Our
method works for small complexity classes (P and below) which have simple proofs of
closure under complementation. Additionally, we require proofs of membership and co-
membership for instances of decision problems to be constructible within the same com-
plexity class.

More formally, given a logic L capturing complexity class C, the corresponding second-
order system V-L of arithmetic consists of a system for AC® together with comprehension
over L-formulae. If the class is provably in V-L closed under AC® reductions and every
formula or its (possibly semantic) negation can be witnessed in C, then the resulting
system captures C.

Based on this general theorem, we discuss systems of arithmetic for classes P and NL.
We also give a system of arithmetic for SL, although the definability theorem for SL is

weaker.
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Chapter 1
Introduction

Complexity theory, like its precursor computability theory, has its roots in mathematical
logic. Throughout the history of these fields, logic has been used to formalize complexity
theoretic notions and study them in machine-independent frameworks.

Currently, two major approaches to complexity from a logical perspective are descrip-
tive complexity (finite model theory) and bounded arithmetic; the latter is closely related
to proof complexity. There has been intensive research in each of these two areas and
their relations to the traditional structural complexity. In particular, the relationship be-
tween bounded arithmetic and proof complexity is well-studied. However, little is known
about the direct connection between descriptive complexity and bounded arithmetic. The
only work that makes a similar connection is a PhD thesis of Albert Atserias [Ats02],
in which he connects expressive power of Datalog with lower bounds on the Resolution
proof system.

Just as putting bounds on computational resources gives rise to complexity theory,
bounding all quantified variables by arithmetic terms brings us down to bounded arith-
metic. In bounded arithmetic, the objects are weak fragments of arithmetic; complexity
classes are represented by classes of functions provably total in these systems. In descrip-
tive complexity, the objects are classes of formulae (logics) that can ezpress properties
of certain complexity. Informally, we say that a system of bounded arithmetic captures
complexity class C if C is exactly the set of functions provably total in that system. A
logic captures C' if the set of predicates expressible in that logic is C.

Another representation of complexity classes is provided by (propositional) proof
systems. There, the objects are proof systems of various power; the complexity is defined

in terms of the size of proofs of tautologies in these systems. There is a direct relationship
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between many proof systems and the corresponding systems of bounded arithmetic. This
is despite the fact that the proof systems fall under the non-uniform framework, and
the systems of bounded arithmetic under the uniform framework. A proof system P
corresponds to a system of bounded arithmetic S if 1) soundness of P is provable in S,
and for any P’ if soundness of P’ is provable in S then P p-simulates P’, and 2) proofs
in S can be naturally translated into polysize proofs of a family of tautologies in P.

The goal of this work is to suggest a similar connection between the systems of
bounded arithmetic and logics of descriptive complexity. Both talk about classes of for-
mulae corresponding to complexity classes. Bounded arithmetic studies the complexity
of proving properties of these classes of formulae, whereas descriptive complexity is con-
cerned with their expressive power. The most important distinction between different
systems of bounded arithmetic is the strength of their induction (or comprehension) ax-
iom schemes. This leads to the following question: how does the expressive power of the
class of formulae in the induction axioms of a system relate to the power of the resulting
system?

More precisely, let C be a complexity class, and let ®- be a class of formulae that
captures C' in the descriptive complexity setting. Define the theory of bounded arithmetic
V-®¢ to be Robinson’s () together with comprehension over bounded ®. The following

is an informal statement of the main result of this thesis.

Claim. Consider a class of formulae ®¢ capturing C in the descriptive complezity set-
ting, and a system of arithmetic V-® that has comprehension (induction) over ®c. Sup-
pose that ®¢ is closed under first-order operations provably in V-®. Also, suppose that
for every formula ¢ € ®¢ there is a function F' computable in C which takes as its input
the values of the free variables of ¢, and whenever ¢ is true on these values, F' returns a
“untness” for that. Then V-® captures C, that is, the class of provably total functions of

V-® s the class of functions computable in C.

This claim and its proof are the subject of chapter 3. The formal statement of the
general definability theorem, theorem 3.3.13, appears on page 42. The properties under
which the theorem holds are the Closure Property on page 38 and the Constructiveness
Property on page 40.

Our setting is more appropriate for small complexity classes, such as classes between
AC® and P. Most larger complexity classes are not known to be closed under comple-

mentation, and correspond to complexity classes that are, under complexity-theoretic
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assumptions, strictly weaker than the classes of predicates for which they have compre-
hension. Notably, the most well-known theory of arithmetic S, which has induction over
NP predicates, captures P rather than NP, and does not capture NP unless P = NP.

Restricting our attention to small classes allows us to use definability by NP predicates
for the definition of definability: we consider exactly the functions defined by NP predi-
cates that are provably total in our systems. The provability of existence and uniqueness
of a value for such functions depends on the power of the systems, and gives us the main
measure of that power. In most other systems of arithmetic, functions are introduced
either by their recursion-theoretic characterization (see [Coo75] for an original such re-
sult or [Zam96]), or by adding one axiom or rule for a property complete for the class
(see a system of arithmetic for Logspace in [Zam97]). Since we know the exact expres-
sive power of the formulae in comprehension, and are trying to define in V-® the same
function class, we introduce function symbols by setting their bitgraphs to be formulae
from ®c (bitgraphs for string functions, graphs for number functions). We still need
to prove existence and uniqueness, but having comprehension over function definitions
makes proofs much easier.

Traditionally, a majority of logicians work in the first-order setting. Some of the
commonly used theories are restrictions of Peano Arithmetic with additional axioms:
such is Ay + €23, which has induction over bounded formulae and an axiom proving
totality of z'*|. Another class of theories, which are the most well-known theories of
bounded arithmetic in the complexity theory community, come from the seminal PhD
thesis of Samuel Buss [Bus86]. The most cited contribution of his work is the hierarchy of
theories S3, which correspond to polynomial-time hierarchy. The distinguishing feature of
Buss’s systems is the presence in the language of a “smash” function z#y = 2/*I¥|. This
function gives just enough power to code polynomial-size computations. The induction
axiom in S& is PIND with a step from |2/2] to x. The system S} has the same power
as V! described later in this thesis; the union of all S%, called Sy, is equivalent in power
to 1A, over a language with #.

We find it more convenient to work in the second-order setting both in bounded
arithmetic and finite model theory. Buss already introduced second-order theories in his
thesis, but the presence of the smash function made them powerful enough to capture
PSPACE and EXP. Later, Razborov [Raz93] and independently Takeuti [Tak93] proved the
equivalence between second-order theories without smash function and first-order theories

with smash; this equivalence is called RSUV isomorphism after the title of Takeuti’s paper
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(“RSUV” stands for translation of classes of theories: R to U and S to V). In particular,
this isomorphism takes S into V{, replacing “large” numbers of S} with strings, “small”
numbers with numbers, PIND with induction on the length of a string, and using
operations on strings instead the # function. This framework of V-theories provides the
basis for our systems of arithmetic. Note that S is not equivalent to V', since the former
allows number multiplication for arbitrarily large (bounded) numbers.

There are two motivations for choosing the second-order language for our work. The
first motivation is that in the second-order framework we talk about properties of strings
(or, equivalently, sets of numbers), which seems more natural from the point of view of
conventional computational models, such as Turing machines. The second motivation,
which allows us to convert freely from the finite model theory setting to the bounded
arithmetic setting, is the fact that uninterpreted relational variables in vocabularies of
finite model theory are strings or k-ary arrays. They translate directly into free second-
order variables in the bounded arithmetic setting. In particular, first-order logic trans-
lates into bounded first-order formulae with free second-order variables. Note that for
our translation we always assume the presence of order and arithmetic operations in the
vocabulary, and assume that they are given their standard interpretation; this is because
we are translating the formulae into the language of arithmetic and we do not want to
increase accidentally the power of our logic by adding more symbols to the vocabulary.

A question similar to the relation between second-order systems of bounded arith-
metic and second-order logics is the relation between proof complexity and propositional
satisfiability. The main distinction is that the setting of bounded arithmetic is uniform,
whereas the setting of proof complexity is non-uniform. So the complexity classes that we
are considering are defined in terms of resource-bounded Turing machines and uniform
circuit families.

The outline of this thesis is as follows. Chapters 2 and 3 give the general setting. In
chapter 2 we talk about the descriptive complexity setting and the motivation for our
work. The following chapter, chapter 3, is the core of the thesis. There we describe
the bounded arithmetic setting. Also, this is where we formally state and prove the
main definability theorem (theorem 3.3.13) and discuss properties sufficient for theorem
3.3.13 to hold (properties 1 on page 38 and 2 on page 40). The first part of that chapter
consists of definitions and proofs of basic properties of our class of systems, the second
half contains the definability theorem and its proof. The main part of the proof of

the definability theorem is theorem 3.4.2 (generalized witnessing theorem). A “strong”
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version of the theorem applies to classes closed under complementation (provably in the
corresponding V-®); a weak version concerns classes for which we do not know the closure
(or, in our case, cannot formalize the existing proofs of the closure). In the strong case,
the witnessing functions come from the class itself, in the weak case they come from the
closure of the function class under first-order operations. We use a system of arithmetic
for AC® as a running example.

The chapters 4 and 5 give in-depth analysis of two special cases for which the strong
version of the main definability theorem applies. Chapter 4 concerns constructing and
proving properties for a theory of arithmetic capturing P based on second-order version of
Horn formulae. The results of this chapter are published as [CK01], later extended to a
journal version [CK03]. Chapter 5 provides a similar treatment for a theory of arithmetic
capturing NL. This system is based on a second-order version of 2CNFs. Most of the
results from this chapter appear in preliminary form in [CK04]. All these publications
are joint work with Stephen Cook.

Chapter 6 presents an example of a complexity class for which the current proof of
closure under complementation does not seem to be formalizable in the corresponding
system of arithmetic. The class is SL, symmetric logspace, which is weaker than NL.
The only currently known proof that SL is closed under complementation uses expander
graphs. However, the concept of expander is not known to be formalizable within SL.
Still, we can define a system of arithmetic for SL for which a weaker version of the
definability theorem holds. This version uses only constructiveness property and talks
about the AC® closure of SL functions.

The last short chapter describes possible future directions and gives conclusions. One
such direction is a project of building a system of arithmetic for the class LOGCFL. This
class does not attract much attention, although it has numerous natural characteriza-
tions such as semi-unbounded fan-in circuits, and alternating logspace-bounded Turing
machines with polynomial-size computation trees. Fairly recently there appeared a result
linking LOGCFL with the notion of acyclicity (|[GLS01]). It seems an interesting project
to pursue that notion to define “acyclic satisfiability”, then its second-order variant, and

then, perhaps, build a system of arithmetic and a proof system for this class.



Chapter 2
Descriptive complexity background

Descriptive complexity is an area of finite model theory that deals with relationship
between complexity classes and expressive power of logics. A good source on descriptive
complexity is a book “Descriptive complexity” by Immerman [Imm99]; for background on
finite model theory in general see Ebbinghaus and Flum’s “Finite model theory” [EF95]
or Libkin’s “Elements of finite model theory” [Lib04].

Definition 2.0.1. A vocabulary is a finite set that consists of relational symbols P, @, R, . ..

and constant symbols ¢, d,.... We use symbols 7,0,... to denote vocabularies.

Every relational symbol has arity (natural number > 1) associated with it. A vo-
cabulary that does not contain constants is called a relational vocabulary. Sometimes
we want to add function symbols to our vocabularies, but this is equivalent to adding a

relation encoding the graph of a function.

Definition 2.0.2. A structure A for a vocabulary 7 consists of a nonempty set A, called
universe and interpretations R* for every relation R € 7 and ¢ for every constant c € 7.
An interpretation of a k-ary relation R on a structure A is a set of k-tuples of elements

of A, and an interpretation of a constant symbol is an element from A.

Here we are only concerned with finite structures. We will use the letter n to denote

the size of (a universe of) a structure.

Ezample 2.0.1. A classical example is a vocabulary 7 = {F}, where E is a binary
relation symbol. Structures G = (V& E®) over this 7 are simple directed graphs if
Vv € VY —E%(v,v). If, in addition, Yu,v € V¢E(u,v) — E(v,u) then the graph is

undirected.
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Ezample 2.0.2. Another useful example of a vocabulary is 7 = {min, max, S}. Finite
successor structures are structures over 7 in which S is interpreted as a successor relation
with min and max as minimal and maximal elements with respect to S. So the universe
can be thought of as {0,...,n— 1}, with min =0, max =n—1and S = {(z,z + 1)z <
n — 1}. A similar, though not equivalent, vocabulary is 7 = {min, max, <}; it gives rise
to the class of ordered structures, if all symbols get standard interpretation.

Ezxample 2.0.3. The vocabulary that we use most often is the relational vocabulary 7 =
{min, max, +, x, <}. Structures over 7 with standard interpretations for these symbols

are arithmetic structures.

Terms are variables or constants; if we have function symbols, a function over vari-
ables/constants is a term as well. Formulae are constructed from terms by applying
relations and logical rules (V,A,—,3,V) to the terms. In second-order logic, we allow
quantification over sets of (tuples of) elements of the universe: essentially, relations can
be viewed as free second-order variables. We will use the term “logic” to refer to a class
of formulae with some (usually syntactic) restrictions. An example of a logic is first-order
logic, which is the class of formulae with no quantification over second-order variables;
another class of examples is existential second-order logic with syntactic restrictions on
the quantifier-free part of the formulae.

When we are talking about a complexity class in the descriptive complexity setting,
the intended meaning of a language is a class of structures (models of a given formula).
To relate this to the traditional definition of a complexity class, where languages are
sets of binary strings, consider ordered structures over a vocabulary 7, and assume that
there is one unary uninterpreted relational symbol X in the vocabulary that encodes the
string. Then the set of models of a formula corresponds to the set of interpretations of
X such that the characteristic string of X is in the language; the length of that string

corresponds to the size of the model.

Ezample 2.0.4. Consider the graph vocabulary 7 = {E}, where FE is a binary relation
symbol. The set K of models of the following second-order existential formula ¢ corre-

sponds to the set of all 3-colourable undirected graphs:
AP3Q3RV2Vy(P(z) V Q(z) V R(x))
AN—E(z, 7)) A (2E(z,y) V E(y,x)) A (-E(z,y) V ~P(z) V = P(y))

AN—E(z,y) V=Q(z) V ~Qy)) A (mE(z,y) V ~R(z) V ~R(y))
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That is, ¢ is true on exactly the structures in which E' is interpreted as a 3-colourable
graph. The condition that the endpoints are different colours guarantees —F(z, z) for all

x.

Thus, the traditional concept of a “language” as a set of binary strings corresponds
to a “language” as a set of finite structures with one unary relation. A related question is
how do we encode finite structures as binary strings. Here we need to make an assumption
that the class of structures we are using is ordered, since for a binary string is an ordered
sequence of bits. Now, we encode every k-ary relation by a binary string of length n*
where i'* bit is 1 iff s'* tuple in the ordering is in the relation. Call such encoding of
a relation R enc(R). Provided the machine knows the vocabulary, that is arities of the
relational symbols, the only additional information needed is the size of the model. It can
be inferred from the length of the encodings, but it is customary to start the encoding of
a structure with a string of n 0’s followed by 1 followed by sequence of encodings of the
relations. For example, over a 3-element structure an undirected graph with edges (0, 1)
and (0,2) but not (1,2) will be encoded by the string “0001011100100”.

Now we are ready to define a notion of logic “capturing” a complexity class. For
convenience, we restrict our definition of capture to ordered structures. We are mainly
interested in captures over arithmetic structures for our connection with bounded arith-
metic. The definition below follows [Lib04].

Definition 2.0.3. Let C be a complexity class, L a logic and K a class of finite structures.
The L captures C' on K if

1. For every L-sentence ¢ and every A € K, testing if A = ¢ can be done in C.

2. For every collection K’ of structures closed under isomorphism, if this collection is
decidable in C' then there is a sentence ¢ of L such that A = ¢k iff A € K', for
every A € K.

For our purposes, we fix K to be the arithmetic structures. In particular, the universe
of a structure is always considered to be {0,...,n —1}.

2.1 Capturing complexity classes by logics

It seems that most descriptive complexity results are proven by a very similar strategy:

encoding a computation of a Turing machine of a certain form by a corresponding class
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of formulae. The first such result was Trahtenbrot’s theorem [Tra50]: if a vocabulary
contains at least one binary symbol, then the class of sentences satisfiable by a finite
structure is undecidable (and the class of sentences valid in finite structures is not r.e.).
The proof of Trahtenbrot’s theorem is based on encoding an arbitrary Turing machine
M by a formula satisfiable on a finite structure iff M halts on blank input. Subsequent
results concern resource-bounded Turing machines and their corresponding logics.

The smaller the complexity class, the more restricted the class of structures on which
a logic captures the class. On the other side of the complexity spectrum, the first-order
logic captures AC® over arithmetic structures [BIS90]. The extensions of first-order logic
by transitive closure, inflationary and partial fixed-point operators capture NL, P, and
PSPACE, respectively [Imm82, Imm83|.

The first result relating complexity classes and logics is due to Fagin [Fag74]. He
noticed that the technique used in the proof of Cook’s theorem can be adapted to show

that second-order existential logic captures NP.

Theorem 2.1.1 (Fagin’s theorem ([Fag74])). The class of formulae SO3 captures
NP.

Proof sketch. For the model-checking direction, note that in NP we can guess the values
of second-order variables and then evaluate the first-order part of the formula on these
values. The evaluation can be done in polynomial time provided the number of quantified
first-order variables is constant.

The capture direction resembles the proof of Cook’s theorem. The first idea in the
proof is that linear order can be defined by an existential second-order formula stating

existence of a reflexive, transitive and antisymmetric relation

APVx,y,zP(x,z) A (P(x,y) V = P(z,y)) A (P(z,y) ANz #y — —P(y,)) (2.1)

A (P(z,y) A P(y,z) = P(x, 2))

The main part of the proof is a construction of a second-order existential formula
encoding a tableau of a run of an NP Turing machine M on an input string of length n.
Suppose that n* is the upper bound on the length of any computational path of M. Then
such a path of M can be represented by an (n*+1) x (n¥ 4 1) tableau, in which every row
is a configuration of M. That is, a cell (4, j) corresponds to the configuration on 7™ step

of the execution, and contains either a symbol encoding the state of M, if the head is in
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the j'h position, or a symbol in position j or j+ 1, depending whether it comes before or
after the head position. For example, a configuration can be 010g20pppp p, corresponding
to M in state gy pointing to the last non-blank symbol on the tape. A tableau encodes an
accepting computation of M if 1) the first line is an initial configuration gows ... wy p. .. p,
where w; . .. w, is an input string, 2) every subsequent configuration is obtained from the
previous by a valid transition in 6, and 3) the state guecepr OCcurs in some configuration
and thus in some cell of the tableau.

In the proof of Cook’s theorem, each cell (7, j) is encoded by a set of propositional
variables z; ; ., where 7,j < n* and ¢ € Q UT. The intended meaning is that Tijc 1S
true iff ¢ is the symbol in the cell (7, j) of the tableau, either encoding a tape alphabet
symbol or a state. Fagin’s modification uses second-order 2k-ary variables C...C,,,
where m = |Q| + |I'|, to denote the cells: that is, Ck(i, j) encodes a propositional variable
z; ik On a structure of size n, a 2k-ary variable encodes n* bits of information, each
corresponding to a cell of the tableau. The formula itself is the same in both Cook’s
and Fagin’s theorems, modulo respective variable substitution; it states that the tableau
represented by the variables encodes an accepting computation of M. The last difference
is that C...C,, are existentially quantified, so the question of propositional formula
satisfiability is transformed into validity for a second-order existential formula, that is,

whether there exist C; ... (), satisfying the conditions. OJ

Corollary 2.1.2 ([Sto77]). Second-order logic SO captures the polynomial-time hier-
archy. Moreover, every level of PH is captured by the corresponding level of SO.

2.2 Capturing feasible classes

For the purpose of this work we are more interested in feasible complexity classes, namely
classes between AC® and P. The first successful characterizations of several such classes
were obtained by Immerman in [Imm82, Imm83|. His approach is based on extending
first-order logic by various fixed-point operators. In particular, he gives characterizations
for P,NL, L, SL and non-uniform AC°. The result that P is captured by FO+least fixed
point operator was obtained independently by others: Sazonov [Saz80] has similar ideas,
and Livchak [Liv82] and Vardi [Var82] gave the same characterizations of P.

Before we show that extensions of first-order logic capture NL, P and so on, we need

to talk about the complexity of first-order logic itself. As mentioned before, the weaker
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the logic the smaller the class of structures on which it captures a complexity class.
Barrington, Immerman and Straubing show in [BIS90] that DLOGTIME-uniform AC°
can be captured by first-order logic over arithmetic structures, or, equivalently, over
vocabulary consisting of just one symbol BIT(i,75) interpreted as “i** bit of j is 17;
see [DDLW98] for defining order by BIT. Note that non-uniform AC® corresponds to
FO(AIl), which is first-order logic augmented with all numeric predicates. However, our

goals ask for a uniform framework, and so [BIS90] result is more useful for us.

Theorem 2.2.1 ([BIS90]). Over arithmetic structures, FO captures DLOGTIME-uniform
ACP.

Now we can show how to extend first-order logic by fixed-point operators to capture

more powerful complexity classes.

Definition 2.2.2. A fized point of a formula is defined as follows. Let ¢(X,z) be a
(first-order) formula over vocabulary 7 U X with X ¢ 7, and let A be a 7-structure.
Define ¢ 4(X) to be the set of all possible tuples Z satisfying ¢ in A for a given value of
X:
¢a: X = {al| (A X)Eo(a)}

In general, a set X is a fixed point of ¢4 if p4(X) = X, that is, the set of tuples
satisfying ¢ 4 for that value of X is X itself.

Now take Xo = 0 and X;,1 = ¢4(X;). A set Xy is a fized point of ¢4 if Xy = X1
The fixed point X, is often denoted by X, since we do not care about the exact value
of k.

A set X is called the least fized point of ¢ (denoted LF Px ;(¢)[a]) if for every fixed
point X of ¢, X C X;. Note that if X occurs only positively in ¢ then a fixed point
always exists. In this case, if X; is a fixed point, then X; C X;., for all 7; then the fixed
point is called inflationary. If the operator is not monotone in X, it might not have a

fixed point; if it does, it is called a partial fixed-point.

Ezample 2.2.1 (Transitive closure). The canonical example of a fixed point is a transitive

closure over graph structures (7 = {E'}). Let
¢(z,y, X) = E(z,y) vV 32(X (2, 2) A E(2,y))

Since X occurs positively in ¢, the least fixed point of ¢ exists. Let TCy ,E(z,y)[a, b] be

the formula true if the pair (a, b) is in the transitive closure in a graph with edge relation
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E. In this notation X is implicit. In general, let 1(z, y) be some formula; then transitive

closure over the graph defined by v is TC, ¢ (x, y)[a, b], where

o(z,y, X) = ¥(z,y) vV I2(X (2, 2) ANY(z,y))
A logic can be augmented with a fixed-point operator to make it more powerful.

Definition 2.2.3. Define FO+LFP to be the first-order logic together with a positive
least fixed point operator LF Px ;(¢)[u]. This is interpreted as a formula of vocabulary
7 which is true whenever « is in the fixed point of the first-order formula ¢ over X.
Similarly, define FO+TC to be the first-order logic augmented with transitive closure as
defined in the example 2.2.1.

Theorem 2.2.4 ([Imm82, Imm83]). Ouer the class of ordered structures (that is,
<€ 1), FO+LFP captures P and FO+TC captures NL.

Proof sketch. The proofs resemble the proof of Trahtenbrot’s theorem: a correspond-
ing logic is used to encode computations of respective Turing machines. In case of
polynomial-time Turing machine, LF'P operator states that accepting configuration is in
the fixed-point of a formula defining transition function, where variables encode cells of
computation tableau (a constant number of variables of arity 2k for each cell, where k&
is the degree of the polynomial). The NL case is slightly more interesting: there, the
resulting formula states that there is a pair of the form (initial configuration, some ac-
cepting configuration) in the transitive closure of the transition function. In case of NL,
the number of configurations is polynomial, so each configuration is represented by a

constant number of variables. O

A different approach is presented in the seminal '91 paper by Grédel [Gra91, Gra92].
There, he gave characterizations for L, SL,NL and P by fragments of second-order logic
over successor structures. Together with Immerman, Barrington and Straubing’s result
from [BIS90] that first-order logic captures DLOGTIME-uniform AC® over arithmetic
structures, these characterizations are the basis for the class of systems of arithmetic

considered here.
Definition 2.2.5. We will use the term restricted SO to refer to formulae of the form

ElPl...PkVacl...xlw(P,a_c,&,Y), (22)
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where k, [ are constants, and 1 is a CNF in which use of the quantified second-order vari-
ables P is somehow restricted. The variables @ and Y are free variables: the restrictions

on P do not apply to them.

Note that there are no occurrences of existential first-order quantifiers in restricted
S04 formulae. This is because even when the class of 9 is restricted to 2CNF with at
most one occurrence of a positive literal, with presence of an existential quantifier it is
possible to capture all of SO3 [Grd91]. However, universal first-order and quantifier-free

formulae are restricted SO4.

In particular, we are most interested in the following restrictions of :

Definition 2.2.6. A formula ¥(z, P,a,Y) is Horn with respect to the second-order
variables P, ..., Py if ¥ is quantifier-free in conjunctive normal form and in every clause
there is at most one positive literal of the form P;(z). It is Krom with respect to P if ¢
is a CNF with at most two occurrences of a P-literal per clause. It is SymKrom if it is
Krom with @ instead of V in every clause (so every clause is of the form (¢; — L; ® L}),

where the only P-literals are L;andL}).

Following Griadel, we call define classes SO Horn and SO Krom to be restricted
S03, in which 1 is Horn with respect to P for SO3 Horn and Krom with respect to P
for SO3 Krom, respectively. SO3 SymKrom is defined analogously.

Here, we are assuming that the vocabulary is relational, so the only P-literals are
P;(z). This definition easily extends to allow functions in vocabularies; then the P-
literals can be P(t(z)) for a term ().

Ezxample 2.2.2 (PARITY(X)). This is a SO3-Horn formula over successor structures
(min, max, S € 7), models of which have interpretations of X as sets with an odd number

of 1’s. It encodes a dynamic-programming algorithm for computing parity of X: P,q4(7)
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is true (and Py, (7) is false) iff the prefix of X of length ¢ contains an odd number of 1’s.

IPoenIPoaa Vi
Peven(min) A =Pyga(min) A (Pogg(max) > =X (maz))
A(Peven (5 (1)) V = Poua(5(4)))
A(Peven () A X (i) = Poaa(5(0))) A (Poaa(i) A X (i) = Peven(S()))

A(Peyen (1) A 27X (1) = Peyen(S(2))) A (Poga(i) A =X (1) = Poaa(S(7)))

We state the following theorem only for SO3 Horn and SO Krom; the case of SO
SymKrom is similar to the Krom case. This is an analog of Fagin’s theorem for several
feasible classes; just as Fagin’s theorem corresponds to NP-completeness of 3SAT, Gradel’s

theorem relates to complexity of HornSat and 2SAT.

Theorem 2.2.7 (Griadel’s theorem[Gra91]). Over successor structures SO3 Horn
captures P and SO3 Krom captures NL.

Proof sketch. For one direction, we show that SOJ Horn and Krom formulae can be
evaluated in P and NL, respectively. Fix the values of free variables. Let ¢ be as in the
definition 2.2.5. First turn ¢ into a propositional formula by taking a conjunction of n'!
copies of 1, each with a different value for the first-order variables z; ...z;. Evaluate
first-order terms and terms involving free variables in each copy of 1. The second-order
quantified literals of the form P;(#(Z,a, BY')) become propositional variables, which are
independent unless P; are the same and the terms evaluate to the same value (on possibly
different values of z). The resulting formula is Horn (respectively, 2CNF) if ) is Horn
(Krom) with respect to P. Since satisfiability for propositional Horn formulae is in P and
for propositional 2CNF is in NL, so is satisfiability for SO3 Horn and SOd Krom.

Ezample 2.2.3. Let structure be {0,1}; f(0) =1, f(1) = 1. That is, the universe contains

two elements and a function symbol f. This is how a formula (which happens to be both
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Krom and Horn) is translated into its propositional equivalent over that structure:

APVz,y(z =y V P(z) V =P(y)) A P(f(2))
=0=0VvP0)Vv-P0)APQ)A(0=1VP(0)V-P(1))AP(1)A
(1=0VP(1)V-P(0))AP1)A(L=1VP(1)V-P(1)AP(1))
=p1 A (p1V —po) A (po V —p1)

Here, py and p; are independent propositional variables. The satisfying assignment to
this formula is pg = T, p1 = T, so P(0) = P(1) = T. By evaluating the first-order terms,
the clause (0 = 0V pg V —py) was removed because it evaluates to true by 0 = 0; the

clause (0 =1V po V —p1) lost its 0 = 1 part because 0 = 1 is false.

The more detailed descriptions and formalizations of the satisfiability algorithms are
given later, in the corresponding chapters.

For the proof of the other direction, Gradel uses the result from theorem 2.2.4, and
shows that SO Horn and Krom correspond to FO+LFP and FO+TC, respectively. Note
that without the successor relation the correspondences do not hold: the restrictions of
SO are strictly weaker than the corresponding fixed point logics.

The easier part of the proof is defining transitive closure by a SO3 Krom formula.
That implies that, in the presence of successor, SO3 Krom is (at least) as powerful as
FO+TC, in particular it captures NL. Since NL is closed under complementation, it is
sufficient to show that SOd Krom can define negated transitive closure. Consider a
formula ~T'Cy 36(%, y)[a, b]. Since we need a CNF for the quantifier-free part of the SO
Horn we are constructing, and since we are going to negate ¢, take the disjunctive normal
form of ¢ = \/]. ¢j. Now the SO Horn formula encoding the negated transitive closure

formula above is

ARVE, 5, 5-R(@,b) A (RE,7) A \((R(E5) A 6,5, 7)) — R, %)
J
This formula is true if there exists R that contains transitive closure over ¢ and does
not contain the pair (@, b), which is equivalent to the statement that (@, b) is not in the
transitive closure of ¢.
Now we show that SO3 Horn can define FO+LFP (in presence of successor). Every

formula in FO+LFP is has, in presence of successor, a normal form LF Pp;35¢(P, Z, §)[0].

Since FO+LFP is closed under complementation, for every language L its complement
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L is definable in FO+LFP. Let L be defined by a formula in normal form, and let ¢ from
the definition of L be equivalent to a disjunction \/j ¢;, for the same reason as in the
S04 Krom case. Now SOF Horn formula defining L is

APvzvy-P(0) /\(qu(P, z,9) — P(Z))

J

The first part of the formula states that P does not contain the tuple 0. The second
part states that P contains every tuple that a fixed-point over ¢ has. Since ¢ came from
the definition of L, the resulting expression implies that there is a set P containing the
fixed-point of P (and, therefore, containing its least fixed point), but not the tuple 0. So

our formula is true iff the formula defining L is false. O

Note that the descriptive complexity results above appeal to results about complexity
of syntactically restricted subclasses of the propositional satisfiability. Fagin’s theorem
is a variation on Cook’s proof that 3SAT is NP-complete, and Gradel’s theorem refers
to the fact that satisfiability of propositional Horn formulae is complete for P and 2SAT
is complete for (co-)NL, as 2SymSat (2SAT with & instead of V) is complete for co-SL.
The following major theorem by Schaefer [Sch78] summarizes the syntactic subclasses of
3S AT and their complexity. We use different names for some classes since some Schaefer’s
classes were combined or defined using conventional models such as circuits and Turing
machines since 1978 when the paper was published. In Schaefer’s original paper, the
first class is stated as “decidable in L”; we strengthen it to be decidable in uniform AC®
(thanks to Valentine Kabanets for noticing this).

Let S be a set of k-ary relations, where relations can be thought of as types of clauses
(e.g, S for 3CNF formulae consists of four ternary relations (z Vy V z), (-mz VyV z),
(mzV —yVz)and (-2 V -y V —z). ) Then the following theorem holds:

Theorem 2.2.8 (Schaefer’s dichotomy theorem ([Sch78])). The complezity of the
satisfiability problem for a conjunction of relations from S belongs to one of the following

categories, depending on the types of relations (that is, clauses) occurring in S.

1. Decidable in AC® (for example, in case every clause in S that has a negated variable

is a unit clause.)

2. Logspace-complete for SL (e.g., when S = {(z ® y), (—x & y)}, giving symmetric
2CNFs).
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3. Logspace-complete for NL (e.g., S = {(z V y),(mz V y),(-z V —y)}, so resulting
formulae are 2CNF).

4. Logspace-equivalent to the consistency problem for systems of linear equations over
the boolean domain (e.g., if S is a set of all k-clauses for some k > 3 of the form
(1B xo®---Bxy) or (x1 Bxy®---Dxy) ). This may correspond to complexity
class DET(0,1) of problems equivalent to testing if determinant over GF(2) is 0;

DET lies in NC?, but its exact complexity is unknown.

5. Logspace-complete for P (e.g., S is a set of k-ary Horn clauses or a set of dual Horn

clauses, k > 3).
6. Logspace-complete for NP (e.g., S is all four 3-clauses as above).
Lemma 2.2.9. The first of the classes in the theorem 2.2.8 is decidable in uniform ACC.

Proof. Given some encoding of a CNF formula in which every clause either has only
positive literals or exactly one negative literal, we construct an AC® circuit to decide its
satisfiability. The idea is to check, for every clause with positive literals, if all of its
literals occur negated; if so, the formula evaluates to L, otherwise to T.

The output node is an AND over all clauses. First, check if a clause is a unit clause
with negated literal; if so, send 1 to the output node. Otherwise, the gate above the
output node is a NOT which has as its input an AND gate. There, we take an AND over
all variables in a corresponding clause. For every variable it is an OR over all clauses

which checks whether that variable occurs negated. 0

The logspace-completeness in Schaefer’s theorem may be strengthened to be AC-

completeness.



Chapter 3

Bounded arithmetic and generalized

witnessing

The goal of this work is to relate descriptive complexity to bounded arithmetic. Whereas
in descriptive complexity we are concerned with the complexity of expressing properties,
in bounded arithmetic it is proving totality of functions of varying complexity. The
stronger the system, the more complex functions can be proven total. The systems of
arithmetic we are using here follow the approach of [Coo02], the notes from the course
taught by Cook at the University of Toronto in Spring 2002. The second-order systems
in these notes are based, in turn, on Zambella’s [Zam96] class of systems >?-comp. Our
second-order systems are based on the descriptive complexity characterizations described
in chapter 2. For a general reference on bounded arithmetic, see the comprehensive book
by Krajicek , [Kra95]. A classical book introducing bounded arithmetic is the PhD thesis
of Sam Buss [Bus86]. For the treatment of first-order systems, as well as other fragments
of arithmetic, see Héjek and Pudldk’s book [HP93)].

In descriptive complexity, a language in the traditional complexity theory setting
is thought of as a set of interpretations of a unary predicate X (representing a binary
string) in structures that are models of a given formula. A class of languages then
naturally corresponds to a class of formulae: each language in the class corresponds to
a formula which has, as its set of models, the structures with X interpreted as strings
from the language. In the bounded arithmetic setting, the relationship with complexity
classes is slightly different. Here, we consider representations of languages in the standard
model of arithmetic Ny, defined below. Instead of a set of structures with one predicate

getting different interpretation we are talking about one fixed structure and different

18
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(second-order) elements of it satisfying the formula.
Even though the results of this chapter are stated in a more general form, the main
focus of this work is systems of arithmetic based on classes of formulae that came from

restricted SO, as well as first-order logic.

3.1 Translation from descriptive complexity to bounded

arithmetic

We would like to be able to talk about the same “class of formulae” both in descriptive
complexity and bounded arithmetic context. However, there are several differences, the
most obvious being the language (vocabulary). In the descriptive complexity setting,
the vocabularies are allowed to vary, although some symbols have to be present and
get standard interpretations in order to capture complexity classes. But the descriptive
complexity results we are considering here hold for logics over arithmetic structures. That

makes translation into the language of bounded arithmetic much easier.

3.1.1 The bounded arithmetic framework

The language of our systems of arithmetic is £4 = {0,1,+,-,| |;<,=, €}, a natural
second-order extension of the language of Peano Arithmetic £4 = {0,1,+,-;<,=}. Let
N, be a standard structure with natural numbers and finite sets of natural numbers in
the universe; our first-order objects (denoted by lower-case letters) are natural numbers;
second-order objects (denoted by upper-case letters) are binary strings or, equivalently,
(finite) sets of numbers. Treating a second-order variable X as a set, its “length” | X is
defined to be the largest element y € X plus one, or 0 if X is an empty set.

Arithmetic terms are constructed using + and X are from first-order variables, con-
stants 0 and 1, and terms of the form | X | where X is a second-order variable. The atomic
formulae of £% have one of the forms s = t,s < ¢,t € X, where s and ¢ are terms and
X is a second-order variable. We usually write X (¢) instead of ¢ € X. Formulae are
built from atomic formulae using the propositional connectives A,V,—, the first-order
quantifiers Vx, dx and the second-order quantifiers VX, 3X.

We use the usual abbreviations s # ¢ for =s =¢ and s < t for s <t A s # t. Bounded
first-order quantifiers get their usual meaning: Vz < t¢ stands for Vz(z < t — ¢) and
dz < t¢ stands for dz(x < tA¢). Second-order quantifiers are strings of bounded length.
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In complexity theory a member of a language is a binary string. We relate it to the
second-order arithmetic view of second-order objects as finite subsets S of N as follows.
Given a string w = ...z, 1, define a corresponding set S by S = {i|z; = 1} U {n}.
For example, the string 01100 becomes the set {1,2,5}, and the empty string becomes
the set {0}.

For the other direction, if S is the empty set then there is no string associated with
it. Otherwise, w(S) is defined to be a characteristic string of S of length max;i € S
(the last element becomes length). With this correspondence, if |S| = n where |S| is as
defined above, then |w(S)| = n: that is the length of the string is exactly the value of
the largest element of S. For example, a set {2,3,7} becomes a string 0011000.

The first-order objects in our theories play the role of indices of binary strings. Thus
in determining the complexity of a set of natural numbers we code a natural number ;
using unary notation, that is, as a string of 1s of length .

Let w(S) be the finite binary string associated with S C N as above. We will say that
a formula A(X) represents the language L if L = {w(S)|Ne = A(S)}. More generally,
A(Z,Y) represents a relation R(Z,Y) which holds on z,Y iff N, | A(z,Y).

Definition 3.1.1. If ¢(z,Y) is a formula of £% whose free variables are among 21, ..., 2,
Y1, ..., Y, then ¢ represents a k +¢-ary relation R? as follows. If a1, ..., a are natural num-
bers and By, ..., By are finite sets of natural numbers, then {ai, ..., ax, Bi, ..., By) satisfies
R? iff ¢(ay, ..., ag, By, ..., By) is true in the standard model.

If C is a complexity class, then we make sense of the statement “R? is in C” using
the string encodings described above. In particular, a relation R(z1, ..., zk, Y1, ..., Yy,) is
in P iff it is recognizable in time bounded by a polynomial in (z1, ..., 2k, |Yi], .-, | Yinl)-
Generalizing the notion of representing, a class of formulae ® represents a complexity
class C iff every relation R from C is representable by a formula from ®, and every formula
from ® can be evaluated within C. This notion is parallel to the notion of “capture” from
descriptive complexity (see definition 2.0.3); essentially, they have the same meaning of
describing the expressive power of formulae. But the notion of “capture” we will be using
for systems of bounded arithmetic will be quite different.

We now define the classes 7 and IT” of bounded second-order formulae. (A formula
is bounded if all its quantifiers are bounded.) ©.§ and [T} both denote the class of bounded
formulae with no second-order quantifiers. We define inductively X7 | as the least class

of formulae containing II? and closed under disjunction, conjunction, and bounded ex-
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istential second-order quantification. The class Hﬁl is defined dually. Additionally, we
define the classes AP = SF NTIE.

The classes 37 and TI? are the formulae in our (Zambella’s) simplified language £%
which correspond to the classes Z; > and H} * in Buss’s prototype second-order language
[Bus86, Kra95|, except that Buss’s language contains the # function, and our language
does not. Our ¥F and TI7 are the second-order analogs of the first-order formula classes
Y% and I1%, where sharply bounded quantifiers correspond to our bounded first-order

quantifiers.

Definition 3.1.2. Analogously to Definition 2.2.5, we use the term restricted ¥ to
refer to the formulae of the form 3P, ... PVz, < t1...7 < t;0(P,7,a,Y), where 1 is
quantifier-free with syntactic restrictions on the P;s. In particular, the variables P; are
only allowed to occur as P(t) or —P(t) for some terms ¢; occurrences of |P;| are not

allowed, although the use of length function on free variables is not restricted.

Most of our restricted 2 formulae are translations of restricted SO3 formulae in
the bounded arithmetic context. All examples we study in detail, except for 3, come
from restricted X classes of formulae.Note that first-order universally quantified and
quantifier-free formulae are always equivalent to any subclass of restricted 2, since

restrictions only apply to quantified second-order variables.

Remark 3.1.3. In the classes X7 and II? defined above the second-order quantifiers are
explicitly bounded: that is, all occurrences of 3X and VX are of the form 4X < ¢ and
VX < t, where t is some term bounding the length of X. However, when we talk about
restricted X2 formulae, we do not explicitly put bounds on second-order quantifiers
(although we do explicitly bound all first-order quantifiers). We can do that because
the only literals involving P;s are of the form P;(t); in particular, |P;| is not allowed.
Therefore, we only care about the values of P; up to the largest value of an indexing term.
So every quantified second-order variable is implicitly bounded by max; t;(b), where t; are
terms and b is the upper bound on the variables. Since restricted X2 formulae behave as

bounded formulae rather than unbounded, we will abuse notation and use X% instead of

%1 to refer to them.

3.1.2 The translation method

In the descriptive complexity setting the vocabulary is usually different from £2 , and all

variables are implicitly bounded by the size of the model. One consequence is that there



CHAPTER 3. BOUNDED ARITHMETIC AND GENERALIZED WITNESSING 22

is a difference between expressive power of formulae with monadic versus k-ary relations.
In bounded arithmetic we have a pairing function, easily definable even in the weakest
of our systems V°, which can be used to encode a multi-dimensional array as one binary

string.

We first illustrate the translation using SO3-Horn formulae as an example, and then

give the full rules for the translation in the general case.

Recall Gradel’s definition of SO3-Horn formulae in the descriptive complexity setting
(definition 2.2.6). Consider SO3-Horn formulae over arithmetic structures. We obtain
Y8 Horn by setting the language of ¢ to be £% and bounding all first-order quantifiers
by terms in free variables. Now a class of restricted SO3 formulae (SO3-Horn) becomes

the class of restricted ©F formulae (X2-Horn).

Definition 3.1.4. A formula is ©£-Horn if it is of the form

3P,.. 3PN, < t1(@).. VT, < tn(@)Y(z, P,n,a,Y), (3.1)

where 1 is Horn with respect to Py, ..., P. If the vocabulary 7 contains +, -, =, they get
standard interpretations; also, < gets standard interpretation and S(z,y) is interpreted
as £ = y+1. The uninterpreted variables @, Y in 7 occurring in ¢ become free variables of
1, with an additional free variable n corresponding to the size of the structure. Usually
we do not treat n differently from other free variables; however, there must be at least
one free variable to use as a bound on the first-order quantified variables (if there are

only second-order variables, use their length in the bounding terms).

Note that our definition of ¥Z-Horn formulae is somewhat more general than the
original SO3-Horn: in particular, we allow first-order variables to be bounded by arbi-
trary terms, and we allow any arithmetic terms in our formulae, as long as they do not

contain occurrences of P; (e.g, no | | on quantified second-order variables).

Ezample 3.1.1 (PARITY(X)). This is a ¥f-Horn formula which is a translation of the
SO3-Horn formula for PARITY in the example 2.2.2. Since we could refer to values
of variables past n, the clause (P,qq(max) <+ X (maz)) could be simplified to Poyq(|X]),
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where |X| is essentially max +1.
PARITY(X) = 3P.yen I PoadVi < |X|
Pryen(0) A = Poga(0) A Poga(|X[) A (mPeven (i + 1) V = Poqa(i + 1))
A(Peven (1) A X (1) = Poga(i 4+ 1)) A (Poga(i) A X () = Peyen (i + 1))
A(Peven () A =X (i) = Peven(i +1)) A (Poaa(i) A =X (1) = Poaa(i + 1))

Ezample 3.1.2 (3COLOR(n, E)). The following ¥ formula is a translation of the 3-
colourability predicate from the example 2.0.4. It asserts that the graph with edge
relation E' on nodes {0,1,...,n — 1} is three-colourable. We write E(z,y) like a binary

relation, although it can be coded as a unary relation using a pairing function. The three
colors are P, @, and R.

AP3Q3IRYx < nVy < n(P(z) V Q(z) V R(x)) A (mE(z,y) V —~P(x) V = P(y))
AN=E(z,y) vV -Q(z) vV ~Q(y)) A (mE(z,y) V ~R(z) V ~R(y))
This formula is ¥5-Horn except for the first clause. Since graph 3-colourability is NP-
complete, it cannot be represented by a ¥2-Horn formula unless P = NP. This exam-
ple illustrates why we cannot allow bounded first-order existential quantifiers after the
universal quantifiers in ¥5-Horn formulae, since the first clause could be replaced by
3 < 3P(i,z) where now P(0,x), P(1,z), P(2,z) represent the three colors.

Now we generalize these examples. Let ® be a descriptive logic over a vocabulary 7.

For every ¢ € ®, we can define a translation ¢* into £% with the following properties:

1. Every interpreted symbol from 7 that occurs in £% gets the standard interpretation.
Successor, min, etc are translated into appropriate arithmetic operations such as

+1 for successor, 0 for min.

2. Translate max as n for a free variable n. For every quantified first-order variable,
set n+1 (more generally, a polynomial of n) as a bound. Note that then | X| =n+1

for a unary second-order predicate.

3. Translate uninterpreted relational symbols of 7 occurring in ¢ as free variables of
¢*. If a variable is k-ary, use pairing function (see definition 3.2.5 below) to encode
the relational symbol as a unary second-order variable. Then any occurrence of
R(z1,...,x) becomes R*({x1,...,xx)), where (x1,...,zx) is a value obtained by

applying the pairing function to x4, ..., xx.



CHAPTER 3. BOUNDED ARITHMETIC AND GENERALIZED WITNESSING 24

3.1.3 Representation theorems

Let ®* denote a generalization of translated formulae in ® which allows arbitrary arith-
metic terms, in particular as bounds (see X5-Horn example). Now, ® and ®* satisfy the

following property:

Property. For a complexity class C, let ® be a descriptive logic capturing C in the
descriptive complexity setting. Then ®* corresponds to the same complexity class C in
the bounded arithmetic setting. That is, L € C iff some formula of ®* represents L in

the standard structure Ny.

For example, ¥F (for which @ is first-order logic) formulae represent DLOGTIME-
uniform AC°, and for any i > 0, X2 formulae, translated from second-order formulae
with 7 alternations of second-order quantifiers, represent i** level of the polynomial-time
hierarchy (in particular, B represent NP relations). This follows from theorem 2.1.1
and its corollary 2.1.2. See [Bus86, Kra95| for the full proof that formulae X2 represent
precisely the NP relations, and more generally for 7 > 1 the 7 formulae represent the %7
relations in the polynomial hierarchy and II7? represent the II¥ relations.

There are two directions of proof for the representation property. The first is showing
that the value of formulae ¢* € ®* on its free variables can be checked in the respective
complexity class C. This follows from the fact that the formulae of the corresponding
descriptive logic ® can be evaluated on a given structure by an algorithm from C'. The
terms of formulae in ®* all have value at most polynomial in the length of the free string
variables (and value of free number variables), and so can be easily computed even in
logarithmic time. The rest of the evaluation algorithm usually reduces to propositional
satisfiability problem.

The other direction follows from the fact that ® can express predicates complete for C'.
In particular, formulae in ®* can encode the run of a corresponding resource-bounded
Turing machine on its input. As an example, we give the representation theorem for

YB_Horn formulae; the rest are similar.

Theorem 3.1.5. A relation R(z1,..., 2k, Y1, ..., Ym) s in P iff it is representable by a
YB_Horn formula ¢. Further ¢ can be chosen with only one ezistentially quantified

second-order variable, and only two universally quantified first-order variables.

Proof of theorem. For the if direction, let ¢(z,Y) be a B-Horn formula which represents
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R(z,Y). Then ¢ has the form
3P,..3P Nz, < t..Va, < t,(%, P, 2,Y) (3.2)

where 9 is Horn with respect to Py, ..., P.. We outline a polynomial-time algorithm
which, given numbers ay, ...,a; (coded in unary) and finite sets B, ..., B, (coded by
binary strings) determines whether ¢ (@, B) is true in the standard model. First note
since a and B are given, each first-order term u in 9 (z, P,a, B) becomes a polynomial
u(z1, ..., Tk ), and the coefficients can be computed in polynomial-time. Each P; can occur
only in the context P;(u(z)) for some such term u, and the terms ¢4, ..., ts bounding the
x;’s evaluate to constants.

The algorithm proceeds by computing for each possible z-value b = (by, ..., b,), 0 <
b; < t;, a simplified form [b] of the instance (b, P, a, B) of 1. In this form all first-order
terms and all atomic formulae not involving the P;’s are evaluated, and the result is a
Horn formula [b] with all of its atoms in the list P;(0), ..., Bi(T),i = 1,...,r, where T is
the largest possible argument of any P; in any instance. By taking the conjunction over
all b of these instances, we obtain a propositional Horn formula PROP[v, @, B]. It is not
hard to see that ¢(a, B) is true in the standard model iff PROP[, a, B] is satisfiable.

Finally, there is a standard polynomial-time algorithm to test satisfiability of a given
propositional Horn formula ¢). Namely, initialize a truth assignment « to set all atoms
to false. Now repeatedly, for each clause C' in 9 not satisfied by the current «, either
C has no positive occurrence of an atom P, in which case v is unsatisfiable, or C' has a
unique positive occurrence of some atom P, in which case flip the value of a on P from
false to true.

The proof of the only-if direction resembles the proof of Cook’s theorem that SAT is
NP-complete, and of Fagin’s theorem of finite model theory that second-order existential
formulae capture NP. Let M be a deterministic Turing machine that recognizes a relation
R(zy, ..., x4, Y1, ..., Yyy) within time n, where n =z + ... + x4 + |[Y1| + ... + |Y;n] is the
length of the input. The entire computation of M on this input can be represented by a
two-dimensional array P(7,j) with ¢(n) rows and columus, for some polynomial ¢, where
the i-th row specifies the tape configuration at time . (P can be represented by a one-
dimensional array using a pairing function.) Thus R(z,Y) is represented by the XZ-Horn

formula
3JP3PYi < t(n)Vj < t(n)(P,P,i,4,%,Y) (3.3)

Here the variable P is forced to be =P in the same way that P,,., and P,y are forced to
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be complementary in the parity example above. The formula (P, P,i,j, 1, Y) is Horn
with respect to P and P, and each clause specifies a local condition on the computation.
These conditions are (1) the first row of P codes the initial tape configuration for the
inputs Z,Y, (2) for i < t(n) the i + 1-st row represents the i-th row after one step, and
(3) the final state is accepting. To make (2) easier to specify, it is convenient to represent
the state at time ¢ at the beginning of row ¢ by a string of fixed length, and after the
code for the symbol stored at each tape position there is a bit specifying whether that
square is currently scanned by the Turing machine head. In this way rows ¢ and ¢ + 1
will be identical except for the state codes at the beginning and the bits coding the old
and new tape squares scanned.

To see that each clause can be designed to meet the Horn condition of at most
one positive occurrence among the atoms of the form P(u), P(u), we include the clause
(=P(i,§) V ~P(i, 7). Then every bit in row 0 is specified using a clause with a positive
literal of one of the forms P(0,u) or P(0, u), possibly together with other literals involving
input variables. For example, if 15 bits are reserved at the beginning of each row to
specify the state, and 3 bits code each tape square, then one of the clauses might be
5<jiANj <54z — P(0,3-5+1)). In general every bit in row i + 1 is specified
conditional on a fixed number of bits in row 7. A clause is included for each possible
state of these conditional bits, and the conditions are specified using =P and —P as
appropriate. In this way at least one of P(4, ), P(i, j) must be true for each (i,7) (and
hence exactly one). Note however that if M were nondeterministic, then row 7+ 1 would
have more than one possible value, and some clauses would require more than one positive
literal so the formula would not be Horn.

To meet the “further” condition stated in the theorem, the two arrays P and P can
be combined into one array Q(i, j, k), where k = 0 for P and k = 1 for P. O]

Note that above proof also shows that every NP relation can be represented by a $2

formula of the form (3.3), except that 1 is not Horn.

3.1.4 Evaluating restricted X7 formulae

Evaluation algorithms for restricted 2 formulae follow a general schema. Suppose we

need to evaluate a formula of the form

#(2,Y) =3PVZ < t(P,7,2,Y),
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where ¢ are terms of Z and Y, for a given assignment Z = @, Y = B. Here, 1 is a CNF
with restrictions on occurrences of P; for example, 1’ can be Horn or Krom with respect

to P. Now, the evaluation algorithm follows these steps:

1. Take a conjunction of as many copies of ¥ as there are tuples of bounded first-order
variables. For example, if ¢ is of the form 3PVx; < t;...Vx, < t,1)(...), then there

are t; X --- X tg possible tuples of values for quantified first-order variables.

2. For each copy of 1(Z, P, @, B), where Z are now fixed, evaluate all first-order terms
and replace them with their values. For example, if there is a clause in v of the
form (z1 = x9 + 23V P(x9 X x5 + 2)), and 21 = 5, 2o = 3 and z3 = 2, then replace
it with (T Vv P(11)).

3. Remove all clauses that became true because of the evaluation of first-order atoms,
such as the clause (T V P(11)).

4. Remove all first-order atoms that evaluated to false. If a clause in some copy of
1 became empty as the result of the evaluation of the first-order terms, then the

whole formula is false.

5. If the formula did not become false at the previous step, it is now a CNF with

variables of the form P;(c) for some values ¢. For example, a formula
AP, APV, < 3(331 =2V Pl(l'l) V _|P2(l'1 + 1))($1 +1< 5)

becomes (Py(0) V = Py(1)) A (Pi(1) V =P2(2). The atoms 0 = 2 and 1 = 2 are
removed from the clauses, and the clause with 2 = 2, as well as the clauses (0 < 5),

(1 < 5) and (2 < 5), are removed from the formula.

6. Replace every atom of the form P;(t;) by a different propositional variable. That
is, if there is a subformula (Pi(2) V = P(2)) A (=P2(3) V = P;(2)), then make it
(P12 V —p22) A (—p23 V p12). Note that even if originally the terms in P;(2) and
—P;(2) were different, but they evaluated to the same value on possibly different

tuples, then the two atoms become the same propositional variable.

7. Now the problem is reduced to propositional satisfiability, which is solved by run-
ning a respective propositional satisfiability algorithm, depending on the restriction,
such as Horn or 2CNF satisfiability. Note that this is the only place in which the

form of ¥ becomes relevant.
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Axioms Bl x+1#0 B2 z+1l=y+1-oz=y

for+and- |B3 z2+0=z B4 z+wy+1)=@+y +1
B5 z-0=0 B6 z-(y+1)=(x-y)+z

Axioms B7 0<z B8 z<z+y

for < BY z<yAy<z—oz<z B0 (z<yAy<z)—oz=y
Bl1l z<yVvy<z Bl12 z<y&r<y+1

Predecessor | B13 z#0— Jy(y+1=1)

Upper bound | L1 X(y) — y < | X| L2 y+1=|X|—-X(y)

Table 3.1: The 2-BASIC axioms

8. If the resulting formula is satisfiable, then construct witnesses for P from the values
of corresponding propositional variables. If some variable p; ; does not occur in the

formula, take any value for P;(j) (e.g, false).

Later we will show specifically how to encode formulae of different kinds by a free
variable, and how to encode a satisfiability algorithm for each kind by a corresponding

formula.

3.2 Systems of arithmetic V-9

We will say “a system of bounded arithmetic” to mean a theory over the language of
arithmetic, as a set of consequences of explicitly listed axioms and axiom schemas. The
theories we are considering are second-order with all quantifiers bounded, axiomatized
by axioms similar to those of Peano Arithmetic with a set of axioms corresponding to a
restricted version of induction scheme.

In the case of our family V-® of systems of arithmetic, each system in the family
corresponds to a class @ of formulae over £%, usually resulting from translation of some

class of formulae in the descriptive complexity setting.

Definition 3.2.1. Let ® be a class of formulae over £% (that is, in the bounded arith-
metic setting). The corresponding system V- is axiomatized by the set of basic axioms

2-BASIC (see table 3.1) together with a comprehension scheme

®-COMP : 3X < b(Vz < b(X(2) < ¢(2,a,Y))),
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where ¢(@,Y) € ®, and Z,Y are free variables. For every instantiation of free variables
there would be a different string X. To be consistent with the common notation, we will
use VY instead of V-XF and V! instead of V-LP.

Since we are concerned with YE-definability, ® in our framework come from first-order
and restricted SO3 logics. In particular, ® is restricted X2 in the sense of Definition
3.1.2, and ® contains all quantifier-free formulae and prenex formulae with just bounded
universal first-order quantifiers. Usually we are interested in the systems powerful enough
to handle AC® reasoning, so ® has to either include or be able to simulate ©F. However,
our set of function symbols does not include any string operations other than membership
and length; that differentiates our setting from the first-order theories and allows us to
capture classes weaker than TC°: although string addition is definable by first-order

formulae, string multiplication is not.

Ezxample 3.2.1. The main focus of this work is systems V;-Horn, V-Krom and V-SymKrom,
with ® being, respectively, ¥2-Horn, ¥2-Krom and ©2-SymKrom. However, all of the
V} hierarchy can be thought of as V-® with ® = ©2. In particular, the system V°, that
is V-® with ® = X is the basis of all our systems; it corresponds to the complexity class
AC®. Also, the system V! which is equivalent in power to Sj is V-® with comprehension
over ©¥ formulae, which represent NP predicates by theorem 3.1.5 (see the comment at

the end of the proof).

3.2.1 Properties of systems V-

An induction axiom is a standard feature of most standard systems of bounded arith-
metic. We will show here that the axioms for the length function give us induction in
V-®.

Lemma 3.2.2. Suppose that ® contains all first-order universal formulae. Then the least

number principle is a theorem of V-®.
0<|X|— 3z < |X[(X(2) AVy < 2—X(y)) (LNP)

Proof. By the comprehension schema there is a set Y such that |Y| < |X| and for all
z < |X|, Y(2) & Vi < | X|(X(i) = z < i). Thus the set Y consists of those elements
smaller than every element in X. We claim that |Y| satisfies the LNP for X; that is (i)
Y] < |X], (ii) X(|Y]) and (iii) Yy < |Y|=X(y). First suppose that Y is empty. Then
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Y| = 0 by B13 and L2. By assumption 0 < |X|, so (i) holds in this case. Also X(0),
since otherwise Y (0) by B7 and the definition of Y, so (ii) holds. Since -y < 0 by B7
and B10 we conclude (iii) holds vacuously.

Now suppose Y (y) for some y. Then y < |Y| by L1,s0 |[Y|# 0so by B13 |Y|=2+1
for some z and hence Y (z) by L2. Then =Y (2 + 1) by L1. Thus X(z + 1) by B11, B12
and the definition of Y, so (ii) holds. Also =X (z), so (i) holds. Finally (iii) holds by the
definition of Y and B10. O

Lemma 3.2.3. Suppose that ® contains all first-order universal formulae. Then induc-

tion on the length of a string is a theorem of V-®.
(X(0)AVy < 2(X(y) = X(y+ 1)) = X(2) (Induction)

Proof. We show that negation of induction implies negation of LNP. By negation of
induction, we have X (0) AVy < 2(X(y) — X(y+1)), and =X (z). By the comprehension
schema there is a set Y such that Vy < z 4+ 1(Y(y) <> =X (y)). Then Y (2), so 0 < |Y]|.
By LNP Y has a least element yy. Then yy # 0 because X (0), so yo = zo + 1 for
some zgy, by B13. But then we must have X (zq) and =X (2o + 1), which contradicts our

assumption. O

It is easy to generalize Lemma 3.2.3 to allow induction with an arbitrary value k as
a basis, not just k£ = 0.

If follows from the above lemma that each of the theories that we have presented
proves an induction axiom for each formula in its comprehension scheme. Using one

instance of ®-comprehension to define X <> ¢, we get

Corollary 3.2.4. V-® proves the induction axioms for formulae from ®.

(6(0) AVy < z(d(y) = d(y +1))) = o(2) (®-induction)
where ¢ € .

The system V9 with comprehension over ¥§ formulae (first-order with free second-
order variables), which correspond exactly to DLOGTIME-uniform AC® relations, is con-
tained in all our other systems. It is already powerful enough to prove the simple prop-
erties of addition and multiplication, such as commutativity and associativity. One very
useful property is the existence of a pairing function. It can be used to treat second-order

objects as multi-dimensional arrays, instead of one-dimensional strings or sets.
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Definition 3.2.5 (Pairing function). The pairing function (z,y) can be defined by
(z,y) =(+y)(lz+y+1)+2y (Pairing function)

This function is a one-one map from N x N into N, and it is represented by a term
in our language. It is easily generalized to k-tuples by defining (z1, ..., xx) recursively:
setting (x) = z, and (xq, ..., Tg41) = ((Z1, -, Th), Tht1)

Thus, any finite set P can be treated as a set of k-tuples of variables; P(z1, ..., k) is
defined to be P((z1, ..., xx)).

Notation 3.2.6. We use Pl to denote the “b-th row” when P is being used as a 2-
dimensional array. If ¢(P) is a formula with no occurrence of | P|, then ¢(P"!) is obtained
from ¢(P) by replacing every atomic formula P(t) by P(b,t) (i.e. P({b,t)): see (3.2.5)).

Note that in the descriptive complexity setting the logic with only unary relations is
weaker than one with relations of arbitrary arity. But since in bounded arithmetic there
is no strict bound on the size of the structure, this is not a restriction. Therefore, a class
of formulae in the descriptive complexity setting with second-order variables of arbitrary
(constant) arity is equivalent to a class of formulae in the bounded arithmetic setting
with unary second-order variables, which can be interpreted as k-ary for a constant & by
using the pairing function defined above.

Although 2-BASIC' does not include an explicit induction axiom, L2 asserts that a
nonempty set has a largest element. This can be turned into a least number principle,
from which induction follows.

Standard arguments show that induction on open formulae using axioms B1 to B13
is enough to prove simple algebraic properties of 4+ and - such as commutativity, asso-
ciativity, distributive laws, and cancellation laws involving +, -, and <. Hence all of our
theories prove these properties, and in the sequel we take them for granted. These simple
properties suffice to prove that the pairing function defined in (3.2.5) is one-one, so these

theories all prove
(@1 ey ) = (2], ey xh) = (L1 =2 Al Ay = 1) (3.4)

A useful application of the pairing function is a slightly more general version of
the comprehension axiom. If ® includes all open and universally first-order quantified

formulae, we get the following statement.
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Lemma 3.2.7 (k-ary Comprehension). If ¢(x1,...,zx) € ® with no free occurrence

of Y, then V-® proves the k-ary comprehension formula
Y < <b1, ...,bk>V$1 < b;..Vx < bk(Y(.’L'l, ...,33]6) <~ ¢($1, ...,$k)) (35)

Proof outline. The proof is by induction on the number of variables k. For the base case,
suppose that the formula is ¢(z,y). Now by induction on y we can show that there exists
Y (z,y). For the base case we have comprehension over 9(i) = (i = (x,0) A X (z)), where
X(z) <> ¢(z,0) exists by ®-comprehension. For the induction step, take the formula
Y(i) =V <nVz <y = (z,2) AN (2 <yAYy(z,2) Vz=yAZ(2))), where Y (x,y) exists
by induction hypothesis and Z(z) is obtained by comprehension over ¢(x,y + 1) with
y fixed and = as an index. Since by assumption we have comprehension over universal
closure of quantifier-free formulae, we can do comprehension over 1.

The case of £ > 2 follows by induction on k. Take the characteristic string of ¢ on
the first £ — 1 variables, and apply comprehension over two variables to get the k-ary

comprehension. O
The following lemma gives another application of the pairing function.

Lemma 3.2.8. FEvery formula ¢ € ® is provably equivalent in V-® to a formula in ®

with at most one second-order existential quantifier. Specifically, V-® proves
3P,..3P,¢(Py, ..., Py) <> 3P(PY, .., PIM)

Proof. For the left-to-right direction, use k-ary comprehension (Lemma 3.2.7) to define
P satisfying
P(i,z) < (i=1AP(z)) V..V (i=mA Py(x))

For the other direction, for ¢ = 1, ..., m use comprehension over open formulae to define
P; such that Py(z) <> P(i,x). O

Definition 3.2.9. We use notation $F (®) to refer to the closure of ® under -} opera-

tions: that is, under V, A, = and bounded first-order V and 4.

For example, if ¢;(7) and ¢9(i) are formulae from ®, then the formula Vi < t(¢(i) A
=g (7)) is in the B closure of ®. Usually, ¥ (®) is not equal to ® syntactically (2F(LF)
is an exception), but in some cases for every formula in ©J(®) there is an equivalent

formula in ®. We will extensively use this property later.
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It is easy to show that V9 and thus theories V-® extending V°, prove the basic
properties of + and - such as commutativity and associativity. The following theorem
summarizes some other useful properties that V-® proves. We will often refer to it, or

use it implicitly, throughout the thesis.

Theorem 3.2.10. If V® C V-®, then V-® proves induction and comprehension over
Y8 (®) formulae.

The main part of the proof is to show that V-® that contains V' proves comprehension
over .7 (®). Then, we extend the statement of corollary 3.2.4 to ¢ € L (®) rather than
just ¢ € ®, alluding to the fact that comprehension over X7 (®) is available.

Lemma 3.2.11. If V° C V-®, then V-® has comprehension over X5 (®) formulae.

Proof. We want to show that if ¢*(@,Y) € X (®), then
V-® 37 <tVi < t(Z(i)¢*(i,a,Y).

The proof is by structural induction on ¢.

The base case is when ¢* = ¢ where ¢ € ®. Then there is comprehension over ¢ by
definition of V-®.

Now suppose that there is comprehension over ¢, ¢, € LF(®). Then there are
strings X; < b, X, < b that are characteristic strings of ¢; and ¢, respectively. Now, ©f
comprehension applies to formulae ¢ of the form X (i) V X5(4), X1(2) A Xo(i), = X1 (4).
In case of 3z < t¢(x, i) we use k-ary comprehension 3.2.7 to obtain strings X (z, 7). Now,
we apply ¥ comprehension to 3z < tX(z,7) and Vo < tX(z,7). This completes the
proof. O

The statement of lemma 3.2.11 is not very strong. It only shows that on a meta-level
a proof can be carried out in V-® using multiple application of the comprehension axiom.
In particular, a statement that every formula in XF(®) is equivalent to a formula from
®, which we sometimes need, is a much stronger statement which requires additional
closure conditions on ®.

In theories below V! it is not possible to prove replacement axioms of the form
Yy < t3Pé(y, P) < IAPVy < té(y, PW¥) if ¢ is an arbitrary ©F formula. However, if
¢ € ® and original ® is a restricted SO3 (see definition 2.2.5), then it is possible to prove

a version of the replacement axiom.
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Lemma 3.2.12 (Replacement). Let ® be a class of restricted X2 formulae. Then for
every formula AP¢(y, P) € ®, where ¢ can have additional free variables, V-® proves

Vy < t3P#(y, P) + IPYy < to(y, P¥) (Replacement)
where PY is Pl[y], e P,£y].

Proof. Appealing to the pairing function and the fact that every term ¢ can be bounded

by the value b of the term on the maximal values of its variables, it is sufficient to show
V-® - Vy < bAPH(y, P) > IPYy < bo(y, PY)

To prove the right-to-left implication, assume that P satisfies the existential quantifier
on the right and suppose y < b. Use the V-® comprehension axiom to define P’ such
that Vi < b(P'(i) <> P(y,7)) Then P’ satisfies the existential quantifier on the left.

The left-to-right direction is proven by the induction on the number of second-order
existential quantifiers in ¢. Define v(z) = IPVy < z¢(y, P¥). If ¢ does not have any
second-order existential quantifiers, then v(z) € @, since ® is restricted ©£. Otherwise,
use induction hypothesis to say that 1 is equivalent to a formula from ¢, by moving
existential second-order quantifiers of ¢ past Vy < z. Now we may use the IND scheme
(Corollary 3.2.4) to conclude ¥(b). It suffices to prove that the LHS Vy < b3P¢(y, P)
implies the basis and induction steps. The basis is trivial, since when b = 0 ¥(0) is
vacuously true.

For the induction step, by the induction hypothesis ¢(z) we may assume z < b and
P satisfies Vy < z¢(y, P¥). Setting y = z in the LHS we have @ such that ¢(z, Q). Now

we use k-ary comprehension 3.2.7 on two variables (y,¢) to define P'(y,4) by

P(y,i) ify<z

P'(y,1) + .
QE) ify=2z

Then we conclude in V-® the formula Vy < z + 1¢(y, P'®!), and hence v (z + 1). 0O

3.3 Definability

Our complexity classes, both in the descriptive complexity setting and in bounded arith-
metic, are relational. However, in bounded arithmetic we would like to be able to talk

about functions. We can use relations as graphs to define number functions and as bit
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graphs to define string functions. The following definition is very general, but sometimes
does not produce a robust function class: for example, there is nothing in this definition
that would force the functions to be closed under composition. In order to make the

function classes defined this way meaningful, we will need additional restrictions.

Definition 3.3.1. Let C be a complexity class. We define the corresponding class F'C
of functions of C' as follows:

A number function f: Nf x ({0,1}*)! — Nis in F'C iff there is a relation R in C' and
a polynomial p such that

f(z,Y)=minz < p(z,|Y|)R(z,7,Y)

A string function F : N¥ x ({0,1}*)" — {0,1}* is in FIC iff there is a relation R in C' and
a polynomial p such that

F(z,Y)(i@) < i <p(x,|Y])AR(@,z,Y) for all i € N

For the string function, we are only concerned with the bits with indices smaller than
p(z,Y). Therefore, a string corresponding to the value of a function will be of length
less than p(z,Y). In particular, by the length axioms, all bits with indices larger than
p(z,Y) are 0.

A power of a system of arithmetic can be defined either as a class of relations the

system proves AB-definable , or a class of ¥2-definable functions the system proves total.

Definition 3.3.2. A relation R(Z,Y) is AB-definable in V-® iff there exists formulae
0,6 € B such that R(Z,Y) is represented by ¢(Z,Y) and

V-0 F §(Z,Y) < —(Z,Y)
A number (resp. string) function f (resp. F) is YE-definable in V-® if it has a

defining axiom

z=f(z,Y) & ¢(2,%,Y) (resp. Z = F(z,Y) < ¢(Z,z,Y))
with ¢ € 28 such that
V-® FVzVY3lzé(z,7,Y) (resp. V-® FVZVY3NZH(Z,7,Y)).

Using definition 3.3.2, we can state the definition of “capture” in the bounded arith-

metic setting. This gives us a way of measuring the power of a system of arithmetic.
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Definition 3.3.3 (Capture). A system of arithmetic V' captures a complexity class C
if the class of YB-definable functions of V is exactly FC.

Note that this is quite different from the descriptive complexity notion of “capture”.
The reason we are using the same word is that in both cases we are relating a logic
(system of arithmetic) and a complexity class; “capture” here is a generic name for such

a connection.

Lemma 3.3.4. There is an eract correspondence between AP-definable relations and a

YB_definable boolean functions of a system (characteristic functions).

Proof. We describe this correspondence following [Coo04]. Let R(Z,Y) be representable
by a ©F formula ¢(z,Y) = 32¢(z,Y,Z), and let ¢(z,Y) = 3Z¢(z,Y, Z), where 9,9
are ., such that

V-®F ¢(z,7) < =d(z,Y). (3.6)

The defining axiom for the characteristic function of R is z = f(z,Y) + 3Z(z = 1 A
W(&,Y,Z))V(z = 0Ap(Z,Y, Z)). The existence of z follows from the right-to-left direction
of the equation 3.6, and the uniqueness from the left-to-right direction.

For the other direction, suppose that f(Z,Y) is definable by an axiom z = f(7,Y) <
¢*(2,Z,Y) and V-® - 312¢*(2,2,Y). Then R(z,Y) is defined by the formula ¢(z,Y) =
J2(2 £ 0A ¢*(2,2,Y)) and ¢(z,Y) = ¢*(0,z,Y). O

Now we need a method to introduce function symbols into the system. A traditional
way is to use recursion-theoretic characterizations of classes, such as Cobham’s charac-
terization of F'P as a class of functions closed under AC® operations and limited recursion
on notation. Here, however, we use the fact that our systems are built on classes of for-
mulae which express complexity classes in the descriptive setting. That is, the relation

in Definition 3.3.1 are representable by formulae from .

Definition 3.3.5. Let ® represent a complexity class C. We define a corresponding

function class F'C by setting
2= f(z,Y) ¢ 6(2,3Y) F@Y)[) i <tAd(i,zY)

where f and F' are number and string functions, respectively, and ¢ € ®. That is, we
define functions by formulae from ® by stating that the graphs of number functions and

bit graphs of string functions are representable by formulae from .
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What we would like to have is a property that a class of functions defined in this
manner is robust: i.e., closed under composition, substitution of a term for a variable,
and P operations. There are some natural complexity classes for which this is not the
case. For example, NP predicates translate into $¥ formulae defining a class of functions
F'N P which is not closed under complement unless NP =coNP. It seems that closure under
complementation is a necessary condition for a complexity class to have a robust function
class. If @ is not syntactically closed under complementation and boolean operations, we
need to prove the closures within V'-®.

The first requirement that we will have in most of our systems will be not only that
they include V°, but also that they are closed under X7 operations. The respective com-
plexity class, in this case, has to be closed under uniform AC® reductions, or, equivalently,
first-order reductions. Recall that 2 is the first-order logic translated into the language
of bounded arithmetic.

We start with a weaker notion of EOB definitions. Let £ D £ be a collection of two-
sorted functions and relations. Assume that functions in £ are closed under composition

and substitution of a term for a variable.

Definition 3.3.6. A string function F(Z,Y) is in (L) if there is a formula ¢(i,7,Y)

which is ¥ with occurrences of symbols from £ and a term #(Z,Y) over £% such that
F(z,Y)() < i <t(z,Y)ANé(,7,Y).

The definition for the number function is similar:

That is, ¢ is a bit-graph of a string function or a graph of a number function.
Now, allowing repetitions of this operation, we obtain the notion of an AC® reduction.

Definition 3.3.7. A string function F(z,Y") is AC® reducible to £ iff there is a sequence
Fy ... F, of string functions such that F,, = F and F; is in SF (LU {F,...F,_}) for
i=1,...,n. A number function f(z,Y) is AC°-reducible to L if there is a string function
F(z,Y) that is AC%reducible to £ and f(z,Y) = |F(z,Y)].

Definition 3.3.8. We say that £ is closed under AC® reductions iff for any string or
number function F(Z,Y), it is AC%-reducible to £ iff F(Z,Y) € £. We denote an AC°
closure of £ by AC°(L).
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The definition 3.3.6 is, in general, weaker than the notion of an AC° reduction. One
example of it is the class TC®, in which everything can be AC%-reduced to MAJORITY
function, but it is not known if it is possible to capture the whole class without nesting
calls to MAJORITY. However, the notions of closure under AC° reductions and ©¥ closure
coincide, because if ©¥ (L) = L, then nesting the definitions does not take us outside of
L. See, for example, [NC04] for a discussion of this.

We need to be able to talk about the AC® closure of a class of formulae, whereas
the definition above is stated for functions. A class ® of formulae is closed under AC°
reduction if any ¥F combination of formulae from @ is equivalent to a formula from ® (see
definition 3.2.9). We can restate this definition by introducing a string function symbol
with its bitgraph a formula from ® for every formula from &, obtaining the language
L = L% U {F}, applying the definition of AC® reducibility, and then stating that if a
resulting function symbol is in £, it must have as its bitgraph a formula from &.

We are now ready to state the “robustness” properties that we assume for our systems.
Note that even though the properties are stated for the classes of formulae, they have
to apply to the original classes as well. For example, if Y2-Horn is closed under AC°

reductions, then P definitely is.

Property 1 (Closure). Let ® represent a complezity class C and let FC' be as in the
definition 8.3.1. Then the closure property holds if ® is closed under AC° reductions,
that is, X3¢ (®) = ®. In particular FC is closed under composition and substitution of a
term for a variable. In addition, ® is strongly closed if for every ¢* € LE(®) there erists
¢ € ® such that V-® F ¢* < ¢.

In particular, then the corresponding C' is closed under complementation and & ex-
tends X (that is, defines all of first-order). For some ®, notably restricted ©F, it is not
syntactically true that ©F C @, but it can be proved that for any © formula there is an

equivalent formula of ®.

It seems that Property 1, although strong, is not sufficient for our purposes. It
is not enough to be able to evaluate the formulae and their combinations within the
corresponding complexity class. In addition to that, we need to be able to construct,
within the same class, the “certificates” or “proofs” that the formulae are true or false.

This leads to an additional property, that we will call “Constructiveness”.
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Definition 3.3.9. Existential quantifiers in a formula 37¢(Z,z,Y) are said to be wit-
nessed in V-® by functions F(z,Y) with defining axioms AX(F) if V-®, AX(F) +
#(F(z,Y),7,Y).

Ezample 3.3.1 (Witnessing parity). Recall the ¥2-Horn formula for the PARITY problem
from the Example 3.1.1. Note that without the clause (Pogq(| X)) the formula is always
true; moreover, it can be proven in Vi-Horn (by induction on the length of X). Call this
formula PARITY-COUNT(X).

To compute P,y4(k) and P.yen (k) all we need to know is the parity of the prefix of X
of length k. Let formula PARITY-PREFIX-ODD(k, X) be PARITY with |X| replaced with
kin Vi < | X| and in Poyu(|X]), and Peye, and P,qq renamed to P, and P,. Let PARITY-
PREFIX-EVEN(k, X) be PARITY-PREFIX-ODD(k, X ) with clause (P,(k)) replaced with
(P.(k)). Tt is easy to see that P,yq(i) and Peyen(i) in PARITY-COUNT(X) hold iff so
do PARITY-PREFIX-ODD(7, X ) and PARITY-PREFIX-EVEN(i, X ), respectively. Also, note
that PARITY-PREFIX-ODD(%, X ) and PARITY-PREFIX-EVEN(7, X ) are ©2-Horn formulae.

Introduce the witnessing functions F,4; and Fye, for P,y and P,,.,, respectively, in

PARITY-COUNT by the following defining axioms:

AX (Foaa) : Foaa(X)(7) <> 7 < |X| A PARITY-PREFIX-ODD(i, X)
AX (Fepen) © Feven(X) (%) <> i < |X| A PARITY-PREFIX-EVEN(i, X)

Now,

Vi-Horn, AX (Foaa), AX (Feven)
Vi < [X[Fepen(X)(0) A =Foaa(X)(0) A (mFeven (X) (i + 1) V = Foaa(X) (i + 1))

X)(0) A X (i) = Foaa(X) (0 + 1)) A (Foaa(X) () A X (i) = Foven(X)(i +1))
X)(0) A X (i) = Feven(X) (i + 1)) A (Foqa(X) () A =X (1) = Foaa(X) (i +1))

( even ?

/'\/—\

(¢)
( even (7/)

Since F,q4q and F,,, are bit-defined by YP-Horn formulae, they are polynomial-time
functions. So not only V;-Horn can prove that P,y and P,,., exist, but also that the

values of P,y and P,,., can be computed by polynomial-time functions.

The idea behind the constructiveness property is that whenever a formula from & is
true (resp. false) there is a (short) proof (resp. counterexample) for that. Additionally,
these proof and counterexamples can be constructed from a first-order (that is, 3F)

combination of functions in the corresponding class F'C.
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Property 2 (Constructiveness). Let ® be a class of restricted XF formulae, and let
® represent C'. This ® has the constructiveness property if the following two conditions
hold. Firstly, every ¢ € ® defines a relation R that is AP-definable in V-®, with ¢
being its .8 definition. That is, for every ¢ € ® there exists q~5 € X8 such that V-® F
#(a,Y) < —wz;(&, Y). Secondly, there are witnessing functions F with bit graphs in %8 (®)
such that F(a,Y) witness the existential quantifiers of the prenex form of ¢ V ®.

Remark 3.3.10. If, additionally, ® is strongly closed, that is, has the property 1, then
the conclusion of the constructiveness property can be stated simpler as follows.

For every ¢ = 3Py (P,a,Y) € ® such that V-® I ¢ there are functions F' witnessing
P such that bitgraphs of F are in ®. It is enough to consider ¢-theorems of V-® because
if ® is closed, then q; € & and sois ¢ V (;NS Also, the assumption that bitgraphs of F are
in 27 (®) becomes bitgraphs € ®.

Another way of stating the constructiveness property is to say that the witnesses
(satisfying assignments and proofs of tautologies, in case of satisfiability problems) can
be computed in AC® with oracle access to C' (or, equivalently, to the validity problem of ®,
since it is complete for C'). For strongly closed classes, such as NL and P, constructiveness
states that the witnesses can be computed within the class. For weakly closed classes,
such as SL, the constructiveness property states that witnesses can be computed within
the class, but it is not provable in the corresponding system.

In the systems that we are considering ® is restricted ¥2. Then by Lemma 3.2.8
every ¢ € @ is equivalent to a formula of the form 3P (P,a,Y), where 1) does not have
second-order quantifiers. Suppose that ® represents a class of AP-definable relations in
V-®, so for every ¢ € ® there exists its opposite ¢ = EIQ&(Q, a,Y), where iy ©B. such
that V-® - ¢(@,Y) « —¢(a,Y). Then there exists a witnessing function F(a@,Y’) such
that V-®, AX (F) F ¢(F(a@,Y),a,Y) + —(F(a,Y),a,Y) where AX(F) is F(a,Y)(i) <
or(i,a,Y) for pr € (D).

We would like to work with formulae that contain function symbols. For that, we
define a system V-®(F(C) by augmenting V-® with a function symbol for every func-
tion definable by a formula from & using definition 3.3.5. That is, string functions
are introduced by their bit graphs and number functions by their graphs. Since V-® has
comprehension for @, V-®(FC) is conservative over V-®. Moreover, the following lemma
holds:

Lemma 3.3.11. If VO C V-®, then V-®(ZF(FC)) is conservative over V-®.
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Proof. In order to prove that adding function symbols to a system results in a conservative
extension we need to show the following. Let F(a, X) be a function with defining axiom
AX(F): F(a,Y) = Z + ¢*(Z,a,X) (we make no assumptions about the structure of

¢* at this point). Then adding F' to a theory V results in a conservative extension if
V +AX(F)FVavX31Z¢*(Z,a,X).

Then we can argue that every model of V' can be extended to a model of V + AX(F).
Our goal is to show that V-®(SE(FC)) is a conservative extension of V-®. First,
note that functions from F'C are bit-definable by formulae from ®, therefore V'-® proves
the existence and uniqueness of Z satisfying ¢*(Z,a, X) + |Z| < t AVi < t(Z(i) +
#(i,a, X)). The existence of such Z follows from ® comprehension axiom.
Now suppose that the bit-defining axiom for F' is ¢ € ZF(FC). Then the proof is by
structural induction on ¢ using LF-COMP. We omit the technical details. O

It is useful to note that lemma 3.3.11, as stated, does not show that V-®(AC°(FC))
is conservative over V-®. For that we need to consider the case of function composition,
which requires additional properties on ®.

The following lemma is essential in the proof of both directions of the definability

theorem. This is a version of the Replacement Lemma (lemma 3.2.12).

Lemma 3.3.12. Let ® be restricted X8, VO C V-®, and let ® capture FC. Suppose
that ® is constructive. That is, for every ¢ = IX(i,X,a,Y) € ® there eists ¢ =
3)212(@',)2,&, Y) € ©B such that V-® + ¢ —~$ and the quantified variables X in
IX (i, X,a,Y) VUi, X,a,Y)) can be witnessed by functions F(i,a,Y)(j) with bit-
defining azioms ¢r(j,i,a,Y) € LB(®). Then V-® proves the following equivalence, for

any free variables t and Z:

V-® FVi < t3X,3X0(Z() A (i, X1, 8, Y) V (2 Z(0) A (i, X, a,Y))) (3.7)
AWV < H(Z6) A, W @, V) v (=2Z(i) A (i, U &, 7))

Proof. The right-to-left direction of the proof is trivial. The bulk of the proof is the
left-to-right direction.

By pairing, we can assume that ¢ and qg have only one existential second-order quan-
tifier; the proof easily generalizes to multiple quantifiers, but the presentation with one

quantifier is cleaner. Thus, we are proving the statement for ¢ and é with a single
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quantified second-order variable X and its witnessing function F', and for a single array
variable .

Recall that there are formulae ¢p(j,4,a,Y) € NP (®) and é¢(j,i,a,Y) € LE(®)
which are the bit-defining axioms for functions F' and G witnessing X; and X, in ¢ V
&, respectively. Consider the first formula in the equation 3.7 with occurrences of X;
replaced by F(i,a,Y) and occurrences of X, by G(i,a,Y). Then this formula becomes
T8 (®).

Let Fyw(a,Y)(i,5) < ér(j,i,a,Y) and Fy(a,Y)(4,7) « ¢c(j,4,a,Y). Then by k-ary
comprehension over ¥F (®) there exist characteristic strings W of Fyy, and U of Fy, given
bounds on 7 and j. Consider the second statement with W1 replaced by FIEf,] (a,Y). and
Ul replaced by F{(a,Y). By construction, for every i,j F(i,a,V)(j) <> Fw(a, Y (i, j)
and G(i,a,Y)(5) < Fy(a, Y (i, 5)

Therefore, the second statement holds when W, U are replaced by Fy, Fy. That
implies that this statement also holds for W and U that are characteristic strings of the
respective functions.

We appeal to lemma 3.3.11 to conclude that the statement of lemma 3.3.12 is already
provable in V-®. O

Now we can state the general definability theorem that can be used to characterize

the power of closed systems based on constructive descriptive logics.

Theorem 3.3.13 (Definability theorem). Suppose that ® is restricted ©8 or XF,
constructive, and represents a complezity class C. Then all functions from FC are ¥5-
definable in V-® and all XP-definable functions of V-® are in AC°(FC).

Suppose, additionally, that ® is strongly closed. Then the class of ¥B-definable func-
tions of V-® coincides with F'C provably in V-®.

We will refer to the first statement as “weak definability” and the second statement
as “strong definability”.

First we prove the easy direction of this theorem.

Lemma 3.3.14. Suppose that ® is constructive. Then every function from FC is X5
definable in V -®.

Proof. First consider the number functions. Since V-® extends V°, the least number
principle is a theorem of V-®. Therefore, for any ¢(z,a,Y) € ® there exists a unique

minimal element z satisfying ¢, or by definition of min, z = t.
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The case of string functions is somewhat different. Every string function from FC' is
defined by a formula from &, for which there is comprehension axiom; that guarantees
the existence of a string Z which is a characteristic string of the bitgraph of a function.
Let

F(a,Y)(i) < i<t@Y)Aoi,aY),
where ¢ € ®. By assumption, there exists a ©2 formula q; such that V-® - ¢ < —wg.

Take a formula
¢"(Z,a,Y) < Vi < |Z|(Z(i) A $(i,a,Y) vV ~Z(i) A ¢(i,a,Y)).

Placing quantifiers of ¢ and ¢ right after Vi < ¢, we obtain a formula of the form used in
lemma 3.3.12. By that lemma, this formula is ¥, and thus the defining axiom ¢* of F
gives a 1P definition.

In V-® we can prove that ¢*(Z,a,Y) is true iff Vi < |Z|, Z(i) < ¢(i,a,Y). There-
fore, the existence of Z satisfying ¢*(Z,a,Y) follows by comprehension over the formula

#(i,a,Y). Its uniqueness follows from the fact that it is a characteristic string of ¢. [

The other direction of Theorem 3.3.13 requires using a powerful technique called

witnessing, which is the subject of the rest of this chapter.

3.4 Witnessing

The origins of the witnessing method lie in the Skolem functions. Skolem was not con-
cerned with the complexity of witnessing functions, he just needed a method to replace
existential quantifiers by function symbols. Later, it was shown that the complexity of
witnessing functions for 3; formulae, that is, a version of X2 formulae without bounds

on quantifiers, is primitive recursive [Par68, Min73].

3.4.1 Buss’s witnessing theorem

The major work establishing the relation between complexity theory and bounded arith-
metic was the 1986 PhD thesis of Sam Buss [Bus86], where a number of first-order and
second-order theories that characterize the polytime hierarchy (starting with the first
level), PSPACE and EXPTIME were developed. These systems are based on first-order
framework in which numbers can be “large” or “small” (logarithmic); large numbers cor-

respond to strings in our notation. Buss has multiplication for both kinds of numbers, so
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his systems cannot capture AC°. However, his goal was to capture the polynomial-time
hierarchy and above, for which his systems were appropriate.

A major feature of these systems is that the language includes a # function: x#y =
2l#I¥l This allows for coding of sequences and referencing bits of numbers without
making the codes exponentially large. All systems consist of a set BASIC of axioms (@,
augmented with defining axioms for #) and various induction schemes. In Buss’s systems
there are two types of bounded variables: polynomially bounded (treated as “strings”),
and logarithmically (“sharply”) bounded. When determining levels of hierarchy (3%)
only alternations of polynomially bounded quantifiers are counted. The induction axiom

schemes are

IND: ¢(0) AVz(d(z) = ¢(x + 1)) = Vzd(x)
PIND: ¢(0) AVz(d(|z/2]) = é(x)) — Vro(z).

The four main theories (or, more precisely, hierarchies of theories) in this work are two
first-order and two second-order systems based on IND and PIND. The hierarchies T}
and V; have IN D, restricted to ¥.¢ and its second-order version, respectively (where in the
second-order version of 3¢ we count the number of alterations of second-order quantifiers,
omitting first-order ones). Similarly, S and U are first- and second-order systems based
on PIND. The subscript “2” in these theories denotes usage of # function. It can be
shown that T9 = SY, and for i > 1 Si C T¢ C Si™.

The main connection with complexity theory is proved about the first-order theory
S3, consisting of a set of 32 axioms and a LB-PIND induction scheme (length induction
on NP predicates). Similar witnessing theorems show that U; captures PSPACE and V!

captures EXPTIME.

Theorem 3.4.1 (Buss’s witnessing theorem). Let i > 1 and let A be a ¢ formula.
s.t. S FVzIyA(Z,y). Then there is a term t, a X2 formula B and a function f € P
such that

1. Sit (Vz)(3y < t)B(z,y)
2. Si+ (VZ)(Vy)(B(Z,y) — A(Z,))
3. SiF (VZ)(Vy)(V2)(B(Z,y) A B(Z,2) > y = 2)

4. For alln, N = B(n, f(n))
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For ¢ = 1 this implies that predicates are polynomial iff they are AZ-definable in Si.
Conditions 1,3 and 4 state that f is X’-definable in S% by the formula B.

In general, this theorem gives a correspondence between polynomial hierarchy and
hierarchy of Si. An important open problem is whether the union for all 7 of S, called
So, is finitely axiomatizable. A positive answer to this question would imply collapse
of the polynomial hierarchy. Buss shows that S is X% conservative over PV; however,
general conservativity of S5 over QPV would imply collapse of polynomial hierarchy to
P = TI5 [Bus95, KPT91, Zam96]. More generally, if 7§ = S, then PH collapses to
¥P , =117 ,, and provably collapses to ¥} 5 = II? ;. In [KPT91] Krajicek, Pudldk and
Takeuti use an interesting technique that became known as “KPT witnessing theorem”,

witnessing IV3IIY formulae with a list of functions from P¥,

3.4.2 Witnessing for V-

Buss was interested in more powerful theories than ones considered in this work. In
his theories, the classes of predicates in induction and comprehension axioms come from
complexity classes not known to be closed under AC® reductions. That is, his classes
of formulae do not satisfy property 1 unless NP=co-NP. Therefore, the complexity of
witnessing functions there is strictly smaller than what can be defined by the formulae in
comprehension scheme. In particular, in his theory S; which has the same power as V1,
the comprehension (induction) is over NP predicates. However, the class of AP-definable
predicates of Sj is P.

The classes we are dealing with are much nicer, so the definability theorem for them
is simpler. The main part of the proof of the definability theorem 3.3.13 is the following

statement.

Theorem 3.4.2 (Generalized witnessing theorem). Let ® be a class of restricted ©8
formulae representing C. Suppose that ® is constructive. Then X8-theorems of V-® can
be witnessed by functions from AC°(FC) provably in V-®. Thatis, if V-® - 3Z¢(z,Y, Z),
where ¢ € X8, then there is a string function F(z,Y) in AC*(FC) such that

V-®,AX(F)F ¢(z,Y,F(z,Y)),

where AX(F) is a L§(®)-bit-defining aziom for F. If ® is strongly closed and con-
structive, then V-® proves that the defining axiom for F is equivalent to a formula from
.
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The witnessing theorem is stronger than the constructiveness property. Construc-
tiveness is concerned with witnessing an existential quantifier in a ¢ € ® (or finding a
counterexample to ¢). On the other hand, the witnessing theorem describes the power of
a system in terms of the strength of L¥-theorems that the system in question can prove.
In all our systems the witnessing theorem describes functions witnessing ¥.2-theorems,
however in weaker systems the class of witnessing functions, and thus the number of
Y B_theorems, is smaller.

The theorem 3.4.2 is a generalization of the witnessing theorem for V' as presented in
[C0002] (hence the name “Generalized witnessing”). The three main examples for which
theorem 3.4.2 applies are V'V itself, V;-Horn and V-Krom. The simplest is V', because for
it the properties are trivial; we will use it as a running example for this section. Proving
the properties for Vi-Horn and V-Krom are the content of chapters 4 and 5. We also
apply this theorem to a system for SL based on symmetric Krom formulae (see chapter

6); in that case, we use the weaker statement.

Ezample 3.4.1. [Coo02, Zam96] Functions bit-definable by ©¥ formulae in V}° are AC®
functions, and 3 formulae correspond to the first-order logic which captures AC® in the
descriptive sense (see theorem 2.2.1). There is a witnessing theorem stating that the

class of witnessing functions for ¥ theorems in V,? is AC® as well.

Ezample 3.4.2. [CK01] The class of ¥2-Horn formulae comes from SO3-Horn formulae
capturing P in descriptive setting. V;-Horn defines polynomial-time functions by ¥:#-Horn
formulae, and is equivalent in power to Zambella’s P-def. In this case, the Theorem 3.4.2
holds with ® = ¥8-Horn and FC = FP. So by the definability theorem YXP-definable
functions of Vi-Horn are precisely polynomial-time functions. The bulk of work is proving
closure of ¥2-Horn formulae under complementation; the techniques required for that

give constructiveness.

Note that if the conditions do not hold, then the class of witnessing functions can be

smaller than definable by X2 formulae.

Ezample 3.4.3. By Fagin’s theorem, ¥.8 formulae capture NP, which is not believed to be
closed under complementation. Consider a system V1!, in which ® = ¥8. We could try
to define“NP functions” by setting their bitgraphs to be ©2 formulae, as in the definition
3.3.5. Therefore, such functions are not (known to be) XP-definable. Let the function
facor(n, EY) return 1 if subgraph of F on the first n vertices is 3-colourable, and 0 if it is not

3-colourable. There is a .7 formula which is true on 3-colourable graphs (see example
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2.0.4), but we do not know any % formula which would be true on exactly those graphs
that are not 3-colourable. If NP = coNP, then for 3-colouring we will have ©F formulae
¢ =3ZY(Z,n, F) and b= HZ@E(Z, n, ), where ¢ is true on 3-colourable graphs and é

true on not 3-colourable graphs. Then we can give the defining axiom for fs., as follows:
Freot(n, E) =y < 3Z(y = 1L AY(Z,n, E)Vy = 0AP(Z,n, E)) (Ax3COL)

Note that the formula in the defining axiom is X2. If, in addition, V! F ¢(n, F) <
—¢(n, E) (that is, if V' “proves” that NP=coNP), then V' + 3Z(y(Z, n, E)V(Z,n, E)).
Then, by Buss’s witnessing theorem, there exists a polynomial-time function f(n,E)
witnessing Z. By testing which of the two formulae is satisfied by the witnessing function
on a given input (n, E), we can decide in polynomial time if the input is 3-colourable or

not.

Remark 3.4.3. Note that if NP = coNP, then the formula 3Z(y(Z,n, E) V ¢(Z,n, E))
is a true X8 formula. However, it may not be theorem of V!, in which case functions
defined by ® = ¥8 formulae are not ¥2-definable in V. This is the case when Lemma

3.3.14 does not apply. If it were definable, then as we just saw, we would get P = NP.

The two major approaches to proving witnessing theorems are model-theoretic and
proof-theoretic. The first works especially well in case when the system of arithmetic is a
universal theory: then a simple Herbrand-style proof suffices. An example of a witnessing
theorem of that kind is witnessing for Cook’s equational theory PV ([Coo75]; see [CU93|
for a more extensive treatment of PV -like theories). In his thesis, Buss used the second,
proof theoretic approach, which we follow as well; however Zambella’s proof of Buss’s
witnessing theorem in the second-order setting used model-theoretic argument [Zam96].

The approach that we describe here is a slight modification of the proof of witnessing
theorem for V? from [Coo02]. All that was done was to notice that the properties above
are sufficient for the proof to work, and prove that several major complexity classes can

be characterized by classes of formulae satisfying these properties.

3.4.3 Quantified Gentzen proof system LK?

The proof system used in [Coo02] for the proof of the V' witnessing theorem is a version
of Gentzen’s propositional calculus PK, extended with quantifier introduction rules for
both first-order and second-order quantifiers. Here we follow [Coo02] in description of
LK?.
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A line of a proof in LK? is a sequent of the form

Al,...,Ak — Bl,...,Bl,

where Aq,... A, and B; ... B; are sequences of formulae. The sequence to the left of the
— symbol is called “antecedent”; the sequence to the right is called the succedent. The

sequent can be semantically interpreted as
(Al/\"'/\Ak) —)(B1\/"'\/Bl),

or, equivalently,

A V-V ALV B V-V By

A truth assignment satisfies the sequent iff it satisfies the corresponding formula.

Definition 3.4.4. For a theory V-®, we define a proof system LK2-V-®, which consists

of a set of rules of inference given in the Table 3.4.3, together with logical axioms
A — A, — T 1 —

and nonlogical axioms; in our case, equality axioms and axioms of V-®.

A proof in LK?-V-® can be represented as a directed acyclic graph in which the
nodes are sequents, every edge corresponds to a rule of inference, and leaves are axioms.
A proof is called anchored if the only formulae A allowed to be cut out by the cut rule
are instances of nonlogical axioms.

Please see, for example, [Coo02] or Buss’s chapters in the Handbook of Proof Theory

for the proof that LK? is sound and complete (including the anchored version).

3.4.4 YP-axiomatizable version of V-®

We would like to analyze an anchored LK? proof of a 8 sequent in V-®. It would
be very useful to be able to say that no formula in the proof is more complex than the
endsequent. In a cut-free proof, it follows from the subformula property: every formula
appearing in the proof eventually becomes a part of the endsequent. However, when cuts
are allowed this is no longer true: a complex formula can be cut out by the cut rule.
Since the proofs we are considering are anchored, only nonlogical axioms can be cut by
the cut rule. So we want to make sure that nonlogical axioms are simple; in particular,

that they are X2 formulae.
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A introduction

(AANB),I' — A

Rule name Left Right
r — A r — A
Weakening AT — A r —AA
Fl,A, B,FQ — A r — Al,A,B,AQ
Exchange Fl,B,A, FQ — A r — Al,B,A,AQ
NAJA — A r — AA A
Contraction LA —A r — AA
r — AA r — A-A
- introduction -A T — A Al — A
A B I' — A r —AA T — AB

' — A, (AAB)

Y introduction

VzA(z),I — A

ATl — A B,I' — A r — AAB
V introduction (AvB),' — A I — A,(AvV B)
I'— AA AT — A
Cut r — A
A(t),I — A I — A A(b)

' — A,VzA(2)

3 introduction

A(b), I — A
Az A(z), [ — A

I — AJA(%)
' — A, JzA(z)

String V introduction

Ala),I' — A
VXA(X),T — A

I — A, A(B)
I — A VXA(X)

String 3 introduction

AB),I — A
AXAX),I — A

' — A A(e)
I — A,3XA(X)

49

Restriction: The free variables b (/) must not occur in the conclusion of (string) V-right

and 3-left.

Table 3.2: LK? rules of inference
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In the case of V', this statement holds. However, if the formulae in the comprehension
rule have string quantifiers, the comprehension axiom becomes $2. In order to avoid this,
we will define a new equivalent theory V-® in which all axioms are B formulae, and
work with V-® instead of V-®.

Let V-® satisfy the constructiveness property. Then for every formula ¢ € ® there is
a formula q; € X8 such that V-® - ¢ <> —|<;~S. For strongly closed classes, <;~5 is in ® and it
is obtained by formalizing the construction in the proof of closure of the corresponding

complexity class under complementation. We will refer to (5 as a tilde-counterpart of ¢.

Definition 3.4.5. Suppose that ® is constructive. Let ¢ € @, let ¢ be the B formula
equivalent, provably in V-®, to —¢, and let ¢t be any term. A theory V-® corresponding
to V-® is axiomatized by the axioms 2-BASIC together with rules — ¢, dand ¢, —
for every ¢ € ®, L8 comprehension axiom, and a conditional ®-comprehension axiom of
the form

—_~——

37 < Vi < t(6(i) A Z(3)) V ($(i) A =Z(3)) (®-comp)

Lemma 3.4.6. If V-® X5 (®) = ®, and V° C V-®, then V-® and V-® have the same

Y8 theorems.

Proof. First we show that V-® C V-®. For that, we only need to show that V-® proves
the comprehension axiom of V-® for every ¢.

Let qg be the tilde-counterpart of ¢. Then V-® proves the ®-comp for ¢ and q~5 But
since ¢ <+ —|<;~5 by the rules, qz can be replaced by —¢ in ®-comp, giving the bottom sequent
of the comprehension rule of V-®.

The proof that V-® C V-® relies on constructiveness. It guarantees, for every ¢ € ®
, the existence of ¢ € B equivalent to the negation of ¢. That is, V-® proves ¢ <> -,
which gives — ¢, ¢ and ¢,¢ —>. From there, comprehension on ¢ existence of its
characteristic string Z. Since ¢ <> —¢, V-® - Vi < tZ(i) <> =Z(i). As a consequence,
V-® proves that Z satisfies the comprehension axiom of V-® for 0. O

The comprehension axiom of V-® is not a strict Y8 formula. However, it is provably
equivalent to a X formula, so for every ¢ the comprehension scheme can be thought of

as strict X5,

Lemma 3.4.7. The conditional comprehension aziom ®-comp of V-® is equivalent in
V-® to a X8 formula.
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Proof. Consider the subformula of ®-comp with Z as a free variable. It consists of
a formula from ® preceded by a universal first-order quantifier. Let ¢ = IP'Vz <
b(a, X)¢(i, Z, P',a, X) and ¢ = 3Q'VZ' < V(a, X)Y(i,7,Q,a, X); assume without loss
of generality that b = b’. Putting the subformula under 372Vi < t in prenex form, and

encoding, using pairing function, vectors of second-order variables as single variables, get

Vi < t[3P3AQ'Vz, &' < b(a, X)(Z(i) — ¢ (i, z, P"))
AN=Z(0) = 96,7, Q)]

Applying lemma 3.3.12, obtain

IPAQVi < tVz, 7' < b(a, X)(Z(i) — ¥(i, z, P))
AN=Z () — (i, 7, QM)).

Since all free variables, in particular Z, are implicitly universally quantified in this
formula, existence of Z satisfying the first formula implies existence of Z satisfying the

second (and, in fact, Z can be the same). O

3.4.5 Proof of the generalized witnessing theorem

Take a ©F theorem of V-®. Since every axiom of V-® is (equivalent to) a ©F formula,
every sequent in the proof contains only $¥ formulae: this follows from the subformula
property and the fact that the only cuts are on the axioms of V-®, and the comprehension
axiom is equivalent to a ¥ formula by the replacement lemma (lemma 3.2.12). We will
combine the comprehension rule and the replacement and always treat the comprehension
axiom as a Y. formula.

The idea of this proof came from the proof of witnessing theorem for V° in [Co002],
and it follows the same structure. The proof proceeds by cases corresponding to the rules
of inference of LK2-V-®. That is, for every rule in the table 3.4.3, and for the rules of
V-® as stated in definition 3.4.5, we will show how to construct the witnesses for the
bottom sequent from witnesses of the top sequent(s). We omit the proof that (anchored)
LK? is sound and complete; see [Coo02] for that.

Recall that we are trying to show that if V-® - 3ZB(Z,Y, Z), then there is a function
F with ®-bit-defining axiom AX(F) = 9p(%,Y,4). There is a term ¢ such that V-® F
1Z |Z| <t AN B(z,Y,7),
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Let 7 be an anchored LK?2-V-® proof of
— 3Z <t B(a,®, Z)

Then cut formulae in 7 are restricted to formulae in the axioms of V-®. Since the
endsequent of ¢ is ¥ and all axioms are X¥, every formula occurring in the proof is of
the form

X <7 ¢(X), pexf. (3.8)

Thus every sequent S in 7 has the form

X1 <611(Xa), s I < b (Xin), T — A, FY1 < 5191 (Y1), -, IV < 809 (Yn)
(3.9)
for m,n > 0, where all formulae in I" and A are 3. We will prove by induction on
the depth of S in 7 that there are functions Fi,..., F,, € FC, that are bit-definable by
formulae from ®, and a proof in LK2-V-® of the following S’:

1B1] S tAd1(B1), - |Bm| < A (Bm), I' — A [F1| < s1AY(FY), .oy [ Fol < sp AR (F)

(3.10)
where F; stands for Fj(a,@, ), and @, @ is a list of exactly those variables with free
occurrences in S. (This list may be different for different sequents.) Here i, ..., 3, are
distinct new free variables corresponding to the bound variables X, ..., X,,,, although the
latter variables may not be distinct.

Specifically, if we write (3.10) in the form
S'= A,..,Ay — By,.., By
then we assert
V-® + AX(FC) F YavYavVB[(AL A ... ANAy) D (BLV ...V By)] (3.11)

In general it is useful to introduce the constant string function A whose intended

interpretation is the empty string. Thus A has the bit-defining axiom
Ai) i <0 (3.12)

Our inductive proof has several cases, depending on whether S is a V-® axiom, or

which rule is used to generate S.
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1. Axioms of V% S is an axiom of V°.
If the axiom only involves 3F formulae, then no witnessing functions are needed.

Otherwise S comes from a ¥f-comp axiom:
S=— X <z <b(X(2) & ¢Yr(z,b,a,a))
Then a function witnessing X has bit-defining axiom
F(b,a,a)(i) <> i < bAYp(i,b,a,a)

Since V-® - X8 (®) = ®, even if ©F is not syntactically a subset of ® for every L5
formula 15 there is a provably equivalent formula ¢} € ® which can be used as a
witness instead of ¢p. Thus, the defining axiom for F' is (equivalent to) a formula

from ®.

2. Complementary pairs: S is of the form i <t,¢,¢ — ori <t — ¢, .
In the first rule, there is nothing on the right side, and so no witnessing is required.
The second rule is harder. If ® = 2P then this case is not a problem, since there
are no quantifiers to witness. However, if ¢ contains second-order quantifiers, as
in the case of ® being restricted X, then these quantifiers need to be witnessed.
Here is the place where we need the strong constructiveness property (property 2.)
This part is the hardest to prove for specific systems, and requires formalizing the

respective satisfiability algorithms.

Let ¢ and ¢ be restricted ¥B. Then by existence of a pairing function we can
assume that each of them has only one second-order quantifier. That is, ¢ and &
are of the form

é(a, @, i) = IPVz < t'(a,a,1)v (i, 7, P, a, @)
o(a,d, i) = IQVE < t"(a,a, )i, 7, Q,a,d)
By constructiveness property, there are terms ¢p and tg and formulae ¢p(a, @, i, j)
and ¢q(a, @, 1, j) such that if ¢ holds on its variables, then P is defined by ¢p, and
if ¢ is holds, then ¢¢ defines (). Take Fp and F defined by

Fp(i,a,a)(j) = j < tp A o(a,a,i) A ¢p(j,1,a, @)
and
Foli,a,a)(j) = j < to A d(@,a, i) A ¢o(, i, a, @)

as witnessing functions.
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3. Conditional comprehension axiom: Then S is of the form

— 32V <Ho(i) A Z(i) V $(i) A Z(5))

The quantified second-order variables in this axiom come from two sources: the
variables of ¢ and ¢ and the new variable Z. The witnessing functions for the
variables of ¢ and QNS are constructed just as in the case of complementary pairs

rule. The witnessing function for Z becomes Fz(a, &) (i) = ¢(i, a, @).

4. String 3-right: Then S is the bottom of the inference

A — 1Ly <tAA(y)
A — I1,3X < tA(X)

Here, A and II are the rest of the formulae in the sequents, X7 with the appropriate
witnessing functions. If the variable v occurs free in S, then we may witness the

new quantifier 3X by the function F' with bit-defining axiom
F(a,v, &, B)(i) < i <tAv(i)
If v has no occurrence in S, then we may take v = X\ and define
F(a,a,B)(i) < i <0

Also in this case we modify each witnessing function F; for formulae in II by sub-
stituting A for the argument v, where X is the constant string function defined in
(3.12).

5. String 3- left: Then S is the bottom of the inference

IX < tAX),A — 1

Note that v cannot occur in S, by the restriction for this rule, but S’ has a new
variable ' available corresponding to 3X (see (3.10)). No new witnessing function
is required. Each witnessing function Fj(a,, &, f3) for the top sequent is replaced

by the witnessing function

for 5.



CHAPTER 3. BOUNDED ARITHMETIC AND GENERALIZED WITNESSING 55

6. Number F-right and number V- left:
No new witnessing functions are required, but these rules may eliminate some
free variables, and these variables will not be available in S’ as arguments of the
witnessing functions. Simply replace each number variable eliminated by 0 and

each string variable eliminated by A.

7. Number 3- left and number V- right: We consider 3-left, since V-right is

similar. Then S is the bottom sequent in the inference

b<tAB(b),AN — II
dr <tB(z),A — 1I

No new witnessing function is needed, but the free variable b is eliminated as an
argument to the existing witnessing functions, and it must be given a value. We
give it a value which satisfies the new existential quantifier, if one exists. Thus

define the FAC® number function
g(a,a) = minb < t B(b)

For each witnessing function Fj(b, a, &, f3) for the top sequent define the correspond-

ing witnessing function for the bottom sequent by
Fj(a,a, B) = Fj(9(a, @), a,, §)

8. Cut:
Then S is the bottom of the inference

A—IILA AAN—TI
A—TI

We use the notation
Si=A — 1A So=AA — II

No new witnessing function is required. As in the case of string 3 right, any free

variables eliminated can be replaced by either 0 or A.

Let Fi,...,F,, be the witnessing functions for II in S| and let FY,..., F, be the

witnessing functions for these same formulae in Sj. Assume first that A is ©J.
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10.

11.

Then we define witnessing functions FY', ..., F}! for these formulae in the conclusion

S’ by the defining axioms
Now assume that A is not ¥, so A has the form
A=3X <tB(X) (3.13)

where B(X) is Xf. Let G be the witnessing function for 3X in S} and let 8 be
the variable in S, corresponding to X. Then the witnessing function F}(3) for
a formula in S}, from II will have an argument § missing from the corresponding
witnessing function Fj() in S7. The corresponding witnessing function F' in S has

defining axiom
F{ (@) < (GO <t AB(G()) AF;0@] VIIGOI < tAB(G() A FH(G() ()]
Since ® is closed, this is definable by a formula from &.

V- left and A-right
These are both handled in the same manner. Consider A-right.

A— LA A — ILLB
A — II,(AANB)

Let S; and S5 be the left and right sequents on top, and let S be the sequent on
bottom. Suppose the j-th ¥-formula in IT is

3Y; <ty (Y5)

and suppose Fj() and Fj() witness Y; in S] and Sy, respectively. Then we define
the witness Fj'() for Y; in S’ to be Fj() or F}(), depending on whether F}() works

as a witness. That is,
F (@) < [F0] < t; A (F50) AF0@]V [F01 < 85 A (F50)) A F0(4)]

A- left and V-right:

Nothing to do. Keep the same witnesses.

All other rules:
Weakening is easy. There is nothing to do for exchange and — introduction. The

contraction rules can be derived from cut and exchanges.



CHAPTER 3. BOUNDED ARITHMETIC AND GENERALIZED WITNESSING o7

This completes the proof of theorem 3.4.2. 1.

Corollary 3.4.8. Eristential quantifier in every P theorem of V-® can be witnessed by

a function defined by a formula from ®.

Proof. This follows immediately from the equivalence of V-® and V- (lemma 3.4.6) and
the witnessing theorem for V-®. O

Since we have the pairing function, we could assume that there is always at most one
quantified string variable. However, it is not necessary: if there are several quantified

second-order variables, each of them can be witnessed by a function from F'C.

Corollary 3.4.9. If V-® - 37,..37; B(z,Y,Z), where B is a ©§ formula, then there
are string functions Fy, ..., Fy, € FC such that

V-®, AX(F,....F,) F B(z,Y,F(z,Y))
Proof. From the hypothesis and Lemma we conclude
V-®+3Z B(z,Y,Z0, ..., zIM)

By the Witnessing Theorem for V-® we conclude there is a string function F' € F'C such
that
V-8, AX(F) + B(z,Y, Fl(z,Y), .., F¥(z,Y))

The Corollary follows by defining Fj(z,Y) = Fll(z,Y), fori =1, ..., k. O]

3.5 Example: witnessing for V'

The following example illustrates the basic outline of the proof. First, we show the
properties, then apply the definability theorem (theorem 3.3.13) to conclude that the
class of XP-definable functions of V? is DLOGTIME-uniform AC°.

3.5.1 Capturing AC® descriptively

The first part is to show that the descriptive analog of ©F formulae captures AC in
descriptive setting. Recall that translation from descriptive setting to bounded arithmetic
turns uninterpreted variables of a vocabulary into free second-order variables. So the

counterpart of 3F in the descriptive complexity setting is just a first-order logic. By the
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result of Immerman [Imm83, Imm87], later made uniform by Barrington, Immerman and
Straubing [BIS90], first-order logic captures DLOGTIME-uniform AC°® over arithmetic
structures. Therefore, ¢ represents DLOGTIME-uniform AC°® in the standard model.

3.5.2 Strong closure and constructiveness

Since XF formulae do not have string quantifiers, the constructiveness is trivial. The
closure of ¥ formulae under X operations is trivial as well. The only part that needs
to be proven is the closure of AC® functions under composition and substitution of a term

a function for a variable.
Lemma 3.5.1. The class of AC® functions is closed under AC° reductions.

Proof. See the proof in [Coo04]. O

3.5.3 Applying the generalized witnessing theorem

Since V-® has a Y¥-comp axiom scheme, when ® = V° the complementation pairs
rules and thus the conditional comprehension axioms do not occur in any proof, making
constructiveness property irrelevant: it is vacuously true. Since ©.§ satisfies the closure
property, the theorem 3.3.13 applies. Therefore, the class of Y.7-definable functions of
V0 is exactly AC°.

3.6 V-® is finitely axiomatizable

Since the validity of formulae from ® is complete for C' (by definition of descriptive
capture), the comprehension scheme can be replaced by a finite number of axioms. The
comprehension axioms consist of axioms needed to finitely axiomatize V°, together with
an axiom specific for . In general, this axiom is comprehension over a formula ¢ € ®
which takes as one free variable an encoding of an arbitrary formula ¢ € ®, and its free
variables as tuples. In the examples in the next chapters, the formulae in comprehension
are encodings of the satisfiability algorithm for &.

The remaining part is to prove the finite axiomatizability of V°.

Theorem 3.6.1. V0 is finitely aziomatizable.
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Proof. We must show that all 3¥-COMP axioms follow from finitely many theorems of
Vo,

Let 2 — BASIC™ (or simply B*) denote the 2 — BASIC axioms along with finitely
many theorems of V0 asserting basic properties of + and - such as commutativity, as-
sociativity, distributive laws, and cancellation laws involving +, -, and <. These can be
proved from the 2— BASTC axioms by induction on % formulae, as discussed in section
3.2.1.

It suffices to show that k-ary comprehension (3.5) for all £F formulae follow from
B* and finitely many such comprehension instances. We use the notation ®[a, Q](Z)
to indicate that the X formula ® can contain the free variables @, Q in addition to

T =1y,...,0%5 Then COMPs(a,Q,b) denotes the comprehension formula,
Yy < <b1, ...,bk>Vl‘1 < bi..Vz < bk(Y(j) ~ @(f)) (314)

We will show that COM Pg for the following 12 formulae ® will suffice.

Py (21, 22) = Jy <zi(z1 = (22,9))

Dy (21, 22) = 3z < zi(x = (2,29))

3[Q1, Qol(z1,72) = Fy < z1(Qu(21,Y) A Q2(y, 22))

®4al(z,y) = y=a

O5(Q1, Qol(z,y) = Tz <yJze < y(Qi(z,21) ANQa(x, 22) ANy = 21 + 29)
P6[Q1, Qol(z,y) = Fo <yIze < y(Qu(w,21) AQa(x,22) Ay = 21 - 20)
Q7[Q1, Qa,cl(x) = Ty < e(Qulw,y) AQa(z,y))

Q5[Q1,Q2,cl(z) = Iy < cFyp < c(Qulz,y1) A Qe(z,y2) ANyr < 12)
Py[X,Q,c](z) = Fy<c(Qz,y) AX(y)

®10[Q](z) = —Q(z)

11 [Q1, Q2)(z) = Qi(z) AN Qa(w)

®15[Q, c|(x) = Vy < cQ(z,y)

In the following lemmas, we abbreviate COM Py (...) by C;.
Lemma 3.6.2. Foreach k> 2 and1 <1<k let
Ui(y, 2) =
Ary <y T3z <yAxir <y 3z, <Yy = (X1, ooy Tty 2, Ti1y ooy Tie))

Then
Bt C,C,y,Cs - COM Py,,
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Proof. We proceed by induction on k. For k = 2 we have Uy, = ®; and ¥yo = P,
For k > 2, recall (x1,...,zx) = ({1, ..., Tk_1), Tg). Thus ¥ = 9. For 1 < i < k use
COM Py, with @, defined by COM Py, and Q3 defined by COM Py, , .. O

Lemma 3.6.3. Let t(Z) be a term which in addition to variables T may involve other
variables @, Q. Let U [a,Q|(Z,y) = y = t(Z). Then

B*Y,Cy,...,Cs - COMPy,(a,Q,b,d)

Proof. By using algebraic theorems in BT we may suppose that ¢(Z) is a sum of mono-
mials in z1, ..., 7, where the coefficients are terms involving @, Q. The case t = u, where
u does not involve any z; is obtained from COM Ps, with a <— u. The cases t = x; are
obtained from Lemma 3.6.2. We then build monomials using COM Ps, repeatedly, and
build the general case by repeated use of COM Pk, . O

Lemma 3.6.4. Let t,(Z),12(Z) be terms with variables among %,a, Q. Suppose

U, [a, Q)(z) = () = t»(7)

Uola, Q) = 0(z) < ta(2)
U3la, @, X](z) = X(t(2))

Then Bt,C4,...,Co = COMPy,, fori=1,2,3.

Proof. COM Py, (a, @, b) follows from COM Py, (Py, Py, c,b) with for i = 1,2, P; defined

from COM Py, in Lemma 3.6.3 with d < ,(b) + t2(b) + 1, so

VI < bVy < t1(b) + to(b) + 1(P(Z,y) ¢ y = t;(%))

In COM Py, we take ¢ < t1(b) and b < (b1, ..., br). We proceed similarly for COM Py,
using COM Pg,.

For COM Py, (a,Q, X,b) we use COM Pg, (X, P, c,b) with ¢ < t;(b) and b < (b1, ..., by,)
and P defined from Lemma 3.6.3 similarly to P, above. O

Now we can complete the proof of the theorem. Lemma 3.6.4 takes care of the case
when @ is an atomic formula. Then by repeated applications of COM Pg,, and COM Ps,,
we handle the case in which ® is quantifier-free.

Now suppose ®(z) = Vy < t(Z)¢(Z,y). We assume as an induction hypothesis that

we can define () satisfying

Vi < 0¥y < t(b) + 1[Q(Z, ) + (y < t(T) — &(Z,y)]

Then COM Pg(b) follows from COM Ps,,(Q, ¢, b) with ¢ < ¢(b) and b < (by, ..., b;). O
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3.7 History

In 1971, Parikh [Par71] proposed the first system of bounded arithmetic, called TA,.
There the basic axioms are similar to Robinson’s (), and the induction scheme is re-
stricted to bounded (A,) formulae. He showed that all functions that are Ag-definable
in IAq are polynomially bounded; i.e., if ¢ is a Ag formula and IAq - VZ3y¢(z, y), then
the value of y is bounded by a polynomial in z. However, A, does not have some im-
portant properties: though it is possible to code sequences in 1A, proving substitution
and coding of polynomial length proofs cannot be done. To allow for that, Paris and
Wilkie [PW81a, PW81b] later extended 1A, by adding the axiom €y, stating the totality
of the function z/®/.

The first theory that was explicitly designed in order for all proofs to be feasibly
constructible (i.e., constructible in polynomial time) was the equational theory PV, pro-
posed by Cook in 1975 [Coo75]. There, Cobham’s recursion-theoretic characterization
of polytime was used to construct polytime functions. One motivation for PV was its
close relation with the Extended Frege proof system: theorems of PV correspond to
families of tautologies with polynomial length proofs. Another candidate for the system
with feasibly constructive proofs was the intuitionistic version of PV, I PV, presented in
[CU93]. This system, as well as its classical version CPV, includes an induction on NP
predicates; the class of XP-definable functions of C' PV is the same as that of V' and S;.

Later, Cook [Co098| used a quantified version of PV called QPV to study the re-
lationship between NC!' and P from the point of view of corresponding theories, where
QALYV represents NC! in the same sense as QPV represents P. Since PV includes the
induction on notation, the system QPV, axiomatized by the universal closures of the
theorems of PV, has enough power for polytime reasoning; however, it is possibly weaker
than CPV in that it might not prove the induction on NP predicates from C'PV'.

3.7.1 Second-order theories of arithmetic

In his thesis, Buss gave two examples of second-order theories V,! and Uy, capturing EXP
and PSPACE, respectively. These systems are Si and Ty augmented with induction on
second-order objects.

Razborov and, at the same time, Takeuti [Raz93, Tak93] show the equivalence between
first-order and second-order hierarchies, named RSUV isomorphism, which can be used

to show that V]! is equivalent in power to S5 [Raz93]. The important consequence of this
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result is the appearance of V/ hierarchy, equivalent to S% but without the # function and
with fewer axioms. Here, the first level of the hierarchy, V,?, captures AC%; V!, like Si,
captures P and so on.

This led to development of second-order (two-sorted) systems, where strings are
second-order objects rather than large first-order objects of Buss’s thesis. A nice presen-
tation of such second-order systems appears in [Zam96]. There, Zambella introduced a
hierarchy of second-order theories P;-def, and studied its relation with the hierarchy of
theories of Y¥-comp. The theories ¥F-comp consist of Robinson’s @) together with few
other axioms, augmented with a comprehension scheme for ¥¥ formulae. There ¥ are
formulae with ¢ alternations of second-order quantifiers, where all quantifiers are polyno-
mially bounded (for second-order objects the bound is on length). The first level of this
hierarchy, the theory of ¥:5-comp, captures AC%; the rest are equivalent to the correspond-
ing Si by RSUV isomorphism. The other hierarchy consists of ¥f-comp together with
defining axioms for the functions from the corresponding levels of polynomial hierarchy.
In his paper Zambella proves several interesting results, such as above mentioned result
that if Pi-def - XF 41-comp, then polytime hierarchy provably collapses to P 13-

In another paper [Zam97] Zambella defines a very elegant theory capturing L, Xf-rec.
There he augments Y§-comp with an axiom scheme stating that there is a set coding an
arbitrarily long path through any given 3f-definable directed graph without terminating
nodes. He then proves that every model of linear arithmetic has an end extension to a
model of 38-rec. In this paper the collapse result of the previous work is extended to the

following: ¥b-rec proves Xf-comp iff it proves ¥} C I17 /poly.

3.7.2 Clote-Takeuti systems

In [CT86, CT92, CT95] Clote and Takeuti describe several other (first-order) systems of
bounded arithmetic. Their goal was to design theories of bounded arithmetic for some
interesting complexity classes. The main tool for that was bounded recursion on notation
with different (e.g., logarithmic) bounds, similar to the Cobham characterization. This
was the basis for different induction principles used in the theories.

In [CT86], which came soon after Buss’s thesis and uses the techniques from there, in
particular witnessing, they characterize multi-exponential complexity classes. In [CT92]
there are second-order systems corresponding to NC, ALOGTIME, L and NL. The first two

are based on previous work by Clote on recursion-theoretic characterizations of these
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classes. The definitions of classes for L. and NL are not as clean.

In [CT95], a series of theories capturing small complexity classes is defined. The
weakest of them is TAC?, capturing AC®. This is the smallest class of functions closed
under some set of elementary operations. They similarly define theories for AC°(2) and
AC°(6). The other theories defined in this paper are TTC°, TLS and TPT, for TC°, L
and P, respectively. The definition of a theory for TC°, TTCY, is interesting in that it
uses a result from [BIS90] that the descriptive complexity of logic based on majority is
TC® to define the system.



Chapter 4

Vi-Horn: a system of arithmetic for

P.

The class P is one of the most well-studied class in bounded arithmetic. The first theory
that was explicitly designed in order for all proofs to be feasibly constructible (i.e., con-
structible in polynomial time) was the equational theory PV, proposed by Cook in 1975
[Coo75]. There, Cobham’s characterization of polynomial-time was used to construct
polynomial-time functions. One motivation for PV was its close relation with Extended
Frege proof systems for the propositional calculus: theorems of PV give rise to families of
tautologies with polynomial-length proofs. Later, Buss showed that Y:5-definable func-
tions of Si, discussed at the end of chapter 3, are precisely the polynomial-time functions.
Other characterizations of P include Zambella’s P-def (V* augmented with functions con-
structed by Cobham’s characterization) from [Zam96], TPV from Clote and Takeuti’s
[CT95] and several other. Recently Nguyen [NKC04] suggested a yet another system of
arithmetic for P using alternating reachability.

Here we describe a system of arithmetic for P based on Gréadel’s descriptive complexity
characterization of P by second-order Horn formulae (see definition 2.2.6). This material
was published as [CKO01], and later the full version as [CK03].

Recall the definition of ¥”-Horn formulae (definition 3.1.4): a formula ¢(a,Y) is

Y:B_Horn if it is of the form
AP,..3PNr < t,(@,Y)..V2, < tn(a, Y)y(z, P,a,Y),
where 1 is a CNF with no more than one positive occurrence of a literal of the form

P;(t) per clause. Using this definition, we define the system of arithmetic V3-Horn as ¢

64
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with ® = 3¥-Horn. That is, the formulae in the comprehension scheme are restricted to
YB_Horn formulae. Our goal is to apply the definability theorem 3.3.13 to V;-Horn to
show that the class of XP-definable functions of V;-Horn is F P, the class of all polytime
functions. In addition to that, we show that it is equivalent to Zambella’s system P-def,
and thus to Cook’s QPV, and is therefore a minimal theory for P, as opposed to V!

The outline of the proof is similar to the proof of definability theorem for V° in
section 3.5. However, the properties that hold trivially for V°, such as closure under ©F
reductions and constructiveness, require much more work in V;-Horn.

There are two restrictions in the YP-Horn formulae. The first is common to all
restricted 8 formulae: there are no existential first-order quantifiers. The second, spe-
cific to XB-Horn, is that no more than one positive literal is allowed per clause. The
first restriction only matters in the proof that X2-Horn can simulate ©F; later, we use
second-order variables and the (semantic) closure of ¥5-Horn under complementation to
simulate first-order existential quantifiers.

To handle the second restriction we introduce the technique of tilde-counterparts. It
is used slightly differently in different contexts, but the main idea behind it is to use pairs
of variables to represent one variable, where the second variable of each pair is a tilde-
counterpart of the first: it is semantically equivalent to the negation of the first variable.
If the original variable is called P, we use the notation P to refer to its semantic opposite.
Usually our formulae contain a clause (—P V —f’) for every such pair of variables; the

conditions that replace (P V P) depend on the context.

Notation 4.0.1. If P is a second-order variable, then its “tilde-counterpart” P denotes

a second-order variable whose intended interpretation is —P.

We start by showing that XF formulae can be simulated by ¥Z-Horn formulae prov-
ably in Vi-Horn. That implies V° C V;-Horn. Then, we show the strong constructiveness
condition by formalizing the Horn satisfiability proof in V;-Horn. From that, we get the
closure under complementation and thus under AC® reductions. At this point we can
apply the Definability Theorem (theorem 3.3.13) to conclude that V;-Horn captures F'P.
We explicitly show the equivalence between V;-Horn and more conventional systems cap-
turing P, which are based on Cobham recursion-theoretic characterization of P. Lastly,
we show that Vi-Horn is finitely axiomatizable by replacing X#-Horn comprehension with

comprehension over the satisfiability predicate, and adding the finite set of axioms of V.
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4.1 V;-Horn extends V'

We start by showing that V;-Horn can prove ©F comprehension. For that, we show how
to simulate 38 formulae by 8-Horn formulae, provably in Vi-Horn. We start by simple

observation:

Lemma 4.1.1. If ¢, and ¢, are SE-Horn formulas, then ¢1 A ¢ is logically equivalent

to a XP-Horn formula.

Proof. Take a suitable prenex form of ¢; A ¢s. O

4.1.1 Simulating first-order bounded existential quantification

A major inconvenience of restricted ¥ formulae, which makes non-trivial the proof that
V-®s based on restricted X2 contain V?, is lack of first-order existential quantifiers in
restricted 8 formulae. In general we cannot allow such quantifiers without increasing the
apparent expressive power of the formulas, as pointed out in the 3-colourability example
(example 2.0.4). However, it is possible to introduce bounded existential quantifiers in
some contexts.

We now introduce formulae SEARCH, which have only universal first-order quantifiers
and are Horn with respect to all of their second-order variables. They will allow a
>B_Horn formula to represent 3z < bX(7,z). SEARCH.(b,b,S,S, X, X) asserts that
S(y, ) holds iff X (7, z) holds for some z < 4, where b stands for by, ..., by, and ¥ stands
for y1, ..., ys. Weuse g < b for y1 < by A ... Ay < by.

Definition 4.1.2. For each k > 1 SEARCH(D, b, S, S, X, X) is the IT%- Horn formula
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Lemma 4.1.3. Vi-Horn proves the following:

(i) Vz < b(X (7, 2) <+ =X (7,2)) A§ < b — 3S3S SEARCH(b,b, S, S, X, X)
(i) Vz < b(X (7, z) > =X (7, 2)) A SEARCH(b,b, 5,5, X, X) A < b
— (S(7,b) <> 3z < bX (7, 2)) A (S(7,b) & Vz < bX(7, 2))

Proof. First we prove part (i). Arguing in Vi-Horn, there are two cases. If Vz < bX (7, b)
then use k + 1-ary comprehension (Lemma 3.2.7) to define S(7, z) false and S(7, z) true,
for all z < b. The clauses in the definition of SEARCH; are clearly satisfied in this case.
Otherwise, by the LNP there is a least number 2z, < b such that X (g7, x). Use k + l-ary
comprehension to define S(g, z) false for z < z; and true for zp < z < b, and define
5(g,2) <> =S(b, z). Again SEARCH(b, b, S, S, X, X) holds.

To prove (ii) we use the same two cases as for (i). If Vz < bX(y,b) we use the
definition of SEARCH,, to show by induction on z that S(7, z) is false and S(7, 2) is true
for z < b, so (ii) holds in this case. For the second case we know from above what S and

S must be, and we again prove our claim by induction on z. Again (ii) follows. O

4.1.2 The X formulas are equivalent to Y7-Horn

Consider a 38 formula Q141 < by...Qryx < brd(y), where each @Q; is either V or 3. The
proof of the following lemma shows how to conjoin copies of SEARCH(...) to define arrays
So, ..., Sk such that

Si(Y1y s Yk—i) < Qr—it1Yr—i+1 < bp—it10(7).
These are used to form an equivalent Y.F-Horn formula.

Theorem 4.1.4. Let ¢)(y) be a 5§ formula which may have other free variables besides
but does not involve any of the variables S, S, W. Then there is a formula V*(b, S, S, W)
not involving i but which may have other variables of 1 not indicated and which is I15-

Horn with respect to S, S, W such that Vi-Horn proves the following:
(i) 3S3S3IWY*(b, S, S, W)
(@) " (b, 5,5, W) = Vg < B[(S(7) + $(@)) A (S(@) ¢ ~9(7))]
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Proof. We may assume that 1 is in prenex form, and proceed by induction on the num-
ber of quantifiers. For the base case v is quantifier-free, and we take 1*(b, S, 5’) to be
equivalent to

Vi < B(S(5) ¢ $(H) A (S(@) ¢ = (5))]
The formula in brackets can be written in conjunctive normal form, in which case
Y*(b, S, ) is M-Horn with respect to S and S and obviously satisfies (ii). Also (i)
is easily proved by defining S and S using YB_Horn comprehension.

For the induction step, assume that (7) is 32 < té(y, z), where t is a term not
involving z. By the induction hypothesis applied to ¢ there is a formula ¢*(b, b, Sy, Sh, W)
not involving 7, z which is TI’-Horn with respect to Sy, Sy, W which satisfies (i) and (ii)
(with ¢, ¢*, Sy for ¢, 9*,S). In fact the induction hypothesis (ii) states

¢*(6’ b’ Sh gla W) — \V/,g < sz < b(Sl(g’ Z) « ¢(g> Z)) A (gl(ga Z) « —wﬁ(gj, Z))
We define ¢*(b, S, S, Sy, S1, W) to be the prenex form of
d)*(B, t, 51, Sl, W) A SEARCH}C([_), i, S, S, Sl, gl) (41)

Note that this is [T-Horn with respect to the displayed second-order variables. By the
induction hypothesis (i) there exists S, Sy, W satisfying ¢*. By the induction hypothesis
(ii) we have S; <+ —~S;. Hence by (i) of Lemma 4.1.3 we know S, S exist satisfying (i) in
the present lemma for ¢* as defined above.

To prove (ii), assume 7 < b and 9*(b, S, S, Sy, S1,W). By the induction hypothesis
(i) for ¢* and (ii) of Lemma 4.1.3 we have S(7,t) <+ 3z < té(7, z) and S(7,t) <> Vz <
b—¢(7, z), as required.

For the induction step in case () is Vz < t¢(y, z) we simply modify the arguments
of SEARCH}, in (4.1) by interchanging S with S and S; with S;. O

Corollary 4.1.5. Every X¥ formula is provably equivalent in Vi-Horn to a ¥-Horn

formula.

Proof. Let 1 be a ©¥ formula not involving y and let 1*(b, S, S, W) result from applying
the above Lemma to 9(y). Then ¥ (y) <> ¥(0) so Vi-Horn proves

Y(y) <> 3SFSIW (7 (1, 5,5, W) A S(0))
The right hand side is easily equivalent to a ¥¥-Horn formula. O

Thus Vi-Horn proves the induction and comprehension schemes for 5§ formulas, and

hence it is an extension of V9.
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4.1.3 Collapse of V-YB-Horn hierarchy to V;-Horn

Gréadel [Gra9l] showed that it is possible to represent a SO3-Horn formula preceded
by alternating SO quantifiers by a SO3-Horn formula, which implies the collapse of
the SO-Horn hierarchy to SO3-Horn. Similarly, we define a hierarchy of theories with
comprehension over ¥2-Horn. Let V-Horn = |J V-X2-Horn. In this section, we show that
V-Horn is fully conservative over Vi-Horn. The proof proceeds by formalizing Gradel’s

argument in V3-Horn.

Theorem 4.1.6. Every Z2-Horn formula preceded by a sequence of (possibly alternat-
ing) second-order quantifiers is provably equivalent in Vi-Horn to a YE-Horn formula.
Moreover, a prefix of alternating second-order quantifiers can be replaced with a single

ezristential second-order quantifier.
This follows from the Replacement Lemma 3.2.12 and the following Lemma.

Lemma 4.1.7. If ¢(P, Q) is I12-Horn with respect to P,Q then Vi-Horn proves

VPIQ¢(P, Q) + Vy < u3AQ¢ (y, Q)

where if P(t1), ..., P(ty) is a list of all occurrences of P in ¢, then u is the term t1 + ...+
te + 1, and ¢'(y, Q) is obtained from ¢(P,Q) by replacing each P(t;) by t; # y.

Proof. First note that V;-Horn proves t; < u, for © = 1,..., k. To prove the left-to-right

direction, for each y simply use comprehension to define P by the condition
Vi <u(P(i) <> i #vy)

The proof of the converse is more complicated. Given P we use ©J comprehension to
define the sets @ in terms of P and the Q from the RHS. There are two cases. The easy
case is that Vz < uP(z) holds. Then take y = u, and the Q which satisfy the RHS will
also satisfy the LHS, since ¢; # y for each 1.

Now suppose 3z < u—P(z). By the Replacement Lemma applied to the RHS there
are (' satisfying Vy < u¢’(y, Q™). For each Q; € Q use B comprehension to define Q;
by the condition

Ve < u;(Q;(2) + Vy <u(P(y) v Q7 (2)))

where u; is an upper bound on all terms v such that @;(v) occurs in ¢.



CHAPTER 4. V;-HORN: A SYSTEM OF ARITHMETIC FOR P. 70

It remains to show in V;-Horn that this definition of Q satisfies ¢(P, Q). We argue
the contrapositive: If =¢(P, Q) then —¢'(y, Q™)) for some y. Recall that ¢ begins with a
string of bounded universal quantifiers VZ < w, followed by a quantifier-free formula
which is Horn with respect to P, Q. Fix values for the variables Z which cause some clause
C(Z, P,Q) in 9 to be false. We will show that the corresponding clause C'(Z,y, @) in
¢' is false for a suitable choice of y. If the head of C is P(¢;), then take y = ¢;. If the
head of C is @;(v), then choose y < u satisfying (—P(y) A ﬂQ;-[y] (v)). Such a y must
exist because —Q;(v). Otherwise choose any y < u. In each case it is easy to see that
C'(z,y, Q™) is false. O

4.2 Encoding the Horn SAT algorithm by a X”-Horn

formula

In order to prove the constructiveness property for the X2-Horn formulae, we will show
how to encode the Horn satisfiability algorithm by a ¥Z-Horn formula. This formula can
be used to define a function giving a satisfying assignment for the formula. Since the
algorithm is deterministic, there will always be a particular satisfying assignment (or a
proof that there is none) outputted by the algorithm; thus, the value of the resulting

function is uniquely defined.

4.2.1 The XE-Horn evaluation algorithm

The polynomial-time algorithm for evaluation of the X2-Horn formulae follows the outline
in section 3.1.4. That is, we start with a ¥Z-Horn formula and convert it to a polynomial-
length propositional Horn formula. Now, the propositional Horn satisfiability algorithm

proceeds as follows:

1. Initially, set all variables to false ().

2. Find all unsatisfied clauses. If an unsatisfied clause has a positive literal, set the

corresponding variable to T.

3. Repeat the previous step until either there is an unsatisfied clause with no positive
literals (then the formula is unsatisfiable) or there are no unsatisfied clauses (then

the formula is satisfiable, and the current assignment is a satisfying assignment).
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Note that the maximal number of steps this algorithm makes is equal to the number
of propositional variables, and thus is bounded from above by the upper bound on all

terms ¢() occurring as P(?).

4.2.2 The YP-Horn constructiveness theorem

Here we show that a run of the Horn satisfiability algorithm described in the proof of
Theorem 3.1.5 can be represented by a YE-Horn formula RuN. A simple corollary is
that the negation of a ¥2-Horn formula is provably equivalent to a ¥-Horn formula. In

other words, V;-Horn proves that P is closed under complementation.

Theorem 4.2.1. Let ¢ be a XB-Horn formula which does not involve R or R. Then there
is a formula RUN,(R, R) whose free variables include those of ¢ in which the only atomic
subformulas involving R and R are R(0) and R(0) and such that 3RIRRUN4(R, R) is a

YB_Horn formula and Vi-Horn proves the following:

(i) 3R3R Runy(R, R)
(i1) RUNg(R, R) = [(R(0) ¢ ¢) A (R(0) & =9)]

Corollary 4.2.2. If ¢ is XB-Horn, then —¢ is provably equivalent in Vi-Horn to a
YB-Horn formula NEG.

Proof. We may take NEG4 to be RUN,4 (L, T); that is RUN4(R, R) with each occurrence
of the formula R(0) replaced by L (FALSE) and each occurrence of the formula R(0)
replaced by T (TRUE). O

Corollary 4.2.3. S8-Horn has the strong closure property (property 1 from page 38).
That is, the class of formulas provably equivalent in Vi-Horn to a “8-Horn formula is

closed under —, A, V, and bounded first-order quantification.

Proof. The preceding corollary handles the case of =, Lemma 4.1.1 handles the case of A,
and the Replacement Lemma 3.2.12 handles the case of Vy < t. The other cases follow
by DeMorgan’s laws. O

Theorem 4.2.1 can be generalized to the case in which arrays R(7) and R(§) code
values of ¢(y) and —¢(y).
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Corollary 4.2.4. Let ¢(3) be a E-Horn formula which does not involve R or R. Then
there is a formula RUNgg) (b, R, R) which does not have § free but whose free variables

include any other free variables of ¢ such that
JRIRRUN ) (R, R)
is a YB-Horn formula and Vi-Horn proves the following:

(i) 3IRIR RuNyy) (b, R, R)
(ii) RUNg) (b, R, R) — Vi < b[(R() < 6(7)) A (R() <> —¢(7))]

Proof. We take RUNg(y) such that Vi-Horn proves

RUNy() (b, R, R)
V7 < BAR3R'[RUN4(R', R') A (R(7) < R'(0)) A (R(7) < R'(0))]

We may take RUNg () to be SP-Horn by placing the subformula enclosed in [...] above
by a suitable prenex form and applying Corollary 4.2.3. To prove (i) we use L5-Horn
comprehension to define R(y) satisfying R(y) <> ¢(y) and use YE-Horn comprehension
together with corollary 4.2.2 to define R(y) <> —¢(y) and then apply (i) and (ii) of
Theorem 4.2.1 to R' and R'. To prove (ii) we use (ii) in Theorem 4.2.1. O

We now turn to the proof of Theorem 4.2.1. This proof is long, however it shows
constructiveness and strong closure of X”-Horn, as well as giving us techniques to prove
equivalence of Vi-Horn to other theories capturing P.

By the lemma 3.2.8, it suffices to prove Theorem 4.2.1 for X2-Horn formulae with a

single existential quantifier, that is formulae of the form
¢ = APVz, < t;.Vxp < t,:(Z, P) (4.2)

where ¢/ is Horn with respect to P.

The algorithm we wish to represent has two main steps. First create a propositional
Horn formula PROP? (which depends on the values for the free variables in ¢), as de-
scribed in section 3.1.4, and second apply the Horn Sat algorithm described above to
determine whether PROP? is satisfiable.

There are three pieces of information we need to encode about each clause: its positive
literal, its negative literals and whether it is already valid due to first-order atoms. Thus,

we need three arrays, called, respectively, C', D and V to encode these three facts about
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each clause; so PROP? is encoded by C,D,V, and we will present a Y¥5-Horn formula
Prory(C, C,D,D.,V, f/) which defines these arrays and their negations. Besides the
indicated free variables, PROP4 also has as free variables the free variables of ¢. In the
proof of Lemma 4.2.5, we will give ©§ formulae ¢, ¥p and vy defining the respective
arrays and their negations.

For the second step we present a ¥ -Horn formula HORNSAT(a, b, C,C, D, D,V,V, R, R)
(with all free variables indicated) which is independent of ¢ and which sets the result
variable R(0) true iff PROP? is satisfiable.

The arrays C, D,V together with the scalars a,b completely specify the formula
PROP? as follows. The atoms of PROP? are P(0),...,P(a — 1), and the clauses are
clo, ..., cly_1. We allow both the empty clause and the special clause TRUE. The arrays
C, D,V are defined as follows: For 0 <z <b, 0<v<a

e C(z,v) asserts that clause cl, contains the negative literal =P (v).
e D(xz,v) asserts that clause cl, contains the positive literal P(v).

e V(z) asserts that clause cl, is the clause TRUE.

Since PROP? is a Horn formula, for each x, D(z,v) can be true for at most one v.

The array bounds a, b are represented by terms &,IA) in the free variables of ¢ and are
determined as follows. For each term s in (Z, P) in (4.2) let § be the result of replacing
each variable x4, ..., z; by its respective upper bound %4, ...,%;. Then the upper bound a
on the arguments of P() is

a=54+...+5
where s1, ..., $¢ is a list of all terms such that P(s;) or =P(s;) occurs in ¢.

The upper bound b on the number of clauses in PROP? is
b= (t1, ..., ts, m)

where 11, ...,ts are as in (4.2), m in the number of clauses in ¥ (Z, P), and (...) is the
tupling function (3.2.5).
Using the abbreviation
Q@=C,C.D,D,V,V

we can now choose RUNy (R, R) to be a ©B-Horn formula such that
RUN4(R, R) + 3Q[PrOP4(Q) A HORNSAT(d, b, Q, R, R)] (4.3)

In fact we take RUN4(R, R) to be a suitable prenex form of the right hand side.
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4.2.3 Definition of Prop,(C, C,D,D,V,V)

Below we define three ¢ formulas ¢¢(z,v), ¥p(z,v), ¥y (x) which characterize the three
arrays C, D, V.

Lemma 4.2.5. PROP4(Q) can be defined in such a way that 3QPROP4(Q) is XE-Horn

and Vi-Horn proves

(i) IQPROP4(Q)
(i1) PROP4(Q) — Vv < avz < b
[(C(z,v) < Ye(z,v)) A (D(z,v) ¢ Pp(z,v)) A (V(z) < v (2))

A (C(z,v) < ~Yo(z,0)) A (D(x,0) & ~p(2,0)) A (V(2) < by (2))]

Proof. We apply Theorem 4.1.4 once each for ¢, 1¥p, ¥y with S in the theorem taken
to be C, D, V, respectively, to obtain three ~f-Horn formulas v, ¥}, 15, and then let

PROP4(Q) be a prenex form of their conjunction. O

To define ¢¢, ¥p, ¥y let the Horn formula 1(Z, P) in (4.2) be the conjunction of the
clauses CLy, ...,CLy,_;. For j =0,...,m—1let ¥;(Z) be the quantifier-free formula which
results by deleting all literals involving P from C'L;. Then we define

Yy (z) =V, <ty ..., Vap <1
[(x = {21, .., Tk, 0) = Vo(T)) A ... A (= (X1, ooy Ty — 1) = Uy 1(T))]

Now let S be the set of indices j such that the clause C'L; has a positive literal of the
form P(u), and let for j € S let that literal be P(u;(z)). Then we define

Yp(x,v) = Wy (z) ATz < ty, ..., Jxg < U \/[:L" = (T1, .0, Tk, J) NV = 1 (T)]
jes
For j =0,...,m—1let =P(uj), ..., —|P(u;-l"_1)) be the literals involving =P in CL;. Then

Yo(r,v) = Yy (x) Az <ty ..., 3z, <t \/ \/ [ = (x1, ..., Tk, J) NV = u;(a_c)]

§j=0 =0

4.2.4 Definition of HornSat(a,b,C,C,D,D,V,V R, R)

Although the Horn satisfiability algorithm is easy to describe informally, it is not straight-
forward to formalize in Vi-Horn. The propositional Horn satisfiability problem is com-

plete for P, [GHR95], and hence cannot be represented by a = formula. We need a more
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general form of Theorem 4.1.4 which allows us to use a ¥Z-Horn formula to define an
array representing a given ¥¥ formula, now in the presence of complementary variables

U,U which we want to existentially quantify.

Lemma 4.2.6. Let (7, U) be a ©F formula which may have free variables not indicated,
but does not involve any of the variables S,S,W,U and has no occurrence of |U|. Then
there is a formula 1*(b, S, S, W, U, [7) not tnvolving § but which may have other variables
of 1 not indicated and which is 115-Horn with respect to S, S, W,U,U such that Vi-Horn

proves the following:
(i) 3S3S3IWY*(b,S,S,W,U,U)
(i) *(b,S, S, W,U,U)AVz < s(U(z) + ~U(2))
— Vg <B[(S(9) « (5, U)) A (S@) « ~(5,0))]

where the term s is a provable upper bound on all terms r such that U(r) occurs in . A
similar statement applies more generally to formulas (g, Us, ..., Uy) where the arrays U;

may have various dimensions.

Proof. We proceed by induction on the number of quantifiers in v, as in the proof of
Theorem 4.1.4. The induction step is the same as before, but the base case now becomes
more interesting. In this case 1 is quantifier-free, and we observe that the formula
(S(g) «> ¥(g,U)) can be put into a conjunctive normal form which is Horn with respect
to S, U, U by taking the original CNF and replacing each positive literal of the form U (r)
by =U(r). A similar remark applies to the formula (S(7) « —(7,U)). O

The algorithm represented by HORNSAT(a, b, C, Q, R, R) attempts to find a satisfying
assignment to the Horn formula PROP? described by the parameters a,b,C, D, V. This
is done by filling in an array 7T'(¢,v), where T'(¢,v) is the truth value assigned to the atom
P(v) after step ¢, 0 < ¢,v < a. Initially 7(0,v) is false, and at step ¢t + 1 T'(t + 1,v) sets
each P(v) to true whenever P(v) occurs positively in some clause not satisfied after step
t. Once P(v) is set to true, it is never changed to false.

The following ¥2 formulas describe the array 7 and its negation T. First, INIT
initializes T'.

INIT = Vo < a(T(0,v) A =T(0,v))

In general we need to define a XF formula STEP(v, T!) which expresses the value of
T(t + 1,v) in terms of the values Tl of T at time t. We define STEP using the one-

dimensional array T} for T, First we need to define CLAUSESAT(z,T}) which asserts
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that assignment 7} satisfies clause cl, in PROP?.
CLAUSESAT(z,T1) = V(z) VvV Iv < a|[(C(z,v) ATy (v)) V (D(z,v) A Ti(v))]

Now STEP(v,T}) holds iff either P(v) is true under T} or there is a clause not satisfied

by 71 which has a positive literal P(v).
STEP(v,T1) = Ti(v)V 3z < b(-CLAUSESAT(x,T1) A D(z,v)) (4.4)

Now we apply Lemma 4.2.6 taking v to be STEP and U to be C, D, V, T} to obtain the
formula STEP*(a, S, S, W,Q, T, Tl) which is T15-Horn with respect to all of its displayed
second-order variables and for which V;-Horn proves the following versions of (i) and (ii)

in the lemma.

(i) 3S3SIWSTEP* (0, S, S, W,Q, Ty, T1)
(ii)' STEP*(a,S,S,W,Q,T:,T)) ANEG AVv < a(Ti(v) < —T1(v))

— Vv < a[(S(v) <> STEP(v,T1)) A (S(v) > =STEP(v,T1))]
where we define NEG by

NEG(a,b,Q) = Vv < aVz < b[(C(z,v) < —~C(z,v))
A (D(z,v) < ~D(z,v)) A (V(z) & -V (x))]. (4.5)

Next we use the following formula to define the array T, where we have substituted 7'+
for S and T for T} in STEP.

TDEF(a,b,Q,T,T) = INiT(T,T) AVt < a3W
STEP*(a, T+ T vy T Ty, (4.6)

Lemma 4.2.7. Vi-Horn proves

(i) 3T3T TDEF(a,b,Q,T,T)
(i1) TDEF(a,b,Q,T,T) ANEG — Vi < a¥v < a
[(T(t +1,v) ¢ STEP(v, TH)) A (T(t 4 1,v) <+ =STEP(v, T1))]

Proof. To prove (i), let TDEF' be obtained from TDEF by replacing the bounded quan-
tifier V¢ < a in the above definition of TDEF by V¢ < y. Define

¢(y) = IT3T TDEF (y,a,b,Q,T,T)
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By the Replacement Lemma ¢(y) is equivalent to a ¥¥-Horn formula, so we may use the
induction scheme for ¢(y). This will establish (), which is simply ¢(a).

For the base case y = 0 we need only satisfy INIT, so we use the comprehension
scheme to define T to be identically false and T to be identically true.

Now assume the induction hypothesis and suppose that T, T satisfy the existential
quantifiers in ¢(y). Let S, S satisfy the existential quantifiers in (7)) when Ty, T, are
replaced by TW TW. Use comprehension to define the arrays 7", 7" by

T'(t,0) 6 T(t,v) ift<y
’ S) ift>y

and

3 T(t if t <
T'(t,v) < (tv) ift<y
S(w) ift>uy.

It follows from ¢(y) and (i)' that T",T" satisfy the existential quantifiers in ¢(y + 1).

To prove (i) we first claim that V;-Horn proves

TDEF A NEG — Vit < aVv < a(T(t,v) <> =T (t,v)) (4.7)

Vi-Horn proves the RHS by induction on ¢, assuming TDEF A NEG. For the base case
t = 0 this follows from INIT(T,T). The induction step ¢ — t + 1 follows from (i)’ above
with T+, 7B+ substituted for S, S and T, T substituted for Ty, T;.

Now (i7) follows from (4.7) and (i7)" with this same substitution. O

Now we define SAT(T}) to assert that the truth assignment 7} satisfies PROP?.
SAT(Ty) = Vz < bCLAUSESAT(z,T})

The next lemma asserts that if the formula PROP is satisfied at step t, then it remains

satisfied for each subsequent step.

Lemma 4.2.8. Vi-Horn proves
TDEF ANEG — [t <y < aASAT(TM) = SAT(TW)]

Proof. This follows by applying induction on y to the RHS using Lemma 4.2.7(i7). O

Let SAT*(b,S,S,W,Q, Ty, T1) be the result of applying Lemma 4.2.6 to SAT(y, T}),

where we have introduced the new variable y as a placeholder. Now we define HORNSAT
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to assert that there are arrays T,T which satisfy TDEF and such that R(0) is true iff
the truth assignment 7" at step a satisfies PROP?. Thus

HORNSAT(a,b,Q, R, R) =
3737 [TDEF(a,b,Q,T,T) AIWSAT* (1, R, R, W,Q, T, Tl (4.8)

It is clear from Lemma 4.2.6 that we may assume that the only atomic subformulas
involving R or R in HORNSAT are R(0) and R(0) (by replacing R(y) by R(0) and R(y)

by R(0)), as required by the statement of Theorem 4.2.1.
Lemma 4.2.9. V;-Horn proves 3RIR HORNSAT(a, b, Q, R, R).

Proof. This is immediate from Lemma 4.2.7 and Lemma 4.2.6 (i) applied to SAT. O

4.2.5 Proof of Theorem 4.2.1

Part (i) asserts that V;-Horn proves IRAR RUN,4(R, R), where RUN, is defined in (4.3).
This follows immediately from Lemma 4.2.5 (i) and Lemma 4.2.9.

The proof of (ii) requires formalizing the correctness proof of the Horn Sat algo-
rithm. Correctness asserts that assuming @ is a proper code for a Horn formula PROP,
then HORNSAT implies R(0) iff PROP is satisfiable. To clarify the formal statement of

correctness we write SAT(T1) as SAT(a, b, Q,T;) with all of its free variables indicated.
Lemma 4.2.10 (Correctness of HornSat). V;-Horn proves

HORNSAT(a, b, Q, R, R) A NEG

— (R(0) <> 3IT1SAT(a,b,Q,T1)) A (R(0) <+ =3T1SAT(a, b, Q,T}))
Proof. Reasoning in V;i-Horn, assume the hypotheses HORNSAT and NEG, and let 7, T, W
satisfy the existential quantifiers in the definition (4.8) of HORNSAT. By Lemma 4.2.6 (%)

applied to SAT(y,a, b, Q,T) (where we have added the new variable y as a placeholder)
with R for S and T for T} we have

()" SAT*(1,a,b, R, R,W,Q, T, Tl) ANEG A Vz < a(T19(2) < T (2))
— (R(0) <» SAT(T')) A (R(0) +» —SaT(T]))

By (4.7), (4.8) and the hypotheses to the Correctness Lemma we conclude the hypotheses

to (i7)"” and hence we conclude

(R(0) < SAT(TM)) A (R(0) <+ =SaT(T)) (4.9)
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From this we conclude R(0) — 371SAT(T}) thus establishing one direction each in the
two equivalences on the RHS of the Correctness Lemma (since (i1)” — (R(0) <+ =R(0)).

Showing the other direction amounts to showing that under our hypotheses,
3T, SAT(Ty) — Sar(Tll). In other words, we must show that if PROP is satisfiable,
then it is satisfied by the final truth assignment given by the the Horn Sat algorithm.

Formally it suffices to show that V;-Horn proves
TDEF A NEG A SAT(T}) — SaT(T) (4.10)

First we show that 71 is contained in every truth assignment satisfying PROP.

Lemma 4.2.11. Vi-Horn proves
TDEF ANEG A SAT(Th) — Vi< aVv < a(T(t,v) = T1(v))

Proof. The RHS is proved by induction on t. The base case t = 0 is vacuous because the
condition INIT(T, T) in the definition (4.6) of TDEF implies T is identically false.

For the induction step we apply Lemma 4.2.7 (44) and the definition (4.4) of STEP(v, TH).
Thus the only way that T'(t+1,v) can hold but not T'(¢, v) is if some clause cl, is not sat-
isfied by T and contains a positive literal P(v). (Recall that cly, ..., cly_; are the clauses
in PROP?, as explained in the paragraphs following equation (4.2).) But by the induc-
tion hypothesis and our assumption that 77 satisfies ¢l, we have ~CLAUSESAT(z, t[t]) —
Ty (v). O

If SAT(T}) holds, but =~SAT(T), then there is a clause cl, such that CLAUSESAT(z, T})
but ~CLAUSESAT(z, T!*). Hence by the above lemma cl, contains a positive literal P(v)
such that —=7'(a,v). Thus V;-Horn proves

TDEF A NEG A SAT(T}) A =SAT(TY) — v < a—T(a,v) (4.11)

There are only a atoms P(0), ..., P(a — 1) to be set, and as long as at least one clause is
not satisfied every step sets at least one atom. It follows that after a steps 7! must be
identically true, contradicting (4.11).

To formalize the last part of the argument we introduce in the next subsection a
counting formula NUMONES(a, y, X ), which asserts that the number of true values among
X(0), ..., X (a—1) is at least y. Using results in that subsection we now claim that V;-Horn
proves

TDEF A NEG A —SAT(T) A SAT(T}) — NuMONES(a, t, TM) (4.12)
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This follows by applying induction on ¢ to the RHS, using Lemma 4.2.13 (7) for the basis
t = 0. For the induction step ¢t — ¢ 4+ 1 we use Lemma 4.2.14 with T for X, T+1 for
Y, and t for y, and Lemma 4.2.7 (i7). The existence of v such that =T(¢t,v) AT (t+1,v)
follows from our assumptions —SAT(71%) (and hence =SAT(T") by Lemma 4.2.8) and
SAT(T;) using Lemmas 4.2.7 (i) and 4.2.11.

Finally (4.10) follows from (4.12) (with ¢ = a) together with Lemma 4.2.13 (i7) and
(4.11). This completes the proof of Lemma 4.2.10. O

We can now complete the proof of Theorem 4.2.1 (iz). By the definition (4.3) of RUNy

and Lemma 4.2.10 if suffices to show that Vi-Horn proves the following two formulas.
PrOP4#(Q) — NEG(@, b, Q) (4.13)

PROP4(Q) — [¢ < 3Ty (SAT(a,b,Q,T))] (4.14)

That (4.13) is provable follows from the definition (4.5) of NEG and Lemma 4.2.5 (i3).
To show (4.14) is provable we refer to the definition (4.2) of ¢ and show that V;-Horn

proves
PROP4(Q) — Va; < t1..Vz, < t[t(Z, P) > SAT(4,b,Q, P)] (4.15)

Recall (see the proof of Lemma 4.2.5) that (z, P) is the conjunction of the clauses
CLy,...,CLy 1. By Lemma 4.2.5 (i) and the definitions of W, Up, Wy, Vi-Horn proves
for j=0,...m—1

PRrROP,(Q) — VZ < t[CL;(Z,P) <> CLAUSESAT((Z, j), P)]

This establishes the right-to-left direction of the equivalence in (4.15). To establish the

other direction we also need the fact that V;-Horn proves (assuming PROP4((Q))) that if z
is not of the form (x, ..., zx, j) then ¥y (z) and hence V(z) and hence CLAUSESAT(z, P).

4.2.6 Counting in V;-Horn

The results in this subsection are needed to complete the proof of Lemma 4.2.10 (Cor-
rectness of HORNSAT).

We define a X¥-Horn formula NUMONES(a, y, X) which asserts that the number of
true values among X (0), ..., X (a—1) is at least y. First we define a formula CounT(a, M, M, X)
which is TI5-Horn with respect to M, M and which defines complementary arrays M, M
so that for t,y < a, M(t,y) holds iff the number of true values among X (0),..., X (¢ — 1)
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is at least y. We give recurrence equations in the style of the definition of PARITY(X)

on page 22.

CouNT(a, M, M,X) =Vt <a¥y <a
M(t,0) A=M(t,0) A =M 0,y + 1) A M(0,y+ 1)
AN=M(ty +1)V =Mty +1))
ANME,y)ANX(@E) - M(iEt+1,y+1))
ANM(t,y+1) - M(t+1,y+1))
(M(t,y) = M(t+ 1,y +1))
(M(t,y+1) A=X(t) = M(t+1,y+1)).

AN(M
AN(M

Lemma 4.2.12. Vi-Horn proves

(1) AMIMCouNt(a, M, M, X)

(1) COUNT(a, M, M, X) = [t < a — Yy < a(M(t,y) < ~M(t,y))]
Proof. Since (i) is a XP-Horn formula we may use induction on a. When a = 0 we
use comprehension to explicitly define M such that A(0,0), M(1,0), =M (0,1), and
(M(1,1) + X(0)), and similarly for M. For the induction step ¢ — a 4+ 1 we use
comprehension to define the new values of M, M using the recursion equations and the

old values given by the induction hypothesis, in the style of the proof of Lemma 4.2.7 (7).
The proof of (i7) uses the induction scheme applied to ¢(t), where ¢(¢) is the RHS. O

The result of Lemma 4.2.12 allows us to use =M and M interchangeably, and we shall
do this freely in what follows.

Now we give the definition
NUMONES(a,y, X) = IM3IM[CouNT(a, M, M, X) A M(a,y)]
Lemma 4.2.13. Vi-Horn proves the following:

(1) NuMONES(a,0,X)
(17) NuMONES(a,a, X) — Vv < aX (v)

Proof. (i) follows immediately from the definitions of NUMONES and COUNT.

To prove (i7) we first show that V;-Horn proves

CounT(a, M, M, X) = Vy < a(t <y — ~M(t,y)) (4.16)
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This follows by induction on ¢ applied to the RHS, using the definition of COUNT.

Next we show that Vi-Horn proves
CouNT(a, M, M, X)A-X(v) = [v <t <a—-M(t,t)] (4.17)

This also follows by induction on ¢ applied to the RHS, using (4.16).
Now (iz) follows from (4.17) by setting ¢ = a. O

We introduce the abbreviation
XGC Y = Vy<a(X(y) > Y(y)
Lemma 4.2.14. Vi-Horn proves

XCoYAv<aA-XW)AY(w)Ay<a—
[NuMONES(a, y, X) - NUMONES(a,y + 1,Y)]

Proof. First we claim that V;-Horn proves each of the following formulas using induction

on t; the second uses the first.

X C, Y ACouNt(a, M, M, X) A Count(a, M', M"Y
—Vy <alt<aAM(t,y) > M'(t,y))

X C, YA-X(v) AY (v) A CounNT(a, M, M, X) A CounT(a, M', M",Y)
= Vy<alv<t<aAM(ty) — Mty+1))

Now the lemma follows from Lemma 4.2.12 and the formula immediately above with

t=a. ]

4.3 Explicit definability theorem for Vi-Horn

Now we are ready to apply the theorem 3.3.13 to V;-Horn.
Lemma 4.3.1. The class of formulae XP-Horn is strongly closed and constructive.

Proof. Corollary 4.2.3 shows that ©P-Horn is closed under 7 operations. Lemma 4.5.5
shows that the class of functions defined by X¥-Horn formulae is closed under composition
and substitution of a term for a variable. Together, these two facts give a closure under

AC® reductions, so Property 1 is strongly satisfied by XZ-Horn.
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For the Property 2, we use RUN to define witnesses to the quantified variables in
YB_Horn formulae. Recall that because of the pairing function, it is sufficient to con-
sider only formulae with one variable. Suppose that the formula is ¢(a,Y) = IPVZ <
t(Z, P,a,Y), and let Vi-Horn F ¢(@,Y). Define Vi < a, where a is an upper bound on

terms occurring as P(t),
P(i) < 3RARRUN,(a, Y) A T (5).

If the formula is satisfiable, the variable T is the satisfying assignment from equation
4.6. By construction, an assignment satisfying TDEF is unique, because the algorithm
encoded by TDEF is deterministic. Therefore, P(7) is uniquely defined by this formula.
Thus, Y.F-Horn satisfies the constructiveness property and the witnessing function for
the existential quantifier in the base case of the witnessing theorem can be defined by an
axiom

F(a,Y)(i) +> 3RARRUN4(a@, V) A R(0) A T (4).

O

Theorem 4.3.2. The class of YL8-definable string and number functions of Vi-Horn

coincides with the class of polynomial-time functions (FP).

Proof. Since V;-Horn satisfies both properties by lemma 4.3.1, theorem 3.3.13 applies.
Therefore, the class of ¥5-definable functions of Vi-Horn is P. O

4.4 Finite Axiomatizability

Here we show V;-Horn is finitely axiomatizable, and that the VYXZ consequences of
Vi-Horn and the VX% consequences of S} are each finitely axiomatizable.

Since VO defines the uniform AC® functions, it seems plausible that V;-Horn could
be axiomatized by V° together with a formula expressing the comprehension axiom for
some predicate which is complete for P under uniform AC° reductions. Hence the finite
axiomatizability of V;-Horn should follow from that for V°, which we already showed
in Theorem 3.6.1. In our proof of Theorem 4.4.1 below, that predicate is the Horn
satisfiability problem, which is complete for P [GHR95]. *

! Another approach would be to define a least fixed point function (based on the operator from def-
inition 2.2.2) and use this function in the single instance of the comprehension axiom. In [Grd92],
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Theorem 4.4.1. Vi-Horn is finitely axiomatizable.

Proof. Tt suffices to show that Corollary 4.2.4 (i) and (ii) can be proved for any ¥¥-Horn
formula ¢(y) using finitely many theorems of V;-Horn as axioms. We first will show how
to do this for Theorem 4.2.1 (i) and (ii), and then explain how to modify the proof to
get the corollary.

First note that for each X£-Horn formula ¢ we can define a version of PROP,, such that
(i) and (ii) in Lemma 4.2.5 are theorems of V°. Thus we include the finite set of axioms for
V0 from Theorem 3.6.1 among the finite axioms for V;-Horn. The proof of Theorem 4.2.1
depends on Lemma 4.2.5 (which we have established) and some properties of HORNSAT.
Since HORNSAT is independent of ¢, we can take these properties as axioms.

To generalize the proof of Theorem 4.2.1 in order to prove Corollary 4.2.4, we incor-
porate the variable y in ¢(y) as an argument of each of the arrays C, D, V,C, D,V to
define the formula PROP4(y) in a modified Lemma 4.2.5. Then y is not free in PROP4(y)
(although it could be free in PROP,). The definition (4.8) of HORNSAT is modified so
that the parameter y is incorporated as an argument of each of the arrays R, R,T,T.

Then Corollary 4.2.4 follows in the same way as Theorem 4.2.1. U
Theorem 4.4.2. V;-Horn is aziomatized by its VIP consequences.

Proof. Tt suffices to show that each X#-Horn comprehension axiom is a consequence of
V3P theorems of Vi-Horn. First we show that the second-order quantifiers in Xf-Horn
formulas (3.1) can be bounded. That is, for each Xf-Horn formula ¢ there is a 22 formula
#P such that VXBVi-Horn F (¢ < ¢P). To construct ¢Z replace each second-order
quantifier 9P in ¢ by a bounded quantifier 9P < ¢, where ¢ is a provable upper bound
on all terms u such that P(u) occurs in ¢. The equivalence of ¢ and ¢® requires only
1-COMP instances for formulas 1 with no second-order quantifiers, and these instances
are VX2 formulas.

The comprehension axiom for ¢(z) follows from Corollary 4.2.4 (i) and (ii). The %58

form of (i) we need is

Gridel mentions that every formula in FO+LFP is equivalent to a formula in normal form ¢ =
LFPp;(3y)¢(P,z,y)[0], where 1 is quantifier-free. From there, he defines a Horn formula encoding
the complement of ¢ by APVIVH(A;(v;(P,%,7) — P(z)) A ~P(0)), where 1; are terms of the disjunc-
tive normal form of 1. We use a similar idea in the definition of the system of arithmetic for NL (see
chapter 5), however for V;-Horn we use the algorithm for satisfiability directly.
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where RUNj,, has suitable bounds on its second-order quantifiers. For (ii) we do not
need the clause involving R. If we replace ¢ by ¢® then a suitable prenex form of the
result is V2P, O

Corollary 4.4.3. The VP consequences of Vi-Horn are finitely axiomatizable.

Proof. 1t follows by compactness from Theorems 4.4.2 and 4.4.1. O

4.5 Equivalence of Vi-Horn, P-def and QPV

The first-order theory QPV (called PV1 in [Kra95]) has function symbols for all polynomial-
time computable functions, and the axioms include defining equations for these functions
(based on Cobham’s Theorem) and induction on the length of numbers. The theory has
been extensively studied [Coo75, Bus86, CU93, Kra95, Coo98| and shown to robustly
capture the notion of “polynomial-time reasoning”. Zambella’s [Zam96] theory P-def is a
second-order version of QPV, and can shown to be equivalent to QPV by the method of
RSUYV isomorphism (see [Kra95]). Here we show that V;-Horn is equivalent in power to
P-def. This implies that Vi-Horn is equivalent in power to QPV, but is most likely not

as powerful as S (see Section 1).

4.5.1 Adding function symbols to V;-Horn

We would like to show that the class of functions Y.F-definable in Vi-Horn coincides
with the class of functions Y¥-definable in P-def. However, function symbols in P-def
are introduced differently from function symbols in Vi-Horn: the system P-def is es-
sentially an extension of V? by all polynomial-time function symbols introduced using
a recursion-theoretic characterization, whereas in Vj-Horn function symbols are intro-
duced conservatively by setting their bitgraph (graphs in case of number functions) to
be ¥ E-Horn formulae.

The class P consists of all relations of the form R(z1, ..., xk, Y1, ..., Yy,) recognizable
in time bounded by a polynomial in (z1,..., 2k, |Yil, ..., |Yim|). Similarly, the function
class FP consists of all functions F(z1, ..., 2k, Y3, ..., Yy,) computable in time bounded by a
polynomial in (x1, ..., Zg, |Y1|, ..., |Yia|). As described in the section 3.3, if a class is closed
under AC® reductions then function symbols can be introduced into a corresponding V-®

by defining them by bitgraphs for string functions and graphs for number functions (see
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definition 3.3.2. Thus, we introduce function symbols into V;-Horn by setting
F(z,Y)(i) < i <tABr(i,z,Y)  f(z,Y) =2+ B(z,2,Y),

where By and B; are XP-Horn.

The following characterization of FP is straightforward.

Lemma 4.5.1. (i) A string function F(z,Y) is in FP iff |F(z,Y)| is bounded by a
polynomial in (z,]Y|) and its bit graph By is in P.

(ii) A number function f(z,Y) is in FP iff f(z,Y) = |F(z,Y)| for some string function
F in FP.

We now define a conservative extension Vi-Horn(FP) of V;-Horn by introducing func-
tion symbols for polynomial time functions with defining equations based on the above
lemma. By the corollary 4.2.3 to the theorem 4.2.1, the functions in FP are closed un-
der X reductions. Therefore, they are closed under AC® reductions (see discussion after
definition 3.3.7).

Definition 4.5.2 (Specification of V;-Horn(FP)). The language £%(FP) is the lan-
guage £ of Vi-Horn extended by new function symbols. We define function symbols,
terms, formulas, and Y2-Horn formulas for V;-Horn(FP) by simultaneous recursion as

follows. In general Z = z4,...,zy and Y = Y7, ... Y,,.

(i) To every first-order term £(Z,Y) and YX5-Horn formula ¢(i,%,Y) we associate an

arity (k, m) string function symbol F' with defining formulas (renaming ¢ as £z and ¢ as

or)
|F(z,Y)| < lp(z,Y) (4.18)
Vi < (2, Y)[F(z,Y)(i) < ¢p(i,Z,Y)] (4.19)

To every arity (k,m) string function symbol F' we associate an arity (k,m) number

function symbol f with defining formula
f(@,Y)=|F(z,Y)] (4.20)

(ii) First-order variables and 0 and 1 are first-order terms and second-order variables
are second-order terms.
(iii) If 1, to are first-order terms then ¢; + t5 and ¢; - to are first-order terms. If 7" is a

second-order term then |T| is a first-order term.
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(iv) If ¢, ..., are first-order terms and 77, ..., T}, are second-order terms, and f and
F are arity (k,m) number and string function symbols, respectively, then f(¢,T) is a
first-order term and F(¢,T) is a second-order term.

(v) If s,t are first-order terms and 7 is a second-order term then s = ¢, s < ¢ and
T(t) are atomic formulas. Formulas are built from atomic formulas as in V;-Horn using
A, V,— and the first and second-order quantifiers.

(vi) ©B-Horn formulas are defined as in Definition 3.1.4, with term and formula
understood in the present context, and with the restriction that no term may include any
quantified second-order variable P; as a proper subpart. (This generalizes the restriction
that |P;| may not appear. However formulas P;(t) may appear for any term ¢ satisfying
this restriction.)

The axioms of V;-Horn(FP) are the same as for V;-Horn except that the comprehension
scheme is generalized to allow comprehension for all ¥B-Horn formulas of V;-Horn(FP),

and the defining formulas introduced in (i) for all function symbols are included.

We refer to function symbols F' and f introduced by (i) as derived function symbols, to
distinguish them from the original function symbols 0,1, +, -, | | of Vi-Horn. In reasoning
about V;-Horn(FP) it is useful to define the rank of each function symbol by assigning
rank 0 to the original function symbols and in general assigning 1 + the maximum of
the ranks of function symbols in £; and ¢ to each function symbol F' introduced by (i)
above, and 1 + the rank of F' for each function symbol f introduced by (i) above.

We claim that (a) every function symbol introduced by (i) represents a polynomial-
time function, and (b) each ¥5-Horn formula ¢ of Vi-Horn(FP) represents a relation
in P. Claims (a) and (b) are proved simultaneously by induction on the rank of the
function symbol introduced in (a), and the maximum of the ranks of the function symbols
occurring in ¢ for (b). The base case follows from Theorem 3.1.5, and for the induction
step (a) follows from (b) and Lemma 4.5.1. To prove (b), we observe that the proof of
the if direction of Theorem 3.1.5 still goes through. In particular, given values for the
free variables z,Y and the quantified variables z in (3.2), every first-order term can be
evaluated to a number and every second-order term can be evaluated to a string, because
the restriction in the definition (vi) of ¥#-Horn insures that no term involves quantified
second-order variables P,.

It is not hard to check that the results in the previous two sections apply to V;-Horn(FP)

as well as to V;-Horn. This is true in particular to the main theorem on RUNy.
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Theorem 4.5.3. Theorem 4.2.1 on RUN,, and its corollaries, apply to Vi-Horn(FP).

Any derived function symbol occurring in RUNg4, NEGy, etc. also occurs in ¢.

Proof. The formula RuNg(R, R) is constructed from the two formulas PROP; and HORNSAT.
The formula HORNSAT describes the propositional Horn satisfiability algorithm, is inde-
pendent of ¢, and is the same in the present context. The formula PROP describes the
propositional version of ¢. This does depend on ¢ but it is constructed in the present

context exactly as before. O
The following lemma, is needed for the proof of the theorem below.

Lemma 4.5.4 (Term Bounding). (Here all variables are fully indicated.) For each
first-order term t(z,Y) of Vi-Horn(FP) there is a first-order bounding term £,(Z,y) of
Vi-Horn such that

Vi-Horn(FP) + t(z,Y) < f(z,]Y])

For each second-order term T(Z,Y) there is a first-order bounding term fr(Z,9) of
Vi-Horn such that
Vi-Horn(FP) = |T(z,Y)| < £r(z,]Y])

Proof. The two assertions are proved simultaneously by double induction, first on the
highest rank of any function symbol occurring in ¢ or 7', and second on the maximum

nesting depth of derived function symbols in ¢ and 7. O

The next lemma is the key lemma for the proof of the main theorem on this section,
theorem 4.5.6.

Lemma 4.5.5. For every YB-Horn formula ¢'(Z,Y) of Vi-Horn(FP) there is a X2-Horn
formula ¢ of Vi-Horn such that

Vi-Horn(FP) + ¢'(z,Y) + ¢(7,Y)

Proof. The proof that each such ¢’ can be converted to an appropriate ¢ is carried out
by triple induction, first on the highest rank r of any function symbol occurring in ¢',
second on the maximum nesting depth d of derived functions in any term in ¢' containing
a function symbol of rank r, and third on the number of such maximal terms occurring
in ¢'. The base case, r = 0, is trivial since we may take ¢ = ¢'. Now suppose r > 0 and
let

¢ (Z,Y) = 3P,..3PNz < t,..Vz <ty (2, P,Z,Y) (4.21)
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where 1)’ is a quantifier-free Horn formula satisfying the conditions in Definition 3.1.4.
We may suppose that none of the quantifier bounding terms ¢; contains a function symbol
not in Vj-Horn since by the Term Bounding Lemma 4.5.4 we can replace Vz; < t; by its
Vz; < ¢;, and add the clause z; < t; as a conjunct to 1’

We may replace each occurrence f(...) of a first-order derived function symbol f by
its definition |F'(...)| without increasing the rank or nesting depth of derived function
symbols. Therefore we may assume that no first-order derived function symbol occurs in
¢

Let r be the maximum rank of any function symbol occurring in ¢', let d be the
maximum nesting depth of derived function symbols in terms of rank r, and let 7" be a
second-order term in ¢’ containing a function symbol of rank r and let T have derived
nesting depth d. Then T has the form F(5, S) where F is a second-order function symbol,
5 are first-order terms and S are second-order terms. There are two cases, depending on

how T occurs in ¢':
Case I: T occurs in a term |F(5, S)|.
Case II: T occurs in an atomic formula F(s,S)(t).

For Case I, suppose that F(g,7) is defined from {r(§,Z) and ¢r(7,7) in (i) of
Definition 4.5.2. Then according to the axioms of Vi-Horn, |F (7, Z)| is 1 + the largest
j < lrp(y, Z) such that ¢r(j, 9, Z), or 0 if no such j exists. Therefore

Vi-Horn(FP) & [i = |F (9, Z)| « ¥(i,9, 7)) (4.22)
where (i, 7, Z) is the formula

i =0AY) <Lp(9, 2)~¢r(4, 7, Z))V
3 <ili=1"+1A¢p(i',y, Z) NVj < Lp(y, 2)(i < § O ~¢r(5,75, 2))].

Notice that by definition of rank, any function symbol occurring in ¢z or ¢z has
smaller rank than that of F', and therefore rank less than r. Therefore by Corollary 4.2.3
and Theorem 4.5.3, 1) is provably equivalent to a Y2-Horn formula all of whose derived
function symbols have rank less than r, and hence by the induction hypothesis provably
equivalent to a ¥2-Horn formula of V;-Horn. Thus we may assume that (i, 7, Z) is a

YB_Horn formula with no derived function symbol.
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,2,Y) =1(i,5,S) where we have indicated all possible free variables of

Vi-Horn(FP) + [i = |F(5,5)] + ¢'(4,%,2,Y)] (4.23)

The derived nesting depth of terms in 5, S is less than that of F(5,5), and hence by the
induction hypothesis we may assume that '(i,7,2,Y) is a ¥2-Horn formula with no
derived function symbol.

We now apply Corollary 4.2.4 to ¢'(4, z) (that is, we do not change ', only indicate
the variables 7, z) to obtain a ¥f-Horn formula RUNy; » (b, ¢, R, R,z,Y) satisfying the
Corollary. Here b is a bounding variable for ¢, ¢ are bounding variables for z, and we
have indicated the free variables Z,Y which RUNy(; 7) inherits from /.

Referring to (4.21), let 9} be v’ with each occurrence of |F(s,S)| replaced by the
variable 4. Then by Corollary 4.2.4 and (4.23), noting that RUNy; » does not contain
any of i,z, P free,

Vi-Horn(FP) + [¢'(z,Y) < ¢"(z,Y)]

where ¢”(Z,Y) is the formula
JRIRIAPVZ < Vi < £x(3, 5)
5 9),t.

[RUNy (2 (6r(5,8),8, B, R, 2, V) A (~R(i,2) V(P z, V)]

Note that ¢” can be converted to an equivalent ¥2-Horn formula by first putting it into
a suitable prenex form and then putting a copy of the literal —R(i, Z) inside every clause
of ! to make the disjunction into a Horn formula. The resulting X2-Horn formula has
one fewer occurrence of a term of derived depth d containing a function symbol of rank
r (since T was removed from 7’ in forming v; and RUNy ;> has no derived function
symbol). Hence by the induction hypothesis, ¢” is provably equivalent to a ¥¥-Horn

formula with no derived function symbol.

The proof for Case II is similar, but easier. By reasoning as before, we can find a
YB_Horn formula +'(i, %, z,Y) with no derived function symbol such that (analogously
to (4.23))

Vi-Horn(FP) F [F(5,5)(i) < ¢'(4,%,2,Y)] (4.24)

Again  we apply Corollary 4.2.4 to ¢'(i,Z) to obtain a XP-Horn formula
RUNy (i ) (b, €, R, R, 7,Y) satisfying the corollary. Again referring to (4.21), let ¢’ be



CHAPTER 4. V;-HORN: A SYSTEM OF ARITHMETIC FOR P. 91

Y’ with each positive occurrence of F(5,5)(t) replaced by —R(t, %) and each occurrence
of —F(5,5)(t) replaced by —R(t,z). (In this way 1 is Horn with respect to R, R in
Definition 3.1.4.) Then by Corollary 4.2.4 and (4.24),

Vi-Horn(FP) F [¢'(z,Y) < ¢"(z,Y)]

where now ¢"(Z,Y) is the formula

IRIARAPVZ < H{RUNy (5 (L (5,9),1, R, R, Z,Y) A ¥R(Z, P, 7,Y))
Again ¢" can be converted to an equivalent ¥Z-Horn formula by putting it into a suit-
able prenex form, and hence by the induction hypothesis ¢” is provably equivalent to a

¥:B_Horn formula with no derived function symbol. O
Using the lemma 4.5.5, we obtain the following result:

Theorem 4.5.6 (Conservativity). Every theorem of Vi-Horn(FP) in the language of

Vi-Horn is a theorem of Vi-Horn.

Proof. 1t suffices to show that every model M of Vi-Horn has an expansion M’ to the
language L2 (FP) which is a model of Vi-Horn(FP). To define M’ it suffices to specify
functions on the universes of M interpreting each function symbol F' and f introduced
in Definition 4.5.2 (i), in such a way that the defining formulas are satisfied. First note
that the value of each first-order function f is uniquely specified by (4.20) as a first-order
element of M (assuming that F' has been specified). Next note that for each tuple of
values for the arguments of F', (4.18,4.19) uniquely specify the value of F(z,Y) as a set
of first-order elements of M. Further by the theorem, the formula ¢ specifying the bit
graph of F is equivalent to a ¥¥-Horn formula of V;-Horn, and therefore by $¥-Horn
comprehension this set of elements is realized in M as a second-order object. Finally the
comprehension axioms for all ¥#-Horn formulas of V;-Horn(FP) are satisfied by M', by

the theorem. 0

4.5.2 Specification of P-def

We present a version of Zambella’s [Zam96] P-def which fits our notation and axioms. It
is the same in spirit to Zambella’s system. The system P-def is obtained from a Base
Theory BT by introducing function symbols for all functions in FP, based on Cobham’s

recursion-theoretic characterization of the polynomial-time computable functions.
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The Base Theory BT has the language £% (=), which is £4with second-order equality.
System BT has the same terms and formulas as V;-Horn, except that atomic formulas
include equations X = Y between second-order variables. The axioms of BT consist of
the axioms B1,...,B13,L.1,L2 of V;-Horn, the axiom E of extensionality (below) and the

comprehension scheme for $F formulas.

E: X=Y o [|X|=|V]|AVi < |X|(X() < Y(i))] (4.25)

As mentioned in Section 3.1, the XF formulas represent precisely the AC® relations.
Analogously to FP, we define FAC® to be those polynomially-bounded string and number
functions whose bit graphs are AC® relations. (The functions in FAC® are termed rudimen-
tary in [Zam96].) After [Zam96|, we define the R-def to be BT augmented with function
symbols for functions in FAC® and their defining formulas.

More precisely, the language of R-def is £% (=) augmented with new function symbols,
which are defined by simultaneous recursion along with terms, formulas and ¥ formulas,
as in Definition 4.5.2 with the following changes. In (i), ©B-Horn formula is replaced with
%% formula. In (v), we now allow S = T as an atomic formula, where S,T are second-
order terms. In (vi) we replace the definition of Y2-Horn formula by that of ¥F formula,
which is a bounded formula in the language of R-def with no second-order quantifier.

The axioms of R-def are the axioms B1,...,B13,.1,1.2, and E, together with compre-
hension over the ¥¥ formulas of R-def and the defining formulas for all derived function
symbols.

By an easier version of the proofs of Lemma 4.5.5 and Theorem 4.5.6 we can show
that R-def is a conservative extension of the Base Theory BT.

We next name a string function symbol CHOP of R-def of arity (1, 1), where CHOP(z,Y")
is intended to be the initial segment of Y of length at most x. The defining equations of

CHOP are

|CHOP(2,Y)| <z

Vi < z[CHOP(z,Y) (i) > Y (7)]

We define P-def to be the extension of R-def obtained by introducing new function
symbols and their defining formulas as follows:
To every first-order term £ (z,%,Y) of P-def and function symbols G, Hp of P-def of

arities (k — 1,m), (k,m + 1) we associate an arity (k, m) string function F' with defining
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formulas

F(0,z,Y) = CHOP({p(0,2,Y),G(z,Y)) (4.26)
F(z+1,z,Y) = CHoP({p(2,%,Y),H(2,Z,Y,F(2,2,Y))). (4.27)

In addition we allow new function symbols to be introduced as in (4.18,4.19,4.20), where
now ¢r is any X8 formula in the language of P-def.

The axioms for P-def are the same as for R-def, except we include the defining formulas
for the new function symbols, and ©F formulas allow the new function symbols.

We remark that (4.18,4.19,4.20) allow the introduction of a function symbol for the
composition of other function symbols. For example, we could take ¢z (i,z,Y) to be
G(H(z,Y))(7).

4.5.3 Relating V;-Horn and P-def

In this subsection we prove that Vi-Horn and P-def have the same power. The proof of
the main theorem of this section, theorem 4.5.8, as well as the proof of Lemma 4.5.5,
actually show how to translate V;-Horn(FP) and P-def back and forth in such a way that

Vi-Horn is fixed. First, we state a technical lemma.

Lemma 4.5.7. Let £ be a term not involving |Z| and let ¢(Z) be a SB-Horn formula.
Then there is a ©E-Horn formula 1¥(Z) not involving |Z| such that Vi-Horn proves

1Z] <35 [¢(2) & $(Z)]

Proof. This argument is similar to Case II in the proof of Lemma 4.5.5. We can define
the relation ¢ = | Z| by a ©¥ formula B(7, Z) not involving | Z| but using the upper bound
£on |Z|, so

Vi-Homn b |Z| < £ 5 [i = | Z|  B(i, Z)] (4.28)

Using Corollary 4.1.5 (or Corollary 4.2.3 and the lemma above) we may assume that
B(i, Z) is “P-Horn. Let ¢/(Z) be the formula
IRIRYi < ([RUNpgG) (R, R, Z) A (=R() V ¢;(i, Z))]

where ¢;(i, Z) is obtained from ¢(Z) by replacing each occurrence of |Z| by i. Then by
the above Lemma ¢'(Z) does not contain |Z|, and by Corollary 4.5.3 and (4.28) V;-Horn
proves

1Z] <£2[¢(2) « ¢ (Z)]
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It remains to show that ¢'(Z) is provably equivalent to a ¥Z-Horn formula +(Z) which
does not introduce an occurrence of |Z|. We write ¢'(Z) as IRIRY(R, R, Z) and apply
Corollary 4.2.3 to (R, R, Z) to obtain a ¥P-Horn formula ¢’ equivalent to ¢ in which
no terms |R|, |R|,|Z| are introduced and take 1)(Z) to be IRIRY'(R, R, Z). We may
assume 1) is X¥-Horn by replacing any positive occurrence of R in ¢’ by =R and any

positive occurrence of R by —R. O
Theorem 4.5.8. P-def is a conservative extension of Vi-Horn.

Proof. First we show that every theorem of Vi-Horn is a theorem of P-def. It suffices
to show that every XZ-Horn-COMP axiom is a theorem of P-def. Since P-def allows
the L8-COMP axioms, this amounts to showing that P-def proves that each XZ-Horn
formula is equivalent to some ¥ formula in the language of P-def. This can be done
by defining function symbols in P-def for witnessing the second-order quantifiers in the
YB_Horn formula (3.1) and proving them correct. This amounts to describing the Horn
satisfiability algorithm in P-def, or more precisely formalizing the proof of Theorem 4.2.1
(describing RUNy) in P-def. We will not carry out the details here, since as mentioned
in the beginning of this section of the power of QPV (and hence P-def) has been well
established.

To prove the other direction, we show that every theorem of P-def in the language
of Vi-Horn is a theorem of Vi-Horn. First note that using the extensionality axiom E
(4.25), every equation S = T between second-order terms is provably equivalent in P-def
to a X8 formula (denoted F(S = T)) not involving second-order =. Therefore we may
assume that formulas in P-def do not involve such second-order equations.

Now we claim that for every derived function symbol F' of P-def there is a function
symbol F'" of Vi-Horn(FP) which represents the same function, such that Vi-Horn(FP)
proves the translation of the defining formula for F'. The translation is carried out by
replacing each function symbol G in the defining formula by its V;-Horn(FP) counterpart
G’, and by replacing each second-order equation S = T by E(S = T). From this
property a simple model-theoretic argument shows that for every formula ¢ of P-def, if
¢ is a theorem of P-def then its translation ¢’ is a theorem of Vi-Horn(FP). The lemma
follows.

We define the translation of F' to F’ by induction on the rank of F'. If F'is introduced
in P-def by (4.18,4.19) where ¢ is a 5§ formula, then we introduce F’ in V;-Horn(FP) by
(4.18,4.19) where £z is ¢} (the translation of £z into Vi-Horn(FP)) and ¢ is a ©F-Horn
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formula equivalent to ¢/, using Corollary 4.1.5 and Theorem 4.5.3. If f is introduced in
P-def by (4.20) then f’ is introduced in V;-Horn(FP) using (4.20) with F” for F.

Now suppose that F' is introduced in P-def by (4.26,4.27). The idea is to fix the
arguments (2,7, Y) of F and present a formula defining an array P(i,y) (and its negative
counterpart P (i, y)) giving the i-th bit of F(y,%,Y),0 < i < £,(y,%,Y),0 < y < z, where
¢ is the translation of ¢ as a term of V;-Horn(FP). The formula will recursively define
all values of P(i,7) and P(i,y) successively for y = 0,1, ..., z. To give the step from y to
y+1 we must translate the formula H(z,7,Y, Z)(i) into one which is “Horn with respect
to Z”. In what follows we will suppress the variables z, Y.

Applying Lemma 4.5.5, let ¥ (i, y, Z) be a X2-Horn formula of Vi-Horn equivalent to
the formula H'(y, CHOP(¢%(y), Z))(i). Next apply Corollary 4.2.4 to obtain the formula
RUNy() (b, R, R,y,Z). Now apply Lemma 4.5.7 below to RUNy;), using the bound £} (y)
for ¢ to obtain an equivalent X2-Horn formula not involving |Z|. Further modify this
formula by replacing each positive subformula of the form Z(t) by (¢ < £ (y) A =Z(t))
(distribute V over A to keep the quantifier-free part in CNF) and each occurrence of
the form —Z(t) by (~Z(t) V £ (y) < t). The result is a formula RUNy) (b, R, R,y, Z, Z)
which is XB-Horn with respect to Z, Z whose truth is unchanged if Z is replaced by
CHOP (¢}, (y), Z). Further, defining the hypothesis HYPo(Z, Z) to be the formula

HypPo = Vj < Ca(y)(Z(j) & —~Z(5))

it follows by Corollary 4.2.4 that Vi-Horn(FP) proves

Hypo — 3R3R RuNy, (b, R, R,y, Z, Z) (4.29)
[Hypo A RUNy) (b, R, R, y, Z, Z)]
s Vi < B(R(G) & H'(y, Crop(Cs(y), Z2))(i)) A (R(i) < ~R())] (4.30)

Referring to (4.18,4.19), we take the defining term £z (z) for F'(z) in Vi-Horn(FP) to be
0%(z), and the bit graph formula ¢z (i, z) for F'(z) to be a suitable prenex form of

~ ~

b (i, z) = APIAP(P(i, z) A ¢(z, P, P))

where QAS is

3(z, P, P) = Vj < £x(0)[(P(5,0) ¢ G'()(5)) A (P(4,0) > =G'()(4))]A
Vy < z RUNyG) (€p (y + 1), P(x,y + 1), P(¥,y + 1),5, P(%,9), P(x,9))]
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where for example the notation P(x,y + 1) indicates that each occurrence of the form
R(t) in RUNy; is replaced by P(t,y +1).

It remains to show that the translations of (4.26,4.27) follow in Vi-Horn(FP) from
(4.18,4.19). First note that CHOP' = CHOP, since the defining formulas for CHOP in P-def
are also in V;-Horn(FP). Next note that by (4.18) for F’, the RHS’s of the translations of
(4.26,4.27) can be replaced by the second argument of CHOP in each case; that is by G'()
and H'(z, F'(z)) respectively. Now (4.26) follows easily from the definition of ¢(0, PP).

To establish the translation of (4.27) we make a series of Claims.
Claim 1: V;-Horn(FP) - ¢(z, P, P) — Vy < z HYPO(P(%,y), P(x,%))
This follows using induction on z and (4.30).
Claim 2: (Uniqueness of P) V;-Horn(FP) proves

[6(2, P, P) A d(2,Q,Q)] — Yy < 2¥i < Lr(y)(P(i,y) < Q(i,y))

Again this follows using induction on z and (4.30) and Claim 1.
Claim 3: Vi-Horn(FP) + @(z, P, P) — Vy < 2Vi < £ (y)[P (i, y) <> ép (i, y)]

The left-to-right direction of the equivalence is immediate from the definition of ®.

The right-to-left direction requires Claim 2.
Claim 4: Vi-Horn(FP) - 3P3P¢(z, P, P)
This follows using induction on z, (4.29), and Claim 1.
Claim 5: Vi-Horn(FP) + Vi < l%(2)[¢r (3,2 + 1) <> H'(2, F'(2))(3)]

The left-to-right direction follows from the definition of ¢z, Claim 1, (4.30), and
Claim 3. The right-to-left direction uses Claim 4 in addition.

Finally the translation of (4.27) follows immediately from Claim 5.

This completes the proof of Theorem 4.5.8. O

Corollary 4.5.9. The V3¢ consequences of St are finitely aziomatizable.
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Proof. This is a direct consequence of theorem 4.4.2. Since V! is VEZ conservative over
P-def [Zam96], it follows from Theorem 4.5.8 that the VX consequences of V! and of
Vi-Horn are the same, and hence are finitely axiomatizable. The corollary is equivalent
to asserting that the VXP consequences of V! are finitely axiomatizable, by the RSUV

isomorphism. O



Chapter 5

V-Krom: a system of arithmetic for

NL

In this chapter we describe a second-order theory V-Krom of bounded arithmetic for
nondeterministic log space. This system is based on Gradel’s characterization of NL by
second-order Krom formulae with only universal first-order quantifiers, which in turn is
motivated by the result that the decision problem for 2-CNF satisfiability is complete for
colNL (and hence for NL).

Our main result for V-Krom is a formalization of the Immerman-Szelepcsényi theorem
that NL is closed under complementation. This formalization is necessary for the proof
of the strict closure property, which is then used to show that the NL functions are
YB_definable in V-Krom.

To our knowledge only one other theory associated with the class NL was published,
namely the theory SV of [CT92]. This is a second-order theory axiomatized by induc-
tion over encodings of NL Turing machines, and even the authors of [CT92] state that it is
awkward. Besides, Clote and Takeuti rely on Immerman-Szelepcsényi theorem for their
witnessing proof, whereas we can formalize the Immerman-Szelepcsényi proof, as given in
[Imm99], explicitly in our system, thus proving the strong closure property. Additionally,
we show that ¥B-Krom is constructive by formalizing 8-Krom satisfiability proof using
transitive closure. Together these properties imply that the class of Y8-definable func-
tions of V-Krom is precisely the NL functions, that is string functions having NL relations
as their bitgraphs (and number functions having NL relations as their graphs).

Recently another system of arithmetic for NL was suggested by Nguyen. His system

VNL consists of V° together with an axiom stating an existence of paths in directed

98
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graphs. In the last part of this chapter we show that our V-Krom is equivalent to V N L.

5.1 System V-Krom.

Analogously to X#-Horn as a translation of SO3-Horn to the bounded arithmetic setting,
we define YP-Krom as a translation of SO3-Krom from the definition 2.2.6. This is

another example of a restricted X¥ class of formulae.

Definition 5.1.1. A formula is ©£-Krom if it is of the form
AP,.. 3PN < t1(@).. VT < tn(@, 21, ... Tm 1)Y(Z, P,n,a,Y), (5.1)
where 1/ is Krom with respect to Py, ..., P;.

That is, a X2-Krom formula is essentially a 2-CNF if we only consider P;(t) as signif-
icant literals, and P; may only occur as a P-literal. We define V-Krom to be V-® with
® = ¥P_Krom.

Definition 5.1.2. The theory V-Krom is the theory over £ axiomatized by 2-BASIC

axioms together with a comprehension scheme over X2-Krom formulae.

5.2 V-Krom extends V.

Existential first-order quantifiers are not allowed in a ¥B-Krom formula. That is, a ©F
formula is not automatically a ¥2-Krom formula, though ¥2-Krom clearly has much
more expressive power. In this section, we develop a construction which allows us to
convert Y8 formulae to XB-Krom. This is a similar result to Theorem 4.1.4 for V;-Horn,

but the construction for V-Krom is quite different.

Theorem 5.2.1. For every X8 formula ¢ there is a XB-Krom formula 1* such that
V-Kromb ¢ < ¢*

Proof. Assume that 1) is in the prenex form. The idea behind the proof of Theorem 5.2.1
is that ¢)* begins with 45, where S is a multi-dimensional array with one dimension per
each alternation of quantifier in . For every dimension corresponding to existential,

the first element is set to false, and the last element to true. The clauses encode a pass
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through the array from the first to last element, with a property that false values can
only become true values during this pass if a witness to the existential quantifier was

found.

Base case 1: Let ¢ = 3z < noé(z). Set ¢’ to
ASVz < n=S(0) A S(n) A (=é(z) A=S(z) = =S(z+ 1))

. . : L 2<%
Suppose 1 is satisfied. Let zp be the minimal witness. Then S(z) =

T z>2
satisfies ¢'. The comprehension scheme guarantees the existence of such S.

Now, let S be a witness for ¢'. Take minimal z such that S(z) = T; it cannot be 0
since S(0) = L. Then there exists z such that zy +1 = z. Since z is minimal, S(z) is
false. Therefore, to satisfy the last clause, ¢(zp) must hold, so z, is the witness for 3z.

Base case 2: Let 1 = 3z < nVu < né(z,u). Set ¢ to

ASVz < nVu < n=S(0) A S(n)
A(=¢(z,u) A =S(z) = =S(z + 1))

Suppose 1 is satisfied. Let z; be a witness to Jz. Define S(z) = . Here,

T 2> 2
—S5(0) and S(n) are satisfied trivially. For z < zp, if S(z + 1) = L, the last clause is

always satisfied. For z > z;, since S(z) = T, the LHS of the last clause is falsified,
allowing S(z + 1) = T. Now, if z = 2z, then for all u ¢(29,u) holds, falsifying LHS for
all u and allowing S(zyp + 1) to be T.

Now, let 9" be true, with S a witness. Since S(0) is false and S(n) is true, there is
a value zo such that =S(z) and Vz > zy S(z) (induction on Y (i) +» =S(n —i)). By
assumption, S(zp) is false and S(z9 + 1) is true, so to satisfy the last clause for all u
&(z,u) is true.

Induction step: Let ¢ be a XF formula starting with 3z, with k blocks of 3V
quantifiers and with z,y as free variables. Assume that ¢ is equivalent to a ¥5-Krom

formula

#'(z,y) = ISVz < nVi < 7—5(0,0) A S(n,0) A ¢y

Here, ¢y consists of the set of formulae for a corresponding base case (without the S(0)
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and S(n)), together with clauses of the form

(=S(v, 2,u,n,0) = ~S(v,2,n,n,0))
(=S(v,2,n,n,0) = =S(v,2 + 1,1,0,0))
for each additional d2Vu block.
Then the following formula is equivalent to
Y =3Jr < nVy < nd(x,y):
' =3SVr < nVy < nVz < nVu < n
-5'(0,0,0,0) A S'(n,0,0,0) A ¢},
/\(_|S,('/'Ll’ yJ n’ (_)) % _‘S,(x7 n7 n’ (_)))
/\(_'Sl(xa n,n, (_)) - _'Sl(m +1,y,0, (_]))
where ¢} is ¢ with every occurrence of S(v) changed to S'(x,y, D).
Suppose that 1) is true, that is, there exists x that witnesses the outermost existential

quantifier. Let 2y be the smallest witness, and S, (2, %) a witness of ¢’ with x = ',y =
y'. We define S’ to be:

l_

xr < Xy

S'(z,y,z,u) =

N

wow(2,0) T =z0,y<n

_|

T>XgOr T =2Tg,Yy ="

S'(z9,0,0,0) is false because either zo = 0 and S’(0,0,0,0), or S'(xg —1,n,n,0) = L
since xg is the smallest witness. So there is nothing forcing S’(z,y, z,u) to be true for
T < mo; we can safely set all of these values to L. If S'(zg,n,n,0) is true, we can set
S'(z,y,z,u) = T for any x > x¢ by the last clause of the formula. Now since zj is a
witness, for all y there exists Sy, ,, satisfying the formula from the induction hypothesis, so
we can use these witnesses to construct S’(xg, y, z, @) for all values of y < n,z < n,u < f.
By induction hypothesis, Sy,,(n,0) is true for any y. Therefore, S'(zg,n,n,0) = T
satisfies the clause =S'(z,y,n,0) — —=S'(z,n,n,0) .

Now assume that 1’ is true, that is, there exists S’ that witnesses the second-order
existential quantifier. Take the smallest value xy such that S’(zg,n,n,0) = T. Such
value exists because S’(n,0,0,0) = T by the last clause follows from S'(n — 1,n,n,0).
We know that S’(zp,0,0,0) = L by minimality of zy. Therefore, S'(xg,y,n,0) = T for
all y. Now we can use S’(zg,y) to witness ¢’ on xy,y. By induction hypothesis, that

gives witnesses to 3z, so ¢(z,y) holds for all y. O
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We can choose S’(x,n,0,0) rather than S'(x,n,n,0) to be the flag for the V quan-
tifier, but the intuitive meaning of S'(x,n,n,0) is “for all y S'(x,y,n,0) holds, where
S'(z,y,m,0) is S(n,0), the “result” variable of the inner subformula, with z and y intro-
duced by replacement.

It is easy to generalize the construction to allow different bounds on different first-

order variables, as well as blocks of quantifiers rather than one of each type alternating.

From Theorem 5.2.1, the following corollary is easy.

Corollary 5.2.2. Comprehension over ©F formulae is a theorem of V-Krom. Thus,

V -Krom is an extension of V°, so Theorem 8.2.10 holds for V-Krom.

With the help of Corollary 5.2.2, V-Krom proves induction on both ¥ and 3#-Krom
formulae. By using the comprehension scheme for both formula classes we can justify in-
duction over 3 (XE-Krom) formulae, and in fact over formulae built by nesting ¥#-Krom
formulae with bounded quantifiers and the Boolean connectives. This idea is used im-

plicitly in later sections.

5.3 V-Krom(TrCl)

In this section we show how to introduce the transitive closure operator into V-Krom,
which we then use to prove Immerman-Szelepcsényi theorem. We show that V-Krom

can formalize the proof given in [Imm99|, sections 9.2-9.5.

5.3.1 Definitions

Recall the transitive closure operator from example 2.2.1. In this section we show how
to “translate” it into the bounded arithmetic setting by adding a defining axiom for it
into our theory. Since the defining axiom is a (negated) X2-Krom formula, the resulting
theory has the same power as the original V-Krom.

We wish to define the transitive closure of a relation given by a formula ¢(z,y) (which
may contain free variables besides z, y) on the domain {0, 1, ...,n—1} of n elements. Any
relation R(z,y) that contains this transitive closure must satisfy conditions of reflexivity

and ¢-step transitivity on the domain above. The following formula C'ond encodes these
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conditions:

Cond(¢,R,n) =
Vz,y,z < n(R(z,z) A (é(z,y) A R(y, z) = R(z, 2)))

We will write just Cond(¢, R) when n is clear from the context.
Now we define the transitive closure relation 7rCl¢ to be the intersection of all
relations R satisfying Cond(¢, R).

TrCl,yé(x,y)[a,b,n] <+ VR(Cond(¢, R,n) — R(a,b)) (AxTC)

Remark 5.3.1. It is important that the negation of the RHS of (AxTC) is equivalent
to a YB-Krom formula if ¢ is quantifier-free. This is because when Cond(¢, R,n) is
put in conjunctive normal form, each clause has at most two occurrences of R. Note
that an alternative definition of TrCl would be to change the condition Cond(¢, R) to
a condition Cond'(¢, R), where Cond'(¢, R) asserts that R is reflexive, transitive, and
é(x,y) O R(z,y). However then the negation of the RHS of (AxTC) would not be a
31-Krom formula because the transitivity clause in Cond' requires three occurrences of
R. Our use of Cond instead of Cond’ makes the proof of transitivity of TrCI just a little
harder (see Lemma 5.3.4). However, whenever a pair (a, b) is not in the transitive closure
of ¢, the comprehension axiom immediately gives an existence of a relation R containing

all of the transitive closure over ¢, but not containing (a, b).

We want to extend the vocabulary of V-Krom by including instances of TrCl as

defined above.

Definition 5.3.2. The class S (TrCl) is defined inductively as follows:

(i) Every quantifier-free formula of V-Krom is in %§ (TrCl)
(#) If ¢ is in XF (TrCl), then so is TrCl, ,¢(, y)[a, b, n]
(ii7) Every F combination of formulae in ¥ (TrCl) is in X5 (TrCl)

The class X7 (TrCl%) is defined in the same way, except in (iii) we allow only ¥¥ combi-
nations with positive occurrences of 8 (TrCl) formulae.

The system V-Krom(TrCl) is V-Krom augmented with the class 35 (TrCl) of formu-
lae, and has (AxTC) for each ¢ in L (TrCl).
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Since the only new axioms in V-Krom(TrCl) are definitions of new relations, it is a

conservative extension of V-Krom.

Theorem 5.3.3. V-Krom(TrCl) proves the induction aziom and the comprehension az-

iom for every formula in X8 (TrCl).

Proof. The essential point is that the negation of the RHS of (AxTC) is equivalent to
a YP-Krom formula if ¢ is quantifier-free (see Remark 5.3.1). The theorem follows by

induction on the depth of nesting of TrCl formulae. O

In the axiom of transitive closure (AXTC), n is a bound on the first-order variables,

and the transitive closure relation TrCl(a,b) is false unless a,b < n. In the special case
n =0, TrCl(a,b) is always false, and when n =1, TrCl(a,b) holds iff a = b = 0.

5.3.2 Properties of transitive closure

First we show that V-Krom proves the transitivity of the transitive closure relation.

Lemma 5.3.4. Let TrCl(z,y) stand for TrCl,,¢(u,v)[x,y]. Then for all ¥ (TrCl)
formulae ¢, V-Krom(TrCl) proves

TrCl(z,y) NTrCl(y,z) — TrCl(z,z)

Proof. Reasoning in V-Krom(TrCl), fix z,y,z and assume TrCl(z,y) and TrCl(y, z).
Referring to (AxTC), let R be any relation satisfying Cond(¢, R). It suffices to show
R(z, z).

Define R' by the condition

R'(a,b) +> (b=y A R(a,z)) V (b+# y A R(a,b))

Note that R’ can be defined in V-Krom(TrCl) by comprehension. Using the facts
Cond(¢, R) and R(y,z) (because TrCl(y, z)) it is easy to show Cond(¢, R'). Therefore
R'(z,y) (because TrCl(x,y)), and hence R(x,z) (by definition of R’). O

The definition of transitive closure is robust enough in that adding ¢-edges from the
left or from the right gives the same answer. That is, suppose that instead of Cond, we
define AxTC using Cond" of the form

Cond" (¢, R,n) =Vz,y,z < n(R(z,z) A (R(z,y) A ¢(y, 2) = R(z, 2))
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Define TrCl" by

TrCl"(a,b) <> VR(Cond" (¢, R,n) — R(a,b))
Lemma 5.3.5. V-Krom proves
TrCl (a,b) <> TrCl, ,¢(u,v)[a, b, n]

Proof. By an argument similar to the proof of Lemma 5.3.4, V-Krom proves transitivity of
TrCI". Therefore V-Krom proves Cond(¢p, TrCI"), from which the right-to-left direction
follows. The left-to-right direction follows by symmetry. O

5.4 Normal form of TrCl

In this section we formalize the proof from [EF95, Imm99] of the theorem stating, in-
formally, that any bounded formula with only positive occurrences of transitive closure
operator can be converted into a formula with only one, outermost occurrence of TrCl.
Moreover, the bounds of this transitive closure operator can be arbitrary (under some
restrictions). This is the most technical result needed for the proof of closure of X2-Krom
under complementation.

In the following result, the notation [0, 7] stands for [s, ], where s and ¢ are term

coding the tuples 0 and 7, respectively using the pairing function 3.2.5.

Theorem 5.4.1. Any S (TrClt) formula ¢ is equivalent to TrClg z1(Z,7')[0, 1], where
2 is quantifier-free. Here, i and the number of variables in the vectors T,%',0,n depend

on the structure of ¢. Moreover, V-Krom(TrCl) proves this equivalence.

The proof is by structural induction on ¢, and formalizes in V-Krom(TrCl) the ar-
guments in [EF95, Imm99], using results in the previous subsections. For every boolean
connective (except negation) and quantifier, an equivalence between the original and con-
structed formula is shown by expanding the definitions of transitive closure via AxTC,
negating both sides, and constructing assignments for the variables under second-order
existential quantifiers for one side from the other. Since the negation of AzTC for a
quantifier-free ¢ is ©2-Krom, the existence of such witnesses is guaranteed by ¥.7-Krom

comprehension axioms.
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Proof. The proof is by structural induction on ¢. The base case is when ¢ is a quantifier-
free formula. The induction hypothesis is that ¢ consists of an outermost connective
over one or two formulae already in the form TrCl; 71 (Z, Z')[0, 2]. There would be extra
“flag” variables added at every step of induction into the outermost transitive closure
with limits 0, ng. That is, in the resulting formula the transitive closure is taken over a
tuple of variables with limits {0,7}. In the axiom of transitive closure we will assume
that x,y, z,a,b are all single variables. We can convert tuples into single variables by

using a pairing function, and adjusting the bound accordingly.

Base case: Let ¢ be a quantifier-free formula without occurrences of TrCl. Take z, z’
not occurring in ¢. Then, ¢ = TrCl, »é(x,2')[0,1]. That is, ny = 1.

Proof. Suppose that ¢ evaluates to T on its free variables. Then the relation ¢(z,z’) is
true for any z, 2’ < ny, in particular for 0, 1. Therefore, for all R in AxTC, R(0,1) holds.
This happens in the AXTC when R(1,1) A (¢(0,1) A R(1,1) — R(0,1)).

Now suppose that that ¢ evaluates to L. Consider minimal R satisfying the axiom;
this will be R(z,z') = = = a2/, where z,y < n. Its existence is guaranteed by the
comprehension axiom and it satisfies the hypothesis of AxTC. Since ¢(x, ') is false for
any x # ', that clause will always hold, for any R containing the equivalence relation.
Since 0 # 1, (0,1) ¢ R and thus not in the transitive closure of ¢. O

Adjusting upper bound: Given ¢ = TrCly ¢ (a, @')[0, 7], we would like to change
bounds on 4, @' to @', where for each n; € @i, nj € 7', n; < n}. Then ¢' = TrCly z¥' (4, a’)[0, 7],
where

Y =@<nAyY(@a))Vv(@=nAd =n)

Proof. The idea is to run ¥ (u,u’) until we reach 7, and then make an additional step.

By negating both sides of the axiom of transitive closure representation of ¢ <> ¢’ we get

AR Cond(y, R,n) A =R(0,n)
<3Q Cond(W',Q, ") A —~Q(0, ')

Given @), we can define R as R(u,4') < (@ < aAT < aAQ(u, @)V (i =naAd =qa').
The existence of such R is given by comprehension. It is easy to check that it satisfies

the condition of AxXTC(¢) and does not contain (0,7). Now to construct @ from R set
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Q(u,u') < (R(a, ") Na < aNd

does not contain (0, 7).

107

< 71) Again, @ satisfies the condition of AxTC(¢') and

O

Disjunction: Let ¢ = ¢; V ¢o, where ¢; = TrClg, zbi(z;, z,)[0,n] for ¢ = {1,2}.

Introduce new variables v,v'. If one of the formulae has less variables, all vectors of

variables are padded with dummy variables. By the previous case, we can assume that

the bound 7 is the same in both formulae. Let u, u' denote z;, Z;', possibly padded with

dummy variables. Let ny = 1 again. Now, ¢ = T7Clyy yw b (uv, u'v")[00, nng], where

Proof. We need to prove that

N=(v=v"=0AvY(u,u’))
Viu=u"=0Av=0A0"=1)
Viu=u =nAv=0A0" =1)
V(v =v"=1AYy(u,u’))

AzTC(¢) & AxTC(¢1) V AxTC (o)

Let z,y,z encode pairs of the form (u,v). By negating both sides of the previous

statement, obtain

V-Krom F 3R Cond(¢, R,n) A —R((0,0), (n,1)))
< (3R, Cond(¢1, Ry, n) A—Ry1(0,7)))

A

(EIRQ COTLd((bQ, RQ, ’I’L) A _|R2 ((_), ﬁ)))

Suppose we have R; and R, witnessing ] and 4. By binary comprehension, the

following formula defines R from R; and Ry:

R((“’ﬂ U): <UI: UI)) A (<U’7 U) = <ul7 U,))

Vio=0Av"=0A Ry (u,u))
Viv=1Av"=1A Ry(u,u))
Viu=0Av=0Au =0A0"=1)
Viu=nAv=0Au =nAv =1)

Such R satisfies the condition of AxXTC(¢) and does not contain ({0, 0), (71, 1)). Since

R is defined by an open formula, first-order reasoning is sufficient to prove its correctness.



CHAPTER 5. V-KROM: A SYSTEM OF ARITHMETIC FOR NL 108

For the opposite direction, define R; and Ry from R by
Ri(u,u) & R((,0), (u',0)), Ra(u,u’) & (R((u,1), (v, 1))

Again, the proof of correctness is a simple proof by cases. O

Conjunction: Now let ¢ = ¢ A ¢o, where ¢; = TrCly, 50 (2:, Ti')[c,d] for i =
{1,2}. As before, introduce new variables u,u',v,v', set ny = 1. Now, ¢ becomes
TrClyy b (wv, u'v")[00, 1], where
Y(uv,u'v") =(v=v" =0 AP (u,u'))
V(v=0v=1A1Y(u,u))
Viu=nAv=0Au=0A0"=1)

Proof. The proof is similar to the previous case. We define R from R;, Ry by

R((u,v), (u',v')) & ((u,v) = (', v'))
V(w=0A0=0A Ry(u,u))
V(w=1Av =1A Ry(u,u))
Viu=nAv=0Au =aAv' =0)
For the opposite direction, we need to show that if there exists R then there is at least
one of Ry or Ry. Define them as in the previous case. If ((0,0), (n,0)) € R, then R; does

not satisfy the negation of AzTC(¢;). But then R, satisfies the negation of AzTC(¢,),
and we need the disjunction of them to hold. O

Existential quantifier: We want to show that
Jw < nTrCly (4, u'; w)[0,7] = TrClgy gy (v, 4'v')[00, in],

where v’ is

By negating both sides of Jw < nAzTC(¢) & AxTC(¢') we obtain

Vw < n3Q Cond(v,Q,n+ 1) A—=Q(0,n))
& 3R Cond(¢', R,n+1) A =R((0,0), (7, n)))
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Proof. Let Q(u, @, w) be an array of @,, obtained by exchanging the order of Yuw < n
and 3Q quantifiers (V-Krom proves replacement for X2-Krom formulae).

Now, for the = direction, define

Universal quantifier: We want to show that

Vw < nTrClywi(u, u';w)[0,n] = TrClyy wy ' (wv, u'v")[00, nn),
where v’ is

P =@w<nAY@u;v)Av=v)V(u=nAd =0Av =v+1)

By negating both sides of Vw < nAzTC(¢) & AzTC(¢') we obtain

3R Cond(y', R,n + 1) A =R((0,0), (n, n)))

Proof. To define the pair wy and the corresponding @ from R, set wy = min,,—R(00, iw).
Since —~R(00,7n), wy < n. Now let Qu,(a,u') & R(dwy, @wy). Since by minimality
of wy either wy = 0 or R(00, 7wy — 1), R(00,0w). If Qu,(0,7), then by condition of
transitive closure R(00, iwy), contradicting the definition of wy. Therefore, @, satisfies
the condition of transitive closure of ¢, and does not contain (0, 7).

For the other direction, set
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Nested TrCl: Now let ¢ be of the form TrCl;4(TrClya (4, u'; v, w)[0,7])[s, t,n]
Here 72’ is a bound on © and w that is a bound on the V quantifiers in AxTC. This is the

most complicated subcase. Then

¢ TTCZ fa z‘;,w',f”ﬁl(ﬂﬂ_);w,fa ﬂl,q_jlau_jla fl)[(_)a

with ¢/ =
=0Aw=0Au=0A0=5Au=0ANf=0AFf=1)
Va#naAo=0ANw=a0"AY(a,a;0,0)A f =f=1)
Vi=nAw#tA0 =wAd' =0ANf=f=1)
Via=nAw=tAd=d'Ad'=d'Ad'=nAf=1A f'=2)

Proof. Opening the three TrCl by AxTC, call the quantified SO variable in the outer
transitive closure of the original formula P, in the inner TrCl ) and in the new formula

R. Negate, as before, both sides of the equivalence.

For the = direction, given R we define P as

P(v,w) + (v=w) Vv I, 0" < n'R(0vw'l, nv'wl)

Since —~R(0000, in'n'2) implies Vo, w < n'-R(05wl,nvtl), so by construction —P(35,1).
Now we need to show that P satisfies the condition of AXTC. That is, for all Z,7,z < 7/,
P(y,z) A =P(7,Z) — —¢(Z,y). By construction, this corresponds to R(0yw'l,nv'z1)
for some o', w' < 7/, and —=R(07w"1,nv"z1) for all v”,w" < n'. It cannot be the case
that R(0Zy1,nZyl), since otherwise by lemma 5.3.4 R(0Zy1,nyz1). The lemma 5.3.4 can
be applied since ¢’ is quantifier-free. Define Q(u,d') +» R(aZyl, @'zyl). This @ is the

witness for the 4¢) in the formula

3Q Cond((z,7), Q,n+1) AQ(0,n),

where Z, §j are parameters of . For the < direction, note that =P (7, w) — —¢(7, w), so

for all (7, w) ¢ P there exists @y, containing transitive closure of ¥(a, @'; v, w) such that
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—Qu(0,72). Now we can define R(a,v,w, f,d',v', @, f') by the formula

Reflexivity:
Same internal TrCl path: V(=10

w Q
Different internal TrCl paths: V(0 £ 0 Vo #ad)Af'=f=1
Q

(P, @) v (=P (¥, ') A Quw (0, 7))))
Initialization: Vo=w=0Aa=0Af=0Af =1
AP(5,7) A (P, D) V (~P0, 1) A Quw (0,7'))))
Last step: V(P(9,w) V (=P(0,0) A Quu(t, 7)) A P(w,t)

It is clear that —R(0, 0,00, 71, 7', n'2), because R does not hold on f =0, f' = 2 for
any setting of the other variables. Now we need to show that it satisfies the condition of
the axiom of transitive closure.

The first line of the definition guarantees that R is reflexive. The second line defines
the case when both # and 4’ are on in the same internal transitive closure path. Here we
first use an expression (P (v, w)V (—P(¥, W) AQuy(u,u))). The intuition behind it is that
if =P (v, w) holds, then we are guaranteed the existence of a Q,, containing transitive
closure of 1) with parameters v, w such that @Q,, does not contain (0,7). Now suppose
that P(v,w) holds. It can happen in two cases: either when ¢(v,w) holds, or when
W'é(v,0") A P(v',w). In the first case, we know that for all Quu, Quw(0,7) holds. So
we take (Qy, that contains all pairs (u,u'). Such @, definitely satisfies the condition
of transitive closure and contains (0,7). Since we cannot differentiate between the two
cases when P(v,w) holds, and R is allowed to be much bigger than the transitive closure,
as long as it satisfies the condition of transitive closure on all the additional points, we
can set Quy, (4, ') to be true in all cases when P(%,w) holds. Envisioning the graph over
which we take the outer transitive closure, when there is an edge between two points if
the inner transitive closure contains (0,7), we add directed edges from v to w iff there is
a path from v to w. It will not affect reachability for any pair of points. And again we

take @y, to contain all (@, @’).
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In the case of % and @' occurring in different instances of the inner transitive closure we
split the “path” from (@, s, w) to (@', v',%@") into three steps. First, using trick described
above, we check whether we can get from @ to the end of the transitive closure (assuming
that we can if @, is defined to contain all pairs). Then we test if there is a path in the
outer transitive closure from w to ¥': that corresponds to the truth value of P(w,').
Lastly, we verify that there is an inner transitive closure path from 0 to @’ with ¥, @' as
parameters.

The last two parts of the definition of R handle the cases of the first and last step
of transitive closure. We say that there is a path from (0,0,0) to (@', 7', @) if there is a
path from 5 to ?' in the outer transitive closure, and from 0 to @' in the inner TrCl on
o', w'. The last step is handled similarly. We need to make f-steps in these two cases to

avoid the case when there is a path from (0,0, 0) to (7, 7/, 7') not involving 5 or £. [

O

5.5 Relating XP-Krom and X7(TrCI™)

By the results of the previous sections, a bounded formula with positive occurrences of
the transitive closure operator can be converted into a formula with a single outermost
occurrence of TrCl, and then to a negated ¥8-Krom formula by the axioms of transitive
closure. This section shows how to convert an arbitrary XZ-Krom formula to negation
of a XF(TrCl™) formula; by appealing to Theorem 5.4.1 it is equivalent to a negated

transitive closure of a quantifier-free formula.

5.5.1 SO3-Krom unsatisfiability algorithm

To achieve this goal we formalize the SO Krom satisfiability algorithm [Kro67], and
represent it as negated transitive closure formulae. Using a pairing function, we may
assume that we only have one second-order variable. Let ¢* be the following ¥2-Krom

formula:

¢" = APVx <ny ... Ve <ngyp(P, ), (5.2)

m

where (P, T) = /\(Lj(tj(i')) Vv L;- (t; (Z)) V ¢,(Z)).

Here, L; and L;. are P or =P, and ¢; are quantifier-free and contain no occurrence of P.
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The algorithm below reduces the truth of this formula (given values for the free
variables) to reachability in a directed graph. Step 1 reduces truth to the satisfiability
of a propositional CNF formula A with at most two literals per clause, and Steps 2 and
3 construct a directed graph GG whose nodes are literals in the formula, such that A is
unsatisfiable iff G has a directed cycle containing some variable and its negation.

Step 1: Since YP-Krom is restricted ¥, the first step is the same as described in
the section 3.1.4. That is, convert a X2-Krom formula to propositional 2-CNF by making
a conjunction of n; -...-ny copies of the formula, one for each (x; ...xy), and evaluate the
terms in each copy on a corresponding value of (x;...zg). If a clause evaluates to true
due to ¢;(z) becoming true, delete the clause. If ¢, evaluates to false, then if there are no
quantified second-order variables in this formula, the whole formula is false. Otherwise
delete ¢; from the clause, evaluate ¢;(x) and #}(z) and assign propositional variables to
them as follows:

Assign a different propositional variable p; to every value of a term on a tuple of
first-order variables, and make an occurrence of it negated if the corresponding literal
was —P. There are as many variables as there are possible values of ¢;’s on Z, at most
2m - nq - ... ng. If two different terms evaluate to the same value on possibly different
tuples, they get mapped to the same propositional variable.

Step 2: Now we construct a graph of the resulting propositional formula. The
vertices of the graph are the propositional variables and their negations. For every clause
(p; V p}) create edges —p; — p; and —pl; — p;.

Step 3: For every propositional variable p;, check whether both paths from p; to
—p; and from —p; to p; are in the graph. If there exists p; for which there are both such
paths, then the original formula is unsatisfiable, otherwise satisfiable.

If there is no variable with both paths in the graph, construct the satisfying assignment
by repeating the following procedure: pick a variable p; to which no value has been
assigned yet. We know that p; /A —p; or —p; /4 p;. In the first case, set p; to true,
otherwise set —p; to true; set the opposite literal to false. Now set to true all literals

reachable from the literal we set to true (p; or —p;).

Ezample 5.5.1. Consider the following ZZ-Krom formula
APV < 2Vy < 1(z =y Vv P(z) V -P(y)) A (=P(y+ 1) Vy > 3) A P(0)
After Step 1, the formula becomes

~P(1) A P(0) A (P(1) V =P(0)) A P(0),
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which corresponds to an unsatisfiable propositional formula —p; Apy A (p1V —py), omitting
the repeating clause (pg). The formula becomes a graph with four vertices pg, p1, —po and
—p1, and edges e; = (p1 — —p1), €2 = (—po — Po), €3 = (—p1 — —po) and ey = (po — p1)-

This graph contains a cycle

Po ey P1 —7e; TP1L —Pe3 PO ey Po-

5.5.2 Construction

Here is how we construct a formula equivalent to ¢* from (5.2), with occurrences of

transitive closure and no second-order quantifiers. If a clause c; is of the form

cj = (L;(t;(2)) v Li(t;(2)) V ¢5(7)),

where L; and L, are positive or negative second-order atoms, it translates into two clauses
corresponding to the two implications (mL; — L) and (=L}; — L;). There are five pieces
of information about each clause: values of ¢;(Z) and t(Z), whether L; and L, are P or
—P, and the value of ¢;(Z). There is a step of transitive closure on the translation of the
original clause if one of the two implications (=L; — L), (=L} — L;) holds.

Introduce for every clause constants z;, z; depending only on the structure of c¢; to
encode whether L;, L’ have negation: (z; = 0 iff L; = =P, and z; = 0 iff L; = =P).
Let (u,s), (v,s') be variables used in the transitive closure: a step is (u,s) — (v,s’),
where u, v correspond to P(u), P(v), and s, s’ to the negation parameters. For example,
(u,1) — (v,1) means that the implication (P(u) — P(v)) must hold in order for some

clause to be satisfied. Now a translation C; of ¢; becomes

(—¢;(Z) AN t;(T) =uN—zj = sAL(T) =

V(=¢;(@) A3 (T) = u A~z = s A tj(Z) = v

The nodes of the graph of the propositional formula are the values of all terms on all
tuples of z. We need to find a value ¢ < ¢, where t = max;(t;(n),t;(n)), such that there
are chains of implications from (7,0) to (i, 1) and from (i, 1) to (i,0), corresponding to

chains of implications from —p; to p; and from p; to —p;. Let
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The following formula is equivalent to the negation of ¢* from (5.2):

Ji < t(TrClyspst' (u, s,v, )[40, 1] (NegKrom)
A TrClysps ' (u, s, v, s")[i1, i0]).

5.5.3 Proof of correctness

Theorem 5.5.1. Let ¢*(X, %) be a SB-Krom formula. Then there erists a quantifier-free
formula ¢ and tuples 0,7 such that

V-Krom(TrCl) + ¢*(X,9) <> =TrClz » ¢(Z,')[0, 7]

Proof. By Theorem 5.4.1 (normal form theorem) it suffices to prove equivalence between
¢* in (5.2) and the negation of (NegKrom).
Let ¢* = 3PVZ < ny(P, T) be the formula (5.2). We need to prove the equivalence

APVZ < np(P, 7)) &
Vi < t3Q[Cond(Y', Q, (t,2)) A (—Q(:0,i1) V —Q(i1,40))] (5.3)

where

Cond (¢, Q, (t,2)) = Vu,v,w < tVs, s',s" <2

Q(us,us) A (V' (us,vs") A Q(vs', ws") = Q(us, ws"))
First, note that v’ does not depend on 3. The second part is equivalent to
AQ Cond(V', Q, (t,2)) AVi < t(—Q(i0,i1) V =Q(i1,40))

The easy direction of the proof is to show that given a satisfying assignment P to
the original formula we can construct ). We define @ such that Q(ui,vj) holds iff
the variable corresponding to u# implies the variable corresponding to vj, under the
truth assignment P. Explicitly, we define @ by cases: Q(u0,v0) < (P(v) — P(u)),
Q(u0,v1) & (=P(u) = =P(v)), Q(ul,v0) & (P(u) - —P(v)), Q(ul,vl) & (P(u) —
P(v)).

It is clear that for @) defined in this fashion =Q(i1,40) V =Q(70,71) for all 7, because
exactly one of them will be T — L. If P(i) holds, then Q(i1,:0) is false, otherwise
Q(i0,141) fails. Also, this definition trivially satisfies reflexivity.
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To show that @) satisfies step-transitivity, consider —)'(us,vs’) V =Q(vs',ws") Vv
Q(us, ws"). Suppose that Q(vs', ws") and —=Q(us, ws"”) hold. In case of s =§' =" =1,
that corresponds to P(v) — P(w) and =(P(u) — P(w)). That can happen only when
P(u) =T, and P(w) = L. Then P(v) = L by Q(v1,wl). It remains to be shown that
Y’ (ul,v1) fails. Suppose there exists Z < 7 and C; such that C;(Z,u,1,v,1) holds. The
original clause corresponding to C; is (—=P(u) V P(v) V ¢(Z)). Since C; holds, —¢(Z),
and since P(u) = T and P(v) = L, this clause is not satisfied by P, contradicting the
assumption that P is a satisfying assignment. The cases for other values of s, s', s"” are
similar.

The more complicated direction is to construct a satisfying assignment P given Q).
Let

Force(i,s) = Q(i—s,is) V (I < t
Q(50,51) AQ(51,1s) V Q(j1,70) A Q(50, is))

Force(i,1) holds if P(7) is directly forced to T, that is, if either (=P(i) — P(i)) or
(L(j) — P(i)) and L(j) = T, where L is either P or =P. Force(i,0) means P(i) = L.
Let UnForced(i) = = Force(i,0) A ~Force(i, 1).

The hard case is when nothing is forcing P(i) to be T or L except consistency with
already assigned values. The idea here is to set the minimal of every set of unassigned
variables to T and make sure that we account for all variables forced to some values by
this decision. Since () contains transitive closure, for all variables ¢ forced by P(j) = s

to P(i) = s', Q(js,is"). So, we say that ¢ is assigned s if

Assign(i,s) = 3j < tVk < tUnForced(j)
ANUnForced(k) — k > j) NQ(j1,1s).

Now P is defined as follows:
P(i) & (Force(i, 1) V UnForced(i) A Assign(i, 1))

Suppose for the sake of contradiction that P is not a satisfying assignment, that is, there
exists an assignment 7o to 7 and a clause (L;(t;(o)) V L (t}(70)) V ¢;(Zo)) that evaluates
to L under P. The proof proceeds by cases: L; and L can be negated literals or not,
and in each combination of negations the cases depend on the reason why L; and L are

set to false (forced vs. assigned P(7)). O
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5.6 The Immerman-Szelepcsényi theorem

In this section we show how to formalize Immerman’s proof of closure under complemen-
tation of FO + TC (first-order with transitive closure logic). This formalization is split
into several subsection. First, we state the theorem and outline the main idea behind the
proof. Then, we develop some techniques useful for the proof, namely show how to count
in V-Krom. The subsequent section presents the construction, and the section after that

contains the correctness proof.

Theorem 5.6.1. For any XJ (TrCIt) formula ¢ there is a X8 (TrCI™) formula ¢' such
that
V-Krom(TrCl) b ¢ <> —¢

Thus, by theorem 5.5.1 and AzTC, for any XB-Krom formula ¢* there exists a X2 -Krom
formula ¢* such that V-Kromt ¢* < —¢*.

By the Normal Form Theorem (Theorem 5.4.1), it is sufficient to consider formulae ¢
of the form TrCl, v (u,v)[0,z]. Given ¢ of this form, in the proof of Theorem 5.6.1 we
construct a formula ¢’ = NegTrCl(v, z,n) with only positive occurrences of transitive

closure operator such that
V-Krom F =TrCl, ¢ (u, v)[0,z] <> NegTrCl(¢, z,n).

The remainder of this subsection contains a brief outline of the proof of Theorem 5.6.1.

The actual proof is postponed until subsection 5.6.4.

We associate with the pair ¢, n a graph with n vertices numbered 0 through n-1, and
with an edge u,v whenever ¥ (u,v) holds. The question becomes the reachability of a
vertex numbered x from the vertex numbered 0.

The main idea of Immerman’s construction is counting, for every distance d < n, the
exact number of vertices reachable from 0 in d steps, as well as counting the number of
vertices other than x reachable from 0 in d steps. If the two numbers are the same, then
x is not reachable from 0 in d steps, and if d = n — 1, then z is not reachable from 0
at all, so (0,z) is not in the transitive closure of 9. In the subsequent formulae, v, v’
correspond to the vertices of the graph, ¢ and ¢’ are the values of the counter, and ng is
the number of vertices reachable from 0 in d steps.

The two main formulae used in the construction are DIST (x,d) and NDIST(z,d; m),
stating, respectively, that z is reachable from 0 in d steps for DI ST and that there are
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at least m vertices reachable from 0 in d steps not including z for NDIST. The final
formula NegTrCl(y,x,n) states, essentially, that there is some number k of vertices
reachable from 0 and the number of vertices reachable from 0 not including z is at least
k. The bulk of the proof is an induction argument, showing that for every distance d
there is a unique number ny such that there are exactly ny vertices reachable from 0 in

d steps.

5.6.1 Counting in V-Krom

Since the construction is based on counting, we introduce a notion of “counters” to

formalize Immerman’s proof.

Definition 5.6.2. A counter (transitive closure counter) is a formula of the form CNT(ve, v'c’) =
(d=c+1AN¢(v,0,c)V =cA <;~S(v, V', ¢)), where ¢ and b are Y8 (TrCIT). A counter is
fair if ¢ and ¢ are not free variables of ¢ and ¢. A fair counter is linear if, additionally,
A" = v + 1) is either a part of the counter formula, or the part of both ¢ and ¢. In
the first case, ¢ and <;~5 only take one argument, usually v'. A counter is ezact if q~5 — ¢;

otherwise a counter is sloppy.

Usually we are interested in the value of transitive closure over a counter, with the
ranges on vertices and on counter variables as bounds. T7Cl,.~CNT(ve, v'c)|yd, ze]
means that there exists a ¢-path from y to z of length at least e — d. The “at least”
part of this statement is due to overlapping ¢ and o steps: if there are k steps on which
both ¢ and ¢ hold, then TrClyeye CNT(ve, v'c’)[yd, ze] holds for k consecutive values of
e. Since for fair counters the actual values of counter variables do not matter (only the
difference does), most counters start at v = 0,¢ =1 or ¢ = 0 and go to v = n, with the
second boundary value of ¢ being the object of interest.

The simplest counter in Immerman’s construction is a = [(¥(v,v") Vo = V') A d =
¢+ 1], with ¢, = (W(v,v') Vv = v') and ¢4 = L. It is used to define DIST(z,d) =
TrClycyea(ve,v'd)[00, zd]. The meaning is that there is a ¢-path from 0 to z of length
at most d. The counter « is fair, but not linear and not exact.

All formulae under transitive closure in the Immerman’s construction (a, £,y and 0)
are counters. Of them, ¢ is the only unfair counter, and § and 7 are linear, where £ is

sloppy, and v can be shown to be exact. The following lemmas are the bulk of the proof:
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Lemma 5.6.3. Let LcNT(ve, v'c’) be an exact linear counter. Then
V-Krom Yy < n3lz < nTrClycysLONT(ve, v'd')[01, yz]

Proof. We prove this statement by induction on y. The only two cases to consider for

the induction step are whether ¢(y + 1) or ¢(y + 1) holds; in either case the value of z is

clear. ]

Lemma 5.6.4. Let LCNT; (ve,v'd’) and LCNTy(ve, v'c’) be two linear counters with Vv <
ng1 (v) = ¢o(v) and do(v) = ¢1(v), and let LCNT, be exact. Then, provably in V-Krom,
LCNTy cannot count to a larger value than LCNTy. Moreover, if for some v < y ¢o(v +
1) A= (v+1),

TrClyeye LONTy (ve, v'd')[01, yd] — —TrClye .y LONT; (ve, v'd)[01, yd];
otherwise (that is, if Vo < y(¢o(v + 1) = ¢1(v + 1)),
TrClye e LONTy (ve, v'd)[01, yd] = TrClye e LONT, (ve, v'd)[01, yd]

Proof. The proof is by induction on y. We omit details. O

5.6.2 Properties of the distance predicate

Since the Immerman’s construction relies mainly on the properties of the DIST function
and its relationship with the transitive closure operator, we prove the basic properties of
DIST before proceeding to the correctness proof for the construction. The main lemma
in this proof is lemma 5.6.10 stating that there is a path from x to y in a graph if and
only if there is a path from x to y of length at most n — 1. To simplify the proofs, we

will use a more general version of DIST.

Definition 5.6.5. We define a distance predicate Disty(x,y,d) which holds on (z,y, d)
iff there is a path from z to y of length at most d.

Disty(z,y,d) = TrClycyetb(ve,v'c) |20, yd],
where ¥(ve,v'd) = ((¢p(v,v') V' =v) Ad =c+1).

Note that Dist, is a fair counter, with the first formula being 7 and the second L.

Now DIST used in the construction below is just

DIST(z,d) = Disty(0,z,d).



CHAPTER 5. V-KROM: A SYSTEM OF ARITHMETIC FOR NL 120

Lemma 5.6.6. If there is a path from x to z of length < d + 1 < n, then either there is
a successor y to x such that ¢(x,y) and a path of length < d from y to z, or a path of
length < d from x to z.

V-Krom b 3y < nDisty(y, z,d) A (¢(z,y) V& =y) <> Disty(z,2,d+ 1)
Proof. Open transitive closure by AxTC. After easy adjustments,

AR Cond(¢, R, (n,n)) A = R(z0,z (d+1)) —
3Q Cond(y, @, (n,n))A
Vy < n=Q(z0,yd) V (—(d(y, z,d) AN =d + 1)

Take Q = R. Suppose there is y < n such that Q(x0,yd) A ¢(y,z,d) AN = d+ 1.
Then by transitivity Q(z0, z d + 1) holds, contradicting the assumption.

For the other direction, take R(ve,v'c’) = Q(ve,v'd)A (e < AN (d <dVd+1<c))
It is easy to check that this R satisfies Cond((¢ A ¢ = ¢+ 1), R, (n,n)) and does not
contain (z0, z(d + 1)). O

We can state a version of Lemma 5.6.6 in which the edge is added at the end of a

path, rather than at the beginning.

Lemma 5.6.7.
V-Krom 3y < nDisty(z,y,d) A (#(y,z) Vy = z) <> Disty(x,z,d + 1)

Proof. The proof is very similar to the proof of Lemma 5.6.6, except we use the the

right-side axiom of transitive closure TrC!", and refer to Lemma 5.3.5. O

Note that the way the proof of Lemma 5.6.6 is structured relies on the fact that
d+1 < n. However, to prove Lemma 5.6.10 below, we should be able to handle the case
of adding an edge to a path that is of length n — 1 already: that is, to prove that if there
is a path of length (at least) n — 1 from x to y and an edge from y to z, then there is a
path from z to z. But a path from z to z cannot contain more than n — 1 edges, because
there are only n nodes. The distance function would fail to count such step because of
the restriction ¢’ < n. So we need to prove that if there is a path from z to y at all, then

there is a path of length n — 1.
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Lemma 5.6.8. Let x and y be arbitrary vertices of a graph. If the shortest ¢-path from

x to y is of length n — 1, then every vertex v occurs on that path. That is,
V-Krom t Disty(z,y,n—1)A—Disty(x,y,n—2) = (Vz < n(z # y — Disty(z, 2,n—2)))

Proof. The proof is by induction on the size n of a graph. The main idea of the proof is
that the only situation in which a path from z to y is of length n — 1 is when the graph
is “layered”, with one vertex per layer, = in the first layer, y in the last layer, and in each
layer all out-edges are either to previous layer, or to the single next layer.

The base cases n = 0, n = 1 and n = 2 are trivial. For the induction step, assume
that the claim holds for graphs on n vertices. We consider now a graph on n+ 1 vertices,
with vertices labeled {0,...,n}. Note that relabeling the vertices does not change the
properties of the graph, and the claim is stated for every pair (z,y) of vertices. That
is, let ¢' be the same as ¢ except in the corresponding graph the vertices y and n are
interchanged. Then, V-Krom - Disty(z,y,d) <> Disty(z,n,d)..

Now by Lemma 5.6.7 3z < nDisty(z,z,n — 1) A ¢'(z,n), since by assumption
—Disty(z,n,n — 1) and thus = # n. By the induction hypothesis, Yu < n(u # z —
Disty(x,z,n — 2)). We know that ¢'(u,n) does not hold for any u # z: in that case,
by Lemma 5.6.7, Disty (z,n,n — 1) would hold. Therefore, since Disty (z,n,n), ¢'(z,n)
holds. Thus, every vertex v occurs on the path from z to n, since every vertex u < n
occurs on the path from z to z and vertex z occurs on the path from x to n. Relabeling

n and y back, we get Vz < n + 1(2 # y — Disty(z, z,n)), concluding the proof. O

Corollary 5.6.9. Extending lemma 5.6.6,
V-KromF 3y < nDisty(y, z,d) A ¢(x,y) <> Disty(z, z, min{d +1,n — 1})

Proof. For the case of d+1 < n, the proof follows from lemma, 5.6.6. If the minimal such
d is n — 1, then the statement follows from the lemma 5.6.8: since z is on the path from
z to y, 3d' < nDisty(z,z,d"). And since Disty(z,2,d') — Disty(x,z,d + d") for any d”
such that d” + d' < n, Disty(z,z,n — 1) holds. O

Finally, we establish the relation between transitive closure over ¢ and Disty.

Lemma 5.6.10. If there is a ¢-path from x to y, then there is a ¢-path from x to y of
length < n — 1. That is,

TrCly,¢(u,v)[z,y,n] <+ Disty(x,y,n —1)
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Proof. As usual, negate both sides and open them by AxTC. Let R(v,v’) be the relation
satisfying Cond(¢, R,n) and not containing (z,y) Define Q(v,c,v', ') = ¢ < ¢ AR(v,v").
Then Cond(y, @, (n,n)) and =-Q(z,0,y,n — 1).

For the other direction, define R(v,v') = Q(v,0,v',n —1). For the transitivity proof,
note that either 3d < n—1Q(v,0,v',d) or Q(v,0,v",n—1) and =Q(v,0,v',n —2). In the
first case, the adding one step just increments d; in the second case, we need to appeal
to corollary 5.6.9. O

5.6.3 Immerman’s construction

The body of the proof of Immerman’s theorem is by induction on the number of steps d
of the outermost counter (that is, on the length of paths starting at 0). The formula ~y
defining the value of n4 for every step is a linear counter with ¢, = DIST(v',d + 1) and

¢ =Vz <n(NDIST(z,d;m) V (2 # v A —~(2,0"))).

Intuitively, + increments its counter variable ¢ for every v reachable in d + 1 steps
and does not increment the counter for unreachable (in d + 1 steps) vertices, under
the assumption that there are at least m vertices reachable in d steps. The induction
statement is that for a step d, v is an exact counter giving a unique value ny and Vo <
n(NDIST (x,d;ng) <> ~DIST(x,d)). The first part is proven by using Lemma 5.6.3
with LCNT = +; the second part by applying Lemma 5.6.4 with LCNT2 = v and LcNT1
being the counter formula of NDIST, B, with ¢ = DIST(v',d) Av# z and ¢ = T.

For d = n — 1 this statement implies that if there are k¥ = n,,_; vertices reachable
from 0 and by the formula NDIST(z,n — 1;n,_1) the vertex x is not one of them,
then =DIST(xz,n — 1). The proof is completed by showing that DIST(z,n — 1) <
TrClyy(u,v)[0,z].

The following is a formalization in V-Krom of the construction from [Imm99]. First,
note that by theorem 5.4.1 we can assume that ¢ = TrCl; z9(a, v)[0, 7] for some 7 and
quantifier-free 1y , and that all variables in 4,7 are bounded by 7. We will write, for
notational simplicity, @, ¥, n as single variables. Also, all variables are bounded by n in
the proof; in case of u and v being vectors, take v and v be the result of a pairing function
applied to u and v, and take n to be (n).

As mentioned before, we are constructing a formula NegTrCl(1), x,n) with only pos-
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itive occurrences of the transitive closure operator such that
V-Krom - =TrCl, ,%(u,v)[0,z] <> NegTrCl(¢, z,n).

The following two functions encode the notions of reachability and unreachability:

DIST (z,d) = TrClyyea(ve,v'c')[00, zd]
where a = (¢(v,v") Vv =v") Ac=c+1, and
NDIST (z,d;m) = TrClyeye B(ve, v'd; d)[01, nm]
where
Bue,v'd;d,x) = (0#zAv =v+1
A =ev(d =c+1ADIST(,d) ANV # 2)))

DIST(x,d) states that there is a path from 0 to z of length at most d, and
NDIST(x,d;m) states that there exist at least m vertices other than z reachable from 0
in d steps. Now define the function v that is used to count the exact number of vertices

Y(v, e, v, ds5d,m)= (v =v+1
AN(d =c+1ADISTW,d+1))V(d=c
AYz < n(NDIST(z,d;m) V (z # v A —1(z,0"))))))
and
§(d,m,d',m") = (d' =d+ 1 ANTrClycyey(ve,v'cd;d, m)[01, nm/]

So, v counts the total number of vertices reachable in d + 1 step, given the total
number m of vertices reachable in d steps. The role of § is just the transition from step
d to step d + 1. Finally,

=TrCl,,Y(u,v)[0,z] =3k <n (NegTC)
(TrClamam 6(dm,d'm')[01,n — 1,k] ANDIST (z,n — 1; k))

5.6.4 Proof of correctness of the construction

We want to prove the statement NegTC. For that, we will show that for every d there
exists ng that is the number of vertices reachable from 0 in d steps. Moreover, for that
ng it is true for every x that NDIST (z,d; ng) holds iff ~DIST(x,d). More formally, the

bulk of the proof is the following induction statement:
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Lemma 5.6.11 (Correctness lemma). V-Krom proves that Vd < n — 1,

1) 3ng < nTrClyemred(me, m'e')[01, dng
2)  TrClpemed(me,m'e')[01,dng] — Vo < n(NDIST (z,d;ng) <> —DIST (x,d))

Given the result of the lemma 5.6.11, for d = n — 1 we get that
Ing 1 < nTrClyemed(me,m'e')[01, (n — 1)n, 4]

and for that n,_; the equivalence -~DIST(z,n — 1) <» NDIST(z,n — 1;n,_1) holds
Vz < n. Now, setting £ = mn,_;, and showing, by the lemma 5.6.10 below, that
DIST(z,n—1) <> TrCl,,¥(u,v)[0, z,n], we obtain the statement (NegTC).

Proof of lemma 5.6.11. First, assume that n > 1. The cases of n = 0 and n = 1 are

trivial. Now the proof is by induction on d.

Base case. For d = 0, 0 is the only vertex reachable from 0 in 0 steps, so ng = 1.
By reflexivity of transitive closure, TrClyemerd(me, m'e’)[01, 01] holds. Since any d-step
requires d = d + 1, ng = 1 is unique.

Now, for z = 0, DIST(z,d) by reflexivity and ~NDIST(0,d; m) for any d, m since
for any v, c,v'd —8(ve,v'd’;d,0). So let x # 0. Then, in the case of d =0, ~DIST (z,d).
Because of that, for all v < n —1, 8(v1, (v+1)1) holds. Therefore, NDIST(z,0;1) and
thus NDIST(z,0;1) <> =DIST(z,0).

Induction step. Suppose that
Ing < nTrClmemed(me, m'e’)[01, dng),
and
TrClmemed(me, m'e')[01, dng] — Vo < n(NDIST(z,d;ng) +» ~DIST (z,d))
Then V-Krom proves the following:

1) Fnagyr < nTrClyemed(me,m'e)[01,d + 1n4.1]
2) TrClyemed(me,m'e")[01, (d+ 1)ng1] —
Ve < n(NDIST(z,(d+ 1);n441) <> ~DIST(z,d + 1))
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We start by showing the first part, that is, the existence of ngy;. By the lemma 5.6.6,
setting y = ng and z = ng41, it is sufficient to show that TrCly. oy (ve, v'c’; d, ng)[01, nngyq]
holds.

It is clear that « is a linear counter. We want to prove that < is an exact counter.
For that, we need to show that =DIST(v,d 4+ 1) <> Vz < n(NDIST(z,d;nq) V (z #
v' A =)(z,v"))). By induction hypothesis, NDIST (z,d;ng) <> -DIST(z,d) . By the
contrapositive of lemma 5.6.6, ~DIST(v,d + 1) <> Vz < n(—-DIST(z,d) V (z # v' A
—)(z,v"))). Therefore, 7 is an exact counter, so we can apply lemma 5.6.3 which gives

both existence and uniqueness of n441.

Now we need to show that for that ngy1, Vo < nNDIST (z,d+1;n441) <> "DIST (x,d+
1). As noted in the base case, the case x = 0 is trivial. Let x # 0. First, note that
¢ — ¢, (since § has an additional restriction of v # z), and 1, — ¢g (since g = T).
As shown before, v is an exact counter, and S is a sloppy linear counter.
Suppose that DIST (x,d+1) holds. Then v((z—1)0, 1) holds, but 5((z—1)0, z1) does
not. Then, by lemma 5.6.4, TrClyc oy (ve, v'c')[01, nngy1] = —TrClycy e S(ve, v'd)[01, nngy].
In this case, NDIST (x,d + 1;n441) is false.
Now suppose that DIST(x,d+ 1) does not hold. Then Vv < n¢,(v) <> ¢g(v). Then,
again by lemma 5.6.4, TrCl,. oy (ve,v'd)[01, nngi1] = TrClycye B(ve, v'd)[01, nngyq],
so NDIST (z,d + 1;n441) is true. O

Proof of theorem 5.6.1. Now that we have the lemma 5.6.11, the proof of the theorem
5.6.1 follows easily. By the first part of lemma 5.6.11, for every d 6(dng, (d+1)ngy1) holds.
By induction on d and properties of transitive closure,
Ay 1 TrClam armed(dm, d'm')[01, (n — 1) n,_1]. Since by definition of § n,_; satisfies
the corresponding TrClyc ey (ve, v'd)[01, nn, 1], by the second part of lemma 5.6.11
NDIST(z,n — 1;n, 1) > -DIST(x,n — 1). Since by lemma 5.6.10 with z = 0,
DIST(z,n—1) <> TrCl, ,¥(u,v)[0,v], NDIST (x,n — 1;n,_1) <> =TrCl, ,1(u,v)[0,v],
completing the proof. O

5.7 Definability in V-Krom

In this section we use Definability Theorem 3.3.13 to prove that V-Krom indeed captures
NL tightly.
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Theorem 5.7.1. A predicate R(Z,Y) is AB-definable in V-Krom iff it is in NL.

We define the function class F'NL associated with NL according to definition 3.3.1.

These functions can be defined by Y2-Krom formulae following the definition 3.3.5.

Lemma 5.7.2. Let ¢ be a X formula with possible occurrences of string and number
function symbols from the definition 3.8.5 with ® = YB-Krom. Then there exists a
YB_Krom formula with no occurrences of function symbols that is provably in V-Krom

equivalent to ¢.
Proof. Structural induction on ¢, using Theorems 5.4.1, 5.5.1, and 5.6.1. O

Definition 5.7.3. A string function F(z,Y) is ¥2-definable in V-Krom iff there is a ¥2
formula ¢ such that
Z=F(xY) < ¢z,Y,2)
and
V-Krom - VzVY3Z¢(z,Y, Z)

Similarly for number functions.
Lemma 5.7.4. The class of formulae X2-Krom is strongly closed and constructive.

Proof. First we argue that YP-Krom is strongly closed. By the theorem 5.4.1, every
formula with nested occurrences of the transitive closure (not necessarily positive) can
be converted to a formula with a single outermost occurrence of the transitive closure. By
Lemma 5.7.2 above, V-Krom + XF(XP-Krom) = XP-Krom. Therefore, FNL is closed
under composition and AC® reductions.

For the constructiveness property, we again refer to the transitive closure operator.
Define a transitive closure function TCy(X, 3, n)(a, b) by setting its bitgraph to be AxTC.
The existence and uniqueness of the graph of this function is proven by comprehension
over the negation of AXTC, using the fact that it is AB-definable in V-Krom by Theorem
5.6.1.

Suppose that V-Krom - 3PVz < t(z, P,a,Y). Recall the construction from Section
5.5.3 of a satisfying assignment P from the transitive closure witness (). We use exactly
the same construction, replacing () with the actual transitive closure defined above, that
is, using TCy, and T'Cj respectively instead of @ and =@ in the formula (5.3). By Lemma
5.7.2, a TF formula with occurrences of T'C is equivalent to a Y.P-Krom formula, which
in turn defines an FNL function F,.(a,b,y,a,Y) , which is a witnessing function for
P. O
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Theorem 5.7.5. A function (string or number) is ¥ -definable in V-Krom iff it is in
FNL.

Proof. This result follows immediately from Corollary 5.7.4 and Theorem 3.3.13. O

5.8 V-Krom is finitely axiomatizable.

Since it is possible to encode Y2-Krom satisfiability as a ¥#-Krom formula, we can show
that V-Krom is finitely axiomatizable in a similar fashion to the proof that Vi-Horn is
finitely axiomatizable.

By theorem 3.6.1, V° is finitely axiomatizable. Since the X% comprehension scheme
is provable in V-Krom, V-Krom can be viewed as V° extended by the ¥5-Krom com-
prehension axiom scheme. If we can show that finitely many occurrences of ¥5-Krom
comprehension are sufficient, we prove that V-Krom is finitely axiomatizable.

In proving Theorem 5.5.1 we showed that every ¥8-Krom formula ¢*(X, y, @) is prov-
ably equivalent to a negated transitive closure. This is done by showing that ¢* is prov-
ably equivalent to the negation of the formula (NegKrom), which involves the transitive
closure of a formula ¢'(u, s,v,s’). Inspection of the latter argument shows that this
equivalence can be proved in V. Notice that v is a 3 formula, and has free variable
parameters ¥, a@, X, which we will indicate by writing v'(u, s,v, s',y,a, X). We can use
Y8 comprehension to define a string variable E(u, s,v,s',y), which for fixed X and @ a

codes the values of ¢'. Thus
VO F3EVYu, v < tVs, s’ < 2Vy < b[E(u, s,v,8',y) + ¢'(u,s,v, 8, y,a, X).]

The proof of Theorem 5.5.1 shows that ¢*(X,y, a) is equivalent to the RHS of (5.3), and
this is provable in V0. Let ¥(y, F) be the result of replacing each occurrence of ' in the
RHS of (5.3) by E. Then it suffices to add the following single comprehension axiom for
U to VO to get V-Krom :

AZ < bVy < b(Z(y) < Y(y, E)).

This is because the comprehension axiom for ¢*(X,y,a) follows from this one compre-

hension axiom by reasoning in V', and this axiom is the same for every X2-Krom formula

¢*.
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5.9 Equivalence with Nguyen’s VNL

5.9.1 Definition of VNL

The following material is based on [NKC04]. In that paper, Nguyen defines a several
systems of arithmetic by adding variants of a reachability axiom to V°. Let the following

relation express reachability:
Definition 5.9.1 (LC).
LC(a,E,Z) =Z(0,0) AVi < a—Z(0,1)
AVkyi<a, Z(k+1,i) < [Z(k,i)V3Ij <a, E(j,9) N Z(k,7)]
The relation LC states that Z(k, ) is true iff there is a path from 0 to i of length at
most k. Thus, LC' plays a role very similar to the DIST function, except the calculation
is exact.

Now define a system of arithmetic V NL by adding an axiom stating existence of Z

unconditionally satisfying LC :

VNL = V° + 37 < (a,a)LC(a, E, Z).

5.10 Equivalence between VNL and V-Krom

Here we show that V-Krom is equivalent to VNL. Since V-Krom extends V?, it is sufficient
to show that VNL proves Krom comprehension scheme and that V-Krom proves 47 <
(a,a)LC(a,E, 7).

The main idea behind the proofs is that the DISTy(z, d) function, stating that there
is a path from 0 to x in a n-node graph with ¢ defining the edge relations, is definable (and
its properties provable) in V-Krom. DIST is very similar to LC, so DIST can be used to
define LC in V-Krom. For the other direction, we show how to define transitive closure
relation in VNL, and then refer to the results in [CKO04] for the proof that transitive

closure relation can be used to prove Krom comprehension.
Lemma 5.10.1. V-Krom proves 3Z < {(a,a)LC(a, E, Z).

Proof. Following Immerman’s proof of closure of 7C" under complementation and its
formalization in [CK04], define

DIST(z,d,E,n) = TrClycye ((E(v,v") Vo =1") Ad = ¢+ 1)[00, zd; n].
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That is, the pair (00,zd) is in the transitive closure of the graph of E on the first n
vertices iff DIST(z,d, F,n) holds. We will omit F and n when it is clear from the
context. To simplify the notation, let a(v,c,v', ¢, E) = (E(v,v") Vv =v")Acd = c+ 1),
so DIST is a transitive closure over .

To show that 37(a,a)LC(a, E, Z), define Z as Vi, k < aZ(k,i) <> DIST(i,k, E,a).
Since V-Krom proves comprehension over 35 (X£-Krom) formulae, it proves the exis-
tence of such Z. It remains to show that this Z satisfies LC(a, F, 7). We will show it
by induction on k.

Base case: Z(0,i) = DIST(i,0, F,a). By reflexivity of transitive closure, the only i
for which DIST (7,0, E, a) holds is 0. Therefore, Z(0,0) and Vi < a—Z(0,7 + 1).

Induction step: Vi < a,Z(k + 1,i) < (Z(k,i) vV 3Ij < aE(j,i) N Z(k,7)). The «
direction is simple: DIST(i,k) = DIST(i,k + 1) because of the v = v’ part of the
definition of DIST, and 35 < aE(j,i) A DIST(j,k)) implies DIST (i, k + 1) by setting
v = j,v' = j and referring to a lemma in [CK04] that if there is a path of length d to j
and an edge E(j,1), then there is a path of length d + 1 to i.

For the other direction, recall that transitive closure in V-Krom is defined by the

formula
TrClyyd(x,y)[a,b,n] < VR(Cond(é, R,n) — R(a,b)),

where transitivity condition Cond is
Cond(g, R,n) = Vz,y, 2 < n(R(z,7) A (6(z,9) A R(y, 2) = R(z,2))).

The statement that we need to prove is, writing out DI ST according to this definition

and negating both sides,

ACond(R, o, {a,a)) A =R(0,0,i, k) A (Vj < a—E(j,7) V —~R(0,0, j, k))
— 3QCond(Q, a, {a,a)) N —Q(0,0,4, k + 1).

Construct Q(v, ¢, v', ') to coincide with R on all ¢ < k, v,v',¢ < a. For ¢ > k, set
Q(v,c,v', ) = T for all v,¢,v'c except v' =i,¢ = k + 1. This definition of @ satisfies
Cond(Q, a, {a,a)), and does not contain Q(0,0,7,k + 1) by construction. O

Since V-Krom is axiomatizable by the finite set of axioms of V° together with the
comprehension axiom of the form 32Vz,y < b(Z(y) <> ¥(y, E)), where ¥ encodes tran-
sitive closure over graph E representing a formula ¢, it is sufficient to show that VNL
proves this single comprehension axiom. Moreover, U is based on graph reachability in

E, which simplifies the proof.
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Lemma 5.10.2. VNLF 3ZVy < b(Z(y) > ¥Y(y, E)).

Proof. The finite axiomatizability proof of V-Krom describes how to replace comprehen-
sion over a Krom formula ¢ with a transitive closure over a graph E encoding ¢. So the
only part that needs to be proven is that 37 < (n,n)LC(n, E, Z) can be used to define
TrCly E(z,y)la,b,n.

First, note that VNL proves uniqueness of Z satisfying LC(n, E, Z). The proof is by
induction on indices of Z. It remains to be shown how to construct a relation R satisfying
the axiom of transitive closure. The relation LC' is only concerned with paths starting at
0, whereas for the transitive closure we need paths starting at arbitrary vertices. Given

a graph FE, define a family of graphs E;, for : = 0 to n — 1 as follows:

E;={0,i+1)}U{(z+1,y+1)|E(z,y9)}

That is, all indices are increased by 1, and an edge added from 0 to the vertex
corresponding ¢ from which we want to find a path. Clearly, there is a path from ¢ to any
J in the original graph E iff there is a path from 0 to 7 + 1 in E;. VNL proves existence
of Zy ... Z, satistying LC(a, E;, Z;) for all i < n.

Now define Vi, j < nR(4,j) <> Zi(n,j + 1). The existence of such R is given by ©F
comprehension. The reflexivity condition R(i,%) holds: either i = 0, then Z;(0,0) for any
i, or Z;(1,i+1) holds by Z;(0,0) A E;(0,i+1) and so is Z;(n+ 1,7+ 1) by induction. For
the transitivity condition, suppose that R(z,y) A E(y,z). Then Z,(n + 1,y), and there
exists k < n + 1 such that Z,(k + 1,y). Consider minimal such k. If k£ < n, then setting
j =1y weget Zy(k+1,z), and thus Z;(n + 1, z), implying R(z, z).

Suppose now that £ = n. Then we want to show that there exists k' < n such that
Z(k',z). That is, if the only path from 0 to y in E, has length n, then every vertex

including z occurs on this path. This proof is by induction on n.

Lemma 5.10.3. VNL proves that if the shortest path from 0 to j in E is of lengthn—1,

then every vertex © occurs on the path from 0 to j.

Proof. This lemma is similar to Lemma 5.6.8. However, the proof is carried out in VNL
rather than in V-Krom, and so is slightly different.
The proof is by induction on n. The base case is n = 1. Then there is just one vertex

1 = 7 = 0, and every vertex is on the path. If n = 2, then there is a path of length 0 to
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0, so this path is of length 0 < n — 1. There is a path of length n — 1 =1 from vertex 0
to vertex 1, and both vertices occur on this path.

Now suppose that the statement is true for some n. That is, of every graph F of size
n, every vertex j < n, if the shortest path from 0 to j is of length n — 1, then every
vertex i < n occurs on that path. More precisely, a shortest path from 0 to j is of length
n — 1 iff the smallest k for which Z(k, j) holds is £ = n. Consider a graph E' on n + 1
vertices in which the shortest path from 0 to j is of length n. Without loss of generality,
we can relabel vertices so that j = n: j cannot be 0 and otherwise exchanging j** and
n'* vertices does not change the properties of the graph. It follows from the induction
hypothesis that there is just one ¢ such that there is an edge (¢, 7) in E’, and that 4 is such
that the shortest path from 0 to ¢ in £’ is of length n — 1. If there were two edges leading
into 7, then one would come from the vertex on the path to ¢, by induction hypothesis,
which would result in a shorter path to j. So E' = EU(i,n), where vertex n is not in E.
Now every vertex of E, including i, is on the path from 0 to ¢ by induction hypothesis,

and so is on the path to j, since the only path to j leads through . O

Now by the lemma 5.10.3 vertex z is on the path from 0 to y, and thus there is a path
from 0 to z in E,. Therefore, there is a path from z to z in F, and R(z, z) holds. Thus,
R is transitive.

It remains to show that R is minimal. Suppose that there exists () such that
Cond(Q, E,n) and for some z,y < n, R(z,y) but =Q(z,y). Consider Z,. As stated
before, Z,(n + 1,y) holds iff there is a path from x to y in E. Consider the smallest
k such that Z,(k + 1,7 + 1) for some 7, but not Q(x,7). Since Z,(k + 1,7 + 1) holds,
either Z(k,i+ 1) holds or 3j < n(Z(k,7 + 1) ANE(j + 1,7+ 1)). The first case is not
possible by the minimality of k£, and the second case violates the transitivity condition:
by the minimality of &k, Q(z, 7) should hold, but then Q(z,j) A E(j,4) would give Q(z, 7).

Therefore, R is the transitive closure of E. O



Chapter 6

A weakly closed system: symmetric

logspace

The complexity class Symmetric Logspace (SL) is not as well-known as the classes con-
sidered before. This class was first mentioned by Jones, Lien and Laaser [JLL76] as “a
class of problems between L and NL”. In that paper, they show the equivalences between
undirected graph accessibility, non-bipartiteness, unsatisfiability of 2CNF with exclusive
or @ instead of V, and several other problems. Some of their equivalences we formalize
later in this section. They did not use the term “symmetric logspace”: the term “sym-
metric computation” and the definition of SL via that notion first appeared in the paper
by Lewis and Papadimitriou [LP82]. Schaefer [Sch78] indirectly mentions both SL and
co-SL: two of his classes are “problems logspace-reducible to undirected graph reacha-
bility” and “problems reducible to testing bipartiteness”. The proof that SL is closed
under complementation was discovered fairly recently by Nisan and Ta-Shma [NTS95],
and needed techniques different from inductive counting used in proofs that classes like
NL and SAC! are closed under complementation. In the same paper where he defined
SO3-Krom and SO3-Horn, Gradel gave a descriptive complexity characterization of SL
by symmetric SO3-Krom formulae over successor structures.

After the examples of Vi-Horn and V-Krom, it would seem that creating a system
of arithmetic for the class SL is straightforward: this is one of Schaefer’s classes, it is
closed under complementation, and it has a characterization very similar to SO3-Krom.
However, it seems that the proof of the closure of SL under complementation as presented
in Nisan and Ta-Shma’s work [NTS95], uses techniques inherently not formalizable in

such weak system: it (indirectly) relies on properties of expander graphs.

132
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Therefore, Property 1 only holds weakly for a class of formulae capturing SL. However,
we can still prove the weak version of the definability theorem (theorem 3.3.13).
Similarly to the definitions 3.1.4 and 5.1.1, we define symmetric ¥2-Krom formulae

as follows.

Definition 6.0.4. Following Griidel ([Gra91]), we define ©2-SymKrom formulae to be

restricted X2 of the form
dP,...3dP\Vz, < bl(&)me < bm(d, T1,... ;L‘m_l)’l/J(.T, P, n,a, }7), (61)

where ¢ has clauses of the form (¢; — (L;(t;) ®L}(t;)) (that is,(¢; — =(L;(t;) <> Li(t)))
or (¢p; — L;(t)) or (¢;), where ¢; is quantifier-free and L; are of the form P, or —P;.
As before, second-order quantified variables P; can only occur as P-literals (as P;(t) or

—P;(t)). In particular, they cannot be arguments to functions.

Note that if a clause has one negated literal, it can be assumed to be the first literal;
if both literals are negated, then both can be replaced with positive literals without
changing the value of the clause.

Now define a system of arithmetic V-SymKrom to be V-® with & = ¥5-SymKrom.

6.1 Symmetric transitive closure

Following techniques from chapter 5, we introduce a symmetric transitive closure operator
STC into V-SymKrom. A symmetric transitive closure operator is a transitive closure
operator on undirected graphs: that is, STC, ,¢(a, Y)[a, b] holds iff a and b are connected
in an undirected graph with ¢ labeling the edges. We introduce ST'C' into V-SymKrom

using a the same defining axiom as AXTC, except Cond is defined differently. So,
STC, ,9(z,y,a,Y)[a,b,n] <> VR(CondS(¢, R,n) — R(a,b)), (AxSTC)
where

CondS(¢,R,n) =
Vz,y,z < n(R(z,z) A (d(z,y) = (R(y, 2) <> R(z,2))))
Note that if ¢ is quantifier-free except for bounded existential first-order quanti-

fiers, then the negation of STC; ,¢(z,y)[a, b, n] is equivalent to a ©F-SymKrom formula.

Therefore, V-SymKrom proves induction on % combinations of STC' functions.
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By the same reasoning as for V-Krom, the function ST'C' defined in this manner is
reflexive, transitive and robust against adding the edge on the left versus on the right (that
is, conditions with ¢(z,y) = (R(z, 2) <> R(y, 2)) and ¢(y, z) — (R(z,2) <> R(z,y)) are
equivalent).

The following lemma is specific to symmetric transitive closure. It states that sym-
metric transitive closure is indeed symmetric: it is a transitive closure over an underlying

undirected graph.

Lemma 6.1.1.
V-SymKrom+ STC, ,dla,b] <> STC, ,¢[b, a).

Proof outline. We think of ¢(u,v) as giving an edge relation for a graph E(u,v) on n
vertices. Using this notion, the proof is by induction on the number of edges in a path
from a to b. For the base case, consider an edge (a,b). Then (¢(a,b) — (R(a,a) <
R(b,a))). Since by reflexivity R(a, a) holds, so does R(b, a).

Now suppose that for some ¢ such that ¢(a, c) and there is a path from ¢ to b of length
k. We want to show that R(b,a) holds. Here we refer to transitivity of R. By the base
case, R(c,a) holds, and by induction hypothesis R(b, ¢) holds. Together, by transitivity,
they give R(b,a).

A more formal proof uses counters similar to the ones described in section 5.6.1. It

is quite technical, so we omit it here. O

6.2 Simulating X7 formulae

As before, we need to show that V° C V-SymKrom, and every YF-definable function is
YB_SymKrom-definable. The main goal is to show how to simulate existential first-order
quantifiers by using existential second-order quantifiers.

The following theorem is a V-SymKrom analog of theorems 5.2.1 and 4.1.4.
Theorem 6.2.1. For every X8 formula ¢ there is a L2-SymKrom formula ¢* such that
V-SymKromt ¢ <> ¢*

By Theorem 3.2.10, we immediately get the following corollary.

Corollary 6.2.2. V-SymKrom proves induction and comprehension over
Y8 (3E-SymKrom) formulae.
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Proof of theorem 6.2.1. The proof is somewhat similar to the proof of theorem 5.2.1,
however the underlying graph structure is different. Since we already defined the STC
operator, we will appeal to it instead of writing out the formulae from scratch, as we did
in the V-Krom case.

Assume that ¢ is in prenex form. We give a formula defining the edges of a graph on
vertices {0,...,n}, in which the start vertex 0 and the target vertex n are in different
connected components iff the original formula is ¢rue on its free variables. For simplicity,
let n be a bound for every variable, and every alternation of quantifiers contains exactly
one quantified variable. Otherwise, we could talk about tuples of variables witnessing or
contradicting an existential or universal quantifier. The proof proceeds by induction on

the number of bounded quantifier alternations.

Base case.

In the base case we consider a quantifier-free formula with either one quantifier or a pair
of alternating quantifiers. We will show how to construct a formula * defining a graph
such that ¢ = -STC, ,¥*(z,y)[0,n,n + 1].
Single existential quantifier: Suppose that ¢ = 3z < ni(z), where ¢ is quantifier-
free, and fixing the free variables. Consider a graph E(z,y) with vertices {0,...,n} in
which the only edges present are of the form (z, 2z 4 1). Now since ¢(z) is quantifier-free,
the negation of it is also quantifier-free and thus can be used in STC leaving AzSTC a
negated X 2-SymKrom formula. That is, a graph E(z,y) corresponding to the formula is
defined by E(z,y) <> (—9(x) Ay =z +1). A formula defining this graph is, respectively,
P (z,y) = (Y(x) ANy =2 +1). Now, ¢ = ~STC, 0" (x,y)[0,n,n+ 1].

Suppose that 1(zp) holds for some z,. Now, R that satisfies CondS(R, ¥*,n+ 1), but

does not contain (0,n) is

T o< zxANy<zVy>z+lAz>z+1
R(z,y) =
1 otherwise

That is, R contains all pairs of vertices on either the part of the path before zy, or on
the part of the path after zo + 1. If the edge (zq, 20 + 1) is missing, then R contains the
symmetric transitive closure of ¥*.

Single universal quantifier: For the induction step, we need to construct graphs

corresponding to a universally quantified formulae such as Vu < ni(u). If in the case of
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existential quantifier the graph was disconnected if at least one edge was missing, now

we want a graph that is disconnected only if all edges are missing.

We represent a universal quantifier by the following graph E which will have a path
from s to t iff there is a counterexample u. Define E(s,u) <> E(u,t) <> =(u). That is,
Y (z,y) = (x = s A (y) Vy =t A —p(z)). For the base case, we can set s = n and
t =n + 1. Note that if Yu < ny(u) holds, then E has no edges.

Suppose that Yu < ni(u). Set R(z,y) = z = y. This R satisfies =R(n, n+1) trivially.
Now, CondS(R,v*,n+ 2) holds because none of ¢)(u) holds and thus there are no edges
forced in the graph E.

General case for a universal quantifier: The base case ¢ = 3z < nVu < ni(z,u)
can be treated in a way similar to the case of single existential quantifier: since V is

innermost, it is sufficient to set ¢¥*(z,y) = Ju < n(—Y(z,u) Ay =z +1).

Here we present a more general way of representing the case ¢ = 3z < nVu < ny(z, u).
It illustrates the construction used in the induction step proof. Now we are combining

the single existential and single universal quantifier cases to obtain

U ((z,y), (@) = (y=nA"z" =2 A(x,y)) VY =nA2 =2+ 1A (2,y)).

That is, there are vertices of two kinds: the z-vertices (“existential vertices”) and the
y-vertices (“universal vertices”). The vertices of the first type are encoded by tuples
(x,n). The vertices of the second type are encoded by tuples (x,y), y < n. For every
counterexample —)(z,y) there are two edges of the form (z,n) — (z,y) — (z + 1,n).
That is, there is a path from (z,n) to (x + 1,n) iff there was a counterexample y. The
second-order variable R satisfying CondS and not containing (0, n), (n, n) is constructed
as before, by considering all vertices before and after a witness = for which there is no y

connected to (z,n) and (z + 1,n). The following picture describes this construction.
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The correctness argument for this case is a combination of arguments for the single

existential and single universal cases.

Induction step.

As in the base case, we are constructing a graph in which the starting and target vertices
are in different connected components iff the formula is true. Consider the formula of
the form ¢ = dx < nVy < neg(x,y), where now ¢, contains k alternations of first-order
quantifiers. Let F(u,w) be a graph encoding ¢x(z,y). To construct a graph E'(u',w")
representing ¢ we take a graph for a dxr < nVy < n formula, and replace every edge in
it by a graph denoted by E(u,w). The resulting £’ has two additional elements z and y
in every tuple denoting a vertex. The start vertex will be of the form (0,n,0,n,...,0,n)
and the end vertex will be 7. The construction of the corresponding R is similar to the
base cases.

O

6.3 Constructiveness of Y¥-SymKrom

In this section we will show how to encode a witness to a ¥2-SymKrom formula by using
STC'. This is very similar to section 5.5 in chapter 5.
Let ¢* be a XB-SymKrom formula. We would like to construct a formula ¢ such that ¢

does not have second-order quantifiers, but has occurrences of STC, and V-SymKrom +

¢ < ¢
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6.3.1 SymKrom satisfiability algorithm

The ©.B-SymKrom algorithm follows the outline in section 3.1.4. After obtaining a propo-
sitional symmetric 2SAT formula, we construct a corresponding graph, which is bipartite
iff the original formula was satisfiable. Let F, be the graph corresponding to the formula.
The vertices of this graph are literals of the propositional formula: that is, there are two
literals p, and —p;, for every value of a term ¢; occurring as P(t;) or =P(t;), and thus two
corresponding vertices vy, and u,,. Additionally, there are two special vertices T and L.
The two types of edges of E, are edges between a literal and its negation (in particular,
and edge T — 1), and edges between two literals occurring in a same clause. If a clause
contains only one literal, then if that literal is positive then there is an edge (v, L), and
if negative (vy,, T).
Let E be a graph. Then a ¥5-SymKrom formula stating its bipartiteness is

dRVz < nVy < n(E(z,y) = (-R(z) < R(y))) (Bipartiteness)

This formula is still equivalent to £#-SymKrom if E(z,y) is replaced by a prenex ©F
formula with only existential bounded quantifiers.

Consider a following ©2-SymKrom formula ¢*(a@,Y). To simplify the notation, we
will omit free variables, although all terms and ¢; have a, Y as parameters in addition to

x.

¢ = APV <ny ... Ve <ngp(P, T), (6.2)

m

where (P, z) = /\(Lj(tj(i)) ® Lj(t5(2)) V ~¢;(x)).

Now we construct a formula ¢' defining a graph for ¢*, such that the graph is bipartite
iff ¢* holds. Every vertex is encoded by a pair (v, s), where v = ¢; for a term occurring
in a P-literal, and s is 0 if v corresponds to a negative literal, and 1 if v corresponds to
a positive literal.

Let

¢j = (L;(t;(2)) & L;(t5(2)) V ~¢;(Z)).
There are two cases. The first is when both literals are positive or negative, and the
second is when one is positive and one is negative. If the literals have the same sign,

then the translation is

Ci(x) = (¢;(T) Ns = s' ANt;(T) = u A t;(T) =)
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If the literals have the opposite sign, then the translation is

Ci(@) = (6;(@) As # 5/ A(@) = u A (@) = )

If there is a single literal in the clause, then the clause is (¢;(Z) A s = s' A t;(Z) =
uAv =0b)or (¢;(x) Ns # s ANt;j(x) = uAv = b), depending whether that literal is
positive or negative. Here, b is a special vertex with the value equal to 1 + max;{t;,}}.
The interpretation is (b,0) = L and (b,1) = T.

Additionally, we need to enforce the edges between literals and their negations. We

do it by adding the following clause
(wv=uAs#5)
Now a formula ¢' encoding the edge relation graph corresponding to ¢* is

& (u,8,v,8)=(u=vAs#¢)vIT < ﬁ\/C’j(a_:)
J
This ¢ holds on (u, s, v, s') iff there is an edge from (u,s) to (v,s’), where v and v are
literals and s, s’ can be 0 or 1 depending whether the corresponding literal was negated.
Finally, the formula ¢* holds if

IRVu, v < bYs, 5" < 2(¢(u, 5,0, 5) = (FR((u, 5)) < R((v, 5))))

With this R, we can define P(i) as follows

P(i) > R(i,0) A R(b,0) V R(i,1) A R(b, 1) (6.3)

That is, P(7) is true if i is on the same side of the bipartite graph as the special
symbol T.

6.3.2 Relation between transitive closure and bipartiteness

We would like to express the satisfiability problem for ¢* using ST'C rather than just
bipartiteness. For that, we describe how to relate the notions of reachability and bipar-
titeness. For simplicity, we describe the constructions for an arbitrary graph E on n
vertices.

First we describe how to use STC to test bipartiteness. For z,y < n and ¢,t' < 2
define E'(z,t,y,t") = (E(x,y) At # t'). That is, if there is an edge (z,y) in E, then there
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are edges ((z,0), (y,1)) and ((x,1)(y,0)) in E'. A path in F corresponds to a path of the
same length in E’, however the path in E’ also keeps track of its parity by alternating
between “even side” (z,0) and “odd side” (z,1) of E'.

Recall that a graph is bipartite iff it does not contain an odd cycle. Therefore, E is
bipartite iff there is no £ < n such that there is a path from (z,0) to (z,1) in E".

Lemma 6.3.1. Let E be a graph. Then

V-SymKrom F(3RVz,y < n(E(z,y) = (R(z) ® R(y))))
<~ —|(E|w < nSTC(u,t)(v,t:)E'[(w, 0) (w, 1), (n, 2)])

Proof. We can rephrase the condition of the lemma as follows, using the fact that inter-

section of several R satisfying C'ond satisfies Cond as well.

V-Krom F3RVz,y < n(E(z,y) — —R(z) <> R(y)) (6.4)
+~3QCondS(Q, E', (n,2)) AVw < n=Q((w,0), (w,1))

Suppose that R satisfies the bipartiteness condition in equation 6.4 above. Define

Q(z, 1) (y, 1) <> ((z, 1) = (y, 1)) v (t ' A (~R(z) > R(y))) V (t =" A R(z) <> R(y)).
Call zy . ..z the vertices of F in R, and y; . .. y,_ the vertices of E not in R. Then () con-
sists of all edges of the form ((z;,0), (y;,1))((zi,1), (y4,0)), ((xi, 1), (z,1)), ((vi, 1), (y;,1))-
Therefore, () contains every edge of F and does not contain ((x,0)(z,1)).

It remains to show that @) is transitive. Suppose that E'((z,t), (y,t")) holds. Then by
construction (¢t # t') and = R(z) <> R(y). Suppose that Q((y,t'), (z,t")) holds. If ¢’ =¢"
then either y = z, in which case Q((z, 1), (2,t")) holds trivially, or R(y) <> R(z). Then,
-R(z) <> R(2) and t # t", so Q((x,t),(z,t")) holds by construction. If ¢’ # ¢”, then
(=R(y) <> R(z)). In this case, t" # ¢t and R(x) = R(z), therefore Q((z,1), (z,t")) holds.

Now suppose that Q((y,t')(z,t")) does not hold. Again, first let ¢ = t"”. Then
R(y) # R(z), and R(z) = R(z). But in this case Q(z,t, z,t") does not hold since ¢ # "
but R(z) <> R(z). Now let t' #t”, so t" =t. Now, either R(y) = R(z) or y = 2. In the
first case, R(z) # R(z) so Q(z,t,y,t") does not hold. The second case contradicts the
assumption Yy < n—Q(y,0,y,1) (note that Q(z,0,y,1) <> Q(z,1,y,0) by construction
of E).Therefore, () satisfies the negated STC above.

To show the other direction, let @) satisfy the second formula. The way R(z) is defined

closely resembles the equation 5.5.3.

R(z) < (Fy < nVz <nVt,t' <2y >x)A (2 >y = Q(z,t,z,t') ANQ(y,1,z,1)) (6.5)
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That is, if z is the maximal element in its connected component (so x = y) then it is
placed in R; otherwise, z is in R if it is on the same side as the largest element in its
connected component.

The proof of the correctness of this construction is straightforward. It follows from
the construction of E' that Q(z,1,z,1) if there is an even length path from z to z, and
Q(z,1,z,0) if there is an odd length path (the proof is by induction on the number
of elements in a connected component: every time we add an edge, we jump to the
other side). Note that both cannot be true without contradicting the condition Yw <
n—Q(w,0,w, 1).

Let u be the largest element in the same connected component as z, that is, Vz >
uVvt,t' < 2-Q(z,t,z,t'). Then every element in the same component as u will have
its value set with respect to u; therefore, there is a unique splitting for each connected
component fixing the position of u. Also, the way different connected components are split
is independent from each other. So by setting every largest element in every connected
component to be in R, we obtain a unique splitting of E into two sets of vertices R(x)

and —R(x), satisfying bipartiteness. O

Now we are ready to state a ST'C version of the ¥2-SymKrom satisfiability. As in
the ¥B-Krom case, a formula is unsatisfiable if for some j < a both (4,0) and (j,1) are
forced to the same value. That is, there exists an odd cycle containing (4,0) and (j,1).
To find, using reachability, an odd cycle in a graph we make two copies of every vertex
to be on the “even” and “odd” side of the bipartite graph. So if there were vertices (j, s)
and (k, s') in the original graph, then there are vertices (4, s,0), (4, s, 1), (k, s',0), (k, s', 1)
in the new graph, and edges (j, s,0)((k, s',1) and (4, s,1), (k, s, 0) for an edge (j, s)(k, s")
in the original graph. Let ¢” be a version of ¢ with this doubling of edges. The following

formula encodes the unsatisfiability of ¢*:
3j < ads <2 STCrsp),0,50)9" (4, 5,0), (4,5,1), (a,2,2)]. (6.6)

Let @ be the variable satisfying the negation of STC in equation 6.6, that is,
Cond(¢",Q,{a,2,2)) AVj < aVs,t < 2-Q((4,s,0),(4,s,1)). Using equations 6.5 and
6.3, we obtain the following unique definition of P by Q:

P(z) =(Jy < nds < 2Vz < nVs', 8" < 2V, 1 < 2 (6.7)
(y>2z)A((z>yViz=yAns <s) = =Q(z ¢, t,z,s", ) NQ(y,1,1,2,1,1))
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Note that in this case we can replace ) by the function ST'C, giving the witnessing
for ¥ B-SymKrom satisfiability problem.

Lemma 6.3.2. Let Fsrc(E,n) be a string function returning an array Z where Z(u,v)
holds iff (u,v) is in the transitive closure of E on the first n vertices. Let ¢* be a
YB_SymKrom formula with a single second-order variable P and let Eg be the edge
relation graph of ¢". Then the following X8 (FSL) function computes P(z), if P exists:

(Fy <nds <2Vz < Vs, s" <2V, ' <2y >2)A((z>yV(z=yAs <)) (6.8)
— _'FSTC(E¢”7 <CL, 2a 2>)(<Z> Sla t>7 <$7 8”7 tl>)) A FSTC(E¢”7 <a7 27 2>)(<y7 1’ 1>a <:L‘a 1, 1)))

The proof of lemma 6.3.2 is immediate from the definition of ST'C', minimality of )

and equation 6.7.

6.3.3 A YJ predicate equivalent to STC: reachability.

At this time we cannot prove that SL is strongly closed under complementation. The
only known proof of closure of SL under complementation is due to Nisan and Ta-Shma
[NTS95]. This result came less than 10 years ago, long after the proof of closure of NL
and SAC! under complementation was known. The idea of the proof is to estimate the
number of connected components in a graph by two measures: by the number of vertices
with the largest index in their connected component (upper bound) and by the number
of leaves in a lexicographically first spanning forest (lower bound). The construction
produces two vectors, a vector LI which contains 0 for every ¢ which is largest in its
component, and a vector LFF, which contains a 0 for every pair (u,v) such that there
is an edge (u,v) in the lexicographically first spanning forest. If there are k& connected
components in a graph, then there are n — k leaves in the lexicographically first spanning
forest, so if LI contains k zeroes and LF'F' contains n — k zeroes, then both estimates
are correct.

Both of these concepts are easily formalizable in V-SymKrom. The problem arises
at the stage of comparison of the number of 0’s in two vectors. For that, a monotone
formula computing a function similar to NUMONES is needed.

The original Nisan and Ta-Shma’s approach refers to the existence of sorting networks
in NC*. However, the constructive proof of the existence of such sorting networks is very

complex. It was first discovered by Ajtai, Komlos and Szemeredi [AKS83|, and their
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construction was later simplified by Paterson [Pat90]. But even the simplified construc-
tion relies on the properties of expander graphs. In order to talk about expander graphs
we need formalization of algebraic properties, such as “second eigenvalue”. That we do
not know how to do in less than polynomial-time reasoning (see [SC02] for discussion of
formalizing algebraic properties).

Another approach would be to use a monotone TC® formula for MAJORITY, given
by Valiant in [Val84]. This result has a fairly short and elegant proof, but the proof is
based on probabilistic reasoning and is non-constructive. Again, we do not know how to
formalize probabilistic reasoning in our class of systems. Therefore, the current proofs
of closure of SL, and thus ¥?-SymKrom, under complementation are not formalizable in
V-SymKrom.

However, if we can prove the second property, that is the constructiveness, then we
can give a weaker form of the witnessing theorem, where witnessing functions are in the
AC° closure of F'SL. For that, we need to give a 8 formula defining a predicate which
is provably equivalent to the negation of one of the complete problems for coSL. Note
that it is sufficient to make that predicate X2, it is not necessary to give a ¥2-SymKrom
predicate. The main concerns are witnessing and proving equivalence to the negation of
a YB-SymKrom predicate.

The negated X Z-SymKrom statement which we will use states the existence of an odd
cycle, or, equivalently, a path in a doubled graph. Therefore, it is sufficient to consider
the problem of representing existence of a path between two given vertices in a graph as
a ©.8 formula and proving its equivalence to a transitive closure formula.

Before describing the P formula for the existence of a path, we will give some
intuition about the witnessing proof. Recall the definition 5.6.2 of counters from the
proof of Immerman’s theorem for NL. More specifically, we will use a variant of the Dist

function, but now on an undirected graph.

Definition 6.3.3. Let ¢ be a formula defining an edge relation of a graph. Let
UDisty(z,y,d) = STCy 0 0,e)0l(2,0), (y,d), (n,n)],

where a(u,c,v,d) = (¢ =c+ 1A (¢(u,v) Vu =v)). For simplicity, we assume that ¢ is

represented by the corresponding graph E, and write UDist(z,y, d) in that case.

By that definition, UDist, holds iff there is a path from z to y of length at most
d in a graph with edge relation defined by ¢. If ¢ is a 3 formula with only bounded
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existential quantifiers, then STC is negated ¥-SymKrom. The definition of « is the
same as in the NL case.
We can prove analogs of lemmas in section 5.6.2 for symmetric transitive closure. In

particular, we will use the following analog of Lemma 5.6.10:

Lemma 6.3.4. If there is a path in E from x to y, then there is a path from x to y of
length < n — 1. That is,

STCypE(u,v)[z,y,n] <> UDist(xz,y,n — 1)

Now we are ready to describe undirected reachability. To make the presentation
cleaner, assume that the graph has n + 1 vertices (that is, the longest path in the graph
is of length at most n). We will first say how to witness the variable R in our 22 predicate
REACH(E,n,a,b), and then give the predicate itself.

Let variable R(z,%) be true if there is a path (with possible loops and vertex repeti-
tions) starting from a in which the ™ vertex is z. Define R(z,1) by the following formula,
for x < n,i < n:

R(z,i) = UDist(a, ,1) (6.9)

The following X# formula, which is implicitly based on this definition of R(x,1), is

defined to correspond to the R from equation 6.9:

REACHCOND(R, E,n+ 1,a) =Vz < nVi < n(R(z,0) < z = a) (6.10)
A(R(z,i+1) < By < nR(y,i) A (E(y,2) Vy =z)))

The following lemma states that UDist witnesses 3R in 3JRREACHCOND(R, E,n +
1, a).

Lemma 6.3.5. V-SymKrom proves
REACHCOND(R, E,a,n+1) = Vz < nVi < n(R(z,i) <> UDist(a,z,1))

Proof idea. The idea of the proof is to verify, by induction on i, that R defined by the
equation 6.9 satisfies each of the conditions of the formula 6.10. We can use induction
because R is ©F (X2-SymKrom), and by theorem 3.2.10 we can do induction and compre-
hension on Y f-combinations of %f-SymKrom formulae. All the conditions of equation
6.10 that need checking are ©F. O
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Now, the following ¥8 formula states that there is a path from a to b in E:

REACH(E,;n + 1,a,b) = IRREACHCOND(R, E,n + 1,a) A R(b,n).

Now we want to show that REACH and ST'C' are equivalent.

Theorem 6.3.6. Let E be a graph on n+1 vertices, and let a,b be two arbitrary vertices
i E. Then

V-SymKrom = REACH(E,n + 1, a,b) <> STC, ,E(u,v)[a,b,n + 1].

Proof. The proof of this theorem is immediate from lemma 6.3.4, lemma 6.3.5, and the

following claim 6.3.7.
Claim 6.3.7. The statement ARReachCond(R, E,n+1,a) is a theorem of V-SymKrom.

Proof idea. The idea of the proof is to use comprehension over equation 6.10 with def-
inition of R via U Dist substituted into the formula under the existential second-order

quantifier. O
O

Now we can use REACH predicate to Y.P-define the condition that a ¥f-SymKrom

formula ¢* does not have a satisfying assignment.

Theorem 6.3.8. Let ¢* be a XP-SymKrom formula. Then there is a P predicate
equivalent to the negation of ¢*. Moreover, the existential quantifier in that predicate can

be witnessed in L8 (XB-SymKrom).

Proof. Consider the equation 6.6. It can be converted to an equation with a single
outermost occurrence of transitive closure. The idea is to take 2n copies of the graph
corresponding to ¢”, add two new vertices (n,0,0,0) and (n,0,0,1), and connect, in
the copy (4,s), (n,0,0,0) to (4,4,s,0) and (n,0,0,1) to (j,7,s,1). The idea behind
this construction is similar to the treatment of the universal quantifier in the proof of
theorem 6.2.1. Now replace ¢” with ¢, which is equivalent to ¢” on each copy of the graph
and has additional edges from (n,0,0,0) and (n, 0,0, 1), as described above. The formula
encoding satisfiability for ¢* now becomes STC\; . s.1),(j7 0.5,y Pc[(7, 0, 0, 0), {n, 0,0, 1), (n+
1,n,2,2)].

Given this  formula, a XP formula  equivalent to it is
REACH(¢,, (n + 1,n,2,2),(n,0,0,0),(n,0,0,1)). By construction, REACH holds iff ¢*
is not satisfiable. O
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6.4 A weak definability theorem for V-SymKrom and
finite axiomatizability.

Let FSL be the class of functions with ¥Z-SymKrom formulae as defining axioms, fol-
lowing the definition 3.3.5. For this system we have to use the weak version of theorem
3.3.13. That is, the definability theorem for V-SymKrom is stated as follows:

Theorem 6.4.1. Provably in V-SymKrom, every FSL function is X2 -definable in V -SymKrom
and every function XP-definable in V-SymKrom is in AC°(F'SL). Since SL is closed
under complementation, AC°(FSL) = FSL, so the class of Y¥-definable functions of
V-SymKrom coincides with F'SL. However, the latter statement is not known to be prov-

able in V-SymKrom.

Proof. We prove the theorem using only constructiveness property. XZ-SymKrom is
constructive by the results in the previous section: we can either witness the existence
of a path in a graph or a transitive closure which does not contain a given pair.

Lemma 3.3.14 applied to V-SymKrom states that every F'SL function is ¥5-definable
in V-SymKrom. For the other direction, apply the weak version of theorem 3.4.2 to
conclude that the class of witnessing functions of V-SymKrom is X (FSL).

By Nisan and Ta-Shma’s result [NTS95], SL is closed under complementation. There-
fore, the class of X2-definable functions of V-SymKrom is indeed F'SL, however V-SymKrom

does not prove it. O
As in the case of V-Krom, we can show that V-SymKrom is finitely axiomatizable.
Theorem 6.4.2. V-SymKrom is finitely axiomatizable.

Proof. The proof of this theorem is very similar to the proof of finite axiomatizability of
V-Krom. Since by theorem 6.2.1 ©§ comprehension is provable in V-SymKrom, we know
that V-SymKrom extends V°. By theorem 3.6.1, V? is finitely axiomatizable. Now, let
#*(i,a,Y) be a XE-SymKrom formula and let ¢” be the same as used in the equation
6.6. Then by comprehension for any value of the free variables @,Y of ¢* there exists a
graph FE with ¢" as its edge relation.

Consider the following formula (which is a negation of formula 6.6):
(i, B) = 3Q CondS(E, @, (a,2,2)) AVj < a¥s < 2-Q((j, ,0), (j, 5,1))-

Comprehension over ¥ (i, ) plus V? proves all of V-SymKrom. O



Chapter 7
Conclusion

In this work we presented a general framework for constructing systems of arithmetic
with a predefined power. The setback is that the requirements on the class of formulae
which can serve as a basis for such systems are quite strict: the closure under AC° relations
is already a very powerful requirement, and the descriptive capture requirement makes
constructing such systems even more complicated. So the main object of interest is to
pinpoint as precisely as possible which properties on the complexity classes and the cor-
responding classes of formulae are necessary for such construction of systems of bounded
arithmetic, in particular in which cases a version of constructiveness holds. Does it only
work for Schaefer’s classes (see Theorem 2.2.8)7 Can the construction be based on fixed
point logics directly, rather than on a respective second-order restricted formulae? Can
the constructiveness property be rephrased to apply to a more general setting?

A separate question arises from the Symmetric Logspace example. Is it intrinsically
hard to prove closure of SL under complementation using SL concepts? Such a result,
formulated as an independence statement for V-SymKrom, would be very interesting,
although quite unlikely. This touches on a deep question in complexity theory: under
which conditions it is possible to prove properties of complexity classes using only con-
cepts within these classes? We showed that closure under complementation can be proven
within the class for AC°, P and NL, but SL is a possible example for which this might not
be the case. What is so different about SL, then? Or is it the case that a simpler proof
exists of existence of monotone formula for MAJORITY below SL, and thus of closure of
SL under complementation?

An attempt to build a system of arithmetic not based on one of Schaefer’s classes

is a current project concerning a class LOGCFL. LOGCFL is a class of languages logspace-

147



CHAPTER 7. CONCLUSION 148

reducible to context-free languages. It was first studied in [Sud78]; there, an equivalent
characterization via non-deterministic pushdown automata with a logspace-bounded aux-

iliary tape was given. LOGCFL contains NL and is contained in AC?; that is,

AC° C NC! C L C SL C NL C LOGCFL C AC! C NC C P.

One of the cleanest characterizations of LOGCFL is a uniform SAC!: a class of languages
recognized by semi-unbounded fan-in depths O(logn) circuits. This class is halfway
between NC' and AC': the AND gates in SAC! circuits have fan-in 2, and OR gates
have unbounded fan-in. The other characterization of LOGCFL, due to Ruzzo, [Ruz80],
is alternating logspace Turing machines with polynomial tree size. The relation between
SAC' characterization and Ruzzo’s ATMs with bounded tree size was later shown by
Venkateswaran [Ven87]. In 1989, Borodin et al. extended Immerman’s inductive counting
technique to show that SAC' is closed under complementation [BCD*89].

An important result came in 1998: Gottlob, Leone and Scarcello [GLS01] showed that,
together with properties of semi-unboundedness and polynomial tree size, the property
of acyclicity (or, equivalently, bounded tree-width) is a characteristic trait of LOGCFL.
They gave a first natural satisfiability-like problem that is complete for LOGCFL: acyclic
conjunctive boolean queries.

It seems that in the satisfiability community there is more emphasis on creating faster
algorithms for (subclasses of) satisfiability than proving completeness for smaller classes.
There is some work on acyclic satisfiability (for example, by Szeider or by Makovsky), but
they do not prove any completeness results and their definitions are somewhat different
from GLS (although related).

We would like to define a Gradel-style second-order version of acyclic restricted SO4.
The idea is to somehow restrict allowed tuples of first-order variables, together with an
acyclicity condition on the formula, so that the resulting propositional formula is acyclic.
One approach is to treat clauses as implications, and require that the terms on one side
of the implication are strictly smaller than on the other side. For example, in a clause
(P(z) — Q(y)) the only allowed values of first-order variables would be z < y. This
might be an interesting result in its own right.

Then we can try to build a V-® system based on such “acyclic ¥8” formulae. The
next step would be to prove that LOGCFL is closed under complementation. One approach

is to formalize the inductive counting proof from [BCD*89]. In any case, we can try to



CHAPTER 7. CONCLUSION 149

prove constructiveness and apply Definability theorem.

Alternatively, it might be interesting to build a system of arithmetic based on a
natural second-order version of Schaefer’s 4th class of formulae, that is, “symmetric
CNF” formulae, which are defined like symmetric Krom (see definition 6.0.4), except the
number of literals in a clause is not restricted.

Yet another direction would be to consider complexity classes larger than NP. Even
though some of them are not known to be closed under complementation, others are; it
would be interesting to see if a version of Theorem 3.3.13 applies to classes like PSPACE
or EXP. One approach here would be to use third-order theories; another to enrich the
language with # and restate the results in that framework.

A traditional direction of research in bounded arithmetic is to augment known sys-
tems of arithmetic with axioms for combinatorial principles, and then study which other
principles can be proven in that stronger theory. Examples of such an approach are pre-
sented in the work of Kerry Ojakian [Oja04], Neil Thapen, Michael Soltys [TS], in which
they formalize mathematical notions such as Ramsey Theorem and linear algebra by
adding combinatorial principles like pigeonhole principle to their systems of arithmetic.

It would be interesting to see how our approach relates to that framework.
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