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Chapter 1

Preliminaries

1.1 Propositional logic

Propositional logic (also called boolean logic) is a formal system where propo-
sitions are expressed using formulas written in De Morgan Language. Propo-
sitions can be also thougt of as boolean-valued functions, i.e. with values in
the boolean set B = {0,1} and domain of B* for k-ary functions.

The De Morgan language used to construct and express the formulas con-
sists of connectives, propositional variables and auxiliary symbols:

e connectives (operators): {V,A, =}, meaning disjunction, conjunction
and negation, respectively. Other commonly used logical connectives
such as {=, =} (implication and equivalence) can be defined using the
former three.

e brackets (,) to define operator scope

e constants 1, 0 and propositional variables: zy,xs, ...

We are only interested in well-formed formulas. They must be constructed
recursively using the following rules:

e a propositional variable or a constant is a well-formed formula

e conjunction (AA B) or disjunction (AV B) of two well-formed formulas
A, B is a well-formed formula

e negation (—A) of a well-formed formula A is a well-formed formula
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In practice however, some brackets may be left out due to priority of
operators: — having the highest priority, followed by A and finally V with
the lowest priority.

Also, formulas are mostly expressed in one of the two normal forms:
disjunctive normal form (DNF) or conjunctive normal form (CNF). Each of
these forms is an expression built from literals — a variable x; or its negation
—x;. A DNF formula is disjunction of conjunctions of the form

\VARVANR/®

j=l.mk=1..n;

with [, being the literals, e.g.
(Il A ) N ZL'4) vV (131 A —Ts A\ _|fL’7) V ($2 A _|ZE3)

The idea of CNF is very similar, it is conjunction of disjunctions:

AN
j=l.mk=1..n;

with [;; again being the literals. Each of the inner disjunctions of literals is
also called a clause. An example of CNF formula would be

(X2 V mxg) A (21 V 220V —as) A (may V g V —g)

There are also CNF variations, such as k-CNF, which is CNF with exactly &
literals in each clause. Every propositional formula can be transformed into
CNF or DNF, although some transformations might make the formula grow
exponentially in number of literals (e.g. converting CNF to DNF). However,
there exists a way to transform a formula A into a “short” CNF formula
B (with some additional variables) while preserving the satisfiability. This
method is called limited extension (see e.g. Buss [6]).

The notion of formula size and the relative growth after applying opera-
tions upon it bring us to the field of computational complexity.

1.2 Proof complexity
Definition 1.2.1 (p-time). A relation R(z1, 2, ...,2,) on {0,1}* is p-time

decidable if there exists a deterministic Turing machine and a polynomial
p(x) € N[z] that decides R in at most p(|z1| + |z2| + -+ + |2,|) steps.
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Definition 1.2.2 (Cook-Reckhow [8]). A propositional proof system for
language L C {0,1}* is a binary relation P(z,y) satisfying the following
conditions:

1. Completeness: x € L = 3y : P(z,y)
2. Soundness: Jy : P(z,y) =z € L
3. p-verifiability: P(x,y) is a p-time decidable relation

Relation P(x,y) can be interpreted as “y is P-proof of x”. We will focus
on the language L = T AUT, the set of all tautologies in De Morgan language.
The original definition of Cook and Reckhow used a function f : {0,1}* —
TAUT as the proof system, the relational definition is equivalent.

Definition 1.2.3 (Cook-Reckhow [8]). Proof system P(z,y) is p-bounded
iff there exists polynomial p(z) € Nz] such that Vz,y € {0,1}*:

P, y) = 3z(|2| < p(la))) : Pz, 2)

Definition 1.2.4 (Cook-Reckhow [8]). Let P, be two propositional
proof systems. Proof system P p-simulates () if there exists a p-time com-
putable function ¢ : {0,1}* x {0,1}* — {0, 1}* such that Vz,y € {0, 1}*:

Q(z,y) = P(z,9(z,y))

The ¢ function “translates” Q)-proofs into P-proofs. Since g is p-time,
the size P-proofs may grow at most polynomially.

There is a tight connection between proof complexity and general compu-
tational complexity as expressed by the following definition and theorem.

Definition 1.2.5 (Cook [7]). NP is a class of languages admitting a p-
bounded proof system. coN P is the class of complements of N'P-languages.

Theorem 1.2.6 (Cook-Reckhow [8]). NP = coN'P iff the set of propo-
sitional tautologies TAUT admits a p-bounded proof system.

Proof. The task of deciding whether a formula ¢ € T'AUT is a problem
belonging to coN'P (the assignment of variables showing that ¢ ¢ TAUT
is polynomially long). Let P be p-bounded propositional proof system with
bound p(x). Under such circumstances, the problem of belonging to TAUT
is also a NP problem, since the string witnessing the fact of belonging to
TAUT (the proof) is bounded by p(x).

The other way round, if NP = coN P, the problem of belonging to TAUT
is in coN'P as well as in NP, so there exists a p-bounded proof system. [J
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Length-of-proofs lower bounds for various proof systems suggest that NP
coNP and if we believe so, no propositional proof system is p-bounded. The

question NP = coN'P is unlikely to be solved by means of exhaustive search
by proving lower bounds for various proof systems, however it may expose
some yet unknown structure in the nature of proofs.

1.3 Resolution

Resolution is a proof system with a single simple rule. Nevertheless, it is
currently the only system with a known algorithm better than brute-force
backtracking. Resolution proves tautologies in DNF form. In fact, resolution
does not prove tautologies directly, instead the formula is first negated and
resolution is used to refute it. Note that negating a DNF formula “turns”
it into a CNF formula (if we propagate the outside negation using De Mor-
gan’s rules). Also, formulas to be proved in different form than CNF can be
first negated and then transformed into CNF using the mentioned limited
extension while preserving (un)satisfiability.

Resolution proof system operates on clauses, since the formula to be refuted
is in CNF. We will think of the clause I; VIy V.-V 1, as a set {l1,ls,...,1,}.
The only inference rule is resolving two clauses C' U {—z} and D U {z}:

CU{~zx} DU {x}
CuD

We say that the variable x has been resolved, C'UD is called the resolvent.
Only one variable can be resolved at a single step.

It is quite easy to see that the resolution rule is sound — regardless of the
value of z, if both clauses C'U {—z} and D U {z} were satisfied by the same
assignment, then C'U D must be satisfied as well.

The goal of refutation is to derive an empty clause, which is not satisfiable.

Definition 1.3.1 (Resolution proof). Let A be a DNF formula, B = = A
in CNF form, B, the clauses of B. A resolution proof of a DNF formula A
is a sequence of clauses C;, i = 1,...,m such that:

e last clause C,, is the empty clause ()

e cach intermediate clause C; is either one of B, or a clause derived using
resolution rule from some C;, Cy, j,k <1
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Example 1.3.2. An example of resolution proof of formula A

A=(maN-bNd)V (maN=bAN=cA=d)V(bA=c)V(a)V(c)
B==-A=(aVvbV-d)A(aVbVeVd) A (=bVc)A(—a)A (—c)

Cy ={a, b, ~d} B
Cy ={a, b, c,d} B,
C3 ={a,b,c} resolved from C, Cy
Cy ={—a} B,
Cs ={b,c} resolved from Cj, C,
Cs ={-b,c} Bs
C; ={c} resolved from C5, Cg
Cs ={—c} Bs
Cy =0 resolved from C7, Cg

Theorem 1.3.3 (Soundness and completeness). DNF formula A is
provable in resolution proof system iff it is a tautology.

Proof. Soundness: resolution rule is sound, if an assignment satisfies the
hypotheses, then it also safisfies the resolvent. Thus the last clause is satisfied
if the initial clauses can be satisfied by an assignment. Since the empty clause
in refutation cannot be satisfied, there is no satisfying assignment for the
initial clauses either.

Completeness: Suppose A is tautology, formula B and clauses B, are de-
fined as in definition 1.3.1. We will prove completeness by induction on
number of distinct variables n in A. In case of a single variable [, there is
only one possibility for B: {l;},{—l;}. Single application of resolution rule
derives (.

For n > 1 pick variable [,,. Split the clauses B; into disjoint sets:
e B with clauses containing neither [,,, nor =,
e 3, with clauses containing literal [,,, not =,

e B3_; with clauses containing literal —l,, not [,
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Then, resolve each clause from B; and B-; against each other, forming new
set of clauses C without the variable [,,. Add elements of B to C. The set C
contains no clauses with /,, and has n — 1 variables.

Set C is unsatisfiable — if it was satisfiable, then an assignment v to
variables {l,...l,_1} would satisfy either all {C;|C; U {l,,} € B;} or all
{D;|D; U {~l,} € B.}. Otherwise there would exist two clauses C;, D;
not satisfied simultaneously. Thus we could add a suitable value for [,, to v
that would also satisfy set of B; and B — contradiction with unsatisfiabil-
ity of B. Finally, the existence of refutation for C follows from induction
hypothesis. [

1.3.1 Pigeonhole principle - PHP,

Pigeonhole principle (PHP) states that, given two natural numbers n and
m with n > m, if n items are put into m pigeonholes, then at least one pi-
geonhole must contain more than one item. More formally, it says that every
function f : N — M,|N| > |M| is non-injective. PHP is a widely studied
concept in propositional proof complexity. It is one of “hard” tautologies, a
tautology that has exponential size proofs in certain proof systems.

Let us have language with relation R(z,y) and constant 0 on universe
M;|M| = n. We will define a property of a relation on {0,...,n — 1} X
{0,...,n — 1} by the first-order formula:

JaVy : = R(z,y) V
[Fz1, 22,y 0 21 # 22 A R(1,9) A R(22,Y)]V
B2, 91,92 - y1 # Y2 A R(2, 1) A R(w, )]V
Jdz : R(z,0)

Translated to words, the disjunctions above mean: either there is an x
mapped to no y or at least two distinct z1, x5 are mapped to the same y or
one x is mapped to at least two distinct yq, yo or there exists mapping = to
constant 0.

For every n > 1 we can translate the formula into propositional form.
First, replace 3 and V with disjunction and conjunction respectively over all
elements of {0, ..., n—1}, replace true statements with 1 and false statements
with 0. Finally replace R(i,j) with new atoms r;; whose truth assignments
reflect the relation R(i, 7). The formula in propositional form then has form:
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\//\ﬁ%‘ VIV Vg Al v

7 11<t2 J

NV ris Al v o

i j1<j2 i

By forbiding j to range over 0, we get the mapping from n element set to
n — 1 element set and we can delete the last disjunct (it evaluates to false),
thus the propositional translation PH P, would be:

VA VIV ris Arigl v

i 0<j i1<iz 0<]
AVARVARS WY
1 0<g1<j2

It has been proven that PH P, has exponentially long proof in resolution:

Theorem 1.3.4 (Haken [11]). The lower bound for a proof of PHP, in
the resolution proof system is exp(c-n) for some constant ¢ > 0.
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OBDD proof system

The proof system introduced by Atserias et al. [1] views the satisfiability
problem for boolean formulas in CNF as an instance of constraint satisfaction
problem (CSP).

2.1 OBDD

The OBDD proof system is a case of CSP using ordered binary decision dia-
grams (OBDD) as the syntactic representation of boolean functions. OBDD
is a rooted directed acyclic graph comprised of decision nodes and two ter-
minal nodes — O-terminal (false) and 1-terminal (true). Terminal nodes have
no children. Each decision node is labeled by a variable name and has two
children called high child and low child. The edge from a node to a low (high)
child represents an assignment of the variable to 0 (1). The assignment to
the variables thus determines an unique way to one of the terminal nodes
(the result of the function). For an example of OBDD, see figure 2.1.

The ordering is an additional requirement that the variables on every
path are consistent with some linear ordering of variables. Each OBDD can
be transformed into reduced form that is the smallest OBDD computing the
function as shown by Bryant [5]. Unless stated otherwise, we will only focus
on reduces OBDDs.

Constructing an OBDD from a clause

Every clause has a short equivalent OBDD. It is straightforward to see that
an OBDD constructed from disjunction of n literals will have the size n + 2:
one node for each variable with one edge leading to terminal 1 and the other
leading to the next variable (except for the last variable, where one edge
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leads to terminal 0). Note that the size of the OBDD is independent of the
variable ordering. See figure 2.1 for an example.

Figure 2.1: OBDD for clause {x1, 2y, ~x3, x5, 726}, dashed lines mean as-
signment of variable to 'false’

OBDD properties

Some properties of OBDDs that we shall use are included in the following
list. Note that we assume some fixed ordering has been chosen.

e transforming OBDD into reduced form is p-time (similar to Moore
reduction procedure in finite automata)

e every boolean function can be represented by a unique reduced OBDD,
reduced form is canonical, thus equivalence check of two OBDDs is p-
time



CHAPTER 2. OBDD PROOF SYSTEM 10

e for each OBDDs A, B the operations constructing new OBDDs equiva-
lent to AV B, A\ B, A are p-time. Those operations can be viewed as
union, intersection and complement of finite automata, first two having
quadratic bound on number of new nodes and complement being just
switching the 0-terminal and 1-terminal.

e decision whether OBDD A majorizes another OBDD B is p-time

The size of OBDD is determinded both by the function represented as
well as the chosen variable ordering. Depending on the ordering the OBDD
for the same function may vary in size from linear to exponential growth in
respect to number of variables. Finding the optimal variable ordering is a
NP-hard problem in general [4].

2.2 Inference rules

Let A, B,C be OBDDs and let A[x] express that A depends on set of
variables x. Denote A(v) the result of A with an assignment of v to the
variables x, vU{x; = e} is extending the assignment v with an assignment of
e € {0, 1} to the variable z;. The three inference rules are defined as follows:

join % where C' = AN B (2.1)
projection of z; % where C(v) < Je € {0,1} : A(v U {z; = e})

(2.2)
weakening % where A = C (2.3)

The join rule is straightforward, weakening is relaxing the constraints on
satisfiability of an OBDD. Projecting a variable x; out of A means that the
resulting OBDD (' is satisfied with an assignment v whenever A is satisfied
with assignment v U {z; = e} for some value e € {0,1}. If we viewed the
satisfying assignments for A as rows in a relational database with columns
labeled by variables, the satisfying assignments for C' would be the same
after “cutting off” the column labeled ;. In the same way the join rule can
be viewed as natural join and weakening as adding additional rows to the
relation table.
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All the three inference rules are special case of “short-form” semantic rule:

ATB such that ANB = C

We can also say that C' majorizes A A B. Nonetheless the three explicit rules
are probably better in practical applications, since the shorthand rule does
not explicitly denote the resulting OBDD.

Lemma 2.2.1 (Atserias, Kolaitis, Vardi [1]). OBDD proof system p-
simulates resolution proof system.

Lemma 2.2.2. OBDD proof system is Cook-Reckhow proof system.

Proof. Soundness and completeness follows from p-simulation of resolution,
p-verifiability follows from OBDD properties as described before. ]

2.3 Strength of OBDD proofs

OBDD proof system has shown itself to be very strong. Even without the
use of weakening it can p-simulate resolution, using only join and projection
[1]. OBDD proof system also p-simulates numerous other proof systems, such
as Gaussian calculus proof system (described in [2]) and CP* (cutting planes
with coefficients encoded in unary, introduced in [9]). However, it would be
interesting to know if OBDD proof system can simulate cutting planes with
binary coefficients, which is unknown to-date.

Moreover, there exists a particular system of equations known as Tseitin
contradictions that is exponentially hard for resolution, but not for OBDD
proof system [1]. Thus OBDD proof system is exponentially stronger than
resolution.

Nevertheless, there still are hard tautologies for OBDD proof system as
well. A lower bound has been proven using feasible interpolation by Krajicek
[12].



Chapter 3
R-OBDD

3.1 Motivation

Resolution (its tree-like form) is one of the weakest of commonly used proof
systems. However, it is the only system that can be reasonably used in
computer-aided proof search. All stronger proof systems offer at most brute-
force backtrack algorithms. While we know that resolution has exponentially
longer proofs in some cases compared to those strong proof systems, the
resolution proof-search algorithms are better in actual finding proofs with
current state of knowledge.

Therefore we attempt to create a system somewhat syntactically and se-
mantically similar to resolution. We hope that DPLL algorithm [10] and its
heuristics could be used for this stronger proof system (with some modifica-
tions).

3.2 Definitions

Definition 3.2.1 (OBDD-clause). OBDD-clause is a disjunction of OB-
DDs. Size of an OBDD-clause is the sum of size of OBDDs in the OBDD-
clause.

Constructing an OBDD-clause

Each clause can be transformed into multiple OBDD-clauses depending on
how many literals do we “group” into each OBDD. It is possible to represent
each literal by a separate OBDD as well as represent the entire clause by a
single OBDD or anything in between.

12
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3.3 Inference rules

R-OBDD defines following rules, with I' and A being disjunction of OBDDs
from a OBDD-clause.

rve AVvAh

TVAV P such that P; is join of P, P, (3.1)
% such that @) is projection of P (3.2)
? \\; g such that () is weakening of P (3.3)
T »
%11\0/3% where Py = P,V Py (3.5)

1 (3.6)

The first three rules are equivalents of the inference rules of OBDD proof
system — join, projection and weakening. The rule 3.4 could be omitted if
we treated the OBDD-clauses as sets.

Note that the rule 3.5 is not necessary, it is provided for convenience. The
rule can be derived using following steps:

rvpeve

FvP—iva where P; = P, V P, (weakening of P, - rule 3.3)
rvpeve

F\/P—;\/Pi (weakening of P; - rule 3.3)

rvpesvPe

TTvp \/3 P, > (reducing duplicate Ps - rule 3.4)

3.4 The proof system

Definition 3.4.1 (R-OBDD proof). Let A be a formula in DNF, B = -A
consisting of clauses C1,...,C,. An R-OBDD proof of A is a sequence
I'y,..., T, of OBDD-clauses where each I'; is either an OBDD-clause con-
structed from C; or derived from I, I'; for some s,¢ < ¢ such that I';, =0,
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i.e. I'y, is an unsatisfiable OBDD with a single node — the 0-terminal. This
process is called R-OBDD refutation.

Size of R-OBDD proof is the sum of sizes of all I'; used in proof, length of
the proof is m.

Lemma 3.4.2. R-OBDD p-simulates OBDD proof system.

Proof. OBDD proof system is a special case of R-OBDD proof system —
every line in proof consists of just one OBDD. Use of the first three rules is
sufficient to simulate all OBDD inference rules. O]

Theorem 3.4.3 (Soundness and Completeness). Let A be a DNF for-
mula, B = —A in CNF. Then A has R-OBDD proof if and only if it is
tautology.

Proof. Soundness: Suppose we have R-OBDD proof of A — refutation of B.
In each inference rule, if an assignment satisfies the hypotheses, then it also
safisfies the derived OBDD clause. Thus the last OBDD clause is satisfied
if the initial OBDD clauses can be satisfied. The last OBDD clause in the
proof is unsatisfiable OBDD with only a 0-terminal, therefore initial OBDD
clauses cannot be satisfied.

Completeness: Suppose A is tautology and B = —A is in CNF with
clauses C. To see that A has R-OBDD proof, it we can use the same tech-
nique as described in proof of theorem 1.3.3 with minor adjustments: instead
of clauses with literals we use OBDD clauses constructed from C where each
literal is represented by a separate OBDD and resolution rule is replaced
by rule 3.1 which derives 0 from the complementary literals. The 0 in the
derived OBDD clause may then be absorbed using rule 3.5. This is basically
p-simulation of resolution. O

It is possible to prove completeness in a broader sense:

Theorem 3.4.4 (Generalized completeness). Every unsatisfiable set of
OBDD clauses can be refuted.

Proof. Suppose we have such set {I',...,I';,}. Create a new set set of OBDD
clauses {Aq,...,A,,} by applying repeatedly the rule 3.5 to each I'; until
it consists only of a single OBDD and let us call the result A;. Suppose
I, ={P,...,P}. The derivation of A; is:
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PV PV VP
[IoVPsVEP V-V B
[y VPV P V-V Py

sV Py V-V P

Iy Vv P
A,

Now we can use the first three inference rules to p-simulate OBDD proof
system on the set of {Ay,...,A,,} (actually, for purposes of this proof it
would be sufficient to use the rule 3.1 repeatedly as join until we derive
unsatisfiable OBDD). As a final note, the size of each A; may be exponential
in comparison to I'; it has been derived from. O

Lemma 3.4.5. R-OBDD is a Cook-Reckhow proof system.

Proof. Soundness and completeness has been proven in Theorem 3.4.3. The
p-verifiability follows from p-computability of various operations on OBDDs
mentioned in chapter 2. O



Chapter 4

Automated theorem proving in
R-OBDD

The similarity between R-OBDD and resolution proof systems allows us to
modify DPLL algoritm for theorem proving in R-OBDD. However, we will
not go into implementation details, since the fundamental part is the new
proof system, but we will describe the core of the algorithm.

The original DPLL algorithm can be expressed by the following pseudo-
code with Phi being the CNF formula and Con the partial assignment to
propositional variables (empty at the beginning, “Con” meaning constraints):

function DPLL(Phi, Con)
if (Phi=True)
then return True;
if (Phi=False)
then return False;
if (unit clause L occurs in Phi)
then return DPLL(assign(L,Phi), append(Con,L));
if (literal L occurs pure in Phi)
then return DPLL(assign(L,Phi), append(Con,L));
L := chooseliteral(Phi);
return DPLL(assign(L,Phi), append(Con,L)) OR
DPLL(assign(negate(L) ,Phi), append(Con, negate(L)));
endfunction

The literal L is either in positive form v or negative form —v for some vari-
able v. Function assign(L, Phi) returns formula Phi where it replaces ev-
ery positive occurence of L by True and every negative occurence with False
and returns the simplified formula. Simplifying means removing clauses that

16
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evaluate to True and removing literals that evaluate to False. If a clause
becomes empty, the whole formula evaluates to False.

An unit clause is a clause with only a single literal (thus there is only one
way of assigning it) and pure literal is a literal which occurs only in one form
(positive or negative) throughout the whole formula.

Function negate (L) negates the literal L and append(Con,L) means ex-
tending the assignment Con by assigning to literal L. Assignment to L is True
for literal in positive form and False otherwise.

The only function left is chooseLiteral which chooses the next literal
to be assigned and further branching depends on that literal. There are
numerous ways and heuristics to decide the next branching literal. Note
that the choice of branching literal strongly affects efficiency.

4.1 R-OBDD solver — DPLL modification for
R-OBDD

The DPLL adaptation for R-OBDD proof system works in a similar way
like classic DPLL. The input for the algorithm are the clauses of the CNF
formula. The first step consists of partitioning the literals in the clauses into
OBDDs. There are two special cases — if every OBDD contains just one
literal, the algorithm becomes a classic DPLL, in the other case each clause
is represented by a single OBDD, which in turn resembles the OBDD proof
system. Otherwise any combination of literals in a OBDD is possible. We
will discuss the efficiency impact of this partitioning later.

The fundamental change is in the branching part of the algorithm — instead
of branching upon assigning a literal, branching is done upon “assigning” 0 or
1 to an OBDD P, we will call this “assignment” a constraint or assumption.
The branching part of the algorithm then becomes:

1. choose an OBDD P from an OBDD clause for the next constraint
2. assume the value of OBDD Pis1or 0
3. let R:= P if P=1, and R := =P otherwise, R is the constraint

4. take each clause containing an OBDD @ such that R = @ and delete
the clause (since R is satisfied, so is () and the whole OBDD clause
containing () is satisfied)

5. every OBDD (@ sharing at least one variable with R is replaced by join
of R,(Q
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6. any unsatisfiable OBDD in any clause is deleted

7. if any clause contains no more OBDDs, it is unsatisfiable, thus we
return false in this level of recursion

The set of assumptions is used later to output satisfying assignment in
case of satisfiable formula. When the formula is found to be satisfiable, the
constraints are partitioned into a number of disjunct subsets Ki,..., K; so
that no OBDD from set K; shares any variable with any OBDD from set K
for ¢ # 7. To find the assignment for variables used by OBDDs in set K, all
of the OBDDs in the set are joined into a single OBDD S; and any path from
the 1-terminal up to the root can be used as the assignment to the variables.
Of course, it is best to partition the set of constraints into as many subsets
K; as possible, since it affects the size of each 5;.

To sum it up, the new ROBDDSolver algorithm could be described with
the following pseudocode. In this case, Phi is an array of OBDD clauses and
Con a set of constraints made during the computation.

function ROBDDSolver (Phi, Con)
if (Phi=True)
then return True;
if (Phi=False)
then return False;
if (unit OBDD P occurs in Phi)
then return DPLL(assign(P,Phi), append(Con,P));
P := chooseOBDD(Phi);
return DPLL(assign(P,Phi), append(Con,P)) OR
DPLL(assign(negate(P), Phi), append(Con, negate(P)));
endfunction

function assign(R, Phi)
for each (0OBDD Q in Phi)
if (R implies Q)
then delete clause containing Q;
if (Q shares variable with R)
then Q := 0BDDJoin(Q, R);
if (Q=False)
then delete(Q);
return Phi;
endfunction
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The only new function is 0BDDJoin which returns join of two OBDDs and
chooseOBDD which is analogy of chooseLiteral in DPLL. The meaning of
assign and negate functions is analogous to their meaning in the original
DPLL algorithm, except they operate on OBDDs. Negating of an OBDD is
simply switching 1 and 0-terminals, while assign is extended to accomodate
new possible states in R-OBDD proof system. Note that the ROBDDSolver
algorithm has no analogy for pure literals — in the R-OBDD case it is much
less likely to find a “pure OBDD”. Also, pure literal elimination is not used
much in DPLL variants nowadays.

Theorem 4.1.1. R-OBDD solver algorithm is correct and terminating —
outputs satisfying assignment iff the input formula is satisfiable.

Proof. Termination: The depth of the recursion tree is bounded by the num-
ber of all OBDDs in the OBDD clauses. At every node of the recursion tree
there are at most two possible branches of computation, thus the number
of nodes in computation tree is bounded from above by two raised to the
number of all OBDDs in the OBDD clauses.

Correctness: At every branching step, an OBDD P is chosen and is as-
sumed to be either 0 or 1. In the first case, R := =P is added to the set
of constraints, R := P otherwise. Other OBDDs that might be affected by
such constraint are exactly those sharing at least one variable with P. The
newly created OBDDs will not cause missing any solution — the new OBDDs
have exactly the same solution as before, constrained by the requirement of
validity of R. This fact holds because join of two OBDDs is equivalent to
boolean conjunction. The same way replacing an implied OBDD @ with 1
(and later deleting the clause containing it) is correct since any assignment
that satisfies R also satisfies (). Deleting OBDDs evaluated to 0 and deleting
clauses containing OBDD evaluated to 1 will not change the set of solutions,
since already evaluated OBDDs cannot change value deeper in the recursion
tree.

Also, variable ordering only affects the size of created OBDDs, not the
function they represent. The set of constraints may never contain contra-
dicting OBDDs (i.e. OBDDs whose join would be always 0) since all such
constraints already have been applied before choosing the next constraint.

The only operation that affects the set of solutions is making the assump-
tions about value of OBDD P, but one solution is sufficient. If the assumption
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is not correct, algorithm obtains an empty OBDD clause deeper in the recur-
sion tree and is forced to backtrack, choosing the other variant of constraint.
In case of unit OBDDs there is obviously only one constraint that might lead
to satisfiable assignment. ]

Theorem 4.1.2. Given unsatisfiable input formula F' in CNF, the compu-
tation of ROBDDSolver on on I can be transformed into R-OBDD refutation
of F.

Proof sketch. The idea of converting the run of ROBDDSolver into R-OBDD
refutation is similar to converting run of DPLL into resolution refutation.
Formally the proof would be based on induction on recursion depth showing
which invariants are valid at a given depth, but is it easier to understand if
we look at the invariants and how the R-OBDD proof would be constructed.

First let us assume that each clause and each OBDD has some unique
identifier (e.g. a number) at the beginning. If an OBDD is joined with a
constraint, its number does not change, and deleting a clause or an OBDD
does not affect their number identifiers either.

Whenever the algorithm encounters an empty OBDD clause in the recur-
sion tree, it remembers which OBDD clause became empty and the identifier
of the last OBDD that evaluated to 0 at this step, then backtracks. This way
every leaf in the recursion tree is labeled by an OBDD clause and an OBDD
and every branch in the tree is labeled by the constraint chosen in the given
step. See figure 4.1.

Now, let us make some observations: take any two leaves with common
parent, e.g. (Ki,01), (K3, 0s) in our example figure 4.1. The constraint
applied in the last algorithm branching was C' = 0 for one leaf and C' = 1
for the other leaf. Apply join (rule 3.1) on K, Ky with P, = Oy, P, = Oa,
name the result .J; » and remember which OBDD in .J; 5 is the result of join
of O1, Oz, name it O 5.

If we applied (using join) all the other constraints (A = 0, B = 0) leading
to these leaves before the branching on C' to J; 3, it would evaluate to false
independent of value of C'. In the same manner we would join K3, K4 into
Js3 4, then Ji o, J34 into Jy 4. Note that J; 4 does not depend on value of B
anymore.

Using these joins, we are moving “upwards” in the computation tree.
Each of the J, , is an invariant and does not depend on any of the constraints
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(K1, 01) (K2,02)  (K3,03) (K&, O4)

Figure 4.1: Example of ROBDDSolver computation tree — solid lines repre-
senting computation branches are labeled by the constraints made (for some
OBDDs A, B, (), leaves are labeled using a pair of (K, O,) denoting which
clause K, became false and which OBDD O, was evaluated to false as the
last one with respect to constraints used. Dotted lines represent joins of
OBDD clauses while turning the computation into R-OBDD refutation (not
all of them are drawn due to space limitation).

below in the computation tree. Each of the J, , is false when joined with the
contraints leading to the root of the tree.

If some unit OBDD U occured in an OBDD clause in the computation
tree, the constraint used must have been U = 1 (U = 0 would have forced the
whole OBDD clause containing U to false immediately, so it has no siblings).
Nevertheless, independent of value U at least one OBDD clause K, below in
the tree evaluated to false, so K, is invariant towards value of U and can be
“moved upwards” in the tree without join with any other OBDD clause.

Following our observations, in order to turn the computation tree of
ROBDDSolver on F' into R-OBDD refutation:

1. let Jy contain all the OBDD clauses from F
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2. leti:=1

3. Denote current height of computation tree h. Take each pair of leaves
with common parent K, K, at the depth h and apply join (rule 3.1)
on them as described in the paragraph above. This yields a set J; of
new OBDD clauses.

4. Take each leaf with no sibling and add it to J; (case of unit OBDDs).

5. Delete each pair of leaves processed in previous steps and replace the
parent with the result of the join from 7;. In case of leaf with no sibling,
delete the leaf and move its label onto its parent.

6. 2:=2+1

=~

if the tree has any leaves, go to step 3

The sets J; contain a tree-like R-OBDD refutation of F'. Since each of the
Jir € J; is false when joined with the constraints on the path to the root
node, once we work the way up to the tree, there are no more constraints
above. Thus it yields and empty OBDD clause and F is refuted.

O

4.2 Discussion

In order to devise an actual ROBDDSolver algorithm implementation, we
would need to develop ways to decide variable ordering in the OBDDs and
how to choose the OBDD for the next constraint (chooseOBDD function).
Both variable ordering and constraint selection have tremendous impact on
the algorithm speed and memory footprint.

Even most variations on classical DPLL algorithm focus on similar topic —
how to best choose the literals during computation. One noteworthy DPLL-
like algorithm is the Chaff method [13]. Aside from literal-choosing heuristics
it features fast unit propagation, clause learning and “soft restarts”, making
it possible to find non-treelike resolution proofs. One of its implementations,
zChaff, ranked well in competitions in the past [3].

At the moment, the ROBDDSolver does not make use of weakening and
projection in the R-OBDD proof system. First of all, it is somewhat tricky,
because in contrast to join there are many possibilities of a single weakening
or projection. However, it could yield better performance and shorter proofs.
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Also, there are some cases when the memory usage while printing the
satisfying assignment using ROBDDSolver may grow exponentially. One such
case would occur if each clause from the original formula would be represented
by a single OBDD. In such case, join of all the OBDD clauses would have
to be computed, potentially leading to exponential memory consumption.
This is another reason why working implementation of ROBDDSolver would
require good OBDD-partitioning heuristics.
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