
Pseudo�Random Synthesizers�
Functions and Permutations

Thesis for the Degree of

DOCTOR of PHILOSOPHY

by

Omer Reingold

Department of Applied Mathematics and Computer Science

Weizmann Institute of Science

Submitted to the Scienti�c Council of
The Weizmann Institute of Science

Rehovot ������ Israel

November ����



i



ii

Thesis Advisor

Professor Moni Naor

Department of Applied Mathematics and Computer Science
Weizmann Institute of Science

Rehovot ������ Israel



Acknowledgments

Writing these lines� I realize how many people took part in my initiation into the world
of science� In the following few paragraphs I will try to acknowledge some of these many
contributions� Naturally� my warmest thanks are to Moni Naor my advisor 	and much more
than that
�

Thanking Moni for all he has done and been to me these last four years is extremely easy
and extremely hard at the same time� Extremely easy since I have so much I want to thank
him for and I�m grateful for this opportunity to do so 	a cynic might say that this is the
most important function of the dissertation
� Extremely hard since I have so much I want
to thank him for ��� what chance is there to do a good enough job� I�m sure that� in the
silent understanding between us� Moni is more aware of the extent of friendship� admiration
and gratitude I have for him than I am able to express in words� But this is not only for his
eyes ��� so let me do my best�

Thank you Moni for your close guidance in all di
erent aspects of the scienti�c process�
In all things� large and small� I always knew that I can count on you�� Thank you for your
constant encouragement� for treating me as a colleague from the �rst time I stepped into
your o�ce 	when I deserved it even less than now
 and at the same time for sheltering me
in a parental manner� Thank you for pushing me forward when possible and for laying
o
 in times work could not have been a high priority for me� Thank you for sharing with
me� in hours and hours of conversation� your deep understanding and amazing knowledge
of computer science as well as your scienti�c philosophy and an abundance of ideas 	all of
which will surely �nd their way into my research for years to come
� Last but certainly not
least� thank you for your friendship 	which was most explicitly articulated by Yael but was
very clear to me all along
� The nest you have built for me is so warm that I hate leaving
it� Therefore� 	at least in my mind
 I will not�

Before picking up the pace� special thanks are due to one other friend� teacher and
colleague of mine� Although my joint research with Ran Raz is not presented in this dis�
sertation� I enjoyed it enormously and have learned much from it� I enjoyed viewing Ran�s
superb research capabilities and creativity in action 	hope some of it has rubbed o
 on me
too
� I admire his relentless optimism and enthusiasm� I treasure his friendship so very
deeply� I wish for many more years of all of that�

I thank my teachers at the Weizmann Institute for the invaluable lessons they have
taught me both inside and outside of the class room� Special thanks to each member of
the Cryptography group� Oded Goldreich� Sha� Goldwasser� Moni Naor and Adi Shamir�
I take great pride and pleasure in the fact that I have learned from this incredible group
of researchers 	and even in being associated with them
� I often toy with the idea of not

iii



iv ACKNOWLEDGMENTS

graduating in order to continue learning in the presence of these experts� I also thank Itai
Benjamini� Uri Feige� Yoram Moses and David Peleg for their enlightening courses�

A group of researchers to whom I have special sentiments are my teachers from under�
graduate studies at Tel�Aviv University� Noga Alon� Yossi Azar� Amos Fiat� Ron Shamir
and Uri Zwick� I thank them for installing in me the love for the foundations of computer
science�

Over the years I have learned with and from many of my fellow students� I will list only
a few but I thank them all for many hours of work and fun� Special thanks are due to my
close �brothers� at the house of Moni� namely Kobbi Nissim and Benny Pinkas� Having you
guys around was priceless� Many thanks are also due to Avishai Wool and to the new recruit
Yehuda Lindell� I also thank Tal Malkin for our joint work at the co
ee shops of Manhattan�
and Tal Yadid for an extremely valuable time we spent together in undergraduate school�

There are so many other people to whom I am in debt for sharing their knowledge and
ideas with me� The partial list that comes to mind right now includes Eli Biham� Dan Boneh�
Ran Canetti� Cynthia Dwork� Russell Impagliazzo� Daniele Micciancio� Noam Nisan� Steven
Rudich� Amnon Ta�Shma� Avi Wigderson and Shiyu Zhou� I apologize to anyone I have
forgetfully omitted and thank you all for many stimulating conversations� Special thanks to
Cynthia� Russell and Steven for extending to me part of their sentiments for Moni� I would
also like to thank Joan Feigenbaum� Christos Papadimitriou� Charlie Racko
 and Umesh
Vazirani for their warm hospitality during a few memorable visits�

I would like to acknowledge now the direct contributions to the work presented in this
dissertation� Most of the work is based on my joint research with Moni ����� ���� �����
Section ��� is based on joint work with Eli Biham and Dan Boneh ����� My research during
this time was supported by a Clore Scholars award and a grant from the Israel Science
Foundation administered by the Israeli Academy of Sciences� We thank Sha� Goldwasser
and Jon Sorenson who brought ����� to our attention and Mihir Bellare for his observation
described in Section ������ Special thanks to Victor Shoup for suggesting the improved proof
of Lemma ����� and for pointing out ������ We thank Ran Canetti� Oded Goldreich� Joe
Kilian� Kobbi Nissim� Benny Pinkas� Amnon Ta�Shma and the anonymous referees of the
relevant journals and conferences for many helpful comments and for their diligent reading
of some of the work included here� It is di�cult to overestimate Oded�s contribution to the
presentation of the work described in Chapter �� I would also like to thank Oded Goldreich�
Joe Kilian� Yehuda Lindell and Alon Rosen for their comments on several parts of the
dissertation�

Finally� many thanks are due to my family and friends� However� they deserve their
thanks in person 	and hopefuly I did not let them wait till now
�



Abstract

The research re�ected in this dissertation is a study of 	computational
 pseudo�randomness�
More speci�cally� the main objective of this research is the e�cient and simple construction
of pseudo�random functions and permutations ���� ���� where e�ciency refers both to the
sequential and parallel time complexity of the computation� Pseudo�random functions and
permutations are fundamental cryptographic primitives with many applications in cryptog�
raphy and more generally in computational complexity�

Constructions of Pseudo�Random Functions

For our constructions of pseudo�random functions� we introduce and study a new crypto�
graphic primitive which we call a pseudo�random synthesizer and a generalization of this
primitive which we call a k�dimensional pseudo�random synthesizer� These primitives are of
independent interest as well� In addition� we consider various applications of our construc�
tions and study some of the underlying cryptographic assumptions used in these construc�
tions� The main results obtained by this research are�

� Introducing new cryptographic primitives called pseudo�random synthesizer and k�
dimensional pseudo�random synthesizer�

� Using pseudo�random synthesizers for a parallel construction of a pseudo�random func�
tion 	the depth of the functions is larger by a logarithmic factor than the depth of the
synthesizers
�

� Showing several NC� implementations of synthesizers based on concrete intractability
assumptions such as factoring and the computational Di�e�Hellman assumption�

� Showing a very simple� parallel construction of synthesizers based on what we call weak
pseudo�random functions which implies simple constructions of synthesizers based on
trapdoor one�way permutations and based on any hard�to�learn problem 	under the
de�nition of ����
�

These results yield the �rst parallel pseudo�random functions 	based on computational in�
tractability assumptions
 and the �rst alternative to the original construction of Goldre�
ich� Goldwasser and Micali ����� In addition� we show two new constructions of pseudo�
random functions 	that are related to the construction based on synthesizers
� The pseudo�
randomness of one construction is proven under the assumption that factoring is hard while
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vi ABSTRACT

the other construction is pseudo�random if the decisional version of the Di�e�Hellman as�
sumption holds� These functions have the following properties�

� They are much more e�cient than previous proposals� Computing the value of our
functions at any given point involves two subset products�

� They are in TC� 	the class of functions computable by constant depth circuits con�
sisting of a polynomial number of threshold gates
� This fact has several interesting
applications�

� They have a simple algebraic structure that implies additional features� In particular�
we show a zero�knowledge proof for statements of the form �y � fs	x
� and �y �� fs	x
�
given a commitment to a key s of a pseudo�random function fs�

We discuss some applications of our constructions in cryptography 	including applications
in public�key cryptography
 as well as their consequences in computational complexity and
in computational learning�theory�

Constructions of Pseudo�Random Permutations

Luby and Racko
 ���� showed a method for constructing a pseudo�random permutation from
a pseudo�random function� The method is based on composing four 	or three for weakened
security
 so called Feistel permutations� each of which requires the evaluation of a pseudo�
random function� We reduce somewhat the complexity of the construction and simplify its
proof of security by showing that two Feistel permutations are su�cient together with initial
and �nal pair�wise independent permutations� The revised construction and proof provide a
framework in which similar constructions may be designed and their security can be easily
proved� We demonstrate this by presenting some additional adjustments of the construction
that achieve the following�

� Reduce the success probability of the adversary�

� Provide a construction of pseudo�random permutations with large input�length using
pseudo�random functions with small input length�

A Study of Some Number�Theoretical Assumptions

Our research includes a study of two number�theoretical assumptions that are related to
the Di�e�Hellman key�exchange protocol and that are used in our constructions of pseudo�
random functions� The �rst is the decisional version of the Di�e�Hellman assumption 	DDH�
Assumption
� This assumption is relatively new� or more accurately� was explicitly considered
only recently� We therefore survey some of the di
erent applications of the assumption and
the current knowledge on its security� Furthermore� we show a randomized reduction of the
worst�case DDH�Assumption to its average case 	based on the random�self�reducibility of the
DDH�Problem that was previously used by Stadler �����
� We consider our research of the
DDH�Assumption to be of independent importance given that the assumption was recently
used in quite a few interesting applications 	e�g�� ����
�



vii

The second assumption we study is the generalized Di�e�Hellman assumption 	GDH�
Assumption
� This assumption was originally considered in the context of a generalization
of the Di�e�Hellman key�exchange protocol to k � � parties� We prove that breaking
this assumption modulo a so called Blum�integer would imply an e�cient algorithm for
factoring Blum�integers� Therefore� both the generalized key�exchange protocol and our
pseudo�random function 	that is based on the GDH�Assumption
 are secure as long as fac�
toring Blum�integers is hard� Our reduction strengthens a previous �worst�case� reduction
of Shmuely ������
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Chapter �

Introduction

The research re�ected in this dissertation is a study of 	computational
 pseudo�randomness�
More speci�cally� the main objective of this research is the e�cient and simple construction
of pseudo�random functions and permutations ���� ���� where e�ciency refers both to the
sequential and parallel time complexity of the computation� Pseudo�random functions and
permutations are fundamental cryptographic primitives with many applications in cryptog�
raphy and more generally in computational complexity�

��� Pseudo�Randomness and Computational Indistin�

guishability

Since pseudo�randomness is the main notion considered in this work� we start by reviewing
some of the central ideas of this area� We also discuss the de�nitions� applications and con�
structions of the relevant pseudo�random objects� with a focus on pseudo�random functions
and permutations� Good references for additional reading are Goldreich ���� ��� and Luby
�����

To understand the notion of computational pseudo�randomness we must �rst consider
the role of randomness in computations� A randomized algorithm is an algorithm that is
allowed to ��ip coins�� A coin �ip is modeled as a random 	i�e�� uniformly distributed

bit� Therefore� at each step of its computation� a randomized algorithm can obtain a bit
which is � with probability half and � with probability half 	and is independent of previous
coin��ips
� An important question� though less relevant to our discussion� is to determine
the applicability of this model� What kind of random sources are available to computers�
We note that this question is non�trivial even to those who believe that God 	or Nature

does indeed �ip coins�

Many algorithms and protocols use randomness to perform computational tasks� These
algorithms are often faster and simpler than the corresponding� currently known� determin�
istic algorithms� For some tasks� as those of achieving cryptographic security or simulating
probabilistic events� randomness is essential� Thus� it is natural to view randomness as a
computational resource and to study its relations with other computational resources like
time and space� More speci�cally� a natural question is that of derandomization� study�

�
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ing ways of reducing or eliminating the amount of randomness used by algorithms without
signi�cantly enlarging their usage of other resources�

An important tool for derandomization is pseudo�randomness 	though� as we argue below�
the role of pseudo�randomness is not limited to derandomization
� Consider an algorithm
A that uses a random string of length � 	i�e�� A uses � random bits
� One way to reduce
the amount of randomness used by A� 	without extensively changing its internal structure
�
is to replace its uniformly distributed random string with a string sampled from a di
erent
distribution D� That is� to use an algorithm A� that samples a string �r from D and invokes
A with �r as its random string� For this technique to be useful� D must have the following
properties�

�� Sampling a string from D should require signi�cantly less than � random bits 	to
achieve our original goal of derandomizing A
�

�� D is e�ciently samplable� For the derandomization of A 	using D
 not to be too
costly� the resources required to sample a string from D should be comparable with
those needed to execute A 	otherwise running A� is substantially more expensive than
running A
�

�� The �behavior� ofA should be practically the same when using a uniformly distributed
string and when using a string sampled from D� For example� if A solves some compu�
tational problem its probability to answer correctly 	on every input or on most inputs

should be almost the same for both distributions of its random string� In this sense
A does not distinguish D from the uniform distribution 	put di
erently� A cannot be
used to distinguish the two distributions
�

By Property �� D has much less entropy than the uniform distribution and is therefore
statistically very di
erent from it� However� Property �� means that for the speci�c com�
putational task at hand D is almost as good as the uniform distribution� This contrast
between a large statistical di
erence and computational indistinguishability is in the essence
of pseudo�randomness 	see also ���� ��� for additional insight on the role of Properties ���
�
To better understand the de�nition of computational indistinguishability 	due to Goldwasser
and Micali ���� and to Yao �����
 we can think of the algorithm A not as trying to perform
just any computational task but rather as trying to distinguish between two distributions D
and D�� with probability half A gets an input sampled from D and with probability half an
input sampled from D�� The algorithmA tries to guess from which distribution its input was
sampled� D and D� are indistinguishable to A if its success probability is at most negligibly
larger than half 	which is the success probability A can easily achieve for every D and D�
�

Usually however we would be interested in derandomizing a class of algorithms 	or proto�
cols
 instead of a single algorithm A as in the discussion above� In such a case� we want the
pseudo�random distribution to �fool� every algorithm from the class that we are trying to
derandomize� That is� to be indistinguishable from random for this class� In cryptography�
the class of algorithms we want to fool is that of �all e�cient algorithms� 	which should cap�
ture all possible adversaries
� For convenience� �e�cient algorithms� are usually modeled as
probabilistic polynomial�time algorithms� However� the results presented in cryptographic
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literature are usually more concrete 	i�e�� they imply statements such as �If there is an algo�
rithm that distinguishes these functions from random in time t and advantage � then there
is and algorithm that inverts that function in time t� and success probability ����
 as is the
case for the work presented here�

����� Pseudo�Random �Bit� Generators

Pseudo�random 	bit
 generators were introduced by Blum and Micali ���� and Yao ������ A
pseudo�random generator is an e�ciently computable 	deterministic
 function such that� 	�

Its output is longer than its input and 	�
 For a uniformly distributed input its output is
indistinguishable from uniform to any e�cient algorithm� In other words� pseudo�random
generators de�ne a pseudo�random distribution of bit�sequences 	their output distribution

which is e�ciently samplable using a relatively small truly random bit�sequence 	usually
referred to as the seed
�

Unfortunately� the existence of pseudo�random generators is unproven in itself 	such a
proof would be a tremendous breakthrough in computational complexity� since in particular
it implies that P �� NP 
� However� the existence of pseudo�random generators can be
reduced to other computational assumptions� Most notably� Hastad� Impagliazzo� Levin and
Luby ���� showed how to construct a pseudo�random generator from any one�way function
	informally� a function is one�way if it is easy to compute its value on any input but hard to
invert it on a random input
� In fact� pseudo�random generators as well as pseudo�random
functions and permutations exist i
 one�way functions exist ���� ��� ��� ��� ����

As suggested above� a pseudo�random generator can be used for derandomization� A
trivial way of derandomizing an algorithm is going over all possible random strings 	looking
for a �good point� or taking majority over all possible outputs
� By using a pseudo�random
generator� the number of strings we have to go through can be substantially reduced� Thus� it
was shown by Yao ����� that if pseudo�random generators 	that fool non�uniform polynomial�
size circuits
 exist then

RP�BPP � �
���

DTIME	�n
�


�

where RP 	resp� BPP 
 is the class of languages that can be accepted by a probabilistic
polynomial�time algorithm with one�sided 	resp� two�sided
 error� Stronger results in this
direction were given by ���� ��� ����� A di
erent line of work ��� �� ��� ��� ���� ���� ����
���� ����� deals with the construction of bit�generators that fool an observer of restricted
computational power 	e�g� generators against polynomial�size constant�depth circuits
 or
with bounded space and read�once access to the random tape� Most of these constructions
need no unproven assumptions�

In our discussion we are mostly interested in the role of pseudo�randomness in cryptog�
raphy� A representative scenario is the following� Assume that two parties A and B share
a secret n�bit long random string r and that A wants to communicate to B an n�bit long
message m in a way that prevents an eavesdropper from learning anything about m� In this
case A can use r as a one time pad and send m� r 	bit�wise XOR of m and r
 to B� From
Shannon�s work ����� it is known that this solution is optimal in the number of random bits
shared by A and B� Thus� in order to obtain perfect security in the information theoretical
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sense� every two parties in a distributed network need to share in advance a random string of
length proportional to the total length of the messages that will be communicated between
them ever� This is rarely practical� hence A and B should consider trading the requirement
�impossible to learn 	anything about m
� with the weaker requirement �computationally
infeasible to learn 	anything about m
�� This can be achieved using a pseudo�random gen�
erator G with output�length � � �	n
 as follows� the encryption of an ��bit message m 	that
is the value A sends to B
 can be de�ned to be Er	m
 � m � G	r
� For every message m�
the encryption Er	m
 is indistinguishable from random� It follows that for any two messages
m and m� the encryptions Er	m
 and Er	m

�
 are indistinguishable from each other� We
therefore have a way to encrypt an ��bit message m such that the content of m is concealed
while using less than � bits� In fact� for any constant c � �� if there exists any pseudo�random
generator then there also exists one that outputs nc bits on an n�bit input� Thus� in the
scenario discussed above if A and B communicate nc bits 	where n is the security parameter

it is enough for them to share an n�bit truly random secret�

The examples we saw show that pseudo�random generators can save random bits and
can reduce the length of keys used in cryptographic settings� We note that there are many
other 	perhaps more striking
 examples where tasks that are impossible in the information
theoretical sense have a computational analogue that can be performed using pseudo�random
generators� One such example are bit�commitment schemes� Loosely speaking� these are two�
phase protocols between A and B� At the �rst phase A commits itself to a bit b and at the
second phase A reveals its commitment� The requirements are that at the end of the �rst
phase 	a polynomial�time bounded
 B would not be able to distinguish a commitment to
� from a commitment to � and at the second stage 	even an all powerful
 A would not
be able to reveal its commitment both as a commitment to � and as a commitment to ��
Naor ���� showed how to use the fact that the output of a pseudo�random generator and the
uniform distribution are simultaneously computationally indistinguishable and statistically
very di
erent in order to obtain a bit commitment scheme�

����� Pseudo�Random Function Ensembles

As mentioned above� the research presented herein is focused on the construction of pseudo�
random functions and permutations� These are e�cient pseudo�random distributions of
functions 	resp� permutations
 that can replace uniformly�chosen functions 	resp� permuta�
tions
 in many applications� They are the key component of private�key cryptography and
have many additional applications in cryptography and in computational complexity in gen�
eral� In this section� we discuss the de�nitions and original constructions of these powerful
cryptographic primitives as well as some of their applications�

De	nition

Pseudo�random functions were introduced by Goldreich� Goldwasser and Micali ����� These
are e�cient distributions of functions that are indistinguishable from the uniform distribu�
tion to an e�cient 	i�e�� polynomial�time bounded
 observer� There are two subtleties in the
de�nition of a pseudo�random distribution of functions� F � ffsg� compared with the de��
nition of a pseudo�random distribution of bit sequences� The �rst issue is the exact meaning
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of an �e�cient distribution� in this context� Here the answer is rather straightforward� It
should be easy to sample a key s from the distribution and given such a key it should be
easy to evaluate the corresponding function fs on any input� The second issue is what kind
of access does the distinguisher have to the function� This is a more delicate question�

Assume that F � ffsg is a distribution of functions in Bn� where Bn is the set of all
f�� �gn �� f�� �g functions 	i�e�� the set of Binary functions with domain f�� �gn
� Consider
an algorithm A that tries to distinguish F from the uniform distribution over Bn� The
algorithm A has �some access� to a function g � Bn which with probability half is sampled
from F and with probability half is uniformly distributed� A distinguishes F from random
if it has a non�negligible advantage over half in guessing from which of the distributions g
was sampled� The question is what kind of access should A have� In the actual de�nition
of pseudo�random functions 	given in ����
 the distinguisher A has a black�box access to g�
This means that at each step A can specify an input x to g and obtain the value g	x
� One
may be tempted to strengthen the de�nition by giving the distinguisher additional access
to the functions� A �rst idea might be to give the �n�long bit�sequence of all the outputs
of g as an input to A� However� this is an exponentially long input which makes A 	which
is polynomial in its input length
 too powerful 	for example this might allow A to verify
whether g � F by going over all possible keys in F 
� Another idea is to give A a key s
whenever g � fs � F � However� given a short description� g can no longer be confused to
be random�� We stress that pseudo�random functions are only guaranteed to look random
when the distinguisher does not get the key of the function� This means that usually pseudo�
random functions cannot be used in a scenario where all the parties 	including the �bad�
ones
 should be able to compute the functions on their own�

It still remains to determine how much freedom the distinguisher A should have in select�
ing the values it asks to see� In ����� the distinguisher is has a adaptive 	black�box
 access to
g� The meaning of �adaptive� here is that each input x that A speci�es may depend on the
value of g on previous queries� This adaptiveness is part of what makes pseudo�random func�
tions so strong� In some cases it makes sense to consider weaker notions� For examples� one
might consider a static attack where the distinguisher has to specify all its queries in advance�
Another interesting example� is a random attack where the distinguisher gets the value of
g on uniformly distributed inputs� We call such functions weak pseudo�random functions
and further consider them in Section ������ In particular we show a relatively e�cient way
of constructing full �edged pseudo�random functions from weak pseudo�random functions�
We note that pseudo�random functions as well as the weaker notions mentioned above exist
i
 one�way functions exist ���� ��� ���� However� weaker notions are still interesting since
they may be easier to construct e�ciently 	more on de�nitions of function families that are
weaker than pseudo�random functions can be found in �����
�

�Still it is a worthwhile goal to to come up with interesting de�nitions for functions that look random to an

algorithm that gets their key and with distributions of functions that satisfy such de�nitions �see ���� ��� �	

for some of the recent relevant work��
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Applications

An equivalent formulation of pseudo�random functions is as a distribution of exponentially
long bit�sequences that is indistinguishable from random to an e�cient observer that has
direct access to the sequence� This formulation stresses some of the properties that make
pseudo�random functions so strong and so easy to work with compared to pseudo�random
generators� Sharing or �xing a key of a pseudo�random function is equivalent in many
scenarios to sharing or �xing a huge amount of randomness� What makes pseudo�random
functions so powerful is that we do not need to know in advance how many bits will be used
or the location of these bits� Indeed pseudo�random functions have numerous applications
	a few examples appear in ���� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����
�

Probably� the most notable applications of pseudo�random functions are in private�key
cryptography� They provide parties who share a common key straightforward protocols
for sending secret messages to each other� for identifying themselves and for authenticating
messages ����� We now describe the basic schemes for performing these three most common
tasks of private�key cryptography 	more elaborated schemes that achieve better security
also exist
� Consider a group of parties that share a pseudo�random function fs� They may
perform�

Authentication To authenticate a message m� append the authentication tag fs	m
 to the
message�

From the de�nition of pseudo�random functions we have that this authentication
scheme is existentially unforgeable against a chosen message attack� No e�cient ad�
versary that adaptively queries for the tags of chosen messages m�� m�� � � �mq�� can
produce the tag of any new message m�

Identi	cation A member of the group� V� determines if A is also a member by issuing a
random challenge r and verifying that the response of A is fs	r
�

No e�cient adversary 	that is even allowed to participate in executions of the protocol
as the veri�er
 can impersonate a member of the group�

Encryption The encryption of a message m is de�ned to be hr� fs	r
 � mi� where r is a
uniformly chosen input�

This scheme is semantically secure against an e�cient adversary that performs a chosen
ciphertext attack in the preprocessing mode� See ���� ��� for the relevant terminology
on attacks 	chosen plaintext� chosen ciphertext in the preprocessing and postprocessing
modes
 and notions of security 	semantic and non�malleability
� Intuitively it means
that an adversary that is allowed to ask for encryptions or descriptions and later gets
an encryption of a new message m� cannot learn anything about m��

�For any implementation of f this scheme ismalleable �i�e� a ciphertext of related message can be generated
by an adversary� and hence not secure against a chosen ciphertext attack in the postprocessing mode �i�e�
when the adversary queries for decryptions after getting the challenge�� A way to amend this problem was
proposed in the full version of �
�
�
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Note that it may be possible to use pseudo�random 	bit
 generators directly to enable private�
key cryptography between two parties A and B� The idea is that at each interaction A and
B they can use a di
erent part of a pseudo�random sequence they share for their private�key
operations 	such as authentication� identi�cation and encryption
� However� for such an idea
to work� care should be taken to synchronize the pointers A and B have to the sequence
	which might be non�trivial in the presence of an adversary
� Even if such synchroniza�
tion can be achieved for two parties it is impossible in the case of multi�party private�key
cryptography� In this case pseudo�random functions are indeed essential�

We stress that pseudo�random functions have many additional applications including
in public�key cryptography� For example� Bellare and Goldwasser ���� showed how to use
pseudo�random functions and a non�interactive zero�knowledge of their values to construct
digital�signatures� Another interesting example was given by Goldreich ���� who showed
how to eliminate the state in the Goldwasser�Micali�Rivest signature scheme 	the technique
of ���� is very general
� In addition� the existence of pseudo�random functions computable
in some complexity class has profound consequences to computational complexity and to
computational learning�theory�

� As was observed by Valiant ������ if a concept class contains pseudo�random functions
then it cannot be learned� There exists a distribution of concepts� computable in
this class� that is hard for every e�cient learning algorithms� for every �non�trivial�
distribution on the instances even when membership�queries are allowed� Note that
such an unlearnability result is very strong 	see Section ����� for more details
�

� As shown by Razborov and Rudich ����� if a circuit�class contains pseudo�random
functions 	that are secure against a subexponential�time adversary
� then there are no�
what they called� Natural Proofs 	which include all known lower bound techniques
 for
separating this class from P	poly�

As we discuss in Section ������ these results imply interesting consequences of our more
e�cient constructions of pseudo�random functions�

The GGM�Construction

In addition to introducing pseudo�random functions� Goldreich� Goldwasser and Micali ����
have suggested a construction of such functions from pseudo�random generators� Let G be
a pseudo�random generator that expands the input by a factor of two 	e�g� ���� ��� ���
�
De�ne G� and G� such that for any n�bit string x� both G�	x
 and G�	x
 are n�bit strings
and G	x
 � hG�	x
� G�	x
i� Under the GGM�Construction� the key of a pseudo�random
function fs � f�� �gn �� f�� �gn is a uniformly chosen n�bit string� s� For any n�bit input�
x � x�x� � � �xn� the function fs is de�ned by�

fs	x

def
� Gxn	� � � 	Gx�	Gx�	s

 � � �
�

For roughly a decade� this was the only known construction of pseudo�random functions
based on standard computational assumptions 	including concrete assumptions such as �fac�
toring is hard� as well as general assumptions such as the existence of one�way functions
�
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Their construction is sequential in nature since computing fs consists of n successive in�
vocations of G� The goal of the research described in Chapter � is to present alternative
constructions for pseudo�random functions that are more e�cient either in the parallel�time
complexity or the sequential�time complexity of evaluating f 	and preferably in both
�

����� Pseudo�Random Permutation Ensembles

Pseudo�random permutations were introduced by Luby and Racko
 ����� The main moti�
vation to consider pseudo�random permutations is that they formalize the well established
cryptographic notion of block ciphers� These are length�preserving private�key encryption
schemes� the private key of a block�cipher determines a permutation E such that the en�
cryption of a message m is E	m
 and the decryption of a ciphertext c is E��	c
�� A highly
in�uential example of a block cipher is the Data Encryption Standard 	DES
 ������

When a block cipher E is indistinguishable from a random permutation then the only
information that is leaked from a sequence of ciphertexts fE	m�
� E	m�
� � � � � E	m�
g on
the corresponding plaintexts is whether or not mi � mj for pairs i �� j� Still� when us�
ing pseudo�random functions for private�key encryption even this information is concealed�
However� using a length�preserving encryption scheme has the advantage that the plaintext
and ciphertext are of the same length� This property saves memory and prevents waste of
communication bandwidth� Furthermore� it enables the easy incorporation of the encryption
scheme into existing protocols or hardware components�

The de�nition Luby and Racko
 gave to pseudo�random permutation ensembles is closely
related to the de�nition of pseudo�random functions described above� Pseudo�random per�
mutation ensembles are e�cient distributions of permutations that are indistinguishable
from the uniform distribution to an e�cient observer that has adaptive black�box access to
the permutations 	i�e� the distinguisher can only access the permutation by specifying inputs
and obtaining the value of the permutation on these inputs
� In addition� Luby and Racko

considered a stronger notion of pseudo�randomness which they call super pseudo�random per�
mutation generators� Here the distinguisher also has adaptive black�box access to the inverse
permutation� Following ���� we use the term strong pseudo�random permutation ensembles
instead� The two notions of security are analogous to the di
erent attacks considered in the
context of block ciphers�

� Pseudo�random permutations can be interpreted as block ciphers that are secure against
an adaptive chosen�plaintext attack� Informally� this means that an 	e�cient
 adver�
sary� with access to the encryptions of messages of its choice� cannot tell apart those
encryptions from the values of a truly random permutation�

� Strong pseudo�random permutations can be interpreted as block ciphers that are secure

�Block�ciphers cannot always be directly used to encrypt the entire message since often they have �xed
�and relatively small� input length� In such a case� the block�cipher is used in some mode of operation that
enables the encryption of longer messages� The standard modes of operation �proposed in the context of
DES� are ECB� CBC� CFB and OFB� Unfortunately� all these modes reveal information on the message or
on relations between di�erent messages� In Section 
��� we propose a di�erent way to use block�ciphers that
does not have this problem�
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against an adaptive chosen plaintext and ciphertext attack� Here� the adversary has
the additional power to ask for the decryption of ciphertexts of its choice�

The LR�Construction

Luby and Racko
 ���� provided a construction of strong pseudo�random permutations 	the
LR�Construction
 which was motivated by the structure of DES� The basic building block is
the so called Feistel permutation based on a pseudo�random function� A Feistel permutation

for a function f � f�� �gn �� f�� �gn is a permutation on f�� �g�n de�ned by Df	L�R

def
�

	R�L � f	R

� where jLj � jRj � n� Each of the �� rounds of DES involves a Feistel
permutation of a function determined by the �� key bits� The Luby�Racko
 design of
pseudo�random permutations 	resp� strong pseudo�random permutations
 is Df� 	Df� 	Df�

	resp� Df� 	 Df� 	Df� 	 Df�
 where all fis are independent pseudo�random functions 	see
Figure ����a for an illustration
� This elegant construction inspired a considerable amount
of research� The work described in Chapter � provides a study of the LR�Construction�

��� Overview of Research Objectives and Results

The research included here is composed of two main parts� 	�
 Several constructions of
pseudo�random functions� 	�
 A study of the LR�Construction and resultant constructions
of pseudo�random permutations� In Section ���� we have described the importance of pseudo�
random functions and permutations in cryptography and part of their applications� We also
described the original constructions of these primitives that were given in ���� ���� The
many applications of pseudo�random functions and permutations motivated our search for
more e�cient and simpler constructions� where e�ciency refers both to the sequential and
parallel time complexity of the computation� In this section we describe some of our results
in that direction as well as some of the consequences of our constructions� In addition� we
brie�y describe our research of some of the underlying cryptographic assumptions used in
our constructions�

����� Constructions of Pseudo�Random Functions

For our constructions of pseudo�random functions described in Chapter �� we introduce and
study a new cryptographic primitive which we call a pseudo�random synthesizer and a gener�
alization of this primitive which we call a k�dimensional pseudo�random synthesizer� These
primitives are of independent interest as well� In addition� we consider various applications of
our constructions and study some of the underlying cryptographic assumptions used in these
constructions� Motivated by the inherent sequentiality of the GGM�Construction� we show
	in Section ���
 a parallel construction of pseudo�random functions from a pseudo�random
synthesizer and parallel constructions of pseudo�random synthesizers based on several con�
crete and general intractability assumptions� In Section ���� we show even more parallel
constructions of pseudo�random functions based on concrete intractability assumptions 	such
as the assumption that factoring Blum�integers is hard
� In addition� these constructions are
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more e�cient and have a simple algebraic structure� The constructions of Section ��� are mo�
tivated by the constructions of Section ��� 	and in particular by the notion of k�dimensional
synthesizers
� We now describe the main results of Chapter ��

Pseudo�Random Synthesizers and Functions

We introduce 	in Section �����
 a new cryptographic primitive which we call a pseudo�
random synthesizer� A pseudo�random synthesizer is a two variable function� S	�� �
� so that
if many 	but polynomially bounded
 random assignments� hx�� � � � � xmi and hy�� � � � � ymi� are
chosen to both variables� then the output of S on all the combinations of these assignments�
	f	xi� yj



m
i�j��� is indistinguishable from random to a polynomial�time observer� Our main

results are�

�� A construction of pseudo�random functions based on pseudo�random synthesizers 	de�
scribed in Sections �����������
� Evaluating such a function involves logn phases� where
each phase consists of several parallel invocations of a synthesizer 	with a total of n
invocations altogether
�

�� Constructions of parallel 	NC�
 synthesizers based on standard number�theoretic as�
sumptions such as �factoring is hard�� RSA 	it is hard to extract roots modulo a
composite
 and Di�e�Hellman 	described in Section �����
� In addition� a very sim�
ple construction based on a problem from learning 	described in Section �����
� The
key�generating algorithm of these constructions is sequential for RSA and factoring�
non�uniformly parallel for Di�e�Hellman and parallel for the learning problem�

�� An extremely simple� parallel construction of synthesizers based on what we call a weak
pseudo�random function 	described in Section �����
� A weak pseudo�random function
is indistinguishable from a truly random function to a 	polynomial�time bounded
 ob�
server who gets to see the value of the function on uniformly distributed inputs 	instead
of inputs of its choice
� This construction almost immediately implies constructions of
synthesizers based on trapdoor one�way permutations and based on any hard�to�learn
problem 	under the de�nition of ����
�

Taking 	�
 and 	�
 together we get a pseudo�random function that can be evaluated in NC��

Our constructions of pseudo�random functions have additional attractive properties�
First� it is possible to obtain from the constructions a sharp time�space tradeo
� Loosely
speaking� by keeping m strings as the key we can reduce the amount of work for com�
puting the functions from n invocations of the synthesizer to about n

logm
invocations in

logn
 log logm phases 	thus� also reducing the parallel�time complexity
� In addition� the
construction obtains a nice incremental property� For any y of Hamming distance one from
x� given the computation of f	x
 we can compute f	y
 with only logn invocations of the
synthesizer 	we can also make this property hold for y � x��
� We discuss both properties
in Section ������
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Concrete Constructions of Pseudo�Random Functions

This part of the work 	described in Section ���
 studies the e�cient construction of several
fundamental cryptographic primitives� Our major result are two related constructions of
pseudo�random functions based on number�theoretic assumptions� The �rst construction
gives pseudo�random functions i
 the decisional version of the Di�e�Hellman assumption
	DDH�Assumption
 holds� The second construction is at least as secure as the assump�
tion that factoring the so called Blum�integers is hard�� Having e�cient pseudo�random
functions based on factoring is very desirable since this is one of the most established con�
crete intractability assumption used in cryptography� The construction based on the DDH�
Assumption is also attractive since these pseudo�random functions are even more e�cient 	in
that they have a larger output size
 and since the construction is more security�preserving
as described below� We study the DDH�Assumption in Section ���� The properties of our
new pseudo�random functions are�

E
ciency� Computing the value of the function at a given point is comparable with two
modular exponentiations and is more e�cient by an �	n
 factor than any previous
proposal 	that is proven to be as secure as some computational intractability assump�
tion
� This is essential for the e�ciency of the many applications of pseudo�random
functions�

Depth� Given appropriate preprocessing of the key� the value of the functions at any given
point can be computed in TC�� compared with TC� for the concrete constructions in
Section ���� Therefore this construction�

�� Achieves reduced latency for computing the functions in parallel and in hardware
implementations�

�� Has profound consequences to computational complexity 	i�e�� Natural Proofs
�����
 and to computational learning�theory�

Simplicity� The simple algebraic structure of the functions implies additional desirable
features� To demonstrate this� we show 	in Section �����
 a simple zero�knowledge proof
for the value of the function and other protocols� We suggest the task of designing
additional protocols and improving the current ones as an interesting line for further
research�

We note that our constructions 	both in Section ��� and Section ���
 do not weaken
the security of the underlying assumptions� Take for instance the constructions that are
based on factoring� If there is an algorithm for breaking this construction in time t and
success � 	success � means that the observer has advantage of at least � in distinguishing
the pseudo�random function from the random one
� then there is an algorithm that works
in time poly	t	�
 and factors Blum�integers with probability poly	�	t
� See ���� ��� for a
discussion of security preserving reductions� In their terminology� such a reduction is called

�In fact we prove the security of the second construction based on a generalized version of the computa�
tional DH�Assumption �GDH�Assumption�� However� breaking the GDH�Assumption modulo a composite
would imply an e�cient algorithm for factorization�
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poly�preserving� In fact� most of our reductions are even more secure than that� In particular�
the construction of pseudo�random functions based on the DDH�Assumption 	described in
Section �����
 is linear�preserving� If there is an algorithm for breaking this construction in
time t and success �� then there is an algorithm that works in time t � poly	n
 	where n is
the security parameter
 and breaks the DDH�Assumption with probability �� This better
security is partly due to the fact that this construction does not rely on the hard�core bits
of ��� ��� 	that are not known to be linear�preserving
�

Some Consequences of the Functions

As mentioned above� the original motivation of our constructions was to overcome the inher�
ent sequentiality of the GGM�Construction and to come up with pseudo�random functions
that have shallow depth� In Section ��� we show parallel constructions of pseudo�random
functions based on several 	general and concrete
 intractability assumptions� The functions
constructed under concrete intractability assumptions are computable in NC� 	or actually in
TC�
 given appropriate preprocessing of their key� The functions constructed in Section ���
are in TC� which is the class of functions computable by constant depth circuits consisting
of a polynomial number of threshold gates 	and therefore also in NC�
� These functions
have the additional advantage of being e�cient and of having a simple algebraic structure�
We �rst discuss the motivation for having parallel pseudo�random functions and then the
motivation for the additional properties of our functions�

� For some applications of pseudo�random functions minimizing the latency of computing
the functions is essential� Such an application is the encryption of messages on a
network� where the latency of computing the function is added to the latency of the
network� Having shallow�depth pseudo�random functions implies reduced latency in
computing those functions in hardware and parallel implementations 	note that pseudo�
random functions are likely to be implemented in hardware as is the case for DES
�

� Many of the applications of pseudo�random functions preserve the parallel�time com�
plexity of the functions� An important example is the LR�Construction of pseudo�
random permutations from pseudo�random functions that is further discussed in Chap�
ter �� Therefore� our constructions yield parallel strong pseudo�random permutations
as well�

� There is a deep connection between pseudo�random functions and hardness results
for learning� Since a random function cannot be learned� if a concept class is strong
enough to contain pseudo�random functions we cannot hope to learn it e�ciently ������
There exists a distribution of concepts� computable in this class� that is hard for every
e�cient learning algorithm� for every �non�trivial� distribution on the instances even
when membership�queries are allowed� Therefore� a typical result that can be obtained
from our constructions is that if factoring is hard then TC� cannot be learned� Notice
that the unlearnability result implied by the existence of pseudo�random functions is
very strong� Since no construction of pseudo�random functions in NC was known�
weaker unlearnability results for NC� and TC�� based on cryptographic assumptions�
were obtained in ��� ��� ��� 	see Section ����� for more details
� It is also interesting
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to compare with the result of Linial� Mansour and Nisan ���� who showed that AC�

can be learned in time slightly super�polynomial under the uniform distribution on the
examples�

� Another application of pseudo�random functions in complexity was suggested by Razborov
and Rudich ������ They showed that if a circuit�class contains pseudo�random func�
tions 	that are secure against a subexponential�time adversary
� then there are no�
what they called� Natural Proofs 	which include all known lower bound techniques

for separating this class from P	poly� Therefore� a typical result that can be obtained
from our construction is that if factoring cannot be carried out in subexponential�time�
then there are no Natural Proofs for separating TC� from P	poly�

We note that one can extract a similar result 	assuming the hardness of factoring
 from
the work of Kharitonov ����� which is based on the pseudo�random generator of Blum�
Blum and Shub �����

Except of being more parallelizable� the constructions of pseudo�random functions that
are described in Section ��� have two additional advantages over previous ones�

�� It is e�cient� computing the value of the function at any given point is comparable
with two exponentiations� This is the �rst construction that seems e�cient enough
to be implemented and indeed these functions were implemented by Langberg in �����
Given the many applications of pseudo�random functions it is clear that having e�cient
pseudo�random functions is an important goal�

�� It has a simple algebraic structure� To see our main motivation here� consider the
Bellare�Goldwasser signature scheme� The public key in this scheme contains a com�
mitment for a key� s� of a pseudo�random function� The signature for a message m
is composed of a value y and a non�interactive zero�knowledge proof that y � fs	m
�
In order for this scheme to be attractive� we must have a simple non�interactive zero�
knowledge proof for claims of the form y � fs	m
� In this and other scenarios we might
wish to have additional properties for the functions such as a simple function�sharing
scheme in the sense of ����� It seems that for such properties to be possible we need a
simple construction of pseudo�random functions�

In Section ������ we consider some desirable features of pseudo�random functions� We
also present preliminary results in obtaining these features for our construction of
pseudo�random functions� 	�
 A rather simple zero�knowledge proof for claims of the
form y � fs	m
 and y �� fs	m
� 	�
 A way to distribute a pseudo�random function
among a set of parties such that only an authorized subset can compute the value of
the function at any given point� 	�
 A protocol for �oblivious evaluation� of the value
of the function� Assume that a party� A� knows a key� s� of a pseudo�random function�
Then A and a second party� B� can perform a protocol during which B learns exactly
one value fs	x
 of its choice whereas A does not learn a thing 	and� in particular�
does not learn x
� We consider the task of improving these protocols and designing
additional ones to be an interesting line for further research�
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Related Work

In addition to introducing pseudo�random functions� Goldreich� Goldwasser and Micali ����
have suggested a construction of such functions from pseudo�random generators that expand
the input by a factor of two 	like the one in ����
� As mentioned above� the GGM construction
is sequential in nature� An idea of Levin ���� is to select some secret hash function h and
apply the GGM construction to h	x
 instead of x� If jh	x
j � log� n� then the depth of
the GGM�tree is only log� n and presumably we get a pseudo�random function in NC� The
problem with this idea is that we have decreased the security signi�cantly� with probability
�	nlog n the function can be broken� irrespective of the security guaranteed by the pseudo�
random generator� To put this construction in the �correct� light� suppose that for security
parameter k we have some problem whose solution requires time �k 	on instance of length
polynomial in k
� If we would like to have security �	�k for our pseudo�random function�
then the Levin construction requires depth k whereas our construction requires depth log k�

Impagliazzo and Naor ���� have provided parallel constructions for several other cryp�
tographic primitives based on the hardness of subset sum 	and factoring
� The primitives
include pseudo�random generators that expand the input by a constant factor�� universal
one�way hash functions and strong bit�commitments�

Blum et� al� ���� proposed a way of constructing in parallel several cryptographic prim�
itives based on problems that are hard to learn� We extend their result by showing that
hard�to�learn problems can be used to obtain synthesizers and thus pseudo�random func�
tions�

A di
erent line of work ��� �� ��� ��� ���� ���� ���� ���� ����� more relevant to deran�
domization and saving random bits� is to construct bit�generators such that their output
is indistinguishable from a truly random source to an observer of restricted computational
power 	e�g� generators against polynomial�size constant�depth circuits
� Most of these con�
structions need no unproven assumptions�

It turns out that there are a number of researchers who observed that the average�
case DDH�Assumption yields pseudo�random generators with good expansion� One such
construction was proposed by Racko
 	unpublished
� A di
erent construction is suggested
by Gertner and Malkin ����� This construction is similar to the pseudo�random generator
one gets by scaling down our pseudo�random functions�

����� A Study of Some Number�Theoretical Assumptions

The constructions of pseudo�random functions 	described in Section ���
 are based on two
number�theoretical assumptions that are related to the Di�e�Hellman key�exchange proto�
col� The �rst is the decisional version of the Di�e�Hellman assumption 	DDH�Assumption

and the second is the generalized version of the 	computational
 Di�e�Hellman assumption
	GDH�Assumption
� To better understand the security of our constructions we include 	in
Chapter �
 a study of these assumptions�

� The DDH�Assumption assumption is relatively new� or more accurately� was explicitly
considered only recently� In Section ��� we survey some of the di
erent applications

�They also provided a construction of AC� pseudo�random generators with small expansion�
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of the assumption and the current knowledge on its security� Furthermore� we show a
randomized reduction of the worst�case DDH�Assumption to its average case 	based on
the random�self�reducibility of the DDH�Problem that was previously used by Stadler
�����
� We consider our research of the DDH�Assumption to be of independent impor�
tance given that the assumption was recently used in quite a few interesting applications
	e�g�� ����
�

� The GDH�Assumption was originally considered in the context of a generalization of
the Di�e�Hellman key�exchange protocol to k � � parties� In Section ��� we prove
that breaking this assumption modulo a so called Blum�integer would imply an e�cient
algorithm for factoring Blum�integers� Therefore� both the generalized key�exchange
protocol and our pseudo�random functions 	that are based on the GDH�Assumption

are secure as long as factoring Blum�integers is hard� Our reduction strengthen a
previous �worst�case� reduction of Shmuely ������

����� A Study of the LR�Construction

As described above� in addition to de�ning strong pseudo�random permutations� Luby and
Racko
 ���� have provided a construction of such permutations� 	LR�Construction
 which
was motivated by the structure of DES� The basic building block is the so called Feistel
permutation� based on a pseudo�random function de�ned by the key� Their construction
consists of four rounds of Feistel permutations 	or three rounds� for pseudo�random per�
mutations
 each round involves an application of a 	di
erent
 pseudo�random function 	see
Figure ����a for an illustration
�

The part of our research described in Chapter � is a study of the LR�Construction� We
reduce somewhat the complexity of the construction and simplify its proof of security by
showing that two Feistel permutations are su�cient together with initial and �nal pair�
wise independent permutations� Minimizing the number of invocations of pseudo�random
functions makes sense since all known constructions of pseudo�random functions involve
non�trivial 	though of course polynomial�time
 computations� The revised construction and
proof provide a framework 	described in Section ���
 in which similar constructions may be
designed and their security can be easily proved� We demonstrate this by presenting some
additional adjustments of the construction�

Alongside cryptographic pseudo�randomness the last two decades saw the development
of the notion of limited independence in various setting and formulations ��� �� ��� ��� ���
��� ����� For a family of functions F to have some sort of 	limited
 independence means that
if we consider the value of a function f � chosen uniformly at random from F � at each point
as a random variable 	in the probability space de�ned by choosing f
 then these random
variables possess the promised independence property� Thus� a family of permutations on
f�� �gn is pair�wise independent if for all x �� y the values of f	x
 and f	y
 are uniformly
distributed over strings 	a� b
 � f�� �g�n such that a �� b� Functions of limited independence

�A Feistel permutation for a function f � f�� �gn �� f�� �gn is a permutation on f�� �g�n de�ned by

Df �L�R�
def
� �R�L�f�R��� where jLj � jRj � n� Each of the �� rounds of DES involves a Feistel permutation

of a function determined by the 
� key bits�
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are typically much simpler to construct and easier to compute than 	cryptographic
 pseudo�
random functions�

New Results

The goal of this research is to provide a better understanding of the LR�Construction and
as a result improve the construction in several respects� Our main observation is that the
di
erent rounds of the LR�Construction serve signi�cantly di
erent roles� We show that the
�rst and last rounds can be replaced by pair�wise independent permutations and use this in
order to�

�� Simplify the proof of security of the construction 	especially in the case of strong
pseudo�random permutations
 and provide a framework for proving the security of
similar constructions�

�� Derive generalizations of the construction that are of practical and theoretical interest�
The proof of security for each one of the constructions is practically �free of charge�
given the framework�

�� Achieve an improvement in the computational complexity of the pseudo�random per�
mutations  two applications of a pseudo�random function on n bits su�ce for com�
puting the value of a pseudo�random permutation on �n bits at a given point 	vs�
four applications in the original LR�Construction
� This implies that the reduction is
�optimal��

As discussed in Section ������ the new construction is in fact a generalization of the original
LR�Construction� Thus� the proof of security we give 	Theorem �����
 also applies to the
original construction� We also show how the main construction can be relaxed by� 	�
 Using
a single pseudo�random function 	instead of two
 and 	�
 Using weaker and more e�cient
permutations 	or functions
 instead of the pair�wise independent permutations� The main
generalizations of our construction 	described in Sections �������
 can brie�y be describe as
follows�

�� Using t rounds of 	generalized
 Feistel permutations 	instead of two
 the success
probability of the distinguisher is reduced from approximately m�

����
to approximately

t
�
� m�

������t�� � where the permutation is on � bits and the distinguisher makes at most m
queries 	see Figure ��� for an illustration
�

�� Instead of applying Feistel permutations on the entire outputs of the �rst and second
rounds� Feistel permutations can be separately applied on each one of their sub�blocks�
This is a construction of a strong pseudo�random permutation on many blocks using
pseudo�random functions on a single block 	see Figure ��� for an illustration
�

Finally� we analyzes in Section ��� the di
erent constructions of this work as constructions
of k�wise ��dependent permutations�
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Related Work

The LR�Construction inspired a considerable amount of research� We try to refer to the
more relevant 	to this work
 part of these directions�

Several alternative proofs of the LR�Construction were presented over the years� Maurer
���� gives a proof of the three�round construction� His proof concentrates on the non�adaptive
case� i�e�� when the distinguisher has to specify all its queries in advance� A point worth
noticing is that indistinguishability under non�adaptive attacks does not necessarily imply
indistinguishability under adaptive attacks� For example� a random involution 	an involution
is a permutation which is the inverse of itself
 and a random permutation are indistinguish�
able under non�adaptive attacks and can be distinguished using a very simple adaptive
attack�	 A di
erent approach toward the proof was described by Patarin ����� 	this is the
only published proof� we are aware of� for the LR�Construction of strong pseudo�random
permutations! another proof was given by Koren ����
�

Other papers consider the security of possible variants of the construction� A signi�cant
portion of this research deals with the construction of pseudo�random permutations and
strong pseudo�random permutations from a single pseudo�random function� This line of
work is described in Section ������

Lucks ���� shows that a hash function can replace the pseudo�random function in the �rst
round of the three�round LR�Construction� His proof is based on ���� and is motivated by
his suggestion to use the LR�Construction when the input is divided into two unequal parts�
Lucks left open the question of the construction of strong pseudo�random permutations�

Somewhat di
erent questions were considered by Even and Mansour ���� and by Kilian
and Rogaway ����� Loosely speaking� the former construct several pseudo�random permu�
tations from a single one� while the latter show how to make exhaustive key�search attacks
more di�cult� The construction itself amounts� in both cases� to XORing the input of the
pseudo�random permutation with a random key and XORing the output of the permutation
with a second random key� This construction is essentially DESX which was invented by
Ron Rivest 	see details and references in ����
�

The background and related work concerning other relevant issues are discussed in the
appropriate sections herein� De�nitions and constructions of e�cient hash functions in Sec�
tion ������ reducing the distinguishing probability in Section ��� and the construction of
pseudo�random permutations 	or functions
 with large input�length from pseudo�random
permutations 	or functions
 with small input�length in Section ����

�An even more striking example is obtained by comparing a random permutation P that satis�es
P �P ���� � � with a truly random permutation�
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Chapter �

Preliminaries

��� Notation

We start by describing the notation used in the subsequent chapters� Additional notation
will be described in the relevant chapters�

� N denotes the set of all natural numbers�

� For any integer N � N the multiplicative group modulo N is denoted by Z�N and the
additive group modulo N is denoted by ZN�

� For any integer k� denote by �k� the set of integers " f�� �� � � � � kg� For any two integers
k 
 m� denote by �k��m� the set of integers " fk� k � �� � � � � mg�

� In denotes the set of all n�bit strings� f�� �gn�
� Un denotes the random variable uniformly distributed over In�

� Let x be any bit�string� we denote by jxj its length 	i�e� the number of bits in x
� This
should not be confused with the usage of j � j to denote absolute values�

� Let x and y be two bit strings of equal length� then x � y denotes their bit�by�bit
exclusive�or and x� y denotes their inner product mod ��

� Let x and y be any two bit strings then x	y denotes the string x concatenated with y�

� For any two functions f and g such that the range of g is the domain of f denote by
f 	 g their composition 	i�e�� f 	 g	x
 � f	g	x


�

��� Pseudo�Randomness� De�nitions

Pseudo�randomness is the main notion studied by this work� In Section ���� we have de�
scribed the importance of pseudo�random functions and permutations in cryptography� part
of their applications and their original constructions� In this section we give the de�nitions

��
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of pseudo�random functions and permutations� A motivating discussion of these de�nitions
also appears in Section ����

We give all de�nitions in this sections for some sequence of domains fAn� Bngn�N� Let
Fn be the set of all An �� Bn functions� Let Pn be the set of all permutations over Pn� We
will often take An � Bn � In 	in particular� we will often concentrate on length�preserving
functions
� In some places in this work we make the the domains explicit� For example� in
some places we use a phrase of the form �an An �� Bn function ensemble��

A function ensemble is a sequence H � fHngn�N such that Hn is a distribution over
Fn� H is the uniform function ensemble if Hn is uniformly distributed over Fn� A
permutation ensemble is a sequence H � fHngn�N such that Hn is a distribution over
Pn� H is the uniform permutation ensemble if Hn is uniformly distributed over Pn�

A function ensemble 	or a permutation ensemble
� H � fHngn�N� is e
ciently com�
putable if the distribution Hn can be sampled e�ciently and the functions in Hn can be
computed e�ciently� That is� there exist probabilistic polynomial�time Turing�machines�
I and V� and a mapping from strings to functions� �� such that 	�
 �	I	�n

 and Hn are
identically distributed and 	�
 V	i� x
 � 	�	i

	x
 	so� in fact� Hn � V	I	�n
� �

� We denote

by fi the function assigned to i 	i�e� fi
def
� �	i

� We refer to i as the key of fi and to I as

the key�generating algorithm of F �

We would like to consider e�ciently computable function 	or permutation
 ensembles
that cannot be e�ciently distinguished from the uniform ensemble� In our setting� the
distinguisher is an oracle machine that on input �n can make queries to a function in Fn
or a permutation 	or permutations
 in Pn and outputs a single bit� We assume that on
input �n the oracle machine makes only queries in An� Therefore� n serves as the security
parameter� An oracle machine has an interpretation both under the uniform complexity
model and under the non�uniform model� In the former it is interpreted as a Turing�machine
with a special oracle�tape 	in this case e�cient means probabilistic polynomial�time
 and in
the latter as a circuit�family with special oracle�gates 	in this case e�cient means polynomial�
size
� The discussion of this work is independent of the chosen interpretation�

Let M be an oracle machine� let f be a function in Fn and Hn a distribution over Fn�
Denote by Mf 	�n
 the distribution of M �s output when its queries are answered by f and
denote by MHn	�n
 the distribution Mf 	�n
� where f is distributed according to Hn� We
would also like to consider oracle machines with access both to a permutation and to its
inverse� Let M be such a machine� let f be a permutation in Pn and Hn a distribution over
Pn� Denote by Mf�f��

	�n
 the distribution of M �s output when its queries are answered by

f and f�� and denote by MHn�H
��
n 	�n
 the distribution Mf�f��

	�n
� where f is distributed
according to Hn�

De	nition ����� 
advantage� Let M be an oracle machine and let H � fHngn�N and
#H � f #Hngn�N be two function �or permutation� ensembles� We call the function

���Pr�MHn	�n
 � ��
 Pr�M

Hn	�n
 � ��

���
the advantage M achieves in distinguishing between H and #H�
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Let M be an oracle machine and let H � fHngn�N and #H � f #Hngn�N be two permutation
ensembles� We call the function

���Pr�MHn�H
��
n 	�n
 � ��
 Pr�M


Hn� 
H
��
n 	�n
 � ��

���
the advantage M achieves in distinguishing between hH�H��i and h #H� #H��i�

De	nition ����� 
��distinguish� We say that M ��distinguishes between H and #H �resp�
hH�H��i and h #H� #H��i� for � � �	n
 if for in	nitely many n� the advantage M achieves in
distinguishing between H and #H �resp� hH�H��i and h #H� #H��i� is at least �	n
�

De	nition ����� 
negligible functions� A function h � N �� N is negligible if for every
constant c � � and all su�ciently large n�

h	n
 

�

nc
�

De	nition ����� 
PFE� Let H � fHngn�N be an e�ciently computable function ensemble
and let R � fRngn�N be the uniform function ensemble� H is a pseudo�random function
ensemble if for every e�cient oracle�machine M � the advantage M has in distinguishing
between H and R is negligible�

De	nition ����� 
PPE� Let H � fHngn�N be an e�ciently computable permutation en�
semble and let R � fRngn�N be the uniform permutation ensemble� H is a pseudo�random
permutation ensemble if for every e�cient oracle�machine M � the advantage M has in dis�
tinguishing between H and R is negligible�

De	nition ����� 
SPPE� Let H � fHngn�N be an e�ciently computable permutation en�
semble and let R � fRngn�N be the uniform permutation ensemble� H is a strong pseudo�
random permutation ensemble if for every e�cient oracle�machine M � the advantage M has
in distinguishing between hH�H��i and hR�R��i is negligible�

Remark ����� We use the phrase 
f is a pseudo�random function� as an abbreviation for

f is distributed according to a pseudo�random function ensemble� and similarly for 
f is a
pseudo�random permutation� and 
f is a strong pseudo�random permutation��

Remark ����� In the de	nitions above and in the rest of this work� we interpret 
e�cient
computation� as 
probabilistic polynomial�time� and 
negligible� as 
smaller than �	poly��
This is a rather standard choice and it signi	cantly simpli	es the presentation� However�
all the proofs in this work easily imply more quantitative results �see e�g� Remark ��
����
Moreover� all the reductions of this work are security�preserving in the sense of ��
� ��� �as
is also discussed in the introduction��
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��� k�Wise Independent Functions and Permutations

The notions of k�wise independent functions and k�wise �almost� independent functions ��� ��
��� ��� ��� ��� ���� 	under several di
erent formulations
 play a major role in contemporary
computer science� These are distributions of functions such that their value on any given k
inputs is uniformly or �almost� uniformly distributed� Several constructions of such functions
and a large variety of applications have been suggested over the years�

We brie�y review the de�nitions of k�wise independence 	and k�wise ��dependence
� The
de�nitions of pair�wise independence 	and pair�wise ��dependence
 can be derived by taking
k � ��

De	nition ����� Let D� and D� be two distributions de	ned over �� the variation distance
�or statistical distance� between D� and D� is

kD� 
D�k � �

�

X
���

jD�	


D�	

j �

De	nition ����� Let A and B be two sets� � 
 � 
 �� k an integer �� 
 k 
 jAj� and F a
distribution of A �� B functions�

Let x�� x�� � � � � xk be k distinct members of A� consider the following two distributions�

�� hf	x�
� f	x�
� � � � � f	xk
i where f is distributed according to F �


� The uniform distribution over Bk�

F is k�wise independent if for all x�� x�� � � � � xk the two distributions are identical� F is
k�wise ��dependent if for all x�� x�� � � � � xk the two distributions are of variation distance at
most ��

These de�nitions are naturally extended to permutations�

De	nition ����� Let A be a set� � 
 � 
 �� k an integer �� 
 k 
 jAj� and F a distribution
of permutations over A�

Let x�� x�� � � � � xk be k distinct members of A� consider the following two distributions�

�� hf	x�
� f	x�
� � � � � f	xk
i where f is distributed according to F �


� The uniform distribution over sequences of k distinct elements of A�

F is k�wise independent if for all x�� x�� � � � � xk the two distributions are identical� F is
k�wise ��dependent if for all x�� x�� � � � � xk the two distributions are of variation distance at
most ��

The connection of this work to k�wise independence is bidirectional as described in the
following two paragraphs�

Pair�wise independent permutations are used in several places in this work 	e�g�� in Sec�
tion �����
� Pair�wise independent permutations are used in an especially substantial way
in Chapter �� As shown in Section ���� pair�wise independent permutations can replace the
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�rst and fourth rounds of the LR�Construction� Let A be a �nite �eld� The permutation

fa�b	x

def
� a � x � b� where a �� �� b � A are uniformly distributed� is pair�wise independent�

Thus� there are pair�wise independent permutations over In 	the permutations fa�b with op�
erations over GF 	�n

� In Section ������ it is shown that we can use even more e�cient
functions and permutations in our construction� In particular� we de�ne and consider the
concept of ��AXU� functions ���� �����

In contrast with the case of pair�wise independent permutations� we are not aware of
any �good� constructions of k�wise ��dependent permutations for general k and �� The
LR�Construction o
ers a partial solution to this problem 	�partial� because of the bounded
value of � that can be achieved
� Using k�wise ���dependent functions on n bits instead of
pseudo�random functions in the LR�Construction yields a k�wise ��dependent permutation
on �n bits 	for � � O	k�	�n � ��

� In Section ��� we analyze the di
erent constructions of
Chapter � as constructions of k�wise ��dependent permutations�



�� CHAPTER �� PRELIMINARIES



Chapter �

A Study of Some Number�Theoretical

Assumptions

The constructions of pseudo�random functions in Section ��� are based on two number�
theoretical assumptions that are related to the Di�e�Hellman key�exchange protocol� The
�rst is the decisional version of the Di�e�Hellman assumption 	DDH�Assumption
 and the
second is the generalized version of the 	computational
 Di�e�Hellman assumption 	GDH�
Assumption
� To better understand the security of our constructions we include in this
section a study of these assumptions�

��� The Decisional Di�e�Hellman Assumption

The construction of pseudo�random functions that is described in Section ����� is based
on the DDH�Assumption� This assumption is relatively new� or more accurately� was ex�
plicitly considered only recently� We therefore devote this section to a discussion of the
DDH�Assumption� we describe and de�ne the assumption� consider some of its di
erent ap�
plications and the current knowledge on its security� Furthermore� we show in Section �����
a randomized reduction of the worst�case DDH�Assumption to its average case�

����� Background

The DH�Assumption was introduced in the context of the Di�e and Hellman ���� key�
exchange protocol� Informally� a key�exchange protocol is a way for two parties� A and B�
to agree on a common key� KA�B� while communicating over an insecure 	but authenticated

channel� Such a protocol is secure if any e�cient third party� C� with access to the com�
munication between A and B 	but not to their private random strings
 cannot tell apart
KA�B from a random value 	i�e�� KA�B is pseudo�random to C
� This guarantees that it is
computationally infeasible for an eavesdropper to gain �any� partial information on KA�B�

Let P be a large prime publicly known� All exponentiations in the rest of this section
	Section ���
 are in Z�P� To simplify the exposition� we omit the expression �mod P� from
now on� Given a generator g of Z�P� the Di�e�Hellman key�exchange protocol goes as follows�
A chooses an integer a uniformly at random in �P
�� and sends ga to B� In return B chooses

��
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an integer b uniformly at random in �P
�� and sends gb toA� BothA and B can now compute
ga�b and their common key� KA�B� is de�ned by ga�b in some publicly known manner� For
this protocol to be secure we must have� at the minimum� that the standard computational
version of the Di�e�Hellman assumption 	DH�Assumption
 holds�

Given hg� ga� gbi� it is hard to compute ga�b�

The reason is that if this assumption does not hold� then C 	as above
 can also compute
KA�B�

One method to produce the key� KA�B� is to apply the Goldreich�Levin ���� hard�core
function� to ga�b 	an important improvement on the security of such an application was
made by Shoup �����
� If the DH�Assumption holds� then this method indeed gives a pseudo�
random key� However� the proof in ���� only implies the pseudo�randomness of the key in
case its length is at most logarithmic in the security parameter� A much more ambitious
method is to take ga�b itself as the key� For instance� in the ElGamal cryptosystem� given the
public key ga the encryption of a message m is hgb� ga�b �mi� The security of the key�exchange
protocol now relies on the DDH�Assumption�

Given hg� ga� gb� zi� it is hard to decide whether or not z � ga�b�

However� when g is a generator of Z�
P� we have that ga and gb do give some information

on ga�b� For example� if either ga or gb is a quadratic residue� then so is ga�b� A standard
solution for this problem is to take g to be a generator of the subgroup of Z�P of order Q�
where Q is a large prime divisor of P 
 �� In fact� for most applications� using g of order Q
is an advantage since Q may be much smaller than P 	say� ��� bits long
 which results in a
substantial improvement in e�ciency� The reason that Q may be as small is that all known
subexponential algorithms for computing the discrete log are subexponential in the length of
P 	as long as P
� is not too smooth
 even when applied to the subgroup of size Q generated
by g 	see� ���� ���� for surveys on algorithms for the discrete log! the best known algorithm
for general groups has time square root of the size of the group
�

How Much Con	dence Can we Have in the DDH�Assumption�

It is clear that the computational DH�Problem is at most as hard as computing the discrete
log 	given hg� gai �nd a
� Recent works by Maurer and Wolf ���� and Boneh and Lipton ����
show that in several settings these two problems are in fact equivalent� For example� Maurer
and Wolf showed that given some information which only depends on P and an e�cient
algorithm for computing the DH�Problem in Z�P� one can e�ciently compute the discrete
log in Z�P 	so in some nonuniform sense these problems are equivalent
� Shoup ����� showed
that there are no e�cient �generic��algorithms for computing the discrete log or the DH�
Problem� where a �generic��algorithm is one that does not �exploit� any special properties
of the encoding of group elements� A bit more formally� a generic algorithm is one that
works for a �black�box� group 	where each element has a random encoding and given the
encodings of a and b the algorithm can query for the encodings of a� b and 
a
�

�For example� to get a key of one bit� we can de�ne KA�B to be the inner product mod � of ga�b and a
random string r �chosen by one of the parties and sent to the other over the insecure channel��
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Perhaps� the best evidence for the validity of the DH�Assumption is the fact that it
endured extensive research over the last two decades� This research does not seem to un�
dermine the 	stronger
 decisional version of the DH�Assumption as well� In addition� the
DDH�Assumption did appear both explicitly and implicitly in several previous works� How�
ever� it seems that� given the many applications of the DDH�Assumption� a more extensive
study of its security is in place�

To some extent� the DDH�Assumption is supported by the work of Shoup ����� and
the work of Boneh and Venkatesan ����� Shoup showed that the DDH�Problem is hard for
any �generic��algorithm 	as above
� Boneh and Venkatesan showed that computing the k
	� p

logP 
 most signi�cant bits of ga�b 	given hg� ga� gbi
 is as hard as computing ga�b itself�
A recent result with applications to the DDH�Assumption was shown by Canetti� Friedlander
and Shparlinski �����

In Section ����� we prove an attractive feature of the DDH�Assumption� There is quite
a simple randomized reduction between its worst�case and its average�case for �xed P and
Q� More speci�cally�

For any primes P and Q �such that Q divides P 
 ��� the following statements
are equivalent�

� Given hP�Q� g� ga� gbi� it is easy to distinguish with non�negligible advantage
between ga�b and gc� where g is a uniformly chosen element of order Q in
Z�
P� and a� b and c are uniformly chosen from ZQ�

� It is easy to decide with overwhelming success probability for hP�Q� g� ga� gb� gci
whether or not c � a � b mod Q� where a� b and c are any three elements in
ZQ and g is any element of order Q in Z�P�

This reduction is based on the random�self�reducibility of the DDH�Problem that was pre�
viously used by Stadler ������ The reduction may strengthen our con�dence in the DDH�
Assumption and in the security of its applications�

For most applications of the DDH�Assumption 	including ours
 there is no reason to
insist on working in a subgroup of Z�P 	where P is a prime
� Therefore� a natural question
is how valid is this assumption for other groups� Speci�c groups that were considered in the
context of the DH�Assumption are� 	�
 Z�N where N is a composite� McCurley and Shmuely
���� ���� showed that for many of those groups breaking the DH�Assumption is at least as
hard as factoring N � 	�
 Elliptic�curve groups� for which 	in some cases
 no subexponential
algorithms for the discrete log are currently known� We stress that the randomized reduction
mentioned above relies on the primality of the order of g�

The Decisional DH�Assumption is Very Attractive

It turns out that the DDH�Assumption was assumed in several previous works 	both explic�
itly and implicitly
� In the following� we brie�y refer to some of those works and describe
some additional applications�

The most obvious application of the DDH�Assumption is to the Di�e�Hellman key�
exchange protocol and to the related public�key cryptosystem� namely the ElGamal cryp�
tosystem " given the public key ga the encryption of a message m is hgb� ga�b �mi� Assume
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that the message space is restricted to the subgroup generated by g� In this case� it is easy
to see that the semantic security 	see ����
 of the cryptosystem is equivalent to the DDH�
Assumption� In the general case 	without the restriction on the message space
� we can use
the following related cryptosystem� given the public key hga� hi the encryption of a message
m is hgb� h	ga�b
�mi� where h is a pair�wise independent hash function from n�bit strings to
strings of approximately the length of Q 	see Lemma ����� for more details on the role of h
�
Therefore� given the DDH�Assumption� we get a probabilistic encryption of many bits for
the price of a single 	or two
 exponentiation� This is comparable with the Blum�Goldwasser
cryptosystem �����

Other applications that previously appeared are�

� Bellare and Micali ���� showed an e�cient non�interactive oblivious transfer of many
bits that relies on the DDH�Assumption�

� Brands ���� pointed out that several suggestions for undeniable signatures 	as the one
in ���� where this concept was introduced
 implicitly rely on the DDH�Assumption� If
this assumption does not hold then such schemes are in fact digital signatures�

� Canetti ���� gave a simple construction based on the DDH�Assumption for a new
cryptographic primitive called �Oracle Hashing� 	later renamed �perfectly one�way
probabilistic hash functions�
� Loosely� these are hash functions that �hide all partial
information� on their input�

� Franklin and Haber ���� showed a construction of a joint encryption scheme based on
the the DDH�Assumption modulo a composite� Using this scheme they showed how to
get an e�cient protocol for secure circuit computation�

� Stadler ����� presents veri�able secret sharing based on the DDH�Assumption�

� Steiner� Tsudik and Waidner ����� showed how to extend the Di�e�Hellman protocol
to a key�exchange protocol for a group of parties� They reduced the security of the
extended protocol to the DDH�Assumption 	by showing that the DDH�Assumption
implies the decisional GDH�Assumption
�

A very attractive application of the DDH�Assumption was recently proposed by Cramer
and Shoup ����� They have presented a new public�key cryptosystem that is secure against
adaptive chosen ciphertext attacks� Both encryption and decryption in this cryptosystem
only require a few exponentiations 	in addition to universal one�way hashing
�

To all these applications we can add�

� A pseudo�random generator that practically doubles the input length� Essentially� the
generator is de�ned by GP�Q�g�ga	b
 � hgb� ga�bi�� As mentioned in the introduction�
several unpublished constructions of pseudo�random generators based on the DDH�
Assumption were previously suggested�

�In fact� the output of GP�Q�g�ga is a pseudo�random pair of values in the subgroup generated by g� In
order to get a pseudo�random value in f�� �g�� for � of approximately twice the length of Q� one needs to
hash the output of the generator �see Lemma ������� A similar observation holds for the constructions of
pseudo�random synthesizers and pseudo�random functions�
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� A pseudo�random synthesizer 	see de�nition in Section �����
 whose output length is
similar to its arguments length� essentially de�ned by SP�Q�g	a� b
 � ga�b�

Both these constructions are overshadowed by the construction of pseudo�random functions
introduced in Section ������

����� Formal De	nition

To formalize the DDH�Assumption� we �rst need to specify an e�ciently samplable distri�
bution for P � Q and g 	where g is an element of order Q in Z�

P
�
Let n be the security parameter� for some function � � N �� N we want to choose an n�bit

prime P with an �	n
�bit prime Q that divides P
�� A natural way to do this is to choose P
and Q uniformly at random subject to those constraints� However� it is possible to consider
di
erent distributions� For example� it is not inconceivable that the assumption holds when
for every n we have a single possible choice of P � Q and g� Another common example is
letting P and Q satisfy P � � � Q � � 	although choosing a smaller Q may increase the
e�ciency of most applications
� In order to keep our results general� we let P � Q and g be
generated by some polynomial�time algorithm IG 	where IG stands for instance generator
�

De	nition ����� 
IG� The Di�e�Hellman instance generator� IG� is a probabilistic polynomial�
time algorithm such that on input �n the output of IG is distributed over triplets hP�Q� gi�
where P is an n�bit prime� Q a �large� prime divisor of P 
 � and g an element of order Q
in Z�P�

For the various applications of the DDH�Assumption we need its average�case version�
Namely� when a and b are uniformly chosen and c is either a � b or uniformly chosen� In
Section ����� it is shown that a worst�case choice of a� b and c can be reduced to a uniform
choice� Similarly� the assumption is not strengthened if g 	generated by IG
 is taken to be
a uniformly chosen element of order Q in Z�P�

Assumption ����� 
Decisional Di
e�Hellman� For every probabilistic polynomial�time
algorithm A� every constant � � � and all su�ciently large n�

���Pr�A	P�Q� g� ga� gb� ga�b
 � ��
 Pr�A	P�Q� g� ga� gb� gc
 � ��
��� 
 �

n�
�

where the probabilities are taken over the random bits of A� the choice of hP�Q� gi according
to the distribution IG	�n
 and the choice of a� b and c uniformly at random in ZQ�

����� A Randomized Reduction

In this subsection we use a simple randomized reduction to show that for every P�Q and g
the DDH�Problem is either very hard on the average or very easy in the worst�case� Given
the current knowledge of the DDH�Problem� such a result strengthens our belief in the DDH�
Assumption� The main part of the reduction 	Lemma �����
 was previously used by Stadler
������
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De	nition ����� For any hP�Q� gi such that P is a prime� Q a prime divisor of P 
 � and
g an element of order Q in Z�P the function DDHhP�Q�gi is de	ned by

DDHP�Q�g	g
a� gb� gc
 �

�
� if c � a � b mod Q
� otherwise

for any three elements a� b� c in ZQ�

Theorem ����� Let A be any probabilistic algorithm with running time t � t	n
 and � �
�	n
 any positive function such that �	� is e�ciently constructible� There exists a polynomial
p � p	n
 and a probabilistic algorithm A� with running time 	t	n
 � p	n

		�	n

� such that
for any choice of hP�Q� gi as in De	nition ����
 if�

���Pr�A	P�Q� g� ga� gb� ga�b
 � ��
 Pr�A	P�Q� g� ga� gb� gc
 � ��
��� � �	n
�

where the probabilities are taken over the random bits of A and the choice of a� b and c
uniformly at random in ZQ� then for any a� b and c in ZQ�

Pr�A�	P�Q� g� ga� gb� gc
 �� DDHP�Q�g	g
a� gb� gc
�j 
 ��n�

where the probability is only over the random bits of A��
In particular� if A is probabilistic polynomial�time and �	n
 � �	poly	n
� then A� is also

probabilistic polynomial�time�

Blum and Micali ���� introduced the concept of random�self�reducibility 	and randomized
reductions
� Informally� a problem is random�self�reducible if solving the problem on any
instance x can be e�ciently reduced to solving the problem on a random instance y 	or on
polynomial number of random instances
� I�e�� for any instance x� a random instance y can
be e�ciently sampled using a random string r such that given r and the solution of the
problem on y it is easy to compute the solution of the problem on x� A problem that is
random�self�reducible can either be e�ciently solved for every instance with overwhelming
success probability or it cannot be solved for a random instance with non�negligible success
probability�

Our randomized reduction is closely related to other known reductions� Blum and Micali
���� showed that for any speci�c prime P and generator g� the discrete log problem is
random�self�reducible� given hP� g� gai for any a it is easy to generate a random instance
hP� g� ga�r � ga � gri 	where r is uniform in �P 
 ��
� Given the solution for the random
instance 	i�e�� a � r
 it is easy to compute the solution for the original instance 	i�e�� a
�
A similar property was shown for the DH�Problem 	e�g� ����
� given hP� g� ga� gbi for any a
and b it is easy to generate a random instance hP� g� ga�r� gb�si 	where r and s are uniform
in �P 
 ��
� Given the solution for the random instance 	i�e�� z � g
a�r��
b�s�
 it is easy to
compute the solution for the original instance 	i�e�� ga�b � z � 	ga
�s � 	gb
�r � g�s�r
�

However� in order to prove Theorem ������ we need a somewhat di
erent reduction� In
particular� we need to use the fact that g is an element of prime order 	Theorem ����� is not
true when g is a generator of Z�

P
�
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Lemma ����� There exists a probabilistic polynomial�time algorithm� R such that on any
input

hP�Q� g� ga� gb� gci�
where P is a prime� Q a prime divisor of P 
 �� g an element of order Q in Z�P and a� b� c
are three elements in ZQ the output of R is�

hP�Q� g� ga�� gb�� gc�i�
where if c � a � b mod Q� then a� and b� are uniform in ZQ and c� � a� � b� mod Q and if
c �� a � b mod Q� then a�� b� and c� are all uniform in ZQ�

Proof� R chooses s�� s� and r uniformly in ZQ� computes

ga
�

� 	ga
r � gs��
gb

�

� gb � gs��
gc

�

� 	gc
r � 	ga
r�s� � 	gb
s� � gs��s�
and outputs

hP�Q� g� ga�� gb�� gc�i�
Let c � a � b � e mod Q for e in ZQ then�

a� � r � a � s� mod Q� b� � b� s� mod Q� c� � a�b� � e � r mod Q�

If e � � we get that a� and b� are uniformly distributed in ZQ and c� � a� � b� mod Q� If e �� �
we get that a�� b� and c� are all uniformly distributed in ZQ 	this is the place we use the fact
that Q is a prime which implies that e � r mod Q is uniformly distributed in ZQ
� Therefore�
the output of R has the desired distribution� �

Proof� 	of Theorem �����
 Let A be any probabilistic algorithm with running time t � t	n
�
let � � �	n
 be any positive function such that �	� is e�ciently constructible and let hP�Q� gi
be as in De�nition ������ Assume that����Pr�A	P�Q� g� ga� gb� ga�b
 � ��
 Pr�A	P�Q� g� ga� gb� gc
 � ��

��� � �	n
�

where the probabilities are taken over the random bits of A and the choice of a� b and c
uniformly at random in ZQ�

Let R be the probabilistic polynomial�time algorithm that is guaranteed to exist by
Lemma ������ By the de�nition of R and our assumption� we get that for any a� b and
c �� a � b mod Q in ZQ����Pr�A	R	P�Q� g� ga� gb� ga�b

 � ��
 Pr�A	R	P�Q� g� ga� gb� gc

 � ��

��� � �	n
�

Now the probabilities are only taken over the random bits of A and R� Therefore� by
standard methods of ampli�cation we can de�ne a probabilistic algorithm A� such that for
any a� b and c �� a � b mod Q in ZQ�

Pr�A�	P�Q� g� ga� gb� ga�b
 � ��
 Pr�A�	P�Q� g� ga� gb� gc
 � �� � �
 ��n�

On any input hP�Q� g� ga� gb� gci� the output of A� is essentially a threshold function of
O	n		�	n

�
 independent values " A	R	P�Q� g� ga� gb� gc

� It is clear that A� satis�es the
conditions required in Theorem ������ �
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��� The GDH�Assumption Modulo a Composite

The Generalized Di�e�HellmanAssumption 	GDH�Assumption
 was originally considered
in the context of a key�exchange protocol for k � � parties 	see e�g�� ����� ����
� This
protocol is an extension of the 	extremely in�uential
 Di�e�Hellman key�exchange protocol
����� Given a group G and an element g � G� the high�level structure of the protocol is

as follows� Party i � �k�
def
� f�� �� � � � � kg chooses a secret value� ai� The parties exchange

messages of the form g
Q

i�I
ai for several proper subsets� I � �k�� Given these messages�

each of the parties can compute g
Q

i��k�
ai and this value de�nes their common key 	in some

publicly known way
� Since the parties use an insecure 	though authenticated
 channel� it is

essential that the messages they exchange do not reveal g
Q

i��k�
ai � The GDH�Assumption is

even stronger� informally� it states that it is hard to compute g
Q

i��k�
ai for an algorithm that

can query g
Q

i�I
ai for any proper subset� I � �k� of its choice� The precise statement of the

assumption is given in Section ����
In Section ������ we propose another application to the GDH�Assumption� We show

an attractive construction of pseudo�random functions that is secure as long as the GDH�
Assumption holds� Motivated by this application� we� provide in this section a proof that the
GDH�Assumption modulo a Blum�integer follows from the assumption that factoring Blum�
integers is hard� Similar reductions were previously described in the context of the standard
Di�e�Hellman assumption by McCurley ���� and Shmuely ������ In fact� Shmuely �����
also provided a related reduction for the GDH�Assumption 	modulo a composite
 itself� Her
reduction works when the algorithm that breaks the GDH�Assumption succeeds in computing

g
Q

i��k�
ai for every choice of values ha�� a�� � � � � aki 	which is not su�cient for the applications

of the GDH�Assumption
� In contrast� our reduction works even when the algorithm breaking
the GDH�Assumption only succeeds for some non�negligible fraction of the ha�� � � � � aki�

����� The Assumptions

In this section we de�ne the GDH�Assumption in Z�N 	the multiplicative group modulo
N
� where N is a so called Blum�integer� We also de�ne the assumption that factoring
Blum�integers is hard� The restriction to Blum�integers is quite standard and it makes the
reduction of factoring to the GDH�Problem much simpler� We therefore start by de�ning
Blum�integers and describing some of their properties

Blum�integers� An integer N is a Blum�integer if N � P � Q where P and Q are two
distinct primes of the same length� and both P and Q are congruent to � mod � 	i�e� P �
Q � � mod �
� A very helpful property of a Blum�integerN is that squaring is a permutation
over the subgroup of quadratic residues in Z�

N 	an element x � Z�N is a quadratic residue if
there exist a y � Z�

N such that y� � x mod N
� An important application 	along with a
proof
 of this property was given by Blum� Blum and Shub ����� One way to verify this
property is by considering the Chinese�remainder representation of a quadratic residue x� In
Z�P 	as well as Z�Q
� x has exactly two distinct square roots �y� Since 
� is not a quadratic

�The work described here is joint with Eli Biham and Dan Boneh�
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residue in Z�P� exactly one of the square roots �y is a quadratic residue in itself� Therefore�
x has exactly four our distinct square roots� �y��y� in Z�N� from which exactly one is a
quadratic residue in itself� Another property of a Blum�integer N that we use in our proof
is that the order of any quadratic�residue x in Z�N is odd�

In order to keep our result general� we let N 	in both assumptions
 be generated by some
polynomial�time algorithm FIG 	where FIG stands for factoring�instance�generator
�

De	nition ����� 
FIG� The factoring�instance�generator� FIG� is a probabilistic polynomial�
time algorithm such that on input �n its output� N � P � Q� is distributed over �n 
 bit
integers� where P and Q are two n
 bit primes and P � Q � � mod � �such N is known as
a Blum�integer��

A natural way to de�ne FIG is to let FIG	�n
 be uniformly distributed over �n
 bit Blum�
integers�� However� other choices were previously considered 	e�g�� letting P and Q obey
some �safety� conditions
�

The GDH�Assumption

To formalize the GDH�Assumption 	which is described in the introduction
 we use the fol�
lowing two de�nitions�

De	nition ����� Let N be any possible output of FIG	�n
� let g be any quadratic�residue
in Z�

N and let �a � ha�� a�� � � � � aki be any sequence of k � � elements of �N �� De	ne the
function hN�g��a with domain f�� �gk such that for any k�bit input� x � x�x� � � �xk�

hN�g��a	x

def
� g

Q
xi	�

ai mod N�

De	ne hrN�g��a to be the restriction of hN�g��a to the set of all k�bit strings except �k �i�e�� the
restriction of hN�g��a to f�� �gk n f�kg��

De	nition ����� 
��solving the GDHk�Problem� Let A be a probabilistic oracle ma�
chine� k � k	n
 an integer�valued function such that �n� k	n
 � � and � � �	n
 a real�valued
function� A ��solves the GDHk�Problem if for in	nitely many n�

Pr�Ahr
N�g��a	N� g
 � hN�g��a	�

n
� � �	n
�

where the probability is taken over the random bits of A� the choice of N according to the
distribution FIG	�n
� the choice of g uniformly at random in the set of quadratic�residues
in Z�N and the choice of each of the values in �a � ha�� a�� � � � � ak
n�i uniformly at random in
�N ��

Informally� the GDH�Assumption is that there is no �e�cient� oracle machine A that
��solves the GDHk�Problem for �non�negligible� �� We formalize this in the standard way
of interpreting �e�cient� as �probabilistic polynomial�time� and �non�negligible� as �larger
than �	poly�� However� our reduction 	Theorem �����
 is more quantitative�

�We note that �n� bit Blum�integers are a non�negligible fraction of all �n� bit integers and that it is
easy to sample a uniformly distributed �n� bit Blum�integer�
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Assumption ����� 
The GDH�Assumption Modulo a Blum�Integer� Let A be any
probabilistic polynomial�time oracle machine and k � k	n
 � � any integer�valued function
that is bounded by a polynomial �and is e�ciently�constructible�� There is no positive con�
stant � such that A �

n�
�solves the GDHk�Problem�

The Factoring�Assumption

We formalize the assumption that factoring Blum�integers is hard in an analogous way�

De	nition ����� 
��factoring� Let A be a probabilistic Turing�machine and � � �	n
 a
real�valued function� A ��factors if for in	nitely many n�

Pr�A	P �Q
 � fP�Qg� � �	n
�

where the distribution of N � P �Q is FIG	�n
�

Assumption ����� 
Factoring Blum�Integers� Let A be any probabilistic polynomial�
time oracle machine� There is no positive constant � such that A �

n�
�factors�

Reducing Factoring to the GDH�Problem

Theorem ����� Assumption ��
�� �the GDH�Assumption� is implied by Assumption ��
�

�Factoring�� Furthermore� assume that A is a probabilistic oracle machine with running�time
t � t	n
 such that A ��solves the GDHk�Problem �where k � k	n
 � �� is an integer�valued
function that is e�ciently�constructible and � � �	n
 a real�valued function�� Then there
exists a probabilistic Turing�machine A� with running time t�	n
 � poly	n� k	n

 � t	n
 that
���factors� where ��	n
 � �	n
	�
 O	k	n
 � ��n
�

As an intuition to the proof� let us �rst describe it under the assumption that A computes
hN�g��a	�

k
 for any sequence �a � ha�� a�� � � � � ak
n�i� The algorithm A� can use A to extract
square�roots in Z�

N and consequently A� can factor N 	as shown in �����
� This is done as
follows�

A� �rst samples v uniformly at random in Z�N and computes g � v�
k
mod N � Let �

be the order of g in Z�
N 	note that � is not known to A�
� Since N is a Blum�integer and

g is a quadratic�residue we have that � is odd� This implies that � � Z�� and therefore
��� mod � exists 	and is simply ���

�

� For simplicity of exposition� denote by g�

��
mod N

the value g�
�� mod � mod N � Hence� g�

��
mod N is not just any square�root of g in Z�N but

is rather precisely equal to g
�
�
� mod N � In the same way denote by g�

�i
mod N the value

g�
�i mod � mod N � Under this notation we have for every � 
 i 
 k that g�

�i
� v�

k�i
mod N �

Let �a � ha�� � � � � aki be the vector� where for all i� ai � ��� mod �� It follows that
algorithm A� can easily compute hN�g��a	x
 for any x �� �k 	if exactly i 
 k bits of x are

� we have that hN�g��a	x
 � g�
�i

mod N � v�
k�i

mod N
� Hence� A� can invoke A with
input hN� gi and answer every query� q� of A with hrN�g��a	q
� Eventually� A outputs the value

u � hN�g��a	�
n
 � g�

�k
mod N � We now have that u� � v� mod N and that Pr�u � �v� � �	��

This implies that Pr�gcd	u 
 v�N
 � fP�Qg� � �	� which enables A� to factor N � The
complete proof follows the same lines along with additional �randomization� of the ai�s
	achieved by taking ai � ��� � ri
 which eliminates the assumption that A always succeeds�
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Proof� Assume that A is as in Theorem ������ we de�ne the algorithm A� that is guaranteed
to exist by the theorem� Let N � P �Q be any �n�bit Blum�integer� Given N as its input�
A� performs the following basic steps 	we later describe how these steps can be carried out
in the required running time
�

�� Sample v uniformly at random in Z�N� Compute k � k	n
 and g � v�
k
mod N � Denote

by � the order of g in Z�
N 	note that � is not known to A�
�

As mentioned above� since N is a Blum�integer and g is a quadratic�residue we have
that � is odd� This implies that � � Z�

� and therefore ��� mod � exists 	and is simply
���
�

�

�� Sample each one of the values in hr�� r�� � � � � rki uniformly at random in �N �� For
� 
 i 
 k� denote by ai the value ri � ��� mod � 	again� note that ai is not known to
A�
� Denote by �a the sequence ha�� a�� � � � � aki�

�� Invoke A with input hN� gi and answer each query� q� of A with the value hrN�g��a	q
�

�� Given that A outputs the correct value " hN�g��a	�
n
� compute u � g�

�k
mod N � As

noted below� u� � v� mod N � If u �� �v mod N � output gcd	u
 v�N
 which is indeed
in fP�Qg� Otherwise� output $failed��

The Running�Time of A��
Steps 	�
 and 	�
 can easily be carried out in time poly	n� k	n

� For steps 	�
 and 	�
 to be
carried out in time t�	n
 � poly	n� k	n

 � t	n
 it is enough to show that�

a� For every query q � f�� �gk n f�kg the value hN�g��a	q
 can be computed in time
poly	n� k	n

�

b� Given hN�g��a	�
n
� the value g�

�k
mod N can be computed in time poly	n� k	n

�

Recall that whenever ��� appears in the exponent it denotes the value ��� mod � � ���
�
�

Similarly� ��i in the exponent denotes the value ��i mod � �
�
���
�

�i
mod �� Therefore� under

this notation� for every i the value g�
�i

mod N is a quadratic�residue 	since g is a quadratic�
residue
� The key�observation for proving 	a
 and 	b
 is that for all � 
 i 
 k� we have
that g�

�i
� v�

k�i
mod N � For i � �� this is implied by the fact that both g�

��
and v�

k��
are

square roots of g and they are both quadratic�residues� Since squaring is a permutation over
the set of quadratic�residues in Z�N 	for any Blum�integer� N
 we must have that g�

��
and

v�
k��

are equal� By induction on � 
 i 
 k� we get that g�
�i

� v�
k�i

mod N in the same
way� Therefore� for every q � q�q� � � � qk �� �k�

hN�g��a	q
 � g
Q

qi	�
ai � g

Q
qi	�


ri�����
� g

Pk��

j	�
�j�

�j

� v
Pk��

j	�
�j�

k�j

mod N�

where the values f�jgk��
j�� are the integers for which the two polynomials 	in the variable x
Q

qi��	ri � x
 and
Pk��

j�� �jx
j are identical over Z� Since these values can easily be computed

in time poly	n� k	n

� we get that 	a
 holds� Similarly�

hN�g��a	�
k
 � g

Qk

i	�
ai � g

Qk

i	�

ri����� � g�

�k � g
Pk��

j	�
	j�

�j

� g�
�k � v

Pk��

j	�
	j�

k�j

mod N�
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where the values f�jgk��
j�� can easily be computed in time poly	n� k	n

� We now get that 	b


holds since�

g�
�k

� hN�g��a	�
k
 �

�
v
Pk��

j	�
	j�k�j

���

mod N�

The Success�Probability of A��
It remains to show that A� ���factors� where ��	n
 � �	n
	� 
 O	k	n
 � ��n
� Recall that u

denotes the value g�
�k

mod N � As shown above v� � g�
��k���

	� u�
 mod N � Therefore� it is
not hard to verify that�

Pr�A�	N
 � fP�Qg� � Pr
h
	u �� �v mod N
 and

�
Ahr

N�g��a	N� g
 � hN�g��a	�
n

�i
�

Note that Ahr
N�g��a	N� g
 does not depend on v itself but rather on v�� Therefore� Ahr

N�g��a	N� g

is equally distributed for any two assignments� w and %w� of v as long as w� � %w� mod N �
This follows from the fact that all the values of hrN�g��a 	including g � hrN�g��a	�

n

 only depend
on v�� For every q � q�q� � � � qk �� �k the value hN�g��a	q
 was shown above to be

v
Pk��

j	�
�j�k�j mod N �

�
v�
�Pk

j	�
�j���

k�j

mod N�

where the �j�s only depend on q and the ri�s� We therefore get that�

Pr�A�	N
 � fP�Qg� � �	� � Pr�Ahr
N�g��a	N� g
 � hN�g��a	�

n
��

Let N be chosen from FIG	�n
� We need to show that for in�nitely many n�

Pr�A�	N
 � fP�Qg� � ��	n
�

Which is equivalent to showing that for in�nitely many n�

Pr�Ahr
N�g��a	N� g
 � hN�g��a	�

n
� � �	n

O	k	n
 � ��n
�

To do so� we need a couple of simple facts on the distribution of g and of each ai mod �� Let
us �rst recall the de�nition of statistical distance�

De	nition ����� Let X and Y be two random variables over D� The statistical di�erence
between X and Y is de	ned to be

�

�

X
a�D

jPr�X � a�
 Pr�Y � a�j�

We now have that�

Fact � g is a uniformly distributed quadratic�residue in Z�N�

Reason� v� is a uniformly distributed quadratic�residue in Z�
N and squaring is a per�

mutation over the set of quadratic�residues in Z�N 	since N is a Blum�integer
�
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Fact � Let r and a� be uniformly distributed in �N � and denote by a the value r���� mod ��
Then a and a� mod � are of statistical distance O	��n
�

Reason� � divides 	Q 
 �
	P 
 �
� Therefore the distribution of a conditioned on
the event that r � �	Q 
 �
	P 
 �
� is the same as the distribution of a� mod � con�
ditioned on the event that a� � �	Q 
 �
	P 
 �
� 	and in both cases it is simply the
uniform distribution over Z�
� It remains to notice that Pr �r � �	Q
 �
	P 
 �
�� �

Pr �a� � �	Q
 �
	P 
 �
�� � 
Q���
P���
N

� �
 P�Q
N

� �
N

� �
 O	��n
�

Let each value in �a� � ha��� a��� � � � � a�ki be uniformly distributed in �N �� Since A ��solves
the GDHk�Problem and given Fact �� we have that�

Pr�Ahr
N�g��a�	N� g
 � hN�g��a�	�

n
� � �	n
�

Given Fact �� it is easy to verify that the two random variables hN�g��a and hN�g��a� are of

statistical distance O	k	n
 � ��n
� Therefore� we can conclude that�

Pr�Ahr
N�g��a	N� g
 � hN�g��a	�

n
� � �	n

O	k	n
 � ��n
�

which completes the proof of the theorem� �

����� Conclusions

We showed that breaking the generalized Di�e�Hellman assumption modulo a Blum�integer
is at least as hard as factoring Blum�integers� This implies that the security of the generalized
Di�e�Hellman key�exchange protocol 	which is mentioned in the introduction
 can be based
on the assumption that factoring is hard� In addition� as shown in Section ������ it implies
the existence of e�cient pseudo�random functions which are at least as secure as Factoring�

A possible line for further research is the study of the generalized Di�e�Hellman assump�
tion in other groups and the relation between the generalized Di�e�Hellman assumption and
the standard Di�e�Hellman assumption� It is interesting to note that the decisional version
of the generalized Di�e�Hellman assumption is equivalent to the decisional version of the
standard Di�e�Hellman assumption 	as shown in ����� and in Section �����
�
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Chapter �

Constructions of Pseudo�Random

Functions

In this chapter we present several constructions of pseudo�random functions 	see the intro�
duction for a discussion on the de�nitions� applications and original�construction of pseudo�
random functions and see Section ��� for their actual de�nitions
� For our constructions�
we introduce and study a new cryptographic primitive which we call a pseudo�random syn�
thesizer and a generalization of this primitive which we call a k�dimensional pseudo�random
synthesizer� These primitives are of independent interest as well� In Section ���� we show
a parallel construction of pseudo�random functions from a pseudo�random synthesizer and
parallel constructions of pseudo�random synthesizers based on several concrete and general
intractability assumptions� In Section ���� we show even more parallel constructions of
pseudo�random functions based on concrete intractability assumptions 	such as the assump�
tion that factoring Blum�integers is hard
� In addition� these constructions are more e�cient
and have a simple algebraic structure� The constructions of Section ��� are motivated by the
constructions of Section ��� 	and in particular by the notion of k�dimensional synthesizers
�
A more detailed description of the results obtained in the two stages of the research and of
their applications appears is the introduction 	in Section ���
�

	�� Pseudo�Random Synthesizers and Functions


���� Organization

In Section ����� we de�ne pseudo�random synthesizers and collections of pseudo�random syn�
thesizers and discuss their properties� In Section ����� we describe our parallel construction of
pseudo�random functions from pseudo�random synthesizers and in Section ����� we prove its
security� In Section ����� we describe a related construction of pseudo�random functions� In
addition� we discuss the time�space tradeo
 and the incremental property of our construc�
tions� In Section ����� we discuss the relations between pseudo�random synthesizers and
other cryptographic primitives� In Section ����� we describe constructions of pseudo�random
synthesizers based on several number�theoretic assumptions� In Section ����� we show how to
construct pseudo�random synthesizers from hard�to�learn problems and consider a very sim�

��
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ple concrete example� We also discuss the application of parallel pseudo�random functions
to learning�theory�


���� Notation

The notation and de�nitions used in Section ��� are given in Chapter �� Additional notation
that are used in this section include�

� Let X be any random variable� we denote by Xk�� the k�� matrix whose entries are
independently identically distributed according to X� We denote by Xk the vector
X��k�

� We identify functions of two variables and functions of one variable in the natural way�
I�e� by letting f � In�In �� Ik be equivalent to f � I�n �� Ik and letting f	x� y
 be the
same value as f	x 	 y
 	where x 	 y stands for x concatenated with y
�


���� Pseudo�random Synthesizers

As mentioned above� we introduce in this work a new cryptographic primitive called a pseudo�
random synthesizer� In this section we de�ne pseudo�random synthesizers and describe their
properties�

Motivation

Pseudo�random synthesizers are e�ciently computable functions of two variables� The sig�
ni�cant feature of such a function� S� is that given polynomially�many uniformly distributed
assignments� hx�� � � � � xmi and hy�� � � � � ymi� for both variables� the output of S on all the
combinations of these assignments� 	f	xi� yj



m
i�j��� is pseudo�random 	i�e� is indistinguish�

able from random to a polynomial�time observer
� This is a strengthening of an important
property of pseudo�random generators " the indistinguishability of a polynomial sample�

A pseudo�random 	bit
 generator ���� ����� is a polynomial�time computable function�
G � f�� �g� �� f�� �g�� such that �x � In� jG	x
j � �	n
 � n and G	Un
 is pseudo�random
	i�e� fG	Un
gn�N and fU�
n�gn�N are computationally indistinguishable
� It turns out that
this de�nition implies that� Given polynomially�many uniformly distributed assignments�
hz�� � � � � zmi� the sequence f	G	zi
gmi��� is pseudo�random�

The major idea behind the de�nition of pseudo�random synthesizers is to obtain a func�
tion� S� such that f	S	zi
gmi�� remains pseudo�random even when the zi�s are not completely
independent� More speci�cally� pseudo�random synthesizers require that f	S	zi
gmi�� remains
pseudo�random even when the zi�s are of the form fxi 	yjgmi�j��� Our work shows that 	under
some standard intractability assumptions
 it is possible to obtain such a function S and that
this property is indeed very powerful� As a demonstration to their strength� we note below
that pseudo�random synthesizers are useful even when no restriction is made on their output
length 	which is very di
erent than what we have for pseudo�random generators
�

Remark ����� It is important to note that there exist pseudo�random generators that are
not pseudo�random synthesizers� An immediate example is the generator de	ned by G	x 	
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y

def
� G�	x
 	 y� where G� is also a pseudo�random generator� A more natural example is

the subset�sum generator ����� G � Ga��a��


�an� which is de	ned by G	z
 �
P

zi�� ai� This is
not a pseudo�random synthesizer �for 	xed values a�� a�� � � � � an� since for every four n	��bit
strings� x�� x�� y� and y�� we have that G	x� 	 y�
 �G	x� 	 y�
 � G	x� 	 y�
 �G	x� 	 y�
�

Formal De	nition

We �rst introduce an additional notation to formalize the phrase �all di
erent combinations��

Notation ����� Let f be an I�n �� I� function and let X � fx�� � � � � xkg and Y � fy�� � � � � ymg
be two sequences of n�bit strings� We de	ne Cf	X� Y 
 to be the k�m matrix 	f	xi� yj

i�j
�C stands for combinations��

We can now de�ne what a pseudo�random synthesizer is�

De	nition ����� 
pseudo�random synthesizer� Let � be any N �� N function and let
S � f�� �g��f�� �g� �� f�� �g� be a polynomial�time computable function such that �x� y �
In� jS	x� y
j � �	n
� Then S is a pseudo�random synthesizer if for every probabilistic
polynomial�time algorithm� D� every two polynomials p	�
 and m	�
� and all su�ciently large
n� ���Pr �D	CS	X� Y 

 � ��
 Pr

h
D		U�
n�


m
n��m
n�
 � �
i��� 
 �

p	n

�

where X and Y are independently drawn from 	Un

m
n�� That is� for random X and Y the

matrix CS	X� Y 
 cannot be e�ciently distinguished from a random matrix�

Expanding the Output Length

In De�nition ����� no restriction was made on the output�length function� �� of the pseudo�
random synthesizer� However� our parallel construction of pseudo�random functions uses
	parallel
 pseudo�random synthesizers with linear output length� �	n
 � n� The following
lemma shows that any synthesizer� S� can be used to construct another synthesizer S �� with
large output�length� such that S and S � have the same parallel time complexity� Therefore�
for the construction of pseudo�random functions in NC it is enough to show the existence
of synthesizers with constant output length in NC�

Lemma ����� Let S be a pseudo�random synthesizer with arbitrary output�length function�
�� in NCi �resp� ACi�� Then for every constant � 
 � 
 �� there exists a pseudo�random
synthesizer S � in NCi �resp� ACi� such that its output�length function� ��� satis	es ��	n
 �
�	n���
�

Proof� For every constant c � �� de�ne Sc as follows� Let kn
def
� maxfk � Z � kc�� 
 ng� On

input x� y � In� regard the �rst kc��
n bits of x and y as two length�kcn sequences� X and Y � of

kn�bit strings� S
c	x� y
 is de�ned to be CS	X� Y 
 	viewed as a single bit�string rather than

a matrix
� Notice that the following properties hold for Sc�
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�� Sc is indeed a pseudo�random synthesizer� For any polynomial m	�
� let X � and Y � be
independently drawn from 	Un


m
n� and let X and Y be independently drawn from
	Ukn


m
n��kcn � By the de�nition of Sc� the distributions CSc	X
�� Y �
 and CS	X� Y 
 are

identical� Taking into account the fact that n is polynomial in kn� we conclude that
every polynomial�time distinguisher for Sc is also a polynomial�time distinguisher for
S� Since S is a pseudo�random synthesizer so is Sc�

�� Let �c denote the output�length function of Sc� then �c	n
 � �	n��
�

c
�
�
� Since c is a

constant and n 
 	kn � �
c��� for every n it holds that

�c	n
 � 	kn

�c � l	kn
 � 	kn


�c � �	n
�c
c
�

�
 � �	n��
�

c
�
�
�

�� Sc is in NCi �resp� ACi�� Immediate from the de�nition of Sc�

Thus� by taking S � to be Sc for some c � �
�

 � we obtain the lemma� �

The construction of Lemma ����� has the advantage that it is very simple and that the
parallel time complexity of S and S � is identical� Nevertheless� it has an obvious disadvantage�
The security of S � is related to the security of S on a much smaller input length� For example�
if �	n
 � � and ��	n
 � n then the security of S � on k��bit strings is related to the security
S on k�bit strings� This results in a substantial increase in the time and space complexity
of any construction that uses S ��

We now show an alternative construction to the one of Lemma ����� that is more security�
preserving� The alternative construction uses a pseudo�random generator G that expands
the input by a factor of � and relies on the GGM�Construction�

Corollary ����� �of ��
�� Let G be a pseudo�random generator in NCi �resp� ACi� such
that �s� jG	s
j � � jsj� Then for every polynomial p	�
 there exists a pseudo�random generator
G� in NCi�� �resp� ACi��� such that �s� jG�	s
j � p	jsj
 � jsj�

G� is de�ned as follows� On input s it computes G	s
 � s� 	 s� and recursively generates
p
jsj��jsj

�
bits from s� and p
jsj��jsj

�
bits from s�� The number of levels required is dlog p	jsj
e �

O	log jsj
� Using Corollary ����� we get�

Lemma ����� Let S be a pseudo�random synthesizer with arbitrary output�length function�
�� in NCi �resp� ACi�� Let G be a pseudo�random generator in NCj �resp� ACj� such that
�s� jG	s
j � � jsj� Let k denote maxfi� j��g� Then for every positive constant c� there exists
a pseudo�random synthesizer S � in NCk �resp� ACk� such that its output�length function� ���
satis	es ��	n
 � �	n�c � l	n

�

Furthermore� the construction of S � is linear�preserving in the sense of ��
� ��� �the exact
meaning of this claim is described below��

Proof�	sketch
 S � is de�ned as follows� On input x� y � In� computeX � G�	x
 � fx��� � � � � x�dnceg
and Y � G�	y
 � fy��� � � � � y�dnceg� where G� is the pseudo�random generator that is guaranteed
to exist by Corollary ������ S �	x� y
 is de�ned to be CS	X� Y 
�
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It is immediate that S � is in NCk 	resp� ACk
 and that ��	n
 � �	n�c � l	n

� It is also
not hard to verify that S � is indeed a pseudo�random synthesizer and 	from the proof of
Corollary �����
 that the construction of S � is linear�preserving in the following sense�

Assume that there exists an algorithm that works in time t	n
 and distinguishesCS�	X
�� Y �


from 	U��
n�

m�
n��m�
n� with bias �	n
� where X � and Y � are independently drawn from

	Un

m�
n�� Let m	n
 � m�	n
 � dnce� Then one of the following holds�

�� The same algorithm distinguishes CS	X� Y 
 from 	U�
n�

m
n��m
n� with bias �	n
	��

where X and Y are independently drawn from 	Un

m
n��

�� There exists an algorithm that works in time t	n
 �m�	n
 � poly	n
 and distinguishes
G	Un
 from random with bias �	n
	O	m	n

�

�

The construction of Lemma ����� is indeed more security�preserving than the construction
of Lemma ����� 	since the security of S � relates to the security of S and G on the same
input length
� However� the time complexity of S � is still substantially larger than the time
complexity of S� and the parallel time complexity of S � might also be larger� Given the
drawbacks of both construction� it seems that a direct construction of e�cient and parallel
synthesizers with linear output length is very desirable�

Collection of Pseudo�Random Synthesizers

A natural way to relax the de�nition of a pseudo�random synthesizer is to allow a distribution
of functions for every input length rather than a single function� To formalize this we use
the concept of an e�ciently computable function ensemble�

De	nition ����� 
collection of pseudo�random synthesizers� Let � be any N �� N func�
tion and let S � fSngn�N be an e�ciently computable I�n �� I� function ensemble� S is a
collection of I�n �� I� pseudo�random synthesizers if for every probabilistic polynomial�time
algorithm� D� every two polynomials p	�
 and m	�
� and all su�ciently large n�

���Pr �D	CSn	X� Y 

 � ��
 Pr
h
D		U�
n�


m
n��m
n�
 � �
i��� 
 �

p	n

�

where X and Y are independently drawn from 	Un

m
n��

As shown below� a collection of pseudo�random synthesizers is su�cient for our construc�
tion of pseudo�random functions� Working with a collection of synthesizers 	rather than a
single synthesizer
 enables us to move some of the computation into a preprocessing stage
during the key�generation� This is especially useful if all other computations can be done in
parallel�

Note that Lemma ����� and Lemma ����� easily extend to collections of synthesizers�
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���
 A Parallel Construction of Pseudo�Random Functions

This section describes the construction of pseudo�random functions� using pseudo�random
synthesizers as building blocks� The intuition of this construction is best explained through
the concept of a k�dimensional pseudo�random synthesizer� This is a natural generalization of
the �regular� 	two�dimensional
 synthesizer� Informally� an e�ciently computable function
of k variables� Sk� is a k�dimensional pseudo�random synthesizer if�

Given polynomially�many� uniformly�chosen� assignments for each variable�
n
faj�igmi��

ok
j��

�

the output of Sk on all the combinations M �
�
Sk	a��i� � a��i�� � � � � ak�ik


�m
i��i��


�ik��

cannot be e�ciently distinguished from uniform by an algorithm that can access
M at points of its choice

Note that this de�nition is somewhat di
erent from the two�dimensional case� For any
constant k 	and in particular for k � �
 the matrix M is of polynomial size and we can give
it as an input to the distinguisher� In general� M might be too large and therefore we let
the distinguisher �access M at points of its choice��

Using this concept� the construction of pseudo�random functions can be described in two
steps�

�� A parallel construction of an n�dimensional synthesizer� Sn� from a two�dimensional
synthesizer� S� that has output length �	n
 � n� This is a recursive construction� where
the �k�dimensional synthesizer� S�k� is de�ned using a k�dimensional synthesizer� Sk�

S�k	x�� x�� � � � � x�k

def
� Sk	S	x�� x�
� S	x�� x�
� � � � � S	x�k��� x�k

�

�� An immediate construction of the pseudo�random function� f � from Sn�

fha����a����a����a����


an���an��i	x

def
� Sn	a��x� � a��x�� � � � � an�xn
�

In fact� pseudo�random functions can be constructed from a collection of synthesizers� In
this case� for each level of the recursion a di
erent synthesizer is sampled from the collection�
As noted below� for some collections of synthesizers 	as those constructed in this work
 it is
enough to sample a single synthesizer for all levels�

Formal De	nition

The following operation on sequences is used in the construction�

De	nition ����� For every function S � I�n �� In and every sequence� L � f��� ��� � � � � �kg�
of n�bit strings de	ne SQS	L
 to be the sequence L� � f���� � � � � ��d k

�
e
g� where ��i � S	l�i��� ��i


for i 
 bk
�
c and if k is odd� then ��

d k
�
e
� �k �SQ stands for squeeze��

We now turn to the construction itself�
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Figure ���� Computing the Value of the Pseudo�Random Function for n � �

Construction ����� 
Pseudo�Random Functions� Let S � fSngn�N be a collection of
I�n �� In pseudo�random synthesizers and let IS be a probabilistic polynomial�time key�
generating algorithm for S� For every possible value� k� of IS	�n
� denote by sk the corre�
sponding I�n �� In function� The function ensemble F � fFngn�N is de	ned as follows�

� �key�generation
 On input �n� the probabilistic polynomial�time key�generating algo�

rithm IF outputs a pair 	�a��k
� where �a � fa���� a���� a���� a���� � � � � an��� an��g is sampled

from 	Un

�n and �k � fk�� k�� � � � � kdlogneg is generated by dlogne independent executions

of IS on input �n �i�e� is sampled from 	IS	�n

dlog ne��
� �evaluation
 For every possible value� 	�a��k
� of IF 	�n
 the function f�a��k � In �� In is
de	ned as follows� On an n�bit input� x � x�x� � � � xn� the function outputs the single
value in

SQsk�
	SQsk�

	� � �SQskdlogne
	fa��x�� a��x�� � � � � an�xng
 � � �

�

Finally� Fn is de	ned to be the random variable that assumes as values the functions f�a��k
with the probability space induced by IF 	�n
�

The evaluation of f�a��k	x
 can be thought of as a recursive labeling process of a binary

tree with n leaves and depth dlogne� The ith leaf has two possible labels� ai�� and ai��� The
ith input bit� xi selects one of these labels ai�xi� The label of each internal node at depth
d is the value of skd
�

on the labels of its children� The value of f�a��k	x
 is simply the label
of the root� 	Figure ��� illustrates the evaluation of f�a��k for n � ��
 We note that this
labeling process is very di
erent than the one associated with the GGM�Construction �����
First� the binary tree is of depth dlogne instead of depth n as in ����� Secondly� the labeling
process is bottom�up instead of top�down as in ���� 	i�e� starting at leaves instead of the
root
� Moreover� here each input de�nes a di
erent labeling of the tree whereas in ���� the
labeling of the tree is fully determined by the key 	and the input only determines a leaf such
that its label is the value of the function on this input
�

E
ciency of the Construction

It is clear that F is e�ciently computable 	given that S is e�ciently computable
� Further�
more� the parallel time complexity of functions in Fn is larger by a factor of O	logn
 than
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the parallel time complexity of functions in Sn� The parallel time complexity of IS and IF
is identical�

We note that� for simplicity� the parameter n serves a double role� n is both the length
of inputs to f�a��k � Fn and the security parameter for such a function 	the second role is
expressed by the fact that the strings in �a are n�bit long
� In practice� however� these
roles would be separated� The security parameter would be determined by the quality of the
synthesizers and the length of inputs to the pseudo�random functions would be determined by
their application� In fact� one can usually use a pseudo�random function with a reasonably
small input�length 	say ����bit long to prevent a �birthday attack�
� This is implied by
the suggestion of Levin ���� to pair�wise independently hash the input before applying the
pseudo�random function 	this idea is described with more details in the introduction
�

Reducing the Key�Length

An apparent disadvantage of Construction ����� is the large key�length of a function f�a��k � Fn�

In particular� the sequence �a is de�ned by �n� bits� However� this is not truly a problem
since� 	a
 In Section ����� a related construction is described 	Construction �����
 where �a
consists of a constant number of strings 	and is therefore de�ned by O	n
 bits
� 	b
 The
truly random sequence �a can be replaced by a pseudo�random sequence without increasing
the depth of the construction 	by more than a constant factor
� This is achieved as follows�
Let G be a pseudo�random generator that expands the input by a factor of �� Let G� be
the pseudo�random generator that can be constructed from G according to Corollary �����
for p	n
 � �n 	i�e� by using dlogn � �e levels of the recursion
� Then �a can be replaced by
G�	#a
� where #a is an n�bit seed�

In addition to �a� the key of f�a��k � Fn consists of dlogne keys of functions in Sn� It
turns out that for some collections of synthesizers 	such as those described in this work
 this
overhead can be eliminated as well� This is certainly true when using a single synthesizer
instead of a collection� Moreover� from the proof of security for Construction ����� one can
easily extract the following claim� If the collection of synthesizers remains secure even when
it uses a public key 	i�e� if Csk	X� Y 
 remains pseudo�random even when the distinguisher
sees k
� then the dlogne keys can be replaced with a single one 	i�e� the same key can be
used at all levels of the recursion
�


���� Security of the Construction

Theorem ����� Let S and F be as in Construction ����� and let R � fRngn�N be the
uniform In �� In function ensemble� Then F is an e�ciently computable pseudo�random
function ensemble� Furthermore� any e�cient distinguisher� M� between F and R yields an
e�cient distinguisher� D� for S such that the success probability of D is smaller by a factor
of at most dlogne than the success probability of M�

To prove Theorem ������ we use of a hybrid argument 	for details about this proof tech�
nique� see ����
� We �rst de�ne a sequence of dlogne � � function distributions such that
the two extreme distributions are Rn and Fn� We then show that any distinguisher for two
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neighboring distributions can be transformed into a distinguisher for the pseudo�random syn�
thesizers� For simplicity� we de�ne those hybrid�distributions in case n � ��� The de�nition
easily extends to a general value of n such that Claim ����� still holds�

For any � 
 j 
 �� denote by Hj
n the jth hybrid�distribution� The computation of

functions in Hj
n may be described as a labeling process of a binary tree with n leaves and

depth � 	an analogous description for Fn appears in Section �����
� Here� the labeling process
starts with nodes at depth � 
 j� The ith such node has ��

j
possible labels� fai�s � s � I�

jg
	which are part of the key
� The ith �j�bit substring of the input� xi� selects one of these
labels� ai�xi� The rest of the labeling process is the same as it was for functions in Fn� The
label of each node at depth d 
 �
 j is the value of skd
�

on the labels of its children� The
value of the function on this input is simply the label of the root�

Another way to think of Hj
n is via the concept of a k�dimensional synthesizer 	see Sec�

tion �����
� As was the case for F n� the construction of functions in Hj
n can be described in

two steps� 	�
 A recursive construction of a ���j�dimensional synthesizer� S���j � from a two�
dimensional synthesizer� S� 	�
 An immediate construction of the pseudo�random function�
f � from S���j �

ffar�s���r����j �s�I�
j
g	x� 	 x� � � � 	 x���j 
 def

� S���j	a��x� � a��x�� � � � � a���j �x���j 
�

We turn to the formal de�nition of the hybrid�distributions�

De	nition ����� Let IS be the key�generating algorithms of S� Let n� � and j be three
integers such that n � �� and � 
 j 
 �� For every sequence� �k � fk�� k�� � � � � k��jg of possible
values of IS	�n
 and for every length���

j
���j sequence of n�bit strings� �a � far�s � � 
 r 


���j� s � I�
jg the function f�a��k � In �� In is de	ned as follows� On input x � x�	x� � � �	x���j �

where �� 
 i 
 ���j� xi � I�
j
the function outputs the single value in

SQsk�
	SQsk�

	� � �SQsk��j
	a��x� � a��x�� � � � � a���j �x���j 
 � � �

�

Hj
n is the random variable that assumes as values the functions f�a��k de	ned above� where

the ki�s are independently distributed according to IS	�n
 and �a is independently distributed

according to 	Un

��
j
���j �

This de�nition immediately implies that�

Claim ����� H�
n and Fn are identically distributed and Hdlog ne

n and Rn are identically dis�
tributed�

The proof below shows that for every � 
 j 
 � the two neighboring ensembles Hj
n and

Hj��
n are computationally indistinguishable� As shown below� this implies Theorem ����� by

a standard hybrid argument�

Proof� 	of Theorem �����
 As mentioned in Section ������ it is obvious that F is an e�ciently
computable function ensemble� Assume that F is not pseudo�random� By the de�nition of
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pseudo�random function ensembles� there exists a polynomial�time oracle machine� M� and
a polynomial p	�
 so that for in�nitely many n�

���Pr hMFn	�n
 � �
i

 Pr

h
MRn	�n
 � �

i��� � �

p	n

�

where R � fRngn�N is the uniform In �� In function ensemble� Let t	�
 be a polynomial that
bounds the number queries that M makes on input �n�

GivenM� we de�ne the probabilistic polynomial�time algorithmD that distinguishes the

output of Sn from random� Let m � m	n
 be de�ned by m	n

def
� t	n
 � n� For every n� the

input of D is an m	n
�m	n
 matrix� B � 	bi�j
� whose entries are n�bit strings� As part of its
algorithm� D invokes M on input �n� The de�nition of m allows D to answer all the queries
of M 	which are bounded by t	n

� It is shown below that D distinguishes between the
following two distributions of B� 	a
 CSn	X� Y 
 where X and Y are independently drawn
from 	Un


m
n�� 	b
 	Un

m
n��m
n��

For simplicity of presentation� we only de�ne the algorithm that D performs for n � ��� It
is easy to extend this de�nition to a general value of n such that Claim ����� and Claim �����
still hold� On input B � 	bi�j


m
n�
i�j��� the algorithm is de�ned as follows�

�� Choose � 
 J 
 � uniformly at random�

�� Generate �k � fk�� k�� � � � � k��J��g by �
 J 
 � independent executions of IS on input
�n�

�� Extract ���J�� sub�matrices of B� For � 
 i 
 ���J��� denote by Bi �
�
biu�v

�t
n�
u�v��

the

t	n
�t	n
 diagonal sub�matrix of B de�ned by

biu�v
def
� bu�

i����t
n�����v�

i����t
n���� �

�� Invoke M on input �n� Denote by qr � qr� 	 qr� � � �	 qr���J the rth query M makes� where

qri � I�
J
for � 
 i 
 ���J � On each of these queries D answers as follows�

For every � 
 i 
 ���J��� denote by ai�qr�i���q
r
�i
the entry biu�v of Bi where

u � minf� 
 j 
 r � qj�i�� � qr�i��g and v � minf� 
 j 
 r � qj�i � qr�ig�

Answer the query with the single value in

SQsk�
	� � �SQsk��J��

	fa��qr��qr� � � � � � a���J���qr
���J��

�qr
���J

g
 � � �
�

�� Output whatever M outputs�

It is obvious thatD is a polynomial�time algorithm� To show that D is also a distinguisher
for the pseudo�random synthesizers� we �rst state and prove the following two claims�

Claim ����� For every � 
 J 
 ��

Pr
h
D		Un


m
n��m
n�
 � �jJ � j
i
� Pr

h
MHj
�

n 	�n
 � �
i
�
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Proof� As part of its algorithm� D denotes some of B�s entries by names of the form �ar�s��

where � 
 r 
 ���J�� and s � I�
J
�

� Note that D never denotes an entry of B by two
di
erent names� Assume� for the sake of the proof� that any name ar�s that was not used
by D is assigned an independently and uniformly distributed n�bit string� Denote by �a the
sequence far�s � � 
 r 
 ���J��� s � I�

J
�g� It is easy to verify that�

�� When B is uniformly distributed� the distribution of �a is identical to 	Un

��
J
�

���J��
�

�� D answers every query� q� ofM with the value f�a��k	q
� where f�a��k is as in the de�nition

of HJ��
n �

The claim immediately follows from 	�
 and 	�
 and from the de�nition of �k� �

Claim ����� Let X and Y be independently drawn from 	Un

m
n�� Then for every � 
 J 
 ��

Pr �D	CSn	X� Y 

 � �jJ � j� � Pr
h
MHj

n	�n
 � �
i
�

Proof� Let X � fx�� x�� � � � � xm
n�g and Y � fy�� y�� � � � � ym
n�g be independently drawn from
	Un


m
n� and let sk be drawn from Sn� Assume that the input of D is B � Csk	X� Y 
� For

the sake of the proof� de�ne the vector �a� � fa�i�s � � 
 i 
 ���J � s � I�
Jg as follows�

� If D denoted by ai�qr�i���q
r
�i
the entry biu�v of Bi� then de�ne a��i���qr�i��

to be x
i����t
n��u

and a��i�qr�i to be y
i����t
n��v� Note that ai�qr�i���q
r
�i
� sk	a

�
�i���qr�i��

� a��i�qr�i
�

� For all other values in �a� assign an independently and uniformly distributed n�bit string�

It is easy to verify that the distribution of �a� is identical to 	Un

��
J
���J � Let �k� be the

sequence fk�� k�� � � � � k��J��� kg and let f�a���k� be as in the de�nition of HJ
n � We now have that

the answer D gives to the rth query� qr� of M is�

SQsk�
	� � �SQsk��J��

	fa��qr��qr� � � � � � a���J���qr
���J��

�qr
���J

g
 � � �

� SQsk�

	� � �SQsk��J��
	SQsk

	fa���qr� � a
�
��qr�

� � � � � a����J �qr
���J

g

 � � �

� f�a���k�	q

r
�

From this fact and from the de�nition of �a� and �k�� we immediately get the claim� �

By Claims ������ ����� and ������ we can now conclude the following� Let X and Y be
independently drawn from 	Un


m
n�� then for in�nitely many n����Pr �D	CSn	X� Y 

 � ��
 Pr
h
D		Un


m
n��m
n�
 � �
i���

�
�

dlogne �
������
dlog ne��X

j��

Pr �D	CSn	X� Y 

 � �jJ � j�

dlog ne��X

j��

Pr
h
D		Un


m
n��m
n�
 � �jJ � j
i������

�
�

dlogne �
������
dlog ne��X

j��

Pr
h
MHj

n	�n
 � �
i



dlog ne��X
j��

Pr
h
MHj
�

n 	�n
 � �
i������
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�
�

dlogne �
����Pr hMH�

n	�n
 � �
i

 Pr

�
MH

dlogne
n 	�n
 � �

	����
�

�

dlogne �
���Pr hMFn	�n
 � �

i

 Pr

h
MRn	�n
 � �

i���
�

�

p	n
 � dlogne �

This contradicts the assumption that S is a collection of pseudo�random synthesizers and
completes the proof of Theorem ������ �

Corollary ����� For any collection of pseudo�random synthesizers� S� such that its func�
tions are computable in NCi there exists an e�ciently computable pseudo�random function
ensemble� F � such that its functions are computable in NCi��� Furthermore� the correspond�
ing key�generating algorithms� IS and IF � have the same parallel time complexity�

Proof� By Lemma ������ we can construct from� S� a new collection of I�n �� In pseudo�
random synthesizers� S �� such that its functions are computable in NCi� By Theorem ������
we can construct from S � an e�ciently computable pseudo�random function ensemble� F �
such that its functions are computable in NCi��� Both constructions preserve the parallel
time complexity of the key�generating algorithms� �


���� A Related Construction and Additional Properties

Though designed to enable e�cient computation in parallel� Construction ����� obtains some
additional useful properties� In this section we describe two such properties� a rather sharp
time�space tradeo
 and an incremental property� We also show how to adjust the construc�
tion in order to improve upon these properties�

Time�Space Tradeo�

Construction ����� has the advantage of a sharp time�space tradeo
� In order to get an even
sharper tradeo
� we describe an alternative construction of pseudo�random functions� The
best way to understand the revised construction is by viewing the computation process back�
wards� Every function on n�bits is de�ned by the length��n sequence of all its values� Assume
that we could sample and store two length�dp�ne sequences� X and Y � of random strings as
the key of a pseudo�random function� In this case� given a pseudo�random synthesizer� S�
we can de�ne the �n values of the pseudo�random function to be the entries of the matrix
CS	X� Y 
� In order to reduce the key size� we can replace the random sequences� X and
Y � with pseudo�random sequences� Such sequences X and Y can be obtained together from
CS	X

�� Y �
� where X � and Y � are two shorter random sequences 	of length approximatelyp
� � �n��
� By continuing this process of reducing the key size logn times� we get a key with

constant number of strings 	see Figure ��� for an illustration of the construction
�
In order to understand where the original construction is �wasteful� in the size of the

key we can describe it in similar terms� The �n values of the function are still the values
of CS	X� Y 
 for two sequences X and Y 	in the description of the computation as a tree



���� PSEUDO�RANDOM SYNTHESIZERS AND FUNCTIONS ��

m-keys

2

Values

n

Figure ���� Illustration of the Alternative Construction

labeling process these are all the possible labels of the root�s children
 but then we get X and
Y separately asCS	X

�� Y �
 andCS	X
��� Y ��
� By the time the sequences have constant�length�

there are O	n
 of those�
Returning to the new construction� note that if we allow a key of m strings we only

need t � logn
 log logm of the steps described above� Computing such functions requires t
phases and in each phase several parallel invocations of S� The total number of invocations
of S is �t 
 � � n

logm
� This seems to be a relatively sharp time�space tradeo
 and� to the

best of our knowledge� one that cannot be obtained by the GGM�construction�
For some applications� like the protection of the data on a disk� we need pseudo�random

functions with reasonably small amount of entries� In this case� by storing relatively few
strings� we can achieve a very easy�to�compute function� For example� ��� random ��bit
strings de�ne a pseudo�random I�� �� I� function� Computing this function requires only �
invocations of a pseudo�random synthesizer in � phases�

We formalize the de�nition of the alternative construction�

Construction ����� 
Alternative Construction of Pseudo�Random Functions�
Let S � fSngn�N be a collection of I�n �� In pseudo�random synthesizers and let IS be
a probabilistic polynomial�time key�generating algorithm for S� For every possible value�
k� of IS	�n
� denote by sk the corresponding I�n �� In function� The function ensemble
F � fFngn�N is de	ned as follows�

� �key�generation
 Let mj denote the value �j � � and let tn denote the smallest integer
t such that mt � n� On input �n� the probabilistic polynomial�time key�generating
algorithm IF outputs a pair 	�a��k
� where �a � fa�� a�� � � � � a�m���g is generated according
to 	Un


�m� and �k � fk�� k�� � � � � ktng is generated by tn independent executions of IS on
input �n �i�e� is sampled from 	IS	�n

tn��
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� �evaluation
 For every possible value� 	�a��k
� of IF 	�n
 and every j such that � 
 j 
 tn�
de	ne the function f j

�a��k
� Imj �� In in recursion on j� For x � Im�� de	ne f �

�a��k
	x
 to be

ax� For any j � � and x � x� 	 x� � Imj �x� and x� are ��j�� � ���bit strings� de	ne
f j
�a��k

	x
 to be skj 	f
j��

�a��k
	�� x�
� f

j��

�a��k
	�� x�

�

For every x � In the value of the function f�a��k � I
n �� In on x is de	ned to be f tn

�a��k
	x�
�

where x� is obtained by padding x with mtn 
 n zeros�

Finally� Fn is de	ned to be the random variable that assumes as values the functions f�a��k
with the probability space induced by IF 	�n
�

The proof of security for Construction ����� is omitted since it is almost identical to the
proof of security for Construction ������

We can now state the exact form of the time�space tradeo
 under the notation of Con�
struction ������ If �a contains �mi strings instead of �m� � then we can de�ne f i

�a��k
	x
 to be a

distinct value in �a for every x � Imi and keep the recursive de�nition of f j
�a��k

as before for

j � i� In this case� computing f�a��k	x
 can be done in tn 
 i phases with a total of �tn�i 
 �
invocations of the synthesizers� The next lemma follows 	for simplicity this lemma is stated
in terms of a synthesizer instead of a collection of synthesizers
�

Lemma ����� Let S be a pseudo�random synthesizer with output�length function �	n
 � n�
Assume that S can be computed in parallel�time D	n
 and work W 	n
 �on n�bit inputs��
Then for every m � m	n
 such that �m� 
 m	n
 
 �n there exists an e�ciently computable
pseudo�random function ensemble F � fFngn�N such that the key of a function in Fn is a
sequence of at most m	n
 random n�bit strings and this function can be computed in parallel�
time 	logn
 log logm	n
 �O	�

D	n
 and using work of O	 n

logm
n�

W 	n
�

Incremental Property

We now describe an observation of Mihir Bellare that gives rise to an interesting incremental
property of our construction� 	For the formulation and treatment of incremental cryptogra�
phy� see the work of Bellare� Goldreich and Goldwasser ���� ����


Let f be any function in Fn� where F � fFngn�N is the pseudo�random function ensemble
de�ned in Construction ������ Let x� y � In be of Hamming distance one 	x and y di
er on
exactly one bit
� Then given the computation of f	x
 	including all intermediate values
� we
only need additional logn invocations of the pseudo�random synthesizers 	instead of n
 in
order to evaluate f	y
� The easiest way to see the correctness of this observation is to recall
the description of the computation of f	x
 as a labeling process on a depth�logn binary tree�
The only labels that change as a result of �ipping one bit of x are those of the nodes on a
path from one leaf to the root 	i�e� logn� � labels
�

If a Gray�code representation� of numbers is used� we get a similar observation for the
computation of f	x
 and f	x��
� Given the computation of one of these values� computing

�A permutation� P� on In is called a Gray�code representation if for every � � x � �n the Hamming dis�
tance between P �x� and P �x�� mod �n� is one� Such a P de�nes a Hamiltonian�cycle on the n�dimensional
cube� It is not hard to see that an easy�to�compute P can be de�ned�
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the other requires only additional logn invocations of the pseudo�random synthesizers� It is
not hard to imagine situations where one of these incremental properties is useful�

The observation regarding the computation of f	x
 and f	y
� for x and y of Hamming
distance one� also holds for the functions of Construction ������ The observation regarding
the computation of f	x
 and f	x� �
 holds if we use a di
erent representation of numbers
	this representation is similar to a Gray�code� though a bit more complicated
�


���
 Synthesizers Based on General Cryptographic Primitives

Sections ����������� are mostly devoted to showing parallel constructions of pseudo�random
synthesizers� In this section we provide a simple construction of pseudo�random synthesizers
based on what we call weak pseudo�random functions� This construction immediately im�
plies a construction of pseudo�random synthesizers based on trapdoor one�way permutations
	and an additional construction� based on any hard�to�learn problem� which is considered in
Section �����
� An interesting line for further research is the parallel construction of pseudo�
random synthesizers from other cryptographic primitives� In particular� we do not know of
such a construction from pseudo�random generators or directly from one�way functions�

Weak Pseudo�Random Functions

The reason pseudo�random functions are hard to construct is that they must endure a very
powerful kind of an attack� The adversary 	the distinguisher
 may query their values at
every point and may adapt its queries based on the answers it gets� We can weaken the
opponent by letting the only access it has to the function be a polynomial sample of random
points and the value of the function at these points 	more on de�nitions of function families
that are weaker than pseudo�random functions can be found in �����
� We call functions that
look random to such an adversary weak pseudo�random functions� In this section it is shown
that weak pseudo�random functions yield pseudo�random synthesizers in a straightforward
manner� We therefore get a parallel construction of 	standard
 pseudo�random functions
from weak pseudo�random functions�

For simplicity� we de�ne weak pseudo�random functions as length�preserving� In their
de�nition we use the following notation�

Notation ����� For every function f and every sequence X � fx� � � � xkg of values in the
domain of f � denote by V	X� f
 the sequence fx�� f	x�
� x�� f	x�
 � � � xk� f	xk
g �Vstands for
values��

De	nition ����� 
collection of weak pseudo�random functions� An e�ciently com�
putable
In �� In function ensemble F � fFngn�N� is a collection of weak pseudo�random func�
tions if for every probabilistic polynomial�time algorithm� D� every two polynomials p	�
 and
m	�
� and all su�ciently large n�

���Pr hD	V		Un

m
n�� Fn

 � �

i

 Pr

h
D		Un


�m
n�
 � �
i��� 
 �

p	n

�
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Let F be a collection of weak pseudo�random functions and let I be the polynomial�time
key�generating algorithm for F � Lemma ����� shows how to construct a pseudo�random
synthesizer from F and I� Since the random bits of I can be replaced by pseudo�random
bits� we can assume that I only uses n truly random bits on input �n� In fact� this is only
a simplifying assumption which is not really required for the construction of pseudo�random
synthesizers� For every r � In� denote by Ir	�n
 the value of I	�n
 when I uses r as its
random bits�

Lemma ����� Let F and I be as above and de	ne S � f�� �g��f�� �g� �� f�� �g� such that
�x� y � In� S	x� y
 � fIy
�n�	x
� Then S is a pseudo�random synthesizer�

Proof� It is obvious that S is e�ciently computable� Assume� in contradiction to the lemma�
that S is not a pseudo�random synthesizer� Then there exists a probabilistic polynomial�time
algorithm� D� and polynomials p	�
 and m	�
� such that for in�nitely many n�

���Pr �D	CS	X� Y 

 � ��
 Pr
h
D		Un


m
n��m
n�
 � �
i��� � �

p	n

�

where X and Y are independently drawn from 	Un

m
n��

For every n and every � 
 i 
 m	n
� de�ne the ith hybrid distributionH i
n overm	n
�m	n


matrices as follows� The �rst i columns are distributed according to CS	X� Y 
� where X is
drawn from 	Un


m
n� and Y is independently drawn from 	Un

i� The lastm	n

i columns are

independently distributed according to 	Un

m
n��
m
n��i�� It is immediate that for in�nitely

many n�

���Pr hD	Hm
n�
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 � �
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h
D	H�

n
 � �
i��� � �

p	n

�

We now de�ne a distinguisherD� for F � Given fx�� z�� x�� z�� � � � � xm
n�� zm
n�g as its input�
D� performs the following algorithm�

�� De�ne X � fx�� � � � � xm
n�g and Z � fz�� � � � � zm
n�g�
�� Uniformly choose � 
 J 
 m	n
�

�� Sample Y from 	Un

J�� and generate anm	n
�m	n
 matrixB whose �rst J
� columns

are CS	X� Y 
� its J th column is Zt and the last m	n
 
 J columns are independently
distributed according to 	Un


m
n��
m
n��J��

�� Output D	B
�

It is obvious that D� is e�ciently computable� It is also easy to verify that
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D�	V		Un
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i
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and that
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Thus� by a standard hybrid argument� we get that for in�nitely many n�

���Pr hD�	V		Un
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n�� Fn

 � �
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�m
n�
 � �
i��� � �

p	n
m	n

�

in contradiction to the assumption that F is a collection of weak pseudo�random functions�
We can therefore conclude the lemma� �

Notice that S 	as in Lemma �����
 obeys an even more powerful requirement than is
needed by the de�nition of a pseudo�random synthesizer� For random X and Y the matrix
CS	X� Y 
 cannot be e�ciently distinguished from a random matrix even if we allow the
distinguisher access to X�

Corollary ����� �of Lemma ������ If there exist weak pseudo�random functions that can be
sampled and evaluated in NC� then there also exist a pseudo�random synthesizer in NC and
�standard� pseudo�random functions that can be sampled and evaluated in NC�

Trapdoor One�Way Permutations

We now describe a rather simple construction of weak pseudo�random functions from a
collection of trapdoor permutations� Therefore� given Lemma ������ we get a construction
of a pseudo�random synthesizer out of a collection of trapdoor permutations� This pseudo�
random synthesizer is in NC if the trapdoor permutations can be sampled and inverted in
NC 	in fact� there is an additional requirement of a hard�core predicate in NC but this is
already satis�ed by ����
� Since we have no concrete example of this sort� we only give a
brief and informal description of the construction 	for formal de�nitions of trapdoor one�way
permutations and hard�core bits� see e�g� ���� ���
�

Let F � fFngn�N be a permutation ensemble such that every fi � Fn is a permutation
over a domain Dn� Informally� F is a collection of trapdoor one�way permutations if the key
generating algorithm IF of F outputs both a public�key� i� and a trapdoor�key� t	i
� and we
have that�

� Given i� the function fi is easy to compute everywhere but hard to invert on the
average�

� Given t	i
 the function fi is easy to compute and to invert everywhere�

Let F � fFn � Dn �� Dngn�N be a collection of trapdoor one�way permutations� Assume
that the collection is one�way for the uniform distribution over the inputs 	i�e� it is hard
to compute x given Fn	x
� where x is uniformly distributed in Dn
� Let the sequence of
functions fbn � Dn �� I�gn�N be a hard�core predicate for F � Informally� this means that
given Fn	x
 for a uniformly distributed x� it is hard to guess bn	x
 with probability which
is non�negligibly better than half� We can now de�ne a collection of weak pseudo�random
functions G � fGngn�N in the following way�
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For every x � In� denote by Dn	x
 the element in Dn sampled using x as the
random bits� For every key i of fi � Fn� de	ne gi � I

n �� I� as follows�

�x � In� gi	x

def
� bn	f

��
i 	Dn	x




�Note that computing gi	x
 requires knowledge of the trapdoor�key t	i
�� Let Gn

be the random variable that assumes as values the functions gi with the probability
space induced by the distribution over the keys in Fn�

Claim ����� �without proof� If F is a collection of trapdoor one�way permutations and
fbngn�N is a hard�core predicate for F � then the function ensemble G which is de	ned above
is a collection of weak pseudo�random functions�


���� Number�Theoretic Constructions of Pseudo�Random Syn�
thesizers

In this section we present several NC� 	or actually� TC�
 constructions of pseudo�random
synthesizers based on concrete� frequently�used� intractability assumptions� The �rst con�
struction is at least as secure as the computational Di�e�Hellman ���� assumption� Since
the Di�e�Hellman assumption modulo a composite is not stronger than factoring ���� ����
	see also Section ���
 this implies a construction that is at least as secure as Factoring� Fi�
nally� we show two constructions that are at least as secure as the RSA assumption ������
Although the RSA assumption is not weaker than factoring� the constructions based on RSA
might have other advantages� For example� under the assumption that �	n
 least�signi�cant
bits are simultaneously hard for RSA� we get pseudo�random synthesizers with linear output
length� In addition� the constructions based on RSA and their proof of security use several
interesting ideas that might be useful elsewhere�

The constructions ofNC� pseudo�random synthesizers imply constructions ofNC� pseudo�
random functions 	in fact we get TC� functions
� In Section ��� we present more e�cient
direct constructions of pseudo�random functions 	that are in particular in TC�
� These
constructions are either based on the decisional Di�e�Hellman assumption or on factoring�
Some of the ideas and tools used in Section ��� are similar to those used here�

We �rst address some issues that are common to all constructions presented here�
The evaluation of our pseudo�random synthesizers in NC� relies on a preprocessing stage�

This stage can be performed as part of the 	sequential
 key�generating algorithm� In this
idea we follow the work of Kearns and Valiant� ����� In their context� the additional data is
�forced� into the input whereas in our context it is added to the key�

The analysis of the parallel�time complexity of the synthesizers uses previous results on
the parallel�time complexity of arithmetic operations 	see Karp and Ramachandran ���� for a
survey
� In particular� we use the result of Beame� Cook and Hoover� ����� They showed that
iterated multiplication 	multiplying n numbers of length n
 and additional related operations
can be performed by log�depth circuits 	these circuits can be constructed e�ciently� though
sequentially
� The results of ���� enable the computation of modular exponentiation in
NC� given preprocessing that only depends on the base� This follows from the fact that
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computing be mod N is reduced to an iterated multiplication 	and an additional modular
reduction
 given the values bi mod N 	for � 
 i 
 the length of e
�

The pseudo�random synthesizers constructed in this section are Boolean functions�� Sec�
tion ����� showed two methods for expanding the output�length of pseudo�random synthe�
sizers� The method of Lemma ����� requires a pseudo�random generator that expands the
input by a factor of two� A natural choice for this purpose 	in the case of the synthesizers
which are described in this section
 is the pseudo�random generators of Blum� Blum and
Shub ���� or the one of Hastad� Schrift and Shamir ����� Given appropriate preprocessing�
both generators can be computed in NC� and their security is based on the assumption that
factoring integers 	Blum�integers in ����
 is hard�

We note that all the constructions of this section give collections of pseudo�random syn�
thesizers� However� the security of theses synthesizers does not rely on keeping their key
private� As discussed in Section ������ this allows us to use a single synthesizer at all the
levels of Construction ����� 	and of Construction �����
�

Common Tools

In our constructions� we use the result of Goldreich and Levin ���� which gives a hard�core
predicate for �any� one�way function�

Theorem ����� ������ Let f be any one�way function� For every probabilistic polynomial�
time algorithm� A� for every polynomial� p	�
 and all su�ciently large n�

Pr �A	f	x
� r
 � r � x� 

�

�
�

�

p	n

�

where x and r are independently drawn from Un �recall that r� x denotes the inner product
mod � of r and x��

In fact� we use their result in a slightly di
erent context� Loosely speaking� if given f	x

it is hard to compute g	x
 with non�negligible probability� then given f	x
 it is also hard to
guess g	x
 � r with non�negligible advantage over �	�� To verify that the Goldreich�Levin
result applies in this context� let us state a main technical lemma regarding the Goldreich�
Levin�Racko
 reconstruction algorithm��

Lemma ������ There exists a probabilistic oracle machineM such that for any x � f�� �gn�
any � � �� and any probabilistic machine Bx� if

Pr
r�Un

�Bx	r
 � r � x� � �	� � ��

then MBx	�n� �
�

� runs in time 	�	�
� � poly	n
�
�In fact� all these synthesizers can be made to output a logarithmic number of bits� Furthermore� given

stronger assumptions they may output an even larger number of bits� See Remark ����� for an example
�The Goldreich�Levin Theorem is a constructive one that enables reconstruction of x given an algorithm

for guessing x� r� See ���
 for details� the algorithm there is due to Racko��
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� makes O		n	�
�
 queries to Bx� and

� outputs a list L of O		�	�
� � n
 values such that

Pr�x � L� � �	��

Given this lemma� it is not hard to verify that if there exists an e�cient machine that on
input f	x
 guesses g	x
 � r with non�negligible advantage over �	�� then there also exists
an e�cient machine M that on input f	x
 computes g	x
 with non�negligible probability
	by �rst producing polynomial many candidates for g	x
 and then choosing among them
at random
� In general� M may not be able to verify whether it got the right value g	x

	unlike the case where g	x
 � x� i�e� that f is a one�way function
� However� in the contexts
of the Di�e�Hellman assumption� Shoup ����� has shown how to increase the certainty of a
machine such as M using the random�self reducibility of the problem�

In addition to the Goldreich�Levin result� the proof of security for all the constructions
uses the next�bit prediction tests of Blum and Micali ����� The equivalence between pseudo�
random ensembles and ensembles that pass all polynomial�time next�bit tests was shown by
Yao ������

The Di
e�Hellman Assumption

We now de�ne a collection of pseudo�random synthesizers that are at least as secure as
the computational Di�e�Hellman assumption 	DH�Assumption
� This assumption was
introduced in the seminal paper of Di�e and Hellman ���� 	as a requirement for the security
of their key�exchange protocol
� The validity of the DH�Assumption was studied quite
extensively over the last two decades� A few notable representatives of this research are
���� ��� ����� Maurer and Wolf ���� and Boneh and Lipton ���� have shown that in several
settings the DH�Assumption is equivalent to the assumption that computing the discrete log
is hard� In particular� for any speci�c prime P there is an e�cient reduction 	given some
information that only depends on P 
 of the discrete log problem in Z�

P to the DH�Problem in
Z�P� Shoup ����� has shown that the DH�Assumption holds against what he calls �generic��
algorithms� See Section ��� for more details on these results and on the DH�Assumption in
general�

For concreteness� we state the DH�Assumption in the group Z�
P� where P is a prime�

However� our construction works just as well given the DH�Assumption in other groups�
We use this fact in Section ����� to get pseudo�random synthesizers which are at least as
secure as Factoring� In order to formalize the DH�Assumption in Z�

P� we need to specify the
distribution of P � One possible choice is to let P be a uniformly distributed prime of a given
length� However� there are other possible choices� For example� it is not inconceivable that
P can be �xed for any given length� As in Chapter �� we keep our results general by letting
P be generated by some polynomial�time algorithm IGDH 	where IG stands for instance
generator
�

De	nition ����� 
IGDH� The Di�e�Hellman instance generator� IGDH� is a probabilistic
polynomial�time algorithm such that on input �n the output of IGDH is distributed over n�bit
primes�
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In addition� we need to specify the distribution of a generator� g� of Z�P� It can be shown
that if the DH�Assumption holds for some distribution of g� then it also holds if we let g be
a uniformly distributed generator of Z�P 	since there exists a simple randomized�reduction of
the DH�Problem for any g to the DH�Problem with a uniformly distributed g
�

All exponentiations in the rest of this subsection are in Z�P 	the de�nition of P will be
clear by the context
� To simplify the notation� we omit the expression �mod P� from now
on� We can now formally state the DH�Assumption 	for the instance generator given IGDH
�

Assumption ����� �Di�e�Hellman ����� For every probabilistic polynomial�time algorithm�
A� for every polynomial� q	�
 and all su�ciently large n�

Pr
h
A	P� g� ga� gb
 � gab

i



�

q	n

�

where the distribution of P is IGDH	�
n
� the distribution of g is uniform over the set of

generators of Z�P and the distribution of ha� bi is 	Un

��

Based on this assumption we de�ne a collection of I�n �� I� pseudo�random synthesizers�
SDH �

De	nition ����� For every n�bit prime� P � every generator� g� of Z�P and every r � In�
de	ne sP�g�r � I

�n �� I� by�

�x� y � In� sP�g�r	x� y

def
� gxy � r�

Let Sn to be the random variable that assumes as values the functions sP�g�r� where the
distribution of P is IGDH	�

n
� the distribution of g is uniform over the set of generators of
Z�P and the distribution of r is Un� The function ensemble SDH is de	ned to be fSngn�N�

Note that in Section ����� we show a direct and e�cient construction of n�dimensional
pseudo�random synthesizers based on the 	stronger
 decisional version of the DH�Assumption
	which gives very e�cient pseudo�random functions
�

Theorem ������ If the DH�Assumption �Assumption ������ holds� then SDH is a collection
of I�n �� I� pseudo�random synthesizers�

Proof� It is obvious that SDH � fSngn�N is e�ciently computable� Assume that SDH is not
a collection of pseudo�random synthesizers� Then there exists a polynomial m	�
 such that
the ensemble E � fEng is not pseudo�random� where En � CSn	X� Y 
 for X and Y that are
independently drawn from 	Un


m
n�� Therefore� there exists an e�cient next�bit prediction
test� T � and a polynomial q	�
 such that for in�nitely many n it holds that�

Given a pre	x of En of uniformly chosen length� T succeeds to predict the next
bit with probability greater than �

�
� �

q
n�
�
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We now show how to use T in order to de�ne an e�cient algorithm A such that for
in�nitely many n�

Pr
h
A	P� g� ga� gb� r
 � gab � r

i
�

�

�
�

�

q	n

�

where the distribution of P� g� a and b is as in the DH�Assumption and r is drawn from Un�
By Theorem ������ this means that gab can also be e�ciently computed which contradicts
the DH�Assumption and completes the proof of the lemma�

In the de�nition of A we use the fact that in order to compute gxy � 	gx
y � 	gy
x it is
enough to either know gx and y or gy and x 	i�e� it is not required to know both x and y
�
This enables A to de�ne a matrix which is distributed according to En such that one of its
entries is gab� r 	the value A tries to guess
 and all other entries can be computed by A� It
is now possible for A to guess gab� r by invoking T on the appropriate pre�x of this matrix�

In more details� on input hP� g� ga� gb� ri the algorithm A is de�ned as follows�

�� Uniformly choose � 
 i� j 
 m	n
�

�� De�ne X � fx�� � � � � xm
n�g and Y � fy�� � � � � ym
n�g by setting xi � a� yj � b and
independently drawing all other values from Un�

�� De�ne B � 	bu�v

m
n�
u�v�� to be CsP�g�r	X� Y 
�

Note that A knows all the values of X and Y except xi and yj� Therefore� A can
compute all the entries of B except bi�j � gab � r�

�� Invoke T and feed it with all the entries of B up to bi�j 	i�e� the �rst i 
 � rows and
the �rst j 
 � entries of the ith row
�

�� Output T �s prediction of bi�j�

It is obvious that A is e�cient� Furthermore� since the distribution of B is exactly En� it
is immediate that for in�nitely many n� Pr

h
A	P� g� ga� gb� r
 � gab � r

i
� �

�
� �

q
n�
� where the

distribution of P� g� a� b and r is as above� This contradicts the DH�Assumption and proves
the lemma� �

Corollary ������ If the DH assumption �Assumption ������ holds� then there exist pseudo�
random functions that are computable in NC� �given a sequential precomputation which is
part of the key�generating algorithm��

Proof� By Theorem ������� given that the DH�Assumption holds� SDH is a collection of
pseudo�random synthesizers� If the key�generating algorithm precomputes g�

i
mod P for

� 
 i 
 n� then the functions of SDH can be evaluated in NC�� This precomputation
reduces any modular exponentiation 	with g as the base
 to an iterated multiplication and
an additional modular reduction 	see also the discussion at the beginning of this section
� By
Corollary ������ there exist pseudo�random functions in NC� 	the key�generating algorithm
in both cases is sequential
� �

Remark ����� Assume that IGDH	�
n
 has a single possible value� P � for every n� Then

SDH can be transformed into a synthesizer rather than a collection of synthesizers� In this
case� the key�generating algorithm of the pseudo�random functions we get is in 
non�uniform�
NC�
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Composite Di
e�Hellman Assumption and Factoring

The collection of pseudo�random synthesizers� SDH � is at least as secure as the DH�Assumption
modulo a prime� As mentioned above� the DH�Assumption in any other group gives a cor�
responding construction of pseudo�random synthesizers with practically the same proof of
security� We now consider the DH�Assumption modulo a Blum�integer 	composite DH�
Assumption
� McCurley ���� and Shmuely ����� have shown that the composite DH�
Assumption is implied by the assumption that factoring Blum�integers is hard� See also
Section ���� for de�nitions and proof that are more consistent with our setting� We therefore
get a simple construction of pseudo�random synthesizers which is at least as secure as Fac�
toring� In the subsequent� we give the relevant de�nitions and claims 	for better readability
we repeat some of the de�nitions from Section ���
� We omit the proofs 	since they are
practically the same as in Section �����
�

To formalize the composite DH�Assumption we let this composite be generated by some
polynomial�time algorithm FIG� We restrict the output of FIG to the set of Blum�integers�
This restriction is quite standard and it is meant to simplify the reduction of the composite
DH�Assumption to factoring�

De	nition ����� 
FIG� The factoring instance generator� FIG� is a probabilistic polynomial�
time algorithm such that on input �n its output� N � is distributed over �n�bit integers� where
N � P �Q for two n�bit primes� P and Q� such that P � Q � � mod � �such an integer is
known as a Blum�integer��

We note that it is essential for FIG	�n
 to have super�polynomial number of possible val�
ues since otherwise factoring would be non�uniformly easy 	in this respect it is very di
erent
from the case of the Di�e�Hellman instance generator� IGDH
� One natural distribution of
FIG	�n
 that has this property is the uniform distribution over �n�bit Blum�integers�

All exponentiations in the rest of this subsection are in Z�N 	the de�nition of N will be
clear by the context
� To simplify the notation� we omit the expression �mod N� from
now on� We can now de�ne both the composite DH�Assumption and the assumption that
factoring Blum�integers is hard 	for the instance generator FIG
�

Assumption ����� �Composite Di�e�Hellman� For every probabilistic polynomial�time al�
gorithm� A� for every polynomial� q	�
 and all su�ciently large n�

Pr
h
A	N� g� ga� gb
 � gab

i



�

q	n

�

where the distribution of N is FIG	�n
� the distribution of g is uniform over the set of
quadratic�residues in Z�N and the distribution of ha� bi is 	U�n


��

Assumption ����� �Factoring� For every probabilistic polynomial�time algorithm� A� for
every polynomial� q	�
 and all su�ciently large n�

Pr�A	P �Q
 � fP�Qg� 
 �

q	n

�

where the distribution of N � P �Q is FIG	�n
�
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We de�ne a collection of I�n �� I� pseudo�random synthesizers� SF 	in analogy to the
de�nition of SDH
�

De	nition ����� For every �n�bit Blum�integer� N � every quadratic�residue� g� in Z�N and
every r � I�n� de	ne sN�g�r � I

�n �� I� by�

�x� y � I�n� sN�g�r	x� y

def
� gxy � r�

Let Sn to be the random variable that assumes as values the functions sN�g�r� where the
distribution of N is FIG	�n
� the distribution of g is uniform over the set of quadratic�
residues in Z�N and the distribution of r is U�n� The function ensemble SDH is de	ned to be
fSngn�N�

In the same way Theorem ������ was proven we get that�

Theorem ������ If the composite DH�Assumption �Assumption ����
� holds� then SF is a
collection of I�n �� I� pseudo�random synthesizers�

As shown in ���� ���� and in Theorem ������ the composite DH�Assumption 	Assump�
tion �����
 is implied by the factoring assumption 	Assumption �����
� We therefore get
that�

Corollary ������ �of Theorem ������� If factoring Blum�integers is hard �Assumption �������
then SF is a collection of I�n �� I� pseudo�random synthesizers�

Finally� we can conclude that�

Corollary ������ If factoring Blum�integers is hard �Assumption ������� then there exist
pseudo�random functions that are computable in NC� �given a sequential precomputation
which is part of the key�generating algorithm��

The RSA Assumption

We now de�ne two collections of pseudo�random synthesizers under the assumption that
the RSA�permutations of Rivest� Shamir and Adleman ����� are indeed one�way 	i�e� under
the assumption that it is hard to extract roots modulo a composite
� This assumption is
not weaker than the factoring assumption� However� the constructions based on RSA might
have other advantages� For example� the second RSA�construction gives pseudo�random
synthesizers with linear output length under the assumption that �	n
 least�signi�cant bits
are simultaneously hard for RSA� Another reason to include these constructions is that they
use several interesting techniques that might be useful elsewhere�

As was the case with the previous assumptions� we keep the de�nition of the RSA�
Assumption general by using some polynomial�time instance generator� IGRSA 	our con�
structions of synthesizers however will impose further conditions on IGRSA
�

De	nition ������ 
IGRSA� The RSA instance generator� IGRSA� is a probabilistic polynomial�
time algorithm such that on input �n its output is distributed over pairs hN� ei� Where
N � P � Q is a �n�bit integer� P and Q are two n�bit primes and e � Z�

�
N� �i�e� e is
relatively prime to the order of Z�N which is denoted by �	N
��
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All exponentiations in the rest of this subsection are in Z�N 	the de�nition of N will be
clear by the context
� To simplify the notation� we omit the expression �mod N� from now
on� We can now de�ne the RSA�Assumption 	for the instance generator given IGRSA
�

Assumption ����� �RSA ��
��� For every probabilistic polynomial�time algorithm� A� for
every polynomial� q	�
 and all su�ciently large n�

Pr �A	N� e�me
 � m� 

�

q	n

�

where the distribution of hN� ei is IGRSA	�
n
 and m is uniformly distributed in Z�

N�

The RSA�Assumption gives a collection of trapdoor one�way permutations� the public
key is hN� ei� the function fN�e is de�ned by fN�e	m
 � me and the trapdoor�key is hN� e� di�
where d � e�� mod Z��
N� 	which enables e�cient inversion by the formula m � 	me
d
�
In Section ����� we showed a general construction of pseudo�random synthesizers out of
trapdoor one�way permutations� However� a straightforward application of this construction
to the RSA collection gives very ine�cient synthesizers� In the following few paragraphs we
describe this construction� the reasons it is ine�cient and some of the ideas and tools that
allow us to get more e�cient synthesizers 	which are also computable in NC�
�

Applying the construction of Section ����� to the RSA collection 	using the Goldreich�
Levin ���� hard�core predicate
 gives the following collection of synthesizers� The key of each

synthesizer is a uniformly distributed string r and for every x� y � In� sr	x� y

def
� md � r�

where x samples the trapdoor�key hN� e� di and y samples a uniformly chosen element m �
Z�N� The most obvious drawback of this de�nition is that computing the value sr	x� y

consists of sampling an RSA trapdoor�key� In particular� computing sr	x� y
 consists of
sampling a Blum�integer� N � This 	rather heavy
 operation might be acceptable as part
of the key�generating algorithm of the pseudo�random synthesizers 	or functions
 but is
extremely undesirable as part of their evaluation�

In the direct constructions of pseudo�random synthesizers based on RSA� we manage to
�push� the composite N into the key of the synthesizers 	thus overcoming the drawback
described in the previous paragraph
� Nevertheless� we are still left with the following
problem� Computing md in NC� requires precomputation that depends on m� To enable
this precomputation� it seems that m needs to be part of the key as well� However� in the
construction which is described above� m depends on the input and is uniformly distributed
for a random input� In order to overcome this problem� we show a method of sampling
m almost uniformly at random in a way that facilitates the necessary preprocessing� This
method uses the subset product functions� We �rst de�ne these functions and then describe
the way they are used in our context�

De	nition ������ Let G be a 	nite group and let �y � fy�� � � � � yng be an n�tuple of elements
in G� For any n�bit string� x � x� � � � xn� de	ne the subset product SPG��y	x
 to be the product
in G of the elements yi such that xi � ��

The following lemma was shown by Impagliazzo and Naor ���� and is based on the leftover
hash lemma of ���� ����
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Lemma ������ ������ Let G be a 	nite group� n � c log jGj and c � �� Then for all but an
exponentially small �in n� fraction of the choices of �y � 	G
n� the distribution SPG��y	Un
 is
statistically indistinguishable within an exponentially small amount from the uniform distri�
bution over G�

Let N be a �n�bit integer� Lemma ������ gives a way of de�ning a collection of functions
ffk � I�n �� Z�Ngk which solves the problem of sampling an almost uniformly distributed
elementm � Z�

N for whichmd can be computed inNC�� This collection is ff�gg�g � fSPZ�N��gg�g�
where �g � fg�� � � � � g�ng is a sequence of �n elements in Z�N� The functions ff�gg�g have the
following properties�

�� For almost all choices of the key �g we have that f�g	U�n
 is almost uniformly distributed
in Z�N�

�� Following preprocessing that depends only on the key� �g� each value 	f�g	x


y can be

computed in NC�� The values that need to be precomputed are g�
j

i � where � 
 i 
 �n
and � 
 j 
 the length of y� With these values� the computation of 	f�g	x



y is reduced
to a single iterated multiplication 	and an additional modular reduction
�

The First RSA Construction

For our �rst RSA construction we need to assume that it is hard to extract the eth root
modulo a composite when e is a large prime� To formalize this� we assume that for every
possible value hN� ei of IGRSA	�

n
 we have that e is a �n�bit prime 	which in particular
means that e � Z�

�
N�
� Based on this version of the RSA�Assumption we de�ne a collection

of I�n �� I� pseudo�random synthesizers� SRSA��

De	nition ������ Let N be a �n�bit integer� let �g � fg�� � � � � g�ng be a sequence of �n
elements in Z�N and let r be a �n�bit string� De	ne the function sN��g�r � I

�n �� I� by�

�x� y � I�n� sN��g�r	x� y

def
�
�
SPZ�

N
��g	x


�y � r�

Let Sn to be the random variable that assumes as values the functions sN��g�r� where the
distribution of N is induced by IGRSA	�

n
 and �g and r are uniformly distributed in their
range� The function ensemble SRSA� is de	ned to be fSngn�N�

Note that the only reason we let y be a �n�bit number 	instead of a �n�bit number

is to make both inputs of sN��g�r be of the same length 	which not really necessary for our
constructions
�

Theorem ������ If the RSA�Assumption �Assumption ������ holds when for every possible
value hN� ei of IGRSA	�

n
 we have that e is a �n�bit prime� Then SRSA� is a collection of
I�n �� I� pseudo�random synthesizers�

Proof� It is obvious that SRSA� � fSngn�N is e�ciently computable� Assume that SRSA� is
not a collection of pseudo�random synthesizers� Then there exists a polynomial m	�
 such
that the ensemble E � fEng is not pseudo�random� where En � CSn	X� Y 
 for X and Y
that are independently drawn from 	U�n


m
n�� Therefore� there exists an e�cient next�bit
prediction test� T � and a polynomial q	�
 such that for in�nitely many n it holds that�
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Given a pre	x of En of uniformly chosen length� T succeeds to predict the next
bit with probability greater than �

�
� �

q
n�
�

We now show how to use T in order to de�ne an e�cient algorithm A such that for
in�nitely many n�

Pr �A	N� e�me� z� r
 � mz � r� �
�

�
�

�

�q	n

�

where the distribution of N� e and m is as in the RSA�Assumption 	with the restriction that
e is a �n�bit prime
� r is drawn from U�n and z is uniformly distributed over the set of �n�bit
integers that are relatively prime to e� By Theorem ������ this means that mz can also be
e�ciently computed with non�negligible probability� Following Shamir ������ we note that
given any z such that gcd	e� z
 � � and given mz it is easy to compute m� The reason is
that if gcd	e� z
 � � then m can be computed by the formula m � 	me
a	mz
b where a� b � Z

satisfy that ae�bz � � 	and can be e�ciently computed as well
� Thus� the existence of such
an algorithm A contradicts the RSA�Assumption and completes the proof of the lemma�

The algorithmA de�nes a matrix B which is almost identically distributed as En� One of
the entries of B is mz � r 	the value A tries to guess
 and all other entries can be computed
by A� It is now possible for A to guess mz � r by invoking T on the appropriate pre�x of
this matrix� In more details� on input hN� e�me� z� ri the algorithm A is de�ned as follows�

�� Uniformly choose � 
 i� j 
 m	n
�

�� De�ne the values fh�� � � � � hm
n�g and fd�� � � � � dm
n�g by setting hi � m� uniformly
drawing all other hu�s from Z�N� setting dj � z � e�� mod �	N
 and drawing all other
dv�s from U�n�

�� De�ne B � 	bu�v

m
n�
u�v�� by setting bu�v �

�
		hu


e
dv
�
� r�

Note that A can compute any entry bu�v except bi�j � mz � r� The reason is that
if v �� j then A knows both dv and 	hu


e and if u �� i then A can compute bu�j ��
		hu


e
z�e
��
�
� r � 	hu


z � r since it knows both hu and z�

�� Invoke T and feed it with all the entries of B up to bi�j 	i�e� the �rst i 
 � rows and
the �rst j 
 � entries of the ith row
�

�� Output T �s prediction of bi�j�

It is obvious that A is e�cient� In order to complete the proof� we need to show that if
hN� e�me� z� ri are distributed as above� then B and En are of exponentially small statistical
distance� This would imply that 	for in�nitely many n
 if we feed T with the bits of B up
to bi�j it predicts bi�j � mz� r with probability greater than� say� �

�
� �

�q
n�
� As argued above�

this would contradict the RSA�Assumption and would complete the proof�
To see that B and En are indeed statistically close notice that�

� Since e � Z�
�
N� and �� 
 u 
 m	n
 the value mu is uniformly distributed in Z�

N� we
have that �� 
 u 
 m	n
 the value 	mu


e is also uniformly distributed in Z�N�
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By Lemma ������� we therefore have that the distribution of f	mu

eg��u�m
n� is sta�

tistically close to the distribution of fSPZ�N��g	xu
g��u�m
n� for uniformly distributed

values fx�� � � � � xm
n�g � 	I�n

m
n�

and �g � fg�� � � � � g�ng � 	Z�N

�n�

� For z that is chosen from U�n the distribution of z � e�� mod �	N
 and U�n mod �	N

are statistically close� Since e is a large prime� even given the restriction that z is
relatively prime to e these distributions are statistically close�

Given these two observations it is easy to verify that B and En are indeed of exponentially
small statistical distance� �

Claim ����� The functions in SRSA� can be evaluated in NC� �given a sequential precom�
putation which is part of the key�generating algorithm��

Proof� Given that the key�generating algorithm precomputes 	gi

�j for � 
 i� j 
 �n� the

evaluation of functions in SRSA� is reduced to an iterated multiplication and an additional
modular reduction� �

The Second RSA Construction

The security of SRSA� depends on the assumption that it is hard to extract the eth root mod�
ulo a composite� where e is a large prime� Here� we de�ne another collection of synthesizers
under the assumption that it is hard to extract the eth root modulo a composite� N � without
any restriction on the distribution of e � Z��
N�� However� we introduce a new restriction on
the possible values of the composite N �

De	nition ������ Let Gn be the set of �n�bit integers N � P � Q such that P and Q are
two n�bit primes and �	N
 has no odd factor smaller than n��

It is easy to verify that if N � Gn then a sequence of �n uniformly�chosen odd�values� �d �

fd�� � � � � d�ng � ZN� have a constant probability to be in
�
Z��
N�

��n
	indeed this probability

is �
 o	�

� By Lemma ������� given such a sequence� it is easy to almost uniformly sample
any polynomial number of values in Z��
N� even without knowledge of �	N
�� This can be
done by using the subset product function SP

Z
�
��N�

��d� Notice that here the subset product

function serves an additional role to the one already described above�
Sieve theory shows that Gn is not too sparse� For example� denote by B	x
 the number

of primes p smaller than x such that 	p 
 �
	� is the product of two primes each of which
is larger than p���� Then there exists a positive constant c such that B	x
 � cx

log� x
� See

����� for several results of this sort 	which are more than su�cient for our purpose
� As a
result we get that� 	a
 If the RSA�assumption holds for a uniformly distributed value of N �
then it also holds under the restriction N � Gn� 	b
 The uniform distribution over Gn can

�Provided that we allow the representation of values in Z�

�	N
 as large integers� That is� we let any integer

v represent u � v mod ��N�� We note that such a value v is just as good as u for our proof as long as v

is bounded by poly�N�� In particular� using such a representation it is possible to compute SP
Z�
��N�

��d
even

without knowledge of ��N��
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be e�ciently sampled 	using Bach�s algorithm ����
� Given 	a
 and 	b
 it seems that this
restriction is rather reasonable�

Based on the RSA�Assumption with the restriction that N � Gn� we de�ne a collection
of I�n �� I� pseudo�random synthesizers� SRSA�� In the de�nition of SRSA�� we use the least�
signi�cant bit 	LSB
 instead of the Goldreich�Levin hard�core bit� Alexi et� al� ��� showed
that LSB is a hard�core bit for RSA� Fischlin and Schnorr ���� have recently provided a
stronger reduction for this bit�

De	nition ������ Let N be a �n�bit integer� let �g � fg�� � � � � g�ng be a sequence of �n

elements in Z�
N and let �d � fd�� � � � � d�ng be a sequence of �n elements in Z��
N�� De	ne the

function sN��g��d � I
�n �� I� by�

�x� y � I�n� sN��g��d	x� y

def
� LSB



B��SPZ�

N
��g	x


��SP
Z
�
��N�

��d

y�

��
CA �

Let Sn to be the random variable that assumes as values the functions sN��g��d� where the

distribution of N is induced by IGRSA	�
n
 and �g and �d are uniformly distributed in their

range� The function ensemble SRSA� is de	ned to be fSngn�N�
Theorem ������ If the RSA�Assumption �Assumption ������ holds when for every possible
value hN� ei of IGRSA	�

n
 we have that N � Gn� Then SRSA� is a collection of I�n �� I�

pseudo�random synthesizers�

Proof� It is obvious that SRSA� � fSngn�N is e�ciently computable� Assume that SRSA� is
not a collection of pseudo�random synthesizers� Then there exists a polynomial m	�
 such
that the ensemble E � fEng is not pseudo�random� where En � CSn	X� Y 
 for X and Y
that are independently drawn from 	U�n


m
n�� Therefore� there exists an e�cient next�bit
prediction test� T � and a polynomial q	�
 such that for in�nitely many n it holds that�

Given a pre	x of En of uniformly chosen length� T succeeds to predict the next
bit with probability greater than �

�
� �

q
n�
�

We now show how to use T in order to de�ne an e�cient algorithm A such that for
in�nitely many n�

Pr �A	N� e�me
 � LSB	m
� �
�

�
�

�

�q	n

�

where the distribution of N� e and m is as in the RSA�Assumption 	with the restriction that
N � Gn
� By ���� this contradicts the RSA�Assumption and completes the proof of the
lemma�

The basic idea in the de�nition of the algorithm A is similar to the proof of Theo�
rem ������� the algorithm A de�nes a matrix B which is almost identically distributed as
En� One of the entries of B is LSB	m
 	the value A tries to guess
 and all other entries can
be computed by A� It is now possible for A to guess LSB	m
 by invoking T on the appro�
priate pre�x of this matrix� In more details� on input hN� e�mei as above� the algorithm A
is de�ned as follows�
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�� Uniformly choose � 
 i� j 
 m	n
�

�� De�ne &e to be e � d� where d is almost uniformly distributed in Z��
N� 	such a value d
can be sampled because N � Gn
�

Note that &e is almost uniformly distributed in Z��
N�

�� De�ne the values fh�� � � � � hm
n�g and fd�� � � � � dm
n�g by setting hi � m� uniformly
drawing all other hu�s from Z�N� setting dj � &e�� mod �	N
 and sampling all other dv�s
almost uniformly from Z�

�
N��

�� De�ne B � 	bu�v

m
n�
u�v�� by setting bu�v � LSB

��
	hu


�e
�dv�

�

Note that A can compute any entry bu�v except bi�j � LSB	m
� The reason is that
if v �� j then A knows both dv and 	hu


�e and if u �� i then A can compute bu�j �

LSB
��

	hu

�e
��e���

� LSB		hu

 since it knows hu�

�� Invoke T and feed it with all the entries of B up to bi�j 	i�e� the �rst i 
 � rows and
the �rst j 
 � entries of the ith row
�

�� Output T �s prediction of bi�j�

It is obvious that A is e�cient� It is also easy to verify that if hN� e�mei is distributed as
above� then B and En are of exponentially small statistical distance� Therefore� for in�nitely
many n� if we feed T with the bits of B up to bi�j it predicts bi�j � LSB	m
 with probability
greater than� say� �

�
� �

�q
n�
� As argued above� this contradicts the RSA�Assumption and

completes the proof of the lemma� �

Claim ����� The functions in SRSA� can be evaluated in NC� �given a sequential precom�
putation which is part of the key�generating algorithm��

Proof� Given that the key�generating algorithm precomputes 	gi

�j for � 
 i� j 
 �n� the

evaluation of functions in SRSA� is reduced to two iterated multiplication and two modular
reductions� �

Remark ����� Since Alexi et� al� ��� showed that the logn least�signi	cant bits are simul�
taneously hard for RSA we can adjust the functions in SRSA� to output logn bits� If we
make a stronger assumption� that �	n
 bits are simultaneously hard for RSA� we get a direct
construction of pseudo�random synthesizers with linear output size� Although the stronger
assumption is not known to be equivalent to the RSA�Assumption it is still quite standard�


���� Pseudo�Randomness and Learning�Theory

Synthesizers Based on Hard�to�Learn Problems

The �traditional� connection between cryptography and learning theory is using crypto�
graphic assumptions to deduce computational non�learnability results� Blum� Furst� Kearns
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and Lipton ���� have suggested that the other direction is interesting as well� They have
shown how to construct several cryptographic primitives out of hard�to�learn functions� in a
way that preserves the degree of parallelism of the functions� A major motivation for pre�
senting such constructions is the simplicity of function classes that are believed to be hard
for e�cient learning�

We show that� under the de�nitions of ����� pseudo�random synthesizers can easily be con�
structed from distributions of functions that are hard to learn� Thus� by our constructions�
two additional cryptographic primitives can be constructed in parallel out of hard�to�learn
functions� 	�
 pseudo�random generators with large expansion ratio 	without assuming� as in
����� that the functions are hard to learn with membership queries
 and 	�
 pseudo�random
functions�

There is a di
erence between standard learning�theory de�nitions and standard crypto�
graphic de�nitions� Loosely speaking� a collection of concepts is hard to learn if for every
e�cient algorithm there exists a distribution over the concepts that is hard to learn for this
speci	c algorithm� In cryptographic settings the order of quanti�ers is reversed� the hard
distribution should be hard for every e�cient algorithm� In order for hard�to�learn problems
to be useful in cryptographic settings an average�case learning model is introduced in �����

Informally describing one of the de�nitions in ����� we can say that a distribution en�
semble of functions� F � fFng�N� is not weakly predictable on the average with respect to a
distribution D on the inputs� if the following holds� There is no e�cient algorithm that can
predict f	#x
 with probability �

�
� �

poly
n�
� given #x and a polynomial sequence fhxi� f	xi
ig�

where f is distributed according to Fn and all the inputs are independently distributed
according to D�

It is easy to verify that a distribution ensemble of functions� F � is not weakly predictable
on the average with respect to the uniform distribution if and only if it is a collection
of weak pseudo�random functions� Thus� by Lemma ������ such a distribution de�nes a
pseudo�random synthesizer S� where S	x� y
 is simply fIy
�n�	x
 	recall that fIy
�n� denotes
the function that is sampled from Fn using y as random bits
� Using S we can construct
pseudo�random generators and pseudo�random functions� Moreover� by Lemma ������ the
pseudo�random generator we construct may have a large expansion ratio 	n��� for every
� � �
� The pseudo�random generator constructed in ���� under the same assumption has
expansion ratio bounded above by � � �	n�

A Concrete Hard�to�Learn Problem

Consider the following distribution on functions with parameters k and n� Each function
is de�ned by a uniformly distributed pair of disjoint sets A�B � f�� � � � � ng� each of size
k� Given an n�bit input� the output of the function is the exclusive�or of two values� the
parity of the bits indexed by A and the majority of the bits indexed by B� In ����� it is
estimated that these functions 	for k � logn
 cannot be weakly predictable without using
�profoundly� new ideas� If indeed this distribution of functions is not weakly predictable on
the average 	for any k
� then it de�nes an extremely e�cient synthesizer� Therefore� using
our constructions� we get rather e�cient parallel pseudo�random functions�
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The Application of Pseudo�Random Functions to Learning Theory

As observed by Valiant ������ if a concept class contains pseudo�random functions� then we
can deduce a very strong unlearnability result for this class� Informally� it means that there
exists a distribution of concepts in this class that is hard for every learning algorithm� for
every �non�trivial� distribution on inputs even when membership queries are allowed� Since
no parallel pseudo�random functions were known before the current work� this observation
could not have been applied to NC�

Nevertheless� other techniques based on cryptographic assumptions were used in ��� ���
��� to show hardness results for NC� and TC�� For example� Kharitonov ���� used the follow�
ing fact� after preprocessing� a polynomial�length pseudo�random bit�string 	based on ����

can be produced in TC� 	the length of the string can stay undetermined at the preprocessing
stage
� The existence of pseudo�random functions in NC 	as shown in this chapter under
several assumptions
 is still of interest to computational learning theory because the result
it implies is stronger than previous results� To brie�y state the di
erence� we note that the
results of ��� ��� use a very speci�c distribution on the inputs that is hard�to�learn and the
results of ���� strongly rely on the order of quanti�ers in learning�theory models which was
mentioned above 	e�g� for any given learning algorithm ���� shows a di
erent hard concept
which can still be easily learned by an algorithm which has a somewhat larger running�time
�

	�� Concrete Constructions of Pseudo�Random Func�

tions

In this section we describe two related constructions of pseudo�random functions based on
number�theoretic assumptions� The �rst construction gives pseudo�random functions i
 the
decisional version of the Di�e�Hellman assumption 	DDH�Assumption
 holds� The second
construction is at least as secure as the assumption that factoring the so called Blum�integers
is hard�� Having e�cient pseudo�random functions based on factoring is very desirable since
this is one of the most established concrete intractability assumption used in cryptography�
The construction based on the DDH�Assumption is also attractive since these pseudo�random
functions are even more e�cient 	in that they have a larger output size
 and since the
construction is linear�preserving 	see Remark �����
� To better understand the security
of our constructions we include in Chapter � a study of the underlying assumptions� As
discussed in Section ������ the constructions of this section are motivated by the construction
of Section ��� 	and in particular by the notion of k�dimensional synthesizers
�

The pseudo�random functions that are constructed in this section are e�cient 	computing
the value of the function at a given point is comparable with two modular exponentiations
which is much more e�cient than previous proposals
� have shallow depth 	given appropriate
preprocessing of the key� the value of the functions at any given point can be computed in
TC�
 and have a simple algebraic structure� The properties of our pseudo�random functions

�In fact we prove the security of the second construction based on a generalized version of the computa�
tional DH�Assumption �GDH�Assumption�� However� breaking the GDH�Assumption modulo a composite
would imply an e�cient algorithm for factorization �as shown in Section ��� and ����
��
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and their consequences are discussed at length in the introduction�
The notation and de�nitions used in this section are given in Chapter � 	in particular we

use de�nitions of pseudo�randomness from there
� In addition� we rely on the de�nitions of
the relevant assumptions from Chapter � 	mainly on the de�nition of the DDH�Assumption
�

Organization

In Section ����� we describe a construction of pseudo�random functions based on the DDH�
Assumption� prove its security and consider its complexity� In Section ����� we de�ne the
GDH�Assumption and show a related construction of pseudo�random functions based on this
assumption� In Section ����� we consider some of the possible features of our pseudo�random
functions�


���� Construction of Pseudo�Random Functions

In this section we describe a construction of pseudo�random functions based on the DDH�
Assumption� prove its security and consider its complexity� A related construction 	based
on a weaker assumption
 is described in Section ������

Construction and Main Result

Construction ����� We de	ne the function ensemble F � fFngn�N� For every n� a key
of a function in Fn is a tuple� hP�Q� g��ai� where P is an n�bit prime� Q a prime divisor of
P 
 �� g an element of order Q in Z�

P and �a � ha�� a�� � � � ani a sequence of n � � elements
of ZQ� For any n�bit input� x � x�x� � � �xn� the function fP�Q�g��a is de	ned by�

fP�Q�g��a	x

def
� 	ga�


Q
xi	�

ai �

The distribution of functions in Fn is induced by the following distribution on their keys� �a
is uniform in its range and the distribution of hP�Q� gi is IG	�n
 �see De	nition �������

It is clear that F is e�ciently computable 	since IG is e�cient
� The pseudo�randomness
property of F is the following�

Theorem ����� Let F � fFngn�N be as in Construction ��
��� If the DDH�Assumption
�Assumption ������ holds� then for every probabilistic polynomial�time oracle machine M�
every constant � � �� and all su�ciently large n�

���Pr�MfP�Q�g��a	P�Q� g
 � ��
 Pr�MRP�Q�g	P�Q� g
 � ��
��� 
 �

n�
�

where in the 	rst probability fP�Q�g��a is distributed according to Fn and in the second prob�
ability� the distribution of hP�Q� gi is IG	�n
 and RP�Q�g is uniformly chosen in the set of
functions with domain f�� �gn and range hgi �the subgroup of Z�P generated by g��
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Remark ����� It is easy to verify from the proof of Theorem ��
�� that the following� more
quantitative� version of the theorem also holds�

Assume that there exists a probabilistic oracle machine with running time t � t	n
 that
distinguishes fP�Q�g��a from RP�Q�g �as in Theorem ��
��� with advantage � � �	n
� Then
there exists a probabilistic algorithm with running time poly	n
 � t	n
 that breaks the DDH�
Assumption with advantage �	n
	n� Therefore� the reduction is linear�preserving �see ������
This reduction is rather unique in that the security of the functions does not signi	cantly
decrease when the number of queries the distinguisher makes increases�

Given Theorem ������ we have that F is �almost� an e�ciently computable pseudo�
random function ensemble� There is one di
erence� A function fP�Q�g��a in Fn has domain
f�� �gn and range hgi� Therefore� di
erent functions in Fn have di
erent ranges which de�
viates from the standard de�nition of pseudo�random functions� However� for many ap�
plications of pseudo�random functions this deviation does not present a problem 	e�g�� the
applications of pseudo�random functions to private�key authentication and identi�cation and
their applications to digital signatures ����
� In addition� it is rather easy to construct from
F pseudo�random functions under the standard de�nition� In order to show this� we need
the following lemma which is a simple corollary of the leftover hash lemma ���� ����

Lemma ����� Let n� � and e be three positive integers such that �e 
 � 
 n� Let X � f�� �gn
be a set of at least �� elements and x uniformly distributed in X� Let H be a family of pair�
wise independent� f�� �gn �� f�� �g���e� hash functions� Then for all but a ��e fraction of
h � H the uniform distribution over f�� �g���e and h	x
 are of statistical distance of at most
��e�

Lemma ����� suggests the following construction�

Construction ����� Let � � �	n
 be an integer�valued function such that for any output�
hP�Q� gi� of IG	�n
 we have that Q � ��
n�� Let F � fFngn�N be as in Construction ��
��
and �n� let Hn be a family of pair�wise independent� f�� �gn �� f�� �g�
n���� hash functions�
We de	ne the function ensemble #F � f #Fngn�N� For every n� a key of a function in #Fn is a
pair� hk� hi� where k is a key of a function in Fn and h � Hn� For any n�bit input� x� the
function #fk�h is de	ned by�

#fk�h	x

def
� h	fk	x

�

The distribution of functions in #Fn is induced by the following distribution on their keys� h
is uniform in Hn and the distribution of k is the same as the distribution of keys in Fn�

Note that choosing the range of the hash functions to be f�� �g�
n��� is arbitrary� One can
choose the range to be f�� �g�
n��e
n� for any function e	n
 such that ��e
n��� is negligible�
Using Theorem ����� and Lemma ����� we can easily conclude�

Theorem ����� If the DDH�Assumption �Assumption ������ holds� then #F � f #Fngn�N �as
in Construction ��
�
� is an e�ciently computable pseudo�random function ensemble�

Remark ����� From Theorem ��
�� and Lemma ��
�
 it follows that #F � f #Fngn�N remains
indistinguishable from the uniform function�ensemble even when the distinguisher has access
to hP�Q� gi and to h �as in the de	nition of functions in #Fn��
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Proof of Security

There are a few possible approaches to proving Theorem ������ One approach is related
to Construction ����� 	and in particular to the concept of an n�dimensional synthesizer
�
Indeed� Construction ����� has motivated the constructions of Section ��� 	the connection is
described in Section �����
� However� the proof we give here for Theorem ����� follows an
analogous line to the proof of security for the GGM�Construction of pseudo�random functions
����� This may seem surprising since the two constructions look very di
erent� Nevertheless�
in some sense� one may view our construction as a careful application 	or a generalization

of the GGM�Construction� In the following few paragraphs we describe the similarities and
di
erences between the two constructions�

Let G be a pseudo�random generator that doubles its input� De�ne G� and G� such that
for any n�bit string x� both G�	x
 and G�	x
 are n�bit strings and G	x
 � hG�	x
� G�	x
i�
Under the GGM�Construction� the key of a pseudo�random function fs � f�� �gn �� f�� �gn
is a uniformly chosen n�bit string� s� For any n�bit input� x � x�x� � � �xn� the function fs is
de�ned by�

fs	x

def
� Gxn	� � � 	Gx�	Gx�	s

 � � �
�

The de�nition of fs can be thought of as a recursive labeling process of a depth�n binary
tree� The key s is the label of the root and it induces a labeling of all the nodes in the tree�
The labels of the �n leaves correspond to the �n di
erent outputs of the function� In contrast�
in our construction no tree appears in the design and no particular order is attached to the
input bits� Nevertheless� we were able to relate the proof of security of the two constructions�

The DDH�Assumption implies a simple pseudo�random generator that practically dou�

bles its input� GP�Q�g�ga	b

def
� hgb� ga�bi 	whose output is a pseudo�random pair of values in the

subgroup generated by g
 � It is tempting to use this generator for the GGM�Construction�
However� a straightforward application of the GGM�Construction would give a rather inef�
�cient function� We therefore suggest a slight change to the de�nition of the generator�

#GP�Q�g�ga	g
b
 � h #G�

P�Q�g�ga	g
b
� #G�

P�Q�g�ga	g
b
i def

� hgb� ga�bi�

At a �rst look this seems absurd� #GP�Q�g�ga is not e�ciently computable unless the DH�
Problem is easy� Therefore� if #GP�Q�g�ga is e�ciently computable� then it is not pseudo�
random� However� #GP�Q�g�ga has the following property that allows us to use a generalization
of the GGM�Construction� #GP�Q�g�ga	g

b
 is e�ciently computable if either a or b are known�
A more general way to state this is�

�� #GP�Q�g�ga is e�ciently computable 	on any input
� given the random bits that were used
to sample it 	in particular� given a
�

�� For any #GP�Q�g�ga� it is easy to generate the distribution of its output� #GP�Q�g�ga	g
b
� on

a uniformly chosen input 	this fact implies Lemma �����
�

We now obtain the pseudo�random functions of Construction ����� using the GGM�Construction
where at each level of the construction we use a di
erent value� ga� for the generator�

fP�Q�g�a��a��


�an	x

def
� #Gxn

P�Q�g�gan	� � � 	 #Gx�
P�Q�g�ga�	 #G

x�
P�Q�g�ga�	g

a�

 � � �
�
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We turn to the formal proof of Theorem ������ First we show 	in Lemma �����
 that
a polynomial sample� h #GP�Q�g�ga	g

b�
� � � � #GP�Q�g�ga	g
bt
i is pseudo�random i
 a single sample�

#GP�Q�g�ga	g
b
� is pseudo�random� In preliminary versions of this work the proof of Lemma �����

used a hybrid�argument based on property 	�
 above 	which is similar to the corresponding
argument in ����
� However� Victor Shoup has pointed out that one can use the randomized�
reduction of the DDH�Problem 	see Section �����
 for an alternative proof of the lemma�
The new proof is both simpler and more security�preserving� Given a distinguisher for
the polynomial�sample we get a distinguisher for the single sample that achieves the same
advantage� Based on this property� the security of the functions in our proof of Theorem �����
does not signi�cantly decrease when the number of queries the distinguisher makes increases
	which is very di
erent from the proofs of security for the functions in ���� and in Section ���
�

De	nition ����� Let n and t be any pair of positive integers� De	ne the two distributions
In�tR and In�tPR as follows�

In�tR
def
� hP�Q� g� ga� gb�� gc�� � � � � gbt� gcti

and
In�tPR

def
� hP�Q� g� ga� gb�� ga�b�� � � � � gbt� ga�bti�

where hP�Q� gi is distributed according to IG	�n
 and all the values in ha� b�� � � � � bt� c�� � � � � cti
are uniform in ZQ�

Lemma ����� �Indistinguishability of a Polynomial Sample� If the DDH�Assumption �As�
sumption ������ holds� then for every probabilistic polynomial�time algorithm D� every poly�
nomial t	�
� every constant � � � and all su�ciently large n�

���Pr�D	I
n�t
n�
t
n� 

 � ��
 Pr�D	I

n�t
n�

R 

 � ��
��� 
 �

n�
�

Proof� Let � � �	n
 be any positive real�valued function� Assume that there exists a
probabilistic polynomial�time algorithm D and a polynomial t	�
 such that for in�nitely
many n� ���Pr�D	I

n�t
n�

PR 

 � ��
 Pr�D	I
n�t
n�

R 

 � ��
��� � �	n
�

We de�ne a probabilistic polynomial�time algorithm A such that for in�nitely many n����Pr�A	P�Q� g� ga� gb� ga�b
 � ��
 Pr�A	P�Q� g� ga� gb� gc
 � ��
��� � �	n
�

where the probabilities are taken over the random bits of A� the choice of hP�Q� gi according
to the distribution IG	�n
 and the choice of a� b and c uniformly at random in ZQ� For
�	n
 � �

n�
this contradicts the DDH�Assumption and completes the proof of the lemma�

Let the input of A be hP�Q� g� ga� gb� g
ci� where P is n�bit long and #c is either a � b mod Q
or uniform in ZQ� Using a randomized reduction similar to that in the proof of Lemma ������
A generates t	n
 random pairs gbi� g
ci such that �i� #ci � a � bi mod Q i
 #c � a � b mod Q� A
now invokes D on these values to distinguish between the two possible distributions of its
own input� More formally� A executes the following algorithm�
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�� De�ne t � t	n
 and sample each one of the values in hd�� � � � � dt� e�� � � � � eti uniformly
at random in ZQ�

�� De�ne the sequence I to be

hP�Q� g� ga� #Rd��e�	g
a� gb� g
c
� � � � � #Rdt�et	g

a� gb� g
c
i�
where

�i� #Rdi�ei	g
a� gb� g
c


def
�
�
gb
�di � gei� �g
c�di � 	ga
ei �

�� Output D	I


Denote by gbi� g
ci the value #Rdi�ei	g
a� gb� g
c
� By the same arguments used in the proof of

Lemma ����� we have that�

� If #c � a � b mod Q� then b�� � � � � bt are uniform in ZQ 	and independent of each other
and of a
 and �i� #ci � a � bi mod Q�

� If #c �� a � b mod Q� then b�� � � � � bt� #c�� � � � � bt� #ct are all uniform in ZQ 	and independent
of each other and of a
�

Therefore� by the de�nitions of A� In�tPR and In�tR it easily follows that�

Pr�A	P�Q� g� ga� gb� ga�b
 � �� � Pr�D	In�tPR
 � ��

and Pr�A	P�Q� g� ga� gb� gc
 � �� � Pr�D	In�tR 
 � ���

It is now immediate that in�nitely many n����Pr�A	P�Q� g� ga� gb� ga�b
 � ��
 Pr�A	P�Q� g� ga� gb� gc
 � ��
��� � �	n
�

where the probabilities are as above� �

The proof of Theorem ����� given Lemma ����� uses a hybrid�arguments which is a proof�
technique for showing that two distributions are indistinguishable� See ���� for details on
hybrid�arguments� Loosely� the method for showing that D and D� are indistinguishable
is to 	�
 De�ne a polynomial�length sequence of e�cient distributions D�� D�� � � � � Dm with
D� � D and Dm � D�� 	�
 Show that any two neighboring distributions Dj�� and Dj are
indistinguishable� In fact� in the uniform version of this argument 	e�g� in the proof of Theo�
rem �����
 we usually show that it is hard to distinguish DJ�� and DJ where J is uniformly
chosen in �m�� Furthermore� in the proof of Theorem ����� 	as well as in the corresponding
proofs in ���� and in Section ���
 the n � � distributions that are 	implicitly
 de�ned are
of functions and they are not e�ciently samplable� For example� one of the two extreme
distributions is the uniform distribution 	which is certainly not e�ciently samplable
� Nev�
ertheless� a uniform function can be e�ciently �simulated� by an algorithm that answers
each query at random 	under the restriction of keeping consistency of its answers for repeat�
ing queries
� Since all other intermediate function distributions can be �simulated� in the
same sense we can still apply the hybrid�argument� We now turn to the formal proof 	where
the arguments described above are implicit
�
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Proof� 	of Theorem �����
 Let � � �	n
 be any positive real�valued function� Assume that
there exists a probabilistic polynomial�time oracle machine M such that for in�nitely many
n� ���Pr�MfP�Q�g��a	P�Q� g
 � ��
 Pr�MRP�Q�g	P�Q� g
 � ��

��� � �	n
�

where the probabilities are as in Theorem ������ Let t	�
 be a polynomial that bounds the
running time of M� We de�ne a probabilistic polynomial�time algorithm D� such that for
in�nitely many n�

���Pr�D	I
n�t
n�

PR 

 � ��
 Pr�D	I
n�t
n�

R 

 � ��
��� � �

n
� �	n
�

By Lemma ������ for �	n
 � �
n�

this contradicts the DDH�Assumption and completes the
proof of the theorem�

On any input hP�Q� g� ga� gb�� g 
c�� gb�� g 
c�� � � � � gbt� g 
cti� where P is n bits long 	and either
each #ci is a � bi mod Q or each #ci is uniform in ZQ
� D executes the following algorithm�

�� Sample J uniformly at random in �n��

�� Sample each one of the values in haJ��� aJ��� � � � � ani uniformly at random in ZQ�

�� Invoke M on input hP�Q� gi and answer its queries in the following way� Let the
queries asked by M be hx�� x�� � � � xmi� The ith query xi is an n�bit string� Denote
xi � %xixiJx

i
J�� � � �xin� where %xi is a 	J 
 �
�bit string and xiJ � x

i
J��� � � � � x

i
n are single

bits� To answer the ith query de�ne � � �	i
 � minfi�j%xi� � %xig and answer the query
by 
�

� 	g
c�


Q
xi
k
	��k�J

ak
if xiJ � �

	gb�


Q
xi
k
	��k�J

ak
if xiJ � �

These answers are well de�ned since m 
 t�

�� Output whatever M outputs�

From the de�nition of D we have that for fP�Q�g��a and RP�Q�g as in Theorem ������

Pr�D	In�tPR
 � � j J � �� � Pr�MfP�Q�g��a	P�Q� g
 � ���

Pr�D	In�tR 
 � � j J � n� � Pr�MRP�Q�g	P�Q� g
 � ��

and for any � 
 j 
 n

Pr�D	In�tR 
 � � j J � j� � Pr�D	In�tPR
 � � j J � j � ���

By the assumption we get that for in�nitely many n����Pr�D	In�tPR
 � ��
 Pr�D	In�tR 
 � ��
���

�

������n �
nX

j��

Pr�D	In�tPR
 � � j J � j�
 �

n
�

nX
j��

Pr�D	In�tR 
 � � j J � j�

�����
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�
�

n
�
���Pr�D	In�tPR
 � � j J � ��
 Pr�D	In�tR 
 � � j J � n�

���
�

�

n
�
���Pr�MfP�Q�g��a	P�Q� g
 � ��
 Pr�MRP�Q�g	P�Q� g
 � ��

���
�

�

n
� �	n
�

This completes the proof of the theorem� �

E
ciency of the Pseudo�Random Functions

Consider a function fP�Q�g��a � Fn 	where �a � ha�� a�� � � � ani
 as in Construction ������ Com�
puting the value of this function at any given point� x� involves one multiple product 	a
product of polynomially many numbers
� y � a� �Qxi�� ai 	which can be performed modulo
Q
� and one modular exponentiation� gy� This gives a pseudo�random function which is
much more e�cient than previous constructions� Furthermore� one can use preprocessing in
order to get improved e�ciency� The most obvious preprocessing is computing the values g�

i

	for every positive integer i up to the length of Q
� Now computing the value of the function
requires two multiple products modulo a prime�� Additional preprocessing can reduce the
work by a factor of O	logn
 	see Brickell et� al� ����
� Actually� to compute the value of
the pseudo�random function of Construction ������ we also need one application of a pair�
wise independent hash function but this operation is very cheap compared with a multiple
product or a modular exponentiation�

As described in the introduction 	in Section �����
� we are also interested in �nding the
parallel�time complexity of the pseudo�random functions� In order to do so� let us �rst
recall the result of Beame� Cook and Hoover ���� who showed that devision and related
operations including multiple product are computable in NC�� Based on this result Reif
and Tate ����� ���� showed that these operations are also computable in TC�� The exact
depth required for these operations was considered in ����� ���� where it was shown that
multiple sum is in TC�

� � multiplication and division in TC�
� and multiple product in TC�

�

	recall that for every integer i the class of functions computable by depth i circuits consisting
of a polynomial number of threshold gates is denoted by TC�

i 
�
By the results above� we get that after preprocessing 	i�e�� computing the values g�

i

� it

is possible to evaluate the function fP�Q�g��a in TC
� 	since all the necessary operations can be

performed in TC�
�

Theorem ����� Let F � fFngn�N be as in Construction ��
��� Then there exists a polyno�
mial� p	�
� and an integer i such that for every n � N and every function fk � Fn there exists
a depth i threshold circuit of size bounded by p	n
 that computes fk�

The exact depth of the functions� Theorem ����� can be obtained by a naive application
of the results in ����� ����� A more detailed analysis of the function fP�Q�g��a reveals that
some further optimizations in the depth are possible� Using additional preprocessing� this

�In the case that Q is much smaller than P we have that the �rst multiple product is much cheaper than
the second
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function can in fact be evaluated in TC�
� � Since the exact depth of the construction is

peripheral to this work 	and since a formal proof of this claim would repeat quite a lot
of the analysis in ����� ����
 we only comment on a few facts regarding fP�Q�g��a that allow
us to reduce the depth� First� note that in both multiple products we can assume any
preprocessing of the values in the multiplication 	since these values are taken from the
sequence ha�� a�� � � � ani or from the set fg�ig
� Second� we don�t need the actual value
of the �rst multiple product� y �

Q
xi�� ai� Computing values ri 	obtained by the CRT�

representation
 for which y �
P
mi �ri 	where the valuesmi are known in advance and can be

preprocessed
 is just as good� Finally� the value P is also known in advance� Therefore� the
depth of the �nal modular reduction can be reduced by precomputing the values �i mod P �

Remark ����� The same analysis hold for e�ciency and depth of the pseudo�random func�
tions of Construction ��
���


���� Construction Based on Factoring or the GDH�Assumption

In this section we show an additional construction of pseudo�random functions  Construc�
tion ������ that is very similar to Construction ������ The security of Construction �����
is reduced to the GDH�Assumption which is a generalization of the computational DH�
Assumption� This construction is interesting for two main reasons�

�� The GDH�Assumption is implied by the DDH�Assumption but they are not known
to be equivalent� Therefore� Construction ����� may still be valid even if the DDH�
Assumption does not hold� In addition� the GDH�Assumption modulo a so called
Blum�integer is not stronger than the assumption that factoring Blum�integers is hard�
This gives an attractive construction of pseudo�random functions that is at least as
secure as Factoring 	which was recently improved in �����
�

�� Construction ����� is based on a somewhat di
erent methodology than Construc�
tion ������ It may be easier to apply this methodology in order to construct pseudo�
random functions based on additional assumptions 	in fact� Construction ����� was
obtained as a modi�cation of Construction �����
�

The GDH�Assumption

The GDH�Assumption was previously considered in the context of a key�exchange protocol
for a group of parties 	see e�g�� ����� ����
� In this protocol� party i � �n� chooses a secret

value� ai� After executing the protocol� each of these parties can compute g
Q

i��n�
ai and

this value de�nes their common key� While executing the protocol� an eavesdropper may

learn values of the form g
Q

i�I
ai for several proper subsets� I � �n�� It is essential to assume

that even with this knowledge it is hard to compute g
Q

i��n�
ai � The GDH�Assumption is

even stronger� Informally� this assumption says that it is hard to compute g
Q

i��n�
ai for an

algorithm that can query g
Q

i�I
ai for any proper subset� I � �n� of its choice�

To remain consistent with the DDH�Assumption� we state the GDH�Assumption 	As�
sumption �����
 in a subgroup of Z�P of order Q 	where P and Q are primes
� In fact� the
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corresponding assumption in any other group implies a corresponding construction of pseudo�
random functions� For example� since breaking the GDH�Assumption modulo a composite
is at least as hard as factoring 	as shown in Section ��� and �����
� we obtain in Section �����
a construction of pseudo�random functions which is at least as secure as Factoring� Further�
more� in contrast with the DDH�Assumption� one can consider the GDH�Assumption in Z�P
itself 	i�e�� when g is a generator of Z�P
�

In order to formalize the GDH�Assumption� we use the following de�nition�

De	nition ����� Let hP�Q� gi be any possible output of IG	�n
 and let #a � h#a�� #a�� � � � #ani
be any sequence of n elements of ZQ� De	ne the function hP�Q�g�
a with domain f�� �gn such
that for any n�bit input� x � x�x� � � �xn�

hP�Q�g�
a	x

def
� g

Q
xi	�


ai �

De	ne hrP�Q�g�
a to be the restriction of hP�Q�g�
a to inputs f�� �gn n f�ng�

Assumption ����� 
Generalized Di
e�Hellman� For every probabilistic polynomial�time
oracle machine A� every constant � � � and all su�ciently large n�

Pr�AhrP�Q�g��a	P�Q� g
 � hP�Q�g�
a	�
n
� 


�

n�
�

where the probability is taken over the random bits of A� the choice of hP�Q� gi according to
the distribution IG	�n
 and the choice of each of the values in #a � h#a�� #a�� � � � #ani uniformly
at random in ZQ�

As a corollary of Theorem ����� we have that if the DDH�Assumption holds� then so
does the GDH�Assumption� In fact� we get that the DDH�Assumption implies the decisional
GDH�Assumption 	this was also previously shown in �����
�

Corollary ����� If the DDH�Assumption �Assumption ������ holds� then for every proba�
bilistic polynomial�time oracle machine A� every constant � � � and all su�ciently large
n� ���Pr�AhrP�Q�g��a	P�Q� g� hP�Q�g�
a	�

n

 � ��
 Pr�AhrP�Q�g��a	P�Q� g� gc
 � ��
��� 
 �

n�
�

where the probabilities are taken over the random bits of A� the choice of hP�Q� gi according
to the distribution IG	�n
� the choice of each of the values in #a � h#a�� #a�� � � � #ani uniformly
at random in ZQ and the choice of c uniformly at random in ZQ�

Motivation to the construction

Construction ����� is motivated by the concept of pseudo�random synthesizers and by Con�
struction ����� of pseudo�random functions using pseudo�random synthesizers as building
blocks� To see the connection� let us recall some of the main ideas of Construction ������
Informally� a pseudo�random synthesizer� S� is�
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An e�ciently computable function of two arguments such that given polynomially�
many� uniformly�chosen� inputs for each argument� fxigmi�� and fyigmi��� the out�
put of S on all the combinations� 	S	xi� yj



m
i�j��� cannot be e�ciently distin�

guished from uniform�

A natural generalization is a k�dimensional pseudo�random synthesizer� Informally� a k�
dimensional pseudo�random synthesizer� S� may be de�ned to be�

An e�ciently computable function of k arguments such that given polynomially�

many� uniformly�chosen� inputs for each argument�
nn
xji
om
i��

ok
j��

� the output of S

on all the combinations�M �
�
S	x�i� � x

�
i�
� � � � � xkik


�m
i��i��


�ik��

� cannot be e�ciently

distinguished from uniform by an algorithm that can access M at points of its
choice�

Construction ����� can be viewed as �rst recursively applying a ��dimensional synthesizer
to get an n�dimensional synthesizer� S� and then de�ning the pseudo�random function� f �
by�

fha����a����a����a����


an���an��i	���� � � � �n

def
� S	a��
� � a��
� � � � � � an�
n
�

However� using this construction� the depth of the n�dimensional synthesizer 	and the pseudo�
random functions
 is larger by a logarithmic factor than the depth of the ��dimensional
synthesizer� Therefore� a natural problem is to come up with a direct construction of an
n�dimensional synthesizer�

In this section it is shown that under the GDH�Assumption the function� SP�Q�g�r� de�

�ned by SP�Q�g�r	a�� a�� � � � � an

def
�
�
g
Qn

i	�
ai
�
� r� is an n�dimensional synthesizer� Construc�

tion ����� is then obtained as described above�

The Construction

We turn to the construction of pseudo�random functions�

Construction ����� We de	ne the function ensemble F � fFngn�N� For every n� a key
of a function in Fn is a tuple� hP�Q� g��a� ri� where P is an n�bit prime� Q a prime divisor
of P 
 �� g an element of order Q in Z�

P� �a � ha���� a���� a���� a���� � � � an��� an��i a sequence of
�n elements of ZQ and r an n�bit string� For any n�bit input� x � x�x� � � �xn� the Binary�
function� fP�Q�g��a�r� is de	ned by�

fP�Q�g��a�r	x

def
�
�
g
Qn

i	�
ai�xi

�
� r�

�where � denotes the inner product mod ��� The distribution of functions in Fn is induced
by the following distribution on their keys� �a and r are uniform in their range and the
distribution of hP�Q� gi is IG	�n
�

Theorem ����� If the GDH�Assumption �Assumption ��
��� holds� then F � fFngn�N �as
in Construction ��
��� is an e�ciently computable pseudo�random function ensemble�



���� CONCRETE CONSTRUCTIONS OF PSEUDO�RANDOM FUNCTIONS ��

In order to prove Theorem ����� we need the following corollary of the Goldreich�Levin
hard�core�bit theorem ���� 	more precisely� the setting of this corollary is somewhat di
erent
than the one considered in ���� but their result still applies
�

Corollary ����� If the GDH�Assumption �Assumption ��
��� holds� then for every proba�
bilistic polynomial�time oracle machine A� every constant � � � and all su�ciently large
n�

���Pr�AhrP�Q�g��a 	P�Q� g� r� 	hP�Q�g�
a	�
n

� r
 � ��
 Pr�AhrP�Q�g��a 	P�Q� g� r� �
 � ��

��� 
 �

n�
�

where the probabilities are taken over the random bits of A� the choice of hP�Q� gi according
to the distribution IG	�n
� the choice of each of the values in #a � h#a�� #a�� � � � #ani uniformly at
random in ZQ� the choice of r uniformly at random in f�� �gn and the choice of � uniformly
at random in f�� �g�

Proof�	of Theorem �����
 Let F � fFngn�N be as in Construction ������ It is clear that F is
e�ciently computable� Assume that F is not pseudo�random� then there exists a probabilistic
polynomial�time oracle machine M and a constant � � � such that for in�nitely many n�

���Pr�MfP�Q�g��a�r	P�Q� g� r
 � ��
 Pr�MRn	P�Q� g� r
 � ��
��� � �

n�
�

where in the �rst probability fP�Q�g��a�r is distributed according to Fn and in the second
probability Rn is uniformly distributed over the set of f�� �gn �� f�� �g functions� hP�Q� gi
is distributed according to IG	�n
 and r is a uniformly chosen n bit string�

Let t	�
 be a polynomial that bounds the running time of M� We de�ne a probabilistic
polynomial�time oracle machine A such that for in�nitely many n�

���Pr�AhrP�Q�g��a 	P�Q� g� r� 	hP�Q�g�
a	�
n

� r
 � ��
 Pr�AhrP�Q�g��a 	P�Q� g� r� �
 � ��

��� � �

n� � t	n
 �

where the probabilities are as in Corollary ������ By Corollary ����� this would contradict
the GDH�Assumption and would complete the proof of the theorem�

Given access to hrP�Q�g�
a and on input hP�Q� g� r� #�i 	where we expect #� to either be
uniformly chosen or to be 	hP�Q�g�
a	�

n

� r
� A executes the following algorithm�

�� De�ne t � t	n
 and sample J uniformly at random in �t��

�� Sample each one of hb�� b�� � � � � bni uniformly at random in ZQ�

�� Invoke M on input hP�Q� g� ri and answer its queries in the following way� Let the
queries asked by M be hx�� x�� � � � xmi and assume without loss of generality that all
those queries are distinct�

� Answer each one of the �rst J 
 � queries with a uniformly chosen bit�

� Answer the J th query with #��
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� Let xi be the ith query for i � J and de�ne the n�bit string z � z�z� � � � zn such
that zk is � if the kth bit of xi and the kth bit of xJ are equal and � otherwise�
Since xi �� xJ we have that z �� �n� Finally� answer the ith query with

��
hrP�Q�g�
a	z


�Q
zk	�

bk
�
� r�

�� Output whatever M outputs�

Denote #a � h#a�� #a�� � � � #ani� From the de�nition of A we have that all its answers to queries
xi for i � J are fP�Q�g��a�r	x

i
 where �a � ha���� a���� a���� a���� � � � an��� an��i depends on the J th

query xJ � xJ�x
J
� � � � x

J
n as follows� For every � 
 k 
 n if xJk � � then ak�� � #ak and ak�� � bk

and if xJk � � then ak�� � #ak and ak�� � bk� The �rst J 
 � queries are answered by A
uniformly at random� The only answer that depends on #� is the J th answer itself� This
answer is of course uniformly distributed in case #� is uniform� It is also not hard to verify
that the J th answer is fP�Q�g��a�r	x

J
 in case #� � 	hP�Q�g�
a	�
n

� r� We can therefore conclude

that�

Pr�AhrP�Q�g��a 	P�Q� g� r� 	hP�Q�g�
a	�
n

� r
 � � j J � �� � Pr�MfP�Q�g��a�r	P�Q� g� r
 � ���

Pr�AhrP�Q�g��a 	P�Q� g� r� �
 � � j J � t	n
� � Pr�MRn	P�Q� g� r
 � ���

and

Pr�AhrP�Q�g��a 	P�Q� g� r� �
 � � j J � j� � Pr�AhrP�Q�g��a 	P�Q� g� r� 	hP�Q�g�
a	�
n

� r
 � � j J � j����

where the probabilities are as above� Therefore� by the standard hybrid argument we get
from the assumption that for in�nitely many n�

���Pr�AhrP�Q�g��a 	P�Q� g� r� 	hP�Q�g�
a	�
n

� r
 � ��
 Pr�AhrP�Q�g��a 	P�Q� g� r� �
 � ��

��� � �

n� � t	n
 �

�

Remark ����� From the proof of Theorem ��
�� we get that F is pseudo�random even if
the distinguisher �denoted by M in the proof� has access to P�Q� g and r�

Pseudo�Random Functions at Least as Secure as Factoring

The proof of Theorem ����� does not rely on the speci�c group for which the GDH�Assumption
is de�ned� Therefore� the corresponding assumption in any other group implies a correspond�
ing construction of pseudo�random functions� An especially interesting example is taking
the GDH�Assumption modulo a composite� Since breaking this assumption is at least as
hard as factoring 	as shown in Section ��� and �����
� we obtain an attractive construction
of pseudo�random functions which is at least as secure as Factoring� This construction was
recently improved by Naor� Reingold and Rosen ������ where an e�cient method is provided
for expanding the one bit output of our functions while paying only a small overhead in the
complexity of the evaluation 	i�e� one modular multiplication for each additional output bit
�
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In particular� this implies a length�preserving pseudo�random function that is at least as
secure as Factoring whose evaluation requires only a constant number of modular multipli�
cations per output bit� In this subsection� we repeat the de�nition of the GDH�Assumption
and the construction of pseudo�random functions with the group set to Z�N� where N is a
Blum�integer 	for better readability we also repeat some of the de�nitions from Section ���
�
The proof of security is practically the same as the proof of Theorem ����� 	and is therefore
omitted
�

Similarly to the case of the DDH�Assumption� we keep our results general by letting the
composite N be generated by some polynomial�time algorithm FIG 	where FIG stands for
factoring�instance�generator
�

De	nition ����� 
FIG� The factoring�instance�generator� FIG� is a probabilistic polynomial�
time algorithm such that on input �n of FIG its output� N � is distributed over �n 
 bit
integers� where N � P � Q for two n 
 bit primes� P and Q� such that P � Q � � mod �
�such an integer is known as a Blum�integer��

The GDH�Assumption Modulo a Composite�

De	nition ����� Let N be any possible output of FIG	�n
� let g be any quadratic�residue
in Z�N and let #a � h#a�� #a�� � � � #ani be any sequence of n elements of �N �� De	ne the function
hN�g�
a with domain f�� �gn such that for any n�bit input� x � x�x� � � �xn�

hN�g�
a	x

def
� g

Q
xi	�


ai mod N�

De	ne hrN�g�
a to be the restriction of hN�g�
a to inputs f�� �gn n f�ng�

Assumption ����� 
Generalized Di
e�Hellman in Z�N� For every probabilistic polynomial�
time oracle machine A� every constant � � � and all su�ciently large n�

Pr�AhrN�g��a	N� g
 � hN�g�
a	�
n
� 


�

n�
�

where the probability is taken over the random bits of A� the choice of N according to the
distribution FIG	�n
� the choice of g uniformly at random in the set of quadratic�residues
in Z�N and the choice of each of the values in #a � h#a�� #a�� � � � #ani uniformly at random in �N ��

The Construction and its Security�

Construction ����� We de	ne the function ensemble F � fFngn�N� For every n� a key of
a function in Fn is a tuple� hN� g��a� ri� where N is a �n�bit Blum�integer� g is a quadratic�
residue in Z�N� �a � ha���� a���� a���� a���� � � � an��� an��i is a sequence of �n values in �N � and r is
a �n�bit string� For any n�bit input� x � x�x� � � �xn� the Binary�function� fN�g��a�r� is de	ned
by�

fN�g��a�r	x

def
�
�
g
Qn

i	�
ai�xi mod N

�
� r�

The distribution of functions in Fn is induced by the following distribution on their keys� g��a
and r are uniform in their range and the distribution of N is FIG	�n
�
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In the same way Theorem ����� is proven� we get that�

Theorem ����� If the GDH�Assumption in Z�N �Assumption ��
��� holds� then F � fFngn�N
�as in Construction ��
��� is an e�ciently computable pseudo�random function ensemble�

However� breaking the GDH�Assumption in Z�N is at least as hard as factoring N 	The�
orem �����
� We can therefore deduce that�

Corollary ������ �of Theorem ��
�� and Theorem ��
��� Let F � fFngn�N be as in Con�
struction ��
�� and assume that F is not an e�ciently computable pseudo�random function
ensemble� Then there exists a probabilistic polynomial�time algorithm A and a constant
� � � such that for in	nitely many n�

Pr�A	P �Q
 � hP�Qi� � �

n�
�

where the distribution of N � P �Q is FIG	�n
�


���� Additional Properties of the Pseudo�Random Functions

The pseudo�random functions of Constructions ����� and ����� have a simple algebraic struc�
ture� We consider this to be an important advantage over all previous constructions� mainly
since several attractive features seem more likely to exist for a simple construction of pseudo�
random functions� An interesting example arises by the work of Bellare and Goldwasser �����
They suggest a way to design a digital�signature scheme that is very attractive given e�cient
pseudo�random functions and an e�cient non�interactive zero�knowledge proof for claims of
the form y � fs	m
 	when a commitment to a key� s� of a pseudo�random function� fs� is
available as part of the public�key
� Another very attractive scheme one may desire is a
function�sharing scheme for pseudo�random functions 	in an analogous meaning to function�
sharing schemes for trapdoor one�way permutations as de�ned in ����
� Two examples for
applications of such schemes are e�cient metering of web usage ���� and the distribution of
KDCs 	key�distribution centers
 ������

In this section� we suggest preliminary designs for several protocols� Though there is
much room for improving these designs� they are still a signi�cant improvement over the
protocols that are available for all previous constructions of pseudo�random functions 	in�
cluding commonly used block�ciphers such as DES
 and they serve as a demonstration to
the potential of our construction� The main purpose of this section is to stimulate further
research both in improving our designs and in suggesting designs for other protocols 	as the
non�interactive zero�knowledge proof and the function�sharing scheme mentioned above
�
We therefore do not insist on formal de�nitions and proofs for our protocols� In addition�
we focus on the construction of Section ����� 	using similar designs for the construction of
Section ����� may be problematic due to the way this construction uses the Goldreich�Levin
hard�core bit
�

A point worth noticing is that we describe our designs for the functions of Construc�
tion ������ That is� we ignore the pair�wise independent hashing introduced in Construc�
tion ������ However� as mentioned in Section ������ for many applications 	as the undeniable
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signatures suggested below
 the extra hashing in Construction ����� is unnecessary� In ad�
dition� recall Remark ����� that the pseudo�random functions of Construction ����� remain
pseudo�random even if the hash function is public� Therefore� the protocols we design here
for Construction ����� imply similar protocols for Construction ������ For example� when
distributing a pseudo�random function to a set of parties� we can distribute the function
obtained by ignoring the hash function and supply each party with the value of this hash
function�

Zero�Knowledge Proof for the Value of the Function

As mentioned above� a non�interactive zero�knowledge proof for claims of the form y �
fs	m
 is required by the Bellare�Goldwasser digital�signature scheme� Similarly a simple
	interactive
 zero�knowledge proof for claims of the form y � fs	m
 and y �� fs	m
 implies a
simple construction of undeniable signatures� Informally� undeniable signatures� which were
introduced by Chaum and Antwerpen ����� are public�key schemes that allow a party to
sign messages such that his participation is required in order to verify or deny a signature�
We can let the public key for an undeniable signature be a commitment to a key� s� of a
pseudo�random function� fs� A signature for a message m can simply be fs	m
 	or fs	H	m


for a collision�intractable hash function� H
� Now the con�rmation protocol for a message
m and a signature y is simply a zero�knowledge proof that y � fs	m
 whereas the denial
protocol is a zero�knowledge proof that y �� fs	m
�

In this section we describe such zero�knowledge proofs for the values of the functions of
Construction ������ To be a bit more accurate� both the commitment for a function and
the zero�knowledge proofs do reveal some of the values of the function� Therefore� these
are zero�knowledge proofs for a restriction of the function to a subset of its inputs 	those
with their last two bits set to �
� when the value of the function on the rest of the inputs is
publicly available 	this can be formalized by allowing the zero�knowledge simulator access
to all other values of its choice
�

The protocol for y � fs	x
 is essentially several parallel applications of a zero�knowledge
proof for the result of the Di�e�Hellman protocol� These proofs are strongly related to
Schnorr�s identi�cation protocol ������ In order to make his proof into a zero�knowledge
proof we use a strong�receiver commitment scheme	 in a rather standard way 	using a strong�
sender commitment scheme gives perfect zero�knowledge arguments
� We denote the commit
	resp� reveal
 phase of this protocol by COMMIT 	resp� REVEAL
�

De	nition ����� �a commitment for fs� Let F � fFngn�N be as in Construction ��
�� and

�Loosely speaking� a commitment scheme is a protocol between a sender and a receiver that has two
phases� The commit phase in which the sender �commits� to a value p� and the reveal phase in which
the sender opens this commitment� Such a protocol should have two properties� ��� It is binding� a com�
putationally bounded sender should not be able to open two distinct values p �� p� in the reveal phase�
��� It is �semantically� secure� for any p �� p�� at the end of the commit phase the receiver should not
be able to distinguish a commitment to p from a commitment to p�� �See e�g� ���
 for formal de�nitions
and constructions�� Two stronger variants of commitment schemes are strong�sender and strong�receiver�
In strong�sender commitments even a computationally unbounded sender should not be able to open two
distinct values p �� p�� In strong�receiver commitments �also known as information�theoretic commitments��
the commit phase leaks no information on p in an information�theoretically sense�
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let fP�Q�g��a be some function in Fn� where �a � ha�� a�� � � � ani� A commitment for fP�Q�g��a is

hP�Q� g� ga�� ga��a� � ga��a�� � � � � ga��ani�
Protocol ����� �ZK�Proof for y � fs	x
�
The prover� P� knows the key s � hP�Q� g��ai and the veri	er V knows the commitment
for fs� The common input is a pair hx� yi� where x � x�x� � � �xn � f�� �gn satis	es that
xn�� � xn � � and y is in the subgroup of Z�P generated by g� Denote by #g the value ga� and
assume wlog that for some k� x� � x� � � � � � xk � � whereas xk�� � � � � � xn � �� The
protocol for proving y � fs	x
 is de	ned as follows�

�� V chooses a value e uniformly from Z�Q and sends COMMIT	e
 to P�


� For each i � �	k��
��n�� P chooses ri uniformly from ZQ� computes ci �
�Qi��

j�� aj
�
mod

Q and sends hyi � #gci� #gri� 	yi

rii to V� Denote by yn�� the value y�

�� V sends REVEAL	e
 to P�
�� For each i � �	k � �
��n�� P sends di � e � ai � ri mod Q to V�
�� V accepts if the following conditions hold� ��� yk�� � #g� �
� �i � �	k � �
��n�� 	yi


ri �
	yi��


e � 	yi

di and 	#gai
e � #gri � #gdi�

In addition to the ideas used by the protocol for y � fs	x
� the protocol for y �� fs	x

uses the randomized�reduction of Section ����� in order to prove that a value is not the result
of the Di�e�Hellman protocol�

Protocol ����� �ZK�Proof for y �� fs	x
�
Let the setting and notation be as in Protocol ��
��� The protocol for proving y �� fs	x
 is
de	ned as follows�

�� V chooses a value e uniformly from Z�Q and a uniform subset� J� of �n�� V sends
COMMIT	e� J
 to P�


� For each i � �	k��
��n�� P chooses ri uniformly from ZQ� computes ci �
�Qi��

j�� aj
�
mod

Q and sends hyi � #gci� #gri� 	yi

rii to V�

Also� for every i � �n�� P chooses ui and vi uniformly from ZQ and sends h��i �
#gui�an�vi � ��i � yui � #gvii to V�

�� V sends REVEAL	e� J
 to P�
�� For each i � �	k � �
��	n
 �
�� P sends di � e � ai � ri mod Q to V�

Also� for every i � J� P sends ui and vi to V and for every i � �n� n J� P sends
ui � an � vi to V�

�� V accepts if the following conditions hold� ��� yk�� � #g� �
� �i � �	k � �
��	n 
 �
��
	yi


ri �	yi��

e � 	yi


di and 	#gai
e �#gri � #gdi� ��� �i � J� ��i � 	#gan
ui �#gvi and ��i � yui �#gvi
�i�e�� P sent the correct values�� ��� �i � �n� n J� we have that ��i � #gui�an�vi �i�e�� P
sent the correct value� and 	yn


ui�an�vi �� ��i �
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Properties� As mentioned above� we do not give formal proofs for the properties of Pro�
tocols ����� and ������ Nevertheless� we now informally describe these properties�

�� Completeness� A prover that knows the key s can always convince the legal veri�er of
the correct statement y � fs	x
 or y �� fs	x
�

�� Soundness� No prover can convince the legal veri�er of an incorrect statement y � fs	x

or y �� fs	x
 with non�negligible probability� In case the commitment scheme is not a
strong�receiver commitment scheme� soundness only holds against a computationally
bounded 	possibly cheating
 prover�

�� Zero�Knowledge� The conversation of any 	possibly cheating
 V� with P 	that is trying
to prove a correct statement y � fs	x
 or y �� fs	x

 can be e�ciently simulated by an
oracle machine that has access to any value fs	x

�
 where at least one of the bits x�n��

and x�n is zero�

Function Sharing

For many applications 	as the undeniable signature�scheme described above and the appli�
cations described in ���� ����
� one would like a simple function�sharing scheme for pseudo�
random functions� In recent years there has been considerable work on threshold public�key
cryptography and in particular on function�sharing schemes for trapdoor�permutations 	see
���� ��� ��� for some of the early works on this subject
� However� threshold cryptography
is very desirable in the setting of private key as well� In particular� it is possible to de�ne
function�sharing schemes for pseudo�random functions in an analogous way to de�nitions of
De�Santis et� al� ����� Informally� given some 	monotone
 access structure for � parties and
a key s of a pseudo�random function fs� we want a way to give party i a function Shi such
that the following two conditions hold� 	�
 For any value x and any authorized subset of
the parties J � ���� it is easy to compute fs	x
 given fShj	x
gj�J � 	�
 Let J � ��� be any
unauthorized subset of the parties and A any e�cient algorithm that is given the shares
fShjgj�J as input� Then even after A adaptively queries all the shares fShjgj 	�J at points
hx� � � � xmi of its choice� A cannot tell apart the restriction of fs to all other inputs 	apart
of hx� � � � xmi
 from a random function�

Unfortunately� we do not know of an e�cient function�sharing scheme for the pseudo�
random functions that are constructed in this section 	as well as for any other pseudo�
random function! see ����� and references therein for various approximations of function�
sharing scheme for a pseudo�random functions
� We do however know how to distribute
these functions in a weaker sense� The main di
erence is that now an authorized subset of
the parties is required to engage in a protocol in order to compute fs	x
� Such a scheme has
several disadvantages compared with a function�sharing scheme 	see ���� for a discussion
�
In particular� the de�nition of security is more delicate 	since it should consider executions
of the protocol when an unauthorized subset is cheating
� However� such a scheme might
still be useful�

Consider a function fs � fP�Q�g��a � Fn� where F � fFngn�N as in Construction ������
�a � ha�� a�� � � � ani� In order to distribute fs we can simply share its key s among the parties
	in fact� since P�Q and g can be public� it is enough to share �a
� Whenever a legal subset
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wants to compute the function at a point x it can engage in a secure function evaluation
of fs	x
� This idea works for every function fs using secret sharing schemes as in �����
and universal techniques for secure function evaluation ���� ��� ���� However� the speci�c
protocols that are possible in our case are much more e�cient given the simplicity of our
functions� As an example� assume that the only authorized subset is ��� itself� Party i gets
the key of the function Shi � fP�Q�g��ai � Fn� where �a

i � hai�� ai�� � � � aini and the values f�aigi����
are uniformly chosen� subject to the condition that �� 
 j 
 n� aj �

Q
i���� a

i
j mod Q� Now�

for every input x if �i� Shi	x
 � gci and fs	x
 � gc then c �
Q
i���� ci mod Q� Therefore� the

computation of fs	x
� can be done in n steps� At step � the �rst party publishes gc�� At step

i party i can compute and publish g
Qi

i	�
ci 	and perhaps also prove this value
� Additional

access structures for which we can distribute the function fP�Q�g��a are 	�
 �t out of ��� the
authorized subsets are the ones with at least t elements 	�
 Access structures that can be
described by a small monotone formula�

Oblivious Evaluation

We also suggest a new and attractive feature for a pseudo�random function " a protocol
for �oblivious evaluation� of its value� Assume that a party� A� knows a key� s� of a pseudo�
random function� Then A and a second party� B� can perform a protocol during which
B learns exactly one value fs	x
 of its choice whereas A does not learn a thing 	and� in
particular� does not learn x
� One possible application of such a protocol is for �blind�
authentication�� It is also interesting to compare with a protocol for oblivious�transfer�
during which B learns one of two possible values 	whereas in oblivious evaluation B learns
one of exponential many possible values
�

We now describe a preliminary design for oblivious�evaluation of the functions of Con�
struction ������ This is a rather ine�cient protocol since it requires '	n
 rounds� still it is
much more e�cient than what we can show for previous constructions of pseudo�random

functions� The main idea of the protocol is the following� Let uj � 	ga�

Q

xi	��i�j
ai and

vj � 	ga�

Q

xi	o�i�j
ai The output of step j is 	uj


r and 	vj

r� for two values r and r�� known

to B� Now B chooses t and t� uniformly at random� computes 	uj

r�t and 	vj


r��t� and send
this pair to A in a uniformly chosen order 	in fact� B also has to prove that he knows such

values t and t�
� If xj�� � � B asks for 		uj

r�t
aj
� and otherwise for

�
	vj


r��t�
�aj
�

�
We note that subsequently to our work� two rather e�cient oblivious�evaluation schemes

were designed for our functions by Benny Pinkas and Ronald Cramer and by Benny Pinkas
and Moni Naor ������

	�� Further Research

In Sections ����������� we discussed the existence of pseudo�random synthesizers in NC� Ad�
ditional work should be done in this area� The most obvious question is what are the general
assumptions 	in cryptography or in other �elds
 that imply the existence of pseudo�random
synthesizers in NC� In particular� whether there exist parallel constructions of pseudo�
random synthesizers out of pseudo�random generators or directly from one�way functions�
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It is also of interest to �nd parallel constructions of pseudo�random synthesizers based
on other concrete intractability assumptions� A task of practical importance is to derive
more e�cient concrete constructions of pseudo�random synthesizers in order to get e�cient
constructions of pseudo�random functions� As described in Section ������ an important
contribution to the e�ciency of the pseudo�random functions would be a direct construction
of synthesizers with linear output length�

An extensive research �eld deals with pseudo�random generators that �fool� algorithms
performing space�bounded computations� This kind of generators can be constructed without
any 	unproven
 assumptions! see ���� ���� ���� ���� for some de�nitions� constructions and
applications� It is possible that the concept of pseudo�random synthesizers and the idea
of our construction can be applied to the �world� of space�bounded computations� As a
motivation remark� note that the construction in ����� bares some resemblance to the GGM
construction�

In some sense we can think of the inner product function as a pseudo�random synthesizer
for space bounded computation� Let IP 	x� y
 be the inner product of x and y 	mod �
 and
let X and Y be random length�m sequences of n�bit strings� For some constant � 
 � 
 �
and s � �n it can be shown that CIP 	X� Y 
 is a pseudo�random generator for SPACE	s

with parameter � � ���
s�m� 	when CIP 	X� Y 
 is given row by row
� The only fact we use
is that approximating IP is �hard� in the communication complexity model 	see ���� ����
�

One might also try to apply the concept of pseudo�random synthesizers for other classes
of algorithms� For example ��� ���� construct pseudo�random generators for polynomial�size
constant�depth circuits� and in general for any class for which hard problems are known�

Our primary motivation for introducing pseudo�random synthesizers is the parallel con�
struction of pseudo�random functions� The special characteristics of pseudo�random synthe�
sizers lead us to believe that other desired applications may exist� For instance� pseudo�
random synthesizers easily de�ne a pseudo�random generator with large output length and
the ability to directly compute subsequences of the output� This and the properties dis�
cussed in Section ����� suggests that pseudo�random synthesizers may be useful for software
implementations of pseudo�random generators or functions� Another possible application of
the idea of Construction ����� that should be examined is to convert encryption methods
that are not immune to chosen plain�text attacks into ones that are immune�

Section ��� gives two very e�cient constructions of pseudo�random functions� The �rst
construction is based on the decisional DH�Assumption 	Assumption �����
 and the second
construction is based on a generalization of the computational DH�Assumption 	Assump�
tion �����
� We study these assumptions in Chapter �� A natural line for further research
is the additional study of the validity of these assumptions and the relations between these
assumptions and the standard computational DH�Assumption� Since our constructions can
be based on the corresponding assumptions for other groups 	e�g�� in elliptic�curve groups
�
it is interesting to study the validity of these assumptions as well�

As discussed in Section ������ the pseudo�random functions constructed in Section ��� are
motivated by the constructions of Section ���� In fact� Section ��� can be described as direct
and e�cient constructions of n�dimensional pseudo�random synthesizers 	see Section �����
�
An interesting problem is to construct e�cient n�dimensional synthesizers based on di
erent
intractability assumptions�
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Another interesting line for further research is improving the protocols described in Sec�
tion ����� and designing additional protocols 	as a non�interactive zero�knowledge proof for
the value of a pseudo�random function and a function�sharing scheme in the sense of ����
�

An alternative direction for constructing parallel pseudo�random functions is to try and
generalize the philosophy behind the Data Encryption Standard 	DES
 while maintaining
its apparent e�ciency� Some interesting ideas and results on the generalization of DES can
be found in Cleve�s work ���� ����



Chapter �

Constructions of Pseudo�Random

Permutations

The work described in this chapter is a study of the LR�Construction of pseudo�random
permutations from pseudo�random function 	see the introduction for a discussion on pseudo�
random permutations and their applications as well as a description of the LR�Construction
�
Our goal is to provide a better understanding of the LR�Construction and as a result improve
the construction in several respects� Our main observation is that the di
erent rounds of the
LR�Construction serve signi�cantly di
erent roles� We show that the �rst and last rounds
can be replaced by pair�wise independent permutations and use this in order to �

�� Simplify the proof of security of the construction 	especially in the case of strong
pseudo�random permutations
 and provide a framework for proving the security of
similar constructions�

�� Derive generalizations of the construction that are of practical and theoretical interest�
The proof of security for each one of the constructions is practically �free of charge�
given the framework�

�� Achieve an improvement in the computational complexity of the pseudo�random per�
mutations  two applications of a pseudo�random function on n bits su�ce for com�
puting the value of a pseudo�random permutation on �n bits at a given point 	vs�
four applications in the original LR�Construction
� This implies that the reduction is
�optimal��

As discussed in Section ������ the new construction is in fact a generalization of the
original LR�Construction� Thus� the proof of security 	Theorem �����
 also applies to the
original construction� The following is a brief and informal description of the main results
and the organization of this chapter�

Section ��� Presents the main construction and proves its security� pair�wise independent
permutations can replace the �rst and fourth rounds of the LR�Construction 	see Fig�
ure ��� for an illustration
�

��
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Section ��� Highlights the high�level structure of the proof of security which provides a
framework that enables us to relax and generalize the main construction�

Section ��� Shows how the main construction can be relaxed by�

����� Using a single pseudo�random function 	instead of two
 and

����� Using weaker and more e�cient permutations 	or functions
 instead of the pair�
wise independent permutations�

Section ��� Provides a simple generalization of the main construction� using t rounds
of 	generalized
 Feistel permutations 	instead of two
 the success probability of the
distinguisher is reduced from approximately m�

����
to approximately t

�
� m�

������t�� � where the
permutation is on � bits and the distinguisher makes at most m queries 	see Figure ���
for an illustration
�

Section ��� Provides a second generalization of the main construction� Instead of apply�
ing Feistel permutations on the entire outputs of the �rst and second rounds� Feistel
permutations can be separately applied on each one of their sub�blocks� This is a con�
struction of a strong pseudo�random permutation onmany blocks using pseudo�random
functions on a single block 	see Figure ��� for an illustration
�

Section ��� Analyzes the di
erent constructions of the chapter as constructions of k�wise
��dependent permutations�

Section ��� Suggests directions for further research�


�� Notation

We use in this chapter notation and de�nitions given in Chapter � 	in particular we use
de�nitions of pseudo�randomness and k�wise independence that appear there
� Additional
notation that is used in this chapter include�

� In denotes the set of all n�bit strings� f�� �gn�

� Fn denotes the set of all In �� In functions and Pn denotes the set of all such permu�
tations 	Pn � Fn
� In this chapter we concentrate on pseudo�random functions in Fn
and pseudo�random permutations in Pn�

� For x � I�n� denote by xjL the �rst 	left
 n bits of x and by xjR the last 	right
 n bits
of x�

De	nition ����� 
Feistel Permutations� � For any function f � Fn� let Df � P�n be the

permutation de	ned by Df 	L�R

def
� 	R�L� f	R

� where jLj � jRj � n�

�D stands for DES�like� another common term for these permutations�
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Figure ���� Constructions of SPPE� 	a
 The original LR�Construction 	b
 The revised
Construction� In 	a
 and 	b
� �i � �� Li � Ri�� and Ri � Li�� � fi	Ri��
� In 	b
�
hL�� R�i � h�	Input
 and Output � h��

� 	hL�� R�i
�

Notice that Feistel permutations are as easy to invert as they are to compute 	since the
inverse permutation satis�es D��

f 	L�R
 � 	R � f	L
� L
! that is� D��
f 	L�R
 � � 	 Df 	 �

for �	L�R

def
� 	R�L

� Therefore� the LR�Construction 	and its di
erent variants which are

introduced in Sections ��� ( ���
 are easy to invert�
Recall that the Luby and Racko
 design of PPE 	resp� SPPE
 is Df� 	Df� 	Df� 	resp�

Df� 	 Df� 	 Df� 	 Df�
 where all fis are independent 	length�preserving
 pseudo�random
functions and Dfi as in De�nition ����� 	see Figure ����a for an illustration
�


�� Construction of PPE and SPPE

����� Intuition

As mentioned above� a principle observation of this work is that the di
erent rounds of the
LR�Construction serve signi�cantly di
erent roles� To illustrate this point� consider two
rounds of the construction� Namely� E � Df� 	 Df� � where f�� f� � Fn are two indepen�
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dently chosen pseudo�random functions� It is not hard to verify that E is computationally
indistinguishable from a random permutation to any e�cient algorithm that has access to
pairs fhxi� E	xi
igmi��� where the sequence fxigmi�� is uniformly distributed� The intuition is
as follows� Note that it is enough to prove the pseudo�randomness of E when f� and f� are
truly random functions 	instead of pseudo�random
� Let 	L�

i � R
�
i 
 � xi and 	L�

i � R
�
i 
 � E	xi
�

by the de�nition of E we get that L�
i � L�

i � f�	R
�
i 
 and R�

i � R�
i � f�	L

�
i 
� Since the

sequence fxigmi�� is uniformly distributed� we have that with good probability 	better than
	� 
 m�

�n
� 

 R
�
i �� R�

j for all i �� j� Conditioned on this event� the sequence fL�
i gmi�� is

uniformly distributed and independent of the sequence fxigmi�� 	since f� is random
� We
now have that with good probability L�

i �� L�
j for all i �� j� Conditioned on this event�

the sequence fR�
i gmi�� is uniformly distributed and independent of both fL�

igmi�� and fxigmi���
Notice that this argument still works if the sequence fxigmi�� is only pair�wise independent�

Nevertheless� as Luby and Racko
 showed� E can be easily distinguished from a random
permutation by an algorithm that gets to see the value of E or E�� on inputs of its choice�
The reason is that for any values L�� L� and R such that L� �� L� we have that E	L�� R
jL�
E	L�� R
jL � L� � L�� In contrast� for a truly random permutation� the probability of this
event is ��n� This is the reason that the LR�Construction includes three or four rounds�

If we think of the second and third rounds of the LR�Construction as the permutation E�
then the discussion above implies that the role of the �rst and fourth rounds is to prevent
the distinguisher from directly choosing the inputs of E and E��� We show that this goal
can also be achieved with �combinatorial� constructions 	e�g�� pair�wise independent per�
mutations
� rather than �cryptographic� 	i�e�� pseudo�random functions
� In particular� the
LR�Construction remains secure when the �rst and fourth rounds are replaced with pair�wise
independent permutations 	see Figure ��� for an illustration
�

����� Construction and Main Result

De	nition ����� For any f�� f� � Fn and h�� h� � P�n� de	ne

W 	h�� f�� f�

def
� Df� 	Df� 	 h�

and
S	h�� f�� f�� h�


def
� h��

� 	Df� 	Df� 	 h��

Theorem ����� Let h�� h� � P�n be pair�wise independent permutations �similarly to Re�
mark 
�
�� this is an abbreviation for 
distributed according to a pair�wise independent
permutation ensemble�� and let f�� f� � Fn be pseudo�random functions� h�� h�� f� and
f� are independently chosen� Then W � W 	h�� f�� f�
 is a pseudo�random permutation
and S � S	h�� f�� f�� h�
 is a strong pseudo�random permutation �W and S as in De	ni�
tion ��
����

Furthermore� assume that no e�cient oracle�machine that makes at most m � m	n

queries� ��distinguishes between the pseudo�random functions and random functions for � �
�	n
 �see De	nition 
�
�
�� Then no e�cient oracle�machine that makes at most m queries
to W �resp� S and S��� ���distinguishes W �resp� S� from a random permutation for
�� � ��� m�

�n
� m�

��n
�
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Remark ����� The conditions of Theorem ��
�� are meant to simplify the exposition of the
theorem and of its proof� These conditions can be relaxed� as discussed in Section ���� The
main points are the following�

�� A single pseudo�random function f can replace both f� and f�


� h� and h� may obey weaker requirements than pair�wise independence� For example� it
is enough that for every x �� y�

Pr�h�	x
jR � h�	y
jR� 
 ��n and Pr�h�	x
jL � h�	y
jL� 
 ��n�

����� Proof of Security

We now prove the security of the SPPE�construction! the proof of security for the PPE�
construction is very similar 	and� in fact� a bit simpler
� As with the original LR�Construction�
the main task is to prove that the permutations are pseudo�random when f� and f� are truly
random 	instead of pseudo�random
�

Theorem ����� Let h�� h� � P�n be pair�wise independent permutations and let f�� f� � Fn
be random functions� De	ne S � S	h�� f�� f�� h�
 �as in De	nition ��
��� and let R � P�n be
a random permutation� Then for any oracle machine M �not necessarily an e�cient one�
that makes at most m queries�

���Pr�MS�S��

	��n
 � ��
 Pr�MR�R��

	��n
 � ��
��� 
 m�

�n
�
m�

��n
�

Theorem ����� follows easily from Theorem ����� 	see a proof�sketch in the sequel
� In
order to prove Theorem ������ we introduce additional notation�

Let G denote the permutation that is accessible to the machine M 	G is either S or R
�
There are two types of queries M can make� either 	�� x
 which denotes the query �what is
G	x
�� or 	
� y
 which denotes the query �what is G��	y
��� For the ith query M makes�
de�ne the query�answer pair hxi� yii � I�n�I�n� where either M �s query was 	�� xi
 and the
answer it got was yi or M �s query was 	
� yi
 and the answer it got was xi� We assume that
M makes exactly m queries and refer to the sequence fhx�� y�i� ���� hxm� ymig of all these pairs
as the transcript 	of M �s computation
�

Notice that no limitations were imposed on the computational power of M � Therefore�
M can be assumed to be deterministic 	we can always �x the random tape that maxi�
mizes the advantage M achieves
� This assumption implies that for every � 
 i 
 m the
ith query of M is fully determined by the �rst i 
 � query�answer pairs� Thus� for every
i it can be determined from the transcript whether the ith query was 	�� xi
 or 	
� yi
�
We also get that M �s output is a 	deterministic
 function of its transcript� Denote by
CM �fhx�� y�i� ���� hxi��� yi��ig� the ith query of M as a function of the previous query�answer
pairs and denote by CM �fhx�� y�i� ���� hxm� ymig� the output of M as a function of its tran�
script�

De	nition ����� Let � be a sequence fhx�� y�i� ���� hxm� ymig� where for � 
 i 
 m we have
that hxi� yii � I�n�I�n� Then � is a possible M �transcript if for every � 
 i 
 m

CM �fhx�� y�i� ���� hxi��� yi��ig� � f	�� xi
� 	
� yi
g�
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Let us consider yet another distribution on the answers to M �s queries 	which� in turn�
induces another distribution on the possible M �transcripts
� Consider a random process #R
that on the ith query of M answers as follows�

�� If M �s query is 	�� x
 and for some � 
 j 
 i the jth query�answer pair is hx� yi� then
#R�s answer is y 	for an arbitrary such query�answer pair� hx� yi
�

�� If M �s query is 	
� y
 and for some � 
 j 
 i the jth query�answer pair is hx� yi� then
#R�s answer is x 	for an arbitrary such query�answer pair� hx� yi
�

�� If neither � nor � holds� then #R�s answer is a uniformly chosen �n�bit string�

It is possible that #R provides answers that are not consistent with any permutation�

De	nition ����� Let � � fhx�� y�i� ���� hxm� ymig be any possible M�transcript� � is incon�
sistent if for some � 
 j 
 i 
 m the corresponding query�answer pairs satisfy xi � xj and
yi �� yj or yi � yj and xi �� xj� Otherwise� � is consistent�

We �rst show 	in Proposition �����
 that the advantage M might have in distinguishing
between the process #R and the random permutation R is small� The reason is that as long
as #R answers consistently 	which happens with good probability
 it �behaves� exactly as a
random permutation� In order to formalize this� we consider the di
erent distributions on
the transcript of M 	induced by the di
erent distributions on the answers it gets
�

De	nition ����� Let TS� TR and T 
R be the random variables such that TS is the transcript
of M when its queries are answered by S� TR is the transcript of M when its queries are
answered by R and T 
R is the transcript of M when its queries are answered by #R�

Notice that by these de	nitions �and by our assumptions� MS�S��
	��n
 � CM	TS
 �are

the same random variables� and MR�R��
	��n
 � CM	TR
�

Proposition �����

����Pr
R �CM	T 
R
 � ��
 Pr
R
�CM	TR
 � ��

���� 
 m�

��n��
�

Proof� For any possible and consistent M �transcript � we have that

Pr
R
�TR � �� �

��n�

	��n 
m
�
� Pr


R
�T 
R � � j T 
R is consistent��

Therefore� the distribution of T 
R conditioned on T 
R being consistent is exactly the distribu�
tion of TR� Furthermore� the probability that T 
R is inconsistent is small� T 
R is inconsistent
if for some � 
 j 
 i 
 m the corresponding query�answer pairs satisfy xi � xj and yi �� yj
or yi � yj and xi �� xj� For a given i and j this event happens with probability at most
���n� Hence�

Pr

R
�T 
R is inconsistent� 


�
m

�

�
� ���n 


m�

��n��
�
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The proposition follows�����Pr
R �CM	T 
R
 � ��
 Pr
R
�CM	TR
 � ��

����



����Pr
R �CM	T 
R
 � � j T 
R is consistent� 
 Pr
R
�CM	TR
 � ��

���� � Pr
R �T 
R is consistent�

�
����Pr

R
�CM	T 
R
 � � j T 
R is inconsistent� 
 Pr

R
�CM	TR
 � ��

���� � Pr

R
�T 
R is inconsistent�


 Pr

R
�T 
R is inconsistent�



m�

��n��
�

�

It remains to bound the advantage M might have in distinguishing between T 
R and TS�
The intuition is that for every possible and consistent M �transcript � unless some �bad� and
�rare� event on the choice of h� and h� 	as in the de�nition of S
 happens� the probability
that TS � � is exactly the same as the probability that T 
R � �� We now formally de�ne this
event 	De�nition �����
 and bound its probability 	Proposition �����
�

Convention ����� For any possibleM�transcript � � fhx�� y�i� ���� hxm� ymig we can assume
hereafter that if � is consistent then for i �� j both xi �� xj and yi �� yj �this means that M
never asks a query if its answer is determined by a previous query�answer pair��

De	nition ����� For every speci	c choice of pair�wise independent permutations h�� h� �
P�n �in the de	nition of S� de	ne BAD	h�� h�
 to be the set of all possible and consistent
M�transcripts� � � fhx�� y�i� � � � � hxm� ymig� satisfying�

�� 
 i 
 j 
 m such that h�	xi
jR � h�	xj
jR or h�	yi
jL � h�	yj
jL�

Proposition ����� Let h�� h� � P�n be pair�wise independent permutations then for any
possible and consistent M�transcript � � fhx�� y�i� ���� hxm� ymig we have that�

Pr
h��h�

�� � BAD	h�� h�
� 

m�

�n
�

Proof� By de�nition� � � BAD	h�� h�
 if there exist � 
 i 
 j 
 m such that either
h�	xi
jR � h�	xj
jR or h�	yi
jL � h�	yj
jL� For any given i and j both Prh� �h�	xi
jR �
h�	xj
jR� and Prh� �h�	yi
jL � h�	yj
jL� are smaller than ��n 	since h� and h� are pair�wise
independent
� Therefore�

Pr
h��h�

�� � BAD	h�� h�
� 


�
m

�

�
� � � ��n 
 m�

�n
�

�

The key lemma for proving Theorem ����� is�
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Lemma ����� Let � � fhx�� y�i� ���� hxm� ymig be any possible and consistent M�transcript�
then

Pr
S
�TS � � j � �� BAD	h�� h�
� � Pr


R
�T 
R � ���

Proof� Since � is a possible M �transcript we have that for all � 
 i 
 m�

CM �fhx�� y�i� ���� hxi��� yi��ig� � f	�� xi
� 	
� yi
g�

Therefore� T 
R � � i
 for all � 
 i 
 m� the ith answer #R gives is yi in the case that
CM �fhx�� y�i� ���� hxi��� yi��ig� � 	�� xi
 and otherwise its ith answer is xi� Assume that #R
answered �correctly� 	i�e�� yi or xi as above
 for each one of the �rst i 
 � queries� Then�
by Convention ����� and the de�nition of #R� its ith answer is an independent and uniform
�n�bit string� Therefore�

Pr

R
�T 
R � �� � ���nm�

Since � is a possible M �transcript we have that TS � � i
 for all � 
 i 
 m� yi � S	xi
�
Consider any speci�c choice of permutations h� and h� 	for which S � S	h�� f�� f�� h�

 such
that � �� BAD	h�� h�
� Let 	L�

i � R
�
i 
 � h�	xi
 and 	L�

i � R
�
i 
 � h�	yi
� By the de�nition of S�

we get that�

yi � S	xi
�� f�	R
�
i 
 � L�

i � L�
i and f�	L

�
i 
 � R�

i � R�
i �

For every � 
 i 
 j 
 m both R�
i �� R�

j and L�
i �� L�

j 	otherwise � � BAD	h�� h�

�
Therefore� since f� and f� are random� we have that for every choice of h� and h� such that
� �� BAD	h�� h�
 the probability that TS � � is exactly ���nm� We can conclude�

Pr
S
�TS � � j � �� BAD	h�� h�
� � ���nm�

which complete the proof of the lemma� �

Proof� 
of Theorem ������ Let ) be the set of all possible and consistent M �transcripts �
such that M	�
 � ��

����Pr
S
�CM	TS
 � ��
 Pr


R
�CM	T 
R
 � ��

����



�����
X

��

�
Pr
S
�TS � ��
 Pr


R
�T 
R � ��

������ � Pr

R
�T 
R is inconsistent�


 X

��

����Pr
S
�TS � �j� �� BAD	h�� h�
�
 Pr


R
�T 
R � ��

���� � Pr
h��h�

�� �� BAD	h�� h�
� 	���


�

�����
X

��

�
Pr
S
�TS � �j� � BAD	h�� h�
�
 Pr


R
�T 
R � ��

�
� Pr
h��h�

�� � BAD	h�� h�
�

�����	���

� Pr


R
�T 
R is inconsistent�� 	���
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We already showed in the proof of Proposition ����� that the value of Expression 	�
 is
smaller than m�

��n
� � by Lemma ����� we get that the value of Expression 	�
 is �� Therefore�
it remains to bound the value of Expression 	�
� Assume without loss of generality thatX


��

Pr
S
�TS � � j � � BAD	h�� h�
� � Pr

h��h�
�� � BAD	h�� h�
�


 X

��

Pr

R
�T 
R � �� � Pr

h��h�
�� � BAD	h�� h�
��

then using Proposition ����� we get that�����
X

��

�
Pr
S
�TS � � j � � BAD	h�� h�
�
 Pr


R
�T 
R � ��

�
� Pr
h��h�

�� � BAD	h�� h�
�

�����

 X


��

Pr

R
�T 
R � �� � Pr

h��h�
�� � BAD	h�� h�
�


 max

��

Pr
h��h�

�� � BAD	h�� h�
�



m�

�n
�

Thus� we can conclude that�

����Pr
S
�CM	TS
 � ��
 Pr


R
�CM	T 
R
 � ��

���� 
 m�

�n
�

m�

��n��
�

Using Proposition ����� we complete the proof�����Pr
S
�MS�S��

	��n
 � ��
 Pr
R
�MR�R��

	��n
 � ��
����

�
����Pr
S
�CM	TS
 � ��
 Pr

R
�CM	TR
 � ��

����



����Pr
S
�CM	TS
 � ��
 Pr


R
�CM	T 
R
 � ��

�����
����Pr

R
�CM	T 
R
 � ��
 Pr

R
�CM	TR
 � ��

����



m�

�n
�
m�

��n
�

�

Given Theorem ������ the proof of Theorem ����� is essentially the same as the corre�
sponding proof of the original LR�Construction 	the proof of Theorem � of ����� given their
main Lemma
� The proof�idea is the following� De�ne three distributions�

� S� � S	h�� f�� f�� h�
� where h�� h� � P�n are pair�wise independent and f�� f� � Fn are
pseudo�random functions�

� S� � S	h�� g�� f�� h�
� where h�� h� � P�n are pair�wise independent� f� � Fn a pseudo�
random function and g� � Fn a random function�

� S� � S	h�� g�� g�� h�
� where h�� h� � P�n are pair�wise independent and g�� g� � Fn are
random functions�
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It is enough to show that for every oracle machine� for all but �nite number of n�

��
���Pr�MS��S

��
� 	��n
 � ��
 Pr�MS� �S

��
� 	��n
 � ��

��� 
 �	n


��
���Pr�MS��S

��
� 	��n
 � ��
 Pr�MS� �S

��
� 	��n
 � ��

��� 
 �	n


If 	�
 or 	�
 do not hold� then we can construct an e�cient oracle�machine M � that ��
distinguishes the pseudo�random functions from the random functions in contradiction to
the assumption� Assume for example that for in�nitely many n�

���Pr�MS��S
��
� 	��n
 � ��
 Pr�MS� �S

��
� 	��n
 � ��

��� � �	n
�

The oracle�machine M � on input �n and with access to a function O � Fn �rst samples
pair�wise independent permutations� h�� h� � P�n� and a pseudo�random function f� � Fn�
M � then invokes M with input ��n and answers its queries with the values of S and S���
for S � S	h�� O� f�� h�
� When M halts so does M �� and M � outputs whatever M outputs�
Notice that if O is a pseudo�random function then the distribution of S is S�� whereas if
O is a truly random function then the distribution of S is S�� This is the reason that M �

distinguishes a pseudo�random function from a random one with advantage greater than
�	n
� Similar hybrid�arguments apply to all the other constructions of this chapter�


�� The Framework

As we shall see in Sections ��� ���� the construction of Section ��� can be relaxed and
generalized in several ways� The di
erent pseudo�random permutations obtained share a
similar structure and almost identical proof of security� In this section we examine the proof
of Theorem ����� in a more abstract manner� Our goal is to establish a framework for proving
	almost
 all the constructions of this chapter and to suggest a way for designing and proving
additional constructions�

Our framework deals with constructions of a pseudo�random permutation S on � bits
which is the composition of three permutations� S � h��

� 	 E 	 h�� 	see Figure ��� for an
illustration
� In general� h� and h��

� are �lightweight� and E is where most of the work is
done� E is constructed from pseudo�random functions and for the purpose of the analysis
we assume 	as in Theorem �����
 that these functions are truly random� In Section ����
for example� � � �n� h� and h� are chosen as pair�wise independent permutations and
E � Df� 	Df� for random f�� f� � Fn�

The framework starts with E which may be easily distinguished from a truly random
permutation and transforms it via h� and h� into a pseudo�random permutation� The prop�
erty E should have is that for almost every sequence� fhx�� y�i� � � � � hxm� ymig� the probability
that �i� yi � E	xi
 is �close� to what we have for a truly random permutation�

De	nition ����� A sequence� fhx�� y�i� � � � � hxm� ymig� is E�Good if PrE��i� yi � E	xi
� �
����m�
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h1

h2

-1

Output

Input

E

Figure ���� The high�level structure of the di
erent constructions of SPPE�

We assume that apart from some �rare� sequences all others are E�Good� Loosely speaking�
the role of h� and h� is to ensure that under any 	adaptive chosen plaintext and cipher�
text
 attack on S the inputs and outputs of E form an E�Good sequence with a very high
probability�

For the exact properties needed from the distributions on h�� h� and E� we shall try to
follow the statement and proof of Theorem ������ The goal is to show that S is indistin�
guishable from a truly random permutation R on � bits� Speci�cally� that for some small �
	whose choice is explained hereafter
� for any oracle machine M 	not necessarily an e�cient
one
 that makes at most m queries�

���Pr�MS�S��

	��
 � ��
 Pr�MR�R��

	��
 � ��
��� 
 ��

m�

��
�

Let the notions of query�answer pair� a transcript� the function CM � a possible M �transcript�
the random process #R� a consistent transcript and the random variables TS� TR and T 
R

be as in the proof of Theorem ������ Proposition ����� 	saying that the distance between
TR and T 
R is bounded by the probability that T 
R is inconsistent and that this probability

is bounded by m�

��
� 
 still holds� The heart of applying the framework is in specifying the
�bad� M �transcripts for given h� and h�� This set BADE	h�� h�
 replaces BAD	h�� h�
 in
De�nition ����� and in the rest of the proof� It contains possible and consistentM �transcripts
and should have the property that any fhx�� y�i� � � � � hxm� ymig not in BADE	h�� h�
 satis�es
that fhh�	x�
� h�	y�
i� � � � � hh�	xm
� h�	ym
ig is E�Good� Note that De�nition ����� is indeed
a special case of the above and also that� by this property�

Pr
S
�TS � � j � �� BADE	h�� h�
� � ����m�

This implies that Lemma ����� where BAD	h�� h�
 is replaced with BADE	h�� h�
 is true�
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Lemma ����� Let � � fhx�� y�i� ���� hxm� ymig be any possible and consistent M�transcript�
then

Pr
S
�TS � � j � �� BADE	h�� h�
� � Pr


R
�T 
R � ���

For BADE	h�� h�
 to be useful we must have that

Pr
h��h�

�� � BADE	h�� h�
� 
 � 	���


and this substitutes Proposition ������ This is the only place in the proof where we use
the de�nition of � and the de�nition of the distributions of h� and h�� As demonstrated in
Sections ����� ( ������ there is actually a tradeo
 between reducing the requirements from
h� and h� and having a somewhat larger value of �� Applying 	���
 and Lemma ����� as in
the proof of Theorem ����� we conclude�

Theorem ����� Let h�� h�� E be distributed over permutations in P�� let S � h��
� 	 E 	 h�

and let R � P� be a random permutation� Suppose that BADE	h�� h�
 is as above and �
satis	es ������ Then for any oracle machine M �not necessarily an e�cient one� that makes
at most m queries�

���Pr�MS�S��

	��
 � ��
 Pr�MR�R��

	��
 � ��
��� 
 ��

m�

��
�

To summarize� the major point in proving the security of the di
erent constructions is
to de�ne the set BADE	h�� h�
 such that for any possible and consistent M �transcript� ��
both PrS�TS � � j � �� BADE	h�� h�
� � ����m and Prh��h��� � BADE	h�� h�
� 
 � 	for the
speci�c � in the claim we are proving
� This suggests that the critical step for designing a
pseudo�random permutation� using the framework described in this section� is to come up
with a permutation E such that the set of E�Good sequences is �large enough� and �nice
enough�� Note that to meet this end one can use di
erent or more general de�nitions of an
E�Good sequence with only minor changes to the proof 	as is the case for the permutation
&S in Section ���
�


�	 Relaxing the Construction

��
�� PPE and SPPE with a Single Pseudo�Random Function

Since Luby and Racko
 introduced their construction a considerable amount of research
����� ���� ���� ���� ���� ���� ���� ���� ���� ���� has focused on the following question�
Can we obtain a similar construction of PPE or SPPE such that every permutation will be
constructed from a single pseudo�random function�

Apparently� this line of research originated in the work of Schnorr ������ Schnorr consid�
ered the LR�Construction� where the functions used are truly random� as a pseudo�random
generator that is secure if not too many bits are accessible� The security of Schnorr�s genera�
tor does not depend on any unproven assumption� This notion of local�randomness is further
treated in ���� ���� Since the key of a random function is huge it makes sense to minimize
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the number of functions and� indeed� Schnorr suggested Df 	Df 	Df as pseudo�random 	the
suggested permutation was later shown to be distinguishable from random �����
�

Following is an informal description of some of these results� Let f � Fn be a random
function� Then�

� For all i� j� k � � the permutation Df i 	Dfj 	Dfk is not pseudo�random ������

� For all i� j� k� � � � the permutationDf i 	Dfj 	Dfk 	Df� is not strongly pseudo�random
������

� Df� 	Df 	Df 	Df is pseudo�random ������

� Df 	DI 	Df� 	Df 	DI 	Df� is strongly pseudo�random� where I � Fn is the identity
function ������

� Df���f 	Df 	Df is pseudo�random andDf���f 	Df 	Df 	Df is strongly pseudo�random�
where � is� for example� a rotation of one bit ������

A critique that has been voiced often is that using only one pseudo�random function
does not seem too signi�cant� A pseudo�random function on n�� bits can replace � pseudo�
random functions on n bits or� alternatively� a small key can be used to pseudo�randomly
generate a larger key� It should also be noticed that the new constructions require additional
invocations of the pseudo�random functions which imply an increase in the computation
time� Furthermore� these results involve detailed and non�trivial proofs 	to a point� where
some papers claim to �nd inaccuracies in others
�

The adjustment of the LR�Construction we suggest in Section ��� can easily be converted
into a construction of PPE and SPPE from a single pseudo�random function� Simply re�
place both 	pseudo�random
 functions� f� and f�� with a single 	pseudo�random
 function
f � This solution does not su
er from the drawbacks of the previous ones� The construction
and the proof remain as simple as before and the pseudo�random function is only invoked
twice at each computation of the permutation� The additional key�length for the pair�wise
independent functions 	h� and h�
 is not substantial 	especially compared to the length of
a truly random function
� Consider� for example� the construction of SPPE when we use a
truly random function f �

Theorem ����� Let h�� h� � P�n be pair�wise independent permutations and let f � Fn be
a random function� De	ne S � S	h�� f� f� h�
 �as in De	nition ��
��� and let R � P�n be
a random permutation� Then for any oracle machine M �not necessarily an e�cient one�
that makes at most m queries�

���Pr�MS�S��

	��n
 � ��
 Pr�MR�R��

	��n
 � ��
��� 
 �m�

�n
�
m�

��n
�

The proof follows the framework described in Section ���� The set BAD	h�� h�
 	De�ni�
tion �����
 is replaced with the set BAD�	h�� h�
 de�ned to be�
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The set of all possible and consistent M�transcripts� � � fhx�� y�i� � � � � hxm� ymig�
satisfying that there exist � 
 i 
 j 
 m such that either h�	xi
jR � h�	xj
jR or
h�	yi
jL � h�	yj
jL �as before�� or there exist � 
 i� j 
 m such that h�	xi
jR �
h�	yj
jL�

In order to apply Theorem ������ it is enough to note that by this de�nition we get that for
any possible and consistent M �transcripts� �� both PrS�TS � � j � �� BAD�	h�� h�
� � ���nm

	hence� it is a proper de�nition according to the framework
 and Prh��h��� � BAD�	h�� h�
� 

�m�

�n
�

��
�� Relaxing the Pair�Wise Independence Requirement

One might interpret the construction of Section ��� in the following way� given the task
of constructing e�cient pseudo�random permutations it is enough to concentrate on the
e�cient construction of pseudo�random functions� The assumption that supports such a
claim is that the computation of pseudo�random functions is much more expensive than the
computation of pair�wise independent permutations� Therefore� computing the value of the
pseudo�random permutation 	that is constructed in Section ���
 on any input of �n bits
is essentially equivalent to two invocations of a pseudo�random function with n�bit inputs�
In this section we show that we can use even weaker permutations instead of the pair�
wise independent ones  resulting in an even more e�cient construction of pseudo�random
permutations�

As mentioned in Section ���� the only place in Section ��� we use the fact that h� and
h� are pair�wise independent permutations is in the proof of Proposition ������ In fact� the
exact requirement on h� and h� we use is that for every x �� y�

Pr
h�
�h�	x
jR � h�	y
jR� 
 ��n and Pr

h�
�h�	x
jL � h�	y
jL� 
 ��n�

Furthermore� we can replace ��n with any � � ��n and still get a construction of pseudo�
random permutations 	with somewhat larger distinguishing probability
� Consider� for ex�
ample� the revised statement of Theorem ������

Theorem ����� Let H� and H� be distributions of permutations in P�n such that for every
pair of �n�bit strings x �� y�

Pr
h��H�

�h�	x
jR � h�	y
jR� 
 � and Pr
h��H�

�h�	x
jL � h�	y
jL� 
 ��

Let h� be distributed according to H�� h� distributed according to H� and let f�� f� � Fn be
random functions� De	ne S � S	h�� f�� f�� h�
 �as in De	nition ��
��� and let R � P�n be
a random permutation� Then for any oracle machine M �not necessarily an e�cient one�
that makes at most m queries�

���Pr�MS�S��

	��n
 � ��
 Pr�MR�R��

	��n
 � ��
��� 
 m� � �� m�

��n
�
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The proof follows the framework described in Section ���� This time the de�nition of
BAD	h�� h�
 stays unchanged and� in order to apply Theorem ������ we only need to note
that for any possible and consistent M �transcript �� Prh��h��� � BAD	h�� h�
� 
 m� � ��

The conditions on H� and H� in Theorem ����� are somewhat nonstandard 	since the
requirements are on half the bits of the output
� Nevertheless� these conditions are satis�ed
by more traditional requirements on function�families� In particular� one can use the concept
of ��AXU� functions�

De	nition ����� A distribution on In �� In functions �or permutations�� H� is ��AXU� if
for every x �� y and every z �x� y� z � In��

Pr
h�H

�h	x
� h	y
 � z� 
 ��

This concept was originally de�ned by Carter and Wegman ����! We use the terminology of
Rogaway ������

It is easy to verify that the conditions on H� and H� in Theorem ����� are satis�ed if
both H� and H� are 		�n 
 �
�� � �
�AXU�� Such a distribution of permutations over I�n�

for � � 	�n � �
��� is ha	x

def
� a � x where a is uniform in I�n n f�g and the multiplication is

in GF 	��n
�
Another way to construct H� and H� is by using Feistel permutations with ��AXU�

functions� Let H be a distribution of ��AXU� functions on n bits strings� then we can de�ne
H� to be fDhgh�H and H� to be fD��

h gh�H � The reason is that for every two distinct �n�bit
strings x � 	L�� R�
 and y � 	L�� R�
 and every function h � Fn we have by de�nition that�

Dh	x
jR � Dh	y
jR �� h	R�
� h	R�
 � L� � L��

If R� � R� then L� �� L� and therefore Dh	x
jR �� Dh	y
jR! otherwise� by the de�nition of
��AXU� functions�

Pr
h�H

�Dh	x
jR � Dh	y
jR� � Pr
h�H

�h	R�
� h	R�
 � L� � L�� 
 ��

Thus� H� satis�es its requirement and similarly for H��
By using Feistel permutations to constructH� andH� we get the original LR�Construction

as a special case 	since a random function is in particular ��n�AXU�
� Thus� the proof of
security in Section ��� also holds for the original LR�Construction� The idea of using ��AXU�

functions instead of pseudo�random functions for the �rst round of the LR�Construction was
previously suggested by Lucks �����

Another advantage of this approach is that it allows us to use many e�cient constructions
of function families� An example of e�cient ��n�AXU� functions are Vazirani�s �shift��family
������ A key of such a function is a uniformly chosen string a � I�n�� and the jth bit of fa	x

	� 
 j 
 n
 is de�ned to be

Pn
i�� xiaj�i�� mod ��

A substantial amount of research ���� ��� ��� ���� ���� ���� deals with the construction of
e�cient hash functions� This line of work contains constructions that obey weaker de�nitions
on function families than pair�wise independence and in particular contains constructions of
��AXU� functions� Unfortunately� these functions were designed to be especially e�cient
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when their output is substantially smaller than their input 	since� they were mainly brought
up in the context of authentication
 which is not true in our case 	but is relevant in Sec�
tion ���
� An additional objective is to reduce the size of the family of hash functions 	e�g��
���� ���
� In our setting the purpose of this is to reduce the key�length of the pseudo�random
permutations�


�
 Reducing the Distinguishing Probability

There are various circumstances where it is desirable to have a pseudo�random permutation
on relatively few bits 	say ���
� This is especially true when we want to minimize the size
of the hardware�circuit that implements the permutation or the communication bandwidth
with the 	hardware or software
 component that computes the permutation�

Let F be a pseudo�random permutation on � bits 	note that n � �	� in Section ���
 con�
structed from truly random functions 	on �	� bits
 using the LR�Construction� As shown by
Patarin ������ F can be distinguished 	with constant probability
 from a random permuta�
tion using O	����
 queries 	which means that the analysis of the LR�Construction� where the
distinguishing probability for m queries is O	 m�

����

� is tight
� Therefore� the LR�Construction

on � bits can only be used if ���� is large enough to bound the number of queries in the
attack on the block cipher�

In this section� a simple generalization of the construction of Section ��� is presented�
Using this construction� the adversary�s probability of distinguishing between the pseudo�
random and random permutations can be reduced to roughly t

�
� m�

������t�� for every integer
� 
 t 
 � 	for t � � we get the original construction
� To achieve this security t � �
permutations are composed� The initial and �nal are pair�wise independent permutations�
the rest are 	generalized
 Feistel permutations de�ned by I
����t�� �� I��t random 	or pseudo�
random
 functions 	see Figure ��� for an illustration
�

Patarin ����� shows that if we take six rounds of the LR�Construction 	instead of three or
four
� then the resulting permutation cannot be distinguished from a random permutation
with advantage better than �m�

��
	improving �����
� This means that distinguishing the six�

round construction from a truly random permutation 	with constant probability
 requires at
least �	����
 queries� The bound we achieve in this section 	�	�
����t�����

 is better 	for any
t � �
� Note that our construction uses pseudo�random functions with larger input�length�
which might be a disadvantage for some applications�

In order to describe our generalized constructions we �rst extend Feistel permutations to
deal with the case where the underlying functions have arbitrary input and output lengths
	instead of length�preserving functions as in De�nition �����
� We note that using such
�unbalanced� Feistel permutations was previously suggested in ��� ��� �����

De	nition ����� 
Generalized Feistel Permutations� For any two positive integers� s
and ��� and any function f � I�

� �� Is let � � �� � s and let Df � P� be the permutation

de	ned by Df	L�R

def
� 	R�L� f	R

� where jLj � s and jRj � ���

We can now de�ne the revised construction and consider its security� These are simple
generalizations of the construction in Section ��� and of its proof of security�
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Figure ���� Construction of strong pseudo�random permutations with reduced distinguishing
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� Recall� fi � I
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De	nition ����� 
t� ��Round Construction� For any integers � 
 t 
 �� let s and r be
integers such that � � s�t�r �where r 
 t�� For any h�� h� � P�� f�� f�� � � � � fr � I

��s�� �� Is��

and fr��� � � � � ft � I
��s �� Is de	ne

W 	h�� f�� f� � � � � ft

def
� Dft 	Dft�� 	 � � � 	Df� 	 h�

and
S	h�� f�� f�� � � � � ft� h�


def
� h��

� 	Dft 	Dft�� 	 � � � 	Df� 	 h��
�We get the construction of De	nition ��
�� by choosing t � �� s � �	� and r � ���

Theorem ����� Let W and S be as in De	nition ����
� where h� and h� are pair�wise
independent permutations and f�� f�� � � � � ft are pseudo�random functions �t is allowed to be
a function of ��� h�� h� and f�� f�� � � � � ft are independently chosen� Then W is a pseudo�
random permutation and S a strong pseudo�random permutation�

Furthermore� assume that no e�cient oracle�machine that makes at most m � m	�

queries� ��distinguishes between the pseudo�random functions and random functions for � �
�	n
� Then no e�cient oracle�machine that makes at most m queries to W �resp� S and
S��� ���distinguishes W �resp� S� from a random permutation� for �� � t ��� t

�
� m�

���d��te
� m�

��
�

In case the middle functions are truly random this reduces to�

Theorem ����� Let S be as in De	nition ����
� where h� and h� are pair�wise independent
permutations and f�� f�� � � � � ft are random functions and let R � P� be a random permuta�
tion� Then for any oracle machine M �not necessarily an e�cient one� that makes at most
m queries�

���Pr�MS�S��

	��
 � ��
 Pr�MR�R��

	��
 � ��
��� 
 t

�
� m�

���d��te
�
m�

��
�

The proof of Theorem ����� follows the framework described in Section ���� Assume
for simplicity that � � s � t� the set BAD	h�� h�
 	De�nition �����
 is replaced with the set
BAD�	h�� h�
 de�ned to be�

The set of all possible and consistent M�transcripts� � � fhx�� y�i� � � � � hxm� ymig�
satisfying that there exist � 
 i 
 j 
 m and � 
 k 
 t such that

	F k��
i � � � � � F t

i � L
�
i � � � � � L

k��
i 
 � 	F k��

j � � � � � F t
j � L

�
j � � � � � L

k��
j 
�

where 	F �
i � F

�
i � � � � � F

t
i 
 � h�	xi
 and 	L�

i � L
�
i � � � � � L

t
i
 � h�	yi
 �jF �

i j � jF �
i j �

� � � � jF t
i j � jL�

i j � jL�
i j � � � � � jLt

ij � s��

This guarantees that for any possible and consistentM �transcript � we have that PrS�TS �
� j � �� BAD�	h�� h�
� � ���m 	and hence� it is a proper de�nition according to the frame�
work
� The reason is that� under the notation above�

�i� yi � S	xi
�� �� 
 i 
 m� �� 
 k 
 t� fk	F
k��
i � � � � � F t

i � L
�
i � � � � � L

k��
i 
 � F k

i � *Lki �



	�
� SPPE ON MANY BLOCKS USING PFE OR PPE ON A SINGLE BLOCK ���

Therefore� given any speci�c choice of h� and h� 	in the de�nition of S
 such that � ��
BAD�	h�� h�
 the event TS � � is composed of m � t independent events each of which has
probability ��s to happen� In order to apply Theorem ������ it remains to note that for any
such � we have that

Pr
h��h�

�� � BAD�	h�� h�
� 
 t �
�
m

�

�
� ��
��d��te� 


t

�
� m�

���d��te
�

Remark ����� The construction of this section achieves a substantial improvement in se�
curity over the construction in Section ��
 even for a small constant t � � �that is� with a
few additional applications of the pseudo�random functions�� Nevertheless� it might be useful
for some applications to take a larger value of t� Choosing t � � reduces the advantage the
distinguisher may achieve to roughly ��m�

��
�


�� SPPE on Many Blocks Using PFE or PPE on a

Single Block

Consider the application of pseudo�random permutations to encryption� i�e�� using f	M

in order to encrypt a message M � where f is a pseudo�random permutation� Assume also
that we want to use DES for this purpose� We now have the following problem� while DES
works on �xed and relatively small length strings� we need a permutation on jM j�bit long
strings� where the length of the message� jM j� may be large and may vary between di
erent
messages�

This problem is not restricted to the usage of DES 	though the fact that DES was de�
signed for hardware implementation contributes to it
� Usually� a direct construction of
pseudo�random permutations or pseudo�random functions 	if we want to employ the LR�
Construction
 with large input�length is expensive� Therefore� we would like a way to
construct pseudo�random permutations 	or functions
 on many blocks from pseudo�random
permutations 	or functions
 on a single block�

Several such constructions were suggested in the context of DES 	see e�g� ���� for the dif�
ferent modes of operation for DES
� The simplest� known as the electronic codebook mode
	ECB�mode
� is to divide the input into sub�blocks and to apply the pseudo�random permu�
tation on each sub�block separately� This solution su
ers from the obvious drawback that
every sub�block of output solely depends on a single sub�block of input 	and� in particular�
the permutation on the complete input is not pseudo�random
� This may leak information
about the message being encrypted� See Section ����� for further discussion and additional
related work�

In this section we consider a generalization of the construction of Section ��� that uses
pseudo�random functions 	or permutations
 on a single block to construct strong pseudo�
random permutations on many blocks� The idea is as follows� apply a pair�wise independent
permutation on the entire input� divide the value you get into sub�blocks and apply two
rounds of Feistel�permutations 	or one round of a pseudo�random permutation
 on each sub�
block separately� �nally� apply a second pair�wise independent permutation on the entire
value you get 	see Figure ��� for an illustration
�
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Figure ���� Construction of a strong pseudo�random permutation on many 	six in this case

blocks from a pseudo�random function on a single block�



	�
� SPPE ON MANY BLOCKS USING PFE OR PPE ON A SINGLE BLOCK ���

This solution resembles the ECB�mode� it is almost as simple and it is highly suitable for
parallel implementation� Contrary to the ECB�mode� this construction does give a pseudo�
random permutation on the entire message 	though the security parameter is still relative
to the length of a sub�block
�

For simplicity� we only describe the construction using truly random functions 	or a truly
random permutation
� The analysis of the construction when pseudo�random functions are
used follows easily� In addition� we restrict our attention to the construction of strong
pseudo�random permutations�

De	nition ����� For any two integers b and s� for any function g � Fs let g�b � Fb�s be
the function de	ned by�

g�b	x�� x�� � � � � xb

def
� 	g	x�
� g	x�
� � � � � g	xb

�

For any f�� f� � Fn and h�� h� � P�nb� de	ne�

S	h�� f�� f�� h�

def
� h��

� 	D�b
f�
	D�b

f�
	 h��

For any p � P�n and h�� h� � P�nb� de	ne�

&S	h�� p� h�

def
� h��

� 	 p�b 	 h��

Theorem ����� Let h�� h� � P�nb be pair�wise independent permutations� let f�� f� � Fn
be random functions and p � P�n a random permutation� De	ne S � S	h�� f�� f�� h�
 and
&S � &S	h�� p� h�
 �as in De	nition ������ and let R � P�nb be a random permutation� Then
for any oracle machine M �not necessarily an e�cient one� that makes at most m queries�

���Pr�MS�S��

	��nb
 � ��
 Pr�MR�R��

	��nb
 � ��
��� 
 m� � b�

�n
�

m�

��nb

and ���Pr�M �S� �S��

	��nb
 � ��
 Pr�MR�R��

	��nb
 � ��
��� 
 m� � b�

��n��
�

The proof of Theorem ����� for S follows the framework described in Section ���� The
set BAD	h�� h�
 	De�nition �����
 is replaced with the set BAD�	h�� h�
 de�ned to be�

The set of all possible and consistent M�transcripts� � � fhx�� y�i� � � � � hxm� ymig�
such that either there are two equal values in fF �j

i g��i�m� ��j�b or there are
two equal values in fL�j��

i g��i�m� ��j�b� where 	F �
i � F

�
i � � � � � F

�b
i 
 � h�	xi
 and

	L�
i � L

�
i � � � � � L

�b
i 
 � h�	yi
 �jF �

i j � jF �
i j � � � � �

���F �b
i

��� � jL�
i j � jL�

i j � � � � ����L�b
i

��� � n��

This guarantees that for any possible and consistent M �transcript � we have that

Pr
S
�TS � � j � �� BAD�	h�� h�
� � ���n�b�m
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	and hence� it is a proper de�nition according to the framework
� The reason is that� under
the notation above�

�i� yi � S	xi
�� �� 
 i 
 m� �� 
 j 
 b� f�	F
�j
i 
 � F �j��

i �L�j��
i and f�	L

�j��
i 
 � F �j

i �L�j
i �

Therefore� given any speci�c choice of h� and h� 	in the de�nition of S
 such that � ��
BAD�	h�� h�
 the event TS � � is composed of �m � b independent events each of which has
probability ��n to happen� In order to apply Theorem ������ it remains to note that for any
such � we have that

Pr
h��h�

�� � BAD�	h�� h�
� 
 � �
�
m � b
�

�
� ��n 
 m� � b�

�n
�

The proof of Theorem ����� for &S slightly deviates from the framework described in
Section ��� 	providing yet another evidence to the claim that �nobody is perfect�
� The set
BAD	h�� h�
 	De�nition �����
 is replaced with the set BAD�	h�� h�
 de�ned to be�

The set of all possible and consistent M�transcripts� � � fhx�� y�i� � � � � hxm� ymig�
such that either there are two equal values in fF j

i g��i�m� ��j�b or there are two
equal values in fLj

ig��i�m� ��j�b� where 	F
�
i � F

�
i � � � � � F

b
i 
 � h�	xi
 and 	L�

i � L
�
i � � � � � L

b
i
 �

h�	yi
 �jF �
i j � jF �

i j � � � � �
���F b

i

��� � jL�
i j � jL�

i j � � � � �
���Lb

i

��� � �n��

Now we have that for any possible and consistent M �transcript ��

Pr
h��h�

�� � BAD�	h�� h�
� 
 � �
�
m � b
�

�
� ���n 


m� � b�
��n

but now for any such ��

Pr
�S
�T �S � � j � �� BAD�	h�� h�
� �

��n�

	��n 
m � b
�
instead of ���n�b�m as �required� by the framework� However� the di
erence in probabilities
is rather small which result in only a minor deviation from the proof of Theorem ������

����� Relaxing the Construction

As in Section ����� we would like to reduce the requirements from h� and h� in Theorem ������
Our main motivation in doing so is to decrease the key�length of the pseudo�random permu�
tations� We would like the key�length to be of order n  the length of the small sub�blocks
and not of order �nb  the length of the complete input 	in some cases we may allow a small
dependence on b
�

We sketch a way to rede�ne the distributions on h� and h� in the de�nition of &S 	almost
the same ideas apply to the de�nition of S
� The requirement these distributions have to obey
is that for any possible and consistentM �transcript � we have that Prh��h��� � BAD�	h�� h�
�
is �small�� We use the following notation� For any �n � b�bit string z � 	z�� z�� � � � � zb
 	such
that �j� jzjj � �n
 and for all � 
 i 
 b� denote by zji the substring zi 	the i

th substring of z
�
The requirement above can be achieved by sampling h� and h� according to a permutation
distribution H such that for some small � � ���n we have that�
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�� For any �n � b�bit string x� �� 
 i 
 j 
 b� Prh�H �h	x
ji � h	x
jj � 
 � and

�� For any �n � b�bit strings x �� x�� �� 
 i� j 
 b� Prh�H �h	x
ji � h	x�
jj � 
 ��

We start by de�ning a permutation distributionH � that almost achieves this� A permutation
h� � h�u��u� sampled from H � is de�ned by two ���AXU� functions� u� � I�n �� I�n and u� �

Idlog be �� I�n 	see de�nition of ��AXU� functions in Section �����
� For any z � 	z�� z�� � � � � zb

	such that �j� jzjj � �n
�

h�u��u�	z

def
� 	z�� u�	zb
� u�	�
� z�� u�	zb
� u�	�
� � � � � zb��� u�	zb
� u�	b
 �
� zb� u�	b

�

It is not hard to verify that�

�� For any �n � b�bit string x� �� 
 i 
 j 
 b� Prh��H� �h�	x
ji � h�	x
jj � 
 �� and

�� For any �n � b�bit strings x �� x� such that xjb �� x�jb and for all � 
 i� j 
 b�
Prh��H� �h�	x
ji � h�	x�
jj � 
 ���

In order to eliminate the additional requirement in 	��
 that xjb �� x�jb � we de�ne the permu�
tation distribution H such that a permutation h sampled from H is de�ned to be h� 	Dg 	see
De�nition �����
� where h� is sampled according to H � and g � I�n�
b��� �� I�n is a ���AXU�

function 	see Figure ��� for an illustration
� Using 	��
 and 	��
 and the fact that for any
�n � b�bit strings x �� x��

Pr
g
�Dg	x
jb � Dg	x

�
jb� 
 ���

we get that H satis�es 	�
 and 	�
 for � � ����
Notice that the computation of a function h � H is essentially equivalent to one compu�

tation of an ��AXU� function� g � I�n�
b��� �� I�n� and a few additional XOR operations per
block� Using e�cient constructions of ��AXU� functions ���� ��� ��� ���� ���� ���� we get an
e�cient function h� Krawczyk ���� shows a construction of m��

���� �AXU� functions from m bits
to � bits with � key�bits� Using these functions we can achieve the desired goal of reducing
the key�length of h to O	n
 bits�

����� Related Work

The construction presented in this section is certainly not the only solution to the problem
at hand� We refer in brief to some additional solutions�

As mentioned above� DES modes of operation were suggested as a way of encrypting
long messages� However� none of these modes constitutes a construction of a pseudo�random
permutation�� Note that when the encryption of a message M is f	M
� for a pseudo�random
permutation f � then the only information that is leaked on M is whether or not M is equal
to a previously encrypted message� This is not true for DES modes of operation� For
instance� when using the cipher block chaining mode 	CBC�mode
� the encryptions of two

�However� as shown by Bellare et� al� ���
� the CBC�mode does de�ne a construction of a pseudo�random
function with small output length� A somewhat related solution to this problem is the so called cascade

construction that is considered by Bellare et� al� ���
�
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Figure ���� The Construction of h � H� Each vi denotes the string u�	i


messages with identical pre�x will also have an identical pre�x� The ECB�mode leaks even
more information  the existence of two identical sub�blocks 	in two di
erent encrypted
messages or in a single message
� The reason that the ECB�mode leaks so much information
is that every ciphertext�block solely depends on a single plaintext�block� Our construction
implies that only very little and �non�cryptographic� di
usion 	the permutations h� and h�

is required in order to overcome this �aw of the ECB�mode�

Bellare and Rogaway ���� show how to convert the CBC�mode in order to construct a
pseudo�random permutation with large input�length 	this is the only place we are aware of
that explicitly refers to the problem
� The amount of work in their construction is compa�
rable with two applications of the original CBC�mode 	approximately twice the work of our
construction� assuming that h� and h� are relatively e�cient
� The security of this construc�
tion is of similar order to the security of our construction� In contrast to our construction�
���� 	as well as ���� ���
 is sequential in nature�

A di
erent approach is to de�ne a length�preserving pseudo�random function #F on #� bits
using a length�preserving pseudo�random function F on � bits 	where � 
 #�
 and then to apply
our version of the LR�Construction using #F in order to get a pseudo�random permutation on
� � #� bits� The function #F can be de�ned to be G 	F 	 h where� h is a pair�wise independent
hash function from #� bits to � bits and G a pseudo�random 	bit
 generator from � bits to
#� bits� This idea may be attributed in part to Carter and Wegman ������ Anderson and
Biham ��� and Lucks ���� show how to directly apply similar ideas into the LR�Construction�
A comparison between this approach and our construction relies on the speci�c parameters
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of the di
erent primitives that are used� In particular� the parameters of the pseudo�random
function F vs� the pseudo�random generator G� For instance� for this approach to be more
e�cient than our construction we need that one application of G would be more e�cient
than d#�	�e applications of F �

Reducing the Distinguishing Probability

All the constructions of a pseudo�random permutation on many blocks from a pseudo�random
function 	or permutation
 on a single block that are described in this subsection 	including
ours
 have the following weakness� If the length of a single block is too small 	e�g�� ���bits
�
then the pseudo�random permutation on many blocks is very weak even when the original
pseudo�random function 	or permutation
 is very secure 	e�g�� completely random
� In the
following few paragraphs we discuss this problem and a way to overcome it�

Consider the permutation S � S	h�� f�� f�� h�
 	as in De�nition �����
� where h�� h� � P�nb

are pair�wise independent permutations and f�� f� � Fn are random functions� Our analysis
of the security of S 	Theorem �����
 fails when the number of queries that the adversary
makes is �	�n��	b
 	in fact this analysis is tight
� Having �n��	b large enough forces a
signi�cant restriction on n� Therefore� a natural question is whether we can improve the
security of the construction� A simple Information�Theoretic argument implies that all
such constructions can be distinguished from random using O	�n	b
 queries� This follows
from the fact that with O	�n	b
 queries the adversary gets much more bits than the length
of the permutation�s secret�key� Hence� the distribution of the answers to these queries is
statistically very di
erent from uniform 	which allows an all�powerful adversary to distinguish
the permutation from random
�

In order to match this bound we �rst note that the somewhat high distinguishing prob�
ability of S is due to its vulnerability to a birthday�attack on the length of a single block�
An adversary that makes �	�n��	b
 uniformly chosen queries to S will force a collision in the
inputs to f� 	or f�
 with a constant probability� Such a collision foils our analysis 	and can
indeed be used to distinguish S from uniform
� The solution lies in the following observation�
The problem of foiling birthday�attacks when constructing a pseudo�random permutation on
many blocks can be reduced to the problem of foiling birthday�attacks when constructing
a pseudo�random function 	or permutation
 on two blocks� We demonstrate this using the
Aiello and Venkatesan ��� construction of pseudo�random functions�

Let #f� and #f� be two independent copies of the pseudo�random functions on �n bits we get
when using truly random functions on n bits in the construction of Aiello and Venkatesan� By
��� distinguishing each #fi from a truly random function 	with constant probability
 requires
�	�n
 queries� Let h� and h� � P�nb be pair�wise independent permutations and let the
permutation #S � S	h�� #f�� #f�� h�
 be as in Theorem ����� 	for the parameters n� � �n and
b� � b	�
� We now get that distinguishing #S from random 	with constant probability

requires O	�n	b
 queries which is optimal�
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�� Constructions of k�Wise ��Dependent Permutations

In this section� we summarize the connection between the various constructions of this
chapter and the task of obtaining k�wise ��dependent permutations� As mentioned in Sec�
tion ������ Schnorr ����� suggested using the LR�Construction with truly random functions
in order to get a pseudo�random generator that is secure as long as not too many bits of its
output are accessible to the adversary� This idea is further treated by Maurer and Massey
����� Maurer ���� suggested to replace the truly random functions with what he calls locally
random 	or almost random
 functions� In the terminology of k�wise independence these
ideas can be interpreted as a way of using the LR�Construction in order to obtain k�wise
��dependent permutations from k�wise ���dependent functions 	as long as k is not too large
�
Theorem � in ���� implies that

when k�wise ���dependent functions are used instead of pseudo�random functions
in the LR�Construction the result is a k�wise ��dependent permutations for � �
O	k�	�n � ��
�

Similar observations apply to the di
erent constructions of this chapter as discussed in this
section�

Corollary ����� �to Theorem ��
�
� Let h�� h� � P�n be pair�wise independent permutations
and let f�� f� � Fn be k�wise ���dependent functions� Then S � S	h�� f�� f�� h�
 �as in
De	nition ��
��� is a k�wise ��dependent permutation for

�
def
�

k�

�n
�

k�

��n
� ����

Proof� Let S�� S� � P�n have the following distributions�

� S� � S	h�� g�� f�� h�
� where h�� h� � P�n are pair�wise independent� f� � Fn a k�wise
���dependent function and g� � Fn a truly random function�

� S� � S	h�� g�� g�� h�
� where h�� h� � P�n are pair�wise independent and g�� g� � Fn are
truly random functions�

and let R � P�n be a truly random permutation� It is enough to show that for every k strings
of �n�bits� x�� x�� � � � � xk� we have�

�� k hS	x�
� S	x�
� � � � � S	xk
i 
 hS�	x�
� S�	x�
� � � � � S�	xk
i k 
 ��

�� k hS�	x�
� S�	x�
� � � � � S�	xk
i 
 hS�	x�
� S�	x�
� � � � � S�	xk
i k 
 ��

�� k hS�	x�
� S�	x�
� � � � � S�	xk
i 
 hR	x�
� R	x�
� � � � � R	xk
i k 
 k�

�n
� k�

��n

The reason 	�
 holds is that if we de�ne an oracle machine M such that its ith query is
always 	�� xi
 and such that

CM	fhx�� y�i� hx�� y�i� � � � � hxk� ykig
 � �

�� Pr�hS�	x�
� � � � � S�	xk
i � hy�� � � � � yki� 
 Pr�hR	x�
� � � � � R	xk
i � hy�� � � � � yki��
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we get by the de�nition of variation distance and from Theorem ����� that

k hS�	x�
� S�	x�
� � � � � S�	xk
i 
 hR	x�
� R	x�
� � � � � R	xk
i k
�

���Pr�MS��S
��
� 	��n
 � ��
 Pr�MR�R��

	��n
 � ��
���


 k�

�n
�

k�

��n
�

	�
 and 	�
 hold by the de�nition of k�wise ���dependent functions� For example� if

k hS	x�
� S	x�
� � � � � S	xk
i 
 hS�	x�
� S�	x�
� � � � � S�	xk
i k � ���

then we can �x h�� h� � P�n and f� � Fn in the de�nition of both S and S� such that
the inequality still holds� This de�nes k strings of n�bits� z�� z�� � � � � zk� 	not necessarily all
di
erent
 and a function V for which�

hS	x�
� S	x�
� � � � � S	xk
i � V 	hf�	z�
� f�	z�
� � � � � f�	zk
i
 and
hS�	x�
� S�	x�
� � � � � S�	xk
i � V 	hg�	z�
� g�	z�
� � � � � g�	zk
i
�

We get a contradiction since for any function V �

kV 	hf�	z�
� f�	z�
� � � � � f�	zk
i

 V 	hg�	z�
� g�	z�
� � � � � g�	zk
i
k

 khf�	z�
� f�	z�
� � � � � f�	zk
i 
 hg�	z�
� g�	z�
� � � � � g�	zk
ik

 ���

�

In a similar way we get the following two Corollaries from the constructions of Sec�
tions ��� ( ����

Corollary ����� �to Theorem ����
� Let S be as in De	nition ����
� where h� and h�
are pair�wise independent permutations and f�� f�� � � � � ft are k�wise �

��dependent functions�
Then S is a k�wise ��dependent permutation for

�
def
�

t

�
� k�

���d��te
�
k�

��
� t � ���

Corollary ����� �to Theorem ������ Let h�� h� � P�nb be pair�wise independent permuta�
tions� let f�� f� � Fn be b � k�wise ���dependent functions and let p � P�n be a b � k�wise
���dependent permutation� De	ne S � S	h�� f�� f�� h�
 and &S � &S	h�� p� h�
 �as in De	ni�
tion ������� Then S is a k�wise ��dependent permutation for

�
def
�

k� � b�
�n

�
k�

��nb
� ���

and &S is a k�wise &��dependent permutation for

&�
def
�

k� � b�
��n��

� ���
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By taking t � � in Corollary ����� we get a simple construction of a k�wise ��dependent

permutation on � bits for � as close to 
�����k�

��
as we wish� This construction requires �

applications of k�wise ���dependent functions from �
 � bits to a single bit� An interesting
question is to �nd a simple construction of k�wise ��dependent permutations for an arbitrarily
small � and an arbitrary k�

An �old� proposal by Moni Naor 	see ����� page ���
 is to apply a card shu+ing procedure
that requires only few rounds and is oblivious in the sense that the location of a card after
each round depends on a few random decisions� The speci�c card shu+ing for which this
idea is described in ����� was suggested by Aldous and Diaconis ���� Unfortunately� to the
best of our knowledge� this procedure was never proven to give 	with few rounds
 an almost
uniform ordering of the cards� Nevertheless� we brie�y describe it in order to demonstrate
the concept of an oblivious card shu+ing and the way that such a procedure can be used
to construct a k�wise ��dependent permutation� Finally we describe the main idea in the
de�nition of another oblivious card shu+ing for which we can prove that only few rounds
are needed�

Each round 	shu+e
 in a card shu+ing procedure is a permutation on the locations of

the N cards of a deck 	i�e�� a permutation on the set �N �
def
� f�� �� � � � � Ng
� In the case of

the Aldous and Diaconis ��� card shu+ing each such permutation is de�ned by a uniformly
chosen N	��bit string� r � r�r� � � � rN��� Denote this permutation by ,r then�

�� 
 i 
 N	��

�
,r	i
 � �i
 � ( ,r	i�N	�
 � �i if ri � �
,r	i
 � �i ( ,r	i �N	�
 � �i
 � otherwise

That is� the cards at locations i and i�N	� move to locations �i
� and �i and their internal
order is uniformly�chosen independently of all other choices� Note that �x� evaluating ,r	x

or ,��

r 	x
 requires the knowledge of a single bit of r and therefore this card shu+ing is
indeed oblivious�

Consider s rounds of the card shu+ing described above� ,s � ,r��


�rs
def
� ,rs 	,rs�� 	 � � �	

,r� � where fr�� � � � � rsg are uniformly�distributed and independent of each other� If ,s is of
statistical distance at most �� from a uniform permutation then we can construct a k�wise
��dependent permutation� #,s� for � � �� � ��� as follows� simply take the permutation #,s

to be s rounds ,rs 	 ,rs�� 	 � � � 	 ,r� where the s � N	� bits of fr�� � � � � rsg are the outputs
of a 	k � s
�wise ����dependent Binary�function� f � Evaluating #,s 	or its inverse
 at a given
point consists of s invocations of f � Therefore� an interesting problem is to show that ,s is
of exponentially�small statistical distance from a uniform permutation for a small value of s�
In ��� it is conjectured that this can be shown for s � O	log�N
� While this conjecture is�
to the best of our knowledge� still open we can show a di
erent card shu+ing procedure for
which it can be proven that O		log�N
 rounds are su�cient� This card shu+ing is de�ned
in a recursive manner� Split the deck into two halves 	locations f�� � � � � N	�g and locations
fN	�� � � � � Ng
� apply the card shu+ing 	recursively
 on each half of the deck and merge the
two 	now shu+ed
 halves in an almost uniform way� A permutation� M � on �N � is a merge
if for every i and j such that � 
 i 
 j 
 N	� or N	� � � 
 i 
 j 
 N we have that
M	i
 
 M	j
� An oblivious 	in the same meaning as above
 merging procedure can also be
de�ned recursively but since the construction is rather cumbersome we omit its description�
This direction may become attractive given an e�cient and simple merging procedure�
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A di
erent direction to solving the problem of constructing k�wise ��dependent permu�
tations is to try and generalize the algebraic construction of pair�wise independent permu�
tations� Leonard Schulman 	private communication
 suggested such a generalization that
yields ��wise independent permutations� His suggestion is to use sharply ��transitive per�
mutation groups� A permutation group over the set �n� � f�� �� � � � � ng is a subgroup of
the symmetric group Sn� A permutation group G over �n� is k�transitive if for every two
k�tuples fa�� � � � � akg and fb�� � � � � bkg of distinct elements of �n� there exist a permutation
� � G such that �� 
 i 
 k� �	ai
 � bi� A permutation group G over �n� is sharply k�
transitive if for every two such tuples there exists exactly one permutation � � G such that
�� 
 i 
 k� �	ai
 � bi� A sharply k�transitive permutation group is in particular k�wise in�
dependent and indeed the algebraic construction of pair�wise independent permutations use
a sharply ��transitive permutation group 	containing all the linear permutations
� Schulman
suggested to use the fact that there are known constructions of sharply ��transitive permu�
tation groups� However� this approach cannot be generalized to larger values of k� from
the classi�cation of �nite simple groups it follows that for k � � there are no k�transitive
groups over �n� other than the symmetric group Sn and the alternating group An and there
are only few such groups for k � � and k � � 	see ���� ����
� One should be careful not
to interpret this as implying that for k � � there are no e�cient algebraic constructions of
k�wise independent permutations� It is however justi�ed to deduce that for k � � any small
family of k�wise independent permutations is not a permutation group 	i�e� is not closed
under composition and inverse
�


�
 Conclusion and Further Work

The constructions described in Sections ��� ( ��� are optimal in their cryptographic work in
the sense that the total number of bits on which the cryptographic functions are applied on
is exactly the number of bits in the input� Therefore� it seems that in order to achieve the
goal of constructing e�cient block�ciphers it is su�cient to concentrate on the construction
of e�cient pseudo�random functions� The depth of the constructions� on the other hand�
is twice the depth of the cryptographic functions� It is an interesting question whether
there can be a construction of similar depth� The goal of reducing the depth is even more
signi�cant in the case of the t� ��round construction in Section ���� A di
erent question is
�nding a simple construction of k�wise ��dependent permutations for an arbitrarily small �
and an arbitrary k� This question is discussed in Section ����
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