
A Quantifier-Free String Theory for ALOGTIME Reasoning

by

François Pitt

A thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

Copyright c© 2000 by François Pitt

Abstract

A Quantifier-Free String Theory for ALOGTIME Reasoning

François Pitt

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2000

The main contribution of this work is the definition of a quantifier-free string theory T1 suitable

for formalizing ALOGTIME reasoning. After describing L1—a new, simple, algebraic charac-

terization of the complexity class ALOGTIME based on strings instead of numbers—the theory

T1 is defined (based on L1), and a detailed formal development of T1 is given.

Then, theorems of T1 are shown to translate into families of propositional tautologies that

have uniform polysize Frege proofs, T1 is shown to prove the soundness of a particular Frege

system F , and F is shown to provably p-simulate any proof system whose soundness can be

proved in T1. Finally, T1 is compared with other theories for ALOGTIME reasoning in the

literature.

To our knowledge, this is the first formal theory for ALOGTIME reasoning whose basic ob-

jects are strings instead of numbers, and the first quantifier-free theory formalizing ALOGTIME

reasoning in which a direct proof of the soundness of some Frege system has been given (in the

case of first-order theories, such a proof was first given by Arai for his theory AID). Also, the

polysize Frege proofs we give for the propositional translations of theorems of T1 are consider-

ably simpler than those for other theories, and so is our proof of the soundness of a particular

F-system in T1. Together with the simplicity of T1’s recursion schemes, axioms, and rules these

facts suggest that T1 is one of the most natural theories available for ALOGTIME reasoning.

iii

Acknowledgements

First and foremost, I would like to thank my advisor, Stephen Cook, without whose help,

patience, and guidance this work would have been impossible; Alasdair Urquhart, Alan Borodin,

and Charles Rackoff (the other members of my advisory committee) for all their suggestions;

and Samuel Buss (my external appraiser) for taking the time to read the whole thesis and

saying such nice things about it!

I would also like to thank Stephen Bellantoni and Stephen Bloch, for some interesting and

fruitful discussions on NC and NC 1; Arnold Rosenbloom, for all the discussions; the staff of

the Department of Computer Science, for all their help with administrative matters; and The

Fields Institute, for their program on Computational Complexity.

Last, but certainly not least, I would like to thank my parents and my wife, Marie-Josée,

for their patience and encouragement over the last six years, as well as for everything else.

v

Contents

1 Introduction 1

1.1 eF-systems and P . 2

1.2 F-systems and ALOGTIME . 3

1.3 Overview . 4

2 The String Algebra L1 7

2.1 Basic definitions . 7

2.2 Functions in L0 . 9

2.2.1 Basic functions . 10

2.2.2 String manipulation functions . 10

2.2.3 Generalizations of CRN . 12

2.2.4 Boolean functions . 14

2.3 Functions in L1 . 15

2.3.1 Basic functions . 15

2.3.2 Numerical functions . 16

2.4 L1 and FALOGTIME . 18

2.4.1 FALOGTIME is contained in L1 . 19

2.4.2 L1 is contained in FALOGTIME . 20

3 The Quantifier-Free Theory T1 33

3.1 Definitions . 33

3.2 Developing the theory . 36

3.2.1 Basic definitions and theorems . 36

3.2.2 Further definitions and theorems . 46

3.2.3 Numerical definitions and theorems . 57

3.3 Proving the pigeonhole principle in T1 . 65

3.3.1 Representation of PHP in T1 . 66

3.3.2 The T1-proof of PHP . 68

vii

4 Theorems of T1 Have Polysize F-proofs 73

4.1 Length functions . 73

4.2 Term formulas . 74

4.3 Propositional translations . 75

4.4 The simulation result . 75

4.4.1 Axioms . 76

4.4.2 Rules of inference . 80

5 T1 Proves the Soundness of F 85

5.1 Formalizing F-systems . 85

5.1.1 Formulas . 85

5.1.2 Proofs . 87

5.2 Buss’s algorithm for the BSVP . 87

5.3 Formalizing the BSVP . 92

5.3.1 Proof of correctness in T1 . 96

5.4 The soundness proof . 99

5.4.1 Preliminaries . 99

5.4.2 The proof . 99

5.5 Simulation results . 100

6 Related Work 103

6.1 T1 and AID . 103

6.2 T1 and PV . 105

7 Conclusion 107

7.1 Summary . 107

7.2 Future work . 108

A Details of Proofs in the Formal Development of T1 109

Bibliography 135

viii

Index of Function Symbols

(Slanted page numbers indicate L1 definitions,

bold page numbers indicate T1 definitions, plain

page numbers indicate T1 axioms or theorems.)

? (conditional) 8, 34, 35

?B (boolean conditional) 14, 48

?EL (even-length conditional) 42

?ZL (zero-length conditional) 10, 42

ε (empty string)7, 34, 34

In
k (identity) .8

· (concatenation) 7, 34, 34

̂ (unary constant) . 9

8 (left bit) . 10, 38, 38

B (left chop) . 10, 34, 34

m (left delete) 10, 37, 37

J (left half) .8, 34, 35

πk
` (projection) . 12

′ (right bit) . 10, 38, 38

C (right chop).7, 34, 35

l (right delete).10, 37, 37

I (right half) . 7, 34, 35

(smash) . 16, 53

× (repeat) . 9

〈. . .〉k (tuple) . 12

0 (all-zero) . 10, 34, 35

1 (all-one) .10, 34, 35

|·| (length) . 16, 60, 61

|·|N . 18

CRN . 8

(2k, 2n)-CRN . 13

CRNm . 13

`CRNm,rCRNm 52, 52

`CRN,rCRN.34, 35

`powCRN,rpowCRN.56, 56

left CRN . 10

TRN . 8, 34, 35

TRNk . 15

¬B,∧B,∨B, etc. 14, 48, 49

notB, andB, orB, etc. 14, 52

divL

k,modL

k . 16

divL

2k ,modL

2k . 11

maxL .11, 47

maxL

k . 11, 51

minL .47

powdivL, powmodL .54

powL . 53

+N .18, 62

<N .17, 57

=N .17, 57

bitN .18

carryN .18, 62

maskN . 18

predN . 17

succN . 17, 60

AND .16, 49

CAR,ADD . 16, 65

CScar,CSadd .15, 64

ix

first0, first1 . 18, 61, 62

la0, la1 (left adjust) . 11

lb (left bit) . 11, 47

lc (left cut) . 11, 47

lp0, lp1 (left pad) . 11, 51

OR . 16, 49

ra0, ra1 (right adjust) 11

rb (right bit) .11, 47

rc (right cut). .11, 47

rp0, rp1 (right pad) 11, 51

sum .18, 65

x

Chapter 1

Introduction

The starting point for this work is the following open problem in complexity theory, concerning

propositional proof systems (for a good introduction to propositional proof systems, including

the basic definitions, see Cook and Reckhow [19]).

Open Problem 1 Are Frege (“F”) and extended Frege (“eF”) proof systems p-equivalent?

To provide some motivation for studying Open Problem 1 and to give an indication of its

importance, note its connection to some major open questions in complexity theory through

the following facts.

General Fact 1 If NP 6= coNP , then P 6= NP .

General Fact 2 NP = coNP if and only if TAUT ∈ NP .

General Fact 3 TAUT ∈ NP if and only if there exists a super (i.e., polynomially-

bounded) proof system for TAUT.

General Fact 4 Given two proof systems f1 and f2, if f1 is super and f2 p-simulates f1,

then f2 is also super.

From Cook and Reckhow’s paper, we know that p-simulation imposes a partial order on proof

systems. Determining the relative position of particular proof systems in this order helps shed

some light on their relative power and, because of General Fact 4, on such major open problems

as NP
?
= coNP or P

?
= NP . From this point of view, determining the exact position of Frege

systems relative to extended Frege systems in this order is one of the most important questions

still open in this area. For the rest of this chapter, I will give a short survey of the major results

and issues connected with Open Problem 1.

1

2 Chapter 1. Introduction

1.1 eF-systems and P

It is traditional in complexity theory to equate “feasible” with “polynomial time”. Moreover,

there is a close association between polytime and eF-systems since eF-systems can be thought

of as reasoning on uniform polysize circuits. For the rest of this work, I will use the traditional

notation “P” when referring to the class of polytime decidable languages, and “FP” when

referring to the class of polytime computable functions. Over the years, many characterizations

of the classes P and FP have been given, most notably Cobham’s “L” and Bellantoni and

Cook’s “B”.

• Cobham’s L [16] is the first machine-independent characterization of the class FP using

a form of bounded recursion on notation.

• Bellantoni and Cook’s B [4] uses a tiered approach (i.e., it distinguishes between “safe”

and “normal” parameters) in order to dispense with explicit bounds as in Cobham’s

scheme.

Also, many logical theories have been proposed to capture polytime reasoning, most notably

Cook’s “PV ”, Buss’s “S1
2”, Leivant’s “PT (W)”, and various second-order theories.

• Cook’s PV [18, 20] is a free-variable equational theory based on Cobham’s L. Cook

showed that every formula t = u provable in PV gives rise to a family of propositional

tautologies which assert the equation and have uniform polysize eF proofs, that PV can

define and prove the soundness of eF , and that if the soundness of a propositional proof

system T is provable in PV , then eF p-simulates T .

• Buss’s S1
2 [7] is a system of Bounded Arithmetic that can define exactly the polytime

functions. Buss showed that S1
2 is Σb

1-conservative over PV (when its language is suitably

extended to include all the function symbols of PV), which implies that S1
2 proves the

soundness of eF and that the Σb
1-theorems of S1

2 can be translated into propositional

tautologies that have uniform polysize eF-proofs (by the corresponding results for PV).

• Leivant’s PT (W) [26] has generative axioms for W (intuitively, binary strings) and in-

stances of W-induction as its only axioms. It proves the convergence of exactly the

polytime functions over W (when induction is restricted to positive existential formulas).

This formalization is conceptually and technically very simple because it does not rely on

any particular initial functions, other than the algebra’s constructors (in fact, the theory

can talk about any computable function).

• Buss’s V 1
1 (studied by Razborov [27]) and Leivant’s L2(QF+) [25] are two of the most

notable examples of second-order theories for P .

1.2. F-systems and ALOGTIME 3

1.2 F-systems and ALOGTIME

The computational power of F-systems seems to be captured by the uniform class NC 1, since F-

systems can be thought of as reasoning on polysize formulas, which are the same as logarithmic-

depth circuits. Recall that NC 1 is the class of languages decidable by families of logarithmic-

depth circuits (FNC 1 is the functional equivalent, using multi-output circuits), and by results

of Ruzzo [28], UE∗-uniform NC 1 = ALOGTIME , where ALOGTIME is the class of languages

decidable in logarithmic time by a random access alternating Turing machine. The functional

class FALOGTIME can be defined in two different ways: if functions are thought of as operating

on integers in binary notation, we get a “numerical” version of the class, whereas if functions

are thought of as operating on strings of bits (which is closer to the circuit model), we get a

“string” version of the class. Fortunately, with a suitable interpretation of numbers as strings

(or of strings as numbers), both versions are equivalent.

Therefore, for the rest of this work, I will use ALOGTIME and NC 1 interchangeably,

always referring to the uniform version of the class (unless otherwise specified). Also, I will

use “FALOGTIME” (or “FNC 1”) to refer to the functional version of the class. Various

characterizations of FALOGTIME have been given over the years, most notably Clote’s “N0”

and “N ′
0”, and Bloch’s string algebra.

• Clote’s N0 and N ′
0 [12, 13, 14] are “numerical” characterizations that use restricted forms

of Cobham’s recursion on notation. Unfortunately, N0 includes a complete function for

FALOGTIME as a base function, and N ′
0 depends on Barrington’s deep result about

bounded-width branching programs [3], so neither algebra is as natural for FNC 1 as

Cobham’s L is for FP .

• Bloch’s algebra [5, 6] is a “string” characterization that uses the “safe” versus “normal”

parameter idea together with a form of recursion similar to Allen’s “divide and conquer

recursion” (DCR) [1]. Bloch recognized that Allen’s scheme of DCR (which Allen used

to characterize uniform NC) is particularly well-suited to characterizing uniform parallel

complexity classes. Combining this with the tiered approach allows him to dispense with

explicit bounds on the rate of growth of functions and to give an elegant characterization

that uses only simple base functions and one natural scheme of recursion.

Based on Bloch’s ideas but incorporating some of Clote’s, I will introduce in Chapter 2 a new

simple string algebra L1 that characterizes FALOGTIME using very few simple base functions

and two simple schemes of recursion (CRN and TRN, to be defined there). It appears to us

that L1 is simpler than previous characterizations because it has fewer, simpler base functions,

and no need for explicit bounds on the growth of functions or for different types of parameters.

4 Chapter 1. Introduction

Based on the characterizations of ALOGTIME given above, a number of theories to capture

ALOGTIME reasoning have been defined, most notably Clote’s “ALV ” and “ALV ′”, Takeuti

and Clote’s “TNC 0”, and Arai’s “AID” (all of which are based on “numerical” characterizations

of ALOGTIME).

• Clote’s ALV and ALV ′ [13, 14] are free-variable equational theories based on his char-

acterizations of ALOGTIME mentioned above and on Cook’s PV . Clote showed that

theorems of ALV and ALV ′ give rise to families of tautologies which have polysize F-

proofs, but did not show that either of his theories can prove the soundness of F-systems.

Also, the proof that the propositional translations of theorems of ALV or ALV ′ have poly-

size F-proofs is fairly involved, and properties of even simple functions (such as “parity”

or “majority”) are difficult to prove.

• Takeuti and Clote’s TNC 0 [15] (first defined by Takeuti [29]) is a first-order theory similar

to Buss’s S1
2 that was shown to be conservative over ALV ′ (when suitably extended to

include every function symbol of ALV ′). Unfortunately, this theory needs to use a fairly

complex form of inference called bounded successive nomination, because of its implicit

dependence on Barrington’s result (through Clote’s characterization of ALOGTIME),

which detracts greatly from its simplicity.

• Arai’s AID [2] is a system of bounded arithmetic inspired by Buss’s consistency proof

for F-systems [9], which proves the soundness of F and whose Σb
0-theorems have polysize

F-proofs when suitably translated. Moreover, Arai shows that AID is equivalent to a

quantified version of Clote’s ALV , and hence that ALV can prove the soundness of F .

Unlike the situation for P , there is no quantifier-free theory for ALOGTIME which has the sim-

plicity and naturalness of PV . I claim that T1 fills that role, its axioms and induction schemes

being based directly on L1’s simple base functions and natural recursion operations. Moreover,

the proofs that propositional translations of the theorems of T1 have uniform polysize F-proofs

and that T1 can prove the soundness of F-systems are much simpler than the corresponding

proofs for other theories in the literature.

1.3 Overview

Now that I have provided some context and motivation for studying Open Problem 1, let me

give a brief overview of the rest of the thesis. In Chapter 2, I will introduce the string algebra

L1, followed in Chapter 3 by the quantifier-free theory T1 (including a formal development of

the theory, showing how to prove the pigeonhole principle in T1). In Chapter 4, I will define

1.3. Overview 5

propositional translations for theorems of T1 and show that they have polysize F-proofs, while

in Chapter 5, I will show that T1 proves the soundness of F , by formalizing an algorithm for

the “Boolean Sentence Value Problem” (BSVP) in T1, and that F provably p-simulates any

proof system whose soundness can be proved in T1. Finally, in Chapter 6, I will compare T1

with various other formalisms for ALOGTIME reasoning, most notably Arai’s AID .

Chapter 2

The String Algebra L1

In this chapter, we define L1 and show that it contains exactly the functions in FALOGTIME .

We also give many examples of natural L1 definitions for simple FALOGTIME functions.

2.1 Basic definitions

The basic objects of the algebra are strings over the alphabet {0, 1}. The set of all such strings

can be defined inductively: ε (the empty string), 0, 1 are strings, and if x and y are strings,

then so is xy. Together with a wish for simplicity, this inductive definition motivates our choice

of base functions.

The reader should keep in mind that our definitions in this chapter are based on, and guided

by, the idea of computation by uniform families of circuits. In particular, all our functions will be

length-determined, i.e., the length of a function depends only on the lengths of the arguments,

not their values. Also, the starting point for our algebra L1 is Bloch’s paper [6], where he

carries out a similar function-algebraic characterization of FALOGTIME , so we will borrow

many concepts and definitions from there. (We also borrow certain concepts and definitions

from Clote’s work [12, 13, 14].)

Now, we define the base functions and the basic operators that we will use to construct new

functions. We use |x| to denote the length of x (i.e., the number of symbols (bits) in the string

x), ~xk to denote a k-tuple of variables, and ~x to denote an arbitrary tuple of variables.

BASE: The set of base functions consists of (in order of increasing arity):

ε, 0, 1 = empty string, 0-bit, and 1-bit (constants),

Ix = the d|x|/2e rightmost bits of x (“right half”),

x C y = x with |y| bits removed from the right (“right chop”),

x · y = x followed by y (“concatenation”),

7

8 Chapter 2. The String Algebra L1

x ? (y, z0, z1) =





y if x = ε,

z0 if x = w · 0 for some w,

z1 if x = w · 1 for some w,

(“conditional”)

In
k (x1, . . . , xn) = xk for any 1 ≤ k ≤ n (“identity” or “projection”).

Remark 2.1.1 In the definition of x ? (y, z0, z1), it is assumed that |z0| = |z1|. If that

is not the case, then the value returned will be padded on the left with as many 0’s as

are necessary to make z0 and z1 the same length (the length of y does not change).

COMP: f is defined from g and h1, . . . , hk by composition if

f(~x) = g(h1(~x), . . . , hk(~x)).

CRN: f is defined from h by concatenation recursion on notation on x if h(x, ~y) ∈ {0, 1} for

all x, ~y and

f(ε, ~y) = ε,

f(xi, ~y) = f(x, ~y) · h(xi, ~y) for i = 0, 1.

TRN: f is defined from g, h, h`, and hr by tree recursion on notation on x if

f(x, z, ~y) =





g(x, z, ~y) if x = ε, 0, 1,

h
(
x, z, ~y, f(xJ, h`(z), ~y), f(Ix, hr(z), ~y)

)
otherwise,

where xJ = x C Ix (the b|x|/2c leftmost bits of x). In what follows, we will omit the

parameter z when neither g nor h depend on it (in which case the functions h` and hr are

irrelevant and will not be specified); we will refer to this form of TRN as simple TRN.

Remark 2.1.2 Our “right half” function was called “back half (Bh)” by Allen [1] and

Bloch [6]. We introduce the new nomenclature because we feel that it is more representa-

tive of the action of the function, and the new notation to serve as a graphical reminder of that

action (picture the black triangle cutting into the left part of x). Similarly, our “right chop”

function was called “chop” by Cook [20] and “most significant part (Msp)” by Allen and Bloch.

Our new notation should serve as a useful graphical mnemonic for the function’s purpose and

action (picture the bits of y cutting into the bits of x from the right—in the direction pointed

to by the function symbol). Our scheme of CRN is based on the operation of the same name in

Clote’s work [12, 13, 14], except that our version has been simplified by eliminating the function

g from the base case (without loss of generality since we can simply concatenate g(~y) to the

2.2. Functions in L0 9

left of our functions to get Clote’s). Our scheme of TRN is based on Bloch’s “very safe DCR”,

which is itself based on Allen’s “DCR” (for “divide-and-conquer recursion”), except that our

base case is simpler (defined for x = ε, 0, 1 instead of when |x| ≤ |b| for some extra parameter

b), and we have added the functions h` and hr that allow parameter z to vary during recursive

calls (hence, TRN is technically a scheme of “recursion with replacement”).

Definition 2.1.1 If we let TRN
∣∣L
L′ represent the operation of TRN restricted to functions

g ∈ L and h, h`, hr ∈ L′, for function classes L and L′, then

• L0 is the closure of BASE under COMP and CRN;

• L1 is the closure of L0 under COMP, CRN, and TRN
∣∣L1

L0
, defined recursively.

The next few sections contain mainly function definitions, where the following notational

conventions will be used.

• For any constant string c, ~ck represents the tuple consisting of k copies of c.

• Unary functions have higher precedence than binary functions and binary functions have

higher precedence than functions of higher arity (keep in mind that “?” has arity 4).

Concatenation has higher precedence than any other binary function when represented

by juxtaposition; it has lower precedence than any other binary function when represented

by “·”.

• i and j represent arbitrary fixed single bits, whereas k, `, m, and n represent arbitrary

fixed non-zero natural numbers. When 2k is used, k ranges over all natural numbers

(including zero), and similarly for 2`.

• The notation k × x stands for

k︷ ︸︸ ︷
x · · · x (i.e., x concatenated with itself k times). We let

0 × x = ε and use k̂ as an abbreviation for k × 1, i.e., the unary string representing k.

2.2 Functions in L0

In this section, we define many functions in L0 and show that many useful generalizations of

CRN can be simulated in L0. We are motivated by two goals: to define the machinery necessary

to prove that L1 contains all of FNC 1, and to show that many useful functions have simple

definitions in our algebra.

10 Chapter 2. The String Algebra L1

2.2.1 Basic functions

First, we define a few simple variations on some of the BASE functions. The rightmost bit of

x: x′ = x ? (ε, 0, 1) ; x with its rightmost bit removed: xl = x C 1 ; the b|x|/2c leftmost bits of

x: xJ = x C Ix.

Next, a function that reverses the bits of x can be defined by first using CRN to define a

function reverse(x, y), which returns the |y| rightmost bits of x reversed:

reverse(x, ε) = ε,

reverse(x, yi) = reverse(x, y) · (x C y)′ for i = 0, 1.

Then, rev(x) = reverse(x, x) returns the reverse of x. Using this function, we can now define

symmetric counterparts to some of the earlier functions:

y B x = rev(rev(x) C rev(y)), mx = rev(rev(x)l), 8x = rev(x)′.

Now, let us introduce a generalization of CRN: a function f is defined from h by left CRN

(or reverse CRN) on x if h(x, ~y) ∈ {0, 1} for all x, ~y and

f(ε, ~y) = ε,

f(ix, ~y) = h(ix, ~y) · f(x, ~y) for i = 0, 1.

If f is defined from h by left CRN on x, then we can use CRN to define

aux f(ε, ~y) = ε,

aux f(xi, ~y) = aux f(x, ~y) · h(rev(xi), ~y) for i = 0, 1,

and f(x, ~y) = rev(aux f(rev(x), ~y)), using COMP. In what follows, we will use the notational

conventions outlined before this section and we will no longer include the trivial base case

f(ε, ~y) = ε or write “for i = 0, 1” when using CRN to define new functions.

2.2.2 String manipulation functions

Now, we will define useful functions for manipulating strings. First, two simple functions that

returns a string of the same length as its input, but consisting entirely of 0’s or entirely of 1’s:

j(xi) = jx · j (by CRN).

Next, we can define a number of functions to compare the lengths of strings (these function

symbols will be distinguished by putting a superscript “L” next to them). First, it is useful

to have a conditional that tests for the length of a string: x ?ZL (y, z) = x ? (y, z, z) is equal

2.2. Functions in L0 11

to y if x is empty and equal to z otherwise. Because ?ZL distinguishes only between “empty”

and “non-empty”, we will define the “length-relational” functions below so that they return

ε when the relation holds and some fixed non-empty string (like “1”) otherwise. Accordingly,

we define a simple signum function that returns ε if its argument is empty and 1 otherwise:

≈Lx = x ?ZL (ε, 1) and a corresponding “negation”: ¬Lx = x ?ZL (1, ε). Now, we are ready to

define the comparison functions.

x ≥L y = ≈L(x B y) x ≤L y = ≈L(x C y) x =L y = ≈L((x B y) · (x C y))

x >L y = ¬L(x ≤L y) x <L y = ¬L(x ≥L y) x 6=L y = ¬L(x =L y)

maxL(x, y) = (x ≥L y) ?ZL (x, y) maxL

1(x) = x

maxL

k+1(x, ~xk) = maxL
(
x,maxL

k(~xk)
)

We can also define functions to manipulate the lengths of strings, namely divL

2k(x) that returns

a string of 1’s whose length is b|x|/2kc and a corresponding modL

2k(x) function satisfying 1x =

2k × divL

2k(x) · modL

2k(x).

divL

1(x) = 1x divL

2k(x) = divL

k(xJ)

modL

2k(x) =
(
2k × divL

2k(x)
)

B 1x

(Interestingly, there does not seem to be a way to define a divL

k function for arbitrary k without

using TRN.) Following this, we define functions to perform simple bit manipulations on strings

(extract single bits or substrings, pad to a certain length).

• “Left bit”: lb(x, y) = y ?ZL (ε, 8(my B x)) returns bit number |y| of x from the left; “right

bit”: rb(x, y) = y?ZL(ε, (xCyl)′) returns bit number |y| of x from the right (both are equal

to ε if y = ε or |y| > |x|). For convenience, we also define lbB(x, y) = lb(x, y) ? (0, 0, 1)

and rbB(x, y) = rb(x, y) ? (0, 0, 1) which return 0 or 1 for all arguments.

• “Left cut”: lc(x, y) = x C (y B x) returns the |y| leftmost bits of x; “right cut”: rc(x, y) =

(x C y) B x returns the |y| rightmost bits of x (both return ε if y = ε and x if |y| ≥ |x|).

• “Left pad”: lpj(x, y) = j(yCx)·x returns x padded on the left with j’s so that |lpj(x, y)| ≥

|y|; “right pad”: rpj(x, y) = x · j(x B y) returns x padded on the right with j’s so that

|rpj(x, y)| ≥ |y| (both return x if |y| ≤ |x|).

• “Left adjust”: laj(x, y) = j(y C x) · ((x C y) B x) returns x either chopped or padded on

the left so that |laj(x, y)| = |y|; “right adjust”: raj(x, y) = (x C (y B x)) · j(x B y) returns

x either chopped or padded on the right so that |raj(x, y)| = |y|.

12 Chapter 2. The String Algebra L1

Finally, we have all the functions we need to define a tuple function (〈~xk〉k) and corresponding

projection functions (πk
` (x)). To form tuples, we simply concatenate the arguments together

after padding them on the left so that they all have the same length. The projection functions

are then defined easily using J and I. One small complication arises because we can only divide

the length of a string by a power of 2, so we need to form tuples that always have a power of

2 elements even when there are fewer of them that are actually input values. The definitions

follow and are inspired by similar definitions in Bloch’s paper [6]. (The tuple function is defined

in terms of an auxiliary function tuple that has an extra parameter specifying the length to

which each value should be padded.)

tuple1(x, z) = lp0(x, z)

tuple2k(~xk, ~yk, z) = tuplek(~xk, z) · tuplek(~yk, z)

tuple2k+1(~xk, ~yk+1, z) = tuplek+1(ε, ~xk, z) · tuplek+1(~yk+1, z)

〈~xk〉k = tuplek

(
~xk,maxL

k(~xk)
)

π1
1(y) = y

π2k
` (y) =





πk
` (yJ) if ` ≤ k

πk
`−k(Iy) if ` > k

π2k+1
` (y) =





πk+1
`+1 (yJ) if ` ≤ k

πk+1
`−k (Iy) if ` > k

Note that these functions satisfy the following relations:

πk
` (〈x1, . . . , xk〉k) = lp0(x`,maxL

k(~xk)),〈
π2k

1 (y), . . . , π2k

2k (y)
〉

2k
= y

(unfortunately,
〈
πk

1 (y), . . . , πk
k(y)

〉
k
6= y for arbitrary k because of the way the tuple function is

defined).

2.2.3 Generalizations of CRN

We now introduce a generalization of CRN where the recursion is defined on several variables

at once. (We assume that x1, . . . , xm all have the same length, or are appropriately padded on

the left with 0’s to make them all the same length.)

Definition 2.2.1 (CRNm) We say that f is defined from h by CRNm on x1, . . . , xm if

2.2. Functions in L0 13

h(~xm, ~y) ∈ {0, 1} for all ~xm, ~y and

f(~εm, ~y) = ε,

f(x1i1, . . . , xmim, ~y) = f(x1, . . . , xm, ~y) · h(x1i1, . . . , xmim, ~y) for i1 = 0, 1; . . . ; im = 0, 1.

(We can also define left CRNm similarly to left CRN.) If f is defined from h by CRNm on

x1, . . . , xm, then we can define f using CRN as follows: We will define an auxiliary function

aux f by CRN on a parameter z; this function will mimic the recursion on x1, . . . , xm by using

lc to extract the correct substrings of x1, . . . , xm based on the length of z. Then, f is easily

defined from aux f by COMP.

aux f(zi, ~xm, ~y) = aux f(z, ~xm, ~y) · h
(
lc(x1, zi), . . . , lc(xm, zi), ~y

)

f(~xm, ~y) = aux f
(
maxL

m(~xm), lp0(x1,maxL

m(~xm)), . . . , lp0(xm,maxL

m(~xm)), ~y
)

When a function f(x, ~y) is defined by CRN on x from h, every bit in the output corresponds

to one bit from x. Now, we will show how to define a function where every bit of x corresponds

to two bits in the output, and then generalize this to arbitrary values (where every group

of 2k bits in the input corresponds to a group of 2n bits in the output, which we will call

“2k-to-2n-CRN”, or “(2k, 2n)-CRN”).

Following the notation mentioned above, we say that a function f is defined from h by

1-to-2-CRN ((1, 2)-CRN) on x if |h(x, ~y)| = 2 for all x, ~y and

f(ε, ~y) = ε,

f(xi, ~y) = f(x, ~y) · h(xi, ~y) for i = 0, 1.

(We can also define left (1, 2)-CRN.) If f(x, ~y) is defined from h by (1, 2)-CRN on x, we

can define f using CRN as follows: We will first define an auxiliary function aux f(z, x, ~y) by

CRN on z, to return the |z| leftmost bits of f(x, ~y) and then define f from aux f by COMP.

Intuitively, aux f(z, x, ~y) uses divL

2(z) to determine which bits of x to give as input to h and

modL

2(z) to determine which bit of h to output next.

aux f(zi, x, ~y) = aux f(z, x, ~y) · lbB
(
h
(
lc(x, divL

2(z) · i), ~y
)
,modL

2(z) · i
)

f(x, ~y) = aux f(x · x, x, ~y)

Now, we can introduce the generalization mentioned above.

Definition 2.2.2 ((2k, 2n)-CRN) We say that f is defined from g and h by 2k-to-2n-CRN

((2k, 2n)-CRN) on x if |h(x, ~y)| = 2n for all x, ~y and

f(x, ~y) = g(x, ~y) if |x| < 2k,

f(x · z, ~y) = f(x, ~y) · h(x · z, ~y) for z ∈ {0, 1}2k

.

14 Chapter 2. The String Algebra L1

(As before, we can also define left (2k, 2n)-CRN.) If f is defined from g and h by (2k, 2n)-CRN

on x, then we can define f using CRN as follows. (The intuition is similar to that for (1, 2)-CRN

given above.)aux f(zi, x, ~y) = aux f(z, x, ~y) · lbB

(
h
(
lc

(
x,modL

2k(x) · 2k × (divL

2n(z) · i)
)
, ~y

)
,modL

2n(z) · i
)

f(x, ~y) = g
(
lc(x,modL

2k(x)), ~y
)
· aux f

(
2n × divL

2k(x), x, ~y
)

By combining the two generalizations above, we can show that any function defined by

“(2k, 2n)-CRNm” can be defined using CRN and COMP alone, which gives us a relatively

powerful way to define many more useful functions.

2.2.4 Boolean functions

The next functions we will introduce are the Boolean operators, i.e., the standard connectives

together with some useful functions for comparing bits (these function symbols will be distin-

guished by putting a superscript “B” next to them). First, we will define a “Boolean test”

function, which tests for the truth-value of its argument (where a string’s truth-value is deter-

mined by its rightmost bit by convention, with 1 = true and 0 = false — ε is treated the

same way as 0): x?B (y, z) = x?(z, z, y) is equal to y if x is “true”; z if x is “false” (according to

the convention above). Then, ≈Bx = x ?B (1, 0) returns the truth-value of x and we can define

the boolean connectives in the usual way.

¬Bx = x ?B (0, 1) x ∧B y = x ?B (≈By, 0) x ∨B y = x ?B (1,≈By)

x →B y = x ?B (≈By, 1) x ↔B y = x ?B (≈By,¬By) x ⊕B y = x ?B (¬By,≈By)

x ≥B y = y →B x x ≤B y = x →B y x =B y = x ↔B y

x <B y = ¬B(x ≥B y) x >B y = ¬B(x ≤B y) x 6=B y = ¬B(x =B y)

Using CRNm, we can now easily define the following useful functions that perform bitwise

operations on their arguments.

notB(xi) = notB(x) · ¬Bi

andB

k(x1i1, . . . , xkik) = andB

k(x1, . . . , xk) · (i1 ∧
B · · · ∧B ik)

orB

k(x1i1, . . . , xkik) = orB

k(x1, . . . , xk) · (i1 ∨
B · · · ∨B ik)

xorB

k(x1i1, . . . , xkik) = xorB

k(x1, . . . , xk) · (i1 ⊕
B · · · ⊕B ik)

iffB

k(x1i1, . . . , xkik) = iffB

k(x1, . . . , xk) ·
(
(i1 ↔

B i2) ∧
B · · · ∧B (ik−1 ↔

B ik)
)

And following Buss [8], we can define functions that implement carry-save addition: CScar to

compute the carry bits and CSadd to compute the addition bits. Note that these functions are

defined so that CScar(x, y, z, w) + CSadd(x, y, z, w) = x + y + z + w (a fact that will be proved

rigorously in Chapter 3.)

2.3. Functions in L1 15

CScar3(i1x1, i2x2, i3x3) =
(
(i1 ∧

B i2) ∨
B (i2 ∧

B i3) ∨
B (i3 ∧

B i1)
)
· CScar3(x1, x2, x3)

CSadd3(x1, x2, x3) = xorB

3(0x1, 0x2, 0x3) = 0 · xorB

3(x1, x2, x3)

CScar(x1, x2, x3, x4) = CScar3
(
CScar3(x1, x2, x3) · 0,CSadd3(x1, x2, x3), 0x4

)
· 0

CSadd(x1, x2, x3, x4) = CSadd3

(
CScar3(x1, x2, x3) · 0,CSadd3(x1, x2, x3), 0x4

)

2.3 Functions in L1

In this section, we define many functions in L1 and show that some useful generalizations of

TRN can be simulated in L1. Again, we are motivated by two goals: to define the machinery

necessary to prove that L1 contains all of FNC 1, and to show that many useful functions have

simple definitions in our algebra.

2.3.1 Basic functions

Recall that the operation of TRN is restricted in L1 so that we cannot define a function by

TRN from functions that are themselves defined by TRN. Hence, it will be useful to be able

to define more than one function simultaneously by TRN.

Definition 2.3.1 (TRNk) The functions fi (1 ≤ i ≤ k) are defined from functions gi,

hi, h`, and hr by TRNk on x if |f1(x, z, ~y)| = · · · = |fk(x, z, ~y)| for all x, z, ~y, and for every

1 ≤ i ≤ k,

fi(x, z, ~y) =





gi(x, z, ~y) if x = ε, 0, 1,

hi

(
x, z, f1(xJ, h`(z), ~y), f1(Ix, hr(z), ~y), . . . ,

fk(xJ, h`(z), ~y), fk(Ix, hr(z), ~y), ~y
)

otherwise.

If ~fk are defined from ~gk, ~hk, h`, and hr by TRNk, we can define the k-tuple F (x, z, ~y) =

〈~fk(x, z, ~y)〉k by TRN as follows.

F (x, z, ~y) =





〈~gk(x, z, ~y)〉k if x = ε, 0, 1,
〈
~hk

(
x, z, πk

1 (F (xJ, h`(z), ~y)), πk
1 (F (Ix, hr(z), ~y)), . . . ,

πk
k(F (xJ, h`(z), ~y)), πk

k(F (Ix, hr(z), ~y)), ~y
)〉

k
otherwise.

Then, a simple composition gives fi(x, z, ~y) = πk
i (F (x, z, ~y)) for 1 ≤ i ≤ k.

Now, we can define some functions by TRN (actually, by simple TRN). The first two perform

Boolean operations on all the bits of their input; |x| returns the length of x, expressed as a

binary number; x # y returns |x| copies of y concatenated together (so that |x # y| = |x| × |y|);

16 Chapter 2. The String Algebra L1

divL

k(x) returns a string whose length is equal to b|x|/kc (where we use the notation “modL

k(x)”

as a shorthand for the term (k×divL

k(x))B 1x); and the last two functions are defined by TRN2

and will be used to count the number of 1’s in the string x, using the carry-save technique of

Buss [8] (this will be done below).

AND(x) =





x if x = ε, 0, 1

AND(xJ) ∧B AND(Ix) otherwise

OR(x) =





x if x = ε, 0, 1

OR(xJ) ∨B OR(Ix) otherwise

|x| =





1x if x = ε, 0, 1

xJ B Ix ?ZL
(
|xJ| · 0, |xJ| · 1

)
otherwise

x # y =





x ?ZL (ε, y) if x = ε, 0, 1

(xJ # y) · (Ix # y) otherwise

divL

k(x) =





x B k̂ ?ZL (1x, ε) if x = ε, 0, 1

divL

k(xJ) · divL

k(Ix) ·
(
(modL

k(xJ) · modL

k(Ix)) B k̂ ?ZL (1, ε)
)

otherwise

CAR(x) =





0x if x = ε, 0, 1

CScar(CAR(xJ),CAR(Ix),ADD(xJ),ADD(Ix)) otherwise

ADD(x) =





x if x = ε, 0, 1

CSadd(CAR(xJ),CAR(Ix),ADD(xJ),ADD(Ix)) otherwise

Note that |CAR(x)| = |ADD(x)| (easy to show inductively) so the definition by TRN2 is correct.

Also note that with divL

k and modL

k, we can now define “(k, `)-CRN” similarly to (2k, 2`)-CRN,

but for blocks of bits of arbitrary fixed lengths. Interestingly, it does not seem possible to define

a more general divL function that would take two parameters, and thus to define a general form of

CRN where the lengths of the input and output blocks of bits are specified by extra parameters

(we discuss this issue further in Chapter 3).

2.3.2 Numerical functions

Unfortunately, the fact that functions in L1 are length-determined makes it harder to define

“numerical” functions, i.e., functions that treat their inputs as binary notation for numbers

(ignoring leading 0’s). For example, the definition of |x| given above is quite simple whereas

the definition of |x|N given below relies on some more complex functions.

2.3. Functions in L1 17

Now, we will define a number of “numerical” functions (distinguished by putting a super-

script “N” next to them). We start with an equality operator for numbers, and also one for

strings.

x =N y = AND(1 · iffB

2(x, y)) x =S y = ¬B(x =L y) ∧B (x =N y)

Note that the extra “1” is necessary in the definition of =N for ε =N ε to be true, and the

value of x =N y is independent of the lengths of x and y, i.e., the function really does behave

as though its string inputs were binary representations of numbers. Also note that “¬B” is

necessary in the definition of =S because of our convention that =L returns ε for “true” and 1

for “false”.

Next, we define a successor and a predecessor function, both by left CRN. The successor

function is defined in terms of an auxiliary function that simply replaces each bit by its negation

until it encounters a 0, which it replaces by 1, and then outputs each bit unchanged (e.g., 11010

becomes 11011, 1011 becomes 1100, 111 becomes 000). The successor function first adds a 0 to

the front (left) of its argument before calling the auxiliary function, in case the string consists of

all 1’s (e.g., 111 correctly becomes 1000 and not just 000). The predecessor function performs

a similar computation, except replacing bits by their negation until it encounters a 1, and first

checking that the string does not consist of all 0’s before calling the auxiliary function.

aux succN(ix) =
(
AND(1x) ?B (¬Bi, i)

)
· aux succN(x) succN(x) = aux succN(0x)

aux predN(ix) =
(
OR(x) ?B (i,¬Bi)

)
· aux predN(x) predN(x) = OR(x) ?B (aux predN(x), x)

Note that one unfortunate side-effect of the fact that the functions are length-determined is that

the successor function always appends a bit to the left of its argument. So starting from ε and

applying succN repeatedly, we get a series of strings that represent 0, 1, 2, . . . in binary, but whose

lengths are also 0, 1, 2, . . . Next, we define the numerical predicate <N, which together with =N

allows us to define all other relational operators on numbers using the Boolean connectives.

Note that to define lessN, we use Clote’s “programming trick” [12] of making a sweep through

the bits of the strings x and y, appending a 1 when some condition is met so that the final

composition with OR yields 1 iff the condition was met at some position. Using AND, we could

similarly define functions that test for some condition on every bit of their inputs. Also recall

that functions defined by CRN2 (such as lessN below) first pad their arguments on the left with

0’s so they have the same length.

lessN(xi, yj) = lessN(x, y) ·
(
(i <B j) ∧B (x =N y)

)
x <N y = OR(lessN(x, y))

The next function we want to define is bitN(x, z), which returns bit number z of x, starting

at 1 and counting from the right, where z is interpreted as a binary number. The easiest way to

18 Chapter 2. The String Algebra L1

do this is by defining a function powN(z, x) that returns a string of length |x| consisting entirely

of 0’s except at bit position z (from the right), if 1 ≤N z ≤N |x|. Then, we define a function

maskbitN(x, y) that treats y as a mask to determine which bit of x to return.

powN(z, ix) =
(
|ix| =N z

)
· powN(z, x)

maskbitN(x, y) = OR(andB

2(x, y))

bitN(x, z) = maskbitN(x, powN(z, x))

Next, we want to define addition. This will require only a few more definitions. First, in order

to simulate a function that strips leading ones (or zeros) from x, we can define functions firstj(x)

that return a mask which is 1 on the leftmost bit of x equal to j and 0 elsewhere. We can also

define a function that returns a mask which is 1 on every significant bit of x (i.e., every bit to

the right of the first “1” in x) and 0 elsewhere.

first1(xi) = first1(x) ·
(
OR(x) ?B (0, i)

)
first0(xi) = first0(x) ·

(
AND(1x) ?B (¬Bi, 0)

)

maskN(xi) = maskN(x) ·
(
OR(x) ?B (1, i)

)

Then, we can define a function which computes the carry bits and an addition function, as

follows.

carryN(ix, jy) = maskbitN
(
andB

2(ix, jy), first0(xor
B

2(ix, jy))
)
· carryN(x, y)

x +N y = xorB

3(carry
N(x, y) · 0, x, y)

Finally, using the addition function, we can define a function that counts the number of ones in

a string: sum(x) = CAR(x) +N ADD(x) and using this function, define the “numerical” length

of x: |x|N = sum(maskN(x)). (Note that we could also have defined |x| = sum(1x) instead of

directly using TRN.)

2.4 L1 and FALOGTIME

In this section, we prove the following claim.

Claim 2.4.1 L1 = FALOGTIME (= uniform FNC 1).

To be precise, we say that a k-ary function f belongs to FALOGTIME if there exists an

integer polynomial pf such that |f(~xk)| ≤ pf (|x1|, . . . , |xk|) for every ~xk, and if the lan-

guage {〈~xk, i, b〉 : the i-th bit of f(~xk) is equal to b} is recognizable by an ATM running in time

O
(
max{log |x1|, . . . , log |xk|}

)
.

2.4. L1 and FALOGTIME 19

2.4.1 FALOGTIME is contained in L1

To prove that FALOGTIME ⊆ L1, we show how to simulate the computation of an ATM

using functions in L1. Then, if f ∈ FALOGTIME , there exists a term tf ∈ L1 such that

|tf (~xk)| = pf (|~xk|), so we can use CRN on tf (~xk) to compute each bit of f by simulating the

ATM on the appropriate input. (Technically speaking, this works only if |f(~xk)| = |tf (~xk)| for

all ~xk, but if that is not the case, we can simply use Bloch’s idea of “length masks” to compute

a mask bf (~xk) of length tf (~xk) that has a 1 in every bit position where f(~xk) is defined and a

0 elsewhere.)

Now, without loss of generality, let the ATM have the following properties.

1. There is a function t ∈ L1 such that the ATM runs for no more than ||t(~x)|| = O(log |t(~x)|)

steps on inputs ~x (always possible when the ATM runs in logarithmic time since t can use

and · to output a string whose length is an arbitrary polynomial in the lengths of the

inputs). Also, universal states of the ATM are given even numbers and existential states,

odd numbers. Moreover, we assume that the function t is defined so that |t(~x)| is always

a power of 2 and 22|t(~x)| is greater than the number of states of the ATM for any inputs ~x

(in other words, a string of length 2|t(~x)| is long enough to encode the state of the ATM).

2. The ATM has n read-only input tapes represented by strings x1, . . . , xn and k worktapes

represented by pairs of strings y`
1, y

r
1, . . . , y

`
k, y

r
k, each of length exactly 2|t(~x)|, where y`

i

represents the content of tape number i to the left of the tape head and yr
i represents

the content to the right, with the head scanning the rightmost symbol of y`
i . Each of the

three possible worktape symbols (1, 0, or blank) is encoded using two bits (11 for 1, 10

for 0, and 00 for blank). Initially, the worktapes are blank.

3. The computation tree of the ATM is a complete binary tree (each non-leaf node has exactly

two successor configurations, a left successor and a right successor, and every leaf occurs

at the same level).

4. Access to the input occurs only at the leaves of the computation tree and is of the form

“accept iff symbol number y`
i (interpreted as a binary number) on input tape number j

is equal to b”, where i, j, and b are encoded in the current state of the ATM.

Then, if we let con =
〈
s, y`

1, y
r
1, . . . , y

`
k, y

r
k

〉
2k+1

represent a configuration of the ATM when in

state s, we can define lcon and rcon, the left and right successor configurations of con, as

follows:

`con =
〈
lstate(con), ltape`

1(con), ltaper
1(con), . . . , ltape`

k(con), ltaper
k(con)

〉

2k+1
,

rcon =
〈
rstate(con), rtape`

1(con), rtaper
1(con), . . . , rtape`

k(con), rtaper
k(con)

〉
2k+1

,

20 Chapter 2. The String Algebra L1

where each of lstate, ltape`
i , ltaper

i , rstate, rtape`
i , rtaper

i is easily seen to be in L0, involving only

simple string manipulations and finite table lookup on the state s (for example, ltape`
i(con) =

di ?B
(
00 B ((y`

i C 00 · bi) · lc(yr
i , 00)), (00 · y`

i) C 00
)

computes the contents of tape i to the

left of the head in the left successor of con, where di (the direction of movement for head i)

and bi (the tape symbol to write on tape i) are obtained from the state and tape contents of

con using the conditional function). Moreover, if we let select be defined by (2, 1)-CRN to

output every second bit of its input string, the function input(con, ~x) = bitN(xj , select(y
`
i))↔

B b

(where i, j, and b are extracted from the state s) is equal to the accept state of the given input

configuration and is in L1. Finally, we let con0 = 〈s0, t(~x) # 00, . . . , t(~x) # 00〉2k+1 denote the

initial configuration, where s0 is the initial state of the ATM.

Now, we can easily use TRN to define a function eval that evaluates the computation tree

of the ATM, so that the result of the entire computation is given by eval(t(~x),con0, ~x):

eval(z,con, ~x) =





input(con, ~x) if z = ε, 0, 1,

π2k+1
1 (con)′ ?B

(
eval(zJ, `con, ~x) ∨B eval(Iz, rcon, ~x),

eval(zJ, `con, ~x) ∧B eval(Iz, rcon, ~x)
)

otherwise.

Note that in the recursive call, π2k+1
1 (con) simply extracts the current state from the given

configuration, and the rightmost bit of the state number is used to determine whether the con-

figuration is universal or existential. Also note that this half of the proof is considerably simpler

than the corresponding proofs in Bloch [6] and Clote [13, 14]. This seems to be because our

scheme of TRN encapsulates the sort of computation carried out by ATM’s more directly than

the schemes considered by Bloch and Clote, especially by its use of the parameter replacement

functions h` and hr.

2.4.2 L1 is contained in FALOGTIME

To prove that L1 ⊆ FALOGTIME , we argue that every function in L0 can be computed by a

family of circuits in uniform FNC 0, and that every function in L1 can be computed by a family

of circuits in uniform FNC 1, where we use Bloch’s notion of mapping-uniformity, defined in [6],

which generalizes UE∗-uniformity to make sense for circuits of constant depth. As will be

seen, the facts that functions in L0 have constant depth circuits and that functions in L1 have

logarithmic depth circuits are quite simple to prove; the technical difficulties arise mainly from

uniformity considerations.

First, we give bounds on the rate of growth of functions in L0 and L1.

Lemma 2.4.2 For every n-ary function f ∈ L0, there exist constants af
0 , af

1 , . . . , af
n ∈ N such

that |f(x1, . . . , xn)| ≤ af
0 + af

1 |x1| + · · · + af
n|xn| for all strings x1, . . . , xn.

2.4. L1 and FALOGTIME 21

Proof The result is proved by induction on the definition of f .

• If f = ε, then af
0 = 0 since |ε| = 0.

• If f = 0 or f = 1, then af
0 = 1 since |0| = |1| = 1.

• If f(x) = Ix, then af
0 = 0, af

1 = 1 since |Ix| = d|x|/2e ≤ |x|.

• If f(x, y) = x C y, then af
0 = 0, af

1 = 1, af
2 = 0 since |x C y| = |x| ·− |y| ≤ |x|.

• If f(x, y) = x · y, then af
0 = 0, af

1 = 1, af
2 = 1 since |x · y| = |x| + |y|.

• If f(x, y, z, w) = x ? (y, z, w), then af
0 = 0, af

1 = 0, af
2 = 1, af

3 = 1, af
4 = 1 since

|x ? (y, z, w)| ≤ max{|y|, |z|, |w|} ≤ |y| + |z| + |w|.

• If f(x1, . . . , xn) = In
k (x1, . . . , xn), then af

0 = 0, . . . , af
k−1 = 0, af

k = 1, af
k+1 = 0, . . . , af

n = 0

since |In
k (x1, . . . , xn)| = |xk|.

• If f is defined by CRN from h, then |f(x, ~y)| = |x| so af
0 = 0, af

1 = 1, af
2 = 0, . . . , af

n+1 = 0.

• If f is defined by COMP from g and h1, . . . , hk, then

|f(~x)| = |g(h1(~x), . . . , hk(~x))|

≤ ag
0 + ag

1|h1(~x)| + · · · + ag
k|hk(~x)|

≤ ag
0 +

∑

1≤i≤k

ag
i

(
ahi

0 +
∑

1≤j≤n

ahi

j |xj|
)

≤
(
ag

0 +
∑

1≤i≤k

ag
i a

hi
0

)
+

∑

1≤j≤n

(∑

1≤i≤k

ag
i a

hi

j

)
|xj|

so af
0 = ag

0 + ag
1a

h1
0 + · · · + ag

ka
hk
0 , and af

i = ag
1a

h1
i + · · · + ag

ka
hk

i for 1 ≤ i ≤ n. �

Lemma 2.4.3 For every n-ary function f ∈ L1, there exists a polynomial pf ∈ N[x1, . . . , xn]

such that |f(x1, . . . , xn)| ≤ pf (|x1|, . . . , |xn|) for all strings x1, . . . , xn.

Proof The result is proved by induction on the definition of f , where we use the notation

|~xn| to stand for the list |x1|, . . . , |xn|.

• If f ∈ L0, then by the preceding lemma, pf (|~xn|) = af
0 + af

1 |x1| + · · · + af
n|xn|.

• If f is defined by CRN from h, then as in the preceding lemma, pf (|x|, |~y|) = |x|.

• If f is defined by COMP from g and h1, . . . , hk, then

|f(~xn)| = |g(h1(~xn), . . . , hk(~xn))|

≤ pg

(
|h1(~xn)|, . . . , |hk(~xn)|

)

≤ pg

(
ph1(~xn), . . . , phk

(~xn)
)

22 Chapter 2. The String Algebra L1

(since polynomials in N[~x] are non-decreasing), so pf (|~xn|) = pg

(
ph1(|~xn|), . . . , phk

(|~xn|)
)
.

• If f is defined by TRN form g, h, h`, hr, where we assume without loss of generality that

– |g(x, z, ~y)| ≤ pg(|x|, |z|, |~y|),

– |h`(z)| ≤ c|z| and |hr(z)| ≤ c|z|,

– |h(x, z, ~y, v`, vr)| ≤ a0 + a1|x| + a2|z| +
∑

(bi|yi|) + a(|v`| + |vr|),

then intuitively, at each level of the recursion, the length of the second argument is

multiplied by c so that at the bottom level (after lg |x| steps), the second argument has

length O(clg |x||z|). At the same time, the lengths of each recursive call to f are multiplied

by a, which means that the total length of f (bounded by the length of g in the base case)

is multiplied by alg |x|. More precisely, we show that

pf (|x|, |z|, |~y|) =
(
a0 +

∑
(bi|yi|)

)
·

dlg |x|e−1∑

j=0

(2a)j + a1|x| ·

dlg |x|e−1∑

j=0

aj

+a2|z| ·

dlg |x|e−1∑

j=0

(2ac)j + (2a)dlg |x|e · pg

(
1, cdlg |x|e|z|, |~y|

)

≤ 2|x|dlg ae+1
[
a0 +

∑
(bi|yi|) + a1|x| + a2|z||x|

dlg ce

+a · pg

(
1, c|z||x|dlg ce, |~y|

)]
.

Technically speaking, we need to use max{1, |z|} everywhere that |z| appears in this

expression, but this does not change the proof substantially besides making it longer to

write down. Also, we need to deal separately with special cases such as when a = 0 or

when the lengths of h` and hr are constants independent of |z|, but all of these cases

simplify the proof so we present the general case only.

Now, if x = ε, 0, 1, then |f(x, z, ~y)| = |g(x, z, ~y)| ≤ pg(|x|, |z|, |~y|) ≤ pg(1, |z|, |~y|) ≤

a0 + a1|x| + a2|z| +
∑

(bi|yi|) + pg(1, |z|, |~y|) = pf (1, |z|, |~y|). If |x| > 1, then we consider

two subcases. If |x| is even, then dlg(|x|/2)e = dlg |x|e − 1, so

|f(x, z, ~y)| =
∣∣h

(
x, z, ~y, f(xJ, h`(z), ~y), f(Ix, hr(z), ~y)

)∣∣

≤ a0 + a1|x| + a2|z| +
∑

(bi|yi|)

+a
(
|f(xJ, h`(z), ~y)| + |f(Ix, hr(z), ~y)|

)

≤ a0 + a1|x| + a2|z| +
∑

(bi|yi|)

+a
(
pf (|xJ|, |h`(z)|, |~y|) + pf (|Ix|, |hr(z)|, |~y|)

)

≤ a0 + a1|x| + a2|z| +
∑

(bi|yi|) + 2a pf (|x|/2, c|z|, |~y|)

2.4. L1 and FALOGTIME 23

≤ a0 + a1|x| + a2|z| +
∑

(bi|yi|)

+2a




(
a0 +

∑
(bi|yi|)

)
·

dlg |x|e−2∑

j=0

(2a)j + a1
|x|

2
·

dlg |x|e−2∑

j=0

aj

+a2c|z| ·

dlg |x|e−2∑

j=0

(2ac)j + (2a)dlg |x|e−1 · pg

(
1, cdlg |x|e−1c|z|, |~y|

)



≤ pf (|x|, |z|, |~y|).

If |x| is odd, then dlg((|x| − 1)/2)e ≤ dlg |x|e − 1 and dlg((|x| + 1)/2)e = dlg |x|e − 1, so

|f(x, z, ~y)| =
∣∣h

(
x, z, ~y, f(xJ, h`(z), ~y), f(Ix, hr(z), ~y)

)∣∣

≤ a0 + a1|x| + a2|z| +
∑

(bi|yi|)

+a
(
|f(xJ, h`(z), ~y)| + |f(Ix, hr(z), ~y)|

)

≤ a0 + a1|x| + a2|z| +
∑

(bi|yi|)

+a
(
pf (|xJ|, |h`(z)|, |~y|) + pf (|Ix|, |hr(z)|, |~y|)

)

≤ a0 + a1|x| + a2|z| +
∑

(bi|yi|)

+a
(
pf ((|x| − 1)/2, c|z|, |~y|) + pf ((|x| + 1)/2, c|z|, |~y|)

)

≤ a0 + a1|x| + a2|z| +
∑

(bi|yi|)

+a



(
a0 +

∑
(bi|yi|)

)
·

dlg |x|e−2∑

j=0

(2a)j + a1
|x| − 1

2
·

dlg |x|e−2∑

j=0

aj

+a2c|z| ·

dlg |x|e−2∑

j=0

(2ac)j + (2a)dlg |x|e−1 · pg

(
1, cdlg |x|e−1c|z|, |~y|

)



+a



(
a0 +

∑
(bi|yi|)

)
·

dlg |x|e−2∑

j=0

(2a)j + a1
|x| + 1

2
·

dlg |x|e−2∑

j=0

aj

+a2c|z| ·

dlg |x|e−2∑

j=0

(2ac)j + (2a)dlg |x|e−1 · pg

(
1, cdlg |x|e−1c|z|, |~y|

)



≤ a0 + a1|x| + a2|z| +
∑

(bi|yi|)

+
(
a0 +

∑
(bi|yi|)

)
·

dlg |x|e−1∑

j=1

(2a)j + a1|x| ·

dlg |x|e−1∑

j=1

aj

+a2|z| ·

dlg |x|e−1∑

j=1

(2ac)j + (2a)dlg |x|e · pg

(
1, cdlg |x|e|z|, |~y|

)

+
−a1

2

dlg |x|e−1∑

j=1

aj +
a1

2

dlg |x|e−1∑

j=1

aj ≤ pf (|x|, |z|, |~y|). �

24 Chapter 2. The String Algebra L1

Now, we are ready to discuss circuits. For the sake of completeness, we summarize here

Bloch’s definitions and results, suitably modified to apply to our setting. We will be working

with circuit families that compute functions instead of relations, i.e., circuits will generally have

multiple output gates. In this setting, we define FNC 0 to be the class of functions computed

by constant depth circuit families (because the circuits have multiple output gates, this class

contains interesting functions, unlike the relational counterpart NC 0), and FNC 1 to be the

class of functions computed by logarithmic depth circuit families.

We assume that the gate set for our circuits consists of constants 0 and 1, unary identity

(≈) and negation (¬), and binary conjunction (∧), disjunction (∨), left projection (πL), and

right projection (πR) (this could be reduced at the cost of longer proofs). Given a circuit family

composed of such gates, we identify gates in the circuits by pairs 〈out, σ〉, where out is the

number of an output gate of the circuit (in binary) and σ ∈ {L,R, S}∗ represents a path in the

circuit from the given output gate, where L and R indicate the left and right inputs of a binary

gate, respectively, and S indicates the only input of a unary gate. (Note that we number the

output gates from right to left, starting with 1, and similarly for the input gates of each input.)

Now, we want to work with uniform families of circuits. Unfortunately, the standard notion

of UE∗-uniformity defined by Ruzzo [28] does not make sense for constant depth circuits (it

would require the extended connection language for the circuits to be recognizable by an ATM

in constant time, which is not even enough time for the ATM to examine a gate number or

an input length). To remedy this, Bloch defines a notion of mapping-uniform circuits, where

the uniformity computation is divided in two phases. The main purpose of the uniformity

computation is to be able to recognize connections in the circuit (i.e., given a gate and a path,

what gate is at the end of the path?) and gate information (i.e., given a gate number, what

type is that gate?). Because of our numbering scheme for gates, determining the descendant of

a gate 〈out, σ〉 along a path σ′ is easy: the answer is simply 〈out, σσ′〉. Determining the type

of an internal gate is also not difficult, as we will see. The hard part, requiring the “two-phase”

approach, is to determine which input bit is tied to an input gate (which is necessary to fully

specify the “type” of that input gate).

Here is some intuition behind the two phases of the uniformity computation. Essentially,

given an input gate 〈out, σ〉 in a circuit, the first phase must use σ to identify how to compute

the number of the input bit as a function of the output gate number, but without carrying

out that computation. This will be done by a deterministic Turing machine running in time

proportional to |σ|, which is bounded by the depth of the circuit, and it is this phase of the

computation that will be composed or iterated for functions defined by composition or recursion.

The second phase of the computation will only be carried out once, by an ATM that combines

the information from the first phase together with the rest of the information about the circuit.

2.4. L1 and FALOGTIME 25

More precisely, the first phase will output a term tσ that may be thought of as mapping

output bit positions to input bit positions that “affect” that output bit, i.e., given an input

gate 〈out, σ〉 in the circuit tied to bit number r of some input parameter, we want tσ(out) = r.

For this purpose, we introduce the mapping language of a family of circuits, which consists of

a set of functions that encapsulate all the “primitive” dependencies that may exist between

output and input bit numbers. Besides the natural numbers used to represent bit positions, we

also use the symbol “⊥” to indicate that a given output bit does not depend on any input bit.

For a circuit with k input parameters y1, . . . , yk, the mapping language contains the following

function symbols (each function is implicitly defined to be equal to ⊥ when its argument is ⊥).

• undef(x) = ⊥

• one(x) = 1

• addj(x) = x + |yj|

• subj(x) = x ·− |yj|

• minj(x) = min{x, |yj |}

Before we move back to circuits, we argue that terms tσ in the mapping language can be

computed in alternating logarithmic time (as a function of m = max{|tσ|,out, |y1|, . . . , |yk|}).

Given tσ,out, |y1|, . . . , |yk|, an ATM can check in parallel if tσ contains undef and output ⊥

immediately if this is the case; otherwise, the ATM guesses the position in tσ where the last

“one” appears, and replaces the subsequent part of the term with 1. Once these simple checks

are done, the ATM can construct lists of numbers from |y1|, . . . , |yk| and subterms of tσ for each

block of functions of the form minj1(. . .minj`
(t′) . . .) in tσ, and evaluate each of these blocks in

parallel. The rest of the subterms will contain only addj and subj functions, and these lists of

terms and numbers from |y1|, . . . , |yk| can be added and subtracted (using two’s complement)

with standard carry-save techniques.

Now, following Bloch, we say that a circuit family is mapping-uniform if there exist a

deterministic multi-tape Turing machine P and an ATM Q such that for every gate 〈out, σ〉 in

a circuit of the family, the following two conditions hold.

1. If 〈out, σ〉 is an input gate tied to bit number r of some input parameter, then P on

input σ runs in time O(|σ|) and outputs a term tσ in the mapping language such that

tσ(out) = r.

2. Machine Q on input out, σ, |y1|, . . . , |yk|, τ runs in logarithmic time, i.e., in alternating

time O
(
log(max{out, |σ|, |y1|, . . . , |yk|})

)
and accepts iff 〈out, σ〉 is an internal gate of

type τ or 〈out, σ〉 is an input gate tied to bit number r of yj and τ = 〈j, r〉 (in some

standard encoding).

A direct argument shows that any mapping-uniform family of circuits of at least logarithmic

depth is also UE∗-uniform. Now, we are ready to show that L1 ⊆ FNC 1.

26 Chapter 2. The String Algebra L1

Lemma 2.4.4 For every f ∈ BASE, f can be computed by a uniform circuit family in FNC 0.

Proof

ε: The empty circuit is the only one computing this function. Hence, on input σ = ε, P outputs

undef(x); on input out, σ, τ , Q accepts iff out = 0, σ = ε, and τ = ε.

0, 1: Circuits for these functions consist of a single output gate, one of the “constant” gates 0

or 1, appropriately. Hence, on input σ = ε, P outputs undef(x); on input out, σ, τ , Q

accepts iff out = 1, σ = ε, and τ = 0 or τ = 1, respectively.

Iy1: Circuits for this function connect output gates to input gates directly, using unary identity

gates ≈. Hence, on input σ = S, P outputs simply x; on input out, σ, |y1|, τ , Q accepts

iff 1 ≤ out ≤ d|y1|/2e, σ = ε and τ = ≈, or σ = S and τ = 〈1,out〉.

y1 C y2: Again, circuits for this function connect output gates to input gates directly, us-

ing unary identity gates ≈. Hence, on input σ = S, P outputs add2(x); on input

out, σ, |y1|, |y2|, τ , Q accepts iff 1 ≤ out ≤ |y1| ·− |y2|, σ = ε and τ = ≈, or σ = S and

τ = 〈1, r〉 for r = add2(out).

y1 · y2: The simplest circuits to compute this function would use unary identity gates connected

directly to the input bits, as in the last two cases. Unfortunately, this would not allow P

to know from σ alone which term to output. Therefore, we do something slightly different,

as depicted in Figure 2.4.1.

πL
n

g

πL
n

g

· · ·

· · ·

πL
n

g

0n
· · · · · ·

πR
n

g

πR
n

g

· · ·

· · ·

πR
n

g
︸ ︷︷ ︸

y1
︸ ︷︷ ︸

y2

Figure 2.4.1: Uniform circuits for the concatenation function “·”.

Now, on input σ = L, P outputs sub2(x), while on input σ = R, P outputs simply x; on

input out, σ, |y1|, |y2|, τ , Q accepts iff

• 1 ≤ out ≤ |y2| and

– σ = ε, τ = πR, or

– σ = L, τ = 0, or

– σ = R, τ = 〈2,out〉; or

• |y2| + 1 ≤ out ≤ |y2| + |y1| and

– σ = ε, τ = πL, or

– σ = R, τ = 0, or

– σ = L, τ = 〈1, r〉

for r = sub2(out).

2.4. L1 and FALOGTIME 27

y1 ? (y2, y3, y4): This is the only base function requiring circuits of depth greater than one.

There is one consideration making the circuits slightly more complicated than it would

seem necessary at first: the shorter of the last two input parameters must be “padded” to

the same length as the longer, requiring some extra gates. So, the circuits for ? are of two

different kinds: when |y1| = 0, the circuits simply use unary identity gates ≈ for output,

connected directly to the input gates of y2, while if |y1| > 0, the circuits are depicted

in Figure 2.4.2 (we illustrate the case when 0 < |y3| < |y4|; the other cases are identical

except for the obvious modifications to the types of the projection gates).

∨j
�� @@

∧j
@@

∧j
@@

πR
j πR

j

· · ·

∨j
�� @@

∧j
@@

∧j
@@

πR
j πR

j

∨j
�� @@

∧j
@@

∧j
@@

πL
j πR

j

· · ·

∨j
�� @@

∧j
@@

∧j
@@

πL
j πR

j

0j
· · · · · ·

e· · · e
| {z }

y1

· · · · · ·
¬j

· · · · · ·

e· · · e
| {z }

y2

e· · · e
| {z }

y3

· · ·

e· · · e e· · · e
| {z }

y4

Figure 2.4.2: Uniform circuits for the conditional function “?”.

Now, there are only a constant number of possibilities for σ that machine P needs to

check. We list each one and the corresponding output for P , as well as a brief explanation

indicating which bit of which input parameter is designated by the given path σ, in

Table 2.4.1.

σ output explanation

S x same bit of y2

RL one(x) first bit of y1

LLS one(x) first bit of y1 (negated)

LRR min3(x) bit of y3 (padded)

RRR min4(x) bit of y4 (padded)

Table 2.4.1: Behaviour of machine P for the conditional function.

Next, on input out, σ, |y1|, |y2|, |y3|, |y4|, τ , Q accepts iff

• |y1| = 0, 1 ≤ out ≤ |y2|, and

– σ = ε, τ = ≈, or

– σ = S, τ = 〈2,out〉; or

28 Chapter 2. The String Algebra L1

• |y1| > 0, 1 ≤ out ≤ max{|y3|, |y4|}, and

– σ = ε, τ = ∨, or

– σ = L, τ = ∧, or

– σ = R, τ = ∧, or

– σ = LL, τ = ¬, or

– σ = LR, τ = πR if out ≤ |y3|, τ = πL if |y3| < out, or

– σ = RL, τ = 〈1, 1〉, or

– σ = RR, τ = πR if out ≤ |y4|, τ = πL if |y4| < out, or

– σ = LLS, τ = 〈1, 1〉, or

– σ = LRL, τ = 0, or

– σ = LRR, τ = 〈3, r〉 for r = min3(out), or

– σ = RRL, τ = 0, or

– σ = RRR, τ = 〈4, r〉 for r = min4(out).

In

k
(y1, . . . , yn): Circuits will use unary identity gates ≈ directly connected to the proper

input bits. Hence, on input σ = S, P outputs simply x; on input out, σ, |y1|, . . . , |yn|, τ ,

Q accepts iff 1 ≤ out ≤ |yk|, σ = ε and τ = ≈, or σ = S and τ = 〈k,out〉. �

Next, we want to show that functions defined by CRN also have uniform circuit families.

For technical reasons (i.e., to simplify the proof), we actually show the result for left CRN.

(Since L0 and L1 remain the same whether CRN or left CRN is used to define them, this is

sufficient.)

Lemma 2.4.5 If f(y1, y2, . . . , yn) is defined from h by left CRN on y1, where h has uniform

circuits of depth dh(|y1|, |y2|, . . . , |yn|), then f has uniform circuits of depth

max
{
dh(1, |y2|, . . . , |yn|), dh(2, |y2|, . . . , |yn|), . . . , dh(|y1|, |y2|, . . . , |yn|)

}
.

Proof A natural circuit for f consists of a series of h-circuits in parallel, one for each output

bit of f , where the i-th h-circuit is connected to the first i bits of y1 (as well as to every other

input parameter). Clearly, the depth of this circuit is as stated above. Moreover, given a path

σ, machine P simply simulates Ph to get a term thσ and outputs tσ(x) = thσ(one(x)), while

machine Q accepts out, σ, |y1|, |y2|, . . . , |yn|, τ iff |y1| = 0, out = 0, σ = ε, τ = ε, or Qh accepts

out′ = 1, σ, |y′1| = out, |y2|, . . . , |yn|, τ . �

Following this, we need to show that the composition of functions computed by uniform

families of circuits is also computable by uniform families of circuits, of the right depth.

2.4. L1 and FALOGTIME 29

Lemma 2.4.6 If f(y1, . . . , yn) is defined from g and h1, . . . , hk by COMP, where g has uni-

form circuits of depth dg(|z1|, . . . , |zk|) and hi has uniform circuits of depth dhi
(|y1|, . . . , |yn|)

(for 1 ≤ i ≤ k), then f has uniform circuits of depth

dg(|h1(~yn)|, . . . , |hk(~yn)|) + max{dhi
(|~yn|)} + dlg(k)e.

Proof A natural circuit for f consists of a circuit for g whose input gates are connected to

the output gates of the corresponding circuits for hi directly. Unfortunately, machine P cannot

tell what term to output just from a path in such a circuit, because P does not have enough

time to determine which hi the path leads into (this would require determining the number of

the input gate of g through which the path passes). Therefore, we construct a slightly more

complicated circuit by adding a layer of selection gates of depth dlg(k)e between the circuit for

g and the hi circuits (somewhat like what was done for the concatenation function), in such

a way that machine P can easily determine from a path σ which hi the path goes through.

Clearly, the depth of such a circuit is as stated above. Moreover, given a path σ, machine P

can break it up into σg through g (getting a term tσg), followed by σ′ through the selection

subcircuit (which gives the index i of the function hi feeding into the g circuit), followed by

a final part σi through hi (getting a term tσi
). P then outputs tσi

(tσg (x)), in time linear in

|σ|. Also, on input out, σ, |y1|, . . . , |yn|, τ , machine Q accepts iff 〈out, σ〉 is a gate of type τ

in g (by simulating Qg), or 〈out, σ〉 is a gate within dlg(k)e steps of an input of g and τ is

the correct type of projection gate (computing tσg (out) to figure out which input bit of g the

path σ goes through, and then checking the constantly many possibilities for the part of σ

through the selection subcircuit), or 〈out, σ〉 is a gate of type τ or an input gate τ = 〈j, r〉 for

r = tσi
(tσg (out)) within an hi circuit (computing tσg(out) and tracking the path through the

selection subcircuit to figure out the index i, and then simulating Qhi
to verify τ). All this can

be done in logarithmic time. �

Finally, we show that functions defined by TRN can be computed by uniform families of

circuits.

Lemma 2.4.7 If f(y1, y2, y3, . . . , yn) is defined from g, h, h`, and hr by TRN, where g has

uniform circuits of depth dg(|y1|, |y2|, |y3|, . . . , |yn|), h has uniform circuits of depth dh (a con-

stant), and h` and hr have uniform circuits of depth d` and dr (constants), then f has uniform

circuits of depth

O
(
dg(1, |y2||y1|

c, |y3|, . . . , |yn|) + log |y1| · (dh + d` + dr)
)

for some constant c ∈ N.

30 Chapter 2. The String Algebra L1

Proof A natural circuit for f consists of a binary tree of h-subcircuits connected to the

appropriate bits of the first input and to each other, with a layer of g circuits at the bottom,

where the second input of the h and g circuits is connected to subtrees of h` and hr circuits.

As in the proof for composition, we use layers of selection gates to “glue” together the different

subcircuits (between successive h circuits, between h and g circuits, between h or g circuits and

the circuits to compute left and right halves of the first input or left and right functions of the

second input, as well as between successive “half” functions for the first and second inputs), so

that P can tell from the path σ alone which subcircuit a path leads to. The total depth of such

a circuit is obviously as stated. Moreover, given a path σ, P can divide the path into portions

through h circuits, accumulating the terms for each one, and the final portion of the path

through an h, g, h`, hr, or “half” circuit, outputting the composition of each term. This can

obviously be done in linear time in the length of σ. On input out, σ, |y1|, |y2|, |y3|, . . . , |yn|, τ ,

machine Q can break up the path σ into a first part through some number of h circuits and a

final part σ′ entirely contained inside some h, g, h`, hr, or “half” subcircuit. Q can compute the

term corresponding to the first part of the path to figure out which output bit of the subcircuit

σ passes through, and then simulate the ATM for that subcircuit to verify τ , all in logarithmic

time. �

Now, we can put all of these results together.

Theorem 2.4.1 For all f ∈ L0, f can be computed by a uniform family of circuits in FNC 0

(i.e., of constant depth).

Proof By induction on the definition of f : Lemma 2.4.4 shows that functions in BASE

have uniform constant depth circuits, and Lemmas 2.4.5 and 2.4.6 show that CRN and COMP

preserve uniform constant depth. �

Theorem 2.4.2 For all f ∈ L1, f can be computed by a uniform family of circuits in FNC 1

(i.e., of logarithmic depth).

Proof By induction on the definition of f .

• If f ∈ L0, then the preceding theorem shows the result.

• If f is defined by CRN from h ∈ L1, then Lemma 2.4.5 shows that f can be computed by

uniform circuits of the same depth as that of the circuits for h, which shows the result.

• If f is defined by COMP from g, h1, . . . , hk ∈ L1, then Lemma 2.4.6 and Lemma 2.4.3 (on

2.4. L1 and FALOGTIME 31

the length of functions in L1) show that f can be computed by uniform circuits of depth

dg(|h1(~y)|, . . . , |hk(~y)|) + max{dhi
(|~y|)} + dlg(k)e

= O
(

log
(
max{ph1(|~y|), . . . , phk

(|~y|)}
)

+ log(max{|~y|})
)

= O
(
log(max{|~y|})

)
.

• If f is defined by TRN from g ∈ L1 and h, h`, hr ∈ L0, then Lemma 2.4.7, together with

Lemmas 2.4.2 and 2.4.3 on the length of functions in L0 and L1, shows that f can be

computed by uniform circuits of depth

O
(
dg(1, |y2||y1|

c, |y3|, . . . , |yn|) + log |y1| · (dh + d` + dr)
)

= O
(
log(max{|y2|, . . . , |yn|}) + log |y1|

)

= O
(
log(max{|y1|, |y2|, . . . , |yn|})

)
. �

Chapter 3

The Quantifier-Free Theory T1

In this chapter, we will define the theory T1 and give its formal development, including many

proofs of simple properties of functions of T1, as well as many derived rules, and concluding

with an illustrative example by proving the pigeonhole principle.

3.1 Definitions

The theory T1 that we now describe is a quantifier-free system, i.e., a free-variable theory with

propositional connectives, modeled after Cook’s PV [18] but based on the algebra L1. The

language of T1 consists of the function symbols

{ε, 0, 1, 0 , 1,J,I, ·,B,C, ?},

the function constructors {λ, `CRN, rCRN,TRN}, the predicate symbol {=}, and the usual

propositional connectives {¬,∧,∨,→,↔}. More precisely, we have the following definitions

(where we use the informal notation x0 for (x · 0) and 0x for (0 · x)—similarly for x1 and 1x).

Definition 3.1.1 The function symbols and terms of T1 are defined as follows. (The in-

tended interpretation of each function symbol is as given in Chapter 2, where `CRN represents

“left” (or “reverse”) CRN and rCRN represents “right” (or “plain”) CRN, and we use the no-

tation introduced there instead of the more formal prefix notation. Also, each function symbol

and each term has a rank of either 0 or 1—that intuitively indicates which one of L0 or L1 the

function symbol or term belongs to.)

1. Each variable x0, x1, x2, . . . is a term of rank 0.

2. If f is an n-place function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term

whose rank is the maximum of the ranks of f, t1, . . . , tn (i.e., the rank of f(t1, . . . , tn) is

0 iff the rank of each one of f, t1, . . . , tn is 0).

33

34 Chapter 3. The Quantifier-Free Theory T1

3. ε, 0, 1 are 0-place function symbols (constants) of rank 0.

4. 0, 1,J,I are 1-place function symbols of rank 0.

5. ·,B,C are 2-place function symbols of rank 0.

6. ? is a 3-place function symbol of rank 0.

7. If t is a term and x1, . . . , xn is a list of variables including all the variables in t, then

[λx1 . . . xn. t] is an n-place function symbol of the same rank as that of t.

8. If h is an (n + 1)-place function symbol, then `CRN[h] and rCRN[h] are (n + 1)-place

function symbols whose rank is that of h.

9. If g is an (n+2)-place function symbol, h is an (n+4)-place function symbol of rank 0, and

h` and hr are 1-place function symbols of rank 0, then TRN[g, h, h`, hr] is an (n+2)-place

function symbol of rank 1.

Definition 3.1.2 The axioms of T1 are as follows (except for the propositional and equality

axioms, they simply define the function symbols).

0. Any standard, complete set of axioms for the propositional calculus (with equations of

the form x = y in place of propositional atoms, for arbitrary variables x and y).

1. (a) x = x

(b) x = y → y = x

(c) (x = y ∧ y = z) → x = z

(d) (x1 = y1 ∧ · · · ∧ xk = yk) → f(x1, . . . , xk) = f(y1, . . . , yk)

(for all k-ary function symbols f , for all k ≥ 1)

2. ε 6= 0 ∧ 0 6= 1 ∧ 1 6= ε

3. (a) x · ε = x ∧ x · y0 = (x · y) · 0 ∧ x · y1 = (x · y) · 1

(b) x · y = ε → (x = ε ∧ y = ε)

(c) x · y = 0 → (x = ε ∧ y = 0) ∨ (x = 0 ∧ y = ε)

x · y = 1 → (x = ε ∧ y = 1) ∨ (x = 1 ∧ y = ε)

4. (a) ε B x = x ∧ 0y B x = 0 B (y B x) ∧ 1y B x = 1 B (y B x)

(b) 0 B ε = ε ∧ 0 B 0x = x ∧ 0 B 1x = x

1 B ε = ε ∧ 1 B 0x = x ∧ 1 B 1x = x

(c) y B x = ε ↔ x B y0 6= ε ↔ x B y1 6= ε

3.1. Definitions 35

5. (a) x = x C ε ∧ (x C y) C 0 = x C y0 ∧ (x C y) C 1 = x B y1

(b) ε = ε C 0 ∧ x = x0 C 0 ∧ x = x1 C 0

ε = ε C 1 ∧ x = x0 C 1 ∧ x = x1 C 1

(c) ε 6= 1y C x ↔ ε 6= 0y C x ↔ ε = x C y

6. (a) 0ε = ε ∧ 0(x0) = 0x · 0 ∧ 0(x1) = 0x · 0

(b) 1ε = ε ∧ 1(x0) = 1x · 1 ∧ 1(x1) = 1x · 1

7. ε ? (x, y, z) = x ∧ w0 ? (x, y, z) = 0(z C y) · y ∧ w1 ? (x, y, z) = 0(y C z) · z

8. (a) (xJ) · (Ix) = x

(b) (xJ C Ix) = ε ∧ 1 B (xJ B Ix) = ε

9. We use “x ?EL (y, z)” as a shorthand notation for (xJ B Ix) ? (y, z, z) (which equals y if

the length of x is even, z if the length of x is odd).

(a) (x0)J = x ?EL
(
xJ, xJ · ((Ix · 0) C Ix)

)
∧ (x1)J = x ?EL

(
xJ, xJ · ((Ix · 1) C Ix)

)

(b) I(x0) = x ?EL
(
Ix · 0, 1 B (Ix · 0)

)
∧ I(x1) = x ?EL

(
Ix · 1, 1 B (Ix · 1)

)

(c) (0x)J = x ?EL
(
(0 · xJ) C 1, 0 · xJ

)
∧ (1x)J = x ?EL

(
(1 · xJ) C 1, 1 · xJ

)

(d) I(0x) = x ?EL
(
(xJ B (0 · xJ)) ·Ix,Ix

)
∧ I(1x) = x ?EL

(
(xJ B (1 · xJ)) ·Ix,Ix

)

10. [λx1 . . . xn. t](x1, . . . , xn) = t

11. (a) `CRN[h](ε, ~y) = ε

∧ `CRN[h](0x, ~y) =
(
(h(0x, ~y) · 0) C h(0x, ~y)

)
· `CRN[h](x, ~y)

∧ `CRN[h](1x, ~y) =
(
(h(1x, ~y) · 0) C h(1x, ~y)

)
· `CRN[h](x, ~y)

(b) rCRN[h](ε, ~y) = ε

∧ rCRN[h](x0, ~y) = rCRN[h](x, ~y) ·
(
h(x0, ~y) B (0 · h(x0, ~y))

)

∧ rCRN[h](x1, ~y) = rCRN[h](x, ~y) ·
(
h(x1, ~y) B (0 · h(x1, ~y))

)

12. TRN[g, h, h`, hr](x, z, ~y) = x C 1 ? (g(x, z, ~y), t, t)

where t = h
(
x, z, ~y,TRN[g, h, h`, hr](xJ, h`(z), ~y),TRN[g, h, h`, hr](Ix, hr(z), ~y)

)

Remark 3.1.1 By Claim 2.4.1, every function in FALOGTIME is represented by some

function symbol in T1, and every function symbol in T1 represents a function in FALOGTIME .

Definition 3.1.3 The rules of inference of T1 are as follows.

0. Any standard, complete set of rules for the propositional calculus.

36 Chapter 3. The Quantifier-Free Theory T1

1. Substitution for an arbitrary formula A, variable x, and term t:

A ` A[t/x]

2. Induction on Notation (NIND) for an arbitrary formula A and variable x:

(a) (“left” version) A[ε], A[x] → A[0x], A[x] → A[1x] ` A

(b) (“right” version) A[ε], A[x] → A[x0], A[x] → A[x1] ` A

3. Tree Induction (TIND) for an arbitrary formula A, variables x, z, and unary function

symbols h`, hr of rank 0:

A[ε, z], A[0, z], A[1, z],
(
A[xJ, h`(z)] ∧ A[Ix, hr(z)]

)
→ A[x, z] ` A

3.2 Developing the theory

In this section, we give a formal development of T1, starting with a few simple theorems and

working our way towards multi-variable versions of CRN and NIND. These will be used to

define binary addition and “counting” functions, and to prove their properties.

3.2.1 Basic definitions and theorems

Claim 3.2.1 ε · x = x

Proof By NIND on x: ε · ε = ε (by Axiom 3a and Rule 1),

ε · x0 = (ε · x) · 0 (Axiom 3a, Rule 1)

= x · 0 (Induction Hypothesis, Axiom 1d, Rule 1),

ε · x1 = (ε · x) · 1 (Axiom 3a, Rule 1)

= x · 1 (Induction Hypothesis, Axiom 1d, Rule 1). �

Claim 3.2.2 x · (y · z) = (x · y) · z

Proof By NIND on z: x · (y · ε) = x · y = (x · y) · ε (by Axiom 3a and Rule 1),

x · (y · z0) = x · ((y · z) · 0) (Axioms 3a and 1d, Rule 1)

= (x · (y · z)) · 0 (Axiom 3a and Rule 1)

= ((x · y) · z) · 0 (Induction Hypothesis)

= (x · y) · z0 (Axiom 3a and Rule 1),

and a similar proof shows x · (y · z1) = (x · y) · z1. �

3.2. Developing the theory 37

Note that in the proofs that follow, we will not mention explicitly the application of partic-

ular axioms, of the induction hypothesis, or of the substitution rule when they are self-evident.

Also, when proving a statement by NIND, the cases for x0 and x1 will often be almost identical

(as above) so we will prove both cases at once using “i” to stand for either 0 or 1.

Remark 3.2.1 Be advised that the rest of this section contains a large number of technical

claims, together with their proofs, which are included here for the sake of completeness. Most

of these claims are of limited interest in themselves, apart from illustrating the style of proofs in

T1 and giving basic properties of functions which will be used in later proofs. For this reason,

we recommend that on a first reading, the reader focus mainly on the Definitions, Theorems,

and Derived Rules, which contain the essential results.

On “B” and “C”

We start by defining two functions that will serve as a convenient shorthand notation throughout

the rest of this chapter, and prove basic properties of these functions.

Definition 3.2.1 (L) m = [λx.1 B x] (R) l = [λx.x C 1]

(To make the notation more consistent with previous usage, we will write “mx” and “xl” instead

of the more formal “m(x)” and “l(x)”, respectively.)

Claim 3.2.3 (L) 0 B x = 1 B x (R) x C 1 = x C 0

Proof (L): Immediate from Axiom 4b. (R): Immediate from Axiom 5b. �

Claim 3.2.4 (L) mε = ε ∧ m(0x) = x∧ m(1x) = x (R) εl = ε ∧ (x0)l = x ∧ (x1)l = x

Proof (L): This is just a restatement of Axiom 4b. (R): This is just a restatement of

Axiom 5b. �

Claim 3.2.5 (L) y B ε = ε (R) ε = ε C y

Proof (L) By NIND on y: ε B ε = ε, iy B ε = i B (y B ε) = i B ε = ε. (R) By NIND on y:

ε B ε = ε, ε C yi = (ε C y) C i = ε C i = ε. �

Many of the theorems that follow will be similar to the ones above in having a “left” and

“right” version, both of which can be proved in the same way (by using the appropriate version

of NIND when necessary). Hence, to avoid unnecessary repetition, we will only give the proof

of one version from now on.

38 Chapter 3. The Quantifier-Free Theory T1

Claim 3.2.6 (L) m(y B x) = y B mx (R) (x C y)l = xl C y

Proof (L) By NIND on y: m(ε B x) = mx = ε B mx, m(iy B x) = mm(y B x) = m(y B mx) =

iy B mx. �

Claim 3.2.7 (L) zy B zx = y B x (R) xz C yz = x C y

Proof (L) By NIND on z: εy B εx = y B x, (iz)y B (iz)x = m(zy B (iz)x) = zy B m(iz)x =

zy B zx = y B x. �

Corollary 3.2.8 (L) x B xy = y (R) y = yx C x

Corollary 3.2.9 (L) x B x = ε (R) ε = x C x

Now, we are ready to define two more functions that will also be used as a convenient

shorthand notation for the rest of the chapter.

Definition 3.2.2 (L) 8 = [λx.x C mx] (R) ′ = [λx.xl B x]

(To make the notation more consistent with previous usage, we will write “8x” and “x′” instead

of the more formal “8(x)” and “′(x)”, respectively.)

Claim 3.2.10 (L) 8ε = ε ∧ 8(0x) = 0 ∧ 8(1x) = 1 (R) ε′ = ε ∧ (x0)′ = 0 ∧ (x1)′ = 1

Proof (L) From the definition, by Claim 3.2.4 and by Corollary 3.2.8: 8ε = εCmε = εCε = ε,

8(ix) = ix C m(ix) = ix C x = i. �

Claim 3.2.11 (L) 8x · mx = x (R) x = xl · x′

Proof (L) By NIND on x: 8ε · mε = ε · ε = ε, 8(ix) · m(ix) = i · x = ix. �

On “·”

Claim 3.2.12 (L) ε 6= ix (R) xi 6= ε

Proof (L) By Axioms 2 and 3b, and by taking the contrapositive: xi = ε → x = ε ∧ i =

ε → i = ε. �

Claim 3.2.13 (L) 0x 6= 1y (R) x0 6= y1

Proof (L) By Axiom 2, Claim 3.2.10, Axiom 1d, and by taking the contrapositive: 0x =

1y → 8(0x) = 8(1y) → 0 = 1. �

3.2. Developing the theory 39

Claim 3.2.14 (L) mx = ε↔x = ε∨x = 0∨x = 1 (R) x = ε∨x = 0∨x = 1↔ ε = xl

Proof (L) By NIND on x: mε = ε ↔ ε = ε, m(ix) = ε ↔ x = ε ↔ ix = iε ↔ ix = i. �

Theorem 3.2.1 (L) x = ε∨ x = 0 · mx∨ x = 1 · mx (R) x = ε∨ x = xl · 0 ∨ x = xl · 1

Proof (L) By NIND on x: ε = ε, ix = i · m(ix). �

Note that by Claims 3.2.12 and 3.2.13, we can show that exactly one of the disjuncts holds

(i.e., that x = ε → x 6= 0 · mx ∧ x 6= 1 · mx and x = 0 · mx → x 6= ε ∧ x 6= 1 · mx and

x = 1 · mx → x 6= 0 · mx ∧ x 6= ε).

Corollary 3.2.15 (L) x 6= ε↔x = 0·mx∨x = 1·mx (R) x 6= ε↔x = xl·0∨x = xl·1

Note that Theorem 3.2.1 can easily be generalized to show, for example, x = ε∨x = 0∨x =

1 ∨ x = 00 · mmx ∨ x = 01 · mmx ∨ x = 10 · mmx ∨ x = 11 · mmx, or, by substituting various terms

for x, xi = i∨xi = 0 · (mx)i∨xi = 1 · (mx)i, etc. Because (A∨B)∧ (A→C)∧ (B→C)→C is a

theorem of T1, we can use Theorem 3.2.1 together with substitution to define an entire family

of “derived rules” in T1, like the following.

Derived Rule 3.2.1

1. (L) A[ε], A[0x], A[1x] ` A (R) A[ε], A[x0], A[x1] ` A

2. A[ε], A[0], A[1], A[0x0], A[0x1], A[1x0], A[1x1] ` A

As an example of application of Derived Rule 3.2.1, we prove the following simple claim.

Claim 3.2.16 (mx)l = m(xl)

Proof By Derived Rule 3.2.1: (mε)l = ε = m(εl), (mi)l = εl = mε = m(il), (m(ixj))l =

(xj)l = x = m(ix) = m((ixj)l). �

On “0” and “1”

Claim 3.2.17 0(x · y) = 0x · 0y

Proof By NIND on y: 0(x·ε) = 0x = 0x·ε = 0x·0ε, 0(x·yi) = 0(x·y)·0 = 0x·0y·0 = 0x·0(yi).

�

Note that an identical theorem can be proved with 1x in place of 0x. In what follows, we will

often need to prove theorems in which “0” or “1” appear, where the particular function used

does not matter. We will indicate this by using “j” to stand for either of the above functions.

40 Chapter 3. The Quantifier-Free Theory T1

Claim 3.2.18 jx · j = j · jx

Proof By NIND on x: jε · j = ε · j = j = j · ε = j · jε, j(xi) · j = (jx · j) · j = (j · jx) · j =

j · (jx · j) = j · j(xi). �

Claim 3.2.19 jx · jy = jy · jx

Proof By NIND on y, and by Claims 3.2.17 and 3.2.18: jx · jε = jx ·ε = jx = ε · jx = jε · jx,

jx · j(yi) = jx · jy · j = jy · jx · j = j(yx) · j = j · j(yx) = j · jy · jx = jy · j · jx = j(yi) · jx. �

Corollary 3.2.20 j(xy) = j(yx)

Claim 3.2.21 jx = j(0x) and jx = j(1x)

Proof (We will prove only the first property, the second one being almost identical.) By

NIND on x: jε = j(0ε), j(xi) = jx · j = j(0x) · j = j(0x · 0) = j(0(xi)). �

Corollary 3.2.22 0x = 0y ↔ 1x = 1y

Claim 3.2.23 mjx = jxl

Proof By NIND on x, and by Claim 3.2.18: mjε = mε = ε = εl = jεl, mj(xi) = m(jx · j) =

m(j · jx) = jx = (jx · j)l = j(xi)l. �

Claim 3.2.24 (L) m(jx) = j(mx) (R) j(xl) = (jx)l

Proof (L) By NIND on x, and by Claim 3.2.17: m(jε) = mε = ε = jε = j(mε), m(j(ix)) =

m(j · jx) = jx = j(m(ix)). �

Claim 3.2.25 x = ε ↔ jx = ε

Proof By NIND on x: ε = ε ↔ jε = ε, xi = ε ↔ jx · j = ε. �

Claim 3.2.26 (L) x B y = jx B y (R) y C x = y C jx

Proof (L) By NIND on x: ε B y = y = jε B y, ix B y = m(x B y) = m(jx B y) = j · jx B y =

j(ix) B y. �

Claim 3.2.27 (L) x B jy = j(x B y) (R) jy C x = j(y C x)

Proof (L) By NIND on x, and by Claim 3.2.24: εBjy = jy = j(εBy), ixBjy = m(xBjy) =

mj(x B y) = j(m(x B y)) = j(ix B y). �

3.2. Developing the theory 41

Claim 3.2.28 j(x B y) = j(y C x)

Proof By NIND on x, and by Claims 3.2.24 and 3.2.23: j(εBy) = jy = j(yCε), j(ixBy) =

j(m(x B y)) = m(j(x B y)) = m(j(y C x)) = (j(y C x))l = j((y C x)l) = j(y C ix). �

Corollary 3.2.29 x B jy = jy C x

Claim 3.2.30 (L) 8x = x C xl (R) mx B x = x′

Proof (L) By NIND on x, and by Corollary 3.2.8 and Claims 3.2.26 and 3.2.23: 8ε = ε =

ε C εl, 8(ix) = i = ix C x = ix C 0x = ix C m(00x) = ix C m0(ix) = ix C 0(ix)l = ix C (ix)l.

�

Corollary 3.2.31 (L) 8(xi) = xi C x (R) x B ix = (ix)′

Claim 3.2.32

1. (L) y B xi 6= ε ↔ y B xi = y B x · i (R) ε 6= ix C y ↔ i · x C y = ix C y

2. (L) y B x 6= ε → y B xi 6= ε (R) ε 6= x C y → ε 6= ix C y

3. (L) 0(y · (y B x)) = 0(x · (x B y)) (R) 0((x C y) · y) = 0((y C x) · x)

Proof

1. (L) The first direction is proved by Claim 3.2.12: y B xi = y B x · i → y B xi 6= ε. The

other direction is proved by NIND on y: ε B xi 6= ε → ε B xi = ε B x · i, jy B xi 6=

ε → m(y B xi) 6= ε → y B xi 6= ε → y B xi = y B x · i → m(y B xi) = m(y B x · i) =

y B x ?ZL (ε, m(y B x) · i) → jy B xi = jy B xi ?ZL (ε, jy B x · i) = jy B x · i.

2. (L) By NIND on y and the preceding claim: ε B x = x 6= ε → ε B xi = xi 6= ε, jy B x =

m(yBx) 6= ε→yBx 6= ε→yBxi 6= ε→yBxi = yBx·i→m(yBxi) = m(yBx)·i = jyBx·i 6= ε.

3. (L) The claim is proved first under the assumption that x B y = ε (which implies by

Axioms 4c and 5c, and by the preceding claims, that y B xi = y B x · i, and also implies

that xiBy = m(xBy) = ε), and then under the assumption that xBy 6= ε (which implies

by Axioms 4c and 5c, and by the preceding claims, that y B xi = y B x = ε). Then, a

simple application of modus ponens with the tautology x B y = ε ∨ x B y 6= ε yields the

claim.

By NIND on x, and under the assumption that xBy = ε: 0(y ·(yBε)) = 0y = 0(ε ·(εBy)),

0(y · (y B xi)) = 0(y · (y B x) · i) = 0(y · (y B x)) · 0 = 0(x · (x B y)) · 0 = 0x · 0 = 0(xi · ε) =

0(xi · (xi B y)).

42 Chapter 3. The Quantifier-Free Theory T1

By NIND on x, and under the assumption that xBy 6= ε: 0(y ·(yBε)) = 0y = 0(ε ·(εBy)),

0(y · (y B xi)) = 0(y · ε) = 0(y · (y B x)) = 0(x · (xB y)) = 0x · 0(xB y) = 0x · 0 ·m0(x B y) =

0(xi) · 0(xi B y) = 0(xi · (xi B y)). �

On “?” and related functions

Now, we will prove a group of theorems about the conditional function “?”. Note that in the

statement of some of the theorems below, we will need to express the fact that terms t and u

have the same length, something which can be done by the equation jt = ju.

First, we introduce two new functions defined in terms of “?” that will be used through-

out the rest of this chapter for notational convenience. Whereas the conditional function “?”

performs a three-way test on its first argument, the “zero-length conditional” function “?ZL”

tests whether the length of its first argument is zero or not, and the “even-length conditional”

function “?EL” tests whether the length of its first argument is even or odd (?EL has already

been introduced informally in Axiom 9).

Definition 3.2.3 ?ZL = [λxyz.x ? (y, z, z)]

Definition 3.2.4 ?EL = [λxyz.(xJ B Ix) ?ZL (y, z)]

(To make the notation more consistent with previous usage, we will write “x ?ZL (y, z)” and

“x ?EL (y, z)” instead of the more formal “?ZL(x, y, z)” and “?EL(x, y, z)”, respectively.)

Claim 3.2.33 w ? (x, y, z) = w ?
(
x, 0(z C y) · y, 0(y C z) · z

)

Proof Immediate from Axiom 7. �

Claim 3.2.34 w ? (x, y, z) = w′ ? (x, y, z)

Proof By NIND on w: ε ? (x, y, z) = x = ε′ ? (x, y, z), w0 ? (x, y, z) = 0(z C y) · y =

0 ? (x, y, z) = (w0)′ ? (x, y, z), w1 ? (x, y, z) = 0(y C z) · z = 1 ? (x, y, z) = (w1)′ ? (x, y, z). �

Claim 3.2.35 wi ?ZL (x, y) = y

Proof By Corollary 3.2.8: wi ?ZL (x, y) = wi ? (x, y, y) = 0(y C y) · y = 0ε · y = y. �

Corollary 3.2.36 iw ?ZL (x, y) = y

Corollary 3.2.37 w ?ZL (x, y) = jw ?ZL (x, y)

Corollary 3.2.38 w ?ZL (y, y) = w ? (y, y, y) = y

3.2. Developing the theory 43

Theorem 3.2.2 For any k-ary function symbol f ,

(
0y1 = 0z1∧· · ·∧ 0yk = 0zk

)
→w ?

(
f(~xk), f(~yk), f(~zk)

)
= f

(
w ? (x1, y1, z1), . . . , w ? (xn, yn, zn)

)
.

Proof By NIND on w, and under the assumption that 0y1 = 0z1 ∧ · · · ∧ 0yk = 0zk: ε ?
(
f(~xk), f(~yk), f(~zk)

)
= f(~xk) = f

(
ε?(x1, y1, z1), . . . , ε?(xk, yk, zk)

)
, w0?

(
f(~xk), f(~yk), f(~zk)

)
=

f(~yk) = f
(
w0 ? (x1, y1, z1), . . . , w0 ? (xk, yk, zk)

)
, w1 ?

(
f(~xk), f(~yk), f(~zk)

)
= f(~zk) = f

(
w1 ?

(x1, y1, z1), . . . , w1 ? (xk, yk, zk)
)
. �

Claim 3.2.39

w ?
(
w ? (x1, y1, z1), w ? (x2, y2, z2), w ? (x3, y3, z3)

)
= w ?

(
x1, 0(z2 C y2) · y2, 0(y3 C z3) · z3

)

Proof By NIND on w and by Claim 3.2.32: ε?
(
ε?(x1, y1, z1), ε?(x2, y2, z2), ε?(x3, y3, z3)

)
=

ε?(x1, x2, x3) = x1 = ε?
(
x1, 0(z2Cy2)·y2, 0(y3Cz3)·z3

)
, w0?

(
w0?(x1, y1, z1), w0?(x2, y2, z2), w0?

(x3, y3, z3)
)

= w0 ? (0(z1 C y1) · y1, 0(z2 C y2) · y2, 0(z3 C y3) · y3) = 0

(
(0(z3 C y3) · y3) C (0(z2 C

y2) · y2)
)
· 0(z2 C y2) · y2 = 0

(
(0(y3 C z3) · z3) C (0(z2 C y2) · y2)

)
· 0(z2 C y2) · y2 = w0 ?

(
x1, 0(z2 C

y2) · y2, 0(y3 C z3) · z3

)
, and similarly for w1. �

Claim 3.2.40 w ? (x0, y0, z0) ? (x1, y1, z1) =

w ?
(
x0 ? (x1, y1, z1), (0(z0 C y0) · y0) ? (x1, y1, z1), (0(y0 C z0) · z0) ? (x1, y1, z1)

)

Proof A straightforward NIND on w, very similar to the proof of Claim 3.2.39. �

Corollary 3.2.41 w ?ZL (x0, y0) ?ZL (x1, y1) = w ?ZL
(
x0 ?ZL (x1, y1), y0 ?ZL (x1, y1)

)

Claim 3.2.42 x ?ZL
(
y ?ZL (z0, w0), y ?ZL (z1, w1)

)
= y ?ZL

(
x ?ZL (z0, z1), x ?ZL (w0, w1)

)

Proof By NIND on x: ε ?ZL
(
y ?ZL (z0, w0), y ?ZL (z1, w1)

)
= y ?ZL (z0, w0) = y ?ZL

(
ε ?ZL

(z0, z1), ε?
ZL(w0, w1)

)
, xi?ZL

(
y?ZL(z0, w0), y?ZL(z1, w1)

)
= y?ZL(z1, w1) = y?ZL

(
xi?ZL(z0, z1), xi?ZL

(w0, w1)
)
. �

Claim 3.2.43 w = w ? (ε,wl · 0, wl · 1)

Proof By NIND on w: ε = ε ? (ε, εl · 0, εl · 1), w0 = w0 ? (ε,w0, w1) = w0 ? (ε, (w0)l ·

0, (w0)l · 1), w1 = w1 ? (ε,w0, w1) = w1 ? (ε, (w1)l · 0, (w1)l · 1). �

Corollary 3.2.44 w = w ?ZL (ε,w)

Theorem 3.2.3 w?(x, y0, y1) = z↔(w = ε∧x = z)∨(w = wl·0∧0(y1 Cy0) ·y0 = z)∨(w =

wl · 1 ∧ 0(y0 C y1) · y1 = z)

44 Chapter 3. The Quantifier-Free Theory T1

Proof By NIND on w: ε ? (x, y0, y1) = z ↔ x = z ↔ ε = ε ∧ x = z, w0 ? (x, y0, y1) =

z↔ 0(y1 Cy0) ·y0 = z↔w0 = (w0)l ·0∧ 0(y1 Cy0) ·y0 = z, w1?(x, y0, y1) = z↔ 0(y0 Cy1) ·y1 =

z ↔ w1 = (w1)l · 1 ∧ 0(y0 C y1) · y1 = z. �

Corollary 3.2.45 w ?ZL (x, y) = z ↔ (w = ε ∧ x = z) ∨ (w 6= ε ∧ y = x)

Theorem 3.2.4 For any term u, w ?ZL (u[ε/w], u) = u.

Proof By induction on the structure of u: if u = w, then w?ZL (u[ε/w], u) = w?ZL (ε,w) = w

by Corollary 3.2.44; if u = x 6= w, then w ?ZL (u[ε/w], u) = w ?ZL (x, x) = x by Corollary 3.2.38;

if u = f(t1, . . . , tn), then w ?ZL (u[ε/w], u) = w ?ZL
(
f(t1[ε/w], . . . , tn[ε/w]), f(t1, . . . , tn)

)
=

f
(
w ?ZL (t1[ε/w], t1), . . . , w ?ZL (tn[ε/w], tn)

)
= f(t1, . . . , tn) = u by Theorem 3.2.2 and the

induction hypothesis. �

Claim 3.2.46 (L) 8(zx) = z ?ZL (8x, 8z) (R) (xz)′ = z ?ZL (x′, z′)

Proof (L) By NIND on z, and by Corollary 3.2.36: 8(εx) = 8x = ε ?ZL (8x, 8ε), 8((iz)x) = i =

iz ?ZL (8x, 8(iz)). �

Claim 3.2.47 (L) m(zx) = z ?ZL (mx, mz · x) (R) (xz)l = z ?ZL (xl, x · zl)

Proof (L) By NIND on z, and by Corollary 3.2.36: m(εx) = mx = ε ?ZL (mx, mε · x),

m((iz)x) = zx = iz ?ZL (mx, m(iz) · x). �

Claim 3.2.48 v ?ZL (u, t) = u ↔ (v 6= ε → t = u)

Proof By NIND on v: ε ?ZL (u, t) = u ↔ u = u ↔ (ε 6= ε → u = u), vi ?ZL (u, t) = u ↔ t =

u ↔ (vi 6= ε → t = u). �

On “J” and “I”

Claim 3.2.49 (L) j(xJ) = (jx)J (R) j(Ix) = I(jx)

Proof (L) By NIND on x, Axioms 9, and various theorems proved above: j(εJ) = ε =

(jε)J,

j((xi)J) = j

(
(xJ B Ix) ?ZL (xJ, xJ · 8(Ix · i))

)

= j(xJ B Ix) ?ZL
(
j(xJ), j(xJ · 8(Ix · i))

)

= (j(xJ) B j(Ix)) ?ZL
(
(jx)J, j(xJ) · 8

j(Ix · i)
)

= ((jx)J B I(jx)) ?ZL
(
(jx)J, (jx)J · 8(I(jx) · j)

)

= (jx · j)J = (j(xi))J �

3.2. Developing the theory 45

Basic properties of “?EL” can easily be obtained from the basic properties of “?ZL”, on which

it is based. In order to prove properties particular to “?EL”, we will need the following lemmas.

But first, a few reminders.

• j(m(Ix · i)) = m(Ijx · j) = m(j · Ijx) = j(Ix)

• (z · i) B y = j(z · i) B y = (j · jz) B y = m(jz B y) = m(z B y)

Lemma 3.2.50 0xJ B (I0x · 0) = (0xJ B I0x) · 0

Proof By Axioms 4c, 5c, and 8b, and by Claim 3.2.32: 0xJCI0x = ε→ 0xJB (I0x · 0) 6=

ε → 0xJ B (I0x · 0) = (0xJ B I0x) · 0. �

Lemma 3.2.51 0(xi)J B I0(xi) = (0xJ B I0x) ?ZL (0, ε)

Proof By Lemma 3.2.50:

0(xi)J B I0(xi) = x ?EL
(
0xJ B (I0x · 0), (0xJ · 8(I0x · 0)) B m(I0x · 0)

)

= x ?EL
(
(0xJ B I0x) · 0, (0xJ · 0) B I0x

)

= (xJ B Ix) ?ZL
(
0(xJ B Ix) · 0, m0(xJ B Ix)

)

= (0xJ B I0x) ?ZL
(
0, ε) �

Theorem 3.2.5 xi ?EL (y, z) = x ?EL (z, y)

Proof By Lemmas 3.2.50 and 3.2.51:

xi ?EL (y, z) = 0(xi) ?EL (y, z)

= (0(xi)J B I0(xi)) ?ZL (y, z)

= (0xJ B I0x) ?ZL (0, ε) ?ZL (y, z)

= (0xJ B I0x) ?ZL
(
0 ?ZL (y, z), ε ?ZL (y, z)

)

= (0xJ B I0x) ?ZL (z, y)

= 0x ?EL (z, y) = x ?EL (z, y) �

Claim 3.2.52 (L) (ixj)J = i · xJ (R) I(ixj) = Ix · j

46 Chapter 3. The Quantifier-Free Theory T1

Proof (L) By Axioms 9 and Theorem 3.2.5:

(ixj)J = xj ?EL
(
(i(xj)J)l, i(xj)J

)

= x ?EL
(
i(xj)J, (i(xj)J)l

)

= x ?EL
(
i · xJ, (i · xJ · 8

Ix)l

)

= x ?EL
(
i · xJ, i · xJ

)

= i · xJ �

Claim 3.2.53 (L) (mxl)J = m(xJ) (R) I(mxl) = (Ix)l

Proof (L) By Derived Rule 3.2.1 and Claim 3.2.52: (mεl)J = ε = m(εJ), (mil)J = ε =

m(iJ), (m(ixj)l)J = xJ = m(i · xJ) = m((ixj)J). �

3.2.2 Further definitions and theorems

In this section, we define many functions in T1 and prove their basic properties. We also give

(and prove) a number of useful derived rules for T1.

From now on, we will not give proofs that consist only in a straightforward application

of NIND. Proof sketches will be given for more complex theorems, and complete proofs are

provided in Appendix A for most of the theorems below.

On generalizations of NIND

First, we define some generalizations of NIND based on Derived Rule 3.2.1.

Derived Rule 3.2.2

(L) A[ε], A[0], A[1], A[x] → A[00x] ∧ A[01x] ∧ A[10x] ∧ A[11x] ` A

(R) A[ε], A[0], A[1], A[x] → A[x00] ∧ A[x01] ∧ A[x10] ∧ A[x11] ` A

Proof (We will prove only (R), the case for (L) being almost identical.) Let us define

a formula EL[x] : 0(xJ B Ix) = ε. By Lemma 3.2.51, we immediately get that EL[xi] ↔

¬EL[x] ↔ EL[ix]. To prove that A is true under the given hypotheses, we will show that the

hypotheses imply the following two statements:

(EL[x] → A[x]) ∧ (¬EL[x] → A[xl]), (3.2.1)

(¬EL[x] → A[x]) ∧ (EL[x] → A[xl]). (3.2.2)

Together with the fact that EL[x]∨¬EL[x], this will imply that A[x]∧A[xl], i.e., A[x] is true.

3.2. Developing the theory 47

We can prove statement 3.2.1 by NIND on x: (EL[ε]→A[ε])∧ (¬EL[ε]→A[εl]) is trivially

true since A[ε] is true by assumption, while

(EL[xi] → A[xi]) ∧ (¬EL[xi] → A[(xi)l]) ↔ (¬EL[x] → A[xi]) ∧ (EL[x] → A[x])

is true since the second conjunct is true by the induction hypothesis, and so is (¬EL[x]→A[xl]),

which, together with the assumption that A[x]→A[xji], implies that A[xl]→A[xl·ji]→A[xi].

The same reasoning applies to statement 3.2.2, which concludes the proof. �

Note that this proof can easily be modified to get a similar derived rule for A[x]→A[ixj], and

it can easily be extended to cover other variations of Theorem 3.2.1.

Next, we want to define simultaneous NIND on two variables. Before we can do this, we

need to define a few functions and prove their basic properties.

Definition 3.2.5 (L) lb =
[
λxy.y ?ZL (ε, 8(my Bx))

]
(R) rb =

[
λxy.y ?ZL (ε, (xCyl)′)

]

Definition 3.2.6 (L) lc =
[
λxy.x C (y B x)

]
(R) rc =

[
λxy.(x C y) B x

]

Definition 3.2.7 minL =
[
λxy.x C y ?ZL (x, y)

]
maxL =

[
λxy.x B y ?ZL (x, y)

]

Claim 3.2.54

1. (L) z B yx = z B y · (z C y) B x (R) xy C z = x C (y B z) · y C z

2. (L) yl B x = lb(x, y) · y B x (R) x C my = x C y · rb(x, y)

3. (L) y B ((x C y) B x) = ε (R) (x C (y B x)) C y = ε

4. (L) lc(rc(x, y), y) = rc(x, y) (R) rc(lc(x, y), y) = lc(x, y)

5. (L) 8(y Bx) = y Bx?ZL
(
ε, (xCm(y Bx))′

)
(R) (xCy)′ = xCy ?ZL

(
ε, 8((xCy)lBx)

)

6. (L) lc(x, yi) = lc(x, y) · lb(x, yi) (R) rc(x, iy) = rb(x, iy) · rc(x, y)

7. (L) lc(x, y) · y B x = x (R) x = x C y · rc(x, y)

Now, we can state and prove a derived rule for simultaneous NIND on two variables.

Derived Rule 3.2.3

(LL) A[ε, y], A[x, ε], A[x, y] → A[0x, 0y] ∧ A[0x, 1y] ∧ A[1x, 0y] ∧ A[1x, 1y] ` A

(LR) A[ε, y], A[x, ε], A[x, y] → A[0x, y0] ∧ A[0x, y1] ∧ A[1x, y0] ∧ A[1x, y1] ` A

(RL) A[ε, y], A[x, ε], A[x, y] → A[x0, 0y] ∧ A[x0, 1y] ∧ A[x1, 0y] ∧ A[x1, 1y] ` A

(RR) A[ε, y], A[x, ε], A[x, y] → A[x0, y0] ∧ A[x0, y1] ∧ A[x1, y0] ∧ A[x1, y1] ` A

48 Chapter 3. The Quantifier-Free Theory T1

Proof (We will prove only (RR), the other cases being almost identical.) Under the given

assumptions, we will prove A[xL · lc(xR, z), yL · lc(yR, z)] by NIND on z, where

xL = x C minL(x, y) xR = rc(x,minL(x, y))

yL = y C minL(x, y) yR = rc(y,minL(x, y))

Base case: A[xL · lc(xR, ε), yL · lc(yR, ε)] = A[xL, yL]. By the definition of minL, we know that

minL(x, y) = x∨minL(x, y) = y, which means that xL = ε∨ yL = ε, which implies (A[xL, yL]↔

A[xL, ε]) ∨ (A[xL, yL] ↔ A[ε, yL]), so we know that A[xL, yL] is true by the assumptions.

Induction Step: we have that

A[xL · lc(xR, zi), yL · lc(yR, zi)] = A[xL · lc(xR, z) · lb(xR, zi), yL · lc(yR, z) · lb(yR, zi)],

which follows directly from the induction hypothesis by the assumptions.

Finally, we know that A[xL · lc(xR,minL(x, y)), yL · lc(yR,minL(x, y))] = A[xL · xR, yL · yR] =

A[x, y], which completes the proof. �

Note that this rule, and its proof, can easily be extended to more than two variables, giving us

a very useful form of NIND on many variables.

On propositional reasoning

Now, we will show how to formalize propositional connectives in T1. (The definitions are

identical to those for L1, and we use “x ?B (y, x)” instead of the more formal “?B(x, y, z)”.)

Definition 3.2.8

1. ?B = [λxyz.x ? (z, z, y)]

2. ≈B = [λx.x ?B (1, 0)]

3. ¬B = [λx.x ?B (0, 1)]

4. ∧B = [λxy.x ?B (≈By, 0)]

5. ∨B = [λxy.x ?B (1,≈By)]

6. →B = [λxy.x ?B (≈By, 1)]

7. ↔B = [λxy.x ?B (≈By,¬By)]

8. ⊕B = [λxy.x ?B (¬By,≈By)]

The properties of “?” already proven immediately extend to ?B in the obvious way, and the

following theorem follows directly from these properties.

3.2. Developing the theory 49

Theorem 3.2.6

1. ≈Bx = 1 ∨ ≈Bx = 0

2. ≈B≈Bx = ≈Bx

3. ¬Bx = 1 ↔¬(≈Bx = 1)

4. x ∧B y = 1 ↔ (≈Bx = 1 ∧ ≈By = 1)

5. x ∨B y = 1 ↔ (≈Bx = 1 ∨ ≈By = 1)

6. x →B y = 1 ↔ (≈Bx = 1 →≈By = 1)

7. x ↔B y = 1 ↔ (≈Bx = 1 ↔≈By = 1)

8. x ⊕B y = 1 ↔ (≈Bx = 1 ⊕≈By = 1)

This theorem gives us direct proofs of the usual properties of the defined connectives, from the

corresponding properties of the connectives in T1, and it allows us to introduce the following

notation: we will write “t” instead of “t = 1” for T1-terms t. (For example, we could state that

“≈Bx ⊕B ¬Bx” is a theorem.)

On variations of TRN

To define functions by “simple” TRN, we will use STRN[g, h] as shorthand for

[
λx~y.TRN[λxz~y.g(x, ~y), λxz~yv`vr .h(x, ~y, v`, vr), λz.z, λz.z](x, ε, ~y)

]
.

The following property is then a direct consequence of the axiom for TRN.

Claim 3.2.55

STRN[g, h](x, ~y) = xl ?ZL

(
g(x, ~y), h

(
x, ~y,STRN[g, h](xJ, ~y),STRN[g, h](Ix, ~y)

))

On “AND” and “OR”

Definition 3.2.9 AND = STRN[λx.x, λxv`vr .v` ∧
B vr]

Definition 3.2.10 OR = STRN[λx.x, λxv`vr .v` ∨
B vr]

We can use TIND to prove the following simple theorem (we give the proof here to illustrate

the use of TIND).

Theorem 3.2.7 AND(1x) = x ?ZL (ε, 1)

50 Chapter 3. The Quantifier-Free Theory T1

Proof By TIND on x: AND(1ε) = AND(ε) = ε = ε ?ZL (ε, 1), AND(1i) = AND(1) =

1 = i ?ZL (ε, 1), AND(1x) = AND((1x)J) ∧B AND(I(1x)) = AND(1(xJ)) ∧B AND(1(Ix)) =

xJ ?ZL (ε, 1) ∧B Ix ?ZL (ε, 1) = 1 ∧B 1 = 1. �

Similarly, we can prove that OR(0x) = x ?ZL (ε, 0).

Now, we want to prove some more basic properties of AND and OR, the most important

of which being AND(xy) = AND(x) ∧B AND(y) (and similarly for OR). This property would

naturally be proved using NIND since it involves the concatenation of two variables, but AND

is defined by TRN which makes it more natural to use TIND. In fact, we will use TIND to

prove the property but because of the messy interaction between concatenation recursion and

tree recursion, the proof will unfortunately not be as simple as one might expect.

Before we get started, note that it is a simple matter to extend Derived Rule 3.2.2 to give

us rules similar to the following ones.

Derived Rule 3.2.4 A[0], A[1], y 6= ε ∧ A[y] → A[y0] ∧ A[y1] ` x 6= ε → A[x]

Derived Rule 3.2.5

A[00], A[01], A[10], A[11], A[000], . . . , A[111], yJl 6= ε ∧ A[yJ] ∧ A[Iy] → A[y]

` x 6= ε ∧ x 6= 0 ∧ x 6= 1 → A[x]

These rules can then be used to prove the following claim and theorem.

Lemma 3.2.56

1. (L) x 6= ε ∧ x 6= 0 ∧ x 6= 1 → (mx · j)J = m(xJ) · 8Ix

(R) x 6= ε ∧ x 6= 0 ∧ x 6= 1 → I(mx · j) = mIx · j

2. (L) 8x ∧B AND(mx · j) = AND(x) ∧B j (R) j ∧B AND(x) = AND(j · xl) ∧B x′

3. 8x ∧B AND(mx) = AND(x) = AND(xl) ∧B x′ for x 6= ε, 0, 1

Theorem 3.2.8 AND(xy) = AND(x) ∧B AND(y) for x, y 6= ε

Proof By Lemma 3.2.56 and by Derived Rule 3.2.4 on y: AND(xi) = AND(x) ∧B i =

AND(x)∧BAND(i), AND(x(yi)) = AND(xy)∧Bi = AND(x)∧BAND(y)∧Bi = AND(x)∧BAND(yi).

�

Note that a similar lemma and theorem can be used to show OR(xy) = OR(x) ∨B OR(y) for

x, y 6= ε.

3.2. Developing the theory 51

On generalizations of CRN—part I

Now, we will define simultaneous concatenation recursion on notation for many variables, prove

its basic properties, and define a few more useful functions based on this generalized CRN. But

first, we must prove a number of technical lemmas.

Theorem 3.2.9 jx = jy ↔ x B y = ε = x C y

Claim 3.2.57 For f = rCRN[h],

1. j(f(x, ~y)) = jx

2. f(x, ~y) C z = f(x C z, ~y)

3. lb(f(x, ~y), z) = x B z ?ZL
(
(0 · h(lc(x, z), ~y))′, ε

)
for x, z 6= ε

4. lc(f(x, ~y), z) = f(lc(x, z), ~y)

(A similar claim can be proved about `CRN.)

Definition 3.2.11 (L) lpj =
[
λxy. j(y C x) · x

]
(R) rpj =

[
λxy.x · j(x B y)

]

Definition 3.2.12

maxL

1 = [λx.x]

maxL

k+1 =
[
λx~xk .maxL

(
x,maxL

k(~xk)
)]

Lemma 3.2.58

1. (L) y B x = x B y ?ZL (y B x, ε) (R) x C y = x B y ?ZL (x C y, ε)

2. (L) (y C (x B y)) B x = y B x (R) x C ((y C x) B y) = x C y

Claim 3.2.59

1. (L) lpj(x,maxL(x, y)) = lpj(x, y) (R) rpj(x,maxL(x, y)) = rpj(x, y)

2. (L) lb
(
lp0(xi,maxL(xi, yj)),maxL(xi, yj)

)
= i

(R) rb
(
rp0(ix,maxL(ix, jy)),maxL(ix, jy)

)
= i

(Note that this can easily be generalized to more than two variables.)

Now, we are ready to define `CRNm and rCRNm.

52 Chapter 3. The Quantifier-Free Theory T1

Definition 3.2.13

`CRNm[h] =
[
λ~xm~y.`CRN

[
λz~xm~y.h(rc(x1, z), . . . , rc(xm, z), ~y)

]

(
maxL

m(~xm), lp0(x1,maxL

m(~xm)), . . . , lp0(xm,maxL

m(~xm)), ~y
)]

rCRNm[h] =
[
λ~xm~y.rCRN

[
λz~xm~y.h(lc(x1, z), . . . , lc(xm, z), ~y)

]

(
maxL

m(~xm), rp0(x1,maxL

m(~xm)), . . . , rp0(xm,maxL

m(~xm)), ~y
)]

A simple application of Derived Rule 3.2.3 together with Claim 3.2.59, both generalized to the

m variables x1, . . . , xm, suffices to show the following basic theorem about `CRNm and rCRNm.

Theorem 3.2.10

`CRNm[h](x1, . . . , xm, ~y)

= x1 · · · · · xm ?ZL

(
ε, 8

(
h
(
lp0(x1,maxL

m(~xm)), . . . , lp0(xm,maxL

m(~xm)), ~y
)
· 0

)

· `CRNm[h]
(

mlp0(x1,maxL

m(~xm)), . . . , mlp0(xm,maxL

m(~xm)), ~y
))

rCRNm[h](x1, . . . , xm, ~y)

= x1 · · · · · xm ?ZL

(
ε, rCRNm[h]

(
rp0(x1,maxL

m(~xm))l, . . . , rp0(xm,maxL

m(~xm))l, ~y
)

·
(
0 · h

(
rp0(x1,maxL

m(~xm)), . . . , rp0(xm,maxL

m(~xm)), ~y
))

′
)

Using `CRNm, we can now define some useful functions and prove their basic properties.

Definition 3.2.14

1. notB = `CRN[λx.¬B(8x)]

2. andB

m = `CRNm

[
λ~xm.(8x1) ∧

B · · · ∧B (8xm)
]

3. orB

m = `CRNm

[
λ~xm.(8x1) ∨

B · · · ∨B (8xm)
]

4. xorB

m = `CRNm

[
λ~xm.(8x1) ⊕

B · · · ⊕B (8xm)
]

5. iffB

m = `CRNm

[
λ~xm.((8x1) ↔

B (8x2)) ∧
B · · · ∧B ((8xm−1) ↔

B (8xm))
]

Claim 3.2.60

1. andB

m(x1i1, . . . , xmim) = andB

m(~xm) · andB

m(~im)

2. jx1 = · · · = jxm ∧ jy1 = · · · = jym → andB

m(x1y1, . . . , xmym) = andB

m(~xm) · andB

m(~ym).

3. andB

m(~xm)l = andB

m(x1l, . . . , xml)

4. andB

m(~xm) C y = andB

m(x1 C y, . . . , xm C y)

3.2. Developing the theory 53

And similarly for orB

m, iffB

m, and notB. We can now prove a theorem relating the functions AND

and OR to each other.

Theorem 3.2.11 ¬BAND(x) = OR(notB(x)) and ¬BOR(x) = AND(notB(x)) for x 6= ε

On generalizations of CRN—part II

Finally, we are ready to generalize CRN to operate on blocks of bits instead of single bits. For

technical reasons to be discussed below, this will be done only for variable-length blocks of bits

whose lengths are powers of two.

In order to get such a version of CRN, we first need to define a length-division function.

Ideally, we would like to define a function divL(x, y) whose length would be equal to b|x|/|y|c,

but this seems to be impossible in T1. Instead, we can define a function powdivL(x, y) whose

length is equal to b|x|/2dlg |y|ec, i.e., the function divides the length of x by the smallest power

of 2 larger than or equal to the length of y. Luckily, this will be sufficient for our purposes, as

will be seen in Chapter 5.

The first functions we define are a function that returns a string whose length is the smallest

power of two larger than or equal to the length of its input, and a function that tests whether

or not the length of its input is a power of two.

Definition 3.2.15 powL = STRN[1, λyv`vr .vr · vr]

Definition 3.2.16 ispowL = STRN[λy.ε, λyv`vr .y ?EL (vr, 1)]

(Note that ispowL returns ε if the length of its input is a power of two and 1 otherwise.) The

basic properties of powL and ispowL are now easy to prove by TIND.

Claim 3.2.61

1. IpowL(y) = powL(Iy) = powL(y)J (for y 6= ε, 0, 1)

2. 1powL(y) = powL(1y) = powL(y)

3. powL(powL(y)) = powL(y)

4. powL(y) B y = ε

5. ispowL(powL(y)) = ε

Before we can define the length-division function, we need to define a “length multiplication”

function (this is just the “smash” function).

Definition 3.2.17 # = STRN[λxy.x ?ZL (ε, y), λxyv`vr .v` · vr]

54 Chapter 3. The Quantifier-Free Theory T1

These properties of # can then be proven with simple applications of TIND and NIND.

Claim 3.2.62

1. ε # y = ε = x # ε

2. (L) 1(xi # y) = 1(x # y) · 1y (R) 1(x # yi) = 1(x # y) · 1x

3. (L) 1((x · y) # z) = 1(x # z) · 1(y # z) (R) 1(x # (y · z)) = 1(x # y) · 1(x # z)

4. 1(x # y) = 1(y # x)

Now, we can define the powdivL function, and a corresponding powmodL function.

Definition 3.2.18

powdivL = TRN
[
λyx.y ?ZL (ε, 1x), λyxv`vr .vr,J,J

]

powmodL =
[
λxy.(powL(y) # powdivL(x, y)) B 1x

]

Straightforward applications of TIND then prove these basic properties.

Claim 3.2.63

1. powdivL(x, y) = powdivL(1x, 1y)

2. powdivL(x, y) = powdivL(x, powL(y))

3. x B powL(y) 6= ε → powdivL(x, y) = ε

4. powdivL(powL(y) # z, y) = y ?ZL (ε, 1z)

And properties of powmodL follow directly from the properties of powdivL.

Corollary 3.2.64

1. powmodL(x, y) = powmodL(1x, 1y)

2. powmodL(x, y) = powmodL(x, powL(y))

3. x B powL(y) 6= ε → powmodL(x, y) = 1x

4. powmodL(powL(y) # z, y) = ε

We need just a few more technical lemmas about powdivL and powmodL before we can define

generalized CRN and prove its properties.

3.2. Developing the theory 55

Claim 3.2.65

1. x B (powL(y) # powdivL(x, y)) = ε

2. y 6= ε → powmodL(x, y) B powL(y) 6= ε

3. y 6= ε → powdivL(x1, y) = powdivL(x, y) ·
(
(powmodL(x, y) · 1) B powL(y) ?ZL (1, ε)

)

y 6= ε → powmodL(x1, y) = (powmodL(x, y) · 1) B powL(y) ?ZL
(
ε, powmodL(x, y) · 1

)

4. powdivL((powL(y) # z) · x, y) = y ?ZL (ε, 1z) · powdivL(x, y) ∧

powmodL((powL(y) # z) · x, y) = powmodL(x, y)

5. y 6= ε ∧ x B powL(y) = ε → powdivL(x, y) = powdivL(x C powL(y), y) · 1

y 6= ε ∧ x B powL(y) = ε → powmodL(x, y) = powmodL(x C powL(y), y)

At last, we are ready to define the generalized versions of `CRN and rCRN which we will

name “`powCRN” and “rpowCRN”. Functions defined by `powCRN or rpowCRN take two

extra parameters u, v as input, and essentially perform CRN on their first input by replacing

blocks of |powL(u)| bits with blocks of |powL(v)| bits. Just like (2k, 2`)-CRN in Chapter 2, we

will simulate these generalized forms of CRN by using powdivL and powmodL to extract the

correct substring of the first input to pass to h and to output the correct bits of h in sequence.

Intuitively, `powCRN[g, h] and rpowCRN[g, h] will behave as follows (for all strings z such that

|z| = |powL(u)|).

`powCRN[g, h](x, u, v, ~y) = g(x, u, v, ~y) (if |x| < |powL(u)|)

`powCRN[g, h](z · x, u, v, ~y) = la0

(
h(z · x, u, v, ~y), powL(v)

)
· `powCRN[g, h](x, u, v, ~y)

rpowCRN[g, h](x, u, v, ~y) = g(x, u, v, ~y) (if |x| < |powL(u)|)

rpowCRN[g, h](x · z, u, v, ~y) = rpowCRN[g, h](x, u, v, ~y) · ra0

(
h(x · z, u, v, ~y), powL(v)

)

Where we have used the functions laj and raj , whose definitions and basic properties (easily

proved by Derived Rule 3.2.3) appear below.

Definition 3.2.19

(L) laj =
[
λxy. j(y C x) · ((x C y) B x)

]
(R) raj =

[
λxy.(x C (y B x)) · j(x B y)

]

Claim 3.2.66

1. (L) 1(laj(x, y)) = 1y (R) 1y = 1(raj(x, y))

2. (L) lc(laj(x, y), y) = laj(x, y) (R) raj(x, y) = rc(raj(x, y), y)

56 Chapter 3. The Quantifier-Free Theory T1

Definition 3.2.20

`powCRN[g, h] =
[
λxuv~y.`CRN

[
λzxuv~y.

rb
(
la0

(
h
(
rc

(
x, (powL(u) # (1 · powdivL(mz, v))) · powmodL(x, u)

)
, u, v, ~y

)
,

powL(v)
)
, 1 · powmodL(mz, v)

)]
(powL(v) # powdivL(x, u), x, u, v, ~y)

· g
(
rc(x, powmodL(x, u)), u, v, ~y

)]

rpowCRN[g, h] =
[
λxuv~y.g

(
lc(x, powmodL(x, u)), u, v, ~y

)
· rCRN

[
λzxuv~y.

lb
(
ra0

(
h
(
lc

(
x, powmodL(x, u) · (powL(u) # (powdivL(zl, v) · 1))

)
, u, v, ~y

)
,

powL(v)
)
, powmodL(zl, v) · 1

)]
(powL(v) # powdivL(x, u), x, u, v, ~y)

]

Theorem 3.2.12 For u 6= ε and v 6= ε,

`powCRN[g, h](x, u, v, ~y) =

x B powL(u) ?ZL

(
la0(h(x, u, v, ~y), powL(v)) · `powCRN[g, h](powL(u) B x, u, v, ~y), g(x, u, v, ~y)

)
,

rpowCRN[g, h](x, u, v, ~y) =

x B powL(u) ?ZL

(
rpowCRN[g, h](x C powL(u), u, v, ~y) · ra0(h(x, u, v, ~y), powL(v)), g(x, u, v, ~y)

)
.

Proof We prove the theorem for rpowCRN only, the case for `powCRN being almost iden-

tical. To start with, if x B powL(u) 6= ε, then Claim 3.2.63 and Corollary 3.2.64 give us the

result immediately since powdivL(x, u) = ε and powmodL(x, u) = 1x.

Next, suppose that x B powL(u) = ε. Then, Claim 3.2.65 implies that powdivL(x, u) 6= ε,

which shows that powL(v)# powdivL(x, u) = (powL(v)# powdivL(x, u)l) · powL(v) = (powL(v)#

powdivL(xCpowL(u), u))·powL(v). The following facts are then direct consequences of preceding

claims, and hold for all strings z such that z 6= ε ∧ z C powL(v) = ε:

• lc(x, y · z) = lc(x, y) · lc(y B x, z) (easy to prove by NIND on z),

• powmodL
(
(powL(v) # powdivL(x, u)l) · 1zl, powL(v)

)
· 1 = powmodL(1zl, powL(v)) · 1 =

1zl · 1 = 1z,

• lc
(
x, powmodL(x, u) ·

(
powL(u) #

(
powdivL

(
(powL(v) # powdivL(x, u)l) · zl, v

)
· 1

)))
=

lc
(
x, powmodL(x, u) · (powL(u) # (powdivL(x, u)l · 1))

)
= lc(x, 1x) = x.

These facts can be used to prove by NIND on z that

x B powL(u) = ε ∧ z C powL(v) = ε → f
(
(powL(v) # powdivL(x, u)l) · 1z, x, u, v, ~y

)
=

f
(
powL(v) # powdivL(x C powL(u), u), x, u, v, ~y

)
· rc

(
ra0(h(x, u, v, ~y), powL(v)), z

)

(where we use “f” to denote the function defined by rCRN in the definition of rpowCRN), and

putting z = powL(v) in this last fact gives us the theorem. �

3.2. Developing the theory 57

3.2.3 Numerical definitions and theorems

In this section, we will give definitions for numerical predicates and functions (i.e., ones that

treat their string arguments as encoding binary numbers) and prove their properties.

On “=N” and “<N”

The definitions of “=N” and “<N” inside T1 are the same as in L1. Intuitively, x =N y if the

two strings are equal when padded on the left with 0’s to the same length.

Definition 3.2.21 =N=
[
λxy.AND(1 · iffB

2(x, y))
]

In a similar way, x <N y if there is a bit position where x has a 0, y has a 1, and the portions

of x and y to the left of that position are numerically equal.

Definition 3.2.22

<N=
[
λxy.OR

(
rCRN2[λxy.(x′ <B y′) ∧B (xl =N yl)](lp0(x, y), lp0(y, x))

)]

(Where we used “i <B j” as shorthand for “¬Bi ∧B j”.)

Now, we prove basic properties of the two predicates just defined. A simple NIND suffices

to show the following theorem.

Theorem 3.2.13

1. x =N ε ↔ x = 0x

2. x =N y ↔ lp0(x, y) = lp0(y, x)

This immediately implies that “=N” is an equivalence relation. If we define =L= [λxy.(x B y) ·

(x C y) ?ZL (ε, 1)] and =S= [λxy.¬B(x =L y)∧B x =N y], then the theorem we just proved imme-

diately implies that x =S y ↔ x = y. Together with the facts about propositional connectives

proved in Theorem 3.2.6, this means that for any formula A of T1, there exists a term Â of T1

such that T1 can prove A↔ Â (with our usual convention whereby “Â” stands for the formula

Â = 1).

Now, we prove more properties of =N and <N. By Theorem 3.2.10, we have the following

two theorems.

Claim 3.2.67

1. x0 =N y0 ↔ x =N y ↔ x1 =N y1

2. ¬B(x0 =N y1)

58 Chapter 3. The Quantifier-Free Theory T1

3. ¬B(x1 =N y0)

Claim 3.2.68

1. x0 <N y0 = x <N y ∨B (x =N y ∧B 0 <B 0) = x <N y

2. x0 <N y1 = x <N y ∨B (x =N y ∧B 0 <B 1) = x ≤N y

3. x1 <N y0 = x <N y ∨B (x =N y ∧B 1 <B 0) = x <N y

4. x1 <N y1 = x <N y ∨B (x =N y ∧B 1 <B 1) = x <N y

Simple proofs by NIND now suffice to show the following lemma.

Claim 3.2.69

1. ¬B(x <N ε)

2. ¬B(x <N x)

3. ¬B(ε <N

0x)

Using the notation “x >N y” for y <N x, “x ≤N y” for x <N y ∨B x =N y, and “≥N” similarly

defined, we have the following theorem. (We give its proof here because it is representative of

the kind of proof that will be used for most theorems concerning numerical functions.)

Theorem 3.2.14

(x <N y ∧B ¬B(x =N y) ∧B ¬B(x >N y))

∨B (¬B(x <N y) ∧B x =N y ∧B ¬B(x >N y))

∨B (¬B(x <N y) ∧B ¬B(x =N y) ∧B x >N y)

Proof By Derived Rule 3.2.3, and the lemma above: When y = ε, the statement of the

theorem reduces to (x =N ε ∧B ¬B(x >N ε)) ∨B (¬B(x =N ε) ∧B x >N ε), which can be proved by

regular NIND on x: ε =N ε ∧B ¬B(ε >N ε), (x0 =N ε ∧B ¬B(x0 >N ε)) ∨B (¬B(x0 =N ε) ∧B x0 >N

ε) = (x =N ε ∧B ¬B(x >N ε)) ∨B (¬B(x =N ε) ∧B x >N ε), (x1 =N ε ∧B ¬B(x1 >N ε)) ∨B (¬B(x1 =N

ε)∧B x1 >N ε) = ε <N x∨B ε =N x = ε ≤N x. We can show that the statement holds when x = ε

in the same way. Next, we have four cases to consider:

(x0 <N y0 ∧B ¬B(x0 =N y0) ∧B ¬B(x0 >N y0))

∨B(¬B(x0 <N y0) ∧B x0 =N y0 ∧B ¬B(x0 >N y0))

∨B(¬B(x0 <N y0) ∧B ¬B(x0 =N y0) ∧B x0 >N y0) = (x <N y ∧B ¬B(x =N y) ∧B ¬B(x >N y))

∨B(¬B(x <N y) ∧B x =N y ∧B ¬B(x >N y))

∨B(¬B(x <N y) ∧B ¬B(x =N y) ∧B x >N y)

3.2. Developing the theory 59

and similarly for x1, y1,

(x0 <N y1 ∧B ¬B(x0 =N y1) ∧B ¬B(x0 >N y1))

∨B(¬B(x0 <N y1) ∧B x0 =N y1 ∧B ¬B(x0 >N y1))

∨B(¬B(x0 <N y1) ∧B ¬B(x0 =N y1) ∧B x0 >N y1) = (x ≤N y ∧B 1 ∧B ¬B(x >N y))

∨B(¬B(x ≤N y) ∧B 0 ∧B ¬B(x >N y))

∨B(¬B(x ≤N y) ∧B 1 ∧B x >N y)

= (x <N y ∧B ¬B(x >N y))

∨B(x =N y ∧B ¬B(x >N y))

∨B(¬B(x <N y) ∧B ¬B(x =N y) ∧B x >N y)

and similarly for x1, y0. �

Corollary 3.2.70 ε ≤N x

Corollary 3.2.71 x =N y = x ≤N y ∧B x ≥N y

Next, from the fact that lp0(0x, y) = lp0(x, y) ∨ lp0(0x, y) = 0 · lp0(x, y) (which can easily

be proved by cases depending on the length of xBy), simple proofs by Derived Rule 3.2.3 show

the following lemma.

Lemma 3.2.72

1. x =N y = 0x =N y = x =N 0y = 0x =N 0y

2. x <N y = 0x <N 0y

3. x <N y = 0x <N y = x <N 0y

This lemma can be used, with a generalization of Derived Rule 3.2.3 to three variables, to show

the following theorems and their corollaries (from Theorem 3.2.13).

Theorem 3.2.15 x =N y ∧ y <N z → x <N z and x =N y ∧ y >N z → x >N z

Corollary 3.2.73 x =N y ∧ y ≤N z → x ≤N z and x =N y ∧ y ≥N z → x ≥N z

Theorem 3.2.16 x <N y ∧ y <N z → x <N z and x >N y ∧ y >N z → x >N z

Corollary 3.2.74 x ≤N y ∧ y <N z → x <N z and x ≥N y ∧ y >N z → x >N z

Corollary 3.2.75 x ≤N y ∧ y ≤N z → x ≤N z and x ≥N y ∧ y ≥N z → x ≥N z

60 Chapter 3. The Quantifier-Free Theory T1

On “|·|” and “succN”

Now, we define the binary length function “|·|” and the numerical successor function “succN”

as in L1, and prove some of their basic properties.

Definition 3.2.23

cussN = `CRN
[
λx.AND(1mx) ?B (¬B8x, 8x)

]

succN = [λx.cussN(0x)]

Simple proofs by NIND show the following theorem (proving the relevant properties first for

the auxiliary function cussN, and then for succN).

Claim 3.2.76

succN(ε) = 1

succN(x0) = 0x1

succN(x1) = succN(x) · 0

Using this theorem, a simple NIND will now prove the following properties.

Claim 3.2.77

succN(0x) = 0 · succN(x)

succN(1x) = 8succN(x) · ¬B8succN(x) · msuccN(x)

8succN(x) = AND(1x)

succN(x) = AND(1x) ?B
(
1 · 0x, 0 · msuccN(x)

)

Now, we can prove a few theorems involving succN together with some of the other numerical

functions already defined.

Theorem 3.2.17

1. x <N succN(x)

2. x >N y = x ≥N succN(y)

The binary length function is defined in the same way as in L1, as follows.

Definition 3.2.24 |·| = STRN[1, λxv`vr .x ?EL (v` · 0, v` · 1)]

(To be consistent with previous notation, we will write “|x|” instead of the more formal “||(x)”.)

3.2. Developing the theory 61

Claim 3.2.78 |x| = |jx|

Theorem 3.2.18 jx = jy ↔ |x| = |y|

Proof One direction (jx = jy → |x| = |y|) is immediate from the preceding claim. The

other is proved by TIND on y (with h` = J and hr = I): |x| = |ε|→|x| = ε→x = ε→ jx = jε,

|x| = |i| → |x| = 1 → x = i′ → jx = ji, and assuming that |xJ| = |yJ| → jxJ = jyJ and

|Ix| = |Iy| → jIx = jIy, we have that

|x| = |y| → x ?EL
(
|xJ| · 0, |xJ| · 1

)
= y ?EL

(
|yJ| · 0, |yJ| · 1

)

→
(
xJ B Ix = ε ∧ yJ B Iy = ε ∧ |xJ| · 0 = |yJ| · 0

)
∨

(
xJ B Ix 6= ε ∧ yJ B Iy 6= ε ∧ |xJ| · 1 = |yJ| · 1

)

→
(
xJ B Ix = ε ∧ yJ B Iy = ε ∧ jxJ = jyJ

)
∨

(
xJ B Ix = i ∧ yJ B Iy = i′ ∧ jxJ = jyJ

)

→ jx = jy

(where the two cases for |xJ| · 0 = |yJ| · 1 and |xJ| · 1 = |yJ| · 0 were not included in the

disjunction on the second and third lines since they are known to be false). �

The following theorem can be proved with an easy TIND and its corollaries are immediate

from previously proved theorems.

Theorem 3.2.19 |xi| =N succN(|x|)

Corollary 3.2.79 |x| <N |xi|

Corollary 3.2.80 x >N |yl| → x ≥N |y|

On “masking” functions

In order to define binary addition, and to prove its properties, we will need “masking” functions

like the ones that were defined in L1. We give their definition and basic properties here.

Definition 3.2.25

first0 = rCRN[λx.AND(1xl) ?B (¬Bx′, 0)]

first1 = rCRN[λx.OR(xl) ?B (0, x′)]

Definition 3.2.26 maskbit =
[
λxy.OR(andB

2(x, y))
]

Definition 3.2.27 delfirst1 =
[
λx.andB

2

(
x, notB(first1(x))

)]

62 Chapter 3. The Quantifier-Free Theory T1

The basic theorem below, as well as its corollary, can both be proved with a simple NIND.

Theorem 3.2.20

first0(0x) = 1 · 0x first0(1x) = 0 · first0(x)

first1(0x) = 0 · first1(x) first1(1x) = 1 · 0x

Corollary 3.2.81 first0(x) = first1(notB(x))

On binary addition

Before we define binary addition and prove its properties, let us make a remark about “numer-

ical” functions. If a formula A contains only terms made up of functions f with the property

that f(x1, . . . , xm) = f
(
lp0(x1,maxL

m(~xm)), . . . , lp0(xm,maxL

m(~xm))
)

(which happens to be the

case for the numerical functions), then A[x1, . . . , xm] ↔
(
jx1 = · · · = jxm → A[x1, . . . , xm]

)
.

Thus, we can use the following special form of Derived Rule 3.2.3 to prove any such formula A

(the rule is stated only for two variables but can easily be extended to more).

Derived Rule 3.2.6 A[ε, ε], jx = jy ∧A[x, y]→A[0x, 0y]∧A[0x, 1y]∧A[1x, 0y]∧A[1x, 1y]

` jx = jy → A[x, y]

(The conclusion of the rule can easily be proved from the antecedent by a simple application of

Derived Rule 3.2.3.)

Now, binary addition is defined just as in L1, as follows.

Definition 3.2.28 carryN = `CRN2

[
λxy.maskbit

(
andB

2(x, y), first0(xor
B

2(x, y))
)]

Definition 3.2.29 +N =
[
λxy.xorB

3(carry
N(x, y) · 0, x, y)

]

(To make the notation consistent with previous usage, we will write “x +N y” instead of the

more formal “+N(x, y)”.) The commutativity of “+N” is a direct result of the commutativity

of each function involved in its definition.

Theorem 3.2.21 x +N y = y +N x

Proving the associativity of “+N” will be slightly more complicated. First, we relate the func-

tions +N and succN through the following lemma and theorem.

Lemma 3.2.82

carryN(x0, 1) = carryN(x, ε) · 0 = 0x0

carryN(x1, 1) = x ?ZL
(
1, carryN(x, 1) · 1

)

3.2. Developing the theory 63

Theorem 3.2.22 x +N 1 = x ?ZL
(
0 · succN(x), succN(x)

)
=N succN(x)

Next, we can state certain facts about the carry function.

Claim 3.2.83 For jx = jy,

carryN(x, ε) = 0x

carryN(x, x) = x

carryN(0x, 0y) = 0 · carryN(x, y)

carryN(1x, 0y) = 8carryN(x, y) · carryN(x, y)

carryN(1x, 1y) = 1 · carryN(x, y)

Note that we omitted the property carryN(0x, 1y) = 8carryN(x, y) · carryN(x, y) from this theorem

since it follows directly by the commutativity of carryN. This will be the case for many of the

theorems and proofs about +N that we will now present: for the sake of brevity, we will omit

statements and proofs that follow directly from previous ones by commutativity. The following

claim follows directly from the corresponding properties for carryN.

Claim 3.2.84 For jx = jy,

x +N ε = 0x

x +N x = x0

0x +N 0y = 0 · (x +N y)

1x +N 0y = 8(x +N y) · ¬B8(x +N y) · m(x +N y)

1x +N 1y = 1 · (x +N y)

Now, although we can use Claim 3.2.84 to prove theorems about +N by Derived Rule 3.2.6, we

will also have need of the following theorem further on.

Claim 3.2.85

x0 +N y0 = (x +N y) · 0

x1 +N y0 = (x +N y) · 1

x1 +N y1 = msuccN(x +N y) · 0

With the help of this theorem, we can now prove the following important properties of +N

with a version of Derived Rule 3.2.6 that concatenates bits to the right instead of to the left.

64 Chapter 3. The Quantifier-Free Theory T1

Theorem 3.2.23

1. x +N succN(y) =N succN(x +N y)

2. x +N (y +N z) =N (x +N y) +N z

3. y <N z ↔ x +N y <N x +N z

4. x =N y ∧ z =N w → x +N z =N y +N w

5. x =N y ∧ z <N w → x +N z <N y +N w

6. x <N y ∧ z <N w → x +N z <N y +N w

On iterated sums

The last functions we need to define are iterated sums, defined as in L1 using Buss’s “carry-save”

technique.

Definition 3.2.30

CScar3 = `CRN3

[
λx1x2x3.((8x1 ∧

B 8x2) ∨
B (8x2 ∧

B 8x3) ∨
B (8x3 ∧

B 8x1))
]

CSadd3 =
[
λx1x2x3.xorB

3(0x1, 0x2, 0x3)
]

CScar =
[
λx1x2x3x4.CScar3

(
CScar3(x1, x2, x3) · 0,CSadd3(x1, x2, x3), 0x4

)
· 0

]

CSadd =
[
λx1x2x3x4.CSadd3

(
CScar3(x1, x2, x3) · 0,CSadd3(x1, x2, x3), 0x4

)]

The following properties are a direct consequence of these definitions.

Claim 3.2.86

CScar3(x0, y0, z0) = CScar3(x, y, z) · 0

CScar3(x1, y0, z0) = CScar3(x0, y1, z0) = CScar3(x1, y0, z1) = CScar3(x, y, z) · 0

CScar3(x0, y1, z1) = CScar3(x1, y0, z1) = CScar3(x1, y1, z0) = Cscar3(x, y, z) · 1

CScar3(x1, y1, z1) = CScar3(x, y, z) · 1

0CScar3(x, y, z) · 0 = 0CSadd3(x, y, z) = 0 · 0maxL

3(x, y, z) = 0 · maxL

3(0x, 0y, 0z)

0 · maxL

3(0x, 0y, 0z) = CScar3(0x, 0y, 0z) · 0 = CSadd3(0x, 0y, 0z)

0CScar(x, y, z, w) = 0CSadd(x, y, z, w) = 00 · 0maxL

4(x, y, z, w) = 00 · maxL

4(0x, 0y, 0z, 0w)

00 · maxL

4(0x, 0y, 0z, 0w) = CScar(0x, 0y, 0z, 0w) = CSadd(0x, 0y, 0z, 0w)

We can now prove one main lemma and one main theorem about the “carry-save” addition

functions.

3.3. Proving the pigeonhole principle in T1 65

Lemma 3.2.87

(CScar3(succN(x), y, z) · 0) +N CSadd3(succN(x), y, z)

=N succN
(
(CScar3(x, y, z) · 0) +N CSadd3(x, y, z)

)

Theorem 3.2.24 CScar(x, y, z, w) +N CSadd(x, y, z, w) =N x +N y +N z +N w

Finally, we can define the function “sum”, that adds all the bits of its argument, as in L1.

Definition 3.2.31

CARADD = STRN
[
λx.0x · x, λxv`vr .CScar(v`J,Iv`, vrJ,Ivr) · CSadd(v`J,Iv`, vrJ,Ivr)

]

CAR =
[
λx.CARADD(x)J

]
ADD =

[
λx.ICARADD(x)

]

sum =
[
λx.CAR(x) +N ADD(x)

]

The following basic properties of CARADD will be used to prove results about sum and can be

proved easily from previous theorems.

Claim 3.2.88

1. CARADD(0x) =N 0

2. sum(0x) = CAR(0x) +N ADD(0x) =N 0 +N 0 =N 0

Theorem 3.2.25 sum(x) =N sum(xJ) +N sum(Ix)

From this theorem, it is possible to prove that sum(xy) =N sum(x) +N sum(y) with a sequence

of lemmas and theorems similar to the ones used to show that AND(xy) = AND(x)∧B AND(y).

In particular, we have that sum(x0) =N sum(x)+N 0 =N sum(x) and sum(x1) =N sum(x)+N 1 =N

succN(sum(x)).

Simple proofs by NIND now show the following theorem.

Theorem 3.2.26 sum(x) ≤N sum(1x) =N |x|

3.3 Proving the pigeonhole principle in T1

In this section, we will be working with the following form of the pigeonhole principle, denoted

PHPn(f) (or simply PHP when n and f are clear from the context): “no map f : [n + 1] → [n]

is injective”, or equivalently “if f is a map from [n + 1] to [n], then there exist i 6= j ∈ [n + 1]

such that f(i) = f(j)”. (Note that we are using the common notation “[n]” to represent the

66 Chapter 3. The Quantifier-Free Theory T1

set {1, 2, . . . , n}, for any positive integer n, and in what follows, we will use the term map to

mean a (possibly) multi-valued function.)

Informally, the proof of PHP goes as follows: Assume for a contradiction that f is a map

from [n + 1] to [n] and that f is injective (i.e., for every i 6= j ∈ [n + 1], f(i) 6= f(j)). Define

count(k, `) =
∣∣{x ∈ [`] : f(y) = x for some y ∈ [k]}

∣∣,

i.e., count(k, `) is the number of elements in [`] mapped onto from elements in [k] by f . Then,

the following facts are easy to prove.

1. count(n + 1, `) ≤ ` for any 1 ≤ ` ≤ n (since there are ` elements in [`]).

2. count(1, n) ≥ 1 (since f(1) ∈ [n]).

3. count(k + 1, n) > count(k, n) for 1 ≤ k ≤ n (since f(k + 1) must be different from

f(1), . . . , f(k) by the assumption that f is injective).

Combining facts 2 and 3, we get that count(k, n) ≥ k for all 1 ≤ k ≤ n + 1. But then,

n + 1 ≤ count(n + 1, n) ≤ n, i.e., n + 1 ≤ n, which is a contradiction. Hence, PHP is true.

In the rest of this section, we will show how the informal proof given above can be formalized

in T1, in a top-down manner. Also, we adopt the following notational convention: when a

function is defined through an auxiliary function that is of no interest in itself, the name of

the auxiliary function will consist of the function’s name spelled backwards (e.g., we will define

below a function “map” in terms of an auxiliary function “pam”).

3.3.1 Representation of PHP in T1

The first step in the formalization will be to use the machinery given above to write down

L1-functions that define PHP. Formally, PHP = PHPn(f) depends on two parameters: n and

f ; moreover, given n, f can be described by an [n× (n+1)] binary array whose (i, j)-th entry is

equal to 1 if i = f(j) and 0 otherwise, i.e., each row corresponds to one hole and each column

to one pigeon. This is essentially the representation we will use to encode the problem.

More precisely, given n, every bit string a can be seen as encoding an [n × (n + 1)] binary

array (and therefore a partial map fn
a : [n + 1] → [n]) by either padding a on the right with 0’s

or chopping off enough bits from the right of a so that its length is n · (n+1), and then reading

the array in row-major order, so that the first n + 1 bits of a (from the left) represent the first

row of the array, and so on. For example, the string 1000110010 represents at the same time

the [2 × 3] binary array

[
1 0 0

0 1 1

]
, the [3 × 4] binary array




1 0 0 0

1 1 0 0

1 0 0 0


 , etc.

3.3. Proving the pigeonhole principle in T1 67

Then, every such [n × (n + 1)] binary array a represents a partial map fn
a : [n + 1] → [n].

Now, given a bit string n such that n = |n|, we can define a function adj(a,n) that “adjusts”

the length of the bit string a so that |adj(a,n)| = |n| · (|n| + 1), i.e., adj(a,n) is exactly the

[n × (n + 1)] binary matrix encoded by a, written out in row-major order:

adj(a,n) = a C ((n1 # n) B a) · 0(a B (n1 # n)).

Next, given a column number k and a row number l in unary, we can easily define a function

entry that extracts a single entry (bit) of the matrix:

entry(a,n,k, l) =
(
((n1 # ll) · kl) B adj(a,n)

)
′.

Note that the value returned by this function is meaningless unless 1 ≤ |k| = k ≤ n + 1 and

1 ≤ |l| = ` ≤ n. In order to simplify the presentation, we will implicitly assume that k and

` fall within this range for the rest of the section, where k = |k| and ` = |l| by convention

(i.e., functions are implicitly defined by cases to be equal to ε for values outside the meaningful

range).

Once we have the function entry, it is easy to define functions col and row that extract

columns or rows of the matrix, by CRN:

loc(a,n,k, l) = loc(a,n,k, ll) · entry(a,n,k, l) (for l 6= ε)

col(a,n,k) = loc(a,n,k,n);

wor(a,n,k, l) = wor(a,n,kl, l) · entry(a,n,k, l) (for k 6= ε)

row(a,n, l) = wor(a,n,n1, l).

So that col(a,n,k) is the k-th column of a and row(a,n, l) is the `-th row of a. Moreover, it is

easy to prove in T1 that

lc(col(a,n,k), l) = loc(a,n,k, l),

lc(row(a,n, l),k) = wor(a,n,k, l),

directly from the properties of CRN.

Using these functions, we can now define two functions needed to represent PHPn(f):

map(a,n) =





1 if fn
a is a map, i.e., every column of a contains at least one 1,

0 otherwise;

inj(a,n) =





1 if fn
a is injective, i.e., every row of a contains at most one 1,

0 otherwise.

68 Chapter 3. The Quantifier-Free Theory T1

To compute map (resp. inj), we will first define a function pam (resp. jni) that returns a bit

string with one bit for each column (resp. row) of a indicating whether the constraint is satisfied

or not for that column (resp. row); then, we simply take the conjunction of all the bits to get

the answer:

pam(a,n, x) = pam(a,n, xl) · OR
(
col(a,n, x)

)
(for x 6= ε)

map(a,n) = AND
(
pam(a,n,n1)

)
,

jni(a,n, x) = jni(a,n, xl) · ¬BOR
(
delfirst1(row(a,n, x))

)
(for x 6= ε)

inj(a,n) = AND
(
jni(a,n,n)

)
.

Finally, we can easily define a function that represents PHP:

php(a,n) = map(a,n) →B ¬Binj(a,n).

3.3.2 The T1-proof of PHP

First, let us define the function count(a,n,k, l), which returns the number of elements from

[`] that are mapped onto by elements from [k] according to fn
a . We do this by first defining

tnuoc(a,n,k, l), which returns a string of ` bits, one for each of the first ` rows of a, where bit

j is set to 1 iff row j contains at least one 1 in the first k columns:

tnuoc(a,n,k, l) = tnuoc(a,n,k, ll) · OR
(
wor(a,n,k, l)

)
(for l 6= ε)

Then, count(a,n,k, l) = sum
(
tnuoc(a,n,k, l)

)
. We can depict the situation as follows, where

we have represented the submatrix of a consisting of the first k columns for each of the first `

rows, and where the value of tnuoc(a,n,k, l) can be read bit by bit, one for each row:

k︷ ︸︸ ︷ tnuoc(a,n,k, l) :

`





1 0 0 · · · 1

0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 1

−→

−→
...

−→

1 = OR(wor(a,n,k, 1))

0 = OR(wor(a,n,k, 11))
...

...
...

1 = OR(wor(a,n,k, l))

Now, we give a formalization in T1 of the high-level proof of PHP outlined at the beginning

of this section. To make the notation easier to read, all theorems are conditional to the fact

that k and ` are within meaningful range.

Recall the general outline of the proof: under the assumption that ¬Bphp(a,n), i.e., that

map(a,n) and inj(a,n), it is possible to prove the following two facts.

Fact 3.3.1 count(a,n,n1, l) ≤N ` (where ` = |l|, by convention)

3.3. Proving the pigeonhole principle in T1 69

Fact 3.3.2 k ≤N count(a,n,k,n) (where k = |k|, by convention)

Then, we get that |n1| ≤N count(a,n,n1,n) ≤N |n|, so that |n1| ≤N |n| (by transitivity of ≤N).

But since we know that ¬B
(
|x1| ≤N |x|

)
, we get php(a,n) by contradiction.

Now, we can prove fact 3.3.1:

count(a,n,n1, l) = sum
(
tnuoc(a,n,n1, l)

)
≤N

∣∣tnuoc(a,n,n1, l)
∣∣ ≤N |l| = `

since sum(x) ≤N |x| for any string x and
∣∣rCRN[h](x, ~y)

∣∣ = |x| for any L1-function h and any

strings x, ~y.

To prove fact 3.3.2, we will first show that it is possible to prove the following two facts

(corresponding to facts 2 and 3 in the informal proof).

Fact 3.3.3 count(a,n, ε,n) =N 0

Fact 3.3.4 count(a,n,k,n) >N count(a,n,kl,n)

Then, we can use NIND to show that count(a,n,k,n) ≥N |k|: count(a,n, ε,n) ≥N |ε| by

fact 3.3.3 and count(a,n,k,n) >N count(a,n,kl,n) ≥N |kl| by fact 3.3.4 and the induction

hypothesis, so that count(a,n,k,n) ≥N |k|.

Next, to prove fact 3.3.3, we use NIND together with the fact that wor(a,n, ε, l) = ε (by

definition) to conclude that tnuoc(a,n, ε, l) = 0l: tnuoc(a,n, ε, ε) = ε = 0ε, and assuming

that tnuoc(a,n, ε, ll) = 0(ll), then tnuoc(a,n, ε, l) = tnuoc(a,n, ε, ll) · OR
(
wor(a,n, ε, l)

)
=

0(ll) · OR(ε) = 0(ll) · 0 = 0(l). Finally, we use the fact that sum(0x) =N 0 for any string x to

conclude that fact 3.3.3 holds.

To prove fact 3.3.4, we have to show that sum
(
tnuoc(a,n,k,n)

)
>N sum

(
tnuoc(a,n,kl,n)

)
.

Intuitively, this will be true iff tnuoc(a,n,k,n) contains more 1’s than tnuoc(a,n,kl,n). For-

mally, for any two strings x and y, the term AND
(
orB

2(notB(x), y)
)

expresses the fact that y

has a 1 in every position where x has a 1, and the term OR
(
andB

2(notB(x), y)
)

expresses the

fact that there is a position where x has a 0 but y has a 1. Now, since we can prove that

AND
(
orB

2(notB(x), y)
)
∧B OR

(
andB

2(notB(x), y)
)
→B sum(x) <N sum(y) (the proof is given in Ap-

pendix A), we only need to show the following facts to complete the proof of fact 3.3.4.

Fact 3.3.5 AND
(
orB

2

(
notB(tnuoc(a,n,kl,n)), tnuoc(a,n,k,n)

))

Fact 3.3.6 OR
(
andB

2

(
notB(tnuoc(a,n,kl,n)), tnuoc(a,n,k,n)

))

It is relatively easy to prove fact 3.3.5 by NIND on the last argument: tnuoc(a,n,kl, 1) =

70 Chapter 3. The Quantifier-Free Theory T1

OR(wor(a,n,kl, 1)) and tnuoc(a,n,k, 1) = OR(wor(a,n,k, 1)) so

AND
(
orB

2

(
notB(tnuoc(a,n,kl, ε)), tnuoc(a,n,k, ε)

))

= ¬BOR(wor(a,n,kl, 1)) ∨B OR(wor(a,n,k, 1))

= ¬BOR(wor(a,n,kl, l)) ∨B OR
(
wor(a,n,kl, l) · entry(a,n,k, l)

)

= ¬BOR(wor(a,n,kl, l)) ∨B OR(wor(a,n,kl, l)) ∨B entry(a,n,k, l)

= 1 ∨B entry(a,n,k, l) = 1.

Also, by the definition of tnuoc, we get that

AND
(
orB

2

(
notB(tnuoc(a,n,kl, l)), tnuoc(a,n,k, l)

))

= AND
(
orB

2

(
notB

(
tnuoc(a,n,kl, ll) · OR(wor(a,n,kl, l))

)
,

tnuoc(a,n,k, ll) · OR(wor(a,n,k, l))
))

= AND
(
orB

2

(
notB(tnuoc(a,n,kl, ll)), tnuoc(a,n,k, ll)

))

∧B
(
¬BOR(wor(a,n,kl, l)) ∨B OR(wor(a,n,k, l))

)

= 1 ∧B
(
¬BOR(wor(a,n,kl, l)) ∨B OR(wor(a,n,k, l))

)
= 1

(where the third equality holds by the induction hypothesis).

The proof of fact 3.3.6 is the most involved so far. First, by the definition of tnuoc and

properties of CRN, we know that

tnuoc(a,n,k,n) = tnuoc(a,n,k, ll) · OR
(
wor(a,n,k, l)

)
·
(
l B tnuoc(a,n,k,n)

)
.

Because OR(xy) = OR(x) ∨B OR(y) and andB

2(xy,wz) = andB

2(x,w) · andB

2(y, z) when |x| = |w|

and |y| = |z|, we get easy proofs in T1 that

¬BOR
(
wor(a,n,kl, l)

)
∧B OR

(
wor(a,n,k, l)

)
→B

OR
(
andB

2

(
notB(tnuoc(a,n,kl,n)), tnuoc(a,n,k,n)

))
.

Hence, we can prove fact 3.3.6 by showing that there must exist some value l for which

¬BOR
(
wor(a,n,kl, l)

)
∧B OR

(
wor(a,n,k, l)

)
. Now, we can prove that ¬BOR(delfirst1(x)) ∧B

lb(x, y) →B ¬BOR(lc(x, yl)) (see Appendix A), and since wor(a,n,kl, l) = lc(row(a,n, l),kl)

and ¬BOR
(
delfirst1(row(a,n, l))

)
by the assumption that inj(a,n), we only need to show that

there is some l for which lb
(
row(a,n, l),k

)
, which is equivalent to showing that there is a value

of l for which entry(a,n,k, l).

Unfortunately, we do not have quantifiers to reason with so to show the existence of l,

we have to construct it explicitly, i.e., to define a function pos(a,n,k) that gives the value

of l. Because all functions definable in T1 are length-determined, pos will have to return

3.3. Proving the pigeonhole principle in T1 71

a bitmask to the position of l, and this bitmask cannot be used directly with the current

definition of row to prove what we need. So, we will define an alternate function mrow whose

last argument is a bitmask instead of a unary string and for which we can show row(a,n, l) =

mrow
(
a,n, (1 · 0(l B n1))l

)
:

mwor(a,n,k,m) = mwor(a,n,kl,m) · maskbitN(col(a,n,k),m) (for k 6= ε)

mrow(a,n,m) = mwor(a,n,n1,m)

With this definition, pos can easily be defined as pos(a,n,k) = first1(col(a,n,k)). By the

assumption that map(a,n), we know that OR(col(a,n,k)) and since we can prove that OR(x)↔B

maskbitN(x, first1(x)) in T1 (see Appendix A), we get that maskbitN
(
col(a,n,k), pos(a,n,k)

)
,

which implies immediately that lb
(
mrow(a,n, pos(a,n,k)),k

)
.

Now, because row and mrow are both defined by CRN on the same parameter k, it is

sufficient to show that entry(a,n,k, l) = maskbitN
(
col(a,n,k), (1 · 0(l B n1))l

)
in order to

prove that row(a,n, l) = mrow
(
a,n, (1 · 0(l B n1))l

)
. And because we can prove in T1 that

lbB(x, y) = maskbitN
(
x, (1 · 0(y B x1))l

)
(see Appendix A), this is equivalent to showing that

entry(a,n,k, l) = lb(col(a,n,k), l) = loc(a,n,k, l)′, a fact which is immediate by the definition

of loc.

Finally, we can redefine tnuoc using mwor instead of wor, as follows:

mtnuoc(a,n,k, l) = mtnuoc(a,n,k, ll) · OR
(
mwor

(
a,n,k, (1 · 0(l B n1))l

))
(for l 6= ε)

and using the reasoning given above, it is possible to prove that

OR
(
andB

2

(
notB(mtnuoc(a,n,kl,n)),mtnuoc(a,n,k,n)

))
.

Moreover, because of the equivalence between wor and mwor given above, this implies the

corresponding result for tnuoc, which completes the proof.

Remark 3.3.1 Based on the T1-proof of the pigeonhole principle just given, it should be

possible to prove other, similar combinatorial statements in T1. One example is Tutte’s theorem,

which states that a graph has no perfect matching iff it satisfies a certain simple form of

decomposition. This would give an alternative proof that “perfect matching” tautologies have

short F-proofs, and maybe provide a more precise estimate of the size of these proofs by the

results of Chapter 4. (The “perfect matching” tautologies were first discussed in a paper by

Impagliazzo, Pitassi, and Urquhart [21], where it was shown that they have polysize F-proofs—

note that those proofs were non-uniform, unlike the proofs we would obtain through T1.)

Chapter 4

Theorems of T1 Have Polysize

F-proofs

For every term t of T1 with free variables x1, . . . , xk, we define a length function lent(m1, . . . ,mk)

that gives the exact length of t as a function of the lengths of x1, . . . , xk (this function is well-

defined because functions in L1 are length-determined). Then, we define a family of propo-

sitional term formulas 〈t〉~m
1 , . . . , 〈t〉~m

lent(~m) that describe the bits of t in terms of the bits of

x1, . . . , xk (where 〈t〉~m
1 describes the leftmost bit of t), i.e., given any truth-value assignment to

the atoms representing the bits of x1, . . . , xn, the truth value of 〈t〉~m
i represents the correct value

for bit number i of term t. Finally, for any formula A of T1, we define a family of propositional

translations [[A]]~m, where ~m lists the lengths of all free variables in A, and show that there are

short F-proofs of [[A]]~m whenever A is a theorem of T1.

4.1 Length functions

The length functions are defined inductively as follows (where “sg” is the signum function).

lenx(m) = m

lenf(t1,...,tk)(~m) = lenf(x1,...,xk)

(
lent1(~m1), . . . , lentk(~mk)

)
1

(where x1, . . . , xk occur in none of t1, . . . , tk)

lenε = 0 len0 = 1 len1 = 1

len0x(m) = m len1x(m) = m

lenxJ(m) = bm/2c lenIx(m) = dm/2e

lenxCy(m,n) = m ·− n lenyBx(n,m) = m ·− n

1Where ~mi represents the lengths of the variables that occur in ti.

73

74 Chapter 4. Theorems of T1 Have Polysize F-proofs

lenx·y(m,n) = m + n

lenx?(y,z0,z1)(m,n, p0, p1) = if m = 0 then n else max{p0, p1}

len[λ~x.t](~y)(~n) = lent[~y/~x](~n
′)2

len`CRN[h](x,~y)(m,~n) = m lenrCRN[h](x,~y)(m,~n) = m

lenTRN[g,h,h`,hr](x,z,~y)(m, p, ~n) = if m ≤ 1 then leng(x,z,~y)(m, p, ~n) else

lenh(x,z,~y,v0,v1)

(
m, p, ~n, lenTRN[g,h,h`,hr](xJ,h`(z),~y)(m, p, ~n),

lenTRN[g,h,h`,hr](Ix,hr(z),~y)(m, p, ~n)
)

4.2 Term formulas

To every variable x of T1 are associated propositional atoms 〈x〉m1 , . . . , 〈x〉mm. For other terms

of T1, the term formulas are defined inductively as follows. (When subscript i is used without

specifying its range in the definition of 〈t〉~m
i , it is implicitly assumed that 1 ≤ i ≤ lent(~m).)

〈f(t1, . . . , tk)〉
~m
i = 〈f(x1, . . . , xk)〉

lent1(~m1),...,lentk
(~mk)

i

[
〈tj〉

~mj

ij
/〈xj〉

lentj
(~mj)

ij

]
1≤j≤k

1≤ij≤lentj
(~mj)

(where x1, . . . , xk occur in none of t1, . . . , tk)

〈0〉1 = ⊥ 〈1〉1 = >

〈0x〉
m
i = ⊥ 〈1x〉

m
i = >

〈xJ〉mi = 〈x〉mi 〈Ix〉mi = 〈x〉mi+bm/2c

〈x C y〉m,n
i = 〈x〉mi 〈y B x〉m,n

i = 〈x〉mi+n

〈x · y〉m,n
i =




〈x〉mi if i ≤ m

〈y〉ni−m if m < i

〈x ? (y, z0, z1)〉
m,n,p0,p1
i =





〈y〉ni if m = 0
(
¬〈x〉mm ∧ 〈0(z1 C z0) · z0〉

p0,p1

i

)

∨
(
〈x〉mm ∧ 〈0(z0 C z1) · z1〉

p0,p1
i

)
if m > 0

〈[λ~x.t](~y)〉~ni = 〈t[~y/~x]〉~n
′

i

〈`CRN[h](x, ~y)〉m,~n
i = 〈h(z, ~y) · 0〉m−i+1,~n

1

[
〈x〉mj+i−1/〈z〉

m−i+1
j

]
1≤j≤m−i+1

(where z does not occur in h(x, ~y)) for m > 0

〈rCRN[h](x, ~y)〉m,~n
i = 〈0 · h(z, ~y)〉i,~nlenh(z,~y)(i,~n)+1

[
〈x〉mj /〈z〉ij

]
1≤j≤i

(where z does not occur in h(x, ~y)) for m > 0

2Where ~n′ represents the lengths of the variables from ~y that actually occur in t[~y/~x].

4.3. Propositional translations 75

〈
TRN[g, h, h`, hr](x, z, ~y)

〉m,p,~n

i
=





〈g(x, z, ~y)〉m,p,~n
i if m ≤ 1

〈
h
(
x, z, ~y,TRN[g, h, h`, hr](xJ, h`(z), ~y),

TRN[g, h, h`, hr](Ix, hr(z), ~y)
)〉m,p,~n

i
if 1 < m

Remark 4.2.1 Note that “?” is the only primitive function symbol that has non-trivial term

formulas (because it is the only function that depends directly on the values of its arguments),

so that any non-trivial term formula must depend on ? in some way.

4.3 Propositional translations

The propositional translations of formulas of T1 are defined inductively as follows (where �

stands for any one of the binary propositional connectives, and ~m0 and ~m1 represent the lengths

of the variables that occur in A and B (or t and u), respectively.)

[[t = u]]~m =





∧∧
1≤i≤lent(~m0)

〈t〉~m0
i ↔ 〈u〉~m1

i if lent(~m0) = lenu(~m1),

⊥ otherwise.

[[¬A]]~m = ¬[[A]]~m

[[A � B]]~m = [[A]]~m0 � [[B]]~m1

4.4 The simulation result

Now, we can prove the following theorem.

Theorem 4.4.1 If A is provable in T1, then for any ~m, [[A]]~m has uniform polysize F-proofs.

Proof The proof is by induction on the number of inferences in the proof of A. If A is an

axiom, then Subsection 4.4.1 below shows that [[A]]~m has linear-size F-proofs. If A is obtained

by a derivation, then by the induction hypothesis, the propositional translations of the premises

of the last inference all have short F-proofs. Subsection 4.4.2 below shows that in this case

also, [[A]]~m has short F-proofs. Moreover, all these F-proofs are uniform, in the sense that

there exists a specific function that takes a theorem of T1 and the lengths of its variables into a

F-proof of the translation of the theorem. This function is described implicitly in the sections

that follow, but it can be formalized in T1 itself, using techniques similar to those developed in

Chapter 5 (we do not expect any technical difficulties in doing this but time constraints prevent

us from working out the details). �

76 Chapter 4. Theorems of T1 Have Polysize F-proofs

4.4.1 Axioms

For most axioms of the form t = u, just writing down the definitions of 〈t〉i and 〈u〉i is enough

to see that the axiom is a theorem with short proofs since 〈t〉i = 〈u〉i. We give a more detailed

argument only for a few axioms.

0. The axioms for the propositional calculus can obviously be simulated by any F-system.

1. (a) By reflexivity, there are linear-size F-proofs of
∧∧

〈x〉mi ↔ 〈x〉mi for any variable x.

(b) If m 6= n, then the antecedent of the axiom translates to ⊥ so the translation of the

axiom is a trivial theorem. If m = n, then the commutativity of ↔ gives linear-size

F-proofs of
(∧∧

〈x〉mi ↔ 〈y〉ni
)
→

(∧∧
〈y〉ni ↔ 〈x〉mi

)
.

(c) If m 6= n or n 6= p, then one of the antecedents of the axiom translates to ⊥ so the

translation of the axiom is a trivial theorem. If m = n = p, then the transitivity of ↔

gives linear-size F-proofs of
((∧∧

〈x〉mi ↔〈y〉ni
)
∧

(∧∧
〈y〉ni ↔〈z〉pi

))
→

(∧∧
〈x〉mi ↔〈z〉pi

)
.

(d) An easy induction on the structure of the function symbol f , together with properties

of ↔, is sufficient to show that there are short F-proofs of
(∧∧

〈x1〉
m1
i ↔ 〈y1〉

n1
i ∧

· · · ∧
∧∧

〈xk〉
mk

i ↔ 〈yk〉
nk

i

)
→

∧∧
〈f(x1, . . . , xk)〉

m1,...,mk

i ↔ 〈f(y1, . . . , yk)〉
n1,...,nk

i when

m1 = n1, . . . ,mk = nk (the axiom’s translation becoming a trivial theorem otherwise

as one of the antecedents translates to ⊥). The size of these proofs is linear if f does

not contain any function defined by TRN; it is polynomial otherwise (since the size

of the term formulas can be polynomial in the lengths of the variables).

2. 〈0〉1 = ⊥ and 〈1〉1 = >.

3. (a) For all 1 ≤ i ≤ m + 0, 〈x · ε〉mi = 〈x〉mi , and for all 1 ≤ i ≤ m + n + 1,

〈x · y0〉m,n
i =





〈x〉mi if i ≤ m

〈y · 0〉ni−m =




〈y〉ni−m if i − m ≤ n

〈0〉i−m−n if n < i − m
if m < i

〈(x · y) · 0〉m,n
i =





〈x · y〉m,n
i =




〈x〉mi if i ≤ m

〈y〉ni−m if m < i
if i ≤ m + n

〈0〉i−(m+n) if m + n < i

(similarly for x · y1 = (x · y) · 1).

(b) [[x · y = ε]]m,n holds iff m + n = 0, and [[x = ε∧ y = ε]]m,n holds iff m = 0 and n = 0.

(c) [[x · y = 0]]m,n holds iff m + n = 1 and 〈x〉11 = ⊥ or 〈y〉11 = ⊥. Similarly for x · y = 1.

4.4. The simulation result 77

4. (a) For 1 ≤ i ≤ m, 〈ε B x〉mi = 〈x〉mi+0 by definition; also, for 1 ≤ i ≤ m − (n + 1),

〈(0y) B x〉m,n
i = 〈x〉mi+n+1 = 〈y B x〉m,n

i+1 = 〈0 B (y B x)〉m,n
i , and the same reasoning

applies to 〈(1y) B x〉m,n
i .

(b) len0Bε = 0 ·− 1 = 0 = lenε, and for 1 ≤ i ≤ m + 1 ·− 1, 〈0 B (0x)〉mi = 〈0x〉mi+1 =

〈x〉m(i+1)−1 = 〈x〉mi (similarly for 〈0 B (1x)〉mi). The same reasoning applies with

“1 B . . . ” in place of “0 B . . . ”.

(c) lenyBx(m,n) = m ·−n and lenxBy0(m,n) = lenxBy1(m,n) = (n+1) ·−m, and m ·−n =

0 ↔ m − n ≤ 0 ↔ m ≤ n ↔ m < n + 1 ↔ 0 < (n + 1) − m ↔ (n + 1) ·− m 6= 0.

5. (a) Similarly to 4a.

(b) Similarly to 4b.

(c) Similarly to 4c.

6. (a) [[0ε = ε]] = > since len0ε = lenε = 0, and for 1 ≤ i ≤ m+1, 〈0(x0)〉mi = 〈0(x1)〉mi = ⊥

and 〈0x · 0〉mi =




〈0x〉

m
i if i ≤ m,

〈0〉i−m if m < i.

(b) Similarly to 6a.

7. 〈ε ? (x, y, z)〉m,n,p
i = 〈x〉i for 1 ≤ i ≤ m, by definition; also, for 1 ≤ i ≤ max{n, p},

〈(w0) ? (x, y, z)〉k,m,n,p
i =

(
¬〈w0〉kk+1 ∧ 〈0(z C y) · y〉n,p

i

)

∨
(
〈w0〉kk+1 ∧ 〈0(y C z) · z〉n,p

i

)

=
(
¬⊥ ∧ 〈0(z C y) · y〉n,p

i

)
∨

(
⊥ ∧ 〈0(y C z) · z〉n,p

i

)

↔ 〈0(z C y) · y〉n,p
i ,

〈(w1) ? (x, y, z)〉k,m,n,p
i =

(
¬〈w1〉kk+1 ∧ 〈0(z C y) · y〉n,p

i

)

∨
(
〈w1〉kk+1 ∧ 〈0(y C z) · z〉n,p

i

)

=
(
¬> ∧ 〈0(z C y) · y〉n,p

i

)
∨

(
> ∧ 〈0(y C z) · z〉n,p

i

)

↔ 〈0(y C z) · z〉n,p
i .

8. (a) For all 1 ≤ i ≤ m,

〈(xJ) · (Ix)〉mi =




〈xJ〉mi = 〈x〉mi if i ≤ bm/2c

〈Ix〉mi−bm/2c = 〈x〉mi−bm/2c+bm/2c if bm/2c < i

(b) xJ C Ix = ε since lenxJ(m) ·− lenIx(m) = bm/2c ·− dm/2e = 0;

1 B (xJ B Ix) = ε since (lenIx(m) ·− lenxJ(m)) ·− 1 = dm/2e ·− bm/2c ·− 1 = 0.

The last four axioms are easy to prove if we note the following two facts.

78 Chapter 4. Theorems of T1 Have Polysize F-proofs

(a) For any term t, t C t = ε and therefore 〈0(t C t) · t〉~m
i = 〈t〉~m

i for 1 ≤ i ≤ lent(~m).

(b) Within any F-system, the identity (¬p ∧ q) ∨ (p ∧ q) ↔ q has linear-size proofs.

Together, these facts show that

〈x ? (y, z, z)〉m,n,p
i ↔




〈y〉ni if m = 0,

〈z〉pi if m > 0.

9. (a) Note that len(x0)J(m) = b(m + 1)/2c = dm/2e and

lenxJBIx?(xJ,xJ·((Ix·0)CIx),xJ·((Ix·0)CIx))(m)

= if dm/2e ·− bm/2c = 0 then bm/2c else bm/2c + (dm/2e + 1 − dm/2e)

= dm/2e,

so both terms do have the same length.

Now, for 1 ≤ i ≤ dm/2e, 〈(x0)J〉mi = 〈x0〉mi = 〈x〉mi and

〈xJ B Ix ?
(
xJ, xJ · ((Ix · 0) C Ix), xJ · ((Ix · 0) C Ix)

)
〉mi

↔




〈xJ〉mi if dm/2e = bm/2c

〈xJ · ((Ix · 0) C Ix)〉mi if dm/2e > bm/2c

↔





〈x〉mi if dm/2e = bm/2c



〈xJ〉mi if i ≤ bm/2c

〈((Ix · 0) C Ix)〉m1 if i > bm/2c
if dm/2e > bm/2c

↔





〈x〉mi if dm/2e = bm/2c



〈x〉mi if i ≤ bm/2c

〈x〉mi if i = dm/2e
if dm/2e > bm/2c

↔ 〈x〉mi

since 〈((Ix · 0) C Ix)〉m1 = 〈x〉m1+bm/2c. The case for x1 is identical.

(b) Note that lenI(x0)(m) = d(m + 1)/2e = bm/2c + 1 and

lenxJBIx?(Ix·0,1B(Ix·0),1B(Ix·0))(m)

= if dm/2e ·− bm/2c = 0 then dm/2e + 1 else (dm/2e + 1) − 1

= bm/2c + 1,

so both terms do have the same length.

4.4. The simulation result 79

Now, for 1 ≤ i ≤ bm/2c + 1,

〈I(x0)〉mi = 〈x0〉mi+b(m+1)/2c =




〈x〉mi+dm/2e if i ≤ bm/2c

〈0〉1 if i = bm/2c + 1

and

〈xJ B Ix ?
(
Ix · 0, 1 B (Ix · 0), 1 B (Ix · 0)

)
〉mi

↔




〈Ix · 0〉mi if dm/2e = bm/2c

〈1 B (Ix · 0)〉mi if dm/2e > bm/2c

↔








〈Ix〉mi if i ≤ bm/2c

〈0〉1 if i > bm/2c
if dm/2e = bm/2c

〈Ix · 0〉mi+1 if dm/2e > bm/2c

↔








〈Ix〉mi if i ≤ bm/2c

〈0〉1 if i > bm/2c
if dm/2e = bm/2c




〈Ix〉mi+1 if i ≤ bm/2c

〈0〉1 if i > bm/2c
if dm/2e > bm/2c

↔




〈x〉mi+dm/2e if i ≤ bm/2c

〈0〉1 if i = bm/2c + 1

The case for x1 is identical.

(c) Similarly to 9a.

(d) Similarly to 9b.

10. 〈[λ~x. t](~x)〉~m
i = 〈t[~x/~x]〉~m′

i = 〈t〉~m′

i for all 1 ≤ i ≤ lent(~m
′).

11. (a) Since len`CRN[h](ε,~y)(~n) = 0, [[`CRN[h](ε, ~y) = ε]]~n = >.

Also, because len(z·0)Cz(p) = p + 1 ·− p = 1, we have that

〈`CRN[h](0x, ~y)〉m,~n
1 = 〈h(z, ~y) · 0〉m+1,~n

1

[
〈0x〉mj /〈z〉m+1

j

]
1≤j≤m+1

= 〈h(0x, ~y) · 0〉m,~n
1

= 〈(h(0x, ~y) · 0) C h(0x, ~y)〉m,~n
1

= 〈
(
(h(0x, ~y) · 0) C h(0x, ~y)

)
· `CRN[h](x, ~y)〉m,~n

1

(similarly for 1x),

80 Chapter 4. Theorems of T1 Have Polysize F-proofs

and for 1 < i ≤ m + 1,

〈`CRN[h](0x, ~y)〉m,~n
i = 〈h(z, ~y) · 0〉m+2−i,~n

1

[
〈0x〉mj+i−1/〈z〉

m+2−i
j

]
1≤j≤m+2−i

= 〈h(z, ~y) · 0〉
m+1−(i−1),~n
1

[
〈x〉mj+(i−1)−1/〈z〉

m+1−(i−1)
j

]
1≤j≤m+1−(i−1)

= 〈`CRN[h](x, y)〉m,~n
i−1

= 〈
(
(h(0x, ~y) · 0) C h(0x, ~y)

)
· `CRN[h](x, ~y)〉m,~n

i

(similarly for 1x).

(b) Similarly to 11a.

12. For all 1 ≤ i ≤ lenTRN[g,h,h`,hr](x,z,~y)(m, p, ~n), and by the remark above,

〈x C 1 ? (g(x, z, ~y), t, t)〉m,p,~n
i =





〈g(x, z, ~y)〉p,~n
i if m ·− 1 = 0

(
¬〈x C 1〉m

m ·−1
∧ 〈0(t C t) · t〉m,p,~n

i

)

∨
(
〈x C 1〉mm ·−1 ∧ 〈0(t C t) · t〉m,p,~n

i

)
if m ·− 1 > 0

↔




〈g(x, z, ~y)〉p,~n

i if m ·− 1 = 0

〈t〉m,p,~n
i if m ·− 1 > 0

where t = h
(
x, z, ~y,TRN[g, h, h`, hr](xJ, h`(z), ~y),TRN[g, h, h`, hr](Ix, hr(z), ~y)

)
.

4.4.2 Rules of inference

For all the rules in Definition 3.1.3, if one of the premises contains an equation of the form

[[t = u]]~m that degenerates to ⊥ because lent(~m0) 6= lenu(~m1), then the rule becomes trivial.

We therefore assume that none of the propositional translations of atomic formulas of T1 are

degenerate cases. Also, when we use the notation “
∧∧

” with no subscript, we implicitly assume

that the conjunction is over all relevant values of the index of the term formulas involved.

0. Any standard, complete set of rules for the propositional calculus can be p-simulated

within any F-system.

1. We have short F-proofs of [[A]]m,~n. Substituting 〈t〉~pi for 〈x〉mi throughout these proofs

yield short F-proofs of [[A[t/x]]]~p,~n.

4.4. The simulation result 81

2. (a) First, a few observations. Let F = (x = ε ∨ x = 0 · mx ∨ x = 1 · mx). Then,

[[x = ε]]m =




> if m = 0

⊥ if m > 0

[[x = 0 · mx]]m =
∧∧

〈x〉mi ↔ 〈0 · mx〉mi

= 〈x〉m1 ↔ 〈0〉1 ∧
∧∧

1<i

〈x〉mi ↔ 〈mx〉mi−1

= 〈x〉m1 ↔⊥∧
∧∧

1<i

〈x〉mi ↔ 〈x〉mi

[[x = 1 · mx]]m = 〈x〉m1 ↔>∧
∧∧

1<i

〈x〉mi ↔ 〈x〉mi

so that

[[F]]m =





> ∨⊥ ∨⊥ if m = 0

⊥ ∨
(
〈x〉m1 ↔⊥∧

∧∧
1<i〈x〉

m
i ↔ 〈x〉mi

)

∨
(
〈x〉m1 ↔>∧

∧∧
1<i〈x〉

m
i ↔ 〈x〉mi

)
if m > 0

↔




> if m = 0
((
〈x〉m1 ↔⊥∨ 〈x〉m1 ↔>

)
∧

∧∧
1<i〈x〉

m
i ↔ 〈x〉mi

)
if m > 0

↔




> if m = 0

¬〈x〉m1 ∨ 〈x〉m1 if m > 0

Therefore, [[F]]m has linear-size F-proofs.

Now, we have short F-proofs of

Aε = [[A[ε]]]~n,

A0 = [[A[x]]]m,~n → [[A[0x]]]m,~n,

and A1 = [[A[x]]]m,~n → [[A[1x]]]m,~n.

If m = 0, then by Axiom 1d, there are short proofs of

[[x = ε]]m →
(
[[A]]m,~n ↔ [[A[ε]]]~n

)
,

which shows that there are short proofs of

[[x = ε]]m →
(
[[A[ε]]]~n → [[A]]m,~n

)
. (4.4.1)

If m > 0, then substituting 1 B x for x in A0 gives short proofs of

[[A[1 B x]]]m,~n → [[A[0 · mx]]]m,~n;

82 Chapter 4. Theorems of T1 Have Polysize F-proofs

moreover, by Axiom 1d, there are short proofs of

[[x = 0 · mx]]m →
(
[[A]]m,~n ↔ [[A[0 · mx]]]m,~n

)
,

and therefore, by transitivity, of

[[x = 0 · mx]]m →
(
[[A[1 B x]]]m,~n → [[A]]m,~n

)
.

A similar argument shows that there are short proofs of

[[x = 1 · mx]]m →
(
[[A[1 B x]]]m,~n → [[A]]m,~n

)
,

which, together with (4.4.1), implies that there are short proofs of

[[F]]m →
(
[[A[1 B x]]]m,~n → [[A]]m,~n

)
.

Applying modus ponens to this and [[F]]m gives short proofs of

[[A[1 B x]]]m,~n → [[A]]m,~n. (4.4.2)

Repeated substitutions of 1 B x for x in the proof of (4.4.2) give short proofs of

[[A[11 B x]]]m,~n → [[A[1 B x]]]m,~n

...

[[A[m̂ B x]]]m,~n → [[A[m̂ − 1 B x]]]m,~n

(where we remind the reader that “k̂” is a shorthand for

k︷ ︸︸ ︷
1 · · · 1).

Since m̂ B x = ε, using Axiom 1d and modus ponens gives short proofs of

[[A[ε]]]~n → [[A[m̂ B x]]]m,~n,

and using transitivity m + 1 times now gives short proofs of

[[A[ε]]]~n → [[A]]m,~n.

A final application of modus ponens with Aε gives the short proofs of [[A]]m,~n we

wanted: as can easily be seen, the size of this proof is O(m · p(m,~n)), where p(m,~n)

was the maximum size of the proofs of Aε, A0, A1.

(b) The same reasoning as for part (a) applies.

4.4. The simulation result 83

3. We have short proofs of [[A[ε, z]]]p,~n, [[A[0, z]]]p,~n, [[A[1, z]]]p,~n, and

A′ =
(
[[A[xJ, h`(z)]]]m,p,~n ∧ [[A[Ix, hr(z)]]]m,p,~n

)
→ [[A[x, z]]]m,p,~n.

If m = 0, using modus ponens twice on formula (4.4.1) gives a short proof of [[A]]m,p,~n. If

m > 0, then by repeatedly substituting first xJ, h`(z) and then Ix, hr(z) for x, z in the

proof of A′, we get a binary tree of short proofs of formulas of the form of A′, where the

formula at the root is [[A[x, z]]]m,p,~n, the formula at each node is implied by the conjunction

of the formulas at its children nodes, and at the leaves, the terms being substituted for u

can all be proved to be equal to 0 or 1 (single bits of x).

For example, if m = 3, the tree would have the form depicted in Figure 4.4.1 (where we’ve

indicated only the consequent of the formula being proved at each node, so that a node

B with children C and D represents a proof of the formula (C ∧ D) → B and a node B

with one child C represents a proof of the formula C → B).

A[x, z]

A[xJ, h`(z)] A[Ix, hr(z)]

A
[
(Ix)J, h`(hr(z))

]
A

[
IIx, hr(hr(z))

]
A[0, z′] ∧ A[1, z′]

A[0, z′] ∧ A[1, z′] A[0, z′] ∧ A[1, z′]

HHHH

����

HHHH

Figure 4.4.1: Proof tree for m = 3.

Therefore, the proofs of [[A[0, z]]]p,~n and [[A[1, z]]]p,~n can be used with Rule 1 (substituting

the right terms for z) and modus ponens to prove the formulas at the first level, and going

up level by level using modus ponens, we obtain a proof of the consequent of the formula

at the root of the tree, i.e., [[A]]m,p,~n. Moreover, if q(m, p, ~n) is the maximum proof size

of the premises and c is a constant satisfying |h`(z)| ≤ 2c|z| and |hr(z)| ≤ 2c|z|, then the

size of this proof is O(m · q(m, p ·mc, ~n)) since the tree has depth no more than dlog2 me

and thus size no more than 2m.

Remark 4.4.1 Note that the estimates on the size of F-proofs for T1’s theorems given above

might be used to get more precise upper bounds than are currently known for the size of F-

proofs of certain families of tautologies. For example, the family of tautologies arising from the

pigeonhole principle was first shown to have polysize F-proofs by Buss [8] (whose estimate of

the size of the proofs was O(n20)); a careful analysis of the T1-proof given in Chapter 3 together

84 Chapter 4. Theorems of T1 Have Polysize F-proofs

with the results of this chapter could provide a better bound (the details would be somewhat

tedious but straightforward), and the same could be done for the other families of tautologies

mentionned at the end of Chapter 3.

Chapter 5

T1 Proves the Soundness of F

In this chapter, we will show how to formalize a particular F-system in T1, how to formalize

Buss’s algorithm for the Boolean Sentence Value Problem (BSVP) [10] in T1, and how to use

the BSVP algorithm to prove the soundness of the given F-system in T1. Then, we show that

F provably p-simulates any proof system S whose soundness can be proved in T1.

5.1 Formalizing F-systems

Because any two F-systems p-simulate each other, we will focus on the particular F-system

below:

language: variables p1, p2, . . . , constants > and ⊥, connective →, brackets ()

formulas: >, ⊥, pi (for any i ≥ 1), and recursively, (A → B) for any formulas A and B

axiom schemes (for any formulas A, B, C):

1. (A → (B → A))

2.
(
(A → (B → C)) → ((A → B) → (A → C))

)

3.
(
((B →⊥) → (A →⊥)) → (A → B)

)

4. >

rule (modus ponens): A, (A → B) ` B

5.1.1 Formulas

Given a formula A of F , we will encode A into a string #`A in the following way: Let wA =

max{i : pi appears in A} and `A = 1 + blg(wA + 1)c (one more than the binary length of wA).

Then, for 2` ≥ `A +2, #2`A is obtained from A by using the following Gödel-numbering scheme

85

86 Chapter 5. T1 Proves the Soundness of F

(where (i)2
`−2

2 ∈ {0, 1}2`−2 represents i in binary using exactly 2` − 2 bits—note that because

of our choice of 2`, this will always start with a 0).

symbol code

pi 00(i)2
`−2

2

⊥ 00102`−3

> 00112`−3

(1002`−2

→ 1102`−2

) 0102`−2

In fact, because we can count in T1, it is possible to define a slightly more complicated encoding

where the codes for “(”, “→”, and “)” include information about the logical depth of the symbol

(making sure that `A is adjusted to be the maximum of its old value and the logical depth of

A). In what follows, we will use “(j”, “→j”, and “)j” to represent the corresponding symbol

at a logical depth of j.

For example, the formula A =
(
p2 →

(
(p10 → ⊥) → p2

))
can be rewritten as A = (0p2 →0

(1(2p10 →2 ⊥)2 →1 p2)1)0 by including the depth information for each symbol except logical

variables and constants, which would be encoded as follows (where the string was split in two

to fit on the page, and a little bit of space was added between blocks of bits representing each

symbol, for readability):

#8A = 10000000 00000010 11000000 10000001 10000010 00001010 · · ·

· · · 11000010 00100000 01000010 11000001 00000010 01000001 01000000.

With this encoding, it is easy to write a function formula(x, z) in T1 that returns 1 if

x = #2`A for some formula A such that |powL(z)| = 2` ≥ `A + 2, or 0 otherwise. The function

is defined by rpowCRN and simply checks that x is one of “#2`⊥”, “#2`>”, “#2`pi”, or that

x has the form “(a· · ·)a” and that each symbol in x is preceded by a valid string of symbols,

according to the following simple rules (using counting and masking operations):

• “pi”, “⊥”, and “>” must immediately follow either “(” or “→”;

• “(j” must immediately follow either “(j−1” or “→j−1”;

• “→j” must either immediately follow “(jpi”, “(j⊥”, or “(j>”, or it must follow, in order,

“(j(j+1· · ·)j+1” (where everything between the parentheses has depth at least j + 1);

• “)j” must either immediately follow “→jpi”, “→j⊥”, or “→j>”, or it must follow, in

order, “→j(j+1· · ·)j+1” (where everything between the parentheses has depth at least

j + 1).

5.2. Buss’s algorithm for the BSVP 87

5.1.2 Proofs

Now, we can encode F-proofs easily. A proof A1, . . . , Ak is encoded by a pair of strings:

〈#2`A1, . . . ,#2`Ak〉k and 〈j1, . . . , jk〉k, where 2` ≥ max1≤i≤k{`Ai
} + 2 and

ji =




〈0,m〉 if Ai is an instance of axiom m,

〈k1, k2〉 if Ak2 = Ak1 → Ai.

Again, it is straightforward to write a function proof(x, y, z, w) in T1 that returns 1 if x, y

encode an F-proof for 2` = |powL(z)| and k = |w|, or 0 otherwise, by using simple masking

operations and rpowCRN. (Technically speaking, the encodings of the formulas in a proof must

be padded so they all have the same length, but it is a simple matter to take care of.)

Finally, we can define in T1 the following function:

F (x, y, z, w) =





π
|w|
|w|(x) if proof(x, y, z, w) = 1,

#|powL(z)|> otherwise,

that returns the tautology proved by x, y (or some fixed tautology if x, y is not an F-proof).

5.2 Buss’s algorithm for the BSVP

For reference purposes, we will now summarize Buss’s most recent published ALOGTIME

algorithm for the BSVP [10]. Actually, we present a slight variation of his algorithm applied to

formulas containing only the connective “→” as opposed to “∧” and “∨”. Given such a Boolean

sentence, we can represent it as a binary tree with 2d+1 − 1 leaves for some d (we can pad any

sentence so that it meets this condition by preceding it with enough copies of “>→· · · ”), where

each leaf stores either “>” or “⊥” and each interior node represents the connective “→”. For

two nodes U and V in this tree, we write “U B V ” to mean that U is an ancestor of V , and

“U D V ” to mean U = V or U B V . The least common ancestor of U and V is denoted

lca(U, V). By convention, we draw trees with the root at the top and the leaves at the bottom,

so that “above” and “below” correspond to “ancestor” and “descendant”, respectively. Also, we

define a scarred sentence as a binary tree whose leaves store > or ⊥ and that contains exactly

one internal node with only one child (the missing child is called the scar). The “value” of a

scarred sentence is defined to be a pair of truth-values (t>, t⊥), where t> is the value of the

Boolean sentence obtained when the scar is replaced by >, and similarly for t⊥.

The algorithm will be described as a pebbling game on the formula’s tree between two

players: the Pebbler and the Challenger, and it proceeds in rounds. During each round, the

Pebbler places pebbles labelled with a truth-value “0” or “1” on nodes of the tree, representing

88 Chapter 5. T1 Proves the Soundness of F

assertions by the Pebbler that the subformulas rooted at those nodes have the indicated truth-

values. Following the Pebbler’s move, the Challenger challenges one of the pebbled positions

U , representing an assertion by the Challenger that the pebble value at U is incorrect (and

implicitly, that every pebbled position below U is correct).

Intuitively, the essential feature of the pebbling-challenging game is to break up the work

by creating scarred subsentences and evaluating them at the same time as their scar, instead

of performing the evaluation sequentially. (For example, we could evaluate (A → B) → C by

evaluating (A → F) → C in parallel with B, where “F” indicates the position of the scar.)

Together with Buss’s innovative technique for finding scar positions in a semi-oblivious fashion

through distinguished leaves, this feature of the algorithm allows even unbalanced sentences to

be evaluated in a logarithmic number of steps.

The game is designed so that the Pebbler has a winning strategy if the value of the sentence

is “1”; otherwise, the Challenger has a winning strategy. Many of the rules of the game

might seem somewhat arbitrary and strict, but they are designed so that a play of the game

can be evaluated in ALOGTIME while preserving the property that the correct player has a

winning strategy. For example, the game will never last more than d rounds (when there are

2d+1 − 1 leaves), and since specifying arbitrary pebble positions would require O(d) bits (which

would take us outside ALOGTIME), there must be a “semi-oblivious” way of specifying pebble

positions using only a constant number of bits per round.

Before giving the details of the pebbling game, we need to introduce a bit more notation.

First, leaves will be numbered from left to right, starting with 1, and assigned a rank equal to

the largest integer k such that 2k divides the leaf number. Next, in each round i ≥ 1, there

will be distinguished leaves Li, Ci, and Ri (for “left”, “center”, and “right”, respectively) and

distinguished nodes Ai and Bi (for “above” and “below”, respectively), satisfying the following

conditions (see Figure 5.2.1 for a picture).

1. Ai D Bi D Ci, with Ai = Bi only if Bi = Ci;

2. Ai is the lowest (and latest) challenged node, while Bi is the highest pebbled position

satisfying the first condition—or Bi = Ci if there is no pebbled node below Ai (informally,

the players have “agreed” at Bi but “disagree” at Ai);

3. Li and Ri are distinct leaves of rank d − i and Ci is of rank greater than d − i;

4. every leaf in the subtree rooted at Ai but outside the subtree rooted at Bi has number in

the range

(Li − 2d−i, Li + 2d−i) ∪ (Ri − 2d−i, Ri + 2d−i)

(where the intervals are open).

5.2. Buss’s algorithm for the BSVP 89

d
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

dVi
�� TTdV 1

i
dV 2

i

dAi
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

dUi
�� TTdU1

i
dU2

i

dBi
�
�
�
�
�

T
T
T
T
Tt

Ci

t
Li

t
Ri

Figure 5.2.1: Distinguished nodes (triangles delineate subtrees; dotted lines indicate paths).

Note that this illustrates only one of the many configurations possible.

The pebbling game proceeds as follows. In round 0, the Pebbler must pebble the root node

with value “1”, and the Challenger must challenge the pebble at the root. In preparation for

round 1, set A1 to be the root, B1 = C1 to be the leaf numbered 2d, and L1 and R1 to be the

leaves numbered 2d−1 and 2d + 2d−1, respectively (see Figure 5.2.2 for an example where each

leaf’s number and rank is indicated). In round i ≥ 1, let Ui = lca(Li, Ci) and Vi = lca(Ci, Ri)

(note that Ui and Vi are distinct because Li and Ri are distinct).

c((((((((
``````̀c���

HHH

c����
PPPPc

@@

c
��
PPPP

c
��
HHH

c���
HHHc

��
HHH

c
�� AA

c
�� AA

c��� AA

c
�� AA

c
�� AA

c
��@@

c
�� AAc

�� AA

c
��
PPPP

c
��@@

c
�� AA

c
�� AA

c
�� AAc

�� AA

c
��
PPPP

c
�� AAc

�� AA

c��� @@c
�� AA

c
��@@

c
�� AAc

�� AA

s s
s s

s s
s

s
s s

s s

s s s s
s

s s

s s s
s s

s s
s s s s

s

number: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
rank: 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

C1

L1

R1
B1

A1

V1V 1

1

V 2

1U1

U1

1
U2

1

Figure 5.2.2: Labelled example of the BSVP algorithm at round 1.



90 Chapter 5. T1 Proves the Soundness of F

In each round, the Pebbler uses six bits of information (one per node) to pebble Ui, Vi, and

their two immediate children (U1
i , V 1

i to the left and U2
i , V 2

i to the right, respectively). In

addition, the Pebbler must use three bits of information to specify the relative positions of Ai,

Ui, and Vi (i.e., which nodes are ancestors of which ones—since all three nodes are ancestors

of Ci, they all lie on the path from Ci to the root).

The Challenger then challenges one node from among Ai, Ui, U1
i , U2

i , Vi, V 1
i , or V 2

i (using

three bits to specify which one), subject to the conditions that the node challenged must be in

the subtree rooted at Ai and outside the subtree rooted at Bi.

For round i + 1, Ai+1 is set to the node just challenged, Bi+1 is set to the highest pebbled

node below Ai+1 (or to Ci+1 if there is no pebbled node below Ai+1), and Li+1, Ci+1, Ri+1 are

set according to Table 5.2.1.

Challenged Pebbler says Pebbler says

Node Ui B Vi Vi B Ui

Ci+1 = Li Ci+1 = Li

U1
i Ri+1 = Li + 2d−i−1 Ri+1 = Li + 2d−i−1

Li+1 = Li − 2d−i−1 Li+1 = Li − 2d−i−1

Ci+1 = Ci Ci+1 = Ci

U2
i Ri+1 = Ri + 2d−i−1 Ri+1 = Ri − 2d−i−1

Li+1 = Li + 2d−i−1 Li+1 = Li + 2d−i−1

Ci+1 = Ci Ci+1 = Ci

V 1
i Ri+1 = Ri − 2d−i−1 Ri+1 = Ri − 2d−i−1

Li+1 = Li + 2d−i−1 Li+1 = Li − 2d−i−1

Ci+1 = Ri Ci+1 = Ri

V 2
i Ri+1 = Ri + 2d−i−1 Ri+1 = Ri + 2d−i−1

Li+1 = Ri − 2d−i−1 Li+1 = Ri − 2d−i−1

Ui or Vi Game Ends Game Ends

Challenged Node: Ai

Pebbler says Pebbler says Pebbler says Pebbler says

Ai B Ui, Vi Ui, Vi D Ai Ui D Ai B Vi Vi D Ai B Ui

Ci+1 = Ci Ci+1 = Ci Ci+1 = Ci Ci+1 = Ci

Ri+1 = Ri + 2d−i−1 Ri+1 = Ri − 2d−i−1 Ri+1 = Ri + 2d−i−1 Ri+1 = Ri − 2d−i−1

Li+1 = Li − 2d−i−1 Li+1 = Li + 2d−i−1 Li+1 = Li + 2d−i−1 Li+1 = Li − 2d−i−1

Table 5.2.1: Next leaf nodes in Buss’s BSVP algorithm.



5.2. Buss’s algorithm for the BSVP 91

Now, it is easy to show by induction on the number of rounds played that properties 1–4

are preserved for the duration of the algorithm: it is simply a matter of checking case-by-case

each possibility in Table 5.2.1 for the values of Ci, Li, and Ri. For example, suppose that V 2
1 is

challenged in Figure 5.2.2, then for round 2, A2 = V 2
1 , B2 = C2 = R1 = 24, L2 = R1 − 4 = 20,

and R2 = R1 + 4 = 28 (we refer to leaves by their number), so A2 B B2 = C2, A2 is the lowest

challenged node and B2 = C2, L2 and R2 have rank 2 = 4 − 2 and C2 has rank 3 > 2, and

every leaf in the subtree rooted at A2 but outside the subtree rooted at B2 has number in the

range (20 − 24−2, 20 + 24−2) ∪ (28 − 24−2, 28 + 24−2) = (16, 24) ∪ (24, 32).

The game ends as soon as one of the players makes an “obvious” mistake, i.e., one from

the following list. (Note that by property 4, the game must end by round number d because

(Ld − 2d−d, Ld + 2d−d) ∪ (Rd − 2d−d, Rd + 2d−d) = {Ld, Rd}; it is easy to see that in that case,

one of the two players will be forced to make a mistake from the list below.)

• Pebbler: when the input nodes of a gate are either leaves or are pebbled and the output

node is pebbled incompatibly.

• Challenger: when the output of a gate whose input nodes are either leaves or pebbled is

challenged, even though it is correctly pebbled.

• Pebbler: when a leaf is incorrectly pebbled.

• Challenger: when a correctly pebbled leaf is challenged.

• Pebbler: when a node is pebbled with both “0” and “1”.

• Pebbler: when an incorrect assertion is made about whether Ui B Vi, Ai B Ui, Ai B Vi.

• Challenger: when the challenged node is above a previously challenged node.

• Challenger: when the challenged node is at or below a previously agreed upon pebble

value (a pebble is “agreed upon” if it was placed in an earlier round and in that round,

the Challenger challenged an ancestor of that pebble).

It is straightforward to see that the game produces the correct result: if the value of the

sentence is “true”, the Pebbler can win the game by simply pebbling every node with its correct

value and making assertions compatible with the structure of the sentence, while if the value

of the sentence is “false”, the Challenger can win the game by always challenging the lowest

incorrectly pebbled node that is not below a previously agreed upon node.

Moreover, the game can be translated into an ALOGTIME algorithm, as follows: First,

simulate possible plays of the game using existential moves for the Pebbler and universal moves

for the Challenger. Then, for each such game, existentially guess the first mistake made and



92 Chapter 5. T1 Proves the Soundness of F

universally verify that no earlier mistake was made. Note that from a play of the game, it is easy

to determine the last round when Lj was computed from Rj and to compute the appropriate

sum of powers of 2 to add to Rj in order to get Li (the same goes for Ri). As for Ci, simply

find the last round when Cj was equal to Lj or Rj and we know that Ci = Cj . Finally, because

it is possible to count in ALOGTIME , ancestors can readily be computed to find Ui, Vi and

thus determine Ai and Bi.

5.3 Formalizing the BSVP

The algorithm that we will use to solve the BSVP in T1 is simply a formalization inside our

theory of the algorithm described in the previous section. To formalize this algorithm inside

T1, we will define a function BSVP that decomposes and evaluates the sentence, using TRN

to perform the work in parallel, disjunction (OR) over all possible Pebbler guesses to emulate

existential moves, and composition and implication to emulate Challenger’s universal moves.

First, it is easy to define by rpowCRN a function sentence(v, x, z) that takes as argument a

truth-value assignment v (represented simply by a string whose 1st bit is the value of p1, whose

2nd bit is the value of p2, etc.) and the encoding of a formula x = #|powL(z)|A, and returns the

sentence obtained by substituting the given truth-values for the variables in x.

Next, we define the function BSVP(d, h,m, s) that does the work according to Buss’s al-

gorithm. There will be one variation: because we want the function to apply to arbitrary

sentences, but a sentence must have a power of 2 minus 1 leaves in the algorithm, we will pad

sentences so they have 2d+1 − 1 leaves and remember the position of the root of the original

sentence inside the padded version as “M”. (The algorithm needs to be changed so that it

takes the distinguished node M into account at the same time as A, B, L, C, R, but the

changes are easy to make since M remains fixed for the duration of the algorithm.) In what

follows, the parameter s is fixed and encodes a superformula of the Boolean sentence we are

evaluating (padded so it always has a power of two minus one leaves), the parameter m is fixed

and indicates the root M of the subformula of s whose value we are interested in, the parame-

ter h varies and represents the history of the game so far, as a sequence of blocks b1a1 · · · biai

(each block a constant-length string encoding Pebbler’s guesses on the relative positions of the

nodes A,U, V,B, and M (in bj), as well as Challenger’s chosen node (in aj)), and d varies and

represents 2 to the power of the current round number, in unary. The function BSVP(d, h,m, s)

returns a truth-triplet (c, t>, t⊥), where c is a check-bit indicating whether h is a valid descrip-

tion of the structure of s or not, and (t>, t⊥) is the value of the possibly scarred subformula of

M picked out by h. The function will be defined by TRN on d, following Buss’s algorithm, but

first, we must specify how truth-triplets can be combined in various ways.



5.3. Formalizing the BSVP 93

We generalize disjunction and implication to truth-triplets, and define composition of truth-

triplets, as follows:

(c1, t1>, t1⊥) ∨∨ (c2, t2>, t2⊥) =
(
c1 ∨ c2, (c1 ∧ t1>) ∨ (c2 ∧ t2>), (c1 ∧ t1⊥) ∨ (c2 ∧ t2⊥)

)
,

(c1, t1>, t1⊥) →→ (c2, t2>, t2⊥) =
(
c1 ∧ c2, t1> → t2>, t1⊥ → t2⊥

)
,

(c1, t1>, t1⊥) ◦ (c2, t2>, t2⊥) =
(
c1 ∧ c2, t1t2

>

, t1t2
⊥

)

(where t1
t2
>

is equal to t1> if t2> = > and t1⊥ if t2> = ⊥, and similarly for t1
t2
⊥

).

Then, for h = b1a1 · · · biai, we can define BSVP(d, h,m, s) as follows:

BSVP(d, h,m, s) =
∨∨

all Pebbler
guesses b




composition of BSVP(Id, hba,m, s)’s using ◦ and →→,

based on structure induced by b and where a picks out

different subformulas at the current round


 .

Because b has a fixed length, the disjunction actually represents a fixed number of cases, each one

of which has a unique structure determined by the value of b. We will not list all possible cases

here (they can easily be written down from the description of Buss’s algorithm and Table 5.2.1),

but we give two illustrative examples based on the sentence depicted in Figure 5.2.2.

1. Consider the sentence depicted in Figure 5.3.1, where we have filled-in the unique interior

node that represents “m” and each leaf that falls inside the correct intervals around

L1 and R1. At round 1, we have that BSVP(d, h,m, s) = BSVP(Id, hbaU1 ,m, s) →→

BSVP(Id, hbaU2 ,m, s), where “aU1” and “aU2” are fixed-length strings representing which

subsentence is selected, and “b” is the unique fixed-length string representing the correct

structure of the formula. The other parts of the formula (under V 2
1 ) are of no interest

because they fall outside “m”.

c((((((((
``````̀s���

HHH

c����
PPPPc

@@

c
��
PPPP

c
��
HHH

c���
HHHc

��
HHH

c
�� AA

c
�� AA

c��� AA

c
�� AA

c
�� AA

c
��@@

c
�� AAc

�� AA

c
��
PPPP

c
��@@

c
�� AA

c
�� AA

c
�� AAc

�� AA

c
��
PPPP

c
�� AAc

�� AA

c��� @@c
�� AA

c
��@@

c
�� AAc

�� AA

s s
s s

s s
s

s
s s

s s

s s s c
s

s s

s s s
s s

s s
s s s s

s

rank: 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

C1

L1

R1
B1

A1

V1V 1

1

V 2

1U1

U1

1
U2

1

Figure 5.3.1: Labelled example of the BSVP algorithm at round 1.

2. If we look at the first recursive call of BSVP in the preceding case, we have the situ-

ation depicted in Figure 5.3.2, in which case it is easy to see that BSVP(d, h,m, s) =

94 Chapter 5. T1 Proves the Soundness of F

BSVP(Id, hbaA,m, s) ◦
(
BSVP(Id, hbaU1 ,m, s) →→

(
BSVP(Id, hbaU2 ,m, s) ◦

(
BSVP(Id, hbaV 1 ,m, s) →→ BSVP(Id, hbaV 2 ,m, s)

)))
.

c((((((((
``````̀s���

HHH

c����
PPPPc

@@

c
��
PPPP

c
��
HHH

c���
HHHc

��
HHH

c
�� AA

c
�� AA

c��� AA

c
�� AA

c
�� AA

c
��@@

c
�� AAc

�� AA

c
��
PPPP

c
��@@

c
�� AA

c
�� AA

c
�� AAc

�� AA

c
��
PPPP

c
�� AAc

�� AA

c��� @@c
�� AA

c
��@@

c
�� AAc

�� AA

s s
s s

s s
s

c
s s

s s

s s s c
c

c c

c c c
c c

c c
c c c c

c

rank: 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

C2

L2

R2

B2

A2

U2

U1

2
U2

2

V2

V 1

2
V 2

2

Figure 5.3.2: Labelled example of the BSVP algorithm at round 2.

At the last round (when d = 1), the history h is analyzed and compared with the actual

structure of the sentence, and the check-bit c returned is > iff they agree. The check-bit can be

obtained by taking the OR of a bit-string computed by rpowCRN on h, where the bit output

for each block b in h is 1 iff b is correct. Moreover, each of these bits can be computed by

finding the positions of the L, C, and R leaves from the first part of the history h (which is

easy to do by TRN) and then finding least common ancestors of these leaves (which again can

be done easily by TRN).

At the same time, the actual sentence left at the last round will have one of the simple

forms shown in Figure 5.3.3, which can all be evaluated trivially since we know the values of

L, C, and R, and we can easily check when B = C.

dA
�
�
@
@t

L
d

�
�
@
@d

B
t

R

dA
�
�

@
@d

�
�
@
@t

L
d

B

t
R

dA
�
�
@
@t

L
d

B

dA
�
�
@
@d

B
t

R

tA
L

tA
C

tA
R

Figure 5.3.3: Base cases for BSVP.

There remains one technical detail that needs to be taken care of in the definition of BSVP:

as given, the definition is not a proper application of TRN since the value of BSVP(d, h,m, s) is

recursively defined in terms of BSVP(Id, h′,m, s) for more than one value of h′. The situation

can easily be remedied, in the following way. First, the bounded “
∨∨

” over all values of b can be

implemented with a subtree whose depth is equal to the number of bits in b (which is a constant),

where a single bit is added to b at every level (to get all possible values of b at the bottom) and



5.3. Formalizing the BSVP 95

∨∨ is used to combine the values at each node in the subtree. Next, the composition of values

based on the structure determined by b can similarly be carried out step-by-step using a subtree

of constant depth, where at each step, the value of b is used to determine which function (◦ or

→→) to apply to combine the results, and which bits to add to a to select subformulas. Both of

these steps only require increasing the length of d by a constant factor, and using powmodL to

determine which level is being evaluated in the subtrees.

Finally, we can define a function VALUE(v, x, z) that computes the truth-value of the formula

encoded by (x, z) under v:

VALUE(v, x, z) = AND
(
BSVP

(
2k × leaves(x, z), ε,mask(x, z), sentence(v, pad(x, z), z)

))
,

where pad(x, z) pads the formula encoded by x and z, adding enough copies of “> → · · · ” to

the left so that it has 2δ+1 − 1 leaves for some integer δ ≥ 0, mask(x, z), returns the position

of the root of the formula encoded by x inside pad(x, z), using a bitmask (where the root is

indicated by its main connective “→”), leaves(x, z) returns a string of length 2δ (for the same δ

as above), and k is the fixed number of bits in one block “ba” of the history. All these functions

are easily defined in T1 using rpowCRN and TRN, as follows.

First, note that a formula with n leaves always contains exactly 4n − 3 = n + 3(n − 1)

symbols (1 for each leaf, and 3 for each connective: two parentheses and one connective), each

one encoded by a block of length |powL(z)|. This means that the function

numleaves(x, z) = powdivL
(
(x · (3 × powL(z)))JJ, z

)

returns the number of leaves of the formula encoded by x, in unary. Also, we can check whether

a formula has a power of 2 minus 1 leaves or not with the function ispowL. Hence, if we define

leaves(x, z) = sevael(x · (7 × powL(z)), z), where

sevael(x, z) =





1 if x ≤L 8 × powL(z),

sevael(xJ, z) · sevael(Ix, z) otherwise,

then the string x · (7× powL(z)) contains 4n− 3 + 7 = 4(n + 1) blocks of bits of length powL(z)

so that leaves(x, z) contains exactly 2δ bits for any formula x that contains between 2δ and

2δ+1 − 1 leaves, inclusive.

Next, we define by TRN a function padding(y,w, z) that returns a balanced sentence con-

taining exactly |y| leaves, each one having the value >, where the logical depth of each symbol

is at least |w| and the length of each symbol’s encoding is |powL(z)|:

padding(y,w, z) =





y ?ZL
(
ε,#|powL(z)|>

)
if y = ε, 0, 1,

#|powL(z)|(|w|·padding(yJ, w1, z) · #|powL(z)|→|w|

· padding(Iy,w1, z) · #|powL(z)|)|w| otherwise.



96 Chapter 5. T1 Proves the Soundness of F

Now, we can easily define

pad(x, z) = x (if x has a power of 2 minus 1 leaves),

pad(x, z) = #|powL(z)|(0·padding(numleaves(x, z) B leaves(x, z), 1, z)

· #|powL(z)| →0 ·deepen(x, z) · #|powL(z)|)0 (otherwise),

where deepen(x, z) is easily defined by rpowCRN to add 1 to the logical depth of every symbol

in the formula x. Finally, we can define mask by rpowCRN:

mask(x, z) = the unique connective → at logical depth 0 inside pad(x, z)

(if x has a power of 2 minus 1 leaves),

mask(x, z) = the second connective → at logical depth 1 inside pad(x, z) (otherwise).

5.3.1 Proof of correctness in T1

Theorem 5.3.1 T1 proves VALUE(v,#|powL(z)|>, z) = 1, VALUE(v,#|powL(z)|⊥, z) = 0, and

for arbitrary formulas M and N ,

VALUE(v,#|powL(z)|(M → N), z) = VALUE(v,#|powL(z)|M,z) →B VALUE(v,#|powL(z)|N, z)

( i.e., VALUE is intensional).

Proof The first two statements follow directly from the definition of the functions involved.

The third statement follows from Claim 5.3.1 below. �

Claim 5.3.1

1. If h picks out a supersentence of (M →N), possibly scarred at B, in the sentence encoded

by s, then BSVP(d, h, lca(m,n), s) = BSVP(d, h,m, s)→→BSVP(d, h, n, s) (where lca(m,n)

is a mask indicating the position of the least common ancestor of the nodes masked by

m and n in the sentence s).

2. BSVP(d, ε,m, s) = BSVP(d′, ε,m′, s′) for all values of the parameters that represent the

same sentence, i.e., given x = #`A, for any s, s′ that are supersentences of x, where m,m′

and d, d′ are defined appropriately.

Proof

1. By induction on d. When d = 1, only the first four cases of Figure 5.3.3 apply. Suppose

we are in case 4; then, A = (M → N) and BSVP(d, h, lca(m,n), s) = (c, r,>) (where r



5.3. Formalizing the BSVP 97

is the value of node R), BSVP(d, h,m, s) = (c,>,⊥) (since M = B is the scar), and

BSVP(d, h, n, s) = (c, r, r), so the statement is true. The other three cases are similar.

Now, if h picks out a supersentence of (M →N), possibly scarred at B, then consider the

following cases.

(a) If BSVP(d, h, lca(m,n), s) = BSVP(Id, hba, lca(m,n), s), then hba also picks out a

supersentence of (M → N), possibly scarred at B, and the statement is true by the

induction hypothesis.

(b) If U > V = (M → N), then

BSVP(d, h, lca(m,n), s)

= BSVP(Id, hbaV 1, lca(m,n), s) →→ BSVP(Id, hbaV 2, lca(m,n), s).

Also,

BSVP(d, h,m, s) = BSVP(Id, hbaV 1 ,m, s) = BSVP(Id, hbaV 1 , lca(m,n), s)

and

BSVP(d, h, n, s) = BSVP(Id, hbaV 2 , n, s) = BSVP(Id, hbaV 2, lca(m,n), s)

by the induction hypothesis. Hence, the statement is true. (The case when V >

U = (M → N) is similar.)

(c) If (M → N) = U > V , then

BSVP(d, h, lca(m,n), s) = BSVP(Id, hbaU1 , lca(m,n), s)→→
(
BSVP(Id, hbaU2 , lca(m,n), s) ◦ BSVP(Id, hbaV , lca(m,n), s)

)
.

Also,

BSVP(d, h,m, s) = BSVP(Id, hbaU1 ,m, s)

and

BSVP(d, h, n, s) = BSVP(Id, hbaU2 , n, s) ◦ BSVP(Id, hbaV , n, s),

where

BSVP(Id, hbaV , lca(m,n), s) = BSVP(Id, hbaV , n, s)

= BSVP(Id, hbaV 1 , n, s) →→ BSVP(Id, hbaV 2, n, s).

Since t →→ (t1 ◦ t2) = (t →→ t1) ◦ t2 for any truth-triplets t, t1, and t2 such that t

is unscarred (i.e., t> = t⊥), the statement follows immediately by the induction

hypothesis. (The case when (M → N) = V > U is similar.)



98 Chapter 5. T1 Proves the Soundness of F

(d) If U > (M → N) > V , then assuming M > V (the other cases being similar), we

have that

BSVP(d, h, lca(m,n), s)

= BSVP(Id, hbaU2 , lca(m,n), s) ◦ BSVP(Id, hbaV , lca(m,n), s).

Also,

BSVP(d, h,m, s) = BSVP(Id, hbaU2 ,m, s) ◦ BSVP(Id, hbaV ,m, s)

and

BSVP(d, h, n, s) = BSVP(Id, hbaU2 , n, s),

where

BSVP(Id, hbaV , lca(m,n), s) = BSVP(Id, hbaV ,m, s)

= BSVP(Id, hbaV 1 ,m, s) →→ BSVP(Id, hbaV 2,m, s).

Since (t1 ◦ t2) →→ t = (t1 →→ t) ◦ t2 for any truth-triplets t, t1, and t2 such that t

is unscarred, the statement follows immediately by the induction hypothesis. (The

case when U > (M → N) > V is similar.)

(e) The case when (M → N) > U,V is similar to the last one, and all cases can be

suitably simplified when B > U or B > V .

2. We will actually prove that for all supersentences s of x, given a mask m for x in s and

a suitable value for d, BSVP(d, ε,m, s) = BSVP(dx, ε,mx, sx), where sx, mx, and dx are

the default values for x. This will be proved by induction on the number of leaves of

the sentence encoded by x. If x encodes a sentence with only one leaf, then x either

encodes “>” or “⊥”, in which case there is a unique history h that picks out x from any

given sentence s containing x. For that history, it is easy to see that BSVP(d, ε,m, s) =

BSVP(1, h,m, s) which is equal to the value of x, and the same is true for the default

values of s, m, and d.

Now, suppose that x encodes a sentence M ′ = (M → N) with k > 1 leaves, and let s be

any supersentence of x. Then,

BSVP(d, ε,m′, s) = BSVP(d, ε,m, s) →→ BSVP(d, ε, n, s)

= BSVP(dx, ε,mx, sx) →→ BSVP(dx, ε, nx, sx)

= BSVP(dx, ε,m′
x, sx)

where the first and last equality are true by Claim 5.3.1(1), and the middle equality is

true by the induction hypothesis. �



5.4. The soundness proof 99

5.4 The soundness proof

5.4.1 Preliminaries

If we let TRUE(v, x, z) = formula(x, z)∧B VALUE(v, x, z), then we can express the fact that our

F-system is sound with the following statement in T1: TRUE(v, F (x, y, z, w), z) = 1.

We will show that T1 can prove this statement, by induction on the parameter w (which

indicates the number of lines in the proof encoded by x, y). For this, though, we will have to

define a form of “strong induction” in T1. First, we need to define a notion of prefix for strings:

“y v x”, defined below, returns 1 when y is a prefix of x, 0 otherwise.

y v x = y =S lc(x, y).

Next, we will formalize the notion of “part-of” quantifiers in T1. More precisely, we will show

how to represent the part-of quantifications
∧∧

yvx A[y] and
∨∨

yvx A[y] for any fixed formula

A. Since we have shown that =S is equivalent to = in T1 and that the connectives of T1 are

equivalent to their functional counterparts, we can replace = with =S, ¬ with ¬B, etc. inside

A[y] to obtain a term Â(y) for which we know T1 can prove A[y]↔ Â(y) = 1, and this for each

value of y. Then, if we define

catA(yi) = catA(y) · Â(yi)

by CRN, it is immediately clear that

∧∧

yvx

A[y] ↔ AND(catA(x)) = 1,

∨∨

yvx

A[y] ↔ OR(catA(x)) = 1.

Now, suppose that for a particular formula A, we can prove in T1 that A[ε] and
∧∧

yvx A[y]→

A[xi]. Can we conclude that A is true? An easy NIND on x proves
∧∧

yvx A[y] in T1:

1.
∧∧

yvε A[y] = A[ε], which we can prove by assumption;

2. assuming that
∧∧

yvx A[y], an application of modus ponens gives us A[xi], which implies

that
∧∧

yvxi A[y] holds by properties of AND and the definition of catA.

Hence, T1 proves
∧∧

yvx A[y], which implies, in particular, that A[x] holds.

5.4.2 The proof

Theorem 5.4.1 T1 proves TRUE(v, F (x, y, z, w), z) = 1.



100 Chapter 5. T1 Proves the Soundness of F

We use the “strong induction” described above to prove the theorem. The proof itself will be

quite short.

First, F (x, y, z, ε) = #|powL(z)|>, and TRUE(v,#|powL(z)|>, z) is obviously equal to 1 by

Theorem 5.3.1. From now on, we will implicitly assume that F (x, y, z, w) is not equal to

#|powL(z)|>.

Next, assume that
∧∧

uvw TRUE(v, F (x, y, z, u), z) = 1, and consider the following cases,

based on the value of y|w1|, for the value of TRUE(v, F (x, y, z, w1), z).

• If y|w1| = 〈0, 1〉, then F (x, y, z, w1) is the encoding of a formula of the form (A→(B→A)),

in which case Theorem 5.3.1 implies that

TRUE(v, F (x, y, z, w1), z) =

TRUE(v,#|powL(z)|A, z) →B
(
TRUE(v,#|powL(z)|B, z) →B TRUE(v,#|powL(z)|A, z)

)
,

which is obviously equal to 1 in T1, being a simple tautology.

• The other three axioms can easily be dealt with similarly.

• If y|w1| = 〈k1, k2〉, then we know that F (x, y, z, k̂2) = π
|w1|
k2

(x) encodes a formula Ak2 =

Ak1 → A|w1|, where Ak1 is the formula encoded by F (x, y, z, k̂1) = π
|w1|
k1

(x) and A|w1| is

the formula encoded by F (x, y, z, w1). But then, by the induction hypothesis, we know

that TRUE(v, F (x, y, z, k̂1), z) = 1 and

TRUE(v, F (x, y, z, k̂2), z) = TRUE(v, F (x, y, z, k̂1), z) →B TRUE(v, F (x, y, z, w1), z) = 1,

so it immediately follows that TRUE(v, F (x, y, z, w1), z) = 1.

5.5 Simulation results

In this section, we show that F can p-simulate any proof system S whose soundness can be

proved in T1. A similar result was first proved for PV by Cook [18] (Kraj́ıček gives a more

detailed proof in his book [23, Theorem 9.3.17]), but to our knowledge, this is the first theory

of ALOGTIME reasoning for which such a result is shown.

Intuitively, the proof hinges on the fact that for any formula A, the propositional translations

of the T1 equation “TRUE(v,#2`A, l) = 1” can be proven equivalent to a substitution instance

of A itself, so that if T1 proves the equation, then A is a tautology with short F-proofs.

More precisely, recall from Chapter 4 that for any equation t = u of T1, we defined a family

of propositional translations [[t = u]]~m,~n that have polysize F-proofs whenever t = u is a the-

orem of T1. Hence, for any formula A and string l such that |l| = 2` ≥ `A + 2, if T1 proves



5.5. Simulation results 101

TRUE(v,#2`A, l) = 1, then there are polysize F-proofs of the corresponding propositional

tautologies [[TRUE(v,#2`A, l) = 1]]k (where k is the length of the free variable v), and these

tautologies are defined as 〈TRUE(v,#2`A, l)〉k1 ↔>, which is equivalent to 〈TRUE(v,#2`A, l)〉k1

(the term formula describing the first and only bit of the term TRUE(v,#2`A, l) as a func-

tion of the bits of its free variable v). Also, since T1 can prove TRUE(v,#2`(A → B), l) =

TRUE(v,#2`A, l)→B TRUE(v,#2`B, l) for any formulas A and B, there are polysize F-proofs

that the corresponding propositional translations are equivalent, i.e.,

〈TRUE(v,#2`(A → B), l)〉k1 ↔
(
〈TRUE(v,#2`A, l)〉k1 → 〈TRUE(v,#2`B, l)〉k1

)
,

so that if T1 proves TRUE(v,#2`(A → B), l) = 1, then there are polysize F-proofs of

〈TRUE(v,#2`A, l)〉k1 → 〈TRUE(v,#2`B, l)〉k1 .

Applying this reasoning recursively shows that if T1 proves TRUE(v,#2`A, l) = 1, then there

are polysize F-proofs (call them Πk) of A
[
〈TRUE(v,#2`pi, l)〉k1/pi

]
(i.e., the formula A where

each propositional variable pi has been replaced by the formula 〈TRUE(v,#2`pi, l)〉k1). Since

the subformulas 〈TRUE(v,#2`pi, l)〉k1 are never “broken up” inside Πk, we can just substitute

pi for 〈TRUE(v,#2`pi, l)〉k1 throughout to get polysize F-proofs of A.

Now, since F can “evaluate” sentences (i.e., given a propositional formula with no variables,

F has polysize proofs that it is equivalent to its truth-value), for any function f(x1, . . . , xn)

definable in T1, and any tuple of strings a1 ∈ {0, 1}∗, . . . , an ∈ {0, 1}∗, there are polysize F-

proofs that 〈f(~x)〉~m
i

[
〈aj〉ij/〈xj〉

mj

ij

]
↔ 〈f(~a)〉i (where 〈aj〉i is equal to > or ⊥ depending on

the value of bit number i of aj). In particular, if S is a proof system formalizable in T1 as a

function symbol S(x, z), then for any particular S-proof (a, b) of a formula A, there are polysize

F-proofs that S(a, b) is equivalent to the encoding of A.

Putting these two facts together, we have that if S(x, z) is a proof system whose soundness

can be proved in T1 (i.e., for which T1 can prove TRUE(v, S(x, z), z) = 1), then for any

particular S-proof (a, b), there are polysize F-proofs of the formula encoded by S(a, b), i.e.,

F p-simulates S. Moreover, it appears that the translation from S-proofs to F-proofs can be

carried out in NC 1 and thus formalized in T1, where the simulation proof can also be formalized

(although we do not carry this out, we do not expect any technical difficulties to arise in the

details of such a formalization).

Remark 5.5.1 Note that Theorems 4.4.1 and 5.4.1 immediately give an alternative proof

that F-systems have polysize proofs of their own partial consistency (when suitably expressed),

a fact first proved directly by Buss [9]. The partial self-consistency statements obtained through

T1 would be different from the ones Buss considered, but it should be possible to prove that

they are equivalent.





Chapter 6

Related Work

In this chapter, we show that Arai’s AID is equivalent to QT1 (a suitably defined quantified

version of T1), and briefly discuss the relationship between T1 and Clote’s ALV or ALV ′. We

will keep the discussion at a high level, with few technical details.

6.1 T1 and AID

If we define QT1 to be a first-order theory whose non-logical symbols are those of T1 and

whose axioms are the universal closures of the axioms of T1, together with axiom schemes

corresponding to NIND and TIND, then we can show that

• QT1 is a conservative extension of T1 (the proof is similar to Cook’s proof in [17] that

QALV is conservative over ALV ′);

• for every Σb
0-formula B in QT1, there exists a function symbol B̂ in T1 such that QT1

proves B[~x]↔B̂(~x) = 1 (sharply bounded quantifiers, e.g.“∀x ≤ |t|”, are easy to represent

functionally since we already have “part-of” quantifiers from the end of Chapter 5 and

∀x ≤ |t|B[x] ↔
∧∧

xvt B[|x|], for example);

• QT1 proves the scheme of Σb
0-LIND (with a straightforward application of NIND).

Next, the primitive functions of AID are all easily defined in T1 (all treating their inputs

“numerically”, i.e., ignoring leading zeroes), and their defining axioms can be proven without

difficulty. Also, for every inductively defined predicate A`,B, ~D,I in AID , we can define a {0, 1}-

valued function Â in T1 such that the equation Â(~x, p) = 1 provably satisfies the defining

axioms (A.0)–(A.2) of A. This can be done by TRN in a relatively straightforward manner,

except for two technicalities that we discuss now.

First, the recursive definition of A in AID involves computing the values of predicates

D1(~x, p), . . . ,Dm(~x, p) at every level of the recursion, even though these computations can only

103



104 Chapter 6. Related Work

be represented in T1 by function symbols of rank 1 (i.e., the computations are in NC 1). Since

functions of rank 1 are not allowed in the recursive part of a definition by TRN, we need to

precompute the values of the ~D predicates for every level and extract the correct values during

the recursive definition by TRN. This is accomplished by first computing the concatenation of

all the values of p for which the ~D predicates need to be computed, then using CRN to compute

the concatenation of the ~D predicates for each value, and finally breaking up this string in the

appropriate way during the recursion (so the order in which the values are listed is important

and must be chosen carefully).

Second, the depth of the recursion is controlled by the “linear form” `||~x||, which is repre-

sented in T1 by a numerical function, i.e., one whose actual string length could be arbitrarily

longer than its numerical length because of leading 0’s. By simply extending the precompu-

tation carried out above for the ~D predicates so that the values of the B predicate are also

computed for each value of p at the “bottom” of the recursion, we can easily define the term

Â by TRN so that the recursion terminates early once the base cases are reached, so that the

exact string length of the parameter controlling the TRN does not matter, as long as it is long

enough.

In the other direction, every primitive function of T1 can easily be defined in AID , using

Arai’s representation of strings (a string bk−1 · · · b0 is represented by the integer 1bk−1 · · · b0),

since the primitive “part” function of AID can be used directly to extract arbitrary substrings.

From the properties of “part”, the defining axioms for the T1-functions can be proven without

difficulty in AID . Also, function symbols defined by `CRN or rCRN in T1 can be defined

in AID in a straightforward manner using Comprehension, and the defining axioms for these

functions follows directly from the Comprehension axiom in AID. Finally, functions defined

by TRN in T1 can be defined in AID using an inductively defined predicate A`,B, ~D,I that

uses its parameter p to keep track of a path through the recursion tree and that computes the

appropriate substring of x and the appropriate function of z at each level using the predicates

~D. Moreover, the defining axioms of such a function symbol follow directly from the axioms

for A in AID.

Now, for every formula B in AID , we let B̂ denote the formula in QT1 obtained from B by

replacing each primitive function symbol by its definition in T1 and each inductively defined

predicate symbol A by its definition Â in T1. Similarly, for every formula B in QT1, we let

B̃ denote the formula in AID obtained from B by replacing each function symbol of T1 by its

definition in AID .

These translations allow us to show that if a formula B is provable in AID + Σb
0-CA, then

QT1 can prove B̂ (since QT1 proves Σb
0-LIND and Σb

0-CA can be defined using CRN and proven

using NIND), and that if a formula B is provable in QT1, then AID +Σb
0-CA can prove B̃ (since



6.2. T1 and PV 105

AID+Σb
0-CA can prove NIND using Comprehension, and TIND in a way similar to Arai’s proof

of “tree induction”).

Hence, AID is equivalent to QT1, which implies that AID is conservative over T1. Moreover,

since Arai proves in his paper that AID is equivalent to QALV for Σb
1-formulas, this also

implies that ALV is equivalent to T1 (modulo the translations from numbers to strings and

from strings to numbers given above). Unfortunately, the corresponding result for ALV ′ and

T1 is not known.

Now, even though AID is conservative over T1 (through the appropriate translations be-

tween strings and numbers), T1 appears to be more natural and easier to reason with for a

variety of reasons.

• T1 reasons directly with functions in FALOGTIME , whereas AID reasons only with

predicates (functions have to be defined implicitly).

• T1’s scheme of TRN is simpler than AID’s inductive definitions, in the sense that a func-

tion defined by TRN carries out only simple computations at each level of the recursion

(i.e., the h, h`, and hr functions can be computed by constant-depth circuits), unlike the

computations requiring logdepth circuits carried out by the “D” predicates at each level

of an inductive definition.

• It seems quite tedious to work out precise estimates on the size of F-proofs for the

propositional translations of the Σb
1-theorems of AID , whereas the corresponding task for

T1 is straightforward (so in a sense, T1 is “closer” to F-systems than AID).

6.2 T1 and PV

Based on a similar result of Buss [11], which uses Kraj́ıček, Pudlák & Takeuti’s Herbrand-type

witnessing theorem [24], Cook [17] has argued that if QPV is conservative over QALV , then

P = ALOGTIME , where QPV is the appropriately defined quantified theory corresponding

to PV and QALV is a quantified theory based on Clote’s ALV ′. A similar result should hold

with QT1 in place of QALV , given a suitable interpretation of strings as numbers and numbers

as strings.

As for the quantifier-free theories PV and T1, it is easy to see that if PV is conservative

over T1 (through an appropriate translation between numbers and strings, such as the one used

above), then T1 proves the soundness of eF (since PV proves the soundness of eF and eF can

be defined in T1), so that F p-simulates eF . Unfortunately, the converse is not known, and

this has no known implication for the complexity classes P and NC 1.





Chapter 7

Conclusion

7.1 Summary

As Chapter 2 has shown, L1 is an elegant and natural recursive characterization of NC 1:

simple functions are easy to define and even for more complex functions, the definitions are

not unnecessarily complicated. The only exception to that statement might be the “numerical”

functions, but even there, the definitions are straightforward and correspond quite closely to the

computation of these functions by circuit families. Also, our scheme of TRN seems to capture

the computational power of ALOGTIME in the most natural way, as evidenced by the short

proof that FALOGTIME ⊆ L1. It would be interesting to prove the other direction also (that

L1 ⊆ FALOGTIME) by using computations by ATMs as opposed to uniform circuit families,

so that both directions of the proof are similar, but time constraints did not allow us to carry

out such a proof.

The theory T1 based on L1 has the desirable property that its appropriately translated the-

orems have short F-proofs, and the proof of that fact is quite simple (especially when compared

to the corresponding proofs for other theories of ALOGTIME reasoning in the literature). In

fact, the structure of the F-proofs is straightforward enough that we get precise estimates on

their size (as a function of the lengths of the variables). Also, considering the inherent com-

plexity of evaluating Boolean sentences in ALOGTIME , the T1-proof of the soundness of a

particular F-system is straightforward, consisting mainly in the formalization of Buss’s BSVP

algorithm and the proof of its properties. Finally, the fact that F p-simulates any proof system

S whose soundness can be proved in T1 is also straightforward to prove, and T1 is the first

theory of ALOGTIME reasoning for which this result has been shown. All these facts strongly

support our claim that T1 is one of the most natural theories available for ALOGTIME rea-

soning, even though it is based on strings instead of numbers (unlike most of the other theories

for polytime or ALOGTIME reasoning).

107



108 Chapter 7. Conclusion

To conclude, it might seem that any algebraic characterization of a complexity class could

be used to define a quantifier-free theory like T1, by simply having function symbols defined

recursively and induction rules based on the recursion operators. Although such a theory would

undoubtedly reason on functions in the desired complexity class, we would still need to show

that the type of reasoning that can be carried out in this theory also falls within the desired

complexity class, and there is no clear way of doing this for arbitrary complexity classes. Also,

as evidenced by Clote’s theories ALV and ALV ′, it is not an easy task to get a theory that is

natural and simple enough to be useful in practice.

7.2 Future work

First, an obvious generalization of L0 and L1 suggests itself: for i ≥ 1, let Li+1 be the closure

of Li under COMP, CRN, and TRN
∣∣Li+1

Li
, defined recursively. A study of these classes (or of a

similar extension for the theory T1) might be interesting. (One fact about Li which is relatively

easy to prove is that it is a subset of the class of functions computable by uniform circuit families

of O(logi) depth, but it is unknown if this is a proper containment. It might be interesting

to try to prove better results, maybe that the Li’s exactly captures these circuit families, or

that the union of the Li hierarchy defines the class of functions computable by uniform circuit

families of polylog depth.)

Next, it would be interesting to compare QT1 to Takeuti and Clote’s TNC 0, maybe to show

that the two first-order theories are equivalent. Also, from Arai’s results on AID and ALV , we

have concluded in Chapter 6 that T1 and ALV are equivalent, but it is unknown whether or

not ALV ′ is equivalent to ALV (or to T1).

It would also be interesting to see if “tree recursion” and “tree induction” can be adapted

to define a similar quantifier-free theory for uniform TC 0 reasoning, hopefully as natural as

T1 is natural for ALOGTIME reasoning (such a theory would correspond to bounded-depth

F-systems with threshold gates in the same way that T1 corresponds to F-systems). Note that

there is already a first-order theory R̄0
2 for TC 0 reasoning, defined by Johannsen [22].

Similarly, there should be a way to extend L0 and L1 to capture all of NC (based on Bloch’s

characterization of NC ). This could possibly be used to define a quantifier-free theory for NC

reasoning, which might lead to a natural propositional proof system that reasons in NC .

Finally, fully relating conservativity results between logical theories for P and ALOGTIME

reasoning to equivalence results between eF and F systems to collapse results between P and

NC 1 remains a central open problem in this area.



Appendix A

Details of Proofs in the Formal

Development of T1

This appendix contains most of the proofs missing from the formal development of T1 given in

Chapter 3. It is included here mainly for the sake of completeness, so the style will be quite

terse. In particular, most proofs that consist only in a straightforward application of NIND will

be omitted.

On generalizations of NIND

Claim 3.2.54

1. (L) z B yx = z B y · (z C y) B x (R) xy C z = x C (y B z) · y C z

2. (L) yl B x = lb(x, y) · y B x (R) x C my = x C y · rb(x, y)

3. (L) y B ((x C y) B x) = ε (R) (x C (y B x)) C y = ε

4. (L) lc(rc(x, y), y) = rc(x, y) (R) rc(lc(x, y), y) = lc(x, y)

5. (L) 8(y Bx) = y Bx?ZL
(
ε, (xCm(y Bx))′

)
(R) (xCy)′ = xCy ?ZL

(
ε, 8((xCy)lBx)

)

6. (L) lc(x, yi) = lc(x, y) · lb(x, yi) (R) rc(x, iy) = rb(x, iy) · rc(x, y)

7. (L) lc(x, y) · y B x = x (R) x = x C y · rc(x, y)

Proof

1. (L) By NIND on z, Axioms 4c and 5c, and Claim 3.2.32: ε B yx = yx = ε B y · ε B x =

ε B y · (ε C y) B x, iz B yx = m(z B yx) = m(z B y · (z C y) B x) = z B y ?ZL
(

m((z C y) B

x), m(z B y) · (z C y) B x
)

= z B y ?ZL
(
ε · (i · z C y) B x, iz B y · ε B x

)
= z B y ?ZL

(
iz B y ·

(iz C y) B x, iz B y · (iz C y) B x
)

= iz B y · (iz C y) B x.

109



110 Appendix A. Details of Proofs in the Formal Development of T1

2. (L) By NIND on y: εlBx = x = ε·x = lb(x, ε)·εBx, (yi)lBx = yBx = 8(yBx)·m(yBx) =

8((yi)l B x) · ((yi) B x) = lb(x, yi) · (yi) B x.

3. (L) By NIND on y, and preceding claims: ε B ((x C ε) B x) = x B x = ε,

yi B ((x C yi) B x) = m

(
y B ((x C y)l B x)

)

= y B m(lb(x, x C y) · (x C y) B x)

= y B ((x C y) B x) = ε

(Note that in this proof, we did not explicitly deal with the cases when xC y = ε or when

(x C y)l B x = ε. However, it can easily be seen that both cases make the statement

trivially true.)

4. (L) By preceding claims: lc(rc(x, y), y) = ((xCy)Bx)C
(
yB((xCy)Bx)

)
= rc(x, y)Cε =

rc(x, y).

5. (L) By NIND on x and preceding claims: 8(y B ε) = ε = y B ε ?ZL (ε, ε), 8(y B xi) =

y B xi ?ZL (ε, 8(y B x · i)) = y B xi ?ZL
(
ε, y B x ?ZL (i, 8(y B x))

)
= y B xi ?ZL

(
ε, y B x ?ZL

(
i, (x C m(y B x))′

))
= y B xi ?ZL

(
ε, (xi C (y B x))′

)
= y B xi ?ZL

(
ε, (xi C m(y B xi))′

)
.

6. (L) By preceding claims: lc(x, yi) = x C (yi B x) = x C m(y B x) = x C (y B x) · y B x ?ZL

(
ε, (x C m(y B x))′

)
= x C (y B x) · 8(y B x) = lc(x, y) · lb(x, yi). �

On propositional reasoning

Theorem 3.2.6

1. ≈Bx = 1 ∨ ≈Bx = 0

2. ≈B≈Bx = ≈Bx

3. ¬Bx = 1 ↔¬(≈Bx = 1)

4. x ∧B y = 1 ↔ (≈Bx = 1 ∧ ≈By = 1)

5. x ∨B y = 1 ↔ (≈Bx = 1 ∨ ≈By = 1)

6. x →B y = 1 ↔ (≈Bx = 1 →≈By = 1)

7. x ↔B y = 1 ↔ (≈Bx = 1 ↔≈By = 1)

8. x ⊕B y = 1 ↔ (≈Bx = 1 ⊕≈By = 1)

Proof The first three can be proved by straightforward NIND on x, all the others with a

simple and direct application of Derived Rule 3.2.3. �



On “AND” and “OR” 111

On “AND” and “OR”

Lemma 3.2.56

1. (L) x 6= ε ∧ x 6= 0 ∧ x 6= 1 → (mx · j)J = m(xJ) · 8Ix

(R) x 6= ε ∧ x 6= 0 ∧ x 6= 1 → I(mx · j) = mIx · j

2. (L) 8x ∧B AND(mx · j) = AND(x) ∧B j (R) j ∧B AND(x) = AND(j · xl) ∧B x′

3. 8x ∧B AND(mx) = AND(x) = AND(xl) ∧B x′ for x 6= ε, 0, 1

Proof

1. (L) By Derived Rule 3.2.1: since ε = ε, the statement is trivially true for x = ε. Assuming

ix 6= 0 ∧ ix 6= 1, i.e., x 6= ε,

(m(ix) · j)J = (xj)J

= x ?EL (xJ, xJ · 8(Ix · j))

= x ?EL (xJ, xJ · 8
Ix)

= x ?EL (xJl · xJ
′, m(i · xJ) · 8

Ix)

= x ?EL
(

m(i · xJ)l · 8((i · xJ)′ · Ix), m(i · xJ) · 8
Ix

)

= m((ix)J) · 8
I(ix).

(A similar proof shows the same theorem with i · xl in place of mx · i.)

2. (L) By the preceding lemma and by TIND on x: 8ε ∧B AND(mε · j) = 0 = AND(ε) ∧B j,

8i∧BAND(mi·j) = i∧BAND(j) = AND(i)∧Bj, and assuming that 8(xJ)∧BAND(m(xJ)·j) =

AND(xJ)∧B j and 8(Ix)∧B AND(m(Ix) ·j) = AND(Ix)∧B j, then, for x such that mx 6= ε

(the case when it is equal being trivial),

8x ∧B AND(mx · j) = 8x ∧B AND((mx · j)J) ∧B AND(I(mx · j))

= 8(xJ) ∧B AND(m(xJ) · 8Ix) ∧B AND(mIx · j)

= AND(xJ) ∧B 8Ix ∧B AND(mIx · j)

= AND(xJ) ∧B AND(Ix) ∧B j

= AND(x) ∧B j.

3. By preceding lemmas and by Derived Rule 3.2.5 on x: 8(ij)∧BAND(m(ij)) = i∧BAND(j) =

AND(ij) = AND(i) ∧B j = AND((ij)l) ∧B (ij)′, 8(ikj) ∧B AND(m(ikj)) = i ∧B AND(kj) =

AND(ikj) = AND(ik) ∧B j = AND((ikj)l) ∧B (ikj)′, and under the induction hypotheses



112 Appendix A. Details of Proofs in the Formal Development of T1

that 8(xJ)∧BAND(m(xJ)) = AND(x) = AND((xJ)l)∧B(xJ)′ and 8(Ix)∧BAND(m(Ix)) =

AND(x) = AND((Ix)l) ∧B (Ix)′ for xJ >L 1, then

8x ∧B AND(mx) = 8x ∧B AND((mx)J) ∧B AND(I(mx))

= x ?EL
(
8(xJ) ∧B AND(m(xJ)) ∧B AND(Ix),

8(xJ) ∧B AND(m(xJ) · 8(Ix)) ∧B AND(m(Ix))
)

= x ?EL
(
AND(xJ) ∧B AND(Ix),AND(xJ) ∧B 8(Ix) ∧B AND(m(Ix))

)

= x ?EL
(
AND(xJ) ∧B AND(Ix),AND(xJ) ∧B AND(Ix)

)

= x ?EL (AND(x),AND(x))

= AND(x)

= x ?EL (AND(x),AND(x))

= x ?EL
(
AND(xJ) ∧B AND(Ix),AND(xJ) ∧B AND(Ix)

)

= x ?EL
(
AND((xJ)l) ∧B (xJ)′ ∧B AND(Ix),AND(xJ) ∧B AND(Ix)

)

= x ?EL
(
AND((xJ)l) ∧B AND((xJ)′ · (Ix)l) ∧B (Ix)′,

AND(xJ) ∧B AND((Ix)l) ∧B (Ix)′
)

= AND((xl)J) ∧B AND(I(xl)) ∧B x′

= AND(xl) ∧B x′. �

On generalizations of CRN—part I

Theorem 3.2.9 jx = jy ↔ x B y = ε = x C y

Proof By Derived Rule 3.2.3: jε = jy↔ε = y↔εBy = ε = εCy, jx = jε↔x = ε↔xBε =

ε = xC ε, j(xi) = j(ky)↔ jx · j = j · jy↔ jx = jy↔xB y = ε = xC y↔xiB ky = ε = xiC ky.

�

Claim 3.2.57 For f = rCRN[h],

1. j(f(x, ~y)) = jx

2. f(x, ~y) C z = f(x C z, ~y)

3. lb(f(x, ~y), z) = x B z ?ZL
(
(0 · h(lc(x, z), ~y))′, ε

)
for x, z 6= ε

4. lc(f(x, ~y), z) = f(lc(x, z), ~y)

Proof

1. By NIND on x: j(f(ε, ~y)) = jε, j(f(xi, ~y)) = j

(
f(x, ~y) · (0 · h(xi, ~y))′

)
= jx · j = j(xi).



On generalizations of CRN—part I 113

2. By Derived Rule 3.2.3: f(ε, ~y)Cz = εCz = f(εCz, ~y), f(x, ~y)Cε = f(x, ~y) = f(xCε, ~y),

f(xi, ~y) C zj =
(
f(x, ~y) · (0 · h(xi, ~y))′

)
l C z = f(x, ~y) C z = f(x C z, ~y) = f(xi C zj, ~y).

3. First, a straightforward proof by NIND on x shows that 8f(x, ~y) = (0 · h(8x, ~y))′. Now,

by NIND on z 6= ε and the claims above: lb(f(x, ~y), j) = 8
(
ε B f(x, ~y)

)
= (0 · h(8x, ~y))′ =

(0 · h(lc(x, j), ~y))′,

lb(f(x, ~y), zi) = 8
(
z B f(x, ~y)

)

= z B f(x, ~y) ?ZL
(
ε,

(
f(x, ~y) C m(z B f(x, ~y))

)
′
)

= z B x ?ZL
(
ε,

(
f(x, ~y) C m(z B x)

)
′
)

= z B x ?ZL
(
ε, f(x C m(z B x), ~y)′

)

= z B x ?ZL
(
ε, f(x C (z B x) · 8(z B x), ~y)′

)

= z B x ?ZL
(
ε, (0 · h(x C (z B x) · 8(z B x), ~y))′

)

= x B zi ?ZL
(
(0 · h(lc(x, z) · lb(x, zi), ~y))′, ε

)

= x B zi ?ZL
(
(0 · h(lc(x, zi), ~y))′, ε

)
.

4. By NIND on z: lc(f(x, ~y), ε) = ε = f(lc(x, ε), ~y), and

lc(f(x, ~y), zi) = lc(f(x, ~y), z) · lb(f(x, ~y), zi)

= f(lc(x, z), ~y) · x B zi ?ZL
(
(0 · h(lc(x, zi), ~y))′, ε

)

= z B x ?ZL
(
f(lc(x, z), ~y) · ε, f(lc(x, z), ~y) · (0 · h(lc(x, zi), ~y))′

)

= z B x ?ZL
(
f(lc(x, zi), ~y), f(lc(x, zi), ~y)

)

= f(lc(x, zi), ~y). �

Lemma 3.2.58

1. (L) y B x = x B y ?ZL (y B x, ε) (R) x C y = x B y ?ZL (x C y, ε)

2. (L) (y C (x B y)) B x = y B x (R) x C ((y C x) B y) = x C y

Proof

1. (L) Immediate from the fact that x B y 6= ε → y B x = ε.

2. (L) By NIND on y: (ε C (x B ε)) B x = (ε C ε) B x = ε B x,

(yj C (x B yj)) B x = x B yj ?ZL
(
(yj C ε) B x, (yj C ((x B y) · j)) B x

)

= x B yj ?ZL
(
yj B x, (y C (x B y)) B x

)

= x B yj ?ZL (yj B x, y B x) = x B yj ?ZL (yj B x, ε)

= x B yj ?ZL (yj B x, yj B x) = yj B x. �



114 Appendix A. Details of Proofs in the Formal Development of T1

Claim 3.2.59

1. (L) lpj(x,maxL(x, y)) = lpj(x, y) (R) rpj(x,maxL(x, y)) = rpj(x, y)

2. (L) lb
(
lp0(xi,maxL(xi, yj)),maxL(xi, yj)

)
= i

(R) rb
(
rp0(ix,maxL(ix, jy)),maxL(ix, jy)

)
= i

Proof

1. (L): lpj(x,maxL(x, y)) = xB y ?ZL
(
j(xC x) ·x, j(y C x) ·x

)
= xB y ?ZL

(
ε ·x, j(y C x) ·x

)
=

x B y ?ZL
(
j(y C x) · x, j(y C x) · x

)
= j(y C x) · x = lpj(x, y).

2. (L):

lb
(
lp0(xi,maxL(xi, yj)),maxL(xi, yj)

)

= lb
(
lp0(x,maxL(x, y)) · i,maxL(x, y) · x B y ?ZL (i, j)

)

= 8
(
maxL(x, y) B (0(maxL

x(x, y) C x) · x · i)
)

= x B y ?ZL
(
8
(
x B (0(x C x) · xi)

)
, 8

(
y B (0(y C x) · xi)

))

= x B y ?ZL
(
8(x B (ε · xi)), 8

(
y B (x B 0y) · (y C (x B 0y)) B xi

))

= x B y ?ZL
(
8i, 8(ε · (y C (x B y)) C x · i)

)

= x B y ?ZL
(
i, 8(y B x · i)

)

= x B y ?ZL
(
i, 8(ε · i)

)
= x B y ?ZL (i, i) = i �

Theorem 3.2.10

`CRNm[h](x1, . . . , xm, ~y)

= x1 · . . . · xm ?ZL

(
ε, 8

(
h
(
lp0(x1,maxL

m(~xm)), . . . , lp0(xm,maxL

m(~xm)), ~y
)
· 0

)

· `CRNm[h]
(

mlp0(x1,maxL

m(~xm)), . . . , mlp0(xm,maxL

m(~xm)), ~y
))

rCRNm[h](x1, . . . , xm, ~y)

= x1 · . . . · xm ?ZL

(
ε, rCRNm[h]

(
rp0(x1,maxL

m(~xm))l, . . . , rp0(xm,maxL

m(~xm))l, ~y
)

·
(
0 · h

(
rp0(x1,maxL

m(~xm)), . . . , rp0(xm,maxL

m(~xm)), ~y
))

′
)

Proof From the fact that maxL

m(~xm) = ε ↔ x1 · . . . · xm = ε (easily proved by Derived

Rule 3.2.3), the theorem follows from Claim 3.2.59 by a straightforward application of Derived

Rule 3.2.3, generalized to m variables. �



On generalizations of CRN—part II 115

Claim 3.2.60

1. andB

m(x1i1, . . . , xmim) = andB

m(~xm) · andB

m(~im)

2. jx1 = · · · = jxm ∧ jy1 = · · · = jym → andB

m(x1y1, . . . , xmym) = andB

m(~xm) · andB

m(~ym).

3. andB

m(~xm)l = andB

m(x1l, . . . , xml)

4. andB

m(~xm) C y = andB

m(x1 C y, . . . , xm C y)

Proof

1. By a straightforward application of Derived Rule 3.2.3, generalized to m variables.

2. Again, by a straightforward application of Derived Rule 3.2.3, generalized to m variables,

together with the previous claim.

3. From the first claim, by a straightforward generalized NIND.

4. Directly from the preceding claim, with a straightforward NIND on y. �

Theorem 3.2.11 ¬BAND(x) = OR(notB(x)) and ¬BOR(x) = AND(notB(x)) for x 6= ε

Proof (We prove only the first statement, the second one being almost identical.) By TIND

on x: ¬BAND(i) = ¬Bi = OR(¬Bi) = OR(notB(i)),

¬BAND(x) = ¬B
(
AND(xJ)∧BAND(Ix)

)

= ¬BAND(xJ)∨B¬BAND(Ix)

= OR(notB(xJ))∨BOR(notB(Ix))

= OR(notB(x)J)∨BOR(InotB(x)) = OR(notB(x)). �

On generalizations of CRN—part II

Claim 3.2.61

1. IpowL(y) = powL(Iy) = powL(y)J (for y 6= ε, 0, 1)

2. 1powL(y) = powL(1y) = powL(y)

3. powL(powL(y)) = powL(y)

4. powL(y) B y = ε

5. ispowL(powL(y)) = ε



116 Appendix A. Details of Proofs in the Formal Development of T1

Proof All can be proved by very simple applications of TIND. We give the proof of the third

statement as an illustration: powL(powL(ε)) = powL(ε), powL(powL(i)) = powL(1) = powL(i),

powL(powL(y)) = powL(IpowL(y)) · powL(IpowL(y)) = powL(powL(Iy)) · powL(powL(Iy)) =

powL(Iy) · powL(Iy) = powL(y). �

Claim 3.2.62

1. ε # y = ε = x # ε

2. (L) 1(xi # y) = 1(x # y) · 1y (R) 1(x # yi) = 1(x # y) · 1x

3. (L) 1((x · y) # z) = 1(x # z) · 1(y # z) (R) 1(x # (y · z)) = 1(x # y) · 1(x # z)

4. 1(x # y) = 1(y # x)

Proof Again, all these statements can be proved by very simple applications of NIND or

TIND; we give the proof of the third statement (for the left case) as an illustration: 1((x·ε)#z) =

1(x#z) = 1(x#z)·1(ε#z), 1((x·yi)#z) = 1((x·y)#z)·1z = 1(x#z)·1(y#z)·1z = 1(x#z)·1(yi#z).

�

Claim 3.2.63

1. powdivL(x, y) = powdivL(1x, 1y)

2. powdivL(x, y) = powdivL(x, powL(y))

3. x B powL(y) 6= ε → powdivL(x, y) = ε

4. powdivL(powL(y) # z, y) = y ?ZL (ε, 1z)

Proof

1. By a simple TIND on y.

2. By a simple TIND on y.

3. First, we prove that x B powL(y) 6= ε→ xJ B powL(Iy) 6= ε by proving the contrapositive

by TIND on y: x B powL(ε) = ε (so the statement is vacuously true), xJ B powL(I1) =

ε → xJ 6= ε → x 6= ε → x B powL(1) = ε, and assuming that xJ B powL(Iy) = ε, then

x B y = (xJ · Ix) B (powL(y)J · IpowL(y))

= Ix B (xJ B (powL(Iy) · powL(Iy)))

= Ix B ((xJ B powL(Iy)) · (xJ C powL(Iy)) B powL(Iy))



On generalizations of CRN—part II 117

= Ix B ((xJ C powL(Iy)) B powL(Iy))

= (xJ C powL(Iy)) B (Ix B powL(Iy))

= (xJ C powL(Iy)) B ε = ε

(where we have used the fact that (z · y) B x = y B (z B x) = z B (y B x), which is easy

to prove by NIND on z). The result then follows by a simple application of TIND.

4. By TIND on y: powdivL(powL(ε) # z, ε) = ε = ε ?ZL (ε, 1z), powdivL(powL(i) # z, i) =

powdivL(z, i) = 1z = i?ZL (ε, 1z), powdivL(powL(y)#z, y) = powdivL((powL(y)#z)J,Iy) =

powdivL(powL(y)J # z,Iy) = powdivL(powL(Iy) # z,Iy) = 1z = y ?ZL (ε, 1z). �

Claim 3.2.65

1. x B (powL(y) # powdivL(x, y)) = ε

2. y 6= ε → powmodL(x, y) B powL(y) 6= ε

3. y 6= ε → powdivL(x1, y) = powdivL(x, y) ·
(
(powmodL(x, y) · 1) B powL(y) ?ZL (1, ε)

)

y 6= ε → powmodL(x1, y) = (powmodL(x, y) · 1) B powL(y) ?ZL
(
ε, powmodL(x, y) · 1

)

4. powdivL((powL(y) # z) · x, y) = y ?ZL (ε, 1z) · powdivL(x, y) ∧

powmodL((powL(y) # z) · x, y) = powmodL(x, y)

5. y 6= ε ∧ x B powL(y) = ε → powdivL(x, y) = powdivL(x C powL(y), y) · 1

y 6= ε ∧ x B powL(y) = ε → powmodL(x, y) = powmodL(x C powL(y), y)

Proof

1. By TIND on y (with h` = hr = J): x B (powL(ε) # powdivL(x, ε)) = x B ε = ε, x B

(powL(i) # powdivL(x, i)) = x B (1 # 1x) = ε,

x B (powL(y) # powdivL(x, y))

= x B (powL(y) # powdivL(xJ,Iy))

= (xJ · Ix) B
(
(powL(Iy) · powL(Iy)) # powdivL(xJ,Iy)

)

= Ix B

((
xJ B (powL(Iy) # powdivL(xJ,Iy))

)
·

(
xJ C (powL(Iy) # powdivL(xJ,Iy))

)
B (powL(Iy) # powdivL(xJ,Iy))

)

= (xJ C (powL(Iy) # powdivL(xJ,Iy))) B
(
Ix B (powL(Iy) # powdivL(xJ,Iy))

)

= (xJ C (powL(Iy) # powdivL(xJ,Iy))) B ε = ε.



118 Appendix A. Details of Proofs in the Formal Development of T1

2. By TIND on y 6= ε: powmodL(x, 1) B powL(1) = ε B 1 6= ε,

powmodL(x, y) B powL(y)

=
(
(powL(y) # powdivL(x, y)) B 1x

)
B powL(y)

=
((

(powL(Iy) · powL(Iy)) # powdivL(xJ,Iy)
)

B (1xJ · 1Ix)
)

B (powL(Iy) · powL(Iy))

=
((

(powL(Iy) # powdivL(xJ,Iy)) · (powL(Iy) # powdivL(xJ,Iy))
)

B (1xJ · 1xJ · (x ?EL (ε, 1)))
)

B (powL(Iy) · powL(Iy))

=
((

(powL(Iy) # powdivL(xJ,Iy)) B 1xJ
)
·

(
(powL(Iy) # powdivL(xJ,Iy)) B 1xJ · (x ?EL (ε, 1))

))
B (powL(Iy) · powL(Iy))

=
(
powmodL(xJ,Iy) ·

(
powmodL(xJ,Iy) · (x ?EL (ε, 1))

))
B (powL(Iy) · powL(Iy))

= powmodL(xJ,Iy) B powL(Iy) · (powmodL(xJ,Iy) · (x ?EL (ε, 1))) B powL(Iy) 6= ε

(where we have used the fact that y C x = ε ∧ w C z = ε → wy B 1z1x = w B 1z · y B 1x,

which is a direct consequence of Claim 3.2.54 and the fact that zy B x = y B (z B x)).

3. We prove the first statement by TIND on y 6= ε: powdivL(x1, 1) = 1x1 = 1x · (1 B 1 ?ZL

(1, ε)) = powdivL(x, 1) · ((powmodL(x, 1) ·1)B1?ZL (1, ε)), and before proving the inductive

case, we can show by TIND on y 6= ε that

(powmodL(x, y) · 1) B powL(y) ?ZL (1, ε)

= x ?EL

((
(powmodL(xJ,Iy) · 1) B powL(Iy) · powmodL(xJ,Iy) B powL(Iy)

)
?ZL (1, ε),

(
(powmodL(xJ,Iy) · 1) B powL(Iy) · (powmodL(xJ,Iy) · 1) B powL(Iy)

)
?ZL (1, ε)

)

= x ?EL

(
ε, (powmodL(xJ,Iy) · 1) B powL(Iy) ?ZL (1, ε)

)

(the proof is similar to that of the preceding claim), so that

powdivL(x1, y)

= powdivL((x1)J,Iy)

= x ?EL
(
powdivL(xJ,Iy), powdivL(xJ · 1,Iy)

)

= x ?EL
(
powdivL(x, y), powdivL(xJ,Iy) · (powmodL(xJ,Iy) · 1) B powL(Iy) ?ZL (1, ε)

)

= powdivL(x, y) ·
(
x ?EL

(
ε, (powmodL(xJ,Iy) · 1) B powL(Iy) ?ZL (1, ε)

))

= powdivL(x, y) ·
(
(powmodL(x, y) · 1) B powL(y) ?ZL (1, ε)

)
.

As for the second statement, it follows directly from the first by the definition of powmodL

and the fact that powmodL(x, y) B powL(y) 6= ε → powL(y) B (powmodL(x, y) · 1) = ε.



On generalizations of CRN—part II 119

4. By NIND on x: powdivL((powL(y) # z) · ε, y) = y ?ZL (ε, 1z) = y ?ZL (ε, 1z) · powdivL(ε, y) ∧

powmodL((powL(y) # z) · ε, y) = ε = powmodL(ε, y),

powdivL((powL(y) # z) · xi, y)

= powdivL((powL(y) # z) · x, y)·
(
(powmodL((powL(y) # z) · x, y) · 1) B powL(y) ?ZL (1, ε)

)

= (y ?ZL (ε, 1z)) · powdivL(x, y) ·
(
(powmodL(x, y) · 1) B powL(y) ?ZL (1, ε)

)

= (y ?ZL (ε, 1z)) · powdivL(x1, y),

powmodL((powL(y) # z) · xi, y)

=
(
powL(y) # powdivL((powL(y) # z) · xi, y)

)
B 1

(
(powL(y) # z) · xi

)

=
(
powL(y) # ((y ?ZL (ε, 1z)) · powdivL(xi, y))

)
B 1(powL(y) # z) · 1(xi)

= (powL(y) # (y ?ZL (ε, 1z))) · (powL(y) # powdivL(xi, y)) B (powL(y) # 1z) · 1(xi)

= powL(y) # powdivL(xi, y) B 1(xi)

= powmodL(xi, y).

5. By NIND on x: y 6= ε ∧ ε B powL(y) = ε is false so the statement is vacuously true, and

y 6= ε ∧ xi B powL(y) = ε → (y 6= ε ∧ x B powL(y) = ε) ∨ (y 6= ε ∧ x B powL(y) = 1), so we

prove the statement by cases.

First, if y 6= ε∧xBpowL(y) = ε (which implies that 1(x1CpowL(y)) = 1(xCpowL(y)) ·1),

powdivL(x1, y)

= powdivL(x, y) ·
(
(powmodL(x, y) · 1) B powL(y) ?ZL (1, ε)

)

= powdivL(x C powL(y), y) · 1 ·
(
(powmodL(x C powL(y)) · 1) B powL(y) ?ZL (1, ε)

)

= powdivL((x C powL(y)) · 1, y) · 1 = powdivL(x1 C powL(y), y) · 1,

powmodL(x1, y)

= (powmodL(x, y) · 1) B powL(y) ?ZL (ε, powmodL(x, y) · 1)

= (powmodL(x C powL(y), y) · 1) B powL(y) ?ZL (ε, powmodL(x C powL(y), y) · 1)

= powmodL((x C powL(y)) · 1, y) = powmodL(x1 C powL(y), y).

Second, if y 6= ε ∧ x B powL(y) = 1 (which implies that 1(x1 C powL(y)) = ε),

powdivL(x1, y) = powdivL(x, y) ·
(
(powmodL(x, y) · 1) B powL(y) ?ZL (1, ε)

)

= ε ·
(
(1x1) B powL(y) ?ZL (1, ε)

)

= 1 = powdivL(ε, y) · 1

= powdivL(x1 C powL(y), y) · 1,



120 Appendix A. Details of Proofs in the Formal Development of T1

powmodL(x1, y) = (powmodL(x, y) · 1) B powL(y) ?ZL (ε, powmodL(x, y) · 1)

= 1x1 B powL(y) ?ZL (ε, 1x1)

= ε = powmodL(ε, y)

= powmodL(x1 C powL(y), y). �

On “=N” and “<N”

Theorem 3.2.13

1. x =N ε ↔ x = 0x

2. x =N y ↔ lp0(x, y) = lp0(y, x)

Proof

1. By a straightforward NIND on x.

2. By the preceding property and Derived Rule 3.2.3: x =N ε↔x = 0x↔ lp0(x, ε) = lp0(ε, x)

(and similarly for ε =N y), xi =N yj ↔ x =N y ∧B (i ↔B j) ↔ lp0(x, y) = lp0(y, x) ∧ i =

j ↔ lp0(x, y) · i = lp0(y, x) · j ↔ lp0(xi, yj) = lp0(yj, xi). �

Claim 3.2.67

1. x0 =N y0 ↔ x =N y ↔ x1 =N y1

2. ¬B(x0 =N y1)

3. ¬B(x1 =N y0)

Proof Directly from Theorem 3.2.13: xi =N yj ↔ lp0(xi, yj) = lp0(yj, xi) ↔ lp0(x, y) · i =

lp0(y, x) · j ↔ lp0(x, y) = lp0(y, x) ∧ i = j ↔ x =N y ∧ i = j. �

Claim 3.2.68

1. x0 <N y0 = x <N y ∨B (x =N y ∧B 0 <B 0) = x <N y

2. x0 <N y1 = x <N y ∨B (x =N y ∧B 0 <B 1) = x ≤N y

3. x1 <N y0 = x <N y ∨B (x =N y ∧B 1 <B 0) = x <N y

4. x1 <N y1 = x <N y ∨B (x =N y ∧B 1 <B 1) = x <N y

Proof From Theorem 3.2.10, we have that xi <N yj = x <N y ∨B (x =N y ∧B i <B j), so the

theorem follows directly from the preceding claim. �



On “=N” and “<N” 121

Claim 3.2.69

1. ¬B(x <N ε)

2. ¬B(x <N x)

3. ¬B(ε <N

0x)

Proof A straightforward proof by NIND, using the preceding claims. �

Lemma 3.2.72

1. x =N y = 0x =N y = x =N 0y = 0x =N 0y

2. x <N y = 0x <N 0y

3. x <N y = 0x <N y = x <N 0y

Proof

1. Direct from the fact that (lp0(0x, y) = lp0(x, y)) ∨ (lp0(0x, y) = 0 · lp0(x, y)) (which can

easily be proved by cases depending on the length of x B y), and by Derived Rule 3.2.3.

2. By a simple application of Derived Rule 3.2.3 and the first claim (we show only the

inductive step, the base cases being just as simple): 0xi <N 0yj = 0x <N 0y ∨B (0x =N

0y ∧B i <B j) = x <N y ∨B (x =N y ∧B i <B j) = xi <N yj.

3. By the second claim:

0x <N y = 0x C y ?ZL
(
0(y C 0x) · 0x <N y, 0x <N

0(0x C y) · y
)

= x B y ?ZL
(
0x <N 0 · 0(x C y) · y, 0(y C x)l · 0 · x <N y

)

= x B y ?ZL
(
x <N

0(x C y) · y, 0(y C x) · x <N y
)

= x <N y

(and similarly for x <N 0y). �

Theorem 3.2.15 x =N y ∧ y <N z → x <N z and x =N y ∧ y >N z → x >N z

Proof Follows directly from the (already proven) facts that x =N y↔ lp0(x,maxL

3(x, y, z)) =

lp0(y,maxL

3(x, y, z)) and y <N z ↔ lp0(y,maxL

3(x, y, z)) <N lp0(z,maxL

3(x, y, z)). �

Corollary 3.2.73 x =N y ∧ y ≤N z → x ≤N z and x =N y ∧ y ≥N z → x ≥N z

Proof Directly from the theorem. �



122 Appendix A. Details of Proofs in the Formal Development of T1

Theorem 3.2.16 x <N y ∧ y <N z → x <N z and x >N y ∧ y >N z → x >N z

Proof By Derived Rule 3.2.3: the base cases for z = ε and y = ε are trivially true since

ε 6<N x, while the third base case ε <N y∧y <N z→ε <N z is itself proved by Derived Rule 3.2.3:

the two base cases are again trivially true, and ε <N yj∧B yj <N zk =
(
ε <N y∨B (ε =N y∧B 0<B

j)
)
∧B

(
y <N z∨B (y =N z∧B j <B k)

)
= (ε <N y∧B y <N z)∨B (ε <N y∧B y =N z∧B j <B k)∨B (ε =N

y∧B0<Bj∧By <N z)∨B(ε =N y∧B0<Bj∧By =N z∧Bj<Bk) = ε <N z∨B(ε =N z∧B0<Bk) = ε <N zk

(the general inductive step is almost identical). �

Corollary 3.2.74 x ≤N y ∧ y <N z → x <N z and x ≥N y ∧ y >N z → x >N z

Proof Directly from the theorem. �

Corollary 3.2.75 x ≤N y ∧ y ≤N z → x ≤N z and x ≥N y ∧ y ≥N z → x ≥N z

Proof Directly from the theorem. �

On “|·|” and “succN”

Claim 3.2.76

succN(ε) = 1

succN(x0) = 0x1

succN(x1) = succN(x) · 0

Proof Simple proofs by NIND (proving the relevant properties first for the auxiliary func-

tion cussN, and then for succN). �

Claim 3.2.77

succN(0x) = 0 · succN(x)

succN(1x) = 8succN(x) · ¬B8succN(x) · msuccN(x)

8succN(x) = AND(1x)

succN(x) = AND(1x) ?B
(
1 · 0x, 0 · msuccN(x)

)

Proof All the proofs are simple, but we will illustrate them by proving the second property,

by NIND on x: succN(1ε) = 10 = 1 · ¬B1 · m1 = 8succN(ε) · ¬B8succN(ε) · msuccN(ε), succN(1x0) =

01x1 = 8(0x1)·¬B8(0x1)·m(0x1) = 8succN(x0)·¬B8succN(x0)·msuccN(x0), succN(1x1) = succN(1x)·

0 = 8succN(x) · ¬B8succN(x) · msuccN(x) · 0 = 8(succN(x) · 0) · ¬B8(succN(x) · 0) · m(succN(x) · 0) =

8succN(x1) · ¬B8succN(x1) · msuccN(x1). �



On “|·|” and “succN” 123

Theorem 3.2.17

1. x <N succN(x)

2. x >N y = x ≥N succN(y)

Proof

1. A simple direct proof by NIND: ε <N succN(ε) = ε <N 1, x0 <N succN(x0) = x0 <N 0x1 =

x ≤N 0x, x1 <N succN(x1) = x1 <N succN(x) · 0 = x <N succN(x).

2. By Derived Rule 3.2.3: ε >N y = 0 = ε ≥N succN(y) (since succN(y) 6=N ε), x >N ε = x ≥N

succN(ε) (proved by an easy NIND on x),

xi >N y0 = x >N y ∨B (x =N y ∧B i >B 0)

= x >N y ∨B (x =N y ∧B i)

= x >N 0y ∨B (x =N 0y ∧B i >B 1) ∨B (x =N 0y ∧B i)

= xi >N 0y1 ∨B xi =N 0y1

= xi ≥N 0y1 = xi ≥N succN(y0),

xi >N y1 = x >N y ∨B (x =N y ∧B i >B 1)

= x >N y

= x ≥N succN(y)

= x >N succN(y) ∨B (x =N y ∧B i ≥B 0)

= x >N succN(y) ∨B (x =N y ∧B i >B 0) ∨B (x =N y ∧B i =B 0)

= xi >N succN(y) · 0 ∨B xi =N succN(y) · 0

= xi ≥N succN(y) · 0 = xi ≥N succN(y1). �

Claim 3.2.78 |x| = |jx|

Proof By TIND on x: |ε| = ε = |jε|, |i| = 1 = |1| = |1i|, |x| = x ?EL
(
|xJ| · 0, |xJ| · 1

)
=

jx ?EL
(
|jxJ| · 0, |jxJ| · 1

)
= |jx|. �

Theorem 3.2.19 |xi| =N succN(|x|)



124 Appendix A. Details of Proofs in the Formal Development of T1

Proof By TIND on x: |εi| = 1 = succN(|ε|), |ji| = 10 = succN(1) = succN(|j|),

|xi| = xi ?EL
(
|(xi)J| · 0, |(xi)J| · 1

)

= x ?EL
(
|(xi)J| · 1, |(xi)J| · 0

)

= x ?EL
(
|xJ| · 1, |xJ · 8(Ix · i)| · 0

)

= x ?EL
(
|xJ| · 1, |xJ · j| · 0

)

=N x ?EL
(
succN(|xJ| · 0), succN(|xJ|) · 0

)

= x ?EL
(
succN(|xJ| · 0), succN(|xJ| · 1)

)

= succN(|x|)

(where the fifth equality, where “=N” is introduced, holds by the induction hypothesis). �

On “masking” functions

Theorem 3.2.20

first0(0x) = 1 · 0x first0(1x) = 0 · first0(x)

first1(0x) = 0 · first1(x) first1(1x) = 1 · 0x

Proof By a straightforward NIND. �

Corollary 3.2.81 first0(x) = first1(notB(x))

Proof By a straightforward NIND, from the preceding theorem. �

On binary addition

Theorem 3.2.21 x +N y = y +N x

Proof Direct from the commutativity of the functions involved (i.e., xorB and andB). �

Lemma 3.2.82

carryN(x0, 1) = carryN(x, ε) · 0 = 0x0

carryN(x1, 1) = x ?ZL
(
1, carryN(x, 1) · 1

)



On binary addition 125

Proof (We prove only the second statement, the first is a simple application of NIND on

x.) By NIND on x: carryN(ε · 1, 1) = 1 = ε ?ZL (1, carryN(ε, 1) · 1),

carryN(0x1, 1) = 0 · carryN(x1, 1)

= 0 · x ?ZL
(
1, carryN(x, 1) · 1

)

= x ?ZL
(
0 · 1, 0 · carryN(x, 1) · 1

)

= x ?ZL
(
carryN(0, 1) · 1, carryN(0x, 1) · 1

)

= carryN(0x, 1) · 1,

carryN(1x1, 1) = 8carryN(x1, 1) · carryN(x1, 1)

= x ?ZL
(
8(1) · 1, 8(carryN(x, 1) · 1) · carryN(x, 1) · 1

)

= x ?ZL
(
11, 8carryN(x, 1) · carryN(x, 1) · 1

)

= x ?ZL
(
carryN(1, 1) · 1, carryN(1x, 1) · 1

)

= carryN(1x, 1) · 1. �

Theorem 3.2.22 x +N 1 = x ?ZL
(
0 · succN(x), succN(x)

)
=N succN(x)

Proof By NIND on x: ε +N 1 = 01 = ε ?ZL
(
0 · succN(ε), succN(ε)

)
,

x0 +N 1 = xorB

3(carry
N(x0, 1) · 0, x0, 1)

= xorB

3(00x0, 0x0, 00x1)

= 0x1

= succN(x0),

x1 +N 1 = xorB

3(carry
N(x1, 1) · 0, x1, 1)

= xorB

3(carry
N(x, 1) · 10, 0x1, 00x1)

= xorB

3(carry
N(x, 1) · 1, 0x, 0x0) · 0

= xorB

3(carry
N(x, 1) · 0, 0x, 0x1) · 0

= xorB

3(carry
N(x, 1) · 0, x, 1) · 0

= (x +N 1) · 0

=N succN(x) · 0

= succN(x1). �



126 Appendix A. Details of Proofs in the Formal Development of T1

Claim 3.2.83 For jx = jy,

carryN(x, ε) = 0 · 0x

carryN(x, x) = x0

carryN(0x, 0y) = 0 · carryN(x, y)

carryN(1x, 0y) = 8carryN(x, y) · carryN(x, y)

carryN(1x, 1y) = 1 · carryN(x, y)

Proof All these properties can be proved with a simple application of Derived Rule 3.2.6,

or directly from the definition of carryN. The last three depend on the following facts.

maskbit
(
andB

2(0x, 0y), first0(xor
B

2(0x, 0y))
)

= maskbit
(
0 · andB

2(x, y), first0(0 · xorB

2(x, y))
)

= maskbit
(
0 · andB

2(x, y), 1 · 0xor
B

2(x, y)
)

= 0

maskbit
(
andB

2(1x, 0y), first0(xor
B

2(1x, 0y))
)

= maskbit
(
0 · andB

2(x, y), first0(1 · xorB

2(x, y))
)

= maskbit
(
0 · andB

2(x, y), 0 · first0(xor
B

2(x, y))
)

= maskbit
(
andB

2(x, y), first0(xor
B

2(x, y))
)

maskbit
(
andB

2(1x, 1y), first0(xor
B

2(1x, 1y))
)

= maskbit
(
1 · andB

2(x, y), first0(0 · xorB

2(x, y))
)

= maskbit
(
1 · andB

2(x, y), 1 · 0xor
B

2(x, y)
)

= 1 �

Claim 3.2.84 For jx = jy,

x +N ε = 0x

x +N x = x0

0x +N 0y = 0 · (x +N y)

1x +N 0y = 8(x +N y) · ¬B8(x +N y) · m(x +N y)

1x +N 1y = 1 · (x +N y)

Proof Directly from the corresponding properties for carryN, where we have used the fact

that 8(x +N y) = 8carryN(x, y). Note that the second property implies that msuccN(x +N x) = x1.

�



On binary addition 127

Claim 3.2.85

x0 +N y0 = (x +N y) · 0

x1 +N y0 = (x +N y) · 1

x1 +N y1 = msuccN(x +N y) · 0

Proof The first two properties follow directly from the Claim above by Derived Rule 3.2.6.

We prove the third property because it is more involved. First, note that ¬BAND(x+N y) can be

proved directly from Claim 3.2.84 by Derived Rule 3.2.6. This implies that 8succN(x +N y) = 0,

which in turn implies that succN(1 · (x +N y)) = 01 · msuccN(x +N y). Now, we prove the third

property by Derived Rule 3.2.6: 1 +N 1 = 10 = m(01) · 0 = msuccN(0) · 0 = msuccN(ε +N ε) · 0,

0x1 +N 0y1

= 0 · (x1 +N y1)

= 0 · msuccN(x +N y) · 0

= succN(x +N y) · 0

= m(0 · succN(x +N y)) · 0

= msuccN(0 · (x +N y)) · 0

= msuccN(0x +N 0y) · 0,

1x1 +N 1y1

= 1 · (x1 +N y1)

= 1 · msuccN(x +N y) · 0

= m(01 · msuccN(x +N y)) · 0

= msuccN(1 · (x +N y)) · 0

= msuccN(1x +N 1y) · 0,

1x1 +N 0y1

= 8(x1 +N y1) · ¬B8(x1 +N y1) · m(x1 +N y1)

= 8(msuccN(x +N y) · 0) · ¬B8(msuccN(x +N y) · 0) · m(msuccN(x +N y) · 0)

= 8
msuccN(x +N y) · ¬B8

msuccN(x +N y) · mmsuccN(x +N y) · 0

= 8(x +N y) ?ZL

(
8
msuccN(1m(x +N y)) · ¬B8

msuccN(1m(x +N y)) · mmsuccN(1m(x +N y)) · 0,

8
msuccN(0m(x +N y)) · ¬B8

msuccN(0m(x +N y)) · mmsuccN(0m(x +N y)) · 0
)

= 8(x +N y) ?ZL

(
¬B8succN(m(x +N y)) · 8succN(m(x +N y)) · msuccN(m(x +N y)) · 0,

8succN(m(x +N y)) · ¬B8succN(m(x +N y)) · msuccN(m(x +N y)) · 0
)



128 Appendix A. Details of Proofs in the Formal Development of T1

= 8(x +N y) ?ZL

(
¬BAND(1m(x +N y)) · succN(m(x +N y)) · 0, succN(1m(x +N y)) · 0

)

= 8(x +N y) ?ZL

(
1 · succN(m(x +N y)) · 0, succN(1m(x +N y)) · 0

)

= 8(x +N y) ?ZL

(
m(01 · succN(m(x +N y))) · 0, m(0 · succN(1m(x +N y))) · 0

)

= 8(x +N y) ?ZL

(
msuccN(10m(x +N y)) · 0, msuccN(01m(x +N y)) · 0

)

= msuccN
(
8(x +N y) · ¬B8(x +N y) · m(x +N y)

)
· 0

= msuccN(1x +N 0y) · 0. �

Theorem 3.2.23

1. x +N succN(y) =N succN(x +N y)

2. x +N (y +N z) =N (x +N y) +N z

3. y <N z ↔ x +N y <N x +N z

4. x =N y ∧ z =N w → x +N z =N y +N w

5. x =N y ∧ z <N w → x +N z <N y +N w

6. x <N y ∧ z <N w → x +N z <N y +N w

Proof

1. By Derived Rule 3.2.3: ε +N succN(y) =N succN(y) =N succN(ε +N y), x +N succN(ε) =

x +N 1 =N succN(x) =N succN(x +N ε),

x0 +N succN(y0) =N x0 +N y1

=N (x +N y) · 1

=N succN((x +N y) · 0)

=N succN(x0 +N y0),

x0 +N succN(y1) =N x0 +N succN(y) · 0

=N (x +N succN(y)) · 0

=N succN(x +N y) · 0

=N succN((x +N y) · 1)

=N succN(x0 +N y1),

x1 +N succN(y0) =N x1 +N y1

=N succN(x +N y) · 0

=N succN((x +N y) · 1)

=N succN(x1 +N y0),



On iterated sums 129

x1 +N succN(y1) =N x1 +N succN(y) · 0

=N (x +N succN(y)) · 1

=N succN(x +N y) · 1

=N succN(succN(x +N y) · 0)

=N succN(x1 +N y1).

2. By Derived Rule 3.2.3, generalized to three variables: ε+N(y+Nz) =N y+Nz =N (ε+Ny)+Nz

(and similarly for x, ε, z and x, y, ε), x0 +N (y0 +N z0) =N x0 +N (y +N z)0 =N (x +N (y +N

z))0 =N ((x +N y) +N z)0 =N (x +N y)0 +N z0 =N (x0 +N y0) +N z0, x1 +N (y0 +N z0) =N

x1+N(y+Nz)0 =N (x+N(y+Nz))1 =N ((x+Ny)+Nz)1 =N (x+Ny)1+Nz0 =N (x1+Ny0)+Nz0

(and similarly for x0, y1, z0 and x0, y0, z1), x0 +N (y1 +N z1) =N x0 +N succN(y +N z)0 =N

(x+NsuccN(y+Nz))0 =N succN(x+N(y+Nz))0 =N succN((x+Ny)+Nz)0 =N (x+Ny)1+Nz1 =N

(x0 +N y1) +N z1 (and similarly for x1, y0, z1 and x1, y1, z0), x1 +N (y1 +N z1) =N x1 +N

succN(y+Nz)0 =N (x+NsuccN(y+Nz))1 =N succN(x+N(y+Nz))1 =N succN((x+Ny)+Nz)1 =N

(succN(x +N y) +N z)1 =N succN(x +N y)0 +N z1 =N (x1 +N y1) +N z1.

3–6. Similar to the last case, straightforward, case-by-case proofs by Derived Rule 3.2.3. �

On iterated sums

Claim 3.2.86

CScar3(x0, y0, z0) = CScar3(x, y, z) · 0

CScar3(x1, y0, z0) = CScar3(x0, y1, z0) = CScar3(x1, y0, z1) = CScar3(x, y, z) · 0

CScar3(x0, y1, z1) = CScar3(x1, y0, z1) = CScar3(x1, y1, z0) = CScar3(x, y, z) · 1

CScar3(x1, y1, z1) = CScar3(x, y, z) · 1

0CScar3(x, y, z) · 0 = 0CSadd3(x, y, z) = 0 · 0maxL

3(x, y, z) = 0 · maxL

3(0x, 0y, 0z)

0 · maxL

3(0x, 0y, 0z) = CScar3(0x, 0y, 0z) · 0 = CSadd3(0x, 0y, 0z)

0CScar(x, y, z, w) = 0CSadd(x, y, z, w) = 00 · 0maxL

4(x, y, z, w) = 00 · maxL

4(0x, 0y, 0z, 0w)

00 · maxL

4(0x, 0y, 0z, 0w) = CScar(0x, 0y, 0z, 0w) = CSadd(0x, 0y, 0z, 0w)

Proof All can be proved with a very simple application of Derived Rule 3.2.6, generalized

to three variables, directly from the definitions of the functions involved. �

Lemma 3.2.87

(CScar3(succN(x), y, z) · 0) +N CSadd3(succN(x), y, z)

=N succN
(
(CScar3(x, y, z) · 0) +N CSadd3(x, y, z)

)



130 Appendix A. Details of Proofs in the Formal Development of T1

Proof The proof is a straightforward, if tedious, application of Derived Rule 3.2.3 (gener-

alized to three variables). First, the base cases for ε, y, z and x, ε, z and x, y, ε are proved (each

one with another application of Derived Rule 3.2.3), and then the eight cases from x0, y0, z0

to x1, y1, z1 are proved from the assumption that the lemma holds for x, y, z. We do not

show the full proof here as it is not particularly instructive; instead, we give parts of the proof

for two illustrative cases. First, in the proof of the base case (CScar3(succN(ε), y, z) · 0) +N

CSadd3(succN(ε), y, z) =N succN
(
(CScar3(ε, y, z) · 0) +N CSadd3(ε, y, z)

)
by Derived Rule 3.2.3,

we show the case for y1, z1.

(CScar3(succN(ε), y1, z1) · 0) +N CSadd3(succN(ε), y1, z1)

=N (CScar3(1, y1, z1) · 0) +N CSadd3(1, y1, z1)

=N (CScar3(ε, y, z) · 10) +N (CSadd3(ε, y, z) · 1)

=N
(
(CScar3(ε, y, z) · 1) +N CSadd3(ε, y, z)

)
· 1

=N succN
((

(CScar3(ε, y, z) · 1) +N CSadd3(ε, y, z)
)
· 0

)

=N succN
(
(CScar3(ε, y1, z1) · 0) +N CSadd3(ε, y1, z1)

)

Second, in the inductive step, we show the case for x0, y1, z0.

(CScar3(succN(x0), y1, z0) · 0) +N CSadd3(succN(x0), y1, z0)

=N (CScar3(x1, y1, z0) · 0) +N CSadd3(x1, y1, z0)

=N (CScar3(x, y, z) · 10) +N (CSadd3(x, y, z) · 0)

=N
(
succN(CScar3(x, y, z) · 0) +N CSadd3(x, y, z)

)
· 0

=N succN
((

(CScar3(x, y, z) · 0) +N CSadd3(x, y, z)
)
· 1

)

=N succN
(
(CScar3(x, y, z) · 00) +N (CSadd3(x, y, z) · 1)

)

=N succN
(
(CScar3(x0, y1, z0) · 0) +N CSadd3(x0, y1, z0)

)
�

Theorem 3.2.24 CScar(x, y, z, w) +N CSadd(x, y, z, w) =N x +N y +N z +N w

Proof As for the preceding lemma, the proof is a straightforward, if tedious, application

of Derived Rule 3.2.3 (generalized to four variables). First, the base cases for ε, y, z, w and

x, ε, z, w and x, y, ε, w and x, y, z, ε are proved (each one with another application of Derived

Rule 3.2.3), and then the sixteen cases from x0, y0, z0, w0 to x1, y1, z1, w1 are proved from the

assumption that the lemma holds for x, y, z, w. We do not show the full proof here as it is

not particularly instructive; instead, we give parts of the proof for one illustrative case. In the



On iterated sums 131

inductive step, we show the case for x1, y1, z1, w1.

CScar(x1, y1, z1, w1) +N CSadd(x1, y1, z1, w1)

=N CScar3
(
CScar3(x, y, z) · 10,CSadd3(x, y, z) · 1, w1

)
· 0+N

CSadd3

(
CScar3(x, y, z) · 10,CSadd3(x, y, z) · 1, w1

)

=N CScar3
(
succN(CScar3(x, y, z) · 0),CSadd3(x, y, z), w

)
· 10+N

CSadd3

(
succN(CScar3(x, y, z) · 0),CSadd3(x, y, z), w

)
· 0

=N succN

(
CScar3

(
succN(CScar3(x, y, z) · 0),CSadd3(x, y, z), w

)
· 0 +N

CSadd3

(
succN(CScar3(x, y, z) · 0),CSadd3(x, y, z), w

))
· 0

=N succN
(
succN

(
CScar(x, y, z, w) +N CSadd(x, y, z, w)

))
· 0

=N succN
(
succN

(
x +N y +N z +N w

))
· 0

=N succN(x +N y) · 0 +N succN(z +N w) · 0

=N x1 +N y1 +N z1 +N w1 �

Claim 3.2.88

1. CARADD(0x) =N 0

2. sum(0x) = CAR(0x) +N ADD(0x) =N 0 +N 0 =N 0

Proof

1. By TIND on x: CARADD(0ε) = ε =N 0, CARADD(0i) = 00 =N 0,

CARADD(0x) = CScar(CAR(0xJ),ADD(0xJ),CAR(I0x),ADD(I0x))·

CSadd(CAR(0xJ),ADD(0xJ),CAR(I0x),ADD(I0x))

=N CScar(0, 0, 0, 0) · CSadd(0, 0, 0, 0)

=N 0 · 0 =N 0.

2. Direct corollary of the first claim. �

Theorem 3.2.25 sum(x) =N sum(xJ) +N sum(Ix)



132 Appendix A. Details of Proofs in the Formal Development of T1

Proof

sum(x) = CScar(CAR(xJ),ADD(xJ),CAR(Ix),ADD(Ix))+N

CSadd(CAR(xJ),ADD(xJ),CAR(Ix),ADD(Ix))

=N CAR(xJ) +N ADD(xJ) +N CAR(Ix) +N ADD(Ix)

= sum(xJ) +N sum(Ix) �

From this theorem, it is possible to prove that sum(xy) =N sum(x) +N sum(y) with a sequence

of lemmas and theorems similar to the ones used to show that AND(xy) = AND(x)∧B AND(y).

In particular, we have that sum(x0) =N sum(x)+N 0 =N sum(x) and sum(x1) =N sum(x)+N 1 =N

succN(sum(x)).

Theorem 3.2.26 sum(x) ≤N sum(1x) =N |x|

Proof By TIND on x: sum(ε) = sum(1ε) = 0 =N |ε|, sum(i) =N i ≤N 1 =N sum(1) =N |1|,

sum(x) =N sum(xJ) +N sum(Ix) ≤N sum(1xJ) +N sum(I1x) =N sum(1x) =N sum(1xJ) +N

sum(I1x) =N |1xJ|+N |I1x| =N |x|. To complete the inductive case for sum(1x) = |x|, we need

to prove that |x| =N |xJ| +N |Ix| by TIND on x: the base cases are trivial, and

|xJ| +N |Ix| =N x ?EL
(
|1xJ| +N |1xJ|, |1xJ| +N |1xJ · 1|

)

=N x ?EL
(
|1xJ| · 0, |xJ| +N succN(|xJ|)

)

=N x ?EL
(
|xJ| · 0, succN(|xJ| +N |xJ|)

)

=N x ?EL
(
|xJ| · 0, |xJ| · 1

)

=N |x|. �

Lemmas for the proof of PHP

Lemma A.1 AND
(
orB

2(notB(x), y)
)
→B sum(x) ≤N sum(y)

Proof By Derived Rule 3.2.3:

AND
(
orB

2(notB(ε), y)
)
→B sum(ε) ≤N sum(y) = AND(y) →B ε ≤N sum(y) = 1,

AND
(
orB

2(notB(x), ε)
)
→B sum(x) ≤N sum(ε)

= AND(notB(x)) →B sum(x) =N ε = ¬BOR(x) →B x =S

0x = 1,

AND
(
orB

2(notB(xi), yj)
)
→B sum(xi) ≤N sum(yj)

= AND
(
orB

2(notB(x), y)
)
∧B (¬Bi ∨B j) →B sum(x) +N i ≤N sum(y) +N j

= AND
(
orB

2(notB(x), y)
)
∧B (¬Bi ∨B j) →B sum(x) ≤N sum(y) ∧B ¬B(i ∧B ¬Bj) = 1. �



Lemmas for the proof of PHP 133

Lemma A.2 AND
(
orB

2(notB(x), y)
)
∧B OR

(
andB

2(notB(x), y)
)
→ sum(x) <N sum(y)

Proof By Derived Rule 3.2.3:

AND
(
orB

2(notB(ε), y)
)
∧B OR

(
andB

2(notB(ε), y)
)
→B sum(ε) <N sum(y)

= AND(y) ∧B OR(0y) →B ε <N sum(y)

= 0 →B ε <N sum(y) = 1,

AND
(
orB

2(notB(x), ε)
)
∧B OR

(
andB

2(notB(x), ε)
)
→B sum(x) <N sum(ε)

= AND(notB(x)) ∧B OR(0x) →B sum(x) <N ε

= 0 →B 0 = 1,

AND
(
orB

2(notB(xi), yj)
)
∧B OR

(
andB

2(notB(xi), yj)
)
→B sum(xi) <N sum(yj)

=
(
AND

(
orB

2(notB(x), y)
)
∧B (¬Bi ∧B j)

)
∧B

(
OR

(
andB

2(notB(x), y)
)
∨B (¬Bi ∧B j)

)
→B

sum(x) +N i <N sum(y) +N j

(and a simple check of all four cases for the possible values of i and j shows that the property

holds in each one). �

Lemma A.3 maskbit(x, first1(x)) = OR(x)

Proof By NIND on x: maskbit(ε, first1(ε)) = markbit(ε, ε) = OR(andB

2(ε, ε)) = OR(ε), and

maskbit(xi, first1(xi)) = maskbit(x, first1(x))∨B (i∧B OR(x)?B (0, i)) = OR(x)∨B OR(x)?B (0, i) =

OR(x) ?B (1, i) = OR(x) ∨B i = OR(xi). �

Lemma A.4

(L) ≈Blb(x, y) = maskbit
(
x, (1 · 0(y B x1))l

)

(R) ≈Brb(x, y) = maskbit
(
x, (1 · 0y)l

)

Proof (L) By Derived Rule 3.2.3:

maskbit
(
ε, (1 · 0(y B 1))l

)

= y ?ZL
(
maskbit(ε, 1),maskbit(ε, ε)

)

= y ?ZL (0, 0) = 0 = ≈Bε = ≈Blb(ε, y),

maskbit
(
x, (1 · 0(ε B x1))l

)

= maskbit(x, 1 · 0x)

= OR(andB

2(0x, 1 · 0x))

= (0 ∧B 1) ∨B OR(andB

2(x, 0x))

= 0 ∨B OR(0x)

= 0 = ≈Bε = ≈Blb(x, ε),



134 Appendix A. Details of Proofs in the Formal Development of T1

maskbit
(
ix, (1 · 0(yj B ix1))l

)

= maskbit
(
ix, (1 · 0(y B x1))l

)

= y ?ZL

(
maskbit(ix, 1 · 0x),

maskbit
(
ix, 0

(
ix C (1 · 0(y B x1))l

)
· (1 · 0(y B x1))l

))

= y ?ZL

(
(i ∧B 1) ∨B maskbit(x, 0x),

maskbit
(
ix, 0(ix C (y B x1)) · (1 · 0(y B x1))l

))

= y ?ZL

(
i ∨B 0,maskbit

(
ix, 0 · 0(x C (y B x1)) · (1 · 0(y B x1))l

))

= y ?ZL

(
i, (i ∧B 0) ∨B maskbit

(
x, 0(x C (y B x1)) · (1 · 0(y B x1))l

))

= y ?ZL

(
i,maskbit

(
x, (1 · 0(y B x1))l

))

= y ?ZL (i,≈Blb(x, y))

= ≈Blb(ix, yj). �

Lemma A.5 ¬BOR(delfirst1(x)) ∧B lb(x, y) →B ¬BOR(lc(x, yl))

Proof By NIND on x: ¬BOR(delfirst1(ε))∧
B lb(ε, y)→B ¬BOR(lc(ε, yl)) = ¬BOR(ε)∧B ε→B

¬BOR(ε) = 0 →B 0 = 1, If y = ε or y >L xi, then lb(xi, y) = ε, which makes the antecedent of

→B false and the entire statement trivially true. Hence, we prove the inductive step under the

implicit assumption that y 6= ε and y ≤L xi.

¬BOR(delfirst1(xi)) ∧B lb(xi, y) →B ¬BOR(lc(xi, yl))

= y =L xi ?ZL

(
¬B(i ∧B ¬B(OR(x) ?B (0, i))) ∧B ¬BOR(delfirst1(x)) ∧B i →B ¬BOR(lc(xi, (xi)l)),

¬B(i ∧B ¬B(OR(x) ?B (0, i))) ∧B ¬BOR(delfirst1(x)) ∧B lb(x, y) →B ¬BOR(lc(xi, yl))
)

= y =L xi ?ZL

(
¬B(i ∧B OR(x) ?B (1,¬Bi)) ∧B i ∧B ¬BOR(delfirst1(x)) →B ¬BOR(lc(xi, x)), 1

)

= y =L xi ?ZL

(
¬B(OR(x) ?B (i, 0)) ∧B OR(x) ?B (i, i) ∧B ¬BOR(delfirst1(x)) →B ¬BOR(x), 1

)

= y =L xi ?ZL
(
OR(x) ?B (0, i) →B OR(x) ?B (0, 1), 1

)

= y =L xi ?ZL (1, 1) = 1 �



Bibliography

[1] Bill Allen. Arithmetizing uniform NC. Annals of Pure and Applied Logic, 53:1–50, 1991.

[2] Toshiyasu Arai. A bounded arithmetic AID for Frege system. Technical Report FI–

CXT1998–003, The Fields Institute, April 1998.

[3] David A. Barrington. Bounded-width polynomial-size branching programs recognize ex-

actly those languages in NC1. Journal of Computer and System Science, 38:150–164, 1989.

[4] Stephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of the

polytime functions. Computational Complexity, 2:97–110, 1992.

[5] Stephen Bloch. Functional characterizations of uniform log-depth and polylog-depth circuit

families. In Proceedings of IEEE 7th Annual Structure in Complexity Theory Conference,

pages 193–206, Boston, Massachusetts, June 1992.

[6] Stephen Bloch. Function-algebraic characterizations of log and polylog parallel time. Com-

putational Complexity, 4:175–205, 1994.

[7] Samuel R. Buss. Bounded Arithmetic, volume 3 of Studies in Proof Theory. Bibliopolis,

Naples, 1986.

[8] Samuel R. Buss. Polynomial size proofs of the propositional pigeonhole principle. Journal

of Symbolic Logic, 52(4):916–927, December 1987.

[9] Samuel R. Buss. Propositional consistency proofs. Annals of Pure and Applied Logic,

52:3–29, 1991.

[10] Samuel R. Buss. Algorithms for boolean formula evaluation and for tree contraction. In

P. Clote and J. Kraj́ıček, editors, Arithmetic, Proof Theory and Computational Complexity,

pages 96–115. Oxford University Press, 1993.

[11] Samuel R. Buss. Relating the bounded arithmetic and polynomial time hierarchies.

Manuscript, November 1994.

135



136 Bibliography

[12] Peter Clote. Sequential, machine-independent characterizations of the parallel complexity

classes ALOGTIME, ACk, NCk, and NC. In S. R. Buss and P. Scott, editors, Feasible

Mathematics, pages 49–69. Birkhäuser, 1989.

[13] Peter Clote. ALOGTIME and a conjecture of S. A. Cook. Annals of Mathematics and Arti-

ficial Intelligence, 6:57–106, 1992. Extended abstract in: Proceedings of IEEE Symposium

on Logic in Computer Science, Philadelphia, June 1990.

[14] Peter Clote. On polynomial size Frege proofs of certain combinatorial principles. In P. Clote

and J. Kraj́ıček, editors, Arithmetic, Proof Theory and Computational Complexity, pages

162–184. Oxford University Press, 1993.

[15] Peter Clote and Gaisi Takeuti. First order bounded arithmetic and small Boolean circuit

complexity classes. In Peter Clote and Jeffrey Remmel, editors, Feasible Mathematics II,

volume 13 of Progress in Computer Science and Applied Logic, pages 154–218, Boston,

1995. Birkhäuser.

[16] Alan Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel, editor,

Proceedings of the 1964 International Congress for Logic Methodology and the Philosophy

of Science, pages 24–30, Amsterdam, 1964. North Holland.

[17] Stephen Cook. Relating the provable collapse of P to NC1 and the power of logical theo-

ries. In Paul Beame and Samuel Buss, editors, Proof Complexity and Feasible Arithmetics:

DIMACS Workshop, April 21–24, 1996, volume 39 of DIMACS Series in Discrete Math-

ematics and Theoretical Computer Science, pages 73–91. American Mathematical Society,

1998.

[18] Stephen A. Cook. Feasible constructive proofs and the propositional calculus. In Proceed-

ings of the Seventh Annual ACM Symposium on the Theory of Computing, pages 83–97,

May 1975.

[19] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof

systems. Journal of Symbolic Logic, 44(1):36–50, March 1979.

[20] Stephen A. Cook and Alasdair Urquhart. Functional interpretations of feasibly constructive

arithmetic. Annals of Pure and Applied Logic, 63(2):103–200, September 1993.

[21] Russell Impagliazzo, Toniann Pitassi, and Alasdair Urquhart. Upper and lower bounds for

tree-like cutting planes proofs. In Proceedings of IEEE 9th Annual Symposium on Logic

in Computer Science, pages 220–228, 1994.



Bibliography 137

[22] Jan Johannsen. A bounded arithmetic theory for constant depth threshold circuits. In Petr

Hájek, editor, GÖDEL ’96, volume 6 of Springer Lecture Notes in Logic, pages 224–234,

1996.

[23] Jan Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity Theory, volume 60

of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1995.

[24] Jan Kraj́ıček, Pavel Pudlák, and Gaisi Takeuti. Bounded arithmetic and the polynomial

hierarchy. Annals of Pure and Applied Logic, 52:143–153, 1991.

[25] Daniel Leivant. A foundational delineation of computational feasibility. In Proceedings of

IEEE 6th Annual Symposium on Logic in Computer Science, 1991.

[26] Daniel Leivant. Peano theories and their computable functions. Manuscript (extended

abstract), December 1992.

[27] Alexander A. Razborov. Bounded arithmetic and lower bounds in boolean complexity. In

Peter Clote and Jeffrey Remmel, editors, Feasible Mathematics II, volume 13 of Progress

in Computer Science and Applied Logic, pages 344–386, Boston, 1995. Birkhäuser.

[28] Walter L. Ruzzo. On uniform circuit complexity. Journal of Computer and System Sci-

ences, 22(3):365–383, June 1981.

[29] Gaisi Takeuti. Frege proof system and TNC0. Manuscript, 1994.


