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Abstract

This thesis considers the following question: In large-scale systems involving many

self-interested participants, how can we effectively allocate scarce resources among

competing interests despite strategic behavior by the participants, as well as the lim-

ited computational power of the system? Work at the interface between computer

science and economics has revealed a fundamental tension between the economic ob-

jective, that of achieving the goals of the system designer despite strategic behavior,

and the computational objective, that of implementing aspects of the system effi-

ciently. In particular, this tension has been most apparent in systems that allocate

resources deterministically.

The realization that careful use of randomization can reconcile economic and com-

putational goals is the starting point for this thesis. Our contributions are twofold:

(1) We design randomized mechanisms for several fundamental problems of resource

allocation; our mechanisms perform well even in the presence of strategic behavior,

and can be implemented efficiently. (2) En route to our results, we develop new

and flexible techniques for exploiting the power of randomization in the design of

computationally-efficient mechanisms for resource allocation in strategic settings.
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Chapter 1

Introduction

1.1 This Thesis in a Nutshell

This thesis considers a fundamental question at the interface between computer sci-

ence and economics: In large-scale systems involving many self-interested partici-

pants, how can we effectively allocate scarce resources among competing interests

despite strategic behavior by the participants, as well as the limited computational

power of the system? This is the mission of algorithmic mechanism design, a field

born of a collision between strategic behavior in economic environments on one hand,

and the realities of computational intractability in large systems on the other.

Variants of this basic question are increasingly encountered in many different con-

texts: governments the world over are faced with the task of dividing the electromag-

netic spectrum among competing telecommunications companies so as to maximize

utilization of the spectrum; Internet Service Providers seek to divide limited band-

width among their end users in order to maximize customer satisfaction; and content

distribution companies must build overlay networks that are limited in size and yet

adequately serve the distribution needs of their customers. In these examples, among

others, a central agency must decide how to allocate resources among competing uses

in order to achieve a stated global objective. This is complicated by the fact that

many self-interested participants have a stake in the outcome, and moreover the set

of possible allocations of resources can be complex and intractable to explore.

2



CHAPTER 1. INTRODUCTION 3

We distill two main challenges facing the designer of a system for allocating re-

sources: one economic in nature, and the other computational. The economic chal-

lenge arises in situations where arriving at a “good” allocation of resources — usually

defined as one that serves the interests of the participants in some aggregate sense —

requires some cooperation from the participants in the system; say, through honestly

reporting how “desirable” the participant finds each allocation. Unless a participant

is properly incentivized, for example via the promise of a desirable allocation for the

participant, a monetary payment, or more commonly a combination of the two, he

will manipulate the system for his best-interest at the expense of the whole through

misreporting this privately held information. On the other hand, the computational

challenge is due to the realities of computational complexity; even if participants

truthfully revealed their private information with no strings attached, adequately

processing this information and aggregating it into the “best” global allocation of re-

sources can be a computationally daunting task. In fact, adopting polynomial time1

as the standard for computational efficiency, and assuming widely-held complexity-

theoretic conjectures such as P 6= NP , efficient computation of the best global allo-

cation of resources is provably impossible in many contexts.

Both challenges have been extensively studied in isolation. The economic field

of mechanism design is concerned with designing protocols, known as mechanisms,

whereby a central agency, which we refer to as the principal, communicates with other

participants in the system, referred to as the players, and decides on an allocation

of resources and a monetary payment from each player. We desire mechanisms that

are incentive compatible, in that self-interested behavior by the players in the mech-

anism yields a globally desirable allocation of resources.2 On the other hand, com-

puter scientists have designed approximation algorithms. Given the correct private

data of various players, these polynomial-time algorithms circumvent intractability by

1An algorithm runs in polynomial time if it terminates after a number of steps that is bounded
by a polynomial in the length of its input. This is the standard notion of computational efficiency,
and is defined formally in Chapter 2.

2This thesis designs mechanisms that satisfy a strong notion of incentive compatibility: each
participant maximizes his expected payoff by truthfully reporting his private information to the
mechanism, regardless of the actions of other participants. These mechanisms are called truthful in
expectation, and are defined formally in Chapter 2.
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computing near-optimal allocations of resources, rather than insisting on the “best”

allocation. Both mechanism design and approximation algorithms have spawned a

rich theory in the latter part of the twentieth century, with general and robust tech-

niques that enable the design of useful mechanisms and approximation algorithms,

respectively, for many central problems of resource allocation.

The fields of mechanism design and approximation algorithms collided at the turn

of the century when researchers observed that, for many resource allocation problems

encountered in theory and practice, standard approximation algorithms can not be

used as part of a mechanism that performs well in the presence of strategic behavior,

and standard economic mechanisms can not be implemented in polynomial time.

This realization precipitated the birth of algorithmic mechanism design, the central

question of which can be stated as follows:

To what extent is incentive-compatible and polynomial-time computation

less powerful — in terms of approximating fundamental resource allocation

problems — than “classical” polynomial-time computation?

In the decade that followed, a large body of work has piled on evidence of a

fundamental tension between the economic goal of incentive compatibility and the

computational goal of polynomial time. This evidence manifested in the form of

impossibility results for specific resource allocation problems, the strongest of which

can be paraphrased as follows: despite the existence of both an incentive-compatible

mechanism and a polynomial-time algorithm that each compute a near-optimal al-

location of resources, an incentive-compatible and polynomial-time mechanism must

output an allocation that is far from optimal on some inputs. While these impossibil-

ity results lend support to the thesis that incentive compatibility and polynomial-time

computation are at loggerheads, almost all of them are constrained to deterministic

mechanisms.

The realization that careful use of randomization can reconcile economic and com-

putational goals is the starting point for this thesis. Our contributions are twofold:

(1) We design randomized mechanisms for a variety of fundamental resource allo-

cation problems that are incentive compatible, run in polynomial time, and match
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the approximation guarantee of the best (non-incentive-compatible) polynomial-time

algorithm. Our approximation guarantees are the best possible, given standard

complexity-theoretic assumptions such as P 6= NP . Moreover, for most problems

we consider, we improve on the best previously-known approximation guarantee of

an incentive-compatible and polynomial-time mechanism by a constant or super-

constant factor. (2) En route to our results, we develop new techniques for effectively

using randomization to combine incentive compatibility and computational efficiency.

Each of our techniques is applied to different resource allocation problems, and holds

promise for even more general application. Moreover, one of our techniques yields

computationally-efficient and incentive-compatible mechanisms that obtain the best-

possible approximation guarantee for a large and natural class of problems that is

abstractly defined.

Road map. The remainder of this introduction is organized as follows. First, Sec-

tion 1.2 presents three concrete problems that illustrate the economic and compu-

tational challenges in resource allocation, and motivate the considerations of this

thesis. These examples will serve as footholds during this introduction, and we refer-

ence them throughout to make our discussion more accessible. Section 1.3 informally

presents our model and design goals, and introduces relevant terminology to facilitate

our discussion. Section 1.4 describes, at a high level, the tension between incentive

compatibility and computational efficiency, and Section 1.5 presents our intuition as

to how randomization alleviates this tension. Section 1.6 informally describes our

contributions, and Section 1.7 discusses related work. Finally, Section 1.8 gives some

tips for reading the remainder of this thesis, and Section 1.9 closes this introduction

with some bibliographic notes.

1.2 Three Illustrative Examples

To motivate the questions considered in this thesis, as well as to illustrate some of the

basic concepts, we present three natural resource allocation problems, and examine

each from both the economic and computational perspectives. The first, the problem
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of allocating a single item, illustrates the essential principles of mechanism design, yet

is computationally uninteresting. The second and third examples, combinatorial allo-

cation and knapsack allocation, are representative of the complex resource allocation

problems treated in this thesis.

1.2.1 Single Item Allocation

Consider a principal interested in auctioning a single item. He is approached by

several potential buyers, the players. Each player has a certain value for the item,

measured in monetary units. We consider a principal who wishes to maximize social

welfare – the total value created in society – by awarding the item to the player who

values it most.

If players’ values for the item were known to the principal, his task would be

simple. In reality, however, the difficulty is twofold: First, a player’s value for the

item is a function of his private circumstances and preferences, which are typically

unknown to the principal. Second, players may misrepresent their values strategically

if asked to provide information, particularly if they anticipate that doing so increases

their likelihood of obtaining the item. This presents an informational constraint: how

should a principal simultaneously learn the the players’ values and at the same time

use this information in his decision?

This question was explored by Vickrey [85], who described the following auction:

solicit a bid from each player, then give the item to the highest bidder, and finally

charge the winner of the auction a payment equal to the second highest bid. This

familiar protocol, known commonly as the Vickrey auction or the second-price auc-

tion, is similar in essence to auctions employed on eBay, and emulates in one step the

“open outcry” English auction.

Presumably, a player prefers to win the auction so long as his payment is less

than his value for the item, and otherwise he prefers to lose. Under this natural

assumption, the Vickrey auction, through its careful choice of payments, is incentive

compatible in the following strong sense: a player can never gain by reporting a bid

different from his true value, regardless of the actions of other players. This is evident
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by a simple case analysis: Consider a player with value v for the item, and let p denote

the maximum bid of all other players. Observe that the player wins the item at price

p if he bids more than p, and loses and pays nothing if he bids less than p. If p < v,

the player prefers the former outcome, and if p > v he prefers the latter. In both

cases, bidding his true value v realizes his preferred outcome.3

Because of incentive compatibility, “rational” players bid their values when faced

with the Vickrey auction, and the item is awarded to the player who values it most.

The Vickrey auction is an incentive-compatible and welfare-maximizing mechanism

for the problem of allocating a single item. The same cannot be said of the first-price

auction, which charges the highest bidder his own bid. Specifically, the winning player

in the first-price auction frequently has incentive to “shade” his bid below his true

value. The insights behind the Vickrey auction laid the foundations for mechanism

design theory.

1.2.2 Combinatorial Allocation with Coverage Valuations

Definition

In practical settings more complex than single-item allocation, a principal has mul-

tiple items for sale. Since some items act as substitutes to each other, while others

complement each other, a potential buyer’s value must be described as a function of

the package of items he receives. Auctions that assign items while taking into account

such dependencies are known as Combinatorial Auctions. Such auctions are at the

center of much of modern mechanism design theory, and they have been applied or

considered in many contexts, such radio spectrum allocation, scheduling take-off and

landing slots at airports, bandwidth allocation, and more. Due to the abstract nature

of the general combinatorial allocation problem, which is described in Chapter 5, we

present in this section a concrete special case.

In our example the principal is a government body that is tasked with divid-

ing broadcasting rights for the radio spectrum among competing telecommunications

3This analysis easily extends to scenarios where p = v, because the player is indifferent between
winning and losing in that case.
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companies, the players. These rights are presented as licenses, the items in our ex-

ample, where each license gives its owner the right to broadcast at a particular range

of frequencies in a particular geographic region. The government must allocate the

licenses among the players, a task commonly accomplished by employing a specialized

auction. The players compete for these licenses, with the goal of generating revenue

through providing broadcast services — such as, say, mobile telephone service —

to potential customers. The potential revenue of player depends of the package of

licenses it receives, and we refer to it as the player’s value for that package. We

consider a government interested in maximizing social welfare, defined as the total

value of the players for the licenses they receive.

We simplify our problem further. We assume that the map from packages of

licenses to a player’s value, commonly referred to as the player’s valuation function,

is of a particular form that is illustrated in Figure 1.1. Specifically, a player associates

each license with a set of potential customers: those living in the license’s geographical

region, capable of “listening” on the associated frequencies, and interested in the

player’s services. Moreover, the player associates a monetary amount with each such

potential customer — or, more realistically, with a demographic group — measuring

anticipated revenue. Naturally, a player’s value for a package of licenses is the sum,

over all customers “covered” by these licenses, of the customer’s associated revenue.

We call valuations of the form just described coverage valuations. We note that a

customer may be covered by multiple licenses4, and therefore the marginal value to

a player of adding an additional license to his package decreases as his package of

licenses grows.

Incentives

The set of customers that a player may service with a particular license, as well as

the anticipated associated revenue, depends on factors specific to the player, such

as their technical capabilities and position in the market. It is therefore natural to

presume that the description of a player’s valuation function — a “coverage pattern”

4Consider, for example, a potential customer with a multi-band phone, capable of receiving phone
service on multiple frequency bands.
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Figure 1.1: A coverage valuation with two licenses.
Each license is depicted as a radio tower. The player’s value for the license on the
left alone is $150. His value for the license on the right alone is $130. His value for

the package of both licenses is $230.

as in Figure 1.1 — is private to the player. Moreover, we assume that a player

behaves strategically in any mechanism in order to maximize his utility, defined nat-

urally as his value for the set of licenses he receives less any monetary payment he is

charged. This is the source of the economic challenge: A protocol for computing a

welfare-maximizing allocation of the licenses must learn each player’s private valua-

tion function, whereas a self-interested player would misreport his valuation function

if doing so improves his utility.

In the absence of computational limitations, classic work in mechanism design

theory shows the existence of an incentive-compatible mechanism that computes a

welfare-maximizing allocation of licenses. This mechanism is a generalization of the

Vickrey Auction (Section 1.2.1) due to Clarke [21] and Groves [46], and is thus known

as the Vickrey-Clarke-Groves (VCG) mechanism. The VCG mechanism solicits play-

ers’ valuation functions, then finds a welfare-maximizing partition of the licenses

among the players based on the reported valuations, and finally charges each player
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carefully crafted payments. Concretely, each player i’s payment in VCG is his ex-

ternality, defined as the increase in the welfare of players other than i, based on

their reported valuations, in the hypothetical scenario where player i leaves the auc-

tion and welfare is maximized for all remaining players. These payments essentially

“internalize the externality”, effectively “aligning” a player’s goal of maximizing his

utility with the principal’s goal of maximizing the social welfare. This leads to incen-

tive compatibility. The VCG mechanism applies in settings much more general than

combinatorial allocation, and is described more formally in Chapter 3.

Computation

We can isolate computational properties of our special case of the combinatorial al-

location problem by assuming that each player’s true valuation function is presented

up-front, as a coverage pattern as in Figure 1.1. We consider an algorithm for com-

puting an allocation computationally efficient if it runs in time polynomial in the

number of bits used to represent the players’ valuation functions.

It is known that there is no polynomial-time algorithm that always outputs a

welfare-maximizing allocation of licenses unless P = NP . In other words, the prob-

lem of welfare maximization in combinatorial allocation with coverage valuations is

NP-hard. Computer scientists have traditionally coped with intractability by design-

ing efficient approximation algorithms. The best known polynomial-time approxi-

mation algorithm for the combinatorial allocation problem with coverage valuations

guarantees 63% of the maximum possible social welfare [87], and no polynomial-time

algorithm provides a superior approximation guarantee unless P = NP [54].

We remark that restricting our discussion to coverage valuations was in-part mo-

tivated by their computational properties. Combinatorial allocation with coverage

valuations admits “useful” polynomial-time algorithms, in particular ones that guar-

antee a constant fraction of the maximum social welfare possible, independent of

the number of players or the number of items. Whereas other classes of restricted

valuations share this desirable property, the same cannot be said for unrestricted

valuations.
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1.2.3 Knapsack Allocation

Definition

Our next example is a strategic variant of the classical knapsack problem. Consider a

principal tasked with implementing some subset of a collection of potential projects.

Each project is associated with a cost, and the principal is constrained by a known

budget. We say a set of projects is feasible if its total cost does not exceed the

budget. There are several players who derive utility from projects to various extents.

Specifically, each player associates a value with each project, and a player’s value for a

set of projects is defined as the sum over his values for the individual projects in that

set. The goal of the principal is to implement a feasible set of projects maximizing

the welfare of the players, defined as the sum of their values for the implemented set

of projects.

Variants of this problem occur naturally in many contexts. In one variant, the

principal is a government or municipality, the projects a set of government programs,

and the players representatives of various constituencies with divergent priorities re-

garding how public resources are used. Another example appears regularly in online

display advertising. Here, the principal is the content provider, and the players are

interested advertisers. Each advertiser comes with a set of online banners of various

sizes, and the budget is the total advertising space available on the content provider’s

homepage. In these examples, among others, it is natural to assume that costs of the

projects and the principal’s budget are publicly known, and we make this assumption

here. We explore the knapsack allocation problem more formally in Chapter 8.

Incentives

We make similar assumptions to those made in Section 1.2.2. Specifically, it is natural

to assume that a player’s value for a project is private, and moreover the player acts to

maximize his utility in any mechanism, defined as his value for the set of implemented

projects less any payment he makes.

As in Section 1.2.2, the principal may apply the Vickrey-Clarke-Groves mechanism

to this problem. Concretely, VCG asks each player to report his value for each
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potential project, then computes the feasible set of projects maximizing the welfare

of the players, and finally charges each player his externality. The VCG mechanism

is incentive compatible in this context as well: players maximize their utility by

reporting their true values to the mechanism.

Computation

In the absence of incentive considerations, this problem is simply the classic knapsack

problem, studied extensively in computer science and operations research. It is known

that the knapsack problem is NP-hard. Fortunately, however, it admits what can be

thought of as the best possible approximation algorithm for an NP-hard problem, a

Fully Polynomial Time Approximation Scheme (FPTAS). An FPTAS for the knap-

sack problem is an algorithm that takes as input the costs, budget, and (true) values,

as well as a parameter ǫ, executes in time polynomial in the length of the description

of the input and 1
ǫ
, and outputs a feasible set of projects with welfare at least a (1−ǫ)

fraction of the best possible subject to feasibility.

1.3 Informal Preliminaries

We now informally define our model and introduce some relevant terminology, ref-

erencing the examples of Section 1.2 for concreteness. Concepts presented in this

section are treated more formally in Chapters 2 and 3.

1.3.1 Mechanism Design Optimization Problems

A mechanism design problem is given by a set of possible allocations, also known

as outcomes or feasible solutions, and a set of players, each equipped with a private

valuation function from allocations to real numbers. A valuation function maps an

allocation to the player’s value for it, measured in monetary units. In the single

item allocation problem with n players, the allocations correspond to the n possible

choices of a player to whom the item is awarded,5 and the valuation function of player

5Frequently, the allocation where no player receives the item is also considered feasible.
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i, described by a single real number vi, maps the allocation where player i receives

the item to vi, and other allocations to 0.

We consider mechanism design problems equipped with an objective function: a

function that measures the “quality” of an allocation. Many objective functions are

possible, and most natural ones aggregate the preferences of players (and/or the prin-

cipal) in some way. The objective we consider in most of this thesis is social welfare:

the sum of the players’ values for the allocation. The problems in Section 1.2 were all

posed with a welfare objective, though variants of these problems with other objec-

tives have also been studied. We consider some non-welfare objectives in Chapter 10.

Finally, we distinguish mechanism design problems where player valuations are

described by a single private parameter, known as single-parameter problems, from

multi-parameter problems. We defer formal definition of this distinction to Chap-

ter 10. For concreteness, however, we mention that the single-item allocation prob-

lem is single parameter, because each player’s value for the item is a single real

number, whereas the combinatorial allocation problem is multi-parameter because

a player’s valuation is described by a different real number for each package of the

items. This distinction is important because incentive compatibility is typically much

more permissive for single-parameter problems than it is for their multi-parameter

counterparts, which enables better positive results in some contexts.

1.3.2 Mechanisms

We design direct-revelation mechanisms for mechanism design problems. These pro-

tocols consist of three steps: (1) Solicit a report from each player that describes their

valuation function, then (2) use the reports to decide on an allocation, and finally

(3) charge each player a monetary payment. The map of step (2) from reports to

an allocation is called the allocation rule of the mechanism, and the map of step (3)

from reports to payments is called the payment rule.

Our goal is to design mechanisms that satisfy three properties: (a) a self-interested

player who strategically chooses his report in step (1) — in anticipation of the actions

of the mechanism in steps (2) and (3) — reports his valuation truthfully; (b) can



CHAPTER 1. INTRODUCTION 14

be implemented efficiently, i.e., in polynomial time; and (c) when players report

truthfully, the resulting allocation is approximately optimal, as measured by the

objective function. Requirement (a) is called incentive compatibility, and we adopt

a particularly strong form of this requirement which we describe in Section 1.3.3.

Requirement (c) is parametrized by a desired approximation ratio α, and requires

that the objective function value for the output allocation be at least a factor α of

its maximum over all allocations.6

We note that the Vickrey auction of Section 1.2.1 for the single-item allocation

problem satisfies all three conditions, with an approximation ratio of 1 for the so-

cial welfare objective. In contrast, the instantiation of the Vickrey-Clarke-Groves

(VCG) mechanism for combinatorial allocation problem described in Section 1.2.2

satisfies requirements (a) and (c) with an approximation ratio of 1, but does not

satisfy (b), implementation in polynomial time, assuming P 6= NP . This is because

VCG’s allocation rule requires computation of the welfare-maximizing allocation of

items, which, as explained in Section 1.2.2, is NP-hard even when players report their

coverage valuations truthfully.

1.3.3 Incentive Compatibility

In this thesis, we design randomized mechanisms that satisfy a strong form of incentive

compatibility, which we refer to as truthfulness in expectation. Before describing

truthful in expectation mechanisms, we define a player’s utility from an execution of

a mechanism to be his value for the computed allocation (as given by the player’s

valuation function) less his payment. In the Vickrey auction, for example, the winning

player’s utility is his value for the item less the second highest bid, and the utility

of losing bidders is zero. A randomized mechanism is truthful in expectation if each

player maximizes his expected utility by bidding his true valuation function, regardless

6In some discussions it is notationally convenient to refer to the inverse of this ratio, a number
greater than 1. Therefore, as is traditional in the approximation algorithms literature, we refer to
both α and 1/α as the approximation ratio, and make our intention clear in context.
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of the bids of others.7 Randomized mechanisms that satisfy this condition for each

flip of their coins, rather than just in expectation, are called universally truthful, and

deterministic mechanisms that satisfy this condition are simply called truthful. The

Vickrey auction, as well as the more general VCG mechanism, satisfy this property

as discussed in Section 1.2.

1.3.4 Welfare Maximization and VCG

Much of this thesis, with the exception of Chapter 10, is concerned with mechanism

design problems where the objective is to maximize social welfare. Welfare maximiza-

tion problems are central to the study of resource allocation in strategic settings, in

part due to the large body of natural problems they represent; we elaborate on their

significance in Chapter 3.

Welfare maximization problems are particularly attractive to study from a compu-

tational point of view because the economic challenge, as posed in this introduction,

has been solved for these problems: The Vickrey-Clarke-Groves (VCG) mechanism,

described in the special cases of single-item allocation, combinatorial allocation, and

knapsack allocation in Section 1.2, can be phrased generally for an abstract mecha-

nism design problem, and is a deterministic truthful mechanism that maximizes social

welfare. This leaves computation as the binding constraint, exposing in the process

the conflict between economic and computational considerations.

Unfortunately, the VCG mechanism can not be implemented in polynomial time

for many problems, particularly because it requires computation of the optimal allo-

cation. Nevertheless, as we discuss in the rest of this thesis, variants of this mecha-

nism where the set of allocations is “trimmed” to a smaller set, in particular before

valuations are solicited from the players, allow the design of many approximation

mechanisms for welfare maximization.

7Assuming our utility model, truthful-in-expectation mechanisms are better known in the mi-
croeconomics literature as dominant-strategy incentive-compatible. See Section 2.6 for a discussion.
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1.4 Incentive Compatibility and Tractability

As discussed for Combinatorial allocation and Knapsack allocation, many resource

allocation problems are known to admit an optimal incentive-compatible mechanism

as well as a near-optimal polynomial-time algorithm. However, in most interesting

cases the former runs in exponential time, and it is not known how to use the latter as

part of an incentive-compatible mechanism. This motivates the central consideration

of this thesis: the design of “good” approximation mechanisms for resource allocation.

These mechanisms should be incentive compatible, should run in polynomial time, and

should provide an approximation guarantee near to that of the best (non-incentive-

compatible) polynomial-time algorithm for the resource allocation problem at hand.

For combinatorial allocation with coverage valuations (Section 1.2.2), for instance,

the best we can hope for is an incentive-compatible, polynomial-time mechanism that

always outputs an allocation with welfare at least 63% of the maximum possible. For

knapsack allocation (Section 1.2.3), this would be an incentive-compatible mechanism

that is an FPTAS.

1.4.1 A Naive Approach

Recall from Section 1.3.4 that the Vickrey-Clarke-Groves mechanism is incentive com-

patible and maximizes welfare, and yet cannot be implemented in polynomial time

for problems such as combinatorial allocation and knapsack allocation, among others.

This is precisely because VCG insists on the welfare-maximizing allocation, requiring

the solution of an NP-hard optimization problem.

This motivates the following approach: Consider “plugging in” a polynomial-time

approximation algorithm for welfare maximization — say, one of those mentioned in

Section 1.2 — into VCG, in place of the welfare-maximizing allocation rule used in

the standard definition of the mechanism. The resulting adaptation of VCG runs in

polynomial time, and moreover its approximation guarantee is no worse than that

provided by the approximation algorithm. Unfortunately, it was shown by Nisan and

Ronen [71] that this naive approach destroys incentive compatibility for all but a very

special class of approximation algorithms (discussed in Chapter 3). This failure is a
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consequence of the intricate relationship between the payments charged by the VCG

mechanism and the players’ values for the optimal allocation; this relationship breaks

down for most “classical” approximation algorithms in the literature.

1.4.2 Tension

The failure of the naive approach of Section 1.4.1 is emblematic of an underlying

tension between incentive compatibility and computational efficiency. Foundational

work in mechanism design has shown that incentive compatibility severely restricts

the algorithm used for computing the allocation. Most existing techniques for the

design of approximation algorithms violate these restrictions. As a result, “good”

approximation mechanisms have eluded researchers in algorithmic mechanism design,

both for many specific resource allocation problems as well as in general.

We now attempt to provide some intuition to support the apparent incompatibil-

ity of many approximation algorithms with incentive compatibility. Approximation

algorithms, by definition, are given flexibility to err. Consider the value of a specific

player for the allocation output by an algorithm, as a function of that player’s report,

after fixing the reports of other players. Whereas there is little flexibility in the alloca-

tion of an optimal algorithm, fluctuations in the value of the player for the allocation

of an approximation algorithm can be almost arbitrary (so long as the approximation

guarantee is not violated). For incentive compatibility, a payment must be defined

for each possible report of the player, and these payments must compensate for fluc-

tuations in the allocation so that truthful reporting is the player’s best strategy.

Otherwise, a strategic player can gain by misreporting his private information, effec-

tively exploiting the algorithm’s errors. Since these payments make reference only

to the player’s report, and yet must enforce truthful reporting for an (unknown) pri-

vate valuation, this is possible only for a restricted class of approximation algorithms,

where fluctuations in the allocation satisfy certain conditions.8

8These algorithms are often called cycle monotone [78]. An exactly welfare-maximizing algorithm,
as seen in the VCG mechanism, is one example. There are others, some of which are explored in
Chapter 3.
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Is the tension between incentive compatibility and polynomial-time approxima-

tion fundamental, or merely due to limitations of existing techniques for the design

of approximation algorithms? While this remains poorly understood in general, a

recent series of negative results concerning deterministic mechanisms supports the

former hypothesis. These results rule out “good” approximation mechanisms that

are deterministic for a few resource allocation problems. More common, however,

are results that rule out successful application of specific techniques, commonly those

based on variations of VCG, for the design of deterministic mechanisms.

1.5 Deterministic vs. Randomized Mechanisms

We now explore the tension between incentive compatibility and computational ef-

ficiency, in particular as it relates to the use of randomization. We rationalize the

apparent limitations of deterministic mechanisms, and explain how randomization

appears to overcome these barriers. This discussion provides the intuition underlying

the discoveries of this thesis.

1.5.1 Limits of Deterministic Mechanisms

In order to appreciate the limitations of deterministic mechanisms, we informally

examine the constraints placed by incentive compatibility. Incentive compatibility

demands that, from each player’s perspective, the value of the player for the mech-

anism’s allocation less his payment is maximized by truthful reporting. Roughly

speaking, this constrains the mechanism to be “optimal” for each player, simultane-

ously, with respect to the “range” of his possible misreports. This can be interpreted

as a form of local optimality relative to other possible outputs of the mechanism.

For example in combinatorial auctions, a player should maximize his value for the

package of items received less its price by truthful reporting.

For deterministic mechanisms whose output space is expressive enough to guaran-

tee a good approximation, the constraints placed by incentive compatibility frequently

require the solution of an intractable sub-problem: either optimality-in-range for an
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individual player is an intractable optimization problem in itself, or, when required

simultaneously for all players, implies a relaxed notion of global optimality of the over-

all allocation that is also impossible to achieve in polynomial time. In both cases, the

intractability is due in-part to the “complexity” of the space of discrete structures

that describe potential allocations — for example the space of functions mapping

items to players in combinatorial allocation, or the space of subsets of projects with

total cost at most a budget for knapsack allocation.

1.5.2 The Potential of Randomized Mechanisms

As described in Section 1.5.1, deterministic approximation mechanisms for discrete re-

source allocation problems are often constrained by incentive compatibility to exactly

solve a discrete sub-problem of similar complexity as part of their implementation.

Allowing the mechanism to randomize its choice of allocation adds an additional de-

gree of freedom that can be exploited to relax this requirement. Specifically, we can

think of the output of a randomized mechanism as a lottery over allocations. While

the space of allocations is typically discrete as in the examples of Section 1.2, the

space of lotteries over allocations is a connected, convex set.

Discrete optimization problems are frequently intractable to solve exactly. Indeed,

most NP-hard optimization problems are discrete in nature (see [43] for a selection).

In contrast, problems whose solution space is convex are frequently easier to solve

(see, e.g. [15]). In fact, approximation algorithms for discrete problems are often

based on techniques for solving continuous optimization problems. Perhaps the best

example of this is the pervasive application of linear programming to the design of

approximation algorithms: A discrete, NP-hard optimization problem is first relaxed

to a linear program that approximately encodes the original problem. The linear

program can then be solved exactly in polynomial time, and its solution re-interpreted

— in an approximate sense — as a solution to the original discrete problem. This

approach has led to some of the best known approximation algorithms for many

NP-hard problems (see e.g. [84]).
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Our use of randomization in algorithmic mechanism design is similar in spirit, as

well as at times in its technical content, to the use of continuous techniques in discrete

optimization. However, there are important differences. Consider a problem where

any incentive-compatible deterministic mechanism with a good approximation guar-

antee must implicitly solve a discrete and intractable per-player utility-maximization

problem as part of its implementation (as described in Section 1.5.1). A random-

ized mechanism may be designed so that utility maximization over the range of

a player’s possible misreports is a continuous optimization problem, with a set of

lotteries as its feasible region. If the mechanism’s allocation algorithm is carefully

tuned, this continuous optimization problem may be easier to solve than its discrete

counterpart, bypassing an intractability barrier faced by deterministic mechanisms.

Unlike a linear-programming relaxation, however, the feasible region of the utility-

maximization problem induced by a randomized mechanism must track the output

of the mechanism exactly, rather than approximately.

1.5.3 VCG-based Mechanisms

This dichotomy between deterministic and randomized mechanisms is particularly

intelligible for welfare maximization problems, in particular those where each player’s

valuation is described by multiple private parameters. (See Section 1.3.1 for an infor-

mal definition of multi-parameter problems.) This class includes most resource alloca-

tion problems considered in this thesis. For such problems, most incentive-compatible

approximation mechanisms that have been succesfully employed are variants of the

VCG mechanism.9 For illustrative purposes, we limit our attention in the remain-

der of this section to approximation mechanisms based on VCG, and compare and

contrast deterministic and randomized variants thereof.

Recall that the incentive-compatible VCG mechanism chooses the allocation that

maximizes welfare, and charges each player his externality. This mechanism cannot

be implemented efficiently in general, because welfare maximization is NP-hard in

many contexts. Consider the following deterministic modification of VCG: the set of

9Moreover there is theoretical evidence that, for many of these problems, mechanisms based on
VCG are the only truthful mechanisms. We elaborate on this in Chapter 3.
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allocations is “trimmed” to a smaller set in some way, in particular before valuations

are solicited from the players, and then the VCG mechanism is applied to the smaller

problem of maximizing welfare over the “trimmed” set of allocations. If the trimmed

set, which we refer to as the range of the mechanism, is “small” enough to allow

polynomial-time optimization, and at the same time is “big” enough to adequately

approximate the original set of allocations,10 the result is a polynomial-time and

incentive-compatible approximation mechanism.

An example of this approach was used by Dobzinski et al. [32] for combinatorial

allocation. Specifically, the range of their mechanism consists of those allocations

that assign each player at most a single item, as well as those that assign all items

to a single player. Finding the best allocation in this range boils down to finding the

best matching of items to players, which is possible in polynomial time. Therefore,

the instantiation of VCG for this range can be implemented in polynomial time,

and is incentive compatible. Moreover, when valuations are suitably restricted this

mechanism guarantees a non-trivial, though super-constant, fraction of the maximum

social welfare.

Their limited successes notwithstanding, these deterministic VCG-based approxi-

mation mechanisms face the same intractability barriers described in Section 1.5.1. In

this context, an alternative interpretation of the intractability barriers is instructive:

Any “trimmed” range of allocations that “big” enough to adequately approximate

the original (untrimmed) set of allocations is also big enough to “inherit” the in-

tractability of the original (untrimmed) discrete optimization problem. Statements

of this form have been proven for variants of combinatorial allocation [29, 17, 26],

among other problems.

We bypass these difficulties by designing the range of a mechanism as a family of

lotteries over allocations, rather than (deterministic) allocations. As an example, we

exploit in Chapter 5 the following range of lotteries for the combinatorial allocation

problem: A lottery is in our range if it associates with each item a distribution over

10In particular, because the trimmed set does not depend on player valuations, it should contain
an “approximately optimal” allocation for each possible valuation profile.



CHAPTER 1. INTRODUCTION 22

(a) Range of a deterministic approximation
mechanism.

(b) Range of a randomized approximation
mechanism.

Figure 1.2: Deterministic vs Randomized VCG-based mechanisms.
Each black point is an encoding of an allocation in Euclidean space. In (a), the

range is the circumscribed set of allocations. In (b), the range, a family of lotteries
over allocations, is depicted as the gray region inside the convex hull of allocations.

players, with no player’s probability exceeding 63%, and assigns the items indepen-

dently according to their respective distributions. For such a range of lotteries fixed

independently of player valuations, the following randomized analogue of the VCG

mechanism is incentive compatible: Solicit player valuations, then find the lottery in

the range that maximizes expected social welfare, and finally output a sample from

the winning lottery and charge each player his expected externality. These mecha-

nisms are termed maximal in distributional range, and we explore them formally in

Chapter 3.

The results of this thesis demonstrate that these randomized adaptations of VCG

are more “powerful” than their deterministic counterparts; specifically, they enable

better approximation guarantees in polynomial time. Their power stems from their

more-permissive design space. In settings where a range of allocations that is “big

enough” for a good approximation is necessarily too combinatorially “complex” for

exact optimization, it may be possible to design a family of lotteries that is “big

enough” and yet “simple enough”. We depict this dichotomy in Figure 1.2.
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1.6 Contributions of this Thesis

Conceptually, the contributions of this thesis are twofold:

1. We design randomized mechanisms for a variety of fundamental resource alloca-

tion problems that are incentive compatible, run in polynomial time, and match

the approximation guarantee of the best (non-incentive-compatible) polynomial-

time algorithm. In most cases, our mechanisms improve on the best previously-

known approximation guarantee of an incentive-compatible and polynomial-

time mechanism by a constant or super-constant factor.

2. We develop new techniques that utilize randomization to combine incentive

compatibility and computational tractability. In the process, we advocate the

hypothesis that randomization can reconcile incentive compatibility and compu-

tational tractability in settings where deterministic mechanisms are apparently

— and in some cases provably — limited.

We summarize a selection of our results for specific resource allocation problems in

Table 1.1. All our mechanisms are truthful in expectation and run in time polynomial

in natural parameters of their input.11 For each problem, we list the approximation

guarantee of our mechanism, the approximation guarantee of the best polynomial-

time and truthful-in-expectation mechanism from previous work, and the approxi-

mation guarantee of the best (non-incentive-compatible) polynomial-time algorithm.

However, we believe that our contributions are best viewed through our techniques.

Therefore, we group together results of a similar technical flavor, and describe each

suite of techniques before overviewing the specific results it obtains.

1.6.1 The Convex Rounding Framework

Algorithmic mechanism design is difficult because incentive compatibility severely

limits how the algorithm can compute an outcome, which prohibits use of most of the

11In many cases, the natural parameter is the length of the description of the input. For some of
the problems we consider, however, parameters such as the number of players and/or resources are
more natural.
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Problem
Prior Work Our Work Best Possible
(truthful) (truthful) (non-truthful)

Combinatorial Auctions (
O
(

logm
log logm

))−1
0.63 0.63

(MRS valuations)
Combinatorial Public Projects

(O(
√
m))−1 0.63 0.63

(MRS valuations)
Multi-unit Auctions 0.5 1− ǫ 1− ǫ
Knapsack Allocation 0.5

1− ǫ 1− ǫScheduling with Deadlines —
. . . * —

Minimum Makespan Scheduling 2 1 + ǫ 1 + ǫ

Table 1.1: Table of results.
Each table entry is an approximation ratio. For combinatorial auctions and public
projects, m denotes the number of items and projects, respectively. The variable ǫ
denotes an arbitrary positive constant. The wildcard * denotes any binary packing
problem of polynomial dimension that admits an FPTAS, as defined in Chapter 8.

ingenious techniques developed for the design of “classical” approximation algorithms.

This phenomenon, described in Section 1.4.2, motivates the following question: can

these “classical” techniques be adapted to the design of incentive-compatible mecha-

nisms?

In Chapter 4, we consider what is possibly the dominant “classical” approach

for the design of (non-truthful) approximation algorithms for discrete and NP-hard

optimization problems. This approach, depicted in Figure 1.3, proceeds as follows:

The discrete problem is first relaxed to a continuous optimization problem — typically

a linear program — that approximately encodes the original problem. This fractional

relaxation is then solved in polynomial time; for a welfare maximization problem, this

means that social welfare — or, rather, a “fractional extension” of the social welfare

function — is maximized over points of the relaxation. Finally, the resulting fractional

solution is rounded, via a rounding algorithm, to a “nearby” solution that is feasible for

the original discrete problem. With rare exceptions, such algorithms can not be used

as part of a truthful mechanism, mainly due to a lack of structure in their rounding

algorithm that leaves them open to strategic manipulation. Specifically, the outcome

from solving the relaxation and then rounding the fractional solution may “fluctuate”
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v

(a) Relaxation

X

v

(b) Solving

X

v

(c) Rounding

Figure 1.3: The relax-solve-round approach using a linear program.
Each black point is an encoding of an allocation in Euclidean space. The polygon
depicts the boundary of a linear programming relaxation. The arrow labeled v

depicts a linear objective function.

almost arbitrarily as a player changes his report; as described in Section 1.4.2, this

creates opportunities for strategic manipulation.

We overcome this difficulty by employing a simple yet powerful idea: we optimize

welfare directly over the (random) output of the rounding algorithm, rather than over

the input to the rounding algorithm. Observe that a (randomized) rounding algorithm

maps each point in the fractional relaxation to a lottery over allocations, and therefore

the rounding algorithm’s range of outputs is a family of lotteries; this is depicted in

Figure 1.4. Our framework proposes the allocation rule that computes the “best”

lottery in the rounding algorithm’s range; specifically, the lottery that maximizes

expected social welfare. As discussed in Section 1.5.3, an allocation rule of this

form is maximal in distributional range, and can be generically supplemented with

payments to yield a truthful-in-expectation mechanism.

A difficulty remains, however: Whereas a fractional relaxation is designed so that

it can be solved efficiently, finding the best possible output of a rounding algorithm

is typically NP-hard. To address this, we propose a family of rounding algorithms

with additional structure. A convex rounding algorithm is one with the following

remarkable property: the expected social welfare from rounding a fractional solution

x is a concave function of the variables of x. Finding the welfare-maximizing lottery
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X

X

X

Figure 1.4: The range of a randomized rounding algorithm.
Rounding maps each point in the linear programming relaxation to a lottery over
allocations. The resulting family of lotteries is depicted as the gray region in the

convex hull of allocations.

in a convex rounding algorithm’s range is a convex optimization problem, which in

most cases can be solved efficiently.

This framework can be interpreted as an extension of the dominant approach for

approximation algorithm design to our more restrictive computational model. An

algorithm designer seeking to build a truthful mechanism now faces a familiar, albeit

more particular, task: the design of a rounding algorithm satisfying an additional

condition.

Combinatorial Auctions

As our first application of the convex rounding framework, we consider the combi-

natorial allocation problem overviewed in Section 1.2. In a mechanism design con-

text, this problem is referred to as combinatorial auctions. The design of efficient,

incentive-compatible combinatorial auctions is a central research challenge in algo-

rithmic mechanism design. This is due to the broad applicability of the problem, as

well as due to its fundamental nature from a theoretical perspective. Indeed, much of
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the progress in the design of approximation mechanisms has been motivated by the

study of combinatorial auctions, and techniques first developed for this problem have

since been exported elsewhere.

There are no useful approximation algorithms for the most general variant of

combinatorial auctions; that where a player’s value as a function of the bundle of items

is an arbitrary set function. In reality, however, valuation functions in combinatorial

auctions are frequently structured. As an example, consider the coverage valuations

presented in Section 1.2.2 and depicted in Figure 1.1.

In Chapter 5, we consider a well-motivated variant of combinatorial auctions:

player valuations are restricted to a generalization of the coverage valuations of Sec-

tion 1.2.2. We design a convex rounding algorithm for this problem, leading to a

truthful-in-expectation mechanism that runs in polynomial time, and guarantees a

1 − 1/e ≈ 63% approximation to the optimal social welfare. This approximation

factor matches the best possible, even by a (non-truthful) approximation algorithm.

The result of Chapter 5 is the first constant-factor approximation for a variant of

combinatorial auctions where welfare maximization is NP-hard.

Combinatorial Public Projects

Our second application of convex rounding is to the combinatorial public projects

problem. In this problem, a public planner must choose from a set of projects to

undertake, subject to a constraint on the number of projects chosen, and a set of self-

interested players have private valuations over packages of projects. Combinatorial

public projects has emerged as the paradigmatic “hard problem” of algorithmic mech-

anism design, due to strong impossibility results concerning deterministic mechanisms

for variants of this problem.

As in combinatorial auctions, this probem only admits non-trivial approximation

algorithms if considered with restricted valuations. In Chapter 6, we consider combi-

natorial public projects where player valuations must lie in a certain class generalizing

coverage valuations. We design a convex rounding algorithm for this problem, leading

to a truthful-in-expectation mechanism that runs in polynomial time, and guarantees

a 1 − 1/e ≈ 63% approximation to the optimal social welfare. This approximation
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factor matches the best possible, even by a (non-truthful) approximation algorithm.

The result of Chapter 6 is the first truthful-in-expectation and polynomial-time mech-

anism to achieve a constant-factor approximation for a natural NP-hard variant of

combinatorial public projects, and stands in contrast to the body of existing negative

results for this problem.

1.6.2 The Linear Perturbation Framework

Our next technique is motivated by intuition from the celebrated field of smoothed

analysis of algorithms. Smoothed analysis was developed to explain the efficiency in

practice of algorithms that run in exponential time on a worst-case input. Models

of smoothed analysis mildly relax the worst-case paradigm by assuming that inputs

are “imprecise”; specifically, worst-case inputs are subjected by nature to a small

amount of “random noise” before being presented to the algorithm. Provided the

noise is “sufficiently random”, many tasks that are intractable in the worst case

can be solved efficiently (in expectation) for the “noisy” input. Such problems are

said to have polynomial smoothed complexity. The knapsack allocation problem of

Section 1.2.3 is one example: If suitable “random noise” is added to each player’s

value for each project, the resulting “noisy” social welfare function can be maximized

in expected polynomial time. We refer to the map from the original input to the

“noisy” input as a perturbation.

With the realization that some intractable resource allocation problems become

tractable when randomly perturbed, we turn the smoothed analysis paradigm on its

head. Rather than postulating a “natural” perturbation that explains tractability

observed in practice, we ask whether perturbations can be designed to yield both

tractability and incentive compatibility. Specifically, consider a perturbation-based al-

location algorithm that first perturbs the valuation functions of players in some way,

and finds an allocation that maximizes the resulting perturbed social welfare function

exactly. For problems with polynomial smoothed complexity, the perturbation can be

designed so that this algorithm can be implemented efficiently (in expectation), and

yet the perturbed welfare function is “close enough” to the original welfare function
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for the algorithm to guarantee a good approximation (in fact, an FPTAS). Naievely,

the perturbation-based allocation algorithm also appears amenable to incentive com-

patibility — it differs from the allocation rule of the VCG mechanism only in its

pre-application of the perturbation.

On further examination, a difficulty remains: perturbing a player’s valuation does

not, in general, preserve incentive compatibility. Indeed, a perturbed misreport may

better represent the player’s true preferences than the perturbed version of the player’s

true valuation function. We overcome this difficulty by introducing a duality between

perturbations of the social welfare function and perturbations of the allocations. We

observe that, when perturbations of the social welfare function are linear, the per-

turbed welfare of an allocation can be re-interpreted as the un-perturbed welfare of

a perturbed allocation. When certain technical conditions are satisfied, the perturbed

version of an allocation can be interpreted as a lottery that mixes the original al-

location with some other allocations with small probability. Adopting this “dual”

perspective, the perturbation-based allocation algorithm maximizes expected social

welfare over the set of lotteries corresponding to the perturbed allocations. This

is a maximal-in-distributional-range allocation algorithm (Section 1.5.3), and can

therefore be supplemented with VCG payments to yield a truthful-in-expectation

mechanism.

A Black Box Result

Armed with the linear perturbation framework, we turn our attention to those re-

source allocation problems with polynomial smoothed complexity. For which of these

problems can we combine polynomial smoothed complexity and incentive compatibil-

ity? In particular, can we define a large subclass of these problems so that conditions

required for application of the linear perturbation framework are satisfied, result-

ing in efficient and incentive-compatible mechanisms that attain the best possible

approximation ratio?

We answer this question in the affirmative for a large and natural class of resource

allocation problems, defined abstractly. We consider welfare maximization problems

that can be encoded as binary packing problems with polynomial-dimension, defined
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formally in Chapter 8. In an instance of such a problem, each allocation can be en-

coded via a polynomial number (in the length of the representation of the instance) of

binary decisions, and each player’s valuation function is linear in the variables of this

encoding. Moreover, the set of allocations is “downwards closed”, in that a positive

decision in an allocation can be reversed to form another feasible allocation. Exam-

ples of these problems abound in resource allocation, one of which is the knapsack

allocation problem discussed in Section 1.2.3: each project’s inclusion in a solution

corresponds to a 0/1 decision, and a project may be removed from a solution without

affecting feasibility.

Using the linear perturbation framework of Chapter 7, we show in Chapter 8

that a fully polynomial time approximation scheme (FPTAS)12 for any problem in

this class can be converted, generically and in polynomial time, to a truthful-in-

expectation mechanism that is an FPTAS. This is a “black-box” reduction from

incentive-compatible mechanism design to approximation algorithm design, in that

it assumes nothing about the approximation algorithm beyond its approximation

guarantee. This is the first such reduction for a non-trivial class of multi-parameter

mechanism design problems, and suggests an intriguing possibility of more general

black-box reductions in algorithmic mechanism design.

The main result of Chapter 8 is possible because prior work in smoothed analy-

sis [9, 79] has already established that problems in our class that admit an FPTAS

also have polynomial smoothed complexity, relative to some assumptions about the

smoothing perturbation. However, application of the linear perturbation framework

to obtain an incentive-compatible mechanism requires our perturbation to be linear,

and moreover to “dualize” to a perturbation mapping each allocation to a lottery

over allocations. As the main technical contribution of this chapter, we exploit the

structure of binary packing problems to show that these conditions can be satisfied

simultaneously, enabling our black-box reduction.

12A fully polynomial time approximation scheme (FPTAS) for a maximization problem takes as
input an instance and an approximation parameter ǫ, and returns a feasible solution with objective
function value at least 1− ǫ times that of an optimal solution, in time polynomial in the size of the
instance and in 1/ǫ.
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Multi-unit Auctions

In Chapter 9, we consider welfare maximization in multi-unit auctions. In this prob-

lem, a large (exponential) number of identical items must be allocated among a set

of competing players, and each player is equipped with a non-decreasing valuation

function that maps the number of items he receives to his value.13 This problem cap-

tures many scenarios where a homogenous resource must be divided among multiple

players, such as bandwidth, machine processing time, or electrical power. Despite

intense study prior to our work, and despite admitting a (non-truthful) FPTAS,

multi-unit auctions have resisted approximation mechanisms obtaining better than a

50% approximation guarantee.

Welfare maximization in multi-unit auctions admits an encoding as a binary pack-

ing problem, and yet escapes the black-box result of Chapter 8. This is because its

formulation as a binary packing problem has an exponential number of variables, due

to the exponential number of items being allocated. The high dimensionality of the

problem poses two difficulties in applying our linear perturbation framework: the

results of smoothed analysis no longer imply polynomial smoothed complexity, and

the perturbations we design in Chapter 8 can not be directly applied to an instance

of this problem efficiently.

The main result of Chapter 9 overcomes these difficulties to design a truthful-in-

expectation FPTAS for multi-unit auctions. We again use the linear perturbation

framework of Chapter 7: we design linear perturbations that exploit the structure

of multi-unit auctions to recover polynomial smoothed complexity, and at the same

time can be applied efficiently to solutions of exponential dimension.

1.6.3 Techniques for Single-Parameter Problems

In Chapter 10, we turn our attention to an apparently simpler class of problems,

where each player’s valuation is naturally described via a single real number. These

problems, known as single-parameter problems and defined formally in Chapter 10,

13We assume no particular representation of this function, and only require that it can be queried
efficiently at any number of items.
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have received dedicated study in algorithmic mechanism design. This is because they

occur naturally in a variety of contexts (the single-item auction is one example), and

moreover admit more positive results for more objective functions than their multi-

parameter counterparts.

We consider single-parameter problems in a machine-scheduling context. Such

a problem features n jobs, each with a publicly known size, and m machines (the

players). An allocation is a schedule that assigns each job to one of the machines. Each

machine holds privately its speed, measured in job size per unit time. A mechanism

for a scheduling problem may reward machines with payments to incentivize truthful

revelation of their speeds. Adopting the adage “time is money”, a machine’s utility is

naturally defined as the payment it receives from a mechanism less the time it spends

processing its assigned jobs.

Many objectives are possible in a scheduling problem. In our primary applica-

tion, we consider a mechanism designer interested in minimizing the makespan of the

schedule, which is defined as the maximum, taken over all machines, of the time taken

by the machine to process all jobs assigned to it. Equivalently, the makespan of a

schedule is the time at which all jobs have been completed.

Chapter 10 develops and applies several flexible techniques for the design of

incentive-compatible mechanisms for single-parameter scheduling problems. Next,

we overview these techniques and then describe our results.

Techniques

Our primary design framework in this thesis, that of maximal in distributional range

algorithms, does not appear to be of much direct use for problems with a non-welfare

objective such as makespan. Nevertheless, we observe that the same basic approach,

that of exact optimization over a set of lotteries, can be adapted for non-welfare ob-

jectives in some single-parameter contexts, with additional work. For the makespan

problem, for example, we show that an algorithm that fixes a set of lotteries over

schedules independently of reported speeds, and computes the lottery that minimizes

expected makespan, is truthful in expectation provided that ties between lotteries are

broken in a “truthfulness-preserving” manner. Satisfying the additional tie-breaking
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requirement in polynomial time is non-trivial, but we present a generic way to accom-

plish it efficiently for scheduling problems. We emphasize that the viability of this

approach, in particular for non-welfare objectives, appears limited to single-parameter

problems due to their more permissive space of incentive-compatible mechanisms.

The design of a family of lotteries over which makespan, as well as the other

objectives we consider, can be exactly optimized raises additional technical challenges.

We introduce a number of techniques to construct a range for our mechanism that

is both big enough to guarantee an approximately optimal schedule, and yet simple

enough to enable polynomial-time optimization. We defer discussion of most of the

techniques to Chapter 10, but we highlight one of them here that is representative.

We group jobs of a similar size together, and randomly shuffle the jobs in each group.

In essence, shuffling replaces each job in a group with the “average” of that group,

in expectation. A schedule of the “shuffled jobs” is a simpler object, with many

jobs essentially identical, and moreover corresponds to a lottery over schedules of the

original, unshuffled jobs. When combined with additional techniques, shuffling the

jobs yields a family of lotteries over which exact optimization of makespan, as well

as some other objectives, is possible in polynomial time.

Results

The main result of Chapter 10 is for the makespan problem. Despite intense study

prior to our work, and despite admitting a (non-truthful) Polynomial Time Ap-

proximation Scheme (PTAS),14 the best polynomial-time and truthful-in-expectation

mechanism for the makespan problem was a 2-approximation. We use the techniques

outlined in the preceding discussion to develop a truthful-in-expectation PTAS for

the makespan problem. Moreover, we apply the same techniques to other objectives,

namely minimizing a norm of the machine completion times and maximizing the

minimum completion time. In both cases we obtain a truthful-in-expectation PTAS,

14A PTAS for a minimization problem is an algorithm that takes as input an instance of the
problem and a parameter ǫ > 0, runs in time polynomial in the representation of the instance, and
returns a solution with objective at most 1 + ǫ of the minimum possible.
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whereas no truthful-in-expectation and polynomial-time mechanism with even a con-

stant approximation ratio was previously known for either problem.

1.7 Related Work

We now place the contributions of this thesis in the proper context. We begin in

Section 1.7.1 with the basics of mechanism design, as they relate to this thesis.

Section 1.7.2 discusses work that characterizes the structure of incentive-compatible

mechanisms. Finally, Section 1.7.3 discusses both positive and negative results that

directly pertain to the design of computationally-efficient and incentive-compatible

approximation mechanisms. Throughout, we restrict our attention to the most rele-

vant references, and defer some details to relevant chapters. We also omit foundational

work in approximation algorithms, as its discussion is beyond the scope of this thesis,

and instead refer the reader to a text on the subject such as [84].

1.7.1 Mechanism Design Basics

Our work relies on the rich theory of mechanism design, most of which evolved during

the 1960s through the 1980s. We mention here only the most pertinent work in

mechanism design to this thesis. A survey of mechanism design concepts intended

for computer scientists is in [70]. For more detail, we refer the reader to resources on

microeconomics (e.g. [63]) and auction theory (e.g. [57, 65, 55]).

The study of mechanisms that use monetary payments was initiated by Vick-

rey [85]. Ths single-item Vickrey auction was then generalized by Clarke [21] and

Groves [46] to more general settings, culminating in the Vickrey-Clarke-Groves (VCG)

mechanism for welfare maximization that forms the starting point for much of the

work in this thesis.

As we discuss in Section 2.6, most work on mechanism design in the microeco-

nomics community considers the Bayesian setting, where player valuations are as-

sumed to be drawn from a known distribution, and incentive compatibility is only
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required to hold in expectation with respect to this distribution. Bayesian incentive-

compatible mechanisms are more permissive than the class of dominant-strategy

incentive-compatible mechanisms considered in this thesis. Nevertheless, some re-

sults in the Bayesian setting have analogues in our setting; a notable example is

Myerson’s characterization of Bayesian incentive-compatible mechanisms for single-

item allocation [68]. For more on mechanism design in the Bayesian setting, we refer

the reader to [63].

1.7.2 Characterizations of Incentive Compatibility

Work in both the mechanism design and algorithmic mechanism design commu-

nities has sought to characterize the space of incentive-compatible mechanisms in

various contexts. Myerson [68] characterizes Bayesian incentive-compatible mecha-

nisms for the single-item auction problem: such a mechanism must have a mono-

tone allocation rule, which means that the probability a player wins the item is

non-decreasing in his valuation, and its payment rule is uniquely determined up

to “pivot terms”. Myerson’s monotonicity characterization extends to dominant-

strategy incentive-compatible mechanisms for the class of single-parameter problems,

and this was made explicit by Archer and Tardos [3].15 We exploit this character-

ization when we consider mechanisms for single-parameter scheduling problems in

Chapter 10.

Various characterizations of incentive-compatible mechanisms for multi-parameter

mechanism design problems are known. Whereas some of these characterizations have

been used to prove impossibility results in algorithmic mechanism design, they will

be of little technical use in this thesis. Nevertheless, we now briefly overview the

most notable such characterization results for perspective. Absent any assumption on

how, if at all, valuations are restricted, Rochet [78] defines a property of an allocation

rule, cycle-monotonicity, and shows that an allocation rule can be supplemented with

payments to yield a truthful mechanism if and only if it is cycle-monotone. A stronger,

necessary condition called weak-monotonicity was posed by Bikhchandani et al. [11],

15We also note that the monotonicity characterization is implicit in the earlier work of Mirrlees [66]
and Spence [82]. We thank Aaron Archer for pointing this out.
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who prove its sufficiency in some domains. Saks and Yu [81] then showed that weak-

monotonicity is equivalent to cycle-monotonicity in domains where players’ valuation

spaces are convex, as is the case for most natural problems in mechanism design. The

most relevant characterization of all for this thesis, however, is due to Roberts [77]: for

the general multi-parameter mechanism design problem, where a player’s valuation

is allowed to be an arbitrary function from outcomes to real numbers, Roberts shows

that deterministic truthful mechanisms are precisely the set of affine maximizers,

close relatives of the VCG mechanism that are discussed in Chapter 3.

1.7.3 Computationally-Efficient Mechanisms

The existence of a conflict between incentive compatibility and computational effi-

ciency was first suggested by the seminal work of Nisan and Ronen [72], who coined

the term algorithmic mechanism design. Since then, much work in the theoreti-

cal computer science community has focused on establishing both upper and lower

bounds on the approximation ratio of the best incentive-compatible and polynomial-

time mechanism for various resource allocation problems.

The main consideration of this thesis is the study of the conflict between incentive

compatibility and computational efficiency, rather than the challenges in achieving

either alone. Therefore, we only mention work concerning problems for which the

approximation ratio of the best known incentive-compatible and computationally-

efficient mechanism is (or was prior to the work) worse than the approximation ratios

of both the best incentive-compatible mechanism and the best polynomial-time algo-

rithm.16

Next, we present positive and negative results from related work in our model,

and close with a description of some recent positive results in the more-permissive

Bayesian setting.

16As intimated in the rest of this introduction, for all problems we consider, and for all welfare
maximization problems generally, the best incentive-compatible mechanism has an approximation
ratio of 1. Therefore, the “target” in algorithmic mechanism design is typically the approximation
ratio of the best polynomial-time algorithm.
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Positive Results and Techniques

The first non-trivial approximation mechanisms that achieve an approximation guar-

antee near or equal to that of the best (non-truthful) approximation algorithm were

discovered for single-parameter mechanism design problems and slight generaliza-

tions thereof. We mention three examples: The deterministic truthful mechanism

of Lehmann et al. [61] for combinatorial auctions when players are single-minded17

matches the approximation guarantee of the best (non-truthful) approximation al-

gorithm for that problem; Archer and Tardos [3] design a randomized truthful-in-

expectation mechanism for a single-parameter scheduling problem — the main prob-

lem considered in Chapter 10 — whose approximation guarantee is a constant factor

worse than the best possible (non-truthfully) in polynomial time; and, in a remark-

ably general result, Briest et al. [16] show that a fully polynomial time approximation

scheme (FPTAS) for a single-parameter welfare-maximization problem can be con-

verted to a truthful mechanism that is an FPTAS.18

Positive results for multi-parameter problems, and in particular results that ap-

proach the best approximation guarantee possible in polynomial time, have been

more elusive, and particularly so when the focus was on deterministic mechanisms.

A central idea, adapting VCG by “trimming” its range of allocations as described in

Section 1.5.3, was posed by Nisan and Ronen [71]. Deterministic truthful mechanisms

based on this idea, specifically the maximal-in-range mechanisms described in Chap-

ter 3, subsequently found application: to combinatorial auctions with unrestricted

valuations by Holzman et al. [51], to combinatorial auctions with complement-free19

valuations by Dobzinski et al. [32], and to multi-unit auctions by Dobzinski and

Nisan [30]. The approximation guarantee of both results [51, 32] for combinatorial

auctions is a super-constant factor away from the best approximation ratio possible

17In combinatorial allocation, a player is single minded if his valuation function is non-zero for
only a single bundle of items. Note that this a slight generalization of single-parameter problems
because the bundle for which the player’s valuation function is non-zero is also private.

18We note that the main result of Chapter 8 generalizes the result of Briest et al. [16] to multi-
parameter problems, under mild additional conditions.

19In combinatorial allocation, we say a player has complement-free, or sub-additive, valuations if
his value for the union of two bundles of items is no more than the sum of his values for the two
original bundles.
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(non-truthfully) in polynomial time for the respective setting. The result of [30] for

multi-unit auctions is a constant-factor approximation mechanism, whereas a non-

truthful FPTAS exists.

Progress in the design of approximation mechanisms for multi-parameter problems

accelerated with the emerging use of randomization. The starting point is the break-

through result of Lavi and Swamy [60]. They show that if a welfare maximization

problem can be written as a linear program satisfying certain conditions, a truthful-

in-expectation and polynomial-time mechanism with an approximation ratio equal to

the linear program’s integrality gap can be generically derived. They subsequently ap-

ply this idea to derive a truthful-in-expectation mechanism for combinatorial auctions

with unrestricted valuations that matches the best approximation guarantee possi-

ble in polynomial time for that problem, and the first truthful-in-expectation and

polynomial-time constant-factor approximation mechanism for multi-unit auctions,

among other results.

Following the work of Lavi and Swamy, Dobzinski et al. [33] strengthen their result

for combinatorial auctions with unrestricted valuations by designing a polynomial-

time randomized mechanism that is universally truthful (recall Section 1.3.3), and also

matches the best approximation guarantee possible in polynomial time. Universally-

truthful randomized mechanisms with a polylogarithmic approximation ratio were

also described for variants of combinatorial auctions with restricted valuations by

Dobzinski et al. [33] and Dobzinski [25], though in both cases the best approximation

ratio possible in polynomial time for the considered problem is a constant.

As evidenced by the preceding discussion, polynomial-time incentive-compatible

mechanisms that approach the approximation guarantee of the best non-truthful algo-

rithms have eluded researchers. With the exception of combinatorial auctions with un-

restricted valuations, no such “optimal” mechanisms for non-trivial multi-parameter

mechanism design problems were known prior to the work presented in this thesis.

A note is in order on this history of maximal-in-distributional-range mechanisms,

the primary protagonists in this thesis described in Chapter 3. These mechanisms

were formally proposed for the design of approximation mechanisms, and given their

current name, by Dobzinski and Dughmi [27]. However, they have appeared implicitly
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in prior work. For example, the mechanisms designed by Lavi and Swamy [60] are,

in retrospect, maximal in distributional range.

Negative Results

As the limitations of existing techniques for the design of approximation mechanisms

became apparent, conditional impossibility results that bound the approximation

guarantee of polynomial-time mechanisms began to emerge. While these impossibility

results explained the lack of progress in the design of approximation mechanisms

for many problems, at first most applied only to deterministic mechanisms based

on VCG — specifically the maximal-in-range mechanisms discussed in Chapter 3.

Dobzinski and Nisan [29] show a super-constant lower bound on the approximation

ratio of deterministic, VCG-based, polynomial-time mechanisms for combinatorial

auctions with submodular 20 valuations, and Buchfuhrer et al. [17] strengthen the lower

bound and generalize it to some other classes of restricted valuations. Dobzinski and

Nisan [30] show that deterministic and polynomial-time VCG-based mechanisms for

multi-unit auctions cannot guarantee better than 50% of the optimal social welfare,

despite the existence of a non-truthful FPTAS.

The first result to separate the best approximation guarantee of a deterministic,

truthful, and polynomial-time mechanism from that of the best (non-truthful) ap-

proximation algorithm is by Lavi et al. [59]; they show that, for a modification of

multi-unit auctions, no deterministic, truthful, and polynomial-time mechanism has

an approximation ratio better then 50%, despite the existence of a (non-truthful) FP-

TAS for that problem. More recently, quantitatively stronger separation results for

natural problems emerged. Papadimitriou et al. [74] define the combinatorial public

projects problem (recall Section 1.6.1), and for a variant of the problem with submod-

ular valuations show that no deterministic, polynomial-time, and truthful mechanism

has a constant approximation ratio, despite the existence of a (non-truthful) 63%-

approximation algorithm. Dobzinski [26] proves similar impossibility results for com-

binatorial auctions and a slightly different variant of combinatorial public projects,

20A player’s valuation function for bundles of items is submodular if it satisfies “diminishing
marginal returns”, in a technical sense described in Chapter 5.
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both with submodular valuations, ruling out constant-factor approximation by a de-

terministic and truthful mechanism in polynomial time despite the existence of a

constant-factor approximation algorithm for both problems.

The preceding collection of impossibility results for deterministic mechanisms mo-

tivates our focus on randomization. Until very recently, there were no known impos-

sibility results for polynomial-time truthful-in-expectation mechanisms, and general

positive results seemed plausible. This changed with the work of Dobzinski [26], who

showed a super-constant lower bound on the approximation ratio of polynomial-time

and truthful-in-expectation mechanisms for a variant of combinatorial public projects

for which a (non-truthful) polynomial-time constant-factor approximation algorithm

exists. Subsequently, Dughmi and Vondrák [38] proved similar separation results

for variants of combinatorial auctions and combinatorial public projects, separating

the approximation guarantee of truthful-in-expectation and polynomial-time mecha-

nisms by a super-constant factor from the best possible in polynomial time for those

problems.

Other Models

The task of reconciling incentive compatibility and computational efficiency appears

easier in the more-permissive Bayesian setting (described in Section 2.6), where player

valuations are drawn from a prior distribution known to the players and to the mech-

anism. Hartline and Lucier [48] show that for every single-parameter welfare max-

imization problem in a Bayesian setting, an arbitrary approximation algorithm can

be made Bayesian incentive compatible in polynomial time without degrading the

expected approximation factor. Under assumptions on the Bayesian prior, this re-

sult was recently extended to multi-parameter problems by Bei and Huang [8] and

Hartline et al. [47].
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1.8 Tips for Reading this Thesis

1.8.1 Prerequisites

The main prerequisite for this thesis is a facility with the basic techniques for the

design of approximation algorithms, at the level of Vazirani [84]. A familiarity with

the basics of mechanism design and auction theory is very helpful, though we present

a self-contained treatment of the relevant preliminaries in this thesis. A survey of

mechanism design concepts by Nisan [70], intended for computer scientists, is partic-

ularly suited for appreciation of the results in this thesis. Additional detail can be

found in a standard reference on microeconomics such as Mas-Colell et al. [63].

We also assume some familiarity with the basics of the following topics: The

theory of NP-completeness, for which Garey and Johnson [43] and Arora and Barak [4]

are standard references; the theory of convex optimization at the level of Boyd and

Vandenberghe [15]; and combinatorial optimization and matroid theory, for which

our preferred reference is Korte and Vygen [56].

1.8.2 Outline

Chapters 2 and 3 present the technical and conceptual background underlying our

results. Specifically, Chapter 2 defines basic concepts from mechanism design and ap-

proximation algorithms, and formalizes the computational and economic requirements

we place on approximation mechanisms designed in this thesis. Chapter 3 motivates

the detailed study of welfare maximization problems, presents related background and

preliminaries, and advocates the class of maximal-in-distributional-range mechanisms

as a design framework for these problems.

The remainder of this thesis splits our contributions in three parts, grouped by

common techniques. Part II begins by proposing the convex rounding framework in

Chapter 4, and this framework is applied to combinatorial auctions and combinatorial

public projects in Chapters 5 and 6, respectively. Part III begins by proposing the

linear perturbation framework in Chapter 7, and this framework is applied to an
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abstractly-defined class of mechanism design problems in Chapter 8, and to multi-

unit auctions in Chapter 9. Finally, Part IV proposes new techniques and mechanisms

for single-parameter scheduling problems in Chapter 10.

1.8.3 Dependencies

Chapter 2 is a prerequisite for all later chapters. Chapter 3 is a prerequisite for all

later chapters except Chapter 10. Chapter 4 is a prerequisite for both Chapters 5

and 6. Finally, the chapters of Part III should be read in order.

1.9 Bibliographic Notes

Most results presented in this thesis appear in one of the following previously pub-

lished works: [37], [34], [35], [27], and [24]. The convex rounding framework (Chap-

ter 4) and its application to combinatorial auctions (Chapter 5) appear in [37]. The

application of convex rounding to combinatorial public projects (Chapter 6) appears

in [34]. The linear perturbation framework (Chapter 7) and the resulting black-

box result for binary packing problems (Chapter 8) appear in [35]. The result for

multi-unit auctions (Chapter 9) appears in [27], though with a substantially different

proof than that presented in this thesis. The results for single-parameter scheduling

problems (Chapter 10) appear in [24].

We note that the formal definition of maximal in distributional range approxima-

tion mechanisms (Chapter 3) appears in [24], though these mechanisms have implic-

itly been used before as noted in our discussion of related work. The properties of

maximal in distributional range algorithms proved in Chapter 3 appear in [27, 35, 37].
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Technical Preliminaries

2.1 Notation

Before formalizing our model and preliminaries, we introduce some convenient nota-

tion. For a natural number n, we use [n] to denote the set {1, . . . , n}.1 Given a vector

v = (v1, . . . , vn) indexed by [n], where vi is an abstract element, we use v−i to denote

the entries of v other than the ith, and use (v−i, v
′
i) to denote the result of replacing

the ith entry of v with v′i.

2.2 Mechanism Design Basics

In this section, we review some necessary basics from mechanism design and define

our model. For a more comprehensive survey, we refer the reader to [70].

2.2.1 Mechanism Design Problems

An mechanism design problem is a family of instances, each of which is given by a

feasible set Ω, and valuation functions v1, . . . , vn, where vi : Ω → R is the valuation

function of player i. Elements of Ω are referred to as outcomes, and the vector

1This is not to be confused with [a, b] for two real numbers a and b, which denotes the set of real
numbers between a and b.

43
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(v1, . . . , vn) of valuation functions indexed by players is referred to as a valuation

profile. Player i’s value vi(ω) for outcome ω is measured in monetary units.

We consider direct-revelation mechanisms for mechanism design problems. For

each feasible set Ω and number of players n, such a mechanism comprises an allocation

rule A, which is a function from (hopefully truthfully) reported valuation functions

v1, . . . , vn to an outcome ω ∈ Ω, and a payment rule p, which is a function from

reported valuation functions to a required monetary payment from each player. We

allow the allocation and payment rules to be randomized.

We note that the allocation and payment rules are defined in reference to the

feasible set Ω and the number of players n, and moreover need only be defined for

valuations v1, . . . , vn for which (Ω, (v1, . . . , vn)) is a valid instance of the mechanism

design problem. Typical problems we consider are structured, in that not every valu-

ation profile occurs in an instance of the problem. For example, in the combinatorial

allocation problem, the valuation function of a particular player must only depend

on the bundle that player receives (rather than depending on the bundles received

by other players), and must be a non-decreasing set function, among other require-

ments. Such problems are often said to have restricted valuations, and this is true

of all problems considered in this thesis. Nevertheless, the general mechanism design

problem where valuations are unrestricted is of theoretical interest.

2.2.2 The Utility Model

We consider players with quasilinear utilities in this thesis. Specifically, a player’s

utility for an execution of a mechanism is defined to be his value for the chosen

outcome less his payment. Formally, if outcome ω is chosen by the mechanism and

player i is charged pi, then his utility is equal to vi(ω) − pi, where vi denotes i’s

valuation function. The employment of money as a yardstick in this manner is known

to expand the set of incentive-compatible mechanisms, and is a realistic and mild

assumption in many settings. As a result, this utility model is the standard in much

of algorithmic mechanism design (see e.g. [70]).
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2.2.3 Incentive Compatibility

We recall from Section 2.1 that v−i denotes the valuation of players other than i, and

(v−i, v
′
i) denotes the valuation profile that results from replacing player i’s valuation vi

with a different valuation v′i. We now define the forms of incentive compatibility that

we will mention in this thesis. We begin with our main protagonists: A mechanism

with allocation and payment rules A and p is truthful in expectation if every player

always maximizes his expected utility by truthfully reporting its valuation function,

meaning that

E[vi(A(v))− pi(v)] ≥ E[vi(A(v′i, v−i))− pi(v
′
i, v−i)] (2.1)

for every player i, (true) valuation function vi, (reported) valuation function v′i, and

(reported) valuation functions v−i of the other players. The expectation in (2.1) is

over the coin flips of the mechanism. If a mechanism (A, p) is truthful in expectation,

we say it implements its allocation rule A. If there exists a mechanism implementing

allocation rule A, we say that A is implementable.

All mechanisms designed in this thesis are truthful in expectation. These mech-

anisms incentivize a risk-neutral player — i.e., a player who seeks to maximize his

expected net monetary payoff — to report his true valuation regardless of the re-

ports of the other players; for such a player, truth-telling is a dominant strategy. We

note, however, that stronger notions of incentive compatibility are less sensitive to the

risk-neutrality assumption, and we mention the main two. If a mechanism satisfies

(2.1) for every flip of its internal coins, rather than merely in expectation, we call the

mechanism universally truthful. If a mechanism is deterministic and satisfies (2.1)

then universal truthfulness and truthfulness in expectation coincide, and we refer to

it simply as truthful. Unfortunately, the space of universally-truthful mechanisms

appears to overly constrain design of approximation mechanisms for many problems

in algorithmic mechanism design, and more so for deterministic truthful mechanisms,

motivating our focus on truthfulness in expectation. We note that we sometimes

refer to truthful-in-expectation mechanisms simply as truthful when the qualification

is clear from context.
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We adopt two additional and standard design goals on top of truthfulness in

expectation. A mechanism is individually rational in expectation if each player’s

expected utility on truth-telling is non-negative; formally, E[vi(A(v)) − pi(v)] ≥ 0

for each valuation profile v and player i. Individually rationality is also frequently

known as voluntary participation. For problems where player values are non-negative

(i.e. players derive value from the outcomes), as are most considered in this thesis,

all our mechanisms will be individually rational in expectation, and each player’s

expected payment is non-negative on every input. The latter requirement is known

as the non-negative transfers property. Similarly, for problems where player values are

non-positive (i.e., players incur costs from the outcomes), we desire mechanisms that

are individually rational in expectation, and where each player’s expected payment

is non-positive (i.e., players are paid) on every input.2 We also note that some of our

mechanisms satisfy individual rationality and/or the proper direction of payments

universally — i.e., for each flip of the mechanism’s random coins.

2.3 Basics of Optimization and Algorithms

In this section, we define some basic terminology from optimization and approxima-

tion algorithms. We consider optimization problems of a general form. An optimiza-

tion problem Π is a family of instances. Each instance in Π is a pair I = (Ω, v),

where Ω is a feasible set of outcomes, and v : Ω → R is the objective function. In

a maximization problem, the goal is to maximize v(ω) over ω ∈ Ω. Minimization

problems are defined analogously. An optimization problem is non-negative if, for

all instances (Ω, v), v(ω) ≥ 0 for each ω ∈ Ω. Most problems we consider in this

thesis are non-negative maximization problems, and the remaining are non-negative

minimization problems.

An algorithm A for an optimization problem Π takes as input an instance (Ω, v) ∈
Π, and outputs some ω ∈ Ω. We allow our algorithms to be randomized. When Π is a

non-negative maximization problem and 0 ≤ α ≤ 1, we say A is an α-approximation

2However this is not always possible for cost-minimization problems, and we have to relax these
requirements for two extensions of our results (Sections 8.6.1 and 10.3.3).
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algorithm if E[v(A(Ω, v))] ≥ αmaxω∈Ω v(ω) for every instance (Ω, v) ∈ Π; the ex-

pectation is taken over the internal random coins of A. Similarly, when Π is a

non-negative minimization problem and α ≥ 1, we say A is an α-approximation

algorithm if E[v(A(Ω, v))] ≤ αminω∈Ω v(ω) for every instance (Ω, v) ∈ Π. For both

maximization and minimization problems, we refer to α and 1/α interchangeably

as the algorithm’s approximation ratio. This abuse of notation is for historical rea-

sons and for reasons of convenience, and the intention is always clear from context.3

We also note that, in general, an approximation ratio α may be a function of the

instance (Ω, v).

For a function t : Π → N, we say algorithm A for Π runs in [expected] time t if

it takes at most t(I) steps [in expectation] on each instance I ∈ Π. Frequently, t is

some polynomial in parameters that describe the instance. For typical optimization

problems, where the input is represented explicitly, we say A runs in [expected]

polynomial time if it runs in [expected] time t for some polynomial t in the length of

representation of the instance. We also consider some problems where inputs are not

presented explicitly to the algorithm, but rather can be partially queried during the

algorithm’s execution. For these problems, polynomial time is defined in reference to

natural parameters of the instance other than the length of its explicit representation;

when discussing algorithms for such problems, we explicitly mention those parameters

unless they are clear from context.4

We note that the runtime and approximation ratio of an algorithm, as defined

above, are worst-case performance guarantees, in that they must hold for every in-

stance of the optimization problem at hand.

3For example, when discussing a maximization problem and an approximation ratio α greater
than 1 is mentioned, it is understood that the corresponding algorithm finds an outcome who’s
objective value is at least a 1/α factor of the maximum objective value over all outcomes in the
feasible set.

4A typical example is combinatorial allocation, where a valuation function on m items requires
2m real numbers, one for each bundle of the items, for explicit representation. The natural param-
eters are taken to be the number of items and number of players, and we consider algorithms that
adaptively query valuation functions at specific bundles during their execution.
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2.4 Mechanism Design and Optimization

We consider mechanism design problems, as defined in Section 2.2, that are equipped

with an objective function that is to be maximized or minimized. For each instance

(Ω, (v1, . . . , vn)) of a mechanism design problem, an objective function w is a map from

Ω to the real numbers. In most of this thesis, we consider the goal of maximizing the

social-welfare objective: w(ω) =
∑n

i=1 vi(ω). Other objectives, however, are possible;

Chapter 10 considers maximizing a fairness-type objective w(ω) = mini vi(ω), among

others. We refer to mechanism design problems equipped with an objective function

as mechanism design optimization problems.

A mechanism design optimization problem doubles as an optimization problem

of the form defined in Section 2.3. This allows us to simultaneously explore both

computational and incentive-related questions for these problems. In particular, we

ask the following kind of question for each problem studied in this thesis: Is there a

mechanism for the problem that is (1) incentive compatible, (2) can be implemented

in polynomial time, and (3) its allocation rule is an α-approximation algorithm for

the corresponding optimization problem.

Finally, we note that it is traditional to refer the outcomes in Ω as solutions or

feasible solutions in an optimization context, and as allocations in many mechanism

design contexts; we use these terms interchangeably.

2.5 Classifying Mechanism Design Problems

As discussed in Section 2.2, all problems we consider in this thesis have restricted val-

uations — i.e., not all functions mapping the outcomes to the real numbers are valid

player valuations. Restricting allowable valuations for a problem expands the sets of

incentive-compatible mechanisms, and moreover improves the approximation guaran-

tees of polynomial-time algorithms. Therefore, problems with restricted valuations

tend to admit more interesting positive results than their unrestricted counterparts.

Given that, additionally, most well-motivated problems impose natural restrictions

on player valuations, our focus is justified.
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Work in mechanism design theory has evidenced a phase transition in the set of

incentive-compatible mechanisms as valuations are restricted. Specifically, incentive

compatibility is frequently more permissive for single-parameter problems. Informally,

an allocation in a single-parameter problem awards each player a real-number “quan-

tity” of a homogeneous good, and each player’s valuation is described by a single real

number representing his “value per unit of good”. A typical example is the single-

item allocation problem (Section 1.2.1), where a player’s valuation is described by a

single real number, namely his value for the item.

We only consider single-parameter problems in Chapter 10, and therefore defer

their formal definition to that chapter. Most problems we consider in this thesis

require multiple private parameters to describe a player’s valuation function, and are

therefore called multi-parameter problems. A typical example is the combinatorial

allocation problem (Section 1.2.2), where a player’s valuation function is described

by a different private value for each package of items. As described in Chapter 3

(specifically, Section 3.3.2), the space of incentive-compatible mechanisms for many

multi-parameter problems appears much more constrained than it is for their single-

parameter counterparts.

2.6 Commentary on Our Model

In this section, we place our modeling assumptions and design goals in the proper

economic context. We begin by making some of them more explicit. We design

direct-revelation mechanisms, meaning that the mechanism solicits direct reporting

of each player’s entire valuation function in a single step. The quasilinear utility

model considered in this thesis, defined in Section 2.2.2, assumes that players are

risk neutral — i.e., a player’s utility is linear in his net monetary payoff. In this

context, truthful-in-expectation mechanisms are referred to in the microeconomics

community as dominant-strategy incentive-compatible. We now discuss some of our

goals and assumptions in more detail.
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Direct revelation. Direct-revelation mechanisms are particularly attractive due

to their simplicity: Players report their valuations up-front in a single step, and

the mechanism’s computation subsequently proceeds “offline”. Even though there

are settings where indirect mechanisms are more computationally efficient than their

direct counterparts (see [22]), direct-revelation mechanisms suffice for the results of

this thesis.

A note is in order on the proper interpretation of direct revelation for problems

where valuations are accessed via an oracle model, as in Chapters 5, 6, and 9. For these

problems, valuations are exponential-sized objects, and our mechanisms adaptively

query an oracle that answers specific questions regarding the valuations. For example,

for our result on multi-unit auctions in Chapter 9, there is an exponential number

of identical items to be divided between the players, and each player’s valuation is

presented as an oracle that takes as input a number j of items, and returns the player’s

value for receiving j items. Our mechanism for multi-unit auctions runs in time much

smaller than the number of items, and queries the oracles at specific values during

its execution. The oracle model should be viewed as an abstraction of all classes of

succinctly-represented valuations for which the corresponding queries to the oracle

can be efficiently implemented. An equivalent interpretation is that players report to

the mechanism a procedure that answers oracle queries regarding their valuation.5

Risk neutrality. The assumption that players are risk neutral is standard in mech-

anism design, and underlies many of the landmark results of the field (e.g., revenue

equivalence theorems [85, 68, 76]). Nevertheless, this assumption has been criticized

on the grounds that, in reality, players are frequently risk averse.6 We leave open

the general question of whether our results and techniques can be extended to non-

risk-neutral environments, though there is reason for optimism: since they were first

5It is tempting to interpret a mechanism in an oracle model as an interactive procedure that
queries players directly during its execution, allowing players to adaptively choose their reports
based on information revealed through the mechanism’s choice of queries. This is not our intention.

6The most common approach for modeling risk applies a monotonic transformation to our quasi-
linear utilities (see [64]). When the transformation is concave this indicates risk aversion, and
convexity indicates risk seeking (see [63, Section 6.C]).
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published, our results for multi-unit auctions (Chapter 9) and for makespan mini-

mization (Chapter 10) have both been strengthened by follow-up work [86, 20] to

universally-truthful mechanisms, which are incentive compatible irrespective of play-

ers’ attitudes towards risk.7

Dominant-strategy incentive compatibility. Dominant-strategy implementa-

tion is a worst-case notion, much in the analytic tradition of computer science, which

in-part explains its adoption as the standard design goal in algorithmic mechanism

design. A player facing a dominant-strategy incentive-compatible mechanism is con-

fronted with a sweeping guarantee: regardless of the the preferences, strategies, and

rationality of others, truth-telling maximizes his expected utility. As a result, these

mechanisms are robust to variations in environments in which they are employed,

and make no assumptions regarding the beliefs of players about each other. This is a

stronger notion than other forms of incentive compatibility considered in mechanism

design, most notably Bayesian incentive compatibility.

We would be remiss if we did not overview Bayesian incentive compatibility, as it

is the dominant paradigm for mechanism design as practiced by the microeconomics

community. These mechanisms are defined in reference to a Bayesian environment,

where the valuation profile of the players is drawn from a publicly known prior dis-

tribution — in technical terms, this distribution is common knowledge. A Bayesian

incentive-compatible mechanism in such an environment is one where each player

maximizes his expected utility by bidding truthfully, assuming other players’ valua-

tions are drawn from the common prior, and moreover are reported truthfully. The

randomness in a player’s utility is taken over the random coins of both the mecha-

nism and the draws of other players’ valuations. In game-theoretic terms, for these

mechanisms truth-telling is a Bayes-Nash equilibrium.

In general, a Bayesian incentive-compatible mechanism is not robust to discrep-

ancies between the environment for which it was designed, and that in which it is

7We note, however, that incentive compatibility in non-risk-neutral settings appears easier to
satisfy than universal truthfulness, assuming standard models such as those in [64].
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deployed. Specifically, the incentive compatibility of these mechanisms is contin-

gent on the accuracy of the assumed distribution of player valuations, as well as

on the assumption that this distribution is common knowledge among the players.

Dominant-strategy incentive-compatible mechanisms, on the other hand, are incen-

tive compatible for every distribution of player valuations, and regardless of players’

beliefs about each other.

Whereas Bayesian incentive compatibility is a weaker guarantee than dominant-

strategy incentive-compatibility, it has the advantage of being more permissive. This

has enabled stronger positive results in some Bayesian environments, as mentioned

in our discussion of related work (specifically, Section 1.7.3).



Chapter 3

Welfare Maximization Background

This chapter serves two goals at once: presenting relevant background and prelim-

inaries for welfare maximization problems, and laying the technical groundwork for

our results. Specifically, we motivate the detailed study of welfare maximization prob-

lems, compare and contrast known classes of deterministic and randomized mecha-

nisms for approximate welfare maximization, and consequently advocate the class of

randomized maximal-in-distributional-range mechanisms as a design framework for

these problems.

We begin in Section 3.1 by introducing welfare maximization problems and justify-

ing their central position in this thesis. Section 3.2 describes the welfare-maximizing

and truthful Vickrey-Clarke-Groves mechanism, which serves as the technical and

conceptual starting point for the design of our approximation mechanisms. We then

describe some deterministic mechanisms that generalize VCG in Section 3.3, com-

menting on their economic and computational significance and limitations. We de-

vote Section 3.4 to maximal-in-distributional-range (MIDR) mechanisms; randomized

relatives of VCG that are the main protagonists in much of this thesis. Specifically,

Section 3.4.1 defines MIDR mechanisms; Section 3.4.2 describes the conceptual re-

alization that these randomized mechanisms can overcome the complexity-theoretic

barriers faced by their deterministic counterparts; and Section 3.4.3 proves some for-

mal properties of MIDR mechanisms that we exploit in this thesis.

53
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3.1 Welfare Maximization Problems

A welfare maximization problem is a mechanism design optimization problem, as de-

fined in Section 2.4, where the objective is to maximize social welfare: the sum of all

players’ values for the allocation. Most of this thesis is concerned with welfare maxi-

mization problems, as they occupy center stage in algorithmic mechanism design. We

posit three main reasons for their importance:

Welfare maximization problems are pervasive. Social welfare is the canonical

objective for a principal interested in the well-being of a group. As a result, it has been

considered in many contexts, such as combinatorial auctions, bandwidth allocation,

network design, scheduling, and more.

Welfare maximization problems expose computational considerations. In-

teresting approximation mechanisms, even those that run in exponential time, are

rare for multi-parameter mechanism design problems with a non-welfare objective.1

In contrast, welfare maximization problems admit sweeping positive results in the ab-

sence of computational considerations. The truthful Vickrey-Clarke-Groves (VCG)

mechanism is optimal (i.e., exactly maximizes welfare) for all these problems. Such

a strong and positive result from the economic perspective renders computation the

binding constraint in the design of practical mechanisms for these problems. Conse-

quently, these problems expose particularly clearly the conflict between computational

efficiency and incentive compatibility, and constitute ripe ground for incorporating

computational ideas into mechanism design.

Welfare maximization problems are technically expressive. Objectives other

than welfare are common: we mention the principal’s revenue and various notions of

fairness in allocation as examples. Whereas resource allocation problems with non-

welfare objectives typically require different mechanisms, useful mechanisms for these

1Whereas few truly positive results for multi-parameter problems with a non-welfare objective
are known, some single parameter problems with a non-welfare objective admit useful approximation
mechanisms (see Chapter 10 and [3]).
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problems often technically resemble those used in welfare maximization. A salient ex-

ample is revenue maximization for single-parameter problems in the Bayesian setting,2

where the problem of maximizing revenue subject to incentive compatibility reduces,

via a transformation, to the design of a welfare-maximizing incentive-compatible

mechanism for the transformed problem (see [68] and [76]). Another example is max-

min fairness in scheduling, considered in Chapter 10, where the mechanisms we design

are technically similar to the class of maximal-in-distributional-range mechanisms for

welfare maximization (described in Section 3.4).

This technical expressiveness of welfare maximization is not merely empirical. It

was shown by Roberts [77] that for the general mechanism design problem, where

players’ values are allowed to be an arbitrary function from allocations to real num-

bers, the only truthful mechanisms are those that optimize a weighted version of

welfare over some subset of the allocations — close relatives of the VCG mechanism

that we discuss below. While this theorem ceases to hold formally for many prob-

lems that are more structured, such as combinatorial allocation, it appears to hold in

spirit for most multi-parameter mechanism design problems. Indeed, useful mecha-

nisms that depart from the VCG family are rare in the literature on multi-parameter

problems.3

3.2 The Vickrey-Clarke-Groves Mechanism

3.2.1 Definition

We define the Vickrey-Clarke-Groves (VCG) mechanism for a generic mechanism

design problem. Fixing the feasible set Ω and the number n of players, the allo-

cation rule A of VCG simply computes a welfare-maximizing solution; specifically

A(v1, . . . , vn) ∈ argmaxω∈Ω
∑

i vi(ω). The payment rule charges each player i a

“pivot” amount hi(v−i) independent of his bid, minus the welfare of the other players

2In these environments, player valuations are drawn from a publicly known prior distribution.
See Section 2.6 for a brief overview.

3There is, however, a small number of interesting non-VCG-based mechanisms for multi-
parameter problems in the literature. We mention the mechanisms of [33] for combinatorial auctions
as examples.



CHAPTER 3. WELFARE MAXIMIZATION BACKGROUND 56

∑
j 6=i vj(A(v)). This payment rule renders this deterministic mechanism truthful, and

we sketch a proof of this fact in Section 3.2.2.

As defined above, there is flexibility in the choice of the pivot terms in VCG. The

“right” choice for many applications is the Clarke pivot rule, which sets hi(v−i) =

maxω∈Ω
∑

j 6=i vj(ω). The payments of VCG are non-negative with this pivot rule,

and moreover individual rationality holds when valuations are non-negative-valued

functions, and we prove both these properties in Section 3.2.2. Notably, for VCG with

the Clarke pivot rule, a player’s payment is naturally interpreted as his externality :

the decrease in welfare of other players due to i’s participation in the mechanism.

3.2.2 Proof

For completeness, we now provide a proof sketch of the properties of VCG outlined

in Section 3.2.1. We begin with truthfulness. Consider a player i with true valuation

vi, and fix the reports vj of players j other than i. Since the pivot term hi(v−i) is

independent of player i’s report, the player may ignore it in maximizing his utility.

Therefore, we assume without loss of generality that hi(v−i) = 0. When player i

reports bi, the allocation ω chosen by the mechanism maximizes bi(ω) +
∑

j 6=i vj(ω).

Moreover, player i’s utility from allocation ω equals his value for the allocation, vi(ω),

minus his payment, 0 −∑j 6=i vj(ω), totaling vi(ω) +
∑

j 6=i vj(ω). Evidently, setting

bi = vi maximizes player i’s utility, as the mechanism essentially “maximizes on the

player’s behalf”.

We now turn our attention to the non-negative transfers and individual-rationality

properties when the Clarke pivot rule is used. Observe that player i’s payment is equal

to the maximum possible welfare of players other than i, less the realized welfare of

those players, both according to their reports; this is evidently non-negative. For

individual rationality, assume that player i reports his true valuation vi, and fix the

reports vj of players j other than i. Let ω denote the outcome of the mechanism for

these reports. Player i’s utility is equal to his value vi(ω) for allocation ω, less his

payment
(
maxω′∈Ω

∑
j 6=i vj(ω

′)
)
−∑j 6=i vj(ω). This can be simplified to

∑
j vj(ω)−

maxω′∈Ω

∑
j 6=i vj(ω

′). Because the mechanism chooses ω to maximize
∑

j vj(ω), player
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i’s utility equals the maximum welfare of all players less the maximum welfare of

players other than i, both according to the reported valuations. When player i’s

value for each allocation is non-negative, the former term is evidently greater than

the latter, and consequently player i’s utility is non-negative.

3.2.3 Commentary

The Vickrey-Clarke-Groves mechanism, combined with the Clarke pivot rule, is a

sweeping positive result from the economic perspective: it is truthful, individually

rational, satisfies non-negative transfers, and maximizes welfare. However, since it

requires solving the welfare maximization problem optimally, VCG can not be im-

plemented efficiently when the underlying welfare-maximization problem is computa-

tionally intractable.

3.3 Deterministic VCG-based Mechanisms

The VCG mechanism is part of a larger family of deterministic mechanisms, known

as affine maximizers, all of which are incentive compatible. This section defines affine

maximizers, starting the most pertinent affine maximizers to this thesis: maximal-in-

range mechanisms. We then proceed to comment on the significance and limitations

of these deterministic generalizations of VCG.

3.3.1 Definitions

Maximal-in-Range Mechanisms

Fix a feasible set Ω and a number of players n. A deterministic allocation rule A
mapping valuation functions v1, . . . , vn to an outcome ω ∈ Ω is maximal in range

if it maximizes social welfare over a fixed subset of the feasible set Ω, called the

range. More formally, A is maximal in range if there exists a subset R of Ω such that

A(v1, . . . , vn) ∈ argmaxω∈R (
∑n

i=1 vi(ω)) for every valuation profile v1, . . . , vn.
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Observe that the VCG mechanism’s allocation rule is the maximal-in-range allo-

cation rule with R = Ω. An alternative interpretation is that the maximal-in-range

allocation rule with range R is allocation rule of the VCG mechanism when the

feasible set is R rather than Ω. The second interpretation makes it clear that every

maximal-in-range allocation rule can be supplemented with payments to yield a truth-

ful mechanism. A maximal-in-range mechanism is defined as a truthful mechanism

with a maximal-in-range allocation rule.

Affine Maximizers

Fix a feasible set Ω and a number of players n. A deterministic allocation rule A
mapping valuation functions v1, . . . , vn to an outcome ω ∈ Ω is an affine maximizer if

it maximizes a non-negative affine function of the players’ values over a subset of the

feasible set Ω. More formally, A is an affine maximizer if there exists a subset R of Ω,

non-negative per-player weights α1, . . . , αn, not all zero, and real-valued per-allocation

offsets {βω}ω∈R, such that A(v1, . . . , vn) ∈ argmaxω∈R ((
∑n

i=1 αivi(ω)) + βω) for every

valuation profile v1, . . . , vn.

Observe that the VCG mechanism’s allocation rule is the affine maximizer with

R = Ω, all player weights equal to 1, and the per-allocation offsets equal to 0. As

in the VCG mechanism, every affine-maximizer allocation rule can be supplemented

with payments to yield a truthful mechanism. These payments are related to those

for the maximal-in-range allocation rule with range R by an affine transformation,

and the proof is similar. An affine-maximizer mechanism is defined as a truthful

mechanism with an affine-maximizer allocation rule.

3.3.2 Significance

Generalizations of the VCG mechanism are important for two reasons. First, they

are alternatives to the VCG mechanism when welfare maximization is computa-

tionally intractable, and in some cases can be used to design incentive-compatible,

approximately-optimal, polynomial-time mechanisms for such problems. Second, they
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characterize all deterministic truthful mechanisms in some contexts, enabling the

proof of impossibility results for deterministic mechanisms.

As Approximation Mechanisms

Most importantly, affine maximizers provide an alternative to the intractable VCG

mechanism for NP-hard welfare-maximization problems. Maximal-in-range mecha-

nisms, in particular, may simplify the computational task by requiring optimization

of welfare only over a subset of the feasible solutions, rather than over the entire set.

Affine maximizers that are not maximal in range have historically been less useful for

this purpose.4 The maximal-in-range paradigm reduces what was previously a task of

both mechanism design and algorithm design to one that can be viewed as algorithm

design in a restricted computational model.

Next, we informally overview the challenges faced in designing computationally-

efficient maximal-in-range mechanisms for welfare maximization. First, recall that a

maximal-in-range algorithm optimizes social welfare over a subset, called the range,

of the feasible allocations. We emphasize that the range is fixed independently of the

player valuations. For combinatorial allocation, for instance, the range could be the

set of allocations of the items where each player receives an even number of items. A

more useful example is due to [32], who used a simple range to obtain a nontrivial,

yet super-constant, approximation for a variant of combinatorial auctions. Theirs

was the range of all allocations where each player gets either all items or a single

item (this result was described in Section 1.5.3).

Maximal-in-range algorithms can always be made into a truthful mechanism us-

ing VCG payments, as described in Section 3.3.1. This leaves only two requirements:

(1) polynomial-time implementability and (2) approximation of the social welfare.

For requirement (1), polynomial-time implementation, the range of the maximal-in-

range allocation rule should be “small” enough, in some technical sense, so that exact

optimization over the range of allocations is possible in polynomial time. For (2),

4This is unsurprising, at least for welfare maximization problems. The ability to differentially
weight players before learning their valuation functions is useless by a permutation argument. Sim-
ilarly, per-allocation offsets in affine maximizers are independent of the scale of the valuations, and
therefore disappear in the worst-case sense when valuations are much larger.
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(a) Small Range (b) Big Range (c) “Sweet Spot” Range

Figure 3.1: Trade-offs in maximal-in-range algorithm design.
Each black point depicts an allocation. In (a),(b), and (c), the range is the

circumscribed set of allocations.

approximation of the social welfare, the range should be “large” enough, in the sense

that it contains an approximately optimal allocation regardless of the players’ valu-

ations. Either of these requirements is easy to satisfy by itself, by choosing a single

allocation or all allocations as the range. However, finding a “sweet spot” that satisfies

both requirements, or determining if one even exists, is the essence of the challenge

in designing truthful polynomial-time mechanisms based on VCG. This trade-off is

illustrated in Figure 3.1.

As a Characterization

Affine maximizers are conceptually important in that they capture the power of truth-

ful mechanisms for problems that are at a sufficient level of generality. Concretely, for

the mechanism design problem with unrestricted valuations (defined in Section 2.2),

Roberts [77] showed that the only deterministic truthful mechanisms are affine max-

imizers. This characterization of truthful mechanisms is evidence that welfare max-

imization — or, rather, maximization of an affine transformation of welfare over a

subset of solutions — is all that is possible to implement via a truthful mechanism for

problems at a sufficient level of generality, regardless of computational considerations.
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Whereas Roberts’ characterization breaks down for many problems that are more

structured, such as most of those considered in this thesis, it often continues to hold

in spirit for multi-parameter problems: most deterministic mechanisms that have

been successfully employed for such problems have been affine maximizers — in fact,

maximal in range. Moreover, impossibility results that rule out “good” maximal-in-

range mechanisms have on several occasions been accompanied, or followed soon after,

by a more general impossibility result for all deterministic truthful mechanisms. We

mention two examples. For a variant of combinatorial public projects, Papadimitriou

et al. [74] extend Roberts’ characterization by showing that all deterministic truthful

mechanisms for their problem are affine maximizers, and then show that no affine

maximizer can guarantee a good approximation in polynomial time. Another example

is in the domain of combinatorial auctions, where Dobzinski and Nisan [29] rule out

good approximation mechanisms that are maximal in range, and Dobzinski [26] then

extends that result to all deterministic truthful mechanisms via a direct — non-

characterization — proof. While such results fuel the working hypothesis that affine

maximizers — and in particular maximal-in-range mechanisms — are representative

of the power of deterministic truthful mechanisms in many multi-parameter contexts,

the extent to which non-affine-maximizers allow the design of better deterministic

approximation mechanisms is, in general, still an open question.

3.3.3 Limitations

As described in Section 3.3.2, deterministic variants of VCG, in particular maximal-

in-range mechanisms, are the most viable, and for some problems only, approach

for the design of deterministic approximation mechanisms. This makes understand-

ing their limitations an important first step to realizing the power of incentive-

compatible mechanisms. Moreover, the limitations of these deterministic variants of

VCG will motivate and rationalize our use of randomization; we propose maximal-in-

distributional-range mechanisms as a randomized generalizations of maximal-in-range

mechanisms in Section 3.4, and discuss how they side-step some of the limitations of

their deterministic counterparts.
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We now discuss the limitations of maximal-in-range mechanisms by informally

over-viewing a recent impossibility result. The result in question, by Buchfuhrer et

al. [17], applies to some variants of combinatorial allocation, and is at least somewhat

representative of the various impossibility results for maximal-in-range algorithms in

the literature — we mention [74] and [26] as other recent examples. Recall from

the discussion of Section 3.3.2 that a maximal-in-range algorithm for combinatorial

allocation should optimize welfare over a range of allocations, fixed independently of

the valuations, that is both (1) “small” enough for polynomial-time implementation,

and (2) “big” enough to guarantee a good approximation. See Figure 3.1. The

result in [17], viewed at a high level, shows that these two properties cannot be

simultaneously satisfied for the variants of combinatorial allocation they consider,

even under a modest approximation requirement.5

Their proofs use VC-dimension ideas, first used to prove negative results in algo-

rithmic mechanism design in [74]. At a high level, they argue as follows:6 If a range R
of allocations of m items to n players includes an approximately optimal allocation for

each allowable valuation profile, then R must include all allocations of some m′ of the

items to some n′ of the players, where m′ and n′ are only polynomially smaller than m

and n. Since the allocation problem of m′ items to n′ players is as intractable as that

for m items and n players, up to a polynomial factor, this shows that optimization

over the range R requires the solution of an intractable sub-problem. In other words,

any range that is “big” enough for a good approximation is also big enough to embed

an intractable problem. The “sweet spot” mentioned in Section 3.3.2, and depicted in

Figure 3.1, does not exist for the variants of combinatorial allocation they consider.

5Their lower bounds rule out maximal-in-range algorithms with an approximation ratio better
than min(n,

√
m), where n denotes the number of players and m denotes the number of items, for

many variants of combinatorial allocation.
6We note that [17] presents two different impossibility results under different assumptions, and

with different bounds. Our description applies only to one of them, chosen for illustrative purposes.
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3.4 Randomized VCG-Based Mechanisms

Motivated by the limitations of deterministic VCG-based mechanisms, discussed in

Section 3.3.3, we advocate the design of randomized approximation mechanisms for

welfare maximization. This section defines maximal-in-distributional-range mecha-

nisms, randomized analogues of the maximal-in-range mechanisms of Section 3.3.1,

and presents some intuition as to how they overcome the limitations of their de-

terministic counterparts. We also establish some formal properties of maximal-in-

distributional-range mechanisms that we exploit in the remainder of this thesis.

3.4.1 Definition

Fix a feasible set Ω and a number of players n. Let dist(Ω) denote the set of prob-

ability distributions over Ω, and let R ⊆ dist(Ω) be a compact subset of them.

The corresponding maximal-in-distributional-range (MIDR) allocation rule is defined

as follows: given reported valuation functions v1, . . . , vn, return an outcome that is

sampled randomly from a distribution D∗ ∈ R that maximizes the expected welfare

Eω∼D[
∑

i vi(ω)] over all distributions D ∈ R. Naturally, we refer to R as the distri-

butional range of the allocation rule, or simply the range when the qualification is

clear from context. We illustrate a distributional range in Figure 3.2.

Observe that a maximal-in-range algorithm is a maximal-in-distributional-range

algorithm whose range R consists only of point distributions. Adopting a differ-

ent perspective, the MIDR allocation rule is simply that of the VCG mechanism

applied to a different mechanism design problem: the problem with feasible set R,

and players with values for a lottery equal to their expected values over individual

draws from the lottery. The second interpretation makes it clear that every maximal-

in-distributional-range allocation rule can be supplemented with payments to yield

a truthful-in-expectation mechanism. A maximal-in-distributional-range mechanism

is defined as a truthful-in-expectation mechanism with a maximal-in-distributional-

range allocation rule.

We now examine payments for MIDR mechanisms more closely. Consider an

MIDR allocation rule A with range R. The following adaptation of VCG payments
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Figure 3.2: A distributional range.
Each black point depicts an allocation. The range is a family of lotteries over
allocations, depicted as the gray region inside the convex hull of allocations.

with the Clarke pivot rule is deterministic, and yields a truthful-in-expectation mech-

anism when combined with A:

pvcgi (v) = max
D∈R

E
ω∼D

[
∑

i′ 6=i

vi′(ω)

]
− E

ω∼A(v)

[
∑

i′ 6=i

vi′(ω)

]
. (3.1)

Unfortunately, it is not always possible to compute these VCG payments efficiently,

even if A is implemented efficiently. Luckily, we have additional flexibility: any (ran-

domized) payment rule p satisfying E[pi(v)] = pvcgi (v) also guarantees truthfulness in

expectation. We show in Section 3.4.3 that, in most cases, such truth-telling pay-

ments p can be computed using only black-box access to A, incurring only polynomial

overhead in runtime.

Finally, we note that distributional affine maximizers can be defined as a gen-

eralization of maximal-in-distributional-range mechanisms. This is analogous to the

definition of affine maximizers as a generalization of maximal-in-range mechanisms

in Section 3.3. However, like their deterministic counterparts, distributional affine
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maximizers that are not maximal in distributional range will not be of much use in

this thesis.

3.4.2 Significance

As described in Section 3.3, deterministic variants of VCG are the most viable ap-

proach for the design of deterministic approximation mechanisms for welfare maxi-

mization. Yet, as described in Section 3.3.3, impossibility results have exposed the

limitations of the maximal-in-range computational model. These limitations are fre-

quently due to the non-existence of a “good” range of allocations: A set of allocations

is either too “complex” for polynomial-time welfare maximization, or too “small” to

guarantee a good approximation of social welfare for an unknown valuation profile.

We observe that this limitation is in-part due to the discrete nature of determinis-

tic ranges. Optimization over discrete sets is frequently NP-hard, whereas continuous

and convex optimization problems are frequently more tractable. This contrast in

complexity between discrete and continuous problems is the rationale for maximal-

in-distributional-range algorithms: In settings where no “good” range of deterministic

allocations exists, a range of lotteries may adequately approximate the space of al-

locations while remaining “simple” enough for polynomial-time exact optimization.

In other words, distributional ranges enable combining “bigness” with “simplicity”.

This phenomenon is depicted in Figure 1.2.

A note is in order on the similarities and differences between designing distri-

butional ranges and designing fractional relaxations for discrete problems. In one

respect, the two tasks are similar: one seeks a continuous problem that adequately

approximates a discrete one, and yet is more tractable to solve. However, there is an

important difference that magnifies the challenge in designing a distributional range:

the continuous problem must correspond, at each point in its feasible set, to a lottery

over the feasible set of the original discrete problem. Unlike, say, a typical linear pro-

gramming relaxation, a distributional range must have no integrality gap. Whereas

a linear program is typically used as a fractional relaxation of a discrete problem, a

distributional range can analogously be seen as a fractional contraction.
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3.4.3 Properties

Payment Computation in Polynomial Time

In most cases, truth-telling payments for an MIDR allocation rule A can be computed

using only black-box access to A, incurring only polynomial overhead in runtime.

There is one requirement, which facilitates computation of the Clarke pivots: the

zero function should be a valid valuation for each player. Formally, we say a problem

Π allows zero valuations if, whenever (Ω, (v1, . . . , vn)) is a valid instance of Π, and 0

denotes the valuation function mapping Ω identically to 0, then for each i the pair

(Ω, (v−i, 0)) is also a valid instance of Π. We summarize payment computation for

MIDR mechanisms in Proposition 3.4.1. We note that, as in the VCG mechanism,

individually rationality is contingent on non-negative valuations.

Proposition 3.4.1. Fix a mechanism design problem that allows zero valuations. Fix

the feasible set Ω, let A be an MIDR allocation rule with distributional range R, and

let pvcg be the VCG payments for A as in Equation (3.1). There exists a randomized

payment rule p such that E[pi(v)] = pvcgi (v), and moreover p can be implemented in

poly(n) time given black-box access to A. The resulting mechanism (A, p) is truthful

in expectation, and its payments are non-negative in expectation. Moreover, (A, p) is

individually rational in expectation when valuations are non-negative-valued functions.

Proof. Recall from Section 3.2 that VCG with the Clarke pivot rule is truthful, its

payments are non-negative, and it satisfies individual rationality when valuations are

non-negative. By linearity of expectations, the analogue of the VCG mechanism that

samples a welfare-maximizing lottery in R and charges expected externalities pvcg

satisfies the same properties in expectation. Moreover, it is evident that the same

holds for any payment rule p with E[pi(v)] = pvcgi (v) for each i and v.

To complete the proof, we show how to compute such a payment rule p using only

a polynomial number of invocations of A as a black box. We sample random variable

pi(v) as follows: Let x be a sample from lottery A(v), let x−i be a sample from lottery

A(v−i, 0), and let pi(v) =
∑

i′ 6=i vi′(x−i)−
∑

i′ 6=i vi′(x). Using Equation (3.1) and the

fact that A is MIDR with range R, we conclude that E[pi(v)] = pvcgi (v) for each i

and v. This completes the proof.
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Closure Under Random Composition

As our second property of MIDR algorithms, we prove that they are closed under

random composition, in the following sense: An algorithm that flips a random coin,

and based on the outcome of the coin decides on an MIDR algorithm to run, is also

an MIDR algorithm.

Lemma 3.4.2. An allocation rule that chooses an MIDR allocation rule randomly

from an arbitrary distribution over such rules is also an MIDR allocation rule.

Proof. We fix a feasible set Ω and consider an allocation rule A that randomly picks

an MIDR allocation rule to run. We assume that A runs the MIDR allocation rule

Ak with probability pk, and use Rk to denote the distributional range of Ak. The

distributional range of A is, therefore, a subset of

R =

{
∑

k

pkDk : Dk ∈ Rk

}
,

where
∑

k pkDk denotes the distribution that samples from distribution Dk with prob-

ability pk.

Fix a valuation profile v = (v1, . . . , vn), and let Dv
k be the distribution of Ak(v).

By definition, Dv
k ∈ argmaxD∈Rk

{Eω∼D[
∑

i vi(ω)]}. Now, the distribution of A(v)

can be written as Dv =
∑

k pkD
v
k. Since Dv

k maximizes expected welfare over all

elements of Rk for every k, we conclude that Dv maximizes expected welfare over R.

Therefore, A is an MIDR allocation rule.
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Chapter 4

The Convex Rounding Framework

4.1 Introduction

In this chapter we introduce a new framework for designing approximation mecha-

nisms for welfare maximization problems, based on randomized rounding algorithms

and convex optimization. Our framework can be viewed as an adaptation of the

dominant approach for the design of (non-truthful) approximation algorithms, that

of mathematical relaxation and randomized rounding, to the design of incentive-

compatible mechanisms. A typical such algorithm first optimizes over a fractional

relaxation of the original problem, and then randomly rounds the fractional solution

to an integral one. With rare exceptions, such algorithms cannot be converted into

truthful mechanisms.

The high-level idea of our framework is to optimize directly over the (random) out-

put of the rounding algorithm, rather than over the input to the rounding algorithm.

This approach results in maximal-in-distributional-range approximation algorithms,

implementable as part of a truthful-in-expectation mechanism. Moreover, when the

rounding algorithm results in a concave objective function in the corresponding op-

timization problem, in which case we refer to it as a convex rounding algorithm, the

mechanism can be implemented efficiently using techniques from convex optimization.

69



CHAPTER 4. THE CONVEX ROUNDING FRAMEWORK 70

4.1.1 Summary of Results and Techniques

The most common paradigm for designing approximation algorithms is based on first

relaxing the problem to a continuous optimization problem (frequently a linear pro-

gram), solving the relaxation, then rounding the fractional solution to an integral

one via a possibly randomized procedure. When application of the rounding algo-

rithm decreases the objective value of the fractional solution by a factor of at most

α, in which case we say the rounding algorithm is α-approximate, the result is an

α-approximation algorithm. Almost all randomized rounding algorithms in the liter-

ature that follow this approach are not maximal in distributional range, and rarely

can they be used as part of an incentive-compatible mechanism.

We propose an adaptation of this paradigm that yields MIDR approximation

algorithms. Informally, our main result reduces the design of a truthful-in-expectation

mechanism for a particular problem to the design of a rounding algorithm for a

mathematical relaxation of that problem satisfying an additional property, which

we call convexity. When the rounding algorithm is additionally α-approximate, the

allocation rule of the resulting mechanism is an α-approximation algorithm.

The high-level idea behind our approach is to optimize directly on the outcome of

the rounding algorithm, rather than merely on the outcome of the relaxation algorithm

(the input to the rounding algorithm). In other words, let (Ω, {vi}ni=1) be an instance

of a mechanism design problem, and let P ⊆ Rm be a mathematical relaxation of fea-

sible set Ω. Let r denote a randomized rounding algorithm mapping fractional alloca-

tions in P to integer allocations in Ω. Given players’ valuations v1, . . . , vn, we compute

a fractional allocation x ∈ P that maximizes the expected welfare Eω∼r(x)[
∑

i vi(ω)]

over all fractional allocations x. This methodology evidently gives MIDR algorithms;

the distributional range is simply the range of the randomized rounding algorithm r.

This optimization problem is often intractable, but when the rounding algorithm r

and the space of valuations v are such that the function Eω∼r(x)[
∑

i vi(ω)] is always

concave in x — in which case we call r a convex rounding algorithm — it can typically

be solved in polynomial time using convex programming.
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4.1.2 Related Work

Both technically and conceptually, the starting point for convex rounding is the linear-

programming-based framework of Lavi and Swamy [60]. In fact, our framework can

be viewed as relaxing some of the requirements of theirs. We briefly recap their

approach in a manner that, while different from their original presentation, facilitates

comparison to ours.

Lavi and Swamy identify a class of welfare-maximization mechanism design prob-

lems and linear programming relaxations of them with a remarkable property: There

is a polynomial-time rounding algorithm such that the expected welfare of rounding a

point x of the linear program is equal to the objective value of the linear program at

x, scaled down by the linear program’s integrality gap1. The problem of maximizing

welfare over the output of this rounding algorithm is equivalent, up to the scaling

factor, to solving the linear program, which is typically possible in polynomial time.

The result is a maximal-in-distributional-range allocation rule with an approximation

ratio equal to the linear program’s integrality gap. Perhaps surprisingly, they show

that there are interesting problems, such as welfare maximization in combinatorial

auctions with unrestricted valuations, that admit relaxations and rounding schemes

that lead to the best-possible approximation guarantee when employed in this manner

(assuming P 6= NP ). However, their requirements on the rounding algorithm leave

many problems, such as combinatorial auctions and public projects with restricted

valuations, out of reach.

Our framework relaxes the — in retrospect often unnecessary — requirement that

the expected welfare of rounding is a scaled copy of the objective function of the linear

program. We allow the expected welfare of rounding a fractional point x to be an

arbitrary concave function of the variables of x. This enriches the space of rounding

algorithms that we may design. It is is this flexibility that enables our results for

combinatorial auctions (Chapter 5) and public projects (Chapter 6) with restricted

valuations — problems that have eluded prior techniques despite intense study.

1The integrality gap of a linear program is the maximum, over all linear objectives, of the ratio
of the objective’s maximum value in the program’s feasible region to its maximum value over integer
points in the feasible region.
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We also single out the work of Dobzinski, Fu, and Kleinberg [28] on combinatorial

auctions as a precursor to our framework. The authors designate a particular rounding

algorithm, and define a set of “proxy bidders” such that optimizing with respect to

these proxy bidders is equivalent to optimizing over the output of their randomized

rounding algorithm.

4.2 Relaxations and Rounding Schemes

Let Π be an optimization problem, as defined in Section 2.3. An instance (Ω, v) of Π

is described by the following mathematical program.

maximize v(x)

subject to x ∈ Ω.
(4.1)

We assume Ω is encoded as a subset of some Euclidean space Rm. A relaxation Π′

of Π defines for every (Ω, v) ∈ Π a convex and compact relaxed feasible set P ⊆ Rm

that is independent of the objective v (we suppress the dependence on Ω) and satisfies

Ω ⊆ P; and an extension vP : P → R of objective v to the relaxed set P. This gives

the following relaxed mathematical program.

maximize vP(x)

subject to x ∈ P.
(4.2)

Generally, the extension is defined so that it is computationally tractable to find a

point x ∈ P that maximizes vP(x) (possibly approximately).

For example, Ω could be the allocations of m items to n bidders in a combinatorial

auction (See Chapter 5), v(x) the welfare of an allocation x, P the feasible region

of a linear programming relaxation, and vP a natural — perhaps linear — extension

of v to fractional allocations.

The optimal solution of the relaxed problem (4.2) need not be in Ω. A rounding

scheme for relaxation Π′ of Π defines for each feasible set Ω of Π, and its corresponding

relaxed set P, a (possibly randomized) function r from P to Ω. Since our rounding

algorithms will be randomized, we let dist(Ω) denote the distributions supported on
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Ω, and think of r as a function from P to dist(Ω). Commonly, the rounding scheme

satisfies the following approximation guarantee: Ey∼r(x)[v(y)] ≥ α · vP(x) for every

x ∈ P. In this case, if x∗ maximizes vP over P and vP agrees with v on Ω, then

Ey∼r(x∗)[v(y)] ≥ α ·maxy∈Ω v(y).

4.3 Convex Rounding Schemes

We consider optimization problems where the objective function v is the social welfare.

Our technique is motivated by the following observation: instead of solving the relaxed

problem and subsequently rounding the solution, why not optimize directly on the

outcome of the rounding scheme? In particular, consider the following relaxation of

Π that “absorbs” rounding scheme r into the objective.

maximize Ey∼r(x)[v(y)]

subject to x ∈ P.
(4.3)

The solution to this problem rounds to the best possible distribution in the range

of the rounding scheme, over all possible fractional solutions in P. We depict the

feasible set of this optimization problem in Figure 1.4. While this problem is often

intractable, it always leads to an MIDR allocation rule.

Parameter: Feasible set Ω of Π.

Parameter: Relaxed feasible set P ⊆ Rm.

Parameter: (Randomized) rounding scheme r : P → dist(Ω).

Input: Objective v : Ω → R satisfying (Ω, v) ∈ Π.

Output: Feasible solution z ∈ Ω.

1: Let x∗ maximize Ey∼r(x)[v(y)] over x ∈ P.

2: Let z ∼ r(x∗)

Algorithm 4.1: Allocation rule optimizing over the range of a rounding scheme.

Lemma 4.3.1. Algorithm 4.1 is an MIDR allocation rule.
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We say a rounding scheme r is α-approximate for α ≤ 1 if v(x) ≥ Ey∼r(x)[v(y)] ≥
α · v(x) for every x ∈ Ω. When r is α-approximate, so is the allocation rule of

Algorithm 4.1.

Lemma 4.3.2. If r is an α-approximate rounding scheme, then Algorithm 4.1 returns

an α-approximate solution (in expectation) to the original optimization problem 4.1.

For most rounding schemes in the approximation algorithms literature, the opti-

mization problem (4.3) cannot be solved in polynomial time (assuming P 6= NP ).

There is a simple reason for this phenomenon: If rounding scheme r always rounds

a feasible solution to itself – i.e., r(x) = x for all x ∈ Ω — then an optimal solution

to (4.3) is also optimal for (4.1). Thus, in this case, hardness of the original problem

(4.1) implies hardness of (4.3). We conclude that we need to design rounding schemes

with the unusual property that r(x) 6= x for some x ∈ Ω.

We now define the class of rounding schemes we use in our results. We call a

(randomized) rounding scheme r : P → dist(Ω) convex if Ey∼r(x)[v(y)] is a concave

function of x ∈ P. Our results are possible because convex rounding schemes result

in convex programs, and convex programs are typically solvable in polynomial time.

Lemma 4.3.3. When r is a convex rounding scheme for Π′, (4.3) is a convex program.

Under additional technical conditions, discussed in the context of combinatorial auc-

tions in Appendix B.1 and combinatorial public projects in Appendix B.2, the convex

program (4.3) can be solved efficiently (e.g., using the ellipsoid method).

The preceding discussion reduces the design of a polynomial-time α-approximate

truthful-in-expectation mechanism to the design of a polynomial-time α-approximate

convex rounding scheme, modulo some technical conditions. In summary, Lem-

mas 4.3.1, 4.3.2, and 4.3.3, combined with Proposition 3.4.1, give the following infor-

mal theorem.

Theorem 4.3.4. (Informal) Let Π be a welfare-maximization optimization problem,

and let Π′ be a relaxation of Π. If there exists a polynomial-time, α-approximate,

convex rounding scheme for Π′, then there exists a truthful-in-expectation, polynomial-

time, α-approximate mechanism for Π.
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Of course, there is no reason a priori to believe that useful convex rounding schemes

– let alone ones computable in polynomial time – exist for any important problems.

We show in Chapters 5 and 6 that they do in fact exist, and yield new results for two

well-studied problems in algorithmic mechanism design.



Chapter 5

Combinatorial Auctions

5.1 Introduction

In this chapter we consider welfare maximization in combinatorial auctions, where a

set of non-identical items must be allocated among competing players, each of whom

is equipped with private preferences over “packages” of the items. Combinatorial auc-

tions occupy a central position in literature on mechanism design and its application,

and have been applied or proposed in many practical contexts.

We use the convex rounding framework introduced in Chapter 4 to design an

expected-polynomial-time, truthful-in-expectation, (1 − 1/e)-approximation mecha-

nism for welfare maximization in a fundamental class of combinatorial auctions. Our

approximation factor is the best possible for the class of combinatorial auctions we

consider, assuming P 6= NP . Ours is the first truthful-in-expectation and polynomial-

time mechanism to achieve a constant-factor approximation for an NP-hard welfare

maximization problem in combinatorial auctions with heterogeneous goods.

5.1.1 Summary of Results and Techniques

In combinatorial auctions, there is a set of items up for sale, and a set of self-interested

players each equipped with a private valuation over subsets of the items. The valu-

ation functions must be non-decreasing (adding items to a bundle does not decrease
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its value) and normalized (the value for the empty bundle of items is 0), and may

be additionally restricted in variants of the problem. The principal is an auctioneer

who must allocate the items among the players. The auctioneer’s goal is to maximize

social welfare, which in this context is the sum of the players’ values for the bundles

they receive.

Combinatorial auctions enjoy paradigmatic status among resource allocation prob-

lems. We quote Blumrosen and Nisan [14]: “combinatorial auctions serve as a com-

mon abstraction for many resource allocation problems in decentralized computerized

systems such as the Internet, and may serve as a central building block of future elec-

tronic commerce systems.” It is therefore unsurprising that combinatorial auctions

have already been applied or considered in many contexts, such as in allocation of

electromagnetic spectrum, allocation of airport take-off and landing slots, and more.

In many existing and potential applications of combinatorial auctions, the welfare-

maximizing VCG mechanism can not be deployed, due in part to the computational

intractability of the welfare maximization problem. Combinatorial auctions that are

actually employed, for instance in the practical settings mentioned above, are often

heuristic in nature, specifically tailored to particular markets, and rigorous guar-

antees on their performance are rare in all but the simplest of settings. This has

motivated a major research direction in algorithmic mechanism design, seeking a

rigorous understanding of the space of computationally-efficient mechanisms for vari-

ants of combinatorial auctions. Despite intense study over the past decade, however,

constant-factor approximation mechanisms for combinatorial auctions have eluded

researchers, even for variants of the problem where constant-factor approximation

algorithms are known. The most studied such variant assumes that player valuations

are submodular.1

Using the convex rounding framework introduced in Chapter 4, we design an

expected-polynomial-time, truthful-in-expectation, (1 − 1/e)-approximation mecha-

nism for welfare maximization in combinatorial auctions, when players have valuations

that are matroid rank sums (MRS). Matroid rank sum valuations encompass most

1Submodular functions are those set functions v that satisfy diminishing marginal returns : specif-
ically, the marginal value v(S ∪ {j})− vi(S) for a each fixed item j is non-increasing in S.
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concrete examples of submodular functions studied in this context, including cov-

erage functions, matroid weighted-rank functions, and convex combinations thereof.

Our approximation factor is the best possible, even for known and explicitly given

coverage valuations, assuming P 6= NP .

To prove the main result of this chapter, we design a convex rounding scheme for

combinatorial auctions. Our Poisson rounding scheme assigns items randomly and

independently, using probabilities that correspond to a distortion of variables from

the fractional solution via the map x → 1 − e−x. We exploit the structure of MRS

valuations to prove our scheme convex, using ideas from matroid theory and convex

analysis.

5.1.2 Related Work

Combinatorial auctions have been studied by researchers in many disciplines, and

the literature on them is vast both in its depth and in the breadth of the design

constraints and environments considered. We can only hope to provide a glimpse of

this body of work, biased as it may be to placing our work in the proper context. We

begin with a brief outline of some practical applications of combinatorial auctions,

and then proceed to overview existing work in the design of approximation mecha-

nisms for variants of the problem. For a more comprehensive overview of research on

combinatorial auctions, we refer the reader to references by Cramton et al. [23] and

Milgrom [65], and a survey by Blumrosen and Nisan [13].

The Practice of Combinatorial Auctions

Combinatorial auctions have been considered and/or implemented in many contexts.

The most prominent application is to allocation of the electromagnetic spectrum:

many spectrum auctions have been employed by governments around the world since

the mid 1990s, resulting in the sale of hundreds of billions of dollars worth of spec-

trum licenses (see [65]). Other applications include airport take-off and landing slot

allocation, bus route allocation, and industrial procurement (see e.g. [23]).
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The VCG mechanism is not employed, or even considered seriously, for many of

the applications mentioned in the preceding discussion. This is in-part due to the

computational intractability of its allocation rule, among other critiques.2 Work in

algorithmic mechanism design, like the results of this chapter, isolates the first cri-

tique of the welfare-maximizing auction, and proposes the design of polynomial-time

mechanisms with rigorous approximation guarantees as an alternative. This contrasts

with much of the remaining literature and existing implementations of combinatorial

auctions, which forgo rigorous guarantees on the quality of the allocation in favor

of auctions with other desirable properties, such as simplicity, resistance to collu-

sion, and empirical performance in specific markets. (See [14], [13], and [65] for a

discussion).

Approximation Mechanisms for Combinatorial Auctions

As we describe in Section 5.2.2, variants of combinatorial auctions are described via a

class of valuations and an oracle model describing how these valuations are accessed.

Many combinations of valuation class and oracle model have been considered, and

we refer the interested reader to [13, Figure 11.2] for an overview of known positive

and negative results for these variations. The most notable fact from prior work

to the work of this chapter, however, can be summarized easily: No constant-factor

approximation mechanisms for combinatorial auctions with heterogeneous goods have

been obtained, even in settings where constant-factor approximation algorithms exist.

The most promising and natural class of valuations for which such a positive result

has been pursued is the class of submodular valuations.

Despite intense study prior to the work presented in this chapter, there were no

truthful-in-expectation and polynomial-time constant-factor approximation mecha-

nisms for welfare maximization with any non-trivial subclass of submodular bidder

valuations. The best previous results, which apply to all submodular valuations,

2The VCG mechanism has other weaknesses that have been criticized in a combinatorial auctions
context, including vulnerability to collusion, low seller revenues in some settings, and more. See
Ausubel and Milgrom [5] for a discussion.
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are a truthful-in-expectation O
(

logm
log logm

)
-approximation mechanism in the commu-

nication complexity model due to Dobzinski et al. [28], and a universally-truthful

O(logm log logm)-approximation mechanism in the demand oracle model due to

Dobzinski [25].

A series of works have provided evidence that computational efficiency and uni-

versal truthfulness are in conflict for combinatorial auctions. Universally-truthful,

polynomial-time, VCG-based mechanisms with constant approximation ratios have

been ruled out for submodular combinatorial auctions in the communication complex-

ity model [29], as well as in the computational complexity model for some explicitly

represented sub-classes of submodular functions [17]. In recent work, Dobzinski [26]

proved that, in the value oracle model, there is no universally-truthful and polynomial-

time mechanism for submodular combinatorial auctions achieving an approximation

ratio better than mǫ−1/2. These results suggest that our relaxation to truthfulness in

expectation may be essential for our result.

The result of this chapter presented promise for the design of constant-factor ap-

proximation mechanisms for more general variants of combinatorial auctions. This

was recently shown to be impossible in the value oracle model in work by Dughmi and

Vondrák [38], who proved that there is no truthful-in-expectation and polynomial-

time mechanism for submodular combinatorial auctions achieving an approximation

ratio better than mγ , for some specific constant γ. Due to the similarity between the

lottery-value oracles of this chapter and traditional value oracles, this latest result is

evidence that the results of this chapter are unlikely to be extended to submodular

valuations without additional assumptions. Specifically, it is reasonable to conjec-

ture that matroid rank sum valuations are near the limit of what can be handled

by a polynomial-time constant-factor approximation mechanism for combinatorial

auctions.



CHAPTER 5. COMBINATORIAL AUCTIONS 81

5.2 Model and Preliminaries

5.2.1 Combinatorial Auctions

In combinatorial auctions there is a set [m] = {1, 2, . . . , m} of items, and a set

[n] = {1, 2, . . . , n} of players. Each player i has a valuation function vi : 2
[m] → R+

that is normalized (vi(∅) = 0) and non-decreasing (vi(A) ≤ vi(B) whenever A ⊆ B).

A feasible solution is an allocation (S1, . . . , Sn), where Si denotes the items assigned

to player i, and {Si}i are mutually disjoint subsets of [m]. Player i’s value for outcome

(S1, . . . , Sn) is equal to vi(Si). We consider combinatorial auctions when the goal is

to find an allocation (S1, . . . , Sn) that maximizes the social welfare:
∑

i vi(Si).

For the main result of this chapter, we assume that each player’s valuation function

is a matroid rank sum (MRS) function (Section 5.2.3), presented via a lottery-value

oracle (Section 5.2.4).

5.2.2 Describing Variants of Combinatorial Auctions

Variants of combinatorial auctions are typically specified by two parameters: A class

of valuations assumed to include each player’s valuation function, and a correspond-

ing oracle model that describes how the algorithm may access the valuation. As an

example, the least tractable class of valuations typically considered, often referred to

as the set of unrestricted valuations,3 is the family of all functions from bundles to real

numbers that are non-decreasing and normalized. Combinatorial auctions are most

interesting to study when additional structure is assumed of the valuation functions,

in which case we say the combinatorial auctions problem has restricted valuations.

3Note that this term is overloaded. In context of a general mechanism design problem, an
unrestricted valuation may depend arbitrarily on the allocation. On the other hand, an unrestricted
valuation for combinatorial auctions must depend only on the player’s own bundle, and be normalized
and non-decreasing in said bundle, but may otherwise be arbitrary.
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Restricted classes of valuations that have been considered include the previously de-

scribed class of submodular valuations,4 subadditive valuations,5 single-minded valu-

ations,6 and others. Our main result applies to matroid rank sum valuations, a large

sub-class of submodular valuations that we define in Section 5.2.3.

In general, a valuation function on m items is an exponential-sized object, requir-

ing 2m real numbers for explicit representation. This motivates various oracle models

as alternatives to explicit representation. The most traditional such model is that

of value oracles, where an algorithm may query a valuation function at any specific

bundle in constant time. A more powerful model is that of demand oracles, where

a valuation v is given by an oracle that takes as input a price pj for each item j,

and returns the bundle S maximizing the player’s utility v(S)−∑j∈S pj .
7 The most

powerful access model of all is the communication complexity model, which assumes

that an oracle for each valuation v answers arbitrary questions that can be formulated

and answered using a polynomial number of bits.

It is also not uncommon to directly consider combinatorial auctions with valu-

ations that are represented explicitly, rather than via an oracle. Valuation classes

considered in this manner are typically defined in reference to a particular short

representation; examples include single-minded valuations, and the class of coverage

valuations described in Section 1.2.2 and studied in Section 5.6.1. When valuations

are explicitly represented, the mechanism’s runtime is allowed to depend polynomi-

ally on the size of the representation, as is traditional in algorithm design. This

obviates the need for an oracle model, and allows traditional complexity-theoretic

analysis of the resulting combinatorial allocation problem. On the other hand, the

main advantage of an oracle model is that it enables positive results that make mini-

mal assumptions on how valuations are represented. For example, a polynomial-time

algorithm or mechanism for submodular combinatorial auctions in the value oracle

4Recall that submodular functions are those set functions v that satisfy diminishing marginal
returns : specifically, the marginal value v(S ∪ {j})− vi(S) for a each fixed item j is non-increasing
in S.

5A subadditive valuation v : 2[m] → R, also known as complement free, satisfies v(A) + v(B) ≥
v(A∪B) for all bundles A,B ⊆ [m]. Subadditive valuations strictly include submodular valuations.

6Single-minded valuations are those that evaluate to 0 for all but a single bundle.
7It was shown in [12] that demand oracles can be used to efficiently implement value oracles.
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model applies to any explicitly represented subclass of submodular valuations for

which value queries can be computed efficiently.

5.2.3 Matroid Rank Sum Valuations

We now define matroid rank sum valuations. Relevant concepts from matroid theory

are reviewed in Appendix A.1.

Definition 5.2.1. A set function v : 2[m] → R+ is a matroid rank sum (MRS)

function if there exists a family of matroid rank functions u1, . . . , uκ : 2[m] → N, and

associated non-negative weights w1, . . . , wκ ∈ R+, such that v(S) =
∑κ

ℓ=1wℓuℓ(S) for

all S ⊆ [m].

We do not assume any particular representation of MRS valuations, and require

only oracle access to their (expected) values on certain distributions (see Section

5.2.4). MRS functions include most concrete examples of non-decreasing submodular

functions that appear in the literature – this includes coverage functions,8 matroid

weighted-rank functions,9 and all convex combinations thereof. Moreover, as shown

in [54], 1−1/e is the best approximation possible in polynomial time for combinatorial

auctions with MRS valuations unless P = NP , even ignoring strategic considerations.

That being said, we note that some interesting submodular functions — such as some

budget additive functions10 — are not in the matroid rank sum family.

5.2.4 Lotteries and Oracles

Our result employs a randomized analogue of the value oracle model described in

Section 5.2.2. Our oracle takes as input a description of a simple lottery over subsets

8A coverage function f on ground set [m] designates some set L of elements, and m subsets
A1, . . . , Am ⊆ L, such that f(S) = | ∪j∈S Aj |. We note that L may be an infinite, yet measurable,
space. Coverage functions are arguably the canonical example of a submodular function, particularly
for combinatorial auctions.

9This is a generalization of matroid rank functions, where weights are placed on elements of the
matroid. It is true, though not immediately obvious, that a matroid weighted-rank function can be
expressed as a weighted combination of matroid (unweighted) rank functions – see e.g. [36].

10A set function f on ground set [m] is budgeted additive if there exists a constant B ≥ 0 (the
budget) such that f(S) = min(B,

∑
j∈S f({j})).
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of [m], and outputs the expectation of v over this lottery. Given a vector x ∈ [0, 1]m of

probabilities on the items, let Dx be the distribution over S ⊆ [m] that includes each

item j in S independently with probability xj . We use Fv(x) to denote the expected

value of v(S) over draws S ∼ Dx from this lottery.

Definition 5.2.2. A lottery-value oracle for set function v : 2[m] → R takes as input

a vector x ∈ [0, 1]m, and outputs

Fv(x) = E
S∼Dx

[v(S)] =
∑

S⊆[m]

v(S)
∏

j∈S

xj

∏

j 6=S

(1− xj). (5.1)

We note that Fv is simply the well-studied multi-linear extension of v (see for exam-

ple [19, 87]).

Value oracles are the traditional access model for a valuation function over bun-

dles of items. We justify relaxing to lottery-value oracles on two grounds: First, a

lottery-value oracle is easily implemented for various examples of MRS valuations,

such as explicit coverage functions (see Section 5.6.1), making the two oracle models

equivalent in these cases. Second, lottery-value oracles can be approximated arbi-

trarily well with high probability using a polynomial number of value oracle queries

(see [87]). Even though we are not able to reconcile the incurred sampling errors

— small as they may be — with the requirement that our mechanism be exactly

truthful, we suspect that relaxing our solution concept to approximate truthfulness –

also known as ǫ-truthfulness – would remove this difficulty, and allow us to relax our

oracle model to the more traditional value oracles.

5.3 Result Statement and Proof Overview

We use the framework of Chapter 4 to design a mechanism for combinatorial auctions

with MRS valuations in the lottery-value oracle model. Specifically we prove the

following Theorem.
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Theorem 5.3.1. There is a (1−1/e)-approximate, truthful-in-expectation mechanism

for combinatorial auctions with matroid rank sum valuations in the lottery-value or-

acle model, running in expected poly(n,m) time.

We formulate combinatorial auctions as integer program (5.2). The feasible set

Ω is encoded in {0, 1}n×m, with variable xij indicating whether item j is allocated

to player i. We use w(x) to denote social welfare of the allocation described by

variables x.

maximize w(x) =
∑

i vi({j : xij = 1})
subject to

∑
i xij ≤ 1, for j ∈ [m].

xij ∈ {0, 1} , for i ∈ [n], j ∈ [m].

(5.2)

We relax the feasible set of the above integer program as follows: Let P = P(Ω) be

the result of relaxing the constraints xij ∈ {0, 1} of (5.2) to 0 ≤ xij ≤ 1.

We define the allocation rule of our mechanism for combinatorial auctions as

simply the instantiation of Algorithm 4.1 with a particular rounding scheme that we

define in Section 5.4. We call our rounding scheme the Poisson rounding scheme, and

we denote it by rpoiss : P → dist(Ω). As described in Chapter 4, implementing our

allocation rule reduces to solving the following mathematical program.

maximize f(x) = ES∼rpoiss(x)[
∑

i vi(Si)]

subject to
∑

i xij ≤ 1, for j ∈ [m].

0 ≤ xij ≤ 1, for i ∈ [n], j ∈ [m].

(5.3)

Lemma 4.3.1 implies that our allocation rule is maximal in distributional range.

Therefore, truth-telling payments can be generically computed — with polynomial

overhead in runtime — as in Proposition 3.4.1. We prove in Section 5.4 that rpoiss

is (1 − 1/e)-approximate (Lemma 5.4.2), and therefore by Lemma 4.3.2, so is our

mechanism. More interestingly, we prove that rpoiss is convex (Lemma 5.4.1) in Sec-

tion 5.5. Therefore, (5.3) is a convex program. Convex programs can frequently be

solved in polynomial time, and as we show in Appendix B.1 ours is no exception.

This completes the proof of Theorem 5.3.1.
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5.4 The Poisson Rounding Scheme

We define the Poisson rounding scheme as follows. Given a fractional solution x

to (5.3), do the following independently for each item j: assign j to player i with

probability 1 − e−xij . (This is well defined since 1 − e−xij ≤ xij for all players i and

items j, and
∑

i xij ≤ 1 for all items j.) We make this precise in Algorithm 5.1.

For clarity, we represent an allocation as a function from items to players, with an

additional null player ∗ reserved for items that are left unassigned.

Input: Fractional allocation x with
∑

i xij ≤ 1 for all j, and 0 ≤ xij ≤ 1 for all i, j.

Output: Feasible allocation a : [m] → [n] ∪ {∗}.
1: for j = 1, . . . , m do

2: Draw pj uniformly at random from [0, 1].

3: if
∑

i(1− e−xij ) ≥ pj then

4: Let a(j) be the minimum index such that
∑

i≤a(j)(1− e−xij) ≥ pj .

5: else

6: a(j) = ∗
7: end if

8: end for

Algorithm 5.1: The Poisson rounding scheme rpoiss.

The Poisson rounding scheme is (1 − 1/e)-approximate and convex. The proof

of Lemma 5.4.2 is not difficult, and is included below. We prove Lemma 5.4.1 in

Section 5.5.

Lemma 5.4.1. The Poisson rounding scheme is convex when player valuations are

matroid rank sum functions.

Lemma 5.4.2. The Poisson rounding scheme is (1− 1/e)-approximate when player

valuations are submodular.

Proof. Let S1, . . . , Sn be an allocation, and let x be an the integer point of (5.3)

corresponding to S1, . . . , Sn. Let (S ′
1, . . . , S

′
n) ∼ rpoiss(x). It suffices to show that

E[
∑

i vi(S
′
i)] ≥ (1− 1/e) ·∑i vi(Si).
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By definition of the Poisson rounding scheme, S ′
i includes each j ∈ Si indepen-

dently with probability 1 − 1/e. Submodularity implies that E[vi(S
′
i)] ≥ (1 − 1/e) ·

vi(Si) – this was proved in many contexts: see for example [42, Lemma 2.2], and the

earlier related result in [41, Proposition 2.3]. This completes the proof.

5.5 Convexity of the Poisson Rounding Scheme

First, we prove in Section 5.5.1 the special case of Lemma 5.4.1 for coverage valuations

as a warmup. We then extend the proof to all MRS valuations in Section 5.5.2.

5.5.1 Warmup: Convexity for Coverage Valuations

Recall the definition of coverage valuations, given in Section 5.2.3. Fix n, m, and

coverage valuations {vi}ni=1, and let P denote the feasible set of mathematical pro-

gram (5.3). Let (S1, . . . , Sn) ∼ rpoiss(x) be the (random) allocation computed by the

Poisson rounding scheme for point x ∈ P. The expected welfare E[w(rpoiss(x))] can

be written as E[
∑n

i=1 vi(Si)], where the expectation is taken over the internal random

coins of the rounding scheme. By linearity of expectation, as well as the fact that

the sum of concave functions is concave, it suffices to show that E[vi(Si)] is a concave

function of x for an arbitrary player i with coverage valuation vi.

Fix player i, and use xj , v, and S as short-hand for xij , vi, and Si respectively.

Recall that v is a coverage function; let L be a ground set and A1, . . . , Am ⊆ L be

such that vi(T ) = | ∪j∈T Aj| for each T ⊆ [m]. The Poisson rounding scheme includes

each item j in S independently with probability 1 − e−xj . The expected value of

player i can be written as follows.

E [v(S)] = E[| ∪j∈S Aj |]
=
∑

ℓ∈L

Pr[ℓ ∈ ∪j∈SAj ]

Since the sum of concave functions is concave, it suffices to show that Pr[ℓ ∈ ∪j∈SAj ]

is concave in x for each ℓ ∈ L. We can interpret Pr[ℓ ∈ ∪j∈SAj] as the probability
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that element ℓ is covered by an item in S, where j ∈ [m] covers ℓ ∈ L if ℓ ∈ Aj .

For each ℓ ∈ L, let Cℓ be the set of items that cover ℓ. Element ℓ ∈ L is covered

by S precisely when Cℓ ∩ S 6= ∅. Each item j ∈ Cℓ is included in S independently

with probability 1 − e−xj . Therefore, the probability ℓ ∈ L is covered by S can be

re-written as follows:

Pr[ℓ ∈ ∪j∈SAj ] = 1−
∏

j∈Cℓ

e−xj

= 1− exp

(
−
∑

j∈Cℓ

xj

)
. (5.4)

Form (5.4) is the composition of the concave function g(y) = 1 − e−y with the affine

function y → ∑
j∈Cℓ

xj . It is well-known that composing a concave function with

an affine function yields another concave function (see e.g. [15]). Therefore, Pr[ℓ ∈
∪j∈SAj ] is concave in x for each ℓ ∈ L, as needed. This completes the proof of

Lemma 5.4.1 for the special case of coverage valuations.

5.5.2 Convexity for Matroid Rank Sum Valuations

We now prove Lemma 5.4.1 in its full generality. As a tool in our proof, we define a

discrete analogue of a Hessian matrix for set functions, and show that these discrete

Hessians are negative semi-definite for matroid rank sum functions.

Definition 5.5.1. Let v : 2[m] → R be a set function. For S ⊆ [m], we define the

discrete Hessian matrix Hv
S ∈ Rm×m of v at S as follows:

Hv
S(j, k) = v(S ∪ {j, k})− v(S ∪ {j})− v(S ∪ {k}) + v(S) (5.5)

for j, k ∈ [m].

Claim 5.5.2. If v : 2[m] → R+ is a matroid rank sum function, then Hv
S is negative

semi-definite for each S ⊆ [m].
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Proof. We observe that Hv
S is linear in v, and recall that a non-negative weighted-sum

of negative semi-definite matrices is negative semi-definite. Therefore, it is sufficient

to prove this claim when v is a matroid rank function.

Let v be the matroid rank function of some matroid M with ground set [m],

and fix S ⊆ [m]. Observe that v is non-decreasing, submodular, integer-valued, and

v(T ∪ {j}) ≤ v(T ) + 1 for all T ⊆ [m] and j ∈ [m]. Therefore, a simple case analysis

reveals that for each j, k ∈ [m]

Hv
S(j, k) =




−1 if v(S ∪ {j}) = v(S ∪ {k}) = v(S ∪ {j, k}) = v(S) + 1,

0 otherwise.

In other words, −Hv
S is a binary matrix where −Hv

S(j, k) = 1 if and only if two

conditions are satisfied: (1) Both {j} and {k} are independent sets in the contracted

matroid M/S, and (2) {j, k} is dependent in M/S.

It is clear that−Hv
S is symmetric. We now also show that−Hv

S encodes a transitive

relation on [m] — i.e. for all j, k, ℓ ∈ [m], if −Hv
S(j, k) = −Hv

S(k, ℓ) = 1 then

−Hv
S(j, ℓ) = 1. Fix j, k, ℓ such that −Hv

S(j, k) = −Hv
S(k, ℓ) = 1. The sets {j}, {k},

and {ℓ} are independent sets of the contracted matroidM/S, and moreover {j, k} and

{k, ℓ} are dependent in M/S. Assume for a contradiction that {j, ℓ} is independent

in M/S; applying the matroid exchange property to {k} and {j, ℓ} implies that one

of {j, k} and {k, ℓ} must be independent in M/S as well, contradicting our choice of

j, k, and ℓ. Therefore, {j, ℓ} is dependent in M/S, and −Hv
S(j, ℓ) = 1.

A binary matrix encoding a symmetric and transitive relation is a block diagonal

matrix where each diagonal block is an all-ones or all-zeros sub-matrix. It is known,

and easy to prove, that such a matrix is positive semi-definite. Therefore Hv
S is

negative semi-definite.

We now return to Lemma 5.4.1. Fix n, m, and MRS valuations {vi}ni=1, and let P
denote the feasible set of mathematical program (5.3). Let (S1, . . . , Sn) ∼ rpoiss(x) be

the (random) allocation computed by the Poisson rounding scheme for point x ∈ P.

The expected welfare E[w(rpoiss(x))] can be written as E[
∑n

i=1 vi(Si)], where the



CHAPTER 5. COMBINATORIAL AUCTIONS 90

expectation is taken over the internal random coins of the rounding scheme. By

linearity of expectation, as well as the fact that the sum of concave functions is

concave, it suffices to show that E[vi(Si)] is a concave function of x for an arbitrary

player i with MRS valuation vi.

Fix player i, and use xj , v, S as short-hand for xij , vi, Si respectively. The

Poisson rounding scheme includes each item j in S independently with probability

1 − e−xj . We can now write the expected value of player i as the following function

Gv : R
m → R:

Gv(x1, . . . , xm) =
∑

S⊆[m]

v(S)
∏

j∈S

(1− e−xj )
∏

j 6=S

e−xj (5.6)

The following claim, combined with Claim 5.5.2, completes the proof of Lemma 5.4.1.

Claim 5.5.3. If all discrete Hessians of v are negative semi-definite, then Gv is

concave.

Proof. Assume Hv
S is negative semi-definite for each S ⊆ [m]. We work with Gv

as expressed in Equation (5.6). We will show that the Hessian matrix of Gv at an

arbitrary x ∈ Rm is negative semi-definite, which is a sufficient condition for concavity.

We take the mixed-derivative of Gv with respect to xj and xk (possibly j = k).

∂2Gv(x)

∂xj∂xk

=
∑

S⊆[m]\{j,k}

∏

ℓ∈S

(1− e−xℓ)
∏

ℓ∈[m]\S

e−xℓ

(
v(S)− v(S ∪ {j})− v(S ∪ {k})

+ v(S ∪ {j, k})
)

=
∑

S⊆[m]

∏

ℓ∈S

(1− e−xℓ)
∏

ℓ∈[m]\S

e−xℓ

(
v(S)− v(S ∪ {j})− v(S ∪ {k})

+ v(S ∪ {j, k})
)

=
∑

S⊆[m]

∏

ℓ∈S

(1− e−xℓ)
∏

ℓ∈[m]\S

e−xℓ Hv
S(j, k)

The first equality follows by grouping the terms of Equation (5.6) by the projection

of S onto [m] \ {i, j}, and then differentiating. The second equality follows from the
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fact that v(S)− v(S ∪ {j})− v(S ∪ {k}) + v(S ∪ {j, k}) = 0 when S includes either

of j and k. The last equality follows by definition of Hv
S.

The above derivation immediately implies that we can write the Hessian matrix

of Gv(x) as a non-negative weighted sum of discrete Hessian matrices.

▽2Gv(x) =
∑

S⊆[m]

∏

ℓ∈S

(1− e−xℓ)
∏

ℓ∈[m]\S

e−xℓ Hv
S (5.7)

A non-negative weighted-sum of negative semi-definite matrices is negative semi-

definite. This completes the proof of the claim.

5.6 Additional Results

5.6.1 A Randomized Mechanism for Explicit Valuations

In this section, we apply our mechanism to explicitly represented coverage valuations.

This demonstrates the utility of our mechanism in a concrete, non-oracle-based set-

ting. Moreover, it stands in contrast to the impossibility result for deterministic

VCG-based mechanisms in Section 5.6.2, and is a testament to the importance of

randomization in the design of mechanisms for combinatorial auctions.

An n player, m item instance combinatorial auctions with explicit coverage valu-

ations is described as follows. For each player i, there is a finite set Li, and a family

Ai
1, . . . , A

i
m of subsets of Li. The valuation function of player i is then defined as

vi(S) = | ∪j∈S Ai
j|. The set system

(
Li,
{
Ai

j

}m
j=1

)
is encoded explicitly as a bipartite

graph.

As discussed previously, MRS valuations include all coverage valuations. There-

fore, in order to implement the mechanism of Theorem 5.3.1 for this problem, it

suffices to answer lottery-value queries in time polynomial in the number of bits en-

coding the instance.

Claim 5.6.1. In combinatorial auctions with explicit coverage valuations, lottery-

value queries can be answered in time polynomial in the length of the encoding of the

instance.
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Proof. Let v : 2[m] → R+ be a coverage valuation presented explicitly as a set system

(L, {Aj}mj=1), and let x ∈ [0, 1]m. Let S be a random set that includes each j ∈ [m]

independently with probability xj . The outcome of the lottery value oracle of v

evaluated at x is equal to the sum, over all ℓ ∈ L, of the probability that ℓ is

“covered” by S – specifically,
∑

ℓ∈LPr[ℓ ∈ ∪j∈SAj ]. It is easy to verify that a term

of this sum can be expressed as the following closed form expression.

Pr[ℓ ∈ ∪j∈SAj ] = 1−
∏

j:Aj∋ℓ

(1− xj)

This expression can be evaluated in time polynomial in the representation of the set

system. This completes the proof.

Claim 5.6.1 and Theorem 5.3.1 imply the following Theorem.

Theorem 5.6.2. There is a (1−1/e)-approximate, truthful-in-expectation mechanism

for combinatorial auctions with explicit coverage valuations that runs in polynomial

time in expectation.

5.6.2 An Impossibility for VCG-based Deterministic Mech-

anisms

In this section, we show that deterministic techniques for the design of VCG-based

mechanisms fall short of providing a constant approximation factor for combinatorial

auctions with explicit coverage valuations. This stands in contrast with the result in

Section 5.6.1 for randomized mechanisms.

We use the following special case of [17, Theorem 1.2]: If a succinct combinatorial

auction problem satisfies the regularity conditions on the valuations defined in [17],

and moreover the 2-player version of the problem is APX hard, then no polynomial-

time maximal-in-range11 algorithm guarantees an approximation ratio of o(n).

It is routine to verify the regularity assumptions of [17] for explicit coverage valua-

tions. APX-hardness of the 2-player problem follows by an elementary reduction from

11Recall the definition of maximal-in-range algorithms from Section 3.3.
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the APX-hard problemmax-cut. Given an instance of max-cut on a graphG = (V,E),

we let [m] = V , L1 = L2 = E. For e ∈ E, i ∈ {1, 2}, and j ∈ V , we let e ∈ Ai
j if

j is one of the endpoints of edge e. It is easy to check that the welfare-maximizing

allocation of the resulting 2-player instance of combinatorial auctions corresponds to

the maximum cut of G. Moreover, using the fact that the optimal objective value

of max-cut is at least |E|/2, it is elementary to verify that the reduction preserves

hardness of approximation up to a constant factor. Therefore, combinatorial auctions

with explicit coverage valuations and 2 players is APX hard. This yields the following

Theorem.

Theorem 5.6.3. No polynomial-time maximal-in-range algorithm for combinatorial

auctions with explicit coverage valuations achieves a approximation ratio of o(n),

unless NP ⊆ P/poly.



Chapter 6

Combinatorial Public Projects

6.1 Introduction

In combinatorial public projects, a public planner must choose from a set of projects

to undertake subject to a resource constraint, and a set of self-interested players

have private valuations over packages of projects. Combinatorial public projects has

emerged as the paradigmatic “hard problem” of algorithmic mechanism design, due

to a large body of impossibility results for variants of the problem.

We use the convex rounding framework introduced in Chapter 4 to design an

expected-polynomial-time, truthful-in-expectation, (1 − 1/e)-approximation mech-

anism for welfare maximization in a fundamental variant of combinatorial public

projects. Our approximation factor is the best possible for the variant of combi-

natorial public projects we consider, assuming P 6= NP . Our result is the first

truthful-in-expectation and polynomial-time mechanism to achieve a constant-factor

approximation for a natural NP-hard variant of combinatorial public projects, and

stands in contrast to the body of existing negative results for this problem.

6.1.1 Summary of Results and Techniques

In combinatorial public projects, there is a set of projects that may be undertaken,

and a set of self-interested players each equipped with a private valuation over subsets

94
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of the projects. The principal is a public planner who must choose a subset of these

projects, subject to choosing at most a given number k of the projects, with the goal

of maximizing social welfare. Approximation mechanisms for combinatorial public

projects, in particular the variant with submodular valuations,1 have received much

attention in algorithmic mechanism design in recent years, mostly in the form of

negative results.

Using the convex rounding framework introduced in Chapter 4, we design an

expected-polynomial-time, truthful-in-expectation, (1 − 1/e)-approximation mecha-

nism for welfare maximization in combinatorial public projects, when players have

valuations that are matroid rank sums (MRS). This is the same class of valuations

considered for combinatorial auctions in Chapter 5, and we recall that it includes most

concrete examples of submodular functions studied in a resource allocation context,

such as coverage functions, matroid weighted-rank functions, and convex combina-

tions thereof. Our approximation factor is the best possible, even for known and

explicitly given coverage valuations, assuming P 6= NP .

To prove our result, we follow the general outline of Chapter 5. However, our

task is more challenging: whereas in combinatorial auctions, randomized rounding

may allocate each item independently (the approach taken in Chapter 5), this is not

possible for CPP. We must respect the cardinality constraint of k on the set of chosen

projects, and therefore our rounding scheme must by fiat be dependent. This presents

a major challenge in analyzing our rounding scheme. Whereas the expected value of a

submodular function on a product distribution (i.e. independent rounding) has been

studied extensively, and is closely related to the now well-understood multi-linear

extension (see e.g. [19, 87]), analyzing the expected value of a dependent distribution

— in particular proving it to be a concave function of underlying parameters — is

a technical challenge that we overcome by combining techniques from combinatorics,

convex analysis, and matroid theory.

1As mentioned in Chapter 5, submodular functions are those set functions v that satisfy dimin-
ishing marginal returns : specifically, the marginal value v(S ∪ {j})− vi(S) for a each fixed item j is
non-increasing in S.
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6.1.2 Related Work

As mentioned previously, most prior results in algorithmic mechanism design for com-

binatorial public projects are negative, and none have exhibited constant-factor ap-

proximation mechanisms for a natural NP-hard variant of the problem. We overview

the negative results in related work next.

Combinatorial public projects, in particular its exact variant,2 was first introduced

by Papadimitriou et al. [74]. They show that no deterministic truthful mechanism

for exact CPP with submodular valuations can guarantee better than a 1/O(
√
m)

fraction of the optimal social welfare. This stands in contrast to the non-strategic

version of the problem, which admits a (1 − 1/e)-approximation algorithm due to

Nemhauser, Wolsey and Fisher [69], and this is optimal [75] assuming P 6= NP .

Buchfuhrer et al. [18] explored approximation algorithms and truthful mechanisms

for CPP with various classes of valuations in the submodular hierarchy. The most

relevant result of [18] to our work is a lower bound of Ω(
√
m) on the approximation

ratio of deterministic truthful mechanisms for the exact variant of CPP with coverage

valuations — a class of valuations for which our randomized mechanism for flexible

CPP obtains a (1− 1/e) approximation.

Recently, Dobzinski [26] showed two lower bounds for CPP in the value oracle

model: A lower bound of Ω(
√
m) on universally truthful mechanisms for flexible CPP

with submodular valuations, and a lower bound of Ω(
√
m) on truthful-in-expectation

mechanisms for exact CPP with submodular valuations. We note that the latter was

the first unconditional lower bound on truthful-in-expectation mechanisms. Most re-

cently, Dughmi and Vondrák showed that no truthful-in-expectation and polynomial-

time mechanism for submodular combinatorial public projects in the value oracle

model provides an approximation guarantee better than m−α, for some specific con-

stant α. Together, these results imply that extending the results of this chapter to

submodular valuations seems unlikely without additional assumptions.

2The exact variant of combinatorial public projects constrains feasible sets to contain exactly k
projects, rather than at most k as in the flexible variant we consider here.
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6.2 Model and Preliminaries

6.2.1 Combinatorial Public Projects

In combinatorial public projects (CPP) there is a set [m] = {1, . . . , m} of projects, a

cardinality bound k such that 0 ≤ k ≤ m, and a set [n] = {1, . . . , n} of players. Each

player i has a valuation function vi : 2
[m] → R+ that is normalized (vi(∅) = 0) and

non-decreasing (vi(A) ≤ vi(B) whenever A ⊆ B). In this chapter, we consider the

flexible variant of combinatorial public projects: a feasible solution is a set S ⊆ [m] of

projects with |S| ≤ k. Player i’s value for outcome S is equal to vi(S). We consider

CPP when the goal is to choose the feasible set S maximizing social welfare:
∑

i vi(S).

Our result will assume that each player’s valuation function is a matroid rank

sum (MRS) function (Section 5.2.3), presented via a bounded-lottery-value oracle

(Section 6.2.2).

6.2.2 Lotteries and Oracles

As mentioned in Section 5.2.2, it is traditional to model access to a valuation as a

value oracle. For a valuation v : 2[m] → R, this oracle takes as input a set S ⊆ [m],

and returns v(S). Similar to Chapter 5, this chapter uses a randomized analogue of

value oracles; one that takes in a description of a simple lottery over sets S ⊆ [m],

and outputs the expectation of v over this lottery.

Let k ∈ [m], let R ⊆ [m], and let x ∈ [0, 1]m be a vector such that
∑

j xj ≤ 1.

We interpret x as a probability distribution over [m] ∪ {∗}, where ∗ represents not

choosing a project. Specifically, project j ∈ [m] is chosen with probability xj , and

∗ is chosen with probability 1 −∑j xj . We define a distribution DR
k (x) over 2[m],

and call this distribution the k-bounded lottery with marginals x and promise R. We

sample S ∼ DR
k (x) as follows: Let j1, . . . , jk be independent draws from x, and let

S = R∪{j1, . . . , jk}\{∗}. Essentially, this lottery commits to choosing projects R, and

adds an additional k projects chosen randomly with replacement from distribution x.

When R = ∅, as will be the case through most of this paper, we omit mention of the

promised set. Our oracles return the expected value of a bounded lottery.
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Definition 6.2.1. A bounded-lottery-value oracle for set function v : 2[m] → R takes

as input a vector x ∈ [0, 1]m with
∑

j xj ≤ 1, a bound k ∈ [m], and a set R ⊆ [m],

and outputs ES∼DR
k
(x)[v(S)].

In our model for CPP, we assume that a player with valuation function vi can

answer bounded-lottery-value oracle queries for vi. A bounded-lottery-value oracle

is a generalization of the more traditional value oracles. Nevertheless, as we did in

Chapter 5, we justify our stronger oracle model on two grounds: First, a bounded-

lottery-value oracle is easily implemented for various examples of MRS valuations,

such as explicit coverage functions (not too dissimilar from the implementation of

Section 5.6.1), making the two oracle models equivalent in these cases. Second,

bounded-lottery-value oracles can be approximated arbitrarily well with high prob-

ability using a polynomial number of value oracle queries; this is done by random

sampling, and we omit the straightforward analysis. Even though we are not able to

reconcile the incurred sampling errors — small as they may be — with the require-

ment that our mechanism be exactly truthful, we suspect that relaxing our solution

concept to approximate truthfulness – also known as ǫ-truthfulness – would remove

this difficulty, and allow us to relax our oracle model to the more traditional value

oracles.

6.3 Result Statement and Proof Overview

We use the framework of Chapter 4 to design a mechanism for combinatorial public

projects with MRS valuations in the bounded-lottery-value oracle model. Specifically

we prove the following Theorem.

Theorem 6.3.1. There is a (1−1/e)-approximate, truthful-in-expectation mechanism

for combinatorial public projects with matroid rank sum valuations in the bounded-

lottery-value oracle model, running in expected poly(n,m) time.

We encode combinatorial public projects as integer program (6.1). The feasible

set Ω is encoded in {0, 1}m, with variable xj indicating whether project j is chosen.
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We use w(x) to denote social welfare of the set of projects described by variables x.

maximize w(x) =
∑

i vi({j : xj = 1})
subject to

∑m
j=1 xj ≤ k

xj ∈ {0, 1} , for j ∈ [m].

(6.1)

We relax the feasible set of the above integer program as follows: Let P = P(Ω) be

the result of relaxing the constraints xj ∈ {0, 1} of (6.1) to 0 ≤ xj ≤ 1.

We define the allocation rule of our mechanism for combinatorial public projects

as simply the instantiation of Algorithm 4.1 with a particular rounding scheme that

we define in Section 6.4. We call our rounding scheme the k-bounded-lottery rounding

scheme, and we denote it by rk : P → dist(Ω). As described in Chapter 4, imple-

menting our allocation rule reduces to solving the following mathematical program.

maximize f(x) = ES∼rk(x)[
∑

i vi(S)]

subject to
∑m

j=1 xj ≤ k

0 ≤ xj ≤ 1, for j ∈ [m].

(6.2)

The outline of the proof in this chapter is essentially identical to that of Chap-

ter 5. Lemma 4.3.1 implies that our allocation rule is maximal in distributional range.

Therefore, truth-telling payments can be generically computed — with polynomial

overhead in runtime — as in Proposition 3.4.1. We prove in Section 6.4 that rk is

(1−1/e)-approximate (Lemma 6.4.2), and therefore by Lemma 4.3.2, so is our mech-

anism. More interestingly, we prove that rk is convex (Lemma 6.4.1) in Section 6.5.

Therefore (6.2) is a convex program, and we show that it can be solved in polynomial

time in Appendix B.2. This completes the proof of Theorem 6.3.1.

6.4 The k-Bounded-Lottery Rounding Scheme

We define the k-bounded-lottery rounding scheme rk as follows. Given a vector x fea-

sible for (6.2), we let distribution rk(x) be the k-bounded-lottery with marginals x/k

(and promise ∅), as defined in Section 6.2.2. We make this precise in Algorithm 6.1.
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Input: Fractional solution x ∈ Rm with
∑

j xj ≤ k, and 0 ≤ xj ≤ 1 for all j.

Output: S ⊆ [m] with |S| ≤ k

1: For each j ∈ [m] designate the interval Ij = [ 1
k

∑
j′<j xj′ ,

1
k

∑
j′≤j xj′ ] of length

xj

k

2: Draw p1, . . . , pk independently and uniformly from [0, 1]

3: Let S = {j ∈ [m] : {p1, . . . , pk} ∩ Ij 6= ∅}
Algorithm 6.1: The k-bounded-lottery rounding scheme rk.

The k-bounded-lottery rounding scheme is (1−1/e)-approximate and convex. We

prove the approximation lemma below. The convexity lemma is proved in Section 6.5.

Lemma 6.4.1. The k-bounded-lottery rounding scheme is convex for CPP with MRS

valuations.

Lemma 6.4.2. The k-bounded-lottery rounding scheme is (1−1/e)-approximate when

valuations are submodular.

Proof. Fix n,m, k and {vi}ni=1. Let S ⊆ [m] be a feasible solution to CPP — i.e.

|S| ≤ k. Let 1S be the vector with 1 in indices corresponding to S, and 0 otherwise.

Let T ∼ rk(1S). We will first show that each element of j ∈ S is included in T with

probability at least 1 − 1/e. Observe that T is the union of k independent draws

from a distribution on [m] ∪ {∗}, where each time the probability of j ∈ S is 1/k.

Therefore, the probability that j is included in T is 1− (1− 1/k)k ≥ 1− 1/e.

Submodularity now implies that E[vi(T )] ≥ (1 − 1/e) · vi(S) for each player i —

this was proved in many contexts: see for example [42, Lemma 2.2], and the earlier

related result in [41, Proposition 2.3]. This completes the proof.

6.5 Convexity of the k-Bounded-Lottery Round-

ing Scheme

First, we prove in Section 6.5.1 the special case of Lemma 6.4.1 for coverage valuations

as a warmup. We then extend the proof to all MRS valuations in Section 6.5.2.
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6.5.1 Warmup: Convexity for Coverage Valuations

As defined in Chapter 5, a coverage function f on ground set [m] designates some set

Y , and m subsets A1, . . . , Am ⊆ Y , such that f(S) = | ∪j∈S Aj|.
Fix n,m, k and {vi}ni=1. Assume that, for each player i, the valuation function

vi : 2[m] → R is a coverage function. We let v(S) =
∑

i vi(S) be the welfare of a

solution S to CPP. It is an easy observation that the sum of coverage functions is

also a coverage function. Therefore v(S) is a coverage function. We let Y be a set,

and A1, . . . , Am ⊆ Y , such that v(S) = | ∪j∈S Aj |. While our proof extends easily to

the case where Y is an arbitrary measure space, we assume in this section that Y is

a finite set for simplicity.

Let P denote the polytope of fractional solutions to CPP as given in (6.2). We

now show that ES∼rk(x)[v(S)] is a concave function of x for x ∈ P, completing the

proof of Lemma 6.4.1 for the special case of coverage valuations. Take an arbitrary

x ∈ P, and let S ∼ rk(x) be a random variable. Using linearity of expectations, we

can rewrite the expected welfare as follows.

E[v(S)] = E[| ∪j∈S Aj |] =
∑

ℓ∈Y

Pr[ℓ ∈ ∪j∈SAj ]

Since the sum of concave functions is concave, showing that Pr[ℓ ∈ ∪j∈SAj] is

concave in x for each ℓ ∈ Y suffices to complete the proof. For ℓ ∈ Y , let Tℓ =

{j ∈ [m] : ℓ ∈ Aj} be the set of projects that “cover” ℓ. Let p1, . . . , pk and I1, . . . , Ik

be as in Algorithm 6.1. Note that {Ij}mj=1 are disjoint sub-intervals of [0, 1], and

|Ij| = xj

k
. We can rewrite the probability of covering ℓ as follows.
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Pr[ℓ ∈ ∪j∈SAj ] = Pr[S ∩ Tℓ 6= ∅]
= Pr[{p1, . . . , pk} ∩ ∪j∈Tℓ

Ij 6= ∅]
= 1−Pr[{p1, . . . , pk} ∩ ∪j∈Tℓ

Ij = ∅]

= 1−
k∏

t=1

Pr[pt /∈ ∪j∈Tℓ
Ij]

= 1−
k∏

t=1

(1− | ∪j∈Tℓ
Ij|)

= 1−
(
1−

∑
j∈Tℓ

xj

k

)k

.

The final form is simply the composition of the concave function g(y) = 1−(1−y/k)k

with the affine function y → ∑
j∈Tℓ

xj . It is well known that composing a concave

function with an affine function yields another concave function (see e.g. [15]). This

completes the proof of Lemma 6.4.1 for the special case of coverage valuations.

6.5.2 Convexity for Matroid Rank Sum Valuations

We now prove Lemma 6.4.1 in its full generality. First, we recall the discrete hessian

matrix, as defined in Chapter 5.

Definition 6.5.1 (Chapter 5). Let v : 2[m] → R be a set function. For S ⊆ [m], we

define the discrete Hessian matrix Hv
S ∈ Rm×m of v at S as follows:

Hv
S(i, j) = v(S ∪ {i, j})− v(S ∪ {i})− v(S ∪ {j}) + v(S) (6.3)

for i, j ∈ [m].

It was shown in Chapter 5 that the discrete hessian matrices are negative semi-

definite for matroid rank sum functions.

Claim 6.5.2 (Chapter 5). If v : 2[m] → R+ is a matroid rank sum function, then Hv
S

is negative semi-definite for each S ⊆ [m].
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We now return to Lemma 6.4.1. Fix n and m. For each cardinality bound k ∈ [m],

let Pk denote the polytope of fractional solutions to CPP as given in (6.2). For a set

of MRS valuations v1, . . . , vn, we observe that the social welfare v(S) =
∑n

i=1 vi(S) is

— by the (obvious) fact that the sum of MRS functions is an MRS function — also

an MRS function. Therefore, we will prove Lemma 6.4.1 by showing that, for each

k ∈ [m] and MRS function v : 2[m] → R, the following function of x ∈ Pk is concave

in x.

Gv
k(x) = E

S∼rk(x)
[v(S)]

=
∑

S⊆[m]

v(S)Pr[rk(x) = S]
(6.4)

We use techniques from combinatorics to write Pr[rk(x) = S] in a form that will

be easier to work with. For T ⊆ [m], we use xT as short-hand for
∑

j∈T xj , and T as

short-hand for [m] \ T .

Claim 6.5.3. For each k ∈ [m], x ∈ Pk, and S ⊆ [m]

Pr[rk(x) = S] = −1|S|
∑

R⊆S

−1|R|
(
1− xR

k

)k
(6.5)

Proof. It is easy to see that Pr[rk(x) = S] is equal to:

Pr[rk(x) ⊆ S]−Pr[
∨

j∈S

rk(x) ⊆ S \ {j}] (6.6)

Using the inclusion-exclusion principle, we can rewrite (6.6) as follows:

Pr[rk(x) ⊆ S]−
∑

∅6=T⊆S

−1|T |−1Pr[rk(x) ⊆ S \ T ] (6.7)

Letting R = S \ T in (6.7), we get

Pr[rk(x) ⊆ S]−
∑

R(S

−1|S|−|R|−1Pr[rk(x) ⊆ R] (6.8)
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We can easily simplify (6.8) to conclude that

Pr[rk(x) = S] =
∑

R⊆S

−1|S|−|R|Pr[rk(x) ⊆ R] (6.9)

Next, we observe that the expression Pr[rk(x) ⊆ R] can be expressed as a simple

closed form in x. Let p1, . . . , pk and I1, . . . , Im be as in Algorithm 6.1. The event

rk(x) ⊆ R occurs exactly when none of p1, . . . , pk land in the intervals corresponding

to projects R. Recalling that the interval Ij of project j has length xj/k, we get that

the probability of any particular pt falling in ∪j∈RIj is exactly xR/k. Therefore, by

the independence of the variables p1, . . . , pk, we get that

Pr[rk(x) ⊆ R] =
(
1− xR

k

)k
(6.10)

Combining (6.9) and (6.10) completes the proof.

Building on Claim 6.5.3, we now express the Hessian matrix of Gv
k as a non-

negative weighted sum of discrete Hessian matrices of v. We note that when x ∈ Pk,

it is easy to verify that k−2
k

· x ∈ Pk−2, and therefore (6.11) is well-defined.

Claim 6.5.4. For each k ∈ [m], x ∈ Pk, and v : 2[m] → R, we have

▽2Gv
k(x) =

k − 1

k

∑

S⊆[m]

Pr

[
rk−2

(
k − 2

k
· x
)

= S

]
Hv

S (6.11)

Proof. Fix i, j ∈ [m], possibly with i = j. We work with Gv
k as defined in Equation

(6.4), and plug in expression (6.5).

Gv
k(x) =

∑

S⊆[m]

v(S) · −1|S|
∑

R⊆S

−1|R|
(
1− xR

k

)k

Differentiating with respect to xi and xj gives:

∂2Gv
k(x)

∂xi∂xj
=

k − 1

k

∑

S⊆[m]

v(S) · −1|S|
∑

R⊆S\{i,j}

−1|R|
(
1− xR

k

)k−2
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We group the terms by projecting S onto [m]\{i, j}, and then we simplify the resulting

expression.

∂2Gv
k(x)

∂xi∂xj

=
k − 1

k

∑

S⊆[m]\{i,j}

−1|S|
∑

R⊆S

−1|R|
(
1− xR

k

)k−2
(
v(S)− v(S ∪ {i})

− v(S ∪ {j}) + v(S ∪ {i, j})
)

=
k − 1

k

∑

S⊆[m]

−1|S|
∑

R⊆S

−1|R|
(
1− xR

k

)k−2
(
v(S)− v(S ∪ {i})− v(S ∪ {j})

+ v(S ∪ {i, j})
)

=
k − 1

k

∑

S⊆[m]

−1|S|
∑

R⊆S

−1|R|
(
1− xR

k

)k−2

Hv
S(i, j) (6.12)

The second equality follows from the fact that v(S)− v(S ∪{i})− v(S ∪{j})+ v(S ∪
{i, j}) = 0 when S includes either of i and j. The last equality follows by definition

of Hv
S.

Invoking Claim 6.5.3 with k′ = k − 2 and x′ = k−2
k

· x, and plugging the resulting

expression into into (6.12), we conclude that

∂2Gv
k(x)

∂xi∂xj

=
k − 1

k

∑

S⊆[m]

Pr

[
rk−2

(
k − 2

k
· x
)

= S

]
Hv

S(i, j).

Claims (6.5.2) and (6.5.4) establish that, when v is MRS and k ∈ [m], ▽2Gv
k(x)

is a non-negative weighted sum of negative semi-definite matrices for each x ∈ Pk.

A non-negative weighted sum of negative semi-definite matrices is negative semi-

definite. Therefore, the Hessian matrix of Gv
k is negative semi-definite at each x ∈ Pk,

and we conclude that Gv
k is a concave function on Pk. This completes the proof of

Lemma 6.4.1.
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Chapter 7

The Linear Perturbation

Framework

7.1 Introduction

In this chapter, we introduce a new framework for designing approximation mech-

anisms based on perturbing instances of a welfare-maximization mechanism design

problem. Our approach is motivated by work from the celebrated field of smoothed

analysis of algorithms, which shows that optimization problems with a perturbed

objective function are sometimes more tractable than their worst-case counterparts.

In particular, we consider algorithms for mechanism design problems that randomly

perturb the social welfare objective function, and then find the allocation maximizing

the perturbed welfare. Under some conditions, these algorithms can be implemented

in expected polynomial time, and result in an approximately welfare-maximizing al-

location.

These perturbation-based algorithms can not directly be used as part of a truthful-

in-expectation mechanism, motivating the main idea behind our approach. We in-

troduce a duality between perturbing an objective function and perturbing a feasible

set. Specifically, we show that maximizing the perturbed welfare can be reinterpreted

as maximizing the un-perturbed welfare over a set of perturbed allocations. When

107
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certain conditions are satisfied, the perturbed allocations can be interpreted as a dis-

tributional range, yielding a maximal-in-distributional-range allocation rule that is

implementable as part of a truthful-in-expectation mechanism.

7.1.1 Summary of Results and Techniques

Our framework applies to welfare maximization mechanism design problems that are

linear. A feasible set Ω for such a problem is encoded in some euclidean space Rd,

and each player i’s valuation function ui is linear in this encoding — specifically,

ui(x) =
∑d

j=1 uijxj for all x ∈ Ω. When v =
∑

i ui, the social welfare of outcome

x is equal to vTx. One example of this class of problems is the knapsack allocation

problem introduced in Chapter 1. (See Section 8.5 for several additional examples.)

We consider problems in this class which, like the knapsack allocation problem,

are intractable in the worst case, but can be solved efficiently if a small perturbation is

applied to their linear objective function v (social welfare in our setting). Specifically,

a perturbation of the objective function is a (random) map v → v̂, typically chosen so

v̂ is “close” to v. Results from smoothed complexity (Section 8.2.2) suggest that many

problems that are NP-hard in the worst case can be solved in expected-polynomial-

time over random choices of v̂, provided that v̂ is “sufficiently random”.

As a naive starting point, suppose we apply a perturbation to a given instance

(Ω, v) of a linear welfare-maximization problem Π, and then invoke a polynomial-time

algorithm to compute an optimal solution to the perturbed instance (Ω, v̂). The good

news is that this outcome will be near-optimal for the unperturbed instance provided

that v̂ is “close” to v. The bad news is that exact optimization using perturbed

valuations is not generally implementable as part of a truthful mechanism. Even

when only a single player is present, strategic misreporting of his valuation v may

yield a perturbed report that is preferred over v̂; i.e. one that leads to a better

outcome with respect to his true valuation v. Are there perturbations that can be

used for the design of truthful mechanisms, and moreover are expressive enough to

reduce the complexity of interesting optimization problems?
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We advocate the design of linear perturbations for this purpose, and we develop

a “duality theory” to facilitate their application to the design of truthful mecha-

nisms. A linear perturbation is given by a distribution over d × d matrices. Given

objective function v and a (random) matrix P drawn from the perturbation, the

perturbed objective function is defined as Pv. We observe that exact maximization

of the perturbed objective function Pv over the feasible outcomes Ω of an instance

is equivalent to exact maximization of the true objective function v over a set of

“perturbed outcomes” P TΩ with the “adjoint” perturbation matrix P T . When P

satisfies certain conditions, each such perturbed outcome in P TΩ can be expressed

as a probability distribution over outcomes in Ω. In this case, the “adjoint problem”

can be solved truthfully via a maximal-in-distributional-range algorithm. Thus the

“dual perspective” and the use of perturbed outcomes allow us to argue truthfulness

for perturbations that seem, at first blush, fundamentally incompatible with truthful

mechanisms.

7.2 Model and Preliminaries

7.2.1 Linear Optimization Problems

An optimization problem Π is linear if, for each instance (Ω, v) ∈ Π, outcomes x ∈ Ω

are encoded in some euclidean space Rd, and v is a linear function of this encoding.

For these problems, we naturally interpret v as a vector in Rd as well. We consider

non-negative linear maximization problems in this chapter, where Ω ⊆ Rd
+, v ∈ Rd

+,

and the goal is to find x ∈ Ω maximizing vTx.

We are mainly interested in problems where the objective function vTx is the

welfare of self-interested players with private valuation functions. Consider a feasible

set Ω ⊆ Rd
+ and n players, where player i has valuation

∑d
j=1 uijxj for each x ∈ Ω.

The corresponding welfare maximization problem — computing the outcome x that

maximizes the sum of players’ values — is then the linear maximization problem with

vj =
∑n

i=1 uij for each j = 1, 2, . . . , d. We next give a simple example to make these

definitions concrete for the reader; see Section 8.5 for several more.
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Example 7.2.1 (Knapsack Allocation). In the knapsack allocation problem, there

are m projects and n players. Each project j has a publicly known cost sj, and the

feasible sets correspond to subsets of projects that have total cost at most a publicly

known budget C. Each player i has a private value uij for each project j. Welfare

maximization for knapsack allocation is a linear maximization problem: the feasi-

ble set is naturally encoded as the vectors x in {0, 1}m with
∑

j sjxj ≤ C, and the

coefficient vj is defined as the total value
∑

i uij to all players of selecting project j.

7.2.2 Perturbations

A perturbation for an optimization problem Π is a randomized algorithm Ψ that takes

as input an instance (Ω, v) of Π and outputs another objective function v̂ = Ψ(Ω, v).

When Π is a non-negative maximization problem and ǫ > 0, we say such a pertur-

bation is ǫ-approximation preserving if for every instance (Ω, v) of Π, and outcome

x ∈ Ω, the absolute difference between the (expected) perturbed objective value of

x and its unperturbed objective value is at most an ǫ fraction of the value of the

optimum solution; formally, |E[v̂Tx] − vTx| ≤ ǫmaxy∈Ω vTy, where the expectation

is over the random coin flips of the perturbation.

7.3 An Overly Simplistic Approach

Suppose we design an exact algorithm A and an ǫ-approximation preserving pertur-

bation Ψ for a non-negative maximization problem Π such that, for every instance

(Ω, v), algorithm A has expected running time polynomial in the instance size when

the instance is perturbed by Ψ. Since Ψ is ǫ-approximation preserving, we immedi-

ately get a (1− 2ǫ)-approximation algorithm for Π: given an instance of Π, use Ψ to

perturb the instance and the algorithm A to efficiently solve the perturbed instance.

Can we design such a perturbation so that the resulting approximation algorithm

can be used in a truthful-in-expectation mechanism? Since exact optimization of

a randomly perturbed objective does not generally yield a truthful mechanism, we

require another idea.
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7.4 Adjoint Perturbations

We now narrow the discussion to linear perturbations for non-negative linear maxi-

mization problems, where Ψ(Ω, v) = Pv for a (random) matrix P whose distribution

is independent of v. We next develop a “duality” for such perturbations. We will

need both the “primal” and “dual” viewpoints to prove the running time bound and

the truthfulness guarantee, respectively, of our final mechanism.

Here is a trivial observation: for every fixed perturbation matrix P , objective

function v, and feasible solution x ∈ Ω, the value (Pv)Tx of the solution x with

respect to the perturbed objective Pv equals the value vT (P Tx) of the “perturbed

solution” P Tx with respect to the true objective v. We say that the perturbation P T

is adjoint to P . Taking this alternative adjoint viewpoint, solving a linearly perturbed

instance (Ω, P v) of a linear maximization problem is equivalent to solving

maximize vT x̃

subject to x̃ ∈ P TΩ,
(7.1)

where x̃ = P Tx and P TΩ = {x̃ : x ∈ Ω}. See Figure 7.1 for an example of this

relationship.

The adjoint problem (7.1) is meaningful when we can associate every x̃ ∈ P TΩ

with a probability distribution over the feasible solutions Ω that has expectation x̃.

This is possible if and only if P TΩ ⊆ convexhull(Ω). Assume that we have designed P

to possess this property, and for every x ∈ Ω let Dx be an arbitrary distribution over Ω

with expectation x̃ = P Tx. LetR = {Dx}x∈Ω denote the corresponding distributional

range. By linearity, the adjoint problem (7.1) is then equivalent to the problem of

maximizing the expected objective function value over R:

maximize Ey∼Dx
[vTy]

subject to Dx ∈ R.
(7.2)

The key point is that this is precisely the type of optimization problem that can be

solved — truthfully — using an MIDR allocation rule and the corresponding payment

rule (recall Chapter 3).
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v

ṽ

θ

(a) A primal perturbation rotating the
objective by an angle of θ.

v

θ

(b) The adjoint perturbation rotating
feasible points by an angle of −θ.

Figure 7.1: Duality of perturbations.

7.5 The Perturbation-Based Allocation Rule

The next theorem formalizes our progress so far: designing truthful-in-expectation

mechanisms reduces to designing perturbations that meet a number of requirements.

For a linear perturbation Ψ for a non-negative linear maximization problem Π,

we say that Ψ is feasible if, for every feasible set Ω of Π, the perturbation matrix

P ∼ Ψ(Ω) satisfies P TΩ ⊆ convexhull(Ω) surely. Such a perturbation is tractable if

the perturbation matrix P ∼ Ψ can be sampled in time polynomial in the length of

the description of Ω; and if for each x ∈ Ω a distribution Dx with support Ω and

expectation P Tx can be sampled in time polynomial in the length of the description

of Ω. An ǫ-FLAT perturbation is one that is feasible, linear, ǫ-approximation pre-

serving, and tractable. The outline of our black-box reduction is displayed below as

Algorithm 7.1.

Theorem 7.5.1. For every non-negative linear maximization problem Π and ǫ-FLAT

perturbation Ψ for some ǫ ≥ 0, the corresponding perturbation-based (PB) allocation

rule (Algorithm 7.1) satisfies the following properties:
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Parameter: Exact algorithm A for Π.

Parameter: ǫ-FLAT perturbation Ψ for Π.

Input: Instance (Ω, v).

Output: Solution y ∈ Ω

1: Draw P ∼ Ψ(Ω), and let x = A(Ω, P v).

2: Let Dx be a distribution over Ω with expectation P Tx.

3: Return a sample y ∼ Dx.

Algorithm 7.1: The perturbation-based (PB) allocation rule.

(a) it is MIDR, and hence defines a truthful-in-expectation mechanism when com-

bined with suitable payments;

(b) for every instance of Π, it outputs a feasible solution with expected objective

function value at least (1− ǫ) times the maximum possible;

(c) its worst-case expected running time is bounded by a polynomial plus that of the

exact algorithm A on a perturbed instance (Ω, P v).

The key point of Theorem 7.5.1 is part (a), which guarantees truthfulness while

permitting remarkable freedom in designing perturbations.

Proof of Theorem 7.5.1. First, we note that the choice of P in step 1 is independent

of v by the definition of a linear perturbation and step 3 is well defined because Ψ

is feasible. Part (c) follows immediately from the assumption that Ψ is tractable.

Part (b) follows from the definition of an approximation-preserving perturbation, the

fact thatA is an exact algorithm, and the fact that the expected value of the solution y

returned by the PB allocation rule equals Ey∼Dx
[vTy] = vT (P Tx) = (Pv)Tx, which

is the objective function value (with respect to the perturbed objective Pv) of the

solution returned by A.

To prove part (a), consider an instance (Ω, v). To begin, condition on the choice

of P by Ψ(Ω) in step 1 of the PB allocation rule. Let Dx be the distribution over Ω

with expectation P Tx that the allocation rule chooses in step 3 in the event that

x = A(Ω, P v), and set R = {Dx : x ∈ Ω}. By the definition of this step, the rangeR
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depends only on Ω and is independent of the valuations v. Since the allocation rule

explicitly computes the solution x∗ that maximizes (Pv)Tx over x ∈ Ω and then

samples an outcome from the corresponding distribution Dx∗, and this x∗ is the same

solution that maximizes Ey∼Dx
[vTy] over x ∈ Ω (i.e., over Dx in R), the output of

the allocation rule is the same (for each v) as that of the MIDR allocation rule with

distributional range R.

We have established that for each fixed choice of P , the PB allocation rule is an

MIDR rule. Since the random choice of P is independent of the valuations v, the PB

allocation rule is a probability distribution over MIDR rules. By Lemma 3.4.2, it is

an MIDR allocation rule.



Chapter 8

A Black Box Result

8.1 Introduction

Using the linear perturbation framework of Chapter 7, this chapter gives the first

black-box reduction from arbitrary approximation algorithms to incentive-compatible

approximation mechanisms for a non-trivial class of multi-parameter mechanism de-

sign problems. Specifically, we prove that every welfare maximization problem that

admits an FPTAS and can be encoded as a packing problem satisfying some mild

conditions also admits a truthful-in-expectation randomized mechanism that is an

FPTAS.

Our result is possible because work in smoothed analysis has already established

that problems in our class can be solved in expected polynomial time after a pertur-

bation satisfying certain conditions is applied to their objective function. However,

application of the perturbation framework of Chapter 7 requires perturbations to be

linear, and moreover to “dualize” to a perturbation mapping each allocation to a

lottery over allocations. We show that all these conditions can be simultaneously

satisfied for our class of packing problems.

115
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8.1.1 Summary of Results and Techniques

The main question of algorithmic mechanism design, discussed in the introduction to

this thesis, asks whether incentive-compatible efficient computation is fundamentally

less powerful than “classical” efficient computation. This question remains poorly

understood. A starry-eyed mechanism designer might hope for the best-possible an-

swer: polynomial-time algorithms can be supplemented with incentive compatibil-

ity “without loss”; equivalently, if an optimization problem Π admits a polynomial-

time α-approximation algorithm A, then it admits a polynomial-time α-approximate

incentive-compatible mechanism. Since such a result makes no hypotheses about the

algorithm A beyond those on its running time and approximation factor, it would

presumably be proved via a “black-box reduction” — a generic method that invokes

A at most polynomially many times, and restores incentive compatibility without

degrading A’s approximation factor.

This chapter provides the first such black-box reduction for a non-trivial class of

multi-parameter mechanism design problems. We consider a natural sub-class of the

linear maximization problems considered in Chapter 7. When such a problem en-

codes welfare maximization, and moreover admits a (non-incentive-compatible) fully

polynomial time approximation scheme (FPTAS)1, we show that it also admits a

truthful-in-expectation randomized mechanism that is an FPTAS.

We now elaborate on the approach for the main result of this chapter. Consider a

linear maximization problem Π that admits an FPTAS, and has a polynomial number

of decision variables. Applying a result of Röglin and Teng [79], Π admits an exact

algorithm A with polynomial smoothed complexity. Informally this means that, given

an instance (Ω, v) of Π and a “sufficiently random” noise vector δ, the expected

runtime of A on a perturbed instance (Ω, v + δ) is polynomial. (See Section 8.2.2

for precise definitions.) This is good news, as the linear perturbation machinery of

Chapter 7 allows the application of perturbations in a way that preserves incentive

1Recall that a fully polynomial time approximation scheme (FPTAS) for a maximization problem
takes as input an instance and an approximation parameter ǫ, and returns a feasible solution with
objective function value at least 1−ǫ times that of an optimal solution, in time polynomial in the size
of the instance and in 1/ǫ. For randomized algorithms, the running time bound and approximation
guarantee should hold, for every input, in expectation over the random coin flips of the algorithm.
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compatibility. The bad news is that we must simultaneously satisfy the conditions for

polynomial smoothed complexity, as well the conditions of Chapter 7 — feasibility,

linearity, approximation-preservation, and tractability. This is not obviously possible

a-priori, and appears impossible in general. Nevertheless, our main result shows

that such perturbations exist for binary packing problems : those linear maximization

problems where the feasible set Ω is encoded as a set of binary vectors, and moreover

Ω is downward-closed (i.e., if x ∈ Ω and y ≤ x component-wise, then y ∈ Ω). We note

that since we use perturbations only as an algorithmic tool internal to our algorithm,

we bear no burden of ensuring that the perturbations are “natural” in any sense

(unlike in traditional smoothed analysis).

We also extend the main result of this chapter in various ways, including to binary

covering problems in Section 8.6.1 and to non-packing binary maximization problems

in Section 8.6.2.

8.1.2 Related Work

There are two known black-box reductions from truthful-in-expectation mechanism

design to approximation algorithm design, and both are for single-parameter mecha-

nism design problems (See Chapter 10). The space of truthful mechanisms for single-

parameter problems is well understood and reasonably forgiving: an approximation

algorithm can be used in a truthful mechanism if and only if it is monotone (Chap-

ter 10). The first black-box reduction is due to Briest et al. [16], who proved that every

single-parameter binary maximization problem that admits an FPTAS also admits a

truthful mechanism that is an FPTAS. Their black-box reduction is also deterministic.

Second, Babaioff et al. [7] exhibit a black-box reduction that converts an approxima-

tion algorithm for a single-parameter problem to a truthful mechanism. However,

their reduction degrades the approximation ratio by a super-constant factor. Both

of these black-box reductions rely heavily on the richness of the monotone algorithm

design space, and do not admit obvious extensions to multi-parameter problems.2

2For example, the black-box reduction in [16] uses a simple truncation trick that preserves mono-
tonicity but violates the weak monotonicity condition needed for truthfulness in multi-parameter
problems.
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For multi-parameter problems, the result of Lavi and Swamy [60] is in the spirit

of black-box reductions. They show how to convert certain approximation algorithms

to truthful-in-expectation mechanisms without degrading the approximation ratio.

However, their result imposes non-trivial extra requirements on the approximation

algorithm that is to be converted into a truthful approximation mechanism. For many

problems, it is not clear if there are near-optimal approximation algorithms that meet

these extra requirements.

On the negative side, here is no general and lossless black-box reduction from

approximation algorithms to deterministic truthful approximation mechanisms for

multi-parameter problems. This fact was first established by Lavi et al. [59], and Pa-

padimitriou et al. [74] gave a quantitatively much stronger version of this impossibility

result. Very recently, Dobzinski [34] proved a strong impossibility result for a variant

of combinatorial public projects, showing in the process that there is no general and

lossless black-box reduction from approximation algorithms to truthful-in-expectation

approximation mechanisms.

There are more general black-box reductions in the more permissive Bayesian

setting, where player valuations are drawn from a known prior. The first such re-

sult is due Hartline and Lucier [48], who show that for every single-parameter wel-

fare maximization problem, every approximation algorithm can be made Bayesian

incentive-compatible without degrading the expected approximation factor. Very re-

cently, this result was extended to multi-parameter problems, under some conditions

on the Bayesian prior, by Bei and Huang [8] and Hartline et al. [47].

Finally, we know of only one previous application of smoothed analysis techniques

to the design of new algorithms: Kelner and Spielman [53] used an iterative pertur-

bation approach to design a randomized simplex-type algorithm that has (weakly)

polynomial expected running time.
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8.2 Model and Preliminaries

8.2.1 Binary Packing Problems

Abinary maximization problem is a non-negative linear maximization problem (Sec-

tion 7.2) whose feasible set Ω consists of d-dimensional binary vectors. Formally, an

instance of a binary maximization problem is given by feasible set Ω ⊆ {0, 1}d and

non-negative vector v ∈ Rd
+ of coefficients, and the goal is to compute a feasible so-

lution x ∈ Ω that maximizes the linear objective vTx. A binary packing problem is

a binary maximization problem with additional structure in the feasible set Ω: if x

belongs to Ω, and yi ≤ xi for all i, then y ∈ Ω as well. (Binary covering problems can

be defined analogously; see Section 8.6.1.)

We are mainly interested in welfare-maximization binary packing problems, where

the objective function vTx is the welfare of self-interested players with private valua-

tion functions. Specifically, v =
∑

i ui, where ui is the valuation function of player i.

The knapsack allocation problem (Example 7.2.1) is an example of such a problem.

The knapsack allocation problem has polynomial dimension, meaning that the num-

ber d of decision variables is polynomial in the size of the description of the feasible

set. The results of this chapter are for problems with polynomial dimension, but

some of the techniques can be adapted to some interesting problems with exponential

dimension – see Chapter 9.

8.2.2 Smoothed Complexity Basics

Smoothed complexity was defined by Spielman and Teng [83]; our formalism is similar

to that in Beier and Vöcking [9] and Röglin and Teng [79]. A perturbed instance of a

binary packing problem Π consists of a fixed feasible set Ω ⊆ {0, 1}d and d random

variables v1, . . . , vd, where each vi is drawn independently from a distribution with

support in [0, vmax] and a density function that is bounded above everywhere by

φ/vmax. The parameter φ measures the maximum concentration of the distributions

of the vi’s. We say that an algorithm A for a binary packing problem Π runs in
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smoothed polynomial time if its expected running time is polynomial in the description

length of Ω and φ for every perturbed instance.

Our work relies on the fact that every FPTAS for a binary maximization problem

with polynomial dimension can be converted into an algorithm that runs in smoothed

polynomial time. This is a special case of a result of Röglin and Teng [79], who

strengthen a result of Beier and Vöcking [9].

Proposition 8.2.1 ([9, 79]). For every FPTAS F for a binary maximization prob-

lem Π of polynomial dimension, there is an exact algorithm AF for Π that runs in

smoothed polynomial time.

Moreover, the quite natural algorithm AF in Proposition 8.2.1 treats F as an

“oracle” or “black box”, meaning that its behavior depends only on the outputs of F
and not on the actual description of F .3

8.2.3 Perturbation Schemes

A perturbation scheme Ψ for an optimization problem Π is a family of perturbations

for Π (as defined in Section 7.2), parametrized by ǫ > 0. We use Ψǫ to denote the

perturbation of scheme Ψ with parameter ǫ. A perturbation scheme Ψ is approxi-

mation preserving if Ψǫ is an ǫ-approximation preserving perturbation (Section 7.2)

for every parameter ǫ > 0. Similarly, Ψ is feasible/linear/tractable if Ψǫ is feasi-

ble/linear/tractable (Chapter 7) for each ǫ > 0. Finally, perturbation scheme Ψ is

FLAT if it is feasible, linear, approximation preserving, and tractable.

8.3 The Random Singleton Scheme

We now describe a FLAT perturbation scheme that leads to the main result of this

chapter: every binary packing problem with polynomial dimension that admits an

3The results in [9, 79] are stated as conversions from randomized pseudopolynomial-time algo-
rithms to smoothed polynomial-time algorithms. Proposition 8.2.1 follows since every FPTAS for a
binary optimization problem of polynomial dimension can be converted easily to a pseudopolynomial-
time exact algorithm in a black-box manner.
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FPTAS also admits a truthful-in-expectation mechanism that is an FPTAS. We call

our FLAT scheme the random singleton (RS) perturbation scheme, and describe it

first via its adjoint (see Section 7.4) in Algorithm 8.1. The fact that each δi chosen

in Step 1 is at most ǫ/d implies that the probabilities of Step 2 sum to 1. Also,

because Ω is the feasible set of a binary packing problem, the all-zero vector lies in

Ω, and we can assume without loss of generality that each basis vector e1, . . . , ed lies

in Ω (if ei /∈ Ω then we can ignore coordinate i). Therefore, the solution y output by

Algorithm 8.1 is always feasible.

Parameter: ǫ > 0.

Input: Feasible set Ω ⊆ {0, 1}d of a binary packing problem.

Input: x ∈ Ω

Output: y ∈ Ω

1: For each i = 1, 2, . . . , d, draw δi uniformly from the interval [0, ǫ/d];

2: Output a random solution y ∈ Ω according to the following distribution:

• x with probability 1− ǫ;

• the “singleton” ej with probability (
∑d

i=1 δixi)/d (for each j = 1, . . . , d);

• the all-zero solution with the remaining probability.

Algorithm 8.1: Adjoint of the random singleton (RS) perturbation scheme.

The motivation of the random choices in Step 1 of Algorithm 8.1 is to ensure that

the distribution defined by the perturbation is diffuse enough to permit algorithms

with polynomial smoothed complexity (cf., the parameter φ in Section 8.2.2). The

motivation of the random choices in Step 2 is to reward a solution x ∈ Ω with a

“bonus” of a random singleton with probability δi for each coordinate i with xi = 1.

Since there exists a singleton ej with value vj that is at least a 1/d fraction of the

optimal value maxy∈Ω vTy, these bonuses effectively ensure that the perturbations

occur at the correct “scale.”

We now make this vague intuition precise. After conditioning on the random

choices in Step 1 of Algorithm 8.1, the expectation x̃ of the distribution Dx over
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solutions Ω defined by Step 2 can be expressed via the adjoint perturbation P T given

by

x̃ = P Tx = (1− ǫ)x+

(
d∑

i=1

δixi

)(
d∑

j=1

ej
d

)
(8.1)

Let δ denote the d-vector of δi’s. Since P
T can be written as (1−ǫ)I+ 1

d
~1δT , dualizing

gives the following primal form of the RS perturbation:

P = (1− ǫ)I +
δ~1T

d
. (8.2)

This corresponds to the linear perturbation given by the map

vi 7→ (1− ǫ)vi +
δi
d

d∑

j=1

vj (8.3)

for each coefficient i. We summarize the resulting (primal) form of the RS perturba-

tion scheme in Algorithm 8.2. This perturbation scheme adds “bonuses” that depend

on reported vi’s, and consequently might appear unsuitable for deployment in a truth-

ful mechanism. But its use is justified by our development of adjoint perturbations.

Parameter: ǫ > 0.

Input: Feasible set Ω ⊆ {0, 1}d of a binary packing problem.

Input: v ∈ Rd
+

Output: v̂ ∈ Rd
+

1: For each i = 1, 2, . . . , d, draw δi uniformly from the interval [0, ǫ/d];

2: Let

v̂i = (1− ǫ)vi +
δi
d

d∑

j=1

vj

for each i = 1, . . . , d.

Algorithm 8.2: The random singleton (RS) perturbation scheme.

Lemma 8.3.1. For every binary packing problem Π of polynomial dimension, the RS

perturbation scheme (Algorithm 8.2) is FLAT.
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Proof. Since the choice of the perturbation matrix P (Equation (8.2)) depends only

on the approximation parameter ǫ, the feasible set Ω, and the (valuation-independent)

choices of the δi’s, the RS scheme is linear. It is feasible because it is defined explicitly

via its adjoint (Algorithm 8.1), which, for each x ∈ Ω, outputs a distribution Dx with

expectation equal to P Tx (Equation (8.1)). It is clearly tractable. Finally, we observe

from equation (8.3) that for every perturbation matrix P of the scheme and feasible

solution x ∈ Ω, (1−ǫ)vTx ≤ (Pv)Tx ≤ vTx+ǫmaxi vi. Since both vTx and maxi vi are

no greater than the value of the optimum solution, the RS scheme is approximation

preserving.

8.4 The Black Box Result

We are now prepared to prove the main result of this chapter.

Theorem 8.4.1. Every welfare-maximization binary packing problem of polynomial

dimension that admits an FPTAS also admits a truthful-in-expectation mechanism

that is an FPTAS.

Proof. Let Π be a binary packing problem of polynomial dimension and F and arbi-

trary FPTAS for it. By Proposition 8.2.1, there is an exact algorithm AF for Π that

runs in smoothed polynomial time in the sense of Section 8.2.2. Let Ψ denote the

RS perturbation scheme for Π, as given in Algorithm 8.2. For each approximation

parameter ǫ, we instantiate the PB allocation rule (Algorithm 7.1) with the pertur-

bation Ψǫ and algorithm AF . Since Ψǫ is ǫ-FLAT (Lemma 8.3.1), Theorem 7.5.1

implies that this allocation rule is MIDR, has an approximation guarantee of 1 − ǫ

in expectation, and has expected running time bounded by a polynomial plus that

of AF on the perturbed instance (Ω, P v).

To analyze the expected running time of AF on (Ω, P v), recall the perturbation

formula (8.3) of the RS scheme. Let vmax denote maxdi=1 vi. Every coordinate of Pv

is bounded above by vmax with probability 1, and these coordinates are independent

random variables (since the δi’s are independent). Since
∑d

j=1 vj ≥ vmax and δi is

drawn uniformly from [0, ǫ/d], the density of the random variable (Pv)i is bounded
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above everywhere by d2

ǫvmax
. Thus the concentration parameter φ from Section 8.2.2

is bounded by d2/ǫ. Since Π has polynomial dimension and AF has polynomial

smoothed complexity, the expected running time of AF on (Ω, P v) is polynomial in

the input size and 1/ǫ.

Finally, to complete the proof we note that Proposition 3.4.1 implies that truth-

telling payments for this allocation rule can be computed with poly(n) overhead in

runtime.

8.5 Example Problems

We feel that the primary point of Theorem 8.4.1 is conceptual: it shows that requir-

ing (randomized) incentive compatibility requires no sacrifice in performance for a

non-trivial class of multi-parameter problems, and suggests that even more general

“black-box randomized reductions” might be possible. Of course, a general result

like Theorem 8.4.1 can be instantiated for various concrete problems, we list a few

examples. Numerous single-parameter examples are given in Briest et al. [16]. Below

we present some multi-parameter examples, which are beyond the reach of the results

in [16].

Knapsack Allocation: From a purely algorithmic perspective, the problem in Ex-

ample 7.2.1 is equivalent to the knapsack problem and hence admits a (non-truthful)

FPTAS.

Arborescent Knapsack Allocation: This is a generalization of the knapsack

allocation problem, where additional constraints are placed on the feasible solutions

Ω ⊆ {0, 1}m. Namely, the projects [m] are the ground set of a laminar4 set system

L ⊆ 2[m], and there is a budget CT for each T ∈ L. The feasible set Ω is constrained

so that
∑

j∈T sj ≤ CT for each T ∈ L. A (non-truthful) FPTAS for this problem was

given in [45].

Tree-Ordered Knapsack Allocation: This is another generalization of the

knapsack allocation problem, where precedence constraints are placed on the projects

4A set system L ⊆ 2[m] is laminar if for each T, T ′ ∈ L either T ∩ T ′ = ∅, or T ⊆ T ′, or T ′ ⊆ T .
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[m]. Namely, a directed acyclic graph G with vertices [m] encodes precedence con-

straints, and the feasible set Ω ⊆ {0, 1}m is constrained so that xj ≥ xk whenever

(j, k) ∈ E(G) for every x ∈ Ω. When G is a directed-out tree, a (non-truthful) FP-

TAS for this problem was given in [52]. Observe, however, that this is no longer a

binary packing problem. Fortunately, our proof of Theorem 8.4.1 relied very little on

the packing assumption: we argue in Section 8.6.2 that we only require ~0 ∈ Ω, which

is certainly the case here.

Maximum Job Sequencing with Deadlines: In this problem, m jobs are to be

scheduled on a single machine. Job j ∈ [m] has processing time pj and deadline dj .

There are n players, and player i has private value uij for each job j that completes

before its deadline dj . The goal is to find the welfare-maximizing subset of the jobs

that can be scheduled so that each finishes before its deadline. Converting such a

set of jobs to a schedule can be done via the obvious greedy algorithm. This yields

a binary packing problem with a welfare objective. A (non-truthful) FPTAS for this

problem was given in [80].

8.6 Extensions

8.6.1 Binary Covering Problems

In this section, we consider binary covering problems of polynomial dimension. Such

problems are defined analogously to binary packing problems, except that the feasible

Ω is upward closed and the goal is to minimize vTx over x ∈ Ω. We consider social-

cost-minimization binary covering problems, where vTx is the social cost of outcome

x. In these problems, vj =
∑n

i=1 cij for each j = 1, 2, . . . , d, and ci denotes the private

cost function of player i.

By reduction to Theorem 8.4.1, we show that binary covering problems admit a

truthful-in-expectation “additive FPTAS”. We then show that this is the best we can

hope for by an MIDR mechanism, as no polynomial-time MIDR mechanism obtains

a finite approximation for an NP-hard binary covering problem (assuming P 6= NP ).
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Theorem 8.6.1. Every social-cost-minimization binary covering problem of polyno-

mial dimension that admits an FPTAS also admits a truthful-in-expectation mecha-

nism, parametrized by ǫ, that runs in time polynomial in the description of the instance

and 1
ǫ
, and outputs a solution with expected social cost at most an additive ǫcmax more

than the optimum value, where cmax denotes the maximum cost of a feasible solution.

Proof. Let Π be a binary covering problem of polynomial dimension d that admits

an FPTAS. We now define the complementary problem Π as follows. For x ∈ {0, 1}d,
we define its complement x = ~1 − x. For Ω ⊆ {0, 1}d let Ω = {x : x ∈ Ω}. Now let

Π =
{
(Ω, v) : (Ω, v) ∈ Π

}
be the problem of maximizing vTx for x ∈ Ω. It is clear

that Π is a binary packing problem of polynomial dimension. It is easy to see that x

is an optimal solution for Π if and only if x is an optimal solution to Π. We utilize

this complementarity between covering and packing problems twice — once in each

direction — in the following proof: first we argue that an FPTAS for Π yields an

FPTAS for Π, then we invoke the result in Theorem 8.4.1 to obtain an MIDR FPTAS

for Π, which we then show can be converted to an MIDR “additive FPTAS” for Π.

Invoking Proposition 3.4.1 then completes the proof.

Now we argue that an FPTAS for Π can be converted to an FPTAS for Π as follows:

for an instance (Ω, v) of Π and approximation parameter ǫ, we simply invoke the FP-

TAS for Π on (Ω, v) with approximation parameter ǫ/d, and output the complement

of the returned solution. Let OPT denote the optimal objective function value of the

covering problem Π on instance (Ω, v). The cost of the solution x returned by the

FPTAS for Π is within an additive error of at most (ǫ/d)OPT ≤ (ǫ/d) ·dvmax = ǫvmax

from optimal, where vmax = maxni=1 vi. Since the optimal value of the complementary

packing problem Π is — without loss of generality — at least vmax, the value of x

is is at least a (1 − ǫ) factor of the optimum value for instance (Ω, v) of the packing

problem Π.

By the result in Theorem 8.4.1, the packing problem Π admits an MIDR FPTAS

A. We will now convert A to an MIDR “additive FPTAS” A for the covering problem

Π. We fix the approximation parameter ǫ, and define A as follows: On input (Ω, v),

let x be the output of A with approximation parameter ǫ/d and input (Ω, v), and

output x = 1− x.



CHAPTER 8. A BLACK BOX RESULT 127

To show that A is MIDR, let R be the range of A when the approximation

parameter is ǫ/d. Define the complementary range R in the obvious way: for every

D ∈ R, we let D be the distribution that simply draws y ∼ D and outputs y = 1−y.

Then, we let R =
{
D : D ∈ R

}
. First, it is easy to see, by construction, that the

range of A is a subset of R. Now, fix an instance (Ω, v) ∈ Π, and let D be the

distribution of A(Ω, v). By definition, A outputs the complementary distribution

D for the same input. Since D maximizes Ey∼D[v
Ty] over R, it must minimize

Ey∼D[v
T (~1 − y)] over R. This, by definition, implies that D minimizes Ey∼D[v

Ty]

over R, and A is MIDR with range R.

It remains to prove the approximation guarantee of A. Let x ∼ D and x ∼ D be

the (random) outputs of A and A on inputs (Ω, v) and (Ω, v), respectively. We can

bound the expected social cost as follows.

E[vTx] = E[vT (~1− x)]

= ||v||1 −E[vTx]

≤ ||v||1 − (1− ǫ/d)max
y∈Ω

vTy

= ||v||1 − (1− ǫ/d)(||v||1 −min
y∈Ω

vTy)

≤ min
y∈Ω

vTy +
ǫ

d
||v||1

≤ min
y∈Ω

vTy + ǫmax
i

vi

Since maxi vi is a lower bound on the maximum cost of solutions in Ω, this completes

the proof.

We note that the mechanism of Theorem 8.6.1, as stated in the proof, is not

individually rational. This is because the Clarke pivot rule goes “in the wrong di-

rection” for cost minimization problems, and consequently the payments of Proposi-

tion 3.4.1 violate individual rationality. It is natural to prefer a pivot rule that results

in payments to the players, and moreover guarantees individual rationality. This is

impossible for these cost minimization problems in general, but is possible for many

interesting special cases. Notably, the class of binary covering problems where each
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binary variable is “owned” by a single player, and only the variable’s owner incurs

a cost when that variable is set to 1, admits such payments when no player is a

“monopoly”: i.e. for each player i, there is a feasible solution that sets all player i’s

variables to 0. In a typical example, the set of solutions is the set of s − t paths in

a graph, the edges of the graph are partitioned between the players, and no player

owns all edges of an s-t cut of the graph. Given an MIDR allocation rule A and

reported costs c for such a problem, and letting c′(i) denote the modification of c that

sets player i’s costs for his variables to ∞, the mechanism that pays each player i in

the amount of E[
∑

i′ 6=i ci′(A(c′(i))) −∑i′ 6=i ci′(A(c))] is truthful in expectation and

individually rational in expectation. An analogue of Proposition 3.4.1 easily follows,

and we omit the details.

The bound in Theorem 8.6.1 becomes an FPTAS in the usual multiplicative sense

when we restrict our attention to instances of the problem in which the value of

the optimal solution can be bounded below by an inverse polynomial fraction of

cmax. In general, however, additive loss is inevitable if we restrict ourselves to MIDR

algorithms.

Lemma 8.6.2. Let Π be a binary minimization problem. If an MIDR algorithm A
provides a finite approximation ratio for Π, then A is optimal.

Proof. Assume A is MIDR, and provides a finite approximation ratio for Π. Fix a

feasible set Ω of Π, and let R be the corresponding distributional range of A. We say

a feasible solution x ∈ Ω is minimal if there does not exist y 6= x in Ω with yi ≤ xi

for all i. It is clear that for every objective v ∈ Rd
+, there exists an optimal solution

that is minimal. Since A is MIDR, it then suffices to show that R contains all point

distributions corresponding to minimal feasible solutions.

Consider a minimal x ∈ Ω, and let the objective function v be such that vi = 0

when xi = 1, and vi = 1 when xi = 0. By definition we have vTx = 0. Moreover, since

x is minimal, vTy > 0 for every y ∈ Ω with y 6= x. Therefore, the only distribution

over Ω providing a finite approximation ratio for v is the point distribution corre-

sponding to x. Thus, R contains all point distributions of minimal feasible solutions,

as needed.
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The following negative result for binary covering problems follows immediately

from Lemma 8.6.2.

Theorem 8.6.3. Let Π be an NP-hard binary minimization problem. No polynomial-

time MIDR allocation rule provides a finite approximation ratio for Π unless P = NP .

We note that Theorem 8.6.3 and its proof easily extend to the slightly more

general class of distributional affine maximizers (see Section 3.4), and hence to all

known types of VCG-based mechanisms.

Examples We conclude the section with a few multi-parameter problems to which

Theorem 8.6.1, and the complementary negative result in Theorem 8.6.3, apply.

Again, for numerous single-parameter examples see Briest et al. [16].

Minimum Job Sequencing with Deadlines: This is the minimization variant of

Maximum Job Sequencing with Deadlines. Here, player i incurs a cost cij for every

job j that completes past its deadline dj. The goal is to minimize social cost. This

is a binary covering problem. A (non-truthful) FPTAS for this problem was given

in [44].

Constrained Shortest Path: We are given a graph G = (V,E), and two ter-

minals s, t ∈ V . Additionally, there is latency lj for each j ∈ E. The mechanism

is interested in selecting a path from s to t of total latency at most L. There are

n players, and player i incurs private cost cij if j ∈ E is selected. We consider a

covering variant of this problem, where the mechanism may select any subgraph of G

connecting s to t via a path of latency at most L, and the goal is to minimize social

cost. A (non-truthful) FPTAS for this problem was given in [49].

Constrained Minimum Spanning Tree on Treewidth Bounded Graphs:

We are given a graph G = (V,E) with bounded treewidth. Additionally, there is a

weight wj for each j ∈ E. The mechanism is interested in selecting a spanning tree

of G with total weight at most W . There are n players, and player i incurs private

cost cij if j ∈ E is selected. We consider the covering variant of this problem, where

the mechanism may select any spanning subgraph of G containing a spanning tree

of total weight at most W , and the goal is to minimize social cost. A (non-truthful)

FPTAS for this problem was given in [62].
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8.6.2 Non-Packing Binary Maximization Problems

We observe that the packing assumption of Theorem 8.4.1 can be relaxed. In partic-

ular, if Π is a binary maximization problem, it suffices that ~0 ∈ Ω for every feasible

set Ω of Π. To see this, observe that the only other property of packing problems

that was used in the proof of Theorem 8.4.1 was that ej ∈ Ω for each j = 1, . . . , d.

It is straightforward to modify the proof to use the following, relaxed, assumption:

For each j = 1, . . . , d, there exists yj ∈ Ω such that yjj = 1 (and yj can be identified

in polynomial time). Letting y =
∑

j y
j, we then modify Ψ as follows: δ is drawn

as before, and we let P = (1 − ǫ)I + δyT

d
. The proof proceeds in a similar fashion.

Similarly, Theorem 8.6.1 extends to binary minimization problems where ~1 ∈ Ω for

every feasible set Ω.

8.6.3 Stronger Guarantees on Payments

We note that the payments of Proposition 3.4.1, used for the result of Theorem 8.4.1,

guarantee non-negative transfers and individual rationality only in expectation. It is

desirable to strengthen this to a universal, or ex-post guarantee; i.e., to guarantee that

player i’s payment and utility are non-negative for each flip of the mechanism’s coins.

While this does not appear to be possible in polynomial time for an arbitrary MIDR

allocation rule, we show in this section that it is possible for the PB allocation rule,

due to its unique structure, when applied to a problem with polynomial dimension.

Therefore, the result of Theorem 8.4.1 can be made to satisfy individual rationality

and non-negative transfers universally.

We now how show how to compute the desired payments efficiently. As a first

step, we invoke an observation from [60]: a payment rule guaranteeing ex-post in-

dividual rationality and non-negativity always exists for any MIDR mechanism for

a problem with non-negative valuations. We summarize this observation for wel-

fare maximization binary packing problems in Proposition 8.6.4, and include a proof

for completeness. This payment rule carefully couples its random choices with the

random choice of the accompanying allocation rule.
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Proposition 8.6.4. Fix a welfare-maximization binary packing problem, and let A
be an MIDR allocation rule for this problem with distributional range R. Let y be

the random output of A on an arbitrary input u. The following payments — which

depend on the outcome y ∼ A(u) of the allocation rule — are non-negative, and

result in a truthful-in-expectation and individually-rational mechanism when coupled

with allocation rule A.

pi(u, y) =
pvcgi (u)

E [ui · A(u)]
ui · y, (8.4)

where pvcgi is as defined in Equation (3.1).

Proof. That pi(u, y) is non-negative follows from the fact that the VCG payment

pvcgi (u) of player i is non-negative, as is his expected value E [ui · A(u)] and his re-

alized value ui · y. For truthfulness in expectation, we note that taking expectation

over choices of y in Equation (8.4) recovers the VCG payment pvcgi (u). Since using

VCG payments yields a truthful-in-expectation mechanism, the same is true for the

payments in Equation (8.4).

It remains to show individual rationality. Recall that the VCG payments in Equa-

tion (3.1) are individually rational in expectation — specifically pvcgi (u) ≤ E[ui ·A(u)].

This implies that the payment pi(u, y) in Equation (8.4) is no greater than the realized

value ui · y, as needed for individual rationality.

Efficient computation of the payments of Proposition 8.6.4 is not possible in gen-

eral. Fortunately, the PB allocation rule has additional structure that we can exploit

to efficiently compute ex-post individually-rational and non-negative payments. The

payments will be based on those of Proposition 8.6.4, and we describe them next.

We recall that the PB allocation rule (Algorithm 7.1) is MIDR for every choice of

perturbation matrix P drawn from Ψ. Therefore, it suffices to compute the payments

of Equation (8.4) for a fixed choice of P ; this would yield a randomization over

truthful-in-expectation mechanisms, one for each choice of P , each of which is ex-

post individually rational and charges non-negative payments.

Fix ǫ, and let B denote an instantiation of the PB allocation rule with a smoothed

polynomial-time algorithm AF and a FLAT perturbation scheme Ψ. Let BP denote

B when the perturbation matrix in Step 1 of Algorithm 7.1 is fixed to P . Let ui be
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the valuation vector of player i, so that v =
∑

i ui. By examining equations (8.4) and

(3.1) and invoking the polynomial dimensionality of our problem, we conclude that

computing the payments of Equation (8.4) reduces in polynomial time to computing

E[BP (v)] and E[BP (v−ui)] for each player i. The expected outcome E[BP (v)] is P Tx,

where x = AF(Ω, P v) is as computed in Step 1. Similarly, the expected outcome

E[BP (v − ui)] is P
TAF(Ω, P (v − ui)). Since P is drawn from tractable perturbation

scheme Ψ and AF runs in smoothed polynomial time, computing AF(Ω, P v) and

AF(Ω, P (v − ui)) for all players i takes expected time polynomial in the description

of Ω, 1
ǫ
and the number of players.



Chapter 9

Multi-Unit Auctions

9.1 Introduction

In this chapter we consider welfare maximization in multi-unit auctions, where a large

(exponential) number of identical items must be allocated among a set of competing

players. This problem captures many scenarios where a homogeneous resource must

be divided among multiple players, such as bandwidth, machine processing time, or

electrical power. Multi-unit auctions admit a non-truthful FPTAS; however, despite

intense study, no truthful mechanism with an approximation ratio better than 50%

was known before our work.

This problem escapes the black-box result of Chapter 8 because its formulation

as a linear optimization problem has an exponential number of variables. The results

of smoothed analysis (Section 8.2.2) exploited in Chapter 8 are no longer applicable,

and efficient application of linear perturbations (Chapter 7) is not in general possible

for problems with exponential dimension. We overcome these difficulties to design

a truthful-in-expectation FPTAS for multi-unit auctions: we design linear perturba-

tions that exploit the structure of multi-unit auctions to recover polynomial smoothed

complexity, and at the same time can be applied efficiently to solutions of exponential

dimension using the principle of deferred decisions.

133
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9.1.1 Summary of Results and Techniques

In multi-unit auctions, there are m identical items to be divided among n players.

Each player’s valuation is described by a function that maps a number between 0

and m to the player’s value for receiving that number of items. We assume that

each valuation is presented via a value oracle, meaning that the valuation may be

queried efficiently at any number between 0 and m. We require no structure on

these valuations besides them being non-decreasing (also known as free disposal) and

normalized (the value of a player for no items is zero).

Welfare maximization in multi-unit auctions is possible in polynomial time, using

dynamic programming, if runtime is allowed to depend polynomially on m. We

instead consider the case where m is a large number of items, written in binary, and

therefore our runtime must be polynomial in n and logm. Under these restrictions,

the problem generalizes the NP-hard knapsack problem.1 Moreover, the FPTAS for

the knapsack problem (see e.g. [84]) can be extended to multi-unit auctions. Given

an approximation parameter ǫ, the FPTAS runs in time polynomial in n, logm and
1
ǫ
, and returns a (1 − ǫ)-approximate solution to the welfare maximization problem

in multi-unit auctions.

Application of the techniques of Chapters 7 and 8 to multi-unit auctions faces two

main difficulties, both due to the exponential dimensionality of the problem. The first

relates to our use of smoothed complexity; an FPTAS for a problem with exponential

dimension does not appear to, in general, imply polynomial smoothed complexity of

the problem in the same general sense defined in Section 8.2.2. We overcome this

by designing a specific perturbation scheme that exploits the structure of multi-unit

auctions, and an accompanying exact algorithm that solves instances perturbed by

this scheme in expected polynomial time. Second, even if instances perturbed by a

specific perturbation can be solved in expected polynomial time, this is only useful if

said perturbation can be applied to an instance efficiently. This was called tractability

in Chapter 7, and required efficient sampling of a perturbation matrix, as well as

1The knapsack problem is equivalent to the special case of multi-unit auctions where each player’s
valuation function is single minded, meaning that his valuation as a function of the number of items
increases at most once.
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efficient decomposition of a solution perturbed by the adjoint perturbation into a

convex combination of other solutions. Both requirements are evidently impossible

for problems of exponential dimension, as the perturbation matrix has an exponential

number of entries. We relax tractability using the principle of deferred decisions, and

show that the relaxed definition suffices for multi-unit auctions.

9.1.2 Related Work

Multi-unit auctions are as old as mechanism design. The problem was first consid-

ered by Vickrey [85], who studied the special case where players have downwards

sloping valuations. The welfare-maximizing allocation can be computed efficiently

in this case, and the VCG mechanism can be employed. The special case where

players are single-minded, meaning that each bidder’s valuation as a function of the

number of items increases at most once, is NP-hard. Mu’alem and Nisan [67] exhib-

ited a truthful polynomial-time 2-approximation mechanism for multi-unit auctions

with single-minded bidders, and this was followed by a truthful FPTAS by Briest et

al. [16]. The case where a player’s valuation function increases at most k times, where

k is polynomial in n and logm, was considered by Lavi and Swamy [60], who exhibit

a truthful-in-expectation 2-approximation mechanism, and this was strengthened to

a PTAS by Dobzinski and Nisan [30]. For the general multi-unit auctions prob-

lem, a truthful-in-expectation 2-approximation mechanism was presented by Lavi and

Swamy [60] in the demand oracle model,2 followed by a deterministic 2-approximation

mechanism in the value oracle model by Dobzinski and Nisan [30].

Negative results for polynomial-time mechanisms for multi-unit auctions began

with the work of Lavi et al. [59], who showed that no deterministic truthful mechanism

that always allocates all items can guarantee a 50% approximation ratio in polynomial

time. Dobzinski and Nisan [30] proved the same 50% lower bound for deterministic

VCG-based mechanisms, and in followup work [31] generalized their impossibility

result to deterministic truthful mechanisms that are “scalable”, in that they are

independent of the units used to measure players’ valuation functions.

2A demand oracle for a valuation v takes as input a price p, and returns the number of items j
maximizing the player’s utility v(j)− pj.
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We note that the conference publication of this result ([27]) preceded the linear

perturbation framework, and employed a different proof. The proof presented in this

chapter uses the linear perturbation framework of Chapter 7, and we feel it is simpler

and more instructive. Nevertheless, the mechanism in the conference publication is

stronger in one sense: it runs in polynomial time surely, whereas the mechanism

presented in this chapter runs in expected polynomial time.

After the conference publication of this result ([27]) and before publication of this

thesis, Vöcking [86] showed that a perturbation approach, implemented differently,

yields a universally-truthful FPTAS for multi-unit auctions. The approach of [86]

bears some similarity to the approach presented in this chapter, and any common

ideas were independently discovered.

9.2 Model and Preliminaries

9.2.1 Multi-Unit Auctions

In a multi-unit auction, a set of m identical items must be allocated among n bidders.

Each bidder i is equipped with a valuation function vi : {0, . . . , m} → R+, where vi

is non-decreasing, and normalized: vi(0) = 0. The goal is to find an allocation

(s1, . . . , sn) of the items, where each si is a non-negative integer and
∑n

i=1 si ≤ m,

that maximizes the social welfare:
∑

i vi(si). Multi-unit auctions can be written as a

binary packing problem (Chapter 8) as follows, where decision variable xij indicates

whether player i is assigned j items.

maximize
∑

ij vi(j) · xij

subject to
∑

ij j · xij ≤ m
∑

j xij ≤ 1, for i ∈ [n].

xij ∈ {0, 1} , for i ∈ [n], j ∈ [m].

(9.1)

We assume that an instance of multi-unit auctions is given by the number of items

m, and n valuation functions each presented via a value oracle. Specifically, for each

player i and number of items j, our algorithms may query vi(j) in constant time.
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Since all items are identical, the natural “length” of the description of the items is

logm, rather than m. Therefore, we require a computationally-efficient algorithm for

multi-unit auctions to run in time polynomial in n and logm.

Using n and logm as the natural parameters, we observe that the binary packing

problem (9.1) is of exponential dimension — specifically, it has mn variables. There-

fore, the main result of Chapter 8 does not directly apply to multi-unit auctions.

9.3 Outline of our Approach

As mentioned in the introduction, application of the techniques of Chapters 7 and 8

to multi-unit auctions faces two main difficulties, both due to the exponential di-

mensionality of the problem. We now outline these challenges, and our approach to

overcoming them, in more detail.

Smoothed Polynomial Runtime with Exponential Dimension The PB allo-

cation rule (Algorithm 7.1) requires the existence of an exact algorithm for multi-unit

auctions that runs in expected polynomial time over perturbed instances. Unfortu-

nately, the results of smoothed analysis (Section 8.2.2) do not hold in general for

problems with exponential dimension. Nevertheless, we will show that there is a spe-

cific perturbation scheme and accompanying exact algorithm, both designed carefully

to exploit the particular structure of multi-unit auctions, such that the expected run-

time of the algorithm over perturbed instances is polynomial in n and logm. We now

describe the intuition behind our perturbation scheme.

We start with the following observation. In searching for an optimal solution to

an instance of multi-unit auctions, it suffices to evaluate a valuation function v of

a player only at dominant points, defined as follows: A point k ∈ [m] is dominant

in valuation function v : [m] → R+ if v(k) > v(j) for all j < k. If we restrict our

attention to instances of multi-unit auctions with a polynomial number of dominant

points in each player’s valuation function, and moreover assume that a list of these

points is provided as part of the input to the problem, we could re-write an instance
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as a binary packing problem with polynomial dimension, and apply the result of

Chapter 8 to obtain a truthful-in-expectation FPTAS for these instances.

No such guarantee on the number of dominant points is possible in general. Fortu-

nately, however, we will show that there is a specific linear perturbation of valuation

functions, which we refer to as the 2-adic perturbation, such that the perturbed

function is guaranteed to have only a polynomial number of dominant points, and

moreover a list of these points can be computed in polynomial time. Composing the

2-adic perturbation with a variant of the RS perturbation scheme (Section 8.3) will

then yield a truthful-in-expectation FPTAS as in Chapter 8.

Tractable Perturbation with Exponential Dimension Polynomial-time solv-

ability of the perturbed optimization problem does not by itself suffice. We must

additionally apply our perturbation scheme efficiently. In Chapter 7, this require-

ment was called tractability, and required efficient sampling of a perturbation matrix

P , as well the construction of a perturbed solution with expectation P Tx given a

feasible solution x. Unfortunately, this requirement is a non-starter for problems of

exponential dimension; this is because no scheme can produce in polynomial time an

explicit description of a perturbation matrix with an exponential number of entries.

Nevertheless, we observe that a relaxed definition of tractability suffices. We say a

perturbation scheme Ψ for multi-unit auctions is tractable with deferred decisions if

it satisfies the following three properties:

(I) A matrix P ∈ Rn×m drawn from Ψ is uniquely determined by a vector δ of

independent random variables. We require that the length of δ is at most

exponential in n and logm so that individual entries of δ may be indexed using

polynomial space. Moreover, we requires that each entry of δ can be sampled

efficiently.

(II) For each objective vector v ∈ Rn×m for multi-unit auctions and each i ∈ [n]

and j ∈ [m], an entry (Pv)ij of the perturbed valuation vector can be evaluated

in polynomial time by reading only a polynomial (in n and logm) number of

entries of δ.
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(III) For each binary vector x in the feasible set Ω for multi-unit auctions, represented

succinctly as a mapping from player to number of items, a distribution Dx with

support Ω and expectation P Tx can be sampled in time polynomial in n and

logm by reading only a polynomial number of entries of δ.

We will design our perturbation scheme to satisfy tractability with deferred de-

cisions. To account for this modified notion of tractability, we won’t require explicit

computation of P in Step 1 of the Perturbation Based (PB) allocation rule (Algo-

rithm 7.1). In the modified PB allocation rule, we modify Step 1 of Algorithm 7.1

as follows: we give algorithm A oracle access to both v and the vector δ of ran-

dom variables describing the perturbation matrix P , and require that A output an

optimal solution to the perturbed instance (Ω, P v). The following modification of

Theorem 8.4.1 now sets the stage.

Theorem 9.3.1. If Ψ is a feasible, linear, approximation-preserving perturbation

scheme for multi-unit auctions, and moreover Ψ is tractable with deferred decisions,

then the modified perturbation-based (PB) allocation rule for multi-unit auctions sat-

isfies the following properties:

(a) it is MIDR, and hence defines a truthful-in-expectation mechanism when com-

bined with suitable payments;

(b) for every approximation parameter ǫ > 0 and instance of Π, it outputs a feasible

solution with expected objective function value at least (1−ǫ) times the maximum

possible;

(c) its worst-case expected running time is bounded by a polynomial in n and logm

plus the runtime of the exact algorithm A for applying the perturbation and

producing the exact solution to the perturbed instance (Ω, P v).

Proof. The proof of (a) and (b) is identical to that in Theorem 8.4.1. For (c), note that

Properties (I) and (III) of schemes that are tractable with deferred decisions imply

that Steps 2 and 3 of the PB allocation rule (Algorithm 7.1) can be implemented in

polynomial time.
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Figure 9.1: The 2-adic valuation.

9.4 The 2-adic Perturbation

In this section, we define the 2-adic perturbation v → vσ, parametrized by σ > 0,

and explore some of its formal properties. The 2-adic perturbation will serve as a

building block for our perturbation scheme for multi-unit auctions, to be defined in

Section 9.5.

For a positive integer j, we let τ(j) be the exponent of the largest power of 2

dividing j. The function τ appears in many contexts, and is known as the 2-adic

valuation function, among other names. We illustrate the structure of τ by the plot

in Figure 9.1. There are multiple equivalent definitions of τ : τ(j) is the number of

trailing zeros in the binary representation of j, and equivalently τ(j) = t if and only

if j/2t is an odd integer. For convenience, we set τ(0) = 0. It is immediate that τ(j)

can be evaluated in time polynomial in the length of the binary representation of j.

Since we will need to evaluate τ only for integers between 1 and m, this is possible

in time polynomial in logm.

Given a non-decreasing valuation function v : {0, . . . , m} → R+ and σ > 0, we

define the the perturbed valuation vσ as follows:

vσ(j) = v(j) + 2σ · τ(j) (9.2)
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The 2-adic perturbation can be viewed as one that gives a “bonus” to the valuation

at each point j, proportional to the 2-adic valuation τ(j) of j. This bonus varies in

a periodic and hierarchical pattern with the number j, as shown in the plot of the

2-adic valuation in Figure 9.1. The 2-adic perturbation has the effect of reducing the

number of dominant points of a valuation, as seen in Figure 9.2.

Looking ahead to Section 9.5, our perturbation scheme for multi-unit auctions will

in effect compose the 2-adic perturbation (with some carefully chosen value of σ to be

defined) with the random singleton perturbation scheme of Chapter 8 (Algorithm 8.2).

Because the random singleton perturbation scheme may change the number of domi-

nant points of a valuation in general, we will not only bound the number of dominant

points of a valuation vσ perturbed by the 2-adic perturbation, but we will also bound

the number of points that are even near-dominant. This would “leave room” for a

variant of the RS perturbation scheme to act on vσ, without substantially increasing

the number of its dominant points.

Given a function u : [m] → R+, we say k ∈ [m] is a σ-dominant point of u if

u(k) > u(ℓ)−σ for all ℓ < k. Observe that a point is dominant (Section 9.3) if and only

if it is 0-dominant. We note that, if u is non-decreasing and σ > 0, then every point

of u is σ-dominant, rendering the definition of approximate dominance uninteresting.

The 2-adic perturbation is designed to effectively reduce the dimensionality of the

valuation function from [m] to a polynomial in logm and v([m])
σ

, in the following

strong sense:

Lemma 9.4.1. Fix σ > 0 and a non-decreasing function v : [m] → [0, vmax]. The

number of σ-dominant points of vσ is at most O(logm · vmax

σ
). Moreover, given only

value-oracle access to v, there is an algorithm that runs in poly(logm, vmax

σ
) time, and

outputs a subset of [m] guaranteed to include all σ-dominant points of vσ.

The proof of Lemma 9.4.1 builds on the following claim.

Claim 9.4.2. Fix σ > 0 and non-decreasing function v : [m] → [0, vmax]. If k is a

σ-dominant point of vσ and j < k, then either v(k) > v(j) + σ or τ(k) > τ(j).

Proof. We assume that j < k, v(k) ≤ v(j) + σ, and τ(k) ≤ τ(j), and show that k is

not a σ-dominant point of vσ. Recall that τ(j) and τ(k) are the number of trailing
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(a) Unperturbed valuation v(j) = j. All points are dominant.
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(b) The 2-adic perturbation of v with σ = 1. Dominant points are circled.

Figure 9.2: The 2-adic perturbation.
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zeros in the binary representation of j and k, respectively. Let ℓ = k − 2τ(k). Using

the binary-representation interpretation of τ , it is easy to verify that ℓ is simply the

result of removing the rightmost 1 from the binary representation of k, and therefore

τ(ℓ) ≥ τ(k) + 1. Moreover, since the binary representation of j has at least τ(k)

trailing zeros and j < k, it follows that j ≤ l. To derive a contradiction, we will show

that k does not σ-dominate ℓ in vσ:

vσ(ℓ) = v(ℓ) + 2στ(ℓ)

≥ v(ℓ) + 2στ(k) + 2σ

≥ v(j) + 2στ(k) + 2σ

≥ v(k)− σ + 2στ(k) + 2σ

= vσ(k) + σ

Proof of Lemma 9.4.1. We will bound the number of σ-dominant points of vσ by

enumerating a list of at most O(logm · vmax

σ
) points that must include all σ-dominant

points. First, we divide {0, . . . , m} into O(vmax

σ
) disjoint intervals, the sth of which is

defined as follows:

Is = {j ∈ [m] : σs < v(j) ≤ σ(s+ 1)} .

Claim 9.4.2 implies that, for each interval Is and integer t ∈ {0, . . . , logm}, there
is at most one σ-dominant point k of vσ with both k ∈ Is and τ(k) = t. This bounds

the number of σ-dominant points of vσ by O(logm · vmax

σ
), completing the proof of

the first part of this Lemma.

Claim 9.4.2 implies an even stronger statement: if k ∈ Is is a σ-dominant point of

vσ and τ(k) = t, then k must be the smallest integer j in Is with τ(j) = t. It is easy

to verify that, given the end-points of a segment Is and an integer t, we can compute

in O(logm) time the smallest integer k ∈ Is that is divisible by 2t, if any. Moreover,

the delimiting points of the intervals {Is}s can each be computed in O(logm) time

using binary search. This completes the proof of the second part of the lemma.
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9.5 Combining the 2-adic and Random Singleton

Perturbation Schemes

We now describe a perturbation scheme combining the random singleton (RS) pertur-

bation scheme (Algorithm 8.2) with the 2-adic perturbation. We call this the 2-adic

random singleton perturbation scheme, and denote it by RS2. As we did for the RS

scheme in Chapter 8, we describe RS2 first via its adjoint, depicted in Algorithm 9.1.

Recall that each x in the feasible set Ω of multi-unit auctions (integer program (9.1))

is a binary vector indexed by i ∈ [n] and j ∈ [m], where xij denotes whether player

i receives exactly j items. We assume that each x ∈ Ω is represented succinctly as a

mapping from each player to a number of items. We observe that the probabilities in

Step 2 of the adjoint RS2 scheme sum to 1, because a binary vector x that encodes

a feasible solution for multi-unit auctions includes at most n non-zero entries, and

moreover δij + δ′ij ≤ ǫ/n for each i and j.

Parameter: ǫ > 0.

Input: Numbers m of items and number n of players.

Definition: Ω ⊆ {0, 1}[n]×[m] is the feasible region of integer program (9.1).

Input: x ∈ Ω.

Output: y ∈ Ω.

1: for each i ∈ [n] and j ∈ [m], draw δij uniformly from the interval [0, ǫ
4n logm

], and

let δ′ij =
ǫ

2n logm
τ(j) where τ is the 2-adic valuation defined in Section 9.4;

2: Output a random solution y ∈ Ω according to the following distribution:

• x with probability 1− ǫ ;

• for each player i = 1, . . . , n, the “singleton” eim (which assigns all items

to i) with probability
∑

i,j

(δij + δ′ij)xij

n
; (9.3)

• the all-zero allocation with the remaining probability.

Algorithm 9.1: Adjoint of the 2-adic random singleton (RS2) perturbation scheme.
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We observe two main differences between the adjoint forms the RS and RS2 per-

turbation schemes (Algorithms 8.1 and 9.1, respectively). First, recall that the RS

scheme gives an allocation x a “bonus”, in the form of a random singleton allocation,

with probability proportional to the number of non-zero entries of x. Polynomial di-

mension guarantees that the value of the random singleton bonus is at the right scale,

up to a polynomial, so that the perturbation is diffuse enough to permit polynomial

smoothed complexity. In exponential dimension, this is no longer the case since only

an exponentially small fraction of singletons may be of sufficient value. Therefore,

RS2 employs a random choice of n specific singletons — those allocating all items to a

single player. The structure of multi-unit auctions implies that the expected value of

this random bonus is at the right scale, up to a factor of n. The second and perhaps

most important difference between RS and RS2 concerns the probability with which

the bonus is awarded. Whereas in RS this probability depends only on the number

of non-zero entries of x, in RS2 this probability depends additionally on the specific

entries of x that are non-zero, using the 2-adic valuation to effectively place “weights”

on various entries of x.

After conditioning on the random choices in Step 1 of the adjoint RS2 scheme

(Algorithm 9.1), the expectation x̃ of the distribution Dx over solutions y ∈ Ω defined

by Step 2 can be expressed via the adjoint perturbation P T given by

x̃ = P Tx = (1− ǫ)x+

(
n∑

i=1

m∑

j=1

(δij + δ′ij)xij

)(
n∑

i=1

eim
n

)

Let δ and δ′ denote the n×m-vectors of δij ’s and δ′ij’s, respectively. Since P
T can be

written as (1− ǫ)I + 1
n
(
∑n

i=1 eim)(δ + δ′)T , dualizing gives the following primal form

of the RS2 perturbation matrix:

P = P (δ) = (1− ǫ)I +
(δ + δ′)(

∑n
i=1 eim)

T

n
(9.4)
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This corresponds to the linear perturbation given by the map

vi(j) 7→ (1− ǫ)vi(j) +
δij + δ′ij

n

n∑

i′=1

vi′([m]) (9.5)

for each player i and number of items j. We summarize the resulting (primal) form

of the RS2 perturbation scheme in Algorithm 9.2.

Parameter: ǫ > 0.

Input: Numbers m of items and number n of players.

Input: Valuation functions v1, . . . , vn : [m] → R+

Output: Perturbed valuation functions v̂1, . . . , v̂n : [m] → R+

1: For each i ∈ [n] and j ∈ [m], draw δij uniformly from the interval [0, ǫ
4n logm

], and

let δ′ij =
ǫ

2n logm
τ(j) where τ is the 2-adic valuation defined in Section 9.4;

2: Let

v̂i(j) = (1− ǫ)vi(j) +
δij + δ′ij

n

n∑

i′=1

vi′([m])

for each player i and number of items j

Algorithm 9.2: The 2-adic random singleton (RS2) perturbation scheme.

9.6 The Truthful-in-Expectation FPTAS

In this section, we show that the RS2 perturbation scheme can be used in conjunction

with the modified PB allocation rule (Section 9.3) to yield a truthful-in-expectation

FPTAS for multi-unit auctions. We begin by proving an analogue of Lemma 8.3.1.

Lemma 9.6.1. The RS2 perturbation scheme (Algorithm 9.2) for multi-unit auctions

is feasible, linear, approximation-preserving, and tractable with deferred decisions.

Proof. The proof of feasibility, linearity, and approximation-preservation is identical

to that in Lemma 8.3.1. We now prove the scheme is tractable with deferred decisions

(recall properties (I), (II), and (III) of Section 9.3). Property (I) is satisfied because

the perturbation matrix P (Equation (9.4)) is uniquely defined by themn independent
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random variables δij , each of which can be sampled in constant time. Property (II)

is satisfied because the perturbed entry (Pv)ij, as seen in Equation (9.5), can be

evaluated in O(n) time given oracle access to entries of the original valuations v,

and given the value of δij . For property (III), we recall that we described the RS2

perturbation explicitly via its adjoint. Specifically, Algorithm 9.1 on input x samples

a distribution Dx with expectation P Tx. Moreover, it is clear that sampling of Dx

reduces to evaluation of the probability
∑

ij(δij + δ′ij)xij/n (Equation (9.3)). This is

possible in polynomial time because a feasible solution x for multi-unit auctions has

at most n non-zero entries, δij can be sampled in constant time, and evaluation of δ′ij

reduces to evaluating the 2-adic valuation τ(j) of j, which we argued in Section 9.4

is possible in time polynomial in logm.

We also show that instances of multi-unit auctions can perturbed by the RS2

perturbation scheme and then solved exactly, all in expected polynomial time.

Lemma 9.6.2. Let ǫ > 0 be a parameter. Let v1, . . . , vn : [m] → R+ denote an

instance of multi-unit auctions, presented as n value oracles. Let δij ∈ [0, ǫ
4n logm

] for

i, j ∈ [n]× [m], and assume δ is presented as an oracle indexed by i and j. There is

an algorithm A that outputs an exact solution for perturbed instance Pv of multi-unit

auctions, where P = P (δ) is the perturbation of the RS2 scheme with random coins

δ as given in Equation (9.4), and runs in expected time polynomial in n, logm, and

1/ǫ when δij are independent and uniformly distributed in [0, ǫ
4n logm

].

Proof. Let σ = ǫ
4n logm

·
∑n

i=1 vi([m])

n
, and let ηij = δij ·

∑n
i=1 vi([m])

n
. Plugging in the

definition of δ′ from Algorithm 9.2, the map v → Pv of the RS2 perturbation scheme,

as given by Equation (9.5) for each δ, can immediately be re-written as follows:

v̂i(j) = (1− ǫ)vi(j) + 2στ(j) + ηij , (9.6)

where ηij are independently and uniformly distributed in [0, σ]. Equation (9.6) allows

us to describe the RS2 perturbation scheme as the composition of two steps. For each

player i, the RS2 scheme (a) scales player i’s valuation vi by 1 − ǫ, and applies the

2-adic perturbation (Section 9.4) with parameter σ to the scaled valuation, then (b)

adds noise ηij , independent and uniform in [0, σ], to each entry j of the valuation.
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We first show that, for a player i, there is a polynomial number of points Bi ⊆ [m]

independent of the “noise” vector η, such that all dominant points of v̂i lie in Bi,

and moreover the list Bi can be computed in polynomial time. We let ṽi(j) = (1 −
ǫ)vi(j) + 2στ(j) be the result of applying only part (a) of the RS2 perturbation, and

note that v̂i(j) = ṽi(j) + ηij . Observe that a dominant point of v̂i is a σ-dominant

point of ṽi, because 0 ≤ ηij ≤ σ for all i and j. Moreover, Lemma 9.4.1 implies that

a list of σ-dominant points of ṽi can be be computed in time polynomial in logm and
ṽi([m])

σ
, where the latter quantity is at most 4n2 logm

ǫ
by definition of σ.

For each player i, an optimal solution must assign i a number of items that is

dominant for v̂i. Therefore, after computing the sets Bi for each player i, we can re-

write the problem of maximizing the perturbed welfare
∑

i v̂i(j)xij as a binary packing

problem of polynomial dimension, with a variable xij for each player i and j ∈ Bi.

Moreover, this reformulation is independent of the “noise” vector η. As a result, ours

is a perturbed instance where each entry of the objective function is independent and

has density 1
σ
≤ 4n2 logm

ǫvmax
, where vmax = maxij vi(j). Using proposition 8.2.1 and an

FPTAS for multi-unit auctions, this perturbed instance can be solved in expected

time polynomial in n, logm, and 1/ǫ. This completes the proof.

Combining the two Lemmas 9.6.1 and 9.6.2 with Theorem 9.3.1, we finally prove

the existence of a truthful-in-expectation FPTAS for multi-unit auctions.

Theorem 9.6.3. There is a truthful-in-expectation FPTAS for multi-unit auctions.

Proof. Let A denote an algorithm for perturbing and solving an instance of multi-

unit auctions, as described in Lemma 9.6.2. Let Ψ denote the RS2 perturbation

scheme (Algorithm 9.2). Instantiate the modified PB allocation rule (recall form

Section 9.3) for multi-unit auctions with the scheme Ψ and algorithm A. Since Ψ

is feasible, linear, approximation-preserving and tractable with deferred decisions

(Lemma 9.6.1), Theorem 9.3.1 implies that this allocation rule is MIDR, has an

approximation guarantee of 1− ǫ in expectation (for an arbitrary supplied parameter

ǫ), and has expected running time bounded by a polynomial in n and logm plus

the runtime of Algorithm A. Lemma 9.6.2 then bounds the expected runtime by a

polynomial in n and logm.
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Finally, to complete the proof we note that Proposition 3.4.1 implies that truth-

telling payments for this allocation rule can be computed with poly(n) overhead in

runtime.



Part IV

Mechanisms for Single-Parameter

Problems
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Chapter 10

Single-Parameter Scheduling

Problems

10.1 Introduction

The previous chapters of this thesis were primarily concerned with mechanism design

problems in which a player’s preferences are described by multiple private param-

eters. Those problems are called multi-parameter, and their complexity frequently

restricts the class of incentive-compatible mechanisms. As a result, the vast majority

of mechanisms designed for multi-parameter problems fall in the VCG framework.

Much more permissive is the class of single-parameter mechanism design problems,

where each player’s private valuation is described by a single real number. The class

of truthful mechanisms for these problems is much better understood, and known to

be more permissive.

In this chapter, we consider single-parameter problems in a scheduling context.

We focus primarily on the problem of minimizing the makespan of parallel related ma-

chines, denoted in literature on scheduling by Q||Cmax. In this problem, a set of jobs

with known sizes must be scheduled on a set of self-interested machines (the players).

Each machine holds its speed privately, and the goal is find a schedule that minimizes

the completion time of all jobs, known as the makespan. This single-parameter prob-

lem was considered the last serious candidate problem for a separation between the

151
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power of polynomial-time truthful mechanisms and polynomial-time approximation

algorithms in single-parameter mechanism design. Our result is positive: we present

the first truthful-in-expectation randomized polynomial-time approximation scheme

(PTAS) for Q||Cmax, improving upon the previously best known 2-approximation

mechanism due to Archer and Tardos [3]. Our approximation guarantee is the best

possible for all polynomial-time algorithms (assuming P 6= NP ).

To obtain our result for Q||Cmax, we develop several algorithmic techniques for the

design of incentive-compatible mechanisms for single-parameter scheduling problems.

These techniques are flexible, and also yield truthful-in-expectation approximation

schemes for objectives other than the makespan of the schedule.

10.1.1 Single Parameter Problems and Scheduling

In the problems considered in this chapter, each player’s valuation function is negative.

Therefore, for notational convenience, we flip the signs and define single-parameter

problems when each player is equipped with a private cost function defined on the

outcomes.

A mechanism design problem with m players is single-parameter if all outcomes

ω ∈ Ω are real m-vectors, and each player i’s private cost function has the form

ti(ω) = ciωi for a private real number ci. In the problems we consider, players

correspond to m machines, and there are n jobs with known sizes p1, . . . , pn. Each

outcome ω ∈ Ω corresponds to a schedule, an assignment of jobs to machines, and

ωi is the work (sum of job sizes) assigned to machine i. The cost function ti has the

form ωi/si, where si denotes the (private) speed of player i’s machine. In this case,

we refer to player i’s cost ti(ω) also as the load on his machine, or alternatively the

completion time of the machine.

In our primary application, our objective is to minimize themakespanmaxi ti(ω) of

the machines. Every vector s of private speeds induces an instance of an optimization

problem Π, which in this case is the strongly NP-hard problem Q||Cmax. We note

that, unlike other problems considered in this thesis, the objective in Q||Cmax is

not the utilitarian objective. Fortunately, single parameter problems admit a larger
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class of truthful mechanisms than multi-parameter problems, enabling more positive

results for non-standard objectives. We describe the space of truthful-in-expectation

mechanisms for single-parameter problems next.

An algorithm for a single-parameter problem is monotone if increasing the value

of a ci (keeping other cj ’s fixed) can only decrease the ith component of its solution

in expectation. In our scheduling context, monotonicity means that slowing down

one machine can only decrease the expected work assigned to it by the algorithm (for

fixed speeds of the other machines). Prior work in mechanism design shows that an

algorithm for a single-parameter problem is implementable — i.e., via suitable pay-

ments, it can be extended to a truthful-in-expectation mechanism — if and only if

it is monotone. Conceptually, polynomial-time single-parameter mechanism design is

equivalent to polynomial-time monotone algorithm design. Variants of this character-

ization were proved in different contexts, starting with the work of Mirrlees [66] and

Spence [82], then Myerson [68], and finally made explicit for dominant-strategy truth-

fulness by Archer and Tardos [3]. For completeness, we review this characterization

and present the form of the corresponding payment rule in Appendix A.3.

10.1.2 Results

Our main result is the first randomized monotone PTAS1 for the Q||Cmax problem.

Using standard techniques for computing payments, we obtain a polynomial-time,

truthful-in-expectation mechanism whose approximation guarantee is the best possi-

ble for polynomial-time algorithms (assuming P 6= NP ). Prior to our work, the best

polynomial-time and truthful-in-expectation mechanism was a 2-approximation due

to Archer and Tardos [3].

The algorithmic techniques we develop for this result are flexible and easily yield

additional truthful-in-expectation mechanisms for various single-parameter problems:

a deterministic quasipolynomial-time approximation scheme (QPTAS) for Q||Cmax

(improving over [1]); a randomized PTAS and deterministic QPTAS for minimizing

1A polynomial time approximation scheme for a minimization problem Π is an algorithm that
takes as input an instance of Π and a parameter ǫ > 0, runs in time polynomial in the size of the
instance, and returns a solution of cost at most a factor of (1 + ǫ) of the minimum possible.
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the p-norm of loads on related machines; and a randomized PTAS for maximizing the

minimum load on related machines (cf. [40]).

10.1.3 Techniques

We identify two key sources of non-monotonicity in classical approximation algo-

rithms for Q||Cmax and related problems, and develop a number of ideas to overcome

them. Both the known PTASes for Q||Cmax [39, 50] optimize over a compact but

coarse representation of an allowable subset of schedules, represented as paths in a

polynomial-size graph. This allowable subset fluctuates as a function of the machine

speeds, so varying a machine speed causes unpredictable (and non-monotone) changes

in algorithm behavior. Secondly, even when a machine speed perturbation leaves the

allowable schedules invariant, attempting to optimize over their coarse representation

inevitably yields only an approximate result. Approximation creates another op-

portunity for non-monotone behavior, with small perturbations in a machine speed

potentially influencing the approximate solution chosen in an uncontrollable way.

To handle the first difficulty, we present a flexible approach for optimizing over a

speed-independent set of schedules that yields monotone algorithms. Exact optimiza-

tion over a fixed set is pervasive in algorithmic mechanism design, and is embodied

by the maximal-in-distributional-range paradigm which is applied to several welfare

maximization problems in this thesis. Since they specifically optimize social welfare,

MIDR algorithms do not appear to be directly useful for problems such as Q||Cmax

that have a non-welfare objective. Nevertheless, we consider the natural analogue:

minimizing expected makespan over a speed-independent set R of (possibly random)

schedules. Unlike in the case of a welfare objective, this approach does not always lead

to a monotone algorithm, and this is due to non-monotonicities that may arise in tie

breaking among different schedules with the same makespan. We overcome this dif-

ficulty by exhibiting a flexible framework for “monotonicity-preserving tie breaking”

that applies to ranges R that satisfy certain properties.

The second and more technically challenging task is to identify a set R of sched-

ules that is rich enough to contain near-optimal solutions for all possible machine
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speeds, yet structured enough to permit polynomial-time exact optimization. We

use randomization twice to coax a job set into a form that enables polynomial-time

optimization over the schedules. First, we artificially equalize the sizes of jobs that

originally had similar sizes, randomly replacing them with the original job sizes at

the end of the algorithm. We call this job smoothing. Second, we allow fractional

schedules which we eventually convert to integral schedules via randomized round-

ing. Randomized rounding was also used by Archer and Tardos [2, 3], although our

approximation target of (1 + ǫ) allows only the barest use of the technique: the jobs

fractionally assigned to each machine must be dwarfed by those assigned fully.

At the end of the day, schedules in R fractionally assign the smoothed jobs. Such

a fractional and smoothed schedule naturally corresponds, through application of

randomized rounding and job smoothing, to a lottery over schedules of the original

jobs. Therefore R is distributional range, in the sense of Chapter 3.

10.1.4 Related Work

The problem Q||Cmax is the paradigmatic problem in single-parameter mechanism de-

sign (see e.g. [58]), and was considered a realistic candidate problem for a conditional

separation between implementable and non-implementable polynomial-time approx-

imation algorithms. The problem admits an (exponential-time) implementable opti-

mal algorithm, but all classical polynomial-time approximation algorithms for it, such

as the polynomial time approximation scheme (PTAS) designed by Hochbaum and

Shmoys [50], are not monotone [3]. Archer and Tardos [3] devised a polynomial-time

monotone randomized approximation algorithm that is 3-approximate. Archer [2]

later modified the algorithm and analysis to improve the performance guarantee to 2.

We also mention prior related work for the other scheduling problems we consider.

For the problem of minimizing a norm of machine loads, a non-monotone PTAS was

given by Epstein and Sgall [39], but no nontrivial monotone algorithms were known

prior to our work. For the problem of maximizing the minimum load, a non-monotone

PTAS was given by Azar and Epstein [6], and a monotone PTAS for the special case

of a constant number of machines was given by Epstein and van Stee [40].
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We note that since the conference publication of the results in this chapter,

our result for Q||Cmax has been strengthened to a deterministic truthful PTAS by

Christodoulo and Kovács [20].

10.2 A Monotone PTAS for Minimizing Makespan

10.2.1 Techniques for Monotone Algorithm Design

This section identifies a large class of monotone randomized algorithms for Q||Cmax,

together with additional (strong) conditions that ensure an approximation ratio of (1+

ǫ). Sections 10.2.2-10.2.4 design a polynomial-time algorithm that meets all of these

requirements. We first formally state the monotonicity requirement.

Definition 10.2.1 (Monotone Algorithm). A randomized algorithm for the Q||Cmax

problem is monotone if the expected work assigned to a machine i — holding the set of

jobs and the speeds of the other machines fixed — is always a non-decreasing function

of the machine speed si.

Monotone algorithms are important because they are precisely the algorithms that

can be extended to truthful-in-expectation mechanisms (Appendix A.3). We use three

main techniques to achieve monotonicity: job smoothing, fractional assignment, and

monotonicity-preserving tie breaking, and we describe each next.

Job Smoothing

For an arbitrary group S of k jobs, we define the smoothed version of S as a set of

k jobs, each of size equal to the average size (
∑

j∈S pj)/k of a job of S. Given a

schedule that includes these smoothed jobs, a random shuffle replaces each of them

with a distinct job from S, with each such bijection equally likely. The smoothed size

of a job is the same as its expected size following this random instantiation.
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Fractional Assignment

As our second tool, we use the well-known technique of randomly rounding a frac-

tional schedule. Precisely, a fractional schedule consists of a fractional assignment

{yij}i∈[m] for each job j, where the yij’s are non-negative and sum to 1 for each j.

The makespan of a fractional schedule is defined as the value of the maximum (frac-

tional) load (
∑

j pjyij)/si of a machine i. By randomly rounding a fractional schedule,

we mean that each job j is independently assigned to a machine, according to the

probability distribution {yij}i∈[m]. The expected work on a machine following ran-

domized rounding equals the work assigned to it in the fractional schedule.

Monotonicity-Preserving Tie Breaking

Finally, we require a technique to optimize over a set R of schedules without violat-

ing monotonicity. It was shown by Archer and Tardos [3] that finding a makespan-

minimizing schedule in R, and breaking ties using a total order on R fixed indepen-

dently of machine speeds, results in a monotone algorithm. Unfortunately, imple-

menting such a speed-independent tie-breaking rule appears to be computationally

prohibitive. Instead, we present an approach for breaking ties among optimal sched-

ules in R in a speed-dependent way that nevertheless preserves monotonicity.

Our monotonicity-preserving tie-breaking technique will apply only to sets R that

are invariant under permuting the machines, in a sense we make clear next. Every

fractional schedule of n jobs onto m machines induces an unordered job partition by

ignoring the machine identities—a fractional partition of the n jobs into m classes,

with each class corresponding to the job fractions assigned to a single machine. We

sometimes call such a class S a bundle, and use |S| to denote the corresponding

amount of work (sum of fractional job sizes). Every job partition P naturally defines

a set R(P ) of m! different fractional schedules, one for each bijection between bundles

and machines. Given a set X of (fractional) job partitions, we letR(X ) = ∪P∈XR(P ),

the set of all schedules defined by the partitions in X . Our technique will apply to

an arbitrary set R of fractional schedules of this form, defined in reference to a set of

partitions X .
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Figure 10.1: An unordered job partition and the induced schedule.
Makespan of induced schedule is 4. Second machine is the bottleneck.

Before describing our monotone allocation rule, we need additional definitions.

Given a job partition P , we use Pi to denote the class of a partition P with the

ith-smallest amount of work (breaking ties arbitrarily). Given the speeds s of m

machines, we single out the fractional schedule in which Pi is assigned to the ith

slowest machine for each i, with ties between equal-speed machines broken in order

of the machines’ names, and call this the schedule induced by the given job partition

and machine speeds. See Figure 10.1. A trivial exchange argument shows that this

schedule minimizes makespan over all m! arrangements of the partition, making it

a natural choice. Given m machine speeds, the makespan of a job partition is the

makespan of the fractional schedule it induces.

Let X be a set of (fractional) job partitions, each into m classes. We are now ready

to describe our monotone allocation rule for choosing a makespan-minimizing schedule

from R(X ). Our allocation rule optimizes over the set X , evaluating each partition

via the makespan of the induced schedule, and breaks ties among optimal partitions

according to a speed-independent total order ≺. Given the winning partition P from
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the first step, the allocation rule outputs the schedule induced by P . Observe that

this allocation rule breaks ties in a speed-dependent way between different schedules

corresponding to the same partition.

Putting it all Together

We combine our three main tools, job smoothing, fractional assignment, and the

monotonicity-preserving tie-breaking rule, in a generic algorithm (Algorithm 10.1).

The first step partitions the input jobs arbitrarily and applies job smoothing indepen-

dently to each group. The second step fixes a set X of fractional job partitions and a

total order ≺ on X . The smoothing step and the definitions of X and ≺ are required

to be independent of s. The third step optimizes over the permissible partitions X
with respect to s. The final two steps transform the induced fractional schedule of the

smoothed jobs into an integral schedule of the original jobs via randomized rounding

and random shuffling. A short but slightly subtle proof shows that this algorithm is

always monotone.

Input: n jobs with sizes p1, . . . , pn and m machines with speeds s1, . . . , sm.

1: Group and smooth the jobs.

2: Define a set X of permissible fractional job partitions and a total ordering ≺ on

X .

3: Compute the partition in X with minimum makespan for s, breaking ties via ≺,

and let σfrac denote the induced schedule.

4: Transform σfrac into an integral schedule σsmooth of the smoothed jobs using ran-

domized rounding.

5: Transform σsmooth into an integral schedule of the original jobs using random

shuffling.

Algorithm 10.1: A generic monotone algorithm. Only the third step depends on s.

Lemma 10.2.2 (Monotonicity of Generic Algorithm). For every speed-independent

job grouping and choice of (X ,≺), Algorithm 10.1 is monotone.
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Figure 10.2: Proof of Lemma 10.2.2.
The schedules induced by a job partition P for two speed vectors s and ŝ that differ

only in the speed of machine i.

Proof. By the properties of randomized rounding and shuffling, the expected amount

of work assigned to each machine equals the fractional work of the smoothed jobs

assigned to it in the third step of the algorithm. Therefore, we only need to show that

the fractional schedule of the smoothed jobs computed in the third step is monotone

in the declared speeds.

Let s = (si, s−i) and ŝ = (ŝi, s−i) denote two speed vectors that differ only for

machine i, with si > ŝi, and let P, P̂ ∈ X denote the corresponding optimal parti-

tions. Let machine i be the kth slowest in s and the k̂th slowest in ŝ, with k̂ ≤ k.

Monotonicity demands that |P̂k̂| ≤ |Pk|.
Let σ and σ̂ denote the schedules induced by P for s and ŝ, respectively. If both

schedules have the same makespan, then P is also a ≺-minimum optimal schedule

for ŝ, so P̂ = P and |P̂k̂| = |Pk̂| ≤ |Pk|.
For the other case, call a machine slow if it is the ℓth slowest machine in ŝ and is

strictly slower than the ℓth slowest machine in s. The parameter ℓ lies in {k̂, . . . , k}
for each such machine; see Figure 10.2. If the makespan of σ̂ exceeds that of σ, then

at least one slow machine, say the ℓth slowest in ŝ, determines the makespan in σ̂

(since the load of each non-slow machines is no larger in σ̂ than in σ). The load on

machine ℓ can only be less in the schedule induced by the optimal partition P̂ for ŝ
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— that is, |P̂ℓ| ≤ |Pℓ|. Combining what we know completes the proof:

|P̂k̂| ≤ |P̂ℓ| ≤ |Pℓ| ≤ |Pk|,

where the first and third inequalities follow from the facts that k̂ ≤ ℓ ≤ k and that

bundle sizes are non-decreasing in an induced schedule.

To control the approximation ratio of the generic algorithm (Algorithm 10.1), we

impose three additional requirements — one for grouping, one for rounding, and one

for the permissible job partitions.

Definition 10.2.3 (δ-Grouping). A partition of a set of jobs into groups is a δ-

grouping if two jobs are in a common group only when their sizes are within a (1+ δ)

factor of each other.

Definition 10.2.4 (δ-Integrality). A fractional job partition P is δ-integral if:

(1) whenever a non-integral fraction of a job j belongs to some class Pi, |Pi| ≥ pj/3δ;

and

(2) every class of P contains at most two fractional jobs.

Definition 10.2.5 (δ-Good). A set X of permissible job partitions is δ-good if, for

every speed vector s, X contains a partition with makespan at most (1+ δ) times that

of an optimal integral schedule.

We have engineered these definitions in service of the next lemma.

Lemma 10.2.6 (Approximation Guarantee). Let δ be a sufficiently small positive

constant. For every Q||Cmax instance, every δ-grouping of the jobs, every δ-good

set X of δ-integral partitions of the smoothed jobs, the schedule produced by the generic

algorithm (Algorithm 10.1) has makespan 1 + O(δ) times that of an optimal integral

schedule, with probability 1.

Proof. Fix a Q||Cmax instance. Smoothing the jobs of this instance via a δ-grouping

increases the makespan of an optimal schedule by at most a (1 + δ) factor. Al-

gorithm 10.1 then computes an optimal permissible partition of the smoothed jobs;
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since X is δ-good, the makespan of the induced (fractional) schedule is at most (1+δ)

times that of an optimal integral schedule of the smoothed jobs, and at most (1 +

O(δ)) times that of an optimal integral schedule of the original jobs. By Defini-

tion 10.2.4, randomly rounding this δ-integral schedule increases the makespan by at

most a (1 + 6δ) factor. By Definition 10.2.3, the random shuffling step increases the

makespan further by at most a 1 + δ factor. The generic algorithm thus terminates,

with probability 1, with a (1 + O(δ))-approximate solution to the original Q||Cmax

instance.

10.2.2 Permissible Partitions

This section identifies a δ-grouping and a δ-good set X of δ-integral job partitions for

use in the generic algorithm (Algorithm 10.1). Consider n jobs, a parameter m, and

a positive constant δ. We can assume that 1/δ is a sufficiently large power of 2. We

begin with our δ-grouping procedure, which leads to what we call bucket smoothing.

Group together all jobs that share the same values of two parameters: the largest W

that is a power of 2 with pj > δW (call it W ∗); and the unique i such that the job size

belongs to the ith W ∗-bucket, defined as the interval (δW ∗(1+(i−1)δ), δW ∗(1+ iδ)].

This procedure only groups together jobs with sizes that differ by at most a 1 + δ

factor, so it is a δ-grouping. By design, smoothing enforces the following property: if

the smoothed jobs j, k lie in a common W -bucket, where W is a power of 2 satisfying

pj, pk ∈ (δW,W ] — possibly smaller than W ∗ above — then the jobs have the same

size and are thus interchangeable.2

Bucket smoothing enables a succinct summary of the sizes of a set of jobs, de-

scribed next. A magnitude is either 0 or a power of 2, and is used to determine the

resolution at which we monitor job sizes. If W is a magnitude, we call a job W -small

if its size is at most δW . If W is a magnitude that is at least the full size of each job in

a collection of (possibly fractional) jobs S, then the W -configuration of S is a vector

in which the first component (indexed by 0) denotes the total (fractional) work of the

W -small jobs of S, divided by δW ; and each of the other ≈ 1
δ2

components i counts

2Other grouping schemes, such as buckets of the form (δW ∗(1+ δ)i−1, δW ∗(1+ δ)i], work equally
well.
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the number of jobs of S whose full size lies in the ith W -bucket. Bucket-smoothing

ensures that all (non-W -small) jobs in the same W -bucket have equal size.

We now build up the defining properties of the job partitions that we include in

our set X .

Definition 10.2.7 (Legal Magnitudes). Let P denote a fractional job partition of

bucket-smoothed jobs, with Pi denoting the ith smallest class. An m-vector w of

magnitudes is legal for P if the following properties hold for each i:

(P1) wi is a magnitude (0 or a power of 2) that is at least the full size of every job

in Pi;

(P2) wi is at least 1/δ times the full size of every job that is fractionally assigned

in Pi;

(P3) |Pi| ∈ [1
3
wi,

7
6
wi].

Property (P2) of Definition 10.2.7 ensures that only wi-small jobs can be fractional

in Pi. Property (P3) ensures that there are no more than two legal values of wi for a

given Pi. Since the |Pi|’s are non-decreasing, legal wi’s must be almost increasing in

the sense that wk ≥ wi/2 whenever k > i.

If a partition P admits some vector w of legal magnitudes, and additionally each Pi

contains at most two fractional jobs, then properties (P2) and (P3) together imply

that P is δ-integral in the sense of Definition 10.2.4. The set of all such partitions is

0-good — for example, it includes all integral partitions — but appears far too rich

to optimize over efficiently. This motivates our final properties, which impose just

enough additional structure on the allowable job partitions to enable polynomial-time

optimization without destroying δ-goodness.

Suppose w is legal for P . Place Pi in the wi-block if wk ≥ wi for all k > i, and in

the (wi/2)-block if there is a k > i with wk = wi/2. Note that if Pi is in the W -block,

then wi ∈ {W, 2W}. Since the wi’s are almost increasing, each block is a contiguous

subset of the Pi’s; see Figure 10.3. The final class Pi of a W -block (necessarily with

wi = W ) is the block endpoint. The largest class Pm is always a block endpoint.
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Figure 10.3: A job partition, legal magnitudes, and blocks.
This partition has 4 classes, and we depict legal magnitudes w for it, and the

corresponding 2- and 4-blocks.

Definition 10.2.8 (Permissible Partitions). A fractional job partition P is permis-

sible if it is δ-integral and there are legal magnitudes w such that:

(P4) for every non-block endpoint Pi, the induced wi-configuration of Pi is integral

— i.e., the total (fractional) size of wi-small jobs of Pi is a multiple of δwi; and

(P5) for every block endpoint Pi other than Pm, the induced wi-configuration of Si is

integral, where Si = ∪k :wk≤wi
Pk.

Thus most classes of a permissible partition have integral configurations, and the

cumulative configurations at certain milestones (the block endpoints) are also integral.

These properties are essential for the existence of a polynomial-size representation of

permissible partitions.

We take X to be the set of all permissible partitions, and order these partitions

lexicographically by the work vector (|P1|, . . . , |Pm|). (Ties between different parti-

tions with the same work vector can be broken arbitrarily.) Neither the set X nor
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this ordering ≺ depend on the machine speeds. The next two sections give proofs of

the following technical but important lemmas.

Lemma 10.2.9 (δ-Goodness of Permissible Partitions). For every positive integer m,

sufficiently small δ > 0, and set of bucket-smoothed jobs, the corresponding set of

permissible partitions is O(δ)-good.

Lemma 10.2.10 (Optimizing over Permissible Partitions). For every constant δ >

0, the problem of computing the permissible partition of a bucket-smoothed Q||Cmax

instance with minimum makespan, breaking ties via ≺, can be solved in polynomial

time.

Since permissible partitions are δ-integral, Lemmas 10.2.2, 10.2.6, 10.2.9, and

10.2.10 imply our main result.

Theorem 10.2.11. There is a randomized monotone PTAS for Q||Cmax.

Applying the characterization of of implementable single-parameter allocation

rules (Appendix A.3), as well as standard techniques for efficiently computing suit-

able payments (see Section 10.2.5), Theorem 10.2.11 yields a polynomial-time, (1+ǫ)-

approximate, truthful in expectation mechanism for Q||Cmax.

10.2.3 Proof of Lemma 10.2.9

Fix δ > 0, which we can assume is at most a sufficiently small constant, an instance

of Q||Cmax with bucket-smoothed jobs J and speed vector s, and an optimal sched-

ule σ∗. Rename the machines so that s1 ≤ s2 ≤ · · · ≤ sm. We extract from σ∗ a

permissible partition with makespan (with respect to s) at most 1 +O(δ) times that

of σ∗.

Let Wmax denote the smallest power of 2 that upper bounds the work of every

machine in σ∗. We first create a reserve R ⊆ J for subsequent “rounding up” of

fractional configurations. Assume without loss that the smallest job size is 1. For

W = 1, 2, 4, . . . ,Wmax in turn, greedily add W -small jobs to R until the total size

of R is at least 3δW (and at most 4δW ), or until there are no such jobs to add.
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If |R| < 3δWmax at termination, then we can finish easily: we can transform σ∗ into

a schedule that induces a (1 + 6δ)-approximate (integral) permissible partition by

re-assigning the jobs of R to the machine with the most work, so that only the largest

bundle contains small jobs. For the rest of the proof, we assume that |R| ≥ 3δWmax.

The high-level proof plan is to begin with a set of legal weights (Definition 10.2.7),

then enforce properties (P4) and (P5) of Definition 10.2.8, and finally restore δ-

integrality; each step preserves the properties already established while increasing

the makespan by a 1 +O(δ) factor.

Delete from σ∗ all jobs of R and permute the bundles so that work is non-

decreasing in machine speed. Let S1, . . . , Sm denote the corresponding bundles, an

ordered partition of J \ R indexed by machine name. For each i, define wi as the

unique power of 2 with wi/2 < |Si| ≤ wi; these are legal for the job partition induced

by the schedule. Also, wm = maxi wi since |Sm| = maxi |Si|, and wm ≥ Wmax/2 since

|R| ≤ 4δWmax (for δ sufficiently small). We repeatedly transform the schedule in

what follows; by definition, the wi’s remain fixed at their initial values throughout

the process.

Call machine i non-integral if i 6= m and if the wi-configuration of its current

(possibly fractional) bundle Si is not integral — that is, the total (fractional) work

created by the wi-small jobs of Si is not a multiple of δwi. While there are two non-

integral machines i and i′, say with wi ≤ wi′, we move wi-small jobs from the former

to the latter (where they are also wi′-small), allowing fractional assignments, until one

of the two machines becomes integral. This process terminates with at most one non-

integral machine, say i. We conclude by moving wi-small jobs from i to machine m

— since wm = maxi wi, they are also wm-small — until the former becomes integral.

This procedure terminates with a (fractional) schedule (T1, . . . , Tm). Note that we

cannot assume that |T1| ≤ |T2| ≤ · · · ≤ |Tm|. Nevertheless, this schedule induces a

job partition meeting property (P4) of Definition 10.2.8.3 Since it alters the amount

of work assigned to each machine i by less than δwi and only reschedules small jobs,

3Strictly speaking, this holds provided |Tm| > maxi<m |Ti|; as we’ll see, the mth bundle will
satisfy this property by the end of the proof.
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w remains legal for the job partition induced by the Ti’s (for δ sufficiently small) and

the makespan remains (1 +O(δ))-approximate.

We dip into our reserve R to establish property (P5). We call a machine a potential

endpoint if it is carrying a bundle that would be a block endpoint in the job partition

induced by the current schedule and w. Precisely, machine i is a potential endpoint

of the current schedule T1, . . . , Tm if wk > wi whenever |Tk| > |Ti| and whenever

|Tk| = |Ti| and k > i. There is at most one potential endpoint per magnitude. A

potential endpoint i is non-integral if wi < wm and the wi-configuration of ∪k :wk≤wi
Tk

is not integral. While there is a non-integral potential endpoint, we pick the one

(i, say) with smallest W -value, and move wi-small jobs from R to machine i, again

permitting fractional assignments, until it becomes integral. Adding these jobs cannot

create new potential endpoints and strictly decreases the number of non-integral

potential endpoints. At termination, the job partition induced by the final schedule

(U1, . . . , Um) and magnitudes w satisfies property (P5). Every machine to which we

added jobs is a block endpoint of this partition, so the procedure does not violate (P4).

Less than δwi work is added to a non-integral potential endpoint i, so w remains legal

and the makespan is increased by only a 1 + O(δ) factor. Also, R always contains

enough jobs to implement each iteration: non-integrality of a potential endpoint i

implies that not all wi-small jobs are in R, so R began with at least 3δwi units of

wi-small jobs; since W -values at least double each iteration, at most δwi of these units

were removed in prior iterations, leaving more than the requisite δwi units available.

Once no non-integral potential endpoints remain, obtain the schedule σ̂ by as-

signing all remaining jobs of R — of total size between 2δWmax and 4δWmax — to

machine m; this destroys neither the legality of w nor the 1+O(δ) approximation fac-

tor. Since |Sm| = maxi |Si| and both job re-assignment procedures add at most δwi

work to i without removing jobs from m, |Um| > maxi |Ui| − 2δWmax. Thus ma-

chine m has the most work in σ̂. The induced job partition, together with the legal

magnitudes w, satisfies (P4) and (P5) of Definition 10.2.8.

To restore δ-integrality, remove the w-small jobs V ⊆ J from σ̂, sort them in order

of non-decreasing size, and re-assign them to machines in order of non-decreasing wi

so that the work assigned to each machine is the same as in σ̂ (using fractional
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assignments only when needed). Call this final schedule σ. The makespan is obviously

unchanged. One easily checks that all jobs of V remain small for their assigned

machine(s) in σ, so legality of w and properties (P4), (P5) are preserved. Finally, a

job of V is fractionally assigned in σ only if it is the final small job re-assigned to

one machine and the first to another. Since every machine has at most two (small)

fractionally assigned jobs in σ, the schedule induces a permissible partition.

10.2.4 Proof of Lemma 10.2.10

Input: n jobs with sizes p1, . . . , pn and m machines with speeds s1, . . . , sm.

1: Construct a directed layered network with m+2 layers and a polynomial number

of vertices in each layer. Layers 0 and m + 1 contain only an origin o and a

destination d, respectively.

2: Define edges between layers and associated edge lengths x so that every o-d path

whose sequence of edge lengths has the form 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm corresponds

to a permissible partition P with |Pi| = xi for every i, and conversely.

3: Compute the o-d path Q∗ that minimizes maxmi=1 xi/si subject to having a se-

quence of edge lengths of the form 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm. Break ties lexico-

graphically by the vector (x1, x2, . . . , xm).

4: Return the permissible partition that corresponds to Q∗.

Algorithm 10.2: Optimizing over permissible partitions (Lemma 10.2.10).

This section shows that the problem of optimizing over permissible partitions can

be solved exactly, with the requisite tie-breaking, in polynomial time. Algorithm 10.2

gives a high-level description, and the details follow. We first describe the layered

shortest-path network, including motivation for its ingredients, and then give the pre-

cise correspondence between permissible partitions and certain paths in this network.

Lemma 10.2.10 then follows easily.

Fix δ > 0, m, and a set J of bucket-smoothed jobs. The graph G has m+2 layers;

the first (0) and last (m+1) contain only the origin o and destination d, respectively.

For i ∈ {1, 2, . . . , m}, the ith layer will consist of a polynomial number of vertices,

each endowed with six labels. An edge from layer i to i + 1 is meant to dictate the
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ith-smallest bundle of a permissible partition and the corresponding magnitude wi,

as well as the value W of the W -block to which the (i + 1)th bundle belongs (for

i + 1 ≤ m). Our vertex labels will be rich enough so that the intentions of an edge

can be inferred uniquely from the labels of its endpoints.

Precisely, every vertex in a layer i ∈ {1, 2, . . . , m} is labeled with two magnitudes

W1 and W2. Each is required to be either 0 or in a polynomial-size set of powers of 2,

ranging from the smallest power of two that upper bounds pmin to the smallest one

that upper bounds npmax, where pmin and pmax denote the smallest and largest job

sizes. We also insist that W2 ≥ 2W1. Choices of W1,W2 that meet these constraints

are called valid. These labels are meant to indicate that the ith bundle belongs to the

W2-block — and thus its magnitude will be either W2 or 2W2 — while the previous

distinct block is the W1-block.

The other four vertex labels A1, B1, A2, B2 summarize the sizes of the jobs assigned

to the first i − 1 bundles. Each is constrained to be an integral W -configuration for

some magnitude W ; there are only polynomially many (nO(1/δ2)) such configurations.

Configuration A1 is meant to be the W1-configuration of the set of jobs assigned to

previous bundles k < i with wk ≤ W1; B1 the 2W1-configuration of jobs in pre-

vious bundles k < i in the W1-block with wk = 2W1; A2 and B2 the W2- and

2W2-configurations of jobs in previous bundles k < i in the (current) W2-block with

wk = W2 and wk = 2W2, respectively. Four distinct labels are required to faithfully

capture properties (P4) and (P5) of permissible partitions as integrality constraints

on configurations.

Our intents for the labels A1, B1, A2, B2 suggest additional constraints. To explain

them, recall that a W -configuration has a component (indexed by 0) indicating the

total (possibly fractional) size of W -small jobs, divided by δW ; and ≈ 1/δ2 compo-

nents that count the number of jobs in each W -bucket. We call a W -configuration C

realizable if the total size of the W -small jobs of J is at least C0 · δW , and for

each i > 0, at least Ci jobs of J belong to the ith W -bucket. Next, note that a

W -configuration can be uniquely rewritten as a W ′-configuration at a coarser reso-

lution W ′ ≥ W , with jobs moving to lower-indexed buckets, and some non-W -small

jobs becoming W ′-small. Thus two configurations with different magnitudes can be
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sensibly added to produce one at the larger magnitude (though the sum of two integral

configurations can have a fractional first component). Finally, we call the parameters

W1,W2, A1, B1, A2, B2 valid if W1,W2 are valid, and every subset of {A1, B1, A2, B2}
sums to a realizable configuration (at the appropriate magnitude W1, 2W1, W2, or

2W2). Every layer i ∈ {1, 2, . . . , m} of G has one vertex for every possible set of valid

parameters.

Next we describe the edge set of G, beginning with the edges from layer i to i+1

for i ∈ {1, 2, . . . , m− 1}. Let (W1,W2, A1, B1, A2, B2) be the (valid) parameters of a

vertex u in layer i. Let Nu denote the vertices v of layer i + 1 that meet one of the

following three conditions:

(A) all of v’s parameters match those of u except for its fifth parameter, which is

some configuration that is (component-wise) at least A2;

(B) all of v’s parameters match those of u except for its sixth parameter, which is

some configuration that is (component-wise) at least B2;

(C) v’s parameters are (W2,W3, D,B2, 0, 0), where D is some integral W2- configu-

ration that is component-wise at least the (possibly fractional)W2-configuration

A1 +B1 + A2.

These three cases are meant to correspond to the following scenarios: (A) bun-

dle i+ 1 also belongs to the (current) W2-block and wi = W2; (B) bundle i+ 1 also

belongs to the (current) W2-block but wi = 2W2; and (C) bundle i + 1 belongs to

the W3-block for some W3 > W2. In all three cases, we can extract from the labels

of u, v a proposed magnitude wuv for the ith bundle — W2 in (A) and (C), 2W2

in (B). We can also infer a corresponding wuv-configuration, which we can interpret

as a proposed ith bundle: in (A), the increase in the fifth parameter; in (B), the

increase in the sixth parameter; and D − A1 − B1 − A2 in (C). For v ∈ Nu, let xuv

denote the amount of work represented by the corresponding wuv-configuration C.

Because the jobs J are bucket-smoothed, xuv is uniquely defined as C0 · δwuv plus
∑

h>0Ch · zh, where zh denotes the common size of every job of J that lies in the

hth wuv-bucket. Eying constraint (P3) of Definition 10.2.7, we connect vertex u to
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every v ∈ Nu for which xuv ∈ [1
3
wuv,

7
6
wuv]. We assign each such edge (u, v) a length

of xuv. We classify such edges as type A, type B, or type C according to the condition

met by its endpoints’ labels.

The edges incident to o and d are defined similarly. The origin is connected to

all vertices v of layer 1 that possess a label in which all parameters but the sec-

ond are zero; such an edge effectively determines the value of W for the first W -

block, but does not determine any bundles. These edges are all assigned a length of

zero and have no type. Finally, consider a node v of layer m with valid parameters

(W1,W2, A1, B1, A2, B2). We adopt W2 as the proposed magnitude for the mth bun-

dle. We connect v to d in G if and only if there is a realizable W2-configuration C

such that A1 + B1 + A2 + B2 + C is the 2W2-configuration of the full set J of jobs,

and the corresponding amount of work xvd of C lies in [1
3
W2,

7
6
W2]. (There can be

more than one such configuration C, but all solutions represent the same amount of

work.) Each such edge (v, d) is assigned a length of xvd and is classified as a type C

edge. This construction of the network G can be performed in polynomial time.

We now verify that our construction represents permissible partitions.

Lemma 10.2.12. Let G denote the network corresponding to a bucket-smoothed in-

stance of Q||Cmax and a constant δ > 0.

(a) For every permissible partition P , there is an o-d path of G whose sequence of

edge lengths is 0, |P1|, |P2|, . . . , |Pm|.

(b) Given an o-d path of G whose sequence of edge lengths is 0 ≤ x1 ≤ x2 ≤ · · · ≤
xm, a permissible partition P with |Pi| = xi for every i can be constructed in

polynomial time.

Proof. Consider a permissible partition P and corresponding legal weights w. For

each i ∈ {1, . . . , m}, P and w naturally induce a vertex vi = (W1,W2, A1, B1, A2, B2)

of layer i of G: W1,W2 are defined so that Pi belongs to the W2-block of P and

the previous distinct block is the W1-block (or W1 = 0 if no such block exists); and

A1, B1, A2, B2 are derived from P according to their intended meanings, discussed

above. Since P satisfies properties (P4) and (P5) of Definition 10.2.8, all four config-

urations are integral. By construction and properties (P1)–(P3) of Definition 10.2.8,
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W1,W2, A1, B1, A2, B2 are valid parameters, corresponding to some vertex vi of layer i

of G. The edge (o, v1) is clearly present in G. Our definition of edge lengths in G

ensures that xvi,vi+1
equals the work |Pi|, so property (P3) implies that the edges

(v1, v2), (v2, v3), . . . , (vm, d) are present in G. The sequence of edge lengths along this

path is precisely 0, |P1|, |P2|, . . . , |Pm|.
Conversely, consider an o-d path of G with intermediate vertices v1, . . . , vm and a

non-decreasing sequence of edge lengths. As outlined above, the edges of this path

suggest magnitudes w and, for each i, a corresponding wi-configuration C i. (Recall

that Cm can be inferred from C1, . . . , Cm−1 and the set J of all jobs.) For example,

if the label of vi is (W1,W2, A1, B1, A2, B2), (vi, vi+1) is a type-A edge, and the fifth

parameter of vi+1’s label is A′
2, then we define wi = W2 and C i = A′

2 − A2. The

components of C i other than the first indicate how many jobs from the different wi-

buckets should be (integrally) assigned to the ith bundle, while the first component

of C i describes the total fractional size of wi-small jobs that should be assigned to

this bundle. Our realizability constraints ensure that these configurations can be

translated into a job partition P1, . . . , Pm in the obvious way, with the final small job

assignments performed as in the last step of Section 10.2.3 — in non-decreasing order

of magnitude and of job size, resorting to fractional assignments only when needed.

This translation can be performed in polynomial time, ensures that |Pi| = xvivi+1

for every i, and enforces δ-integrality. The produced partition P clearly satisfies

properties (P1) and (P2) with respect to magnitudes w. The definition of the edge

set of G ensures that P and w satisfy (P3). For property (P4), observe that every

fractional configuration C i results from a type C edge (vi, vi+1), and the corresponding

bundle Pi is necessarily a block endpoint of P with respect to w. To complete the

proof, note that every block endpoint Pi arises from some type C edge (vi, vi+1), and

property (P5) then follows immediately from the integrality of the third parameter

of vi+1 (representing the jobs assigned to bundles k ≤ i with wk ≤ wi).

We now complete the proof of Lemma 10.2.10.
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Proof of Lemma 10.2.10. Consider a bucket-smoothed Q||Cmax instance and a con-

stant δ > 0. Rename machines so that s1 ≤ s2 ≤ · · · ≤ sm. Form the (speed-

independent) network representation G of permissible partitions described above,

and assign a cost of xuv/si to every edge (u, v) traveling from layer i to layer i+1. By

Lemma 10.2.12, computing the permissible partition with minimum makespan for s

in polynomial-time reduces to computing the o-d path of G that has a non-decreasing

sequence of x-values and minimizes the bottleneck edge cost (breaking ties among

optimal solutions lexicographically according to the vector of x-values).

We claim that the latter problem can be solved in polynomial time. First, ignoring

the tie-breaking requirement, we can solve the problem either directly using dynamic

programming, or via Dijkstra’s algorithm after a simple graph transformation that

eliminates o-d paths that do not have a non-decreasing sequence of x-values.

To implement the desired tie-breaking, we solve this problem repeatedly. Initially

the first layer is “active”. In the first iteration we compute a non-decreasing path

with optimal bottleneck edge length M∗ and some value a for x1. In the second

iteration, we delete all edges e from layer 1 to layer 2 with xe ≥ a, and recompute

a non-decreasing minimum-bottleneck path. If the new optimal path has bottleneck

edge length larger than M∗, then every optimal path in the original graph satisfies

x1 ≥ a. Otherwise, we obtain a new path that is optimal in the original graph and

has an x1-value b that is smaller than a. In the former case, we return the discarded

edges with x1 = a back to the graph, deactivate the first layer, and activate the next

layer. In the latter case, we discard edges e from layer 1 to layer 2 with xe ≥ b and

repeat.

Inductively, the procedure above maintains the following invariant, where i denotes

the currently active layer: in the current network, there is at least one non-decreasing

path with bottleneck edge length M∗; and every such path in the current network

minimizes lexicographically the vector (x1, x2, . . . , xi−1) over all such paths in the

original network G. Since every iteration either deletes edges from the currently

active layer or makes a later layer active, this procedure terminates in polynomial

time. By the invariant, it terminates with the non-decreasing minimum bottleneck

path of G, with ties broken lexicographically according to the vector of x-values.
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10.2.5 Computing Payments

To extend our randomized monotone PTAS for Q||Cmax to a truthful-in-expectation

mechanism, we compute suitable payments by integrating the “work curve” of each

machine (depicted in Figure A.1) as described in Appendix A.3 . For a given Q||Cmax

instance with machine speeds s, this computation boils down to determining, for

every machine i and alternative speed report s′i, the expected amount of work that

would have been assigned to machine i had it reported s′i instead of si.

We accomplish this in polynomial time by discretizing the work curve, using a

technique from [2, Section 2.6]. Specifically, we pre-round each machine speed down

to the nearest power of 1 + δ before running our algorithm. It is easy to verify that

this does not affect monotonicity, nor does it affect our PTAS guarantee when δ is a

suitably small constant. Moreover, the work curve of the new algorithm is discrete,

and changes its value only at powers of 1 + δ.

To compute player i’s payment in polynomial time, a difficulty remains: we need

to show that evaluating the work curve at a polynomial number of speeds s′i suffices

for computing its integral. This is indeed the case, by the following observation: Let

pmin and pmax denote the smallest and largest job sizes, respectively, and observe

that the our algorithm never assigns any machine a non-zero amount of expected

work smaller than pmin; this follows from properties (P2) and (P3) of permissible

partitions, assuming δ is sufficiently small. The approximation guarantee of (1 + ǫ)

therefore ensures that no machine more than a (1 + ǫ)npmax/pmin factor slower than

the fastest receives non-zero work. This in turn implies that, with pre-rounded speeds

and for fixed reports s−i, we can infer the expected work assigned to machine i for

every alternative report from the results for a polynomial number of such reports s′i

(the powers of (1 + δ) in the appropriate range). We can obtain these in polynomial

time by simply rerunning the third step of the generic algorithm (Algorithm 10.1)

for each such report. The formula (A.1) for appropriate payments is then easy to

compute exactly for each player i in polynomial time.
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10.3 Additional Results

Variants of the algorithmic and analytical approach in Section 10.2 yield a number of

additional results: a deterministic QPTAS for Q||Cmax (Section 10.3.1); a randomized

PTAS and deterministic QPTAS for minimizing the p-norm of loads on related ma-

chines (Section 10.3.2); and a randomized PTAS for maximizing the minimum load

on related machines (Section 10.3.3). Throughout this section, we omit details that

are essentially redundant with Section 10.2 and highlight only the main new ideas

needed to obtain the claimed results.

10.3.1 A Deterministic Monotone QPTAS for Minimizing

Makespan

We can apply our generic algorithm (Algorithm 10.1) to obtain easily a monotone

deterministic quasipolynomial-time approximation scheme (QPTAS) for minimizing

makespan.

Theorem 10.3.1. There is a deterministic monotone QPTAS for Q||Cmax.

Proof. Fix a set of n jobs and parameters m, δ, and set l = ⌈log(1+δ)(m/δ)⌉. Let S
denote the non-decreasing speed vectors s with sm = 1 and with each si either 0 or

of the form (1 + δ)−ki for an integer ki between 0 and l. There is a quasipolynomial

number mO(l) of such speed vectors. Compute a (1 + δ)-approximate schedule for

each using a (non-monotone) PTAS for Q||Cmax such as [50] or [39], and let X denote

the induced set of (integral) job partitions. We can explicitly construct and optimize

over X in quasipolynomial time. Order X lexicographically by sorted work vectors,

as in Theorem 10.2.11.

By Lemmas 10.2.2 and 10.2.6, we can complete the proof by showing that X
is O(δ)-good. Consider an arbitrary speed vector s; renaming and scaling, we can

assume that s is non-decreasing with sm = 1. Call machine i slow if si < δ/m. Obtain

the speed vector ŝ by zeroing out the speeds of slow machines and rounding all other

speeds down to the nearest integer power of (1 + δ)−1. The optimal makespan for

speeds ŝ is at most 1+O(δ) times that for s (in proof, take an optimal schedule for s
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and reassign jobs on slow machines to machine m). By construction, X contains a

partition inducing a (1 + δ)-approximate schedule for ŝ; this schedule is (1 + O(δ))-

approximate for s.

The exponential dependence on log2m in Theorem 10.3.1 improves upon the ex-

ponential dependence on m in the deterministic monotone algorithm of Andelman et

al. [1].

10.3.2 Minimizing a Norm of Machine Loads

We can also extend our results to other parallel related machine scheduling problems.

We first consider the problem of minimizing the p-norm of the machine loads (for

p ∈ [1,∞]). The obvious modification of our generic algorithm (Algorithm 10.1), in

which we replace the makespan objective in the third step by that of minimizing the

p-norm, remains monotone. The proof of Lemma 10.2.2 requires some modifications,

as follows.

Proof. (of Lemma 10.2.2, adapted to minimizing the p-norm.) Let s = (si, s−i) and

ŝ = (ŝi, s−i) denote two speed vectors that differ only for machine i, with si > ŝi, and

let P, P̂ ∈ X denote the corresponding optimal partitions. Let machine i be the kth

slowest in s and the k̂th slowest in ŝ, with k̂ ≤ k. Assume for contradiction that

|Pk| < |P̂k̂|, so |Pℓ| ≤ |Pk| < |P̂k̂| ≤ |P̂ℓ| for each ℓ ∈ {k̂, . . . , k}.
Let s(ℓ), ŝ(ℓ) denote the speeds of the ℓth slowest machines in s and ŝ, respectively.

Switching from speeds s to ŝ increases the pth power of the p-norm of the schedule

induced by P by
k∑

ℓ=k̂

|Pℓ|p
(
ŝ(ℓ)−p − s(ℓ)−p

)

and that of the schedule induced by P̂ by

k∑

ℓ=k̂

|P̂ℓ|p
(
ŝ(ℓ)−p − s(ℓ)−p

)
.
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Thus the p-norm of the latter schedule increases at least as much as the former,

contradicting the assumption that P̂ is the ≺-minimum optimal schedule for ŝ.

The proofs of Theorems 10.3.1 and 10.2.11 then carry over with only cosmetic

changes. For example, for the analog of Theorem 10.2.11, we define permissible

partitions as in Section 10.2. Lemma 10.2.9 remains valid because its proof extracts

a permissible partition from an arbitrary integral schedule while increasing the work

assigned to each machine, and hence the p-norm, by a 1+O(δ) factor. Lemma 10.2.10

requires only trivial modifications and truthful payments can be computed as in

Section 10.2.5.

Theorem 10.3.2. There is a deterministic monotone QPTAS for minimizing the

p-norm on related machines.

Theorem 10.3.3. There is a randomized monotone PTAS for minimizing the p-norm

on related machines.

10.3.3 Maximizing the Minimum Machine Load

Finally, we consider the problem of maximizing the minimum load on related ma-

chines. Again, the natural variant of our generic algorithm, using the max-min objec-

tive in the third step, is monotone; the proof is very similar to that of Lemma 10.2.2.

Theorem 10.3.1 does not obviously extend to max-min scheduling, as the reassignment

procedure (from slow machines to the fastest one) used in the proof need not pro-

duce a near-optimal solution. We can, however, extend Theorem 10.2.11 to max-min

scheduling via some non-trivial modifications.

The main difficulty in extending the proof of Theorem 10.2.11 to the max-min

objective is that removing jobs from machines, as in the reservation procedure in the

proof of Lemma 10.2.9, can destroy near-optimality. To circumvent this problem, we

relax our definition of permissible partitions. First, we insist only on 2δ-integrality

rather than δ-integrality. For magnitudes w to be legal for a partition P , we require

that wi is at least 1/δ times the full size of every job that is fractionally assigned

in Pi for every i < m; and that wm is at least 1/2δ times the full size of every job

fractionally assigned in Pm (cf., property (P2)). Finally, we replace property (P5) by:
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(P5’) for every block endpoint Pi other than Pm, either the induced wi-configuration

of Si is integral, or else Si includes all wi-small jobs, where Si = ∪k :wk≤wi
Pk.

Next, we show how to modify the proof of Lemma 10.2.9 to establish that this relaxed

set of permissible partitions is O(δ)-good for the max-min objective.

Proof. (of Lemma 10.2.9, adapted to max-min scheduling.) Fix a job set, machine

speeds s, and an optimal schedule σ∗. Let (S1, . . . , Sm) denote the corresponding

bundles. We can assume that s1 ≤ · · · ≤ sm and, by an exchange argument, that

|S1| ≤ · · · ≤ |Sm|. We extract from σ∗ a permissible partition, in the current relaxed

sense, with minimum load (with respect to s) at least 1− O(δ) times that of σ∗.

For each i, define wi as the unique power of 2 with wi/2 < |Si| ≤ wi; these are

legal for the job partition induced by the schedule. We begin by iterating through

the magnitudes W occurring in w in increasing order. We fractionally re-assign W -

small jobs from machines with magnitude larger than W to those with magnitude

equal to W , until the total fractional amount of W -small jobs assigned to the latter

machines is either a multiple of δW or is all W -small jobs. This procedure enforces

a strengthened form of property (P5’), and it removes at most δwi work from each

machine i (at most δW in each iteration with W < wi).

To establish (P4), we again iterate through the magnitudes W of w, in arbitrary

order. As in the proof of Lemma 10.2.9, we can re-assign W -small-jobs between

machines with magnitude W until only one such machine remains with a non-integral

W -configuration. Re-assigning again if needed, we can assume that this machine is

the most heavily worked one with magnitude W (and thus will be a block endpoint

provided there is a W -block). These re-assignments do not affect any previously

established properties. The job partition induced by the resulting schedule satisfies

property (P4), except for machines i that belong to the (wi/2)-block of the partition

and are the most heavily worked machine with magnitude wi. For each such machine

i, we re-assign the minimal (fractional) amount of wi-small jobs to the next block

endpoint with magnitude exceeding wi. This is always possible unless wi is the

largest magnitude; in this case, we move the same amount to the most heavily worked

machine k. Our relaxed version of property (P2) allows this, even in the event that wk
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is only wi/2. (Note that if we reindex machines according to their new bundle sizes,

machine k corresponds to machine m in property (P2).) No machine i loses more

than δwi work in this second round of re-assignments.

Finally, we restore 2δ-integrality of the job partition by re-assigning small jobs as

at the end of Section 10.2.3.

Modifying the representation and algorithm in Section 10.2.4 to accommodate

this wider set of permissible partitions is relatively straightforward. Parameters

W1,W2, A1, B1, A2, B2 are now valid if each of B1, A2, B2 is integral, A1 is either inte-

gral or represents a superset of all W1-small jobs, and all subsets of {A1, A2, B1, B2}
sum to realizable configurations. Crucially, there are still only polynomially many

valid sets of parameters. As in Section 10.2.4, given machine speeds, the optimal

permissible partition can be found by an s-t path computation.

Theorem 10.3.4. There is a randomized monotone PTAS for maximizing the min-

imum load on related machines.

Truth-telling payments exist for this monotone PTAS, as usual. However, unlike

all other problems studied in this chapter, the form of the max-min objective requires

any algorithm with a non-zero approximation ratio to assign non-zero work to every

machine, no matter how slow. Furthermore, when the approximation ratio does

not depend on player reports, the induced “work curve” of a player (Figure A.1)

is lower-bounded by an inverse function of the player’s report. Consequently the

integral of the work curve is divergent. As described in Appendix A.3, this implies

that no truth-telling payment rule guarantees individual rationality nor the proper

sign for the payments. That being said, the generalized form of the payment rule

(Equation (A.2)) with the pivot terms set to 0 suffices for truthfulness in expectation

alone, and can be computed in polynomial time using the same ideas as those used

in Section 10.2.5.
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Chapter 11

Conclusions and Open Questions

The work in this thesis investigates efficient allocation of resources in large systems

that involve strategic actors. Our discoveries are motivated by the tension between

the economic goal, that of designing incentives so that strategic behavior leads to

a desired global outcome, and the computational goal of doing so efficiently. We

discover that careful use of randomization can reconcile economic and computational

goals in settings where doing so was previously thought to be untenable due to the

failure of existing — often deterministic — techniques. In addition to improving the

state of the art for several fundamental resource allocation problems, we believe that a

primary contribution of our work is a toolbox for the design of efficient approximation

mechanisms for resource allocation.

We conclude with some open questions motivated by the results of this thesis. We

begin with a concrete question motivated by the results of Part II.

Open Question: Are there constant-factor approximation mechanisms

for more general variants of combinatorial auctions and combinatorial

public projects than those considered in Chapters 5 and 6?

Our results for both problems apply to players with Matroid Rank Sum valuations.

Are more general results possible? First, what is possible for other valuation classes

for which these problems admit constant-factor approximation algorithms, such as

submodular functions? Work since our results in [26, 38] has ruled out constant-

factor approximation mechanisms that are truthful in expectation for combinatorial
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auctions and public projects with submodular valuations in the value oracle model ;

understanding the extent of these limitations under more relaxed assumptions on

the presentation of the valuations is, however, still open. In particular, the results

of [26, 38] proceed by proving that a constant-factor approximation mechanism for

combinatorial auctions or public projects requires the solution of an intractable single-

player utility maximization problem, motivating the following question: what if we

assume that “players know what they want”? The demand oracle model, described

in Section 5.2.2, makes such an assumption. We leave open the question of whether

our results can be extended to submodular valuations, or any of the other valuation

classes naturally considered in a combinatorial auctions context, when players can

answer more detailed queries regarding their individual valuations.

Second, we mention a different and natural extension of combinatorial public

projects. Consider a feasible set where the set of projects built is not subject to a

cardinality constraint, but rather a different packing-type constraint. For instance,

in a setting where an exogenous set of resources must be matched to the chosen set of

projects, and a bipartite graph encodes the possible resource-project matchings, the

set of projects chosen by the public planner must satisfy amatroid constraint — in this

example corresponding to a transversal matroid.1 We propose studying combinatorial

public projects with matroid rank sum valuations and a matroid constraint on the

feasible set of projects chosen; it is conceivable that a convex rounding scheme exists

for this problem that yields a constant-factor approximation mechanism.

Third, the results of Part II motivate a more general question regarding the

strength and limitations of convex rounding.

Open Question: Are there large classes of linear programs, or mathe-

matical relaxations more generally, that always admit a convex rounding

algorithm that matches (or comes close to) the approximation guarantee

of the best (possibly non-convex) rounding algorithm?

1In a practical example, a project is a computational task to be scheduled on a grid, and a
resource is a machine capable of performing a single task, and the existence of an edge in the task-
machine bipartite graph indicates that the machine has the necessary software and/or hardware to
perform the task.
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A positive answer to this question would be technically and conceptually remarkable.

It would, for a large class of problems, presumably provide a generic procedure that

converts an arbitrary approximation algorithm in the relax-solve-round framework to

an incentive-compatible mechanism with the same approximation guarantee. While

not a black-box result in the sense of Chapter 8, this would arguably be the “next

best thing”.

Fourth, motivated by Chapter 8, we next turn the possibility of more general black

box reductions.

Open Question: Are more general black-box reductions from incentive-

compatible mechanism design to approximation algorithm design possible?

Such a reduction would convert an arbitrary approximation algorithm to an incentive-

compatible mechanism in polynomial time, without much degrading its approximation

guarantee. Whereas recent impossibility results like those in [26, 38] rule out a “holy

grail” reduction that is arbitrarily general, such results may still exist for large and

natural classes of problems.

A natural class of problems for which black box reductions are conceivable is the

class of linear optimization problems with a welfare objective, treated in Part III.

We recall that the black-box reduction of Chapter 8 applies to many of these prob-

lems when they admit an FPTAS. It would be remarkable to extend this result to

approximation algorithms with a weaker approximation guarantee, in the process

showing that incentive compatibility is “without loss” for these problems. Another

candidate is the class of single-parameter problems studied in Chapter 10. Several

indications point to viability of general positive results for this class: the space of

incentive-compatible mechanisms is larger and more forgiving for single-parameter

problems than it is for their multi-parameter counterparts; optimal mechanisms for

most examples of these problems in the literature have been designed over the past

decade; and black-box results for these problems in more forgiving Bayesian settings

have been recently discovered [48].
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We close by noting that all the questions we pose are special cases of a broader,

arguably somewhat vague, meta question:

Open Question: How powerful are computationally-efficient incentive-

compatible mechanisms for resource allocation?

Many interpretations of this question are possible, and we mention two here. One

interpretation may seek to characterize the space of resource allocation problems for

which incentive compatibility is “without loss” — namely, a computationally-efficient

and incentive-compatible mechanism matches, or comes close to, the approximation

guarantee of the best computationally-efficient algorithm for the problem. Specifi-

cally, what structural properties of a resource allocation problem make it amenable

to the combination of incentive compatibility and computational efficiency, and what

others make it resist such a solution? Another interpretation may seek to identify the

best incentive-compatible and computationally-efficient mechanism for a resource al-

location problem, stated abstractly. Specifically, what is the best incentive-compatible

and computationally-efficient mechanism for a resource allocation problem, how well

does it approximate its objective, and how does its approximation guarantee depend

on the parameters of the problem?

Even a partial answer to any variant of this broad question appears to require

a deep understanding of the space of incentive-compatible mechanisms, polynomial-

time algorithms, and their intersection. We have only scratched the surface.
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Appendix A

Additional Preliminaries

A.1 Matroid Theory

In this section, we review some basics of matroid theory. For a more comprehensive

reference, we refer the reader to [73]. A matroid M is a pair (X , I), where X is a finite

ground set, and I is a non-empty family of subsets of X satisfying the following two

properties. (1) Downward closure: If S belongs to I, then so do all subsets of S. (2)

The exchange property: Whenever T, S ∈ I with |T | < |S|, there is some x ∈ S \ T
such that T ∪ {x} ∈ I. Elements of I are often referred to as the independent sets of

the matroid. Subsets of X that are not in I are often called dependent.

We associate with matroid M a set function rankM : 2X → N, known as the rank

function of M , defined as follows: rankM(A) = maxS∈I |S ∩ A|. Equivalently, the

rank of set A in matroid M is the maximum size of an independent set contained in

A. A set function f on a ground set X is a matroid rank function if there exists a

matroid M on the same ground set such that f = rankM . Matroid rank functions are

non-decreasing (f(S) ≤ f(T ) when S ⊆ T ), normalized (f(∅) = 0), and submodular

(f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ) for all S and T ).

For a matroid M = (X , I) and S ⊆ X , we define the contraction of M by S,

denoted by M/S. M/S is a pair (X \S, I ′), where I ′ is the following family of subsets

of X \ S: A set T ⊆ X \ S is in I ′ if and only if rankM(S ∪ T )− rankM(S) = |T |.
For each matroid M = (X , I) and S ⊆ X , the contraction M/S is also a matroid.
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A.2 Convex Optimization

In this section, we distill some basics of convex optimization. For more details, see [10].

Definition A.2.1. A Euclidean maximization problem is a maximization problem Π

(as defined in Section 2.3) where for each instance (P, c) ∈ Π the feasible set P is a

subset of some Euclidean space. We say Π is a convex maximization problem if for

every (P, c) ∈ Π, P is a compact convex set, and c : P → R is concave.

Definition A.2.2. We say a non-negative Euclidean maximization problem Π is

R-solvable in polynomial time if there is an algorithm that takes as input the rep-

resentation of an instance I = (P, c) ∈ Π — where we use |I| to denote the num-

ber of bits in the representation — and an approximation parameter ǫ, and in time

poly(|I|, log(1/ǫ)) outputs x ∈ P such that c(x) ≥ (1− ǫ)maxy∈P c(y).

Fact A.2.3. Consider a non-negative convex maximization problem Π. If the follow-

ing four conditions are satisfied, then Π is R-solvable in polynomial time using the

ellipsoid method. We let I = (P, c) denote an instance of Π, and let m denote the

dimension of the ambient Euclidean space.

1. Polynomial Dimension: m is polynomial in |I|.

2. Starting ellipsoid: There is an algorithm that computes, in time poly(|I|), a

point c ∈ Rm, a matrix A ∈ Rm×m, and a number V ∈ R such that the follow-

ing hold. We use E(c, A) to denote the ellipsoid given by center c and linear

transformation A.

(a) E(c, A) ⊇ P

(b) V ≤ volume(P)

(c) volume(E(c,A))
V

≤ 2poly(|I|)

3. Separation oracle for P: There is an algorithm that takes takes input I and x ∈
Rm, and in time poly(|I|, |x|) where |x| denotes the size of the representation

of x, outputs “yes” if x ∈ P, otherwise outputs h ∈ Rm such that hTx < hT y

for every y ∈ P.
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4. First order oracle for c: There is an algorithm that takes input I and x ∈ Rm,

and in time poly(|I|, |x|) outputs c(x) ∈ R and ▽c(x) ∈ Rm.

A.3 Single-Parameter Mechanism Design

In this section, we review some basic facts from prior work on single-parameter mech-

anism design, and provide intuition regarding their veracity. For consistency with

Chapter 10, we define single-parameter mechanism design problems where each player

has a private cost function over the outcomes, though note that this presentation is

merely a sign-flip away from the valuation function convention adopted in most of

the rest of this thesis.

Recall from Chapter 10 that a mechanism design problem with m players is single-

parameter if all outcomes ω ∈ Ω are real m-vectors, and each player i’s private cost

function has the form ti(ω) = ciωi for a private real number ci. For an outcome ω

and player i, we call ωi the work assigned to player i by ω.

Let A be an allocation rule mapping private reports c ∈ Rm to outcomes ω ∈
Ω, and let xi(c) denote the expected work assigned to player i by A(c), where the

expectation is taken over the internal random coins of A. We say A is monotone if for

each player i and fixed reports c−i of the other players, xi(ci, c−i) is a non-increasing

function of ci. The following characterization is implicit in the work of Mirrlees [66]

and Spence [82]. Later, Myerson [68] makes this characterization explicit in a Bayesian

context, and subsequently Archer and Tardos [3] do the same for dominant-strategy

implementation.

Theorem A.3.1 ([66, 82, 68, 3]). An allocation rule for a single parameter problem

is implementable by a truthful-in-expectation mechanism if and only if it is monotone.

For completeness, we provide intuition regarding the veracity of the positive di-

rection of this characterization, and present the form of the truth-telling payment

rule. For a more detailed and formal treatment, we recommend [2].

Fix allocation rule A : Rm → Ω, and let x : Rm → Rm be its expected work
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function as described above. Consider the rule that awards player i the following

payment on reports c ∈ Rm.

pi(c) = cixi(c) +

∫ ∞

b=ci

xi(b, c−i)db (A.1)

When these payments are defined andA is monotone, (A, p) is truthful in expectation.

Proposition A.3.2 ([66, 82, 68, 3]). Assume that the integral in Equation (A.1)

converges for every c. If A is monotone, then mechanism (A, p) is truthful in expec-

tation, individually rational in expectation, and its payments to the players are always

non-negative.

The assumption that the integral in Equation (A.1) converges is justified in most

applications, as we would expect a “typical” allocation rule to eventually decrease

player i’s work to 0 as his cost per unit of work is increased. For such a “typical”

allocation rule, Equation (A.1) admits a natural interpretation. We describe this

interpretation and use it to informally argue Proposition A.3.2 next.

Fix a player i and reports c−i of the other players. Let bmax be the report at

which player i is assigned no work, i.e. xi(bmax, c−i) = 0. When player i reports ci,

his payment pi(c) is the outcome of the following thought experiment, illustrated in

Figure A.1: Consider a hypothetical report b for player i, and slowly decrease b from

its maximum “relevant” value bmax to the actual reported value ci. As b is decreased,

compensate i incrementally at rate b for each additional slice of work he receives.

The rate of compensation for a particular slice is independent of the player’s report,

and equals the maximum report at which the player would receive said slice. In the

resulting mechanism, the player in effect faces a “take it or leave it” offer for each

slice of work, and “takes” all those slices of work for which his reported cost is no

greater than his compensation. It is in the best interest of the player to “take” all the

slices for which his true cost is no greater than his compensation, and therefore this

mechanism incentivizes truth-telling. Individual rationality and the direction of the

payments also follow. This interpretation reveals that this mechanism is a continuous

generalization of the truthful Vickrey auction (Section 1.2.1), in which a player faces
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Figure A.1: Truth-telling payments for a monotone allocation rule.
The curve represents player i’s expected work as a function of his report b, holding
the reports c−i of other players fixed. The payment to player i when he reports ci is

equal to area of the shaded region.

a “take it or leave it” price equal to the minimum bid needed to win. This concludes

our discussion of Proposition A.3.2.

Finally, we note that the form of the payments in Equation (A.1) is a special case of

a more flexible payment rule. In particular, the following payment rule, parametrized

by a bid-independent “pivot term” hi(c−i) for each player i, is a generalization:

pi(c) = hi(c−i) + cixi(c)−
∫ ci

b=0

xi(b, c−i)db (A.2)

Note that setting hi(c−i) =
∫∞

b=0
xi(b, c−i) recovers Equation (A.1). The generalized

form (A.2) of the payment rule is useful when Equation (A.1) is not guaranteed to con-

verge, as is unavoidable for one of the scheduling problems considered in Chapter 10.

For such problems, we can set hi(c−i) = 0, sacrificing individually rationality and

allowing payments from the players to the mechanism, but preserving truthfulness in

expectation.



Appendix B

Omitted Proofs

B.1 Solving The Convex Program of Chapter 5

In this section, we overcome technical difficulties related to the solvability of the

convex program of Chapter 5. We show in Section B.1.1 that, in the lottery-value

oracle model, the four conditions for “solvability” of convex programs, as stated in

Fact A.2.3, are easily satisfied for convex program (5.3). However, an additional

challenge remains: “solving” a convex program – as in Definition A.2.2 – returns an

approximately optimal solution. Indeed the optimal solution of a convex program

may be irrational in general, so this is unavoidable.

We show how to overcome this difficulty if we settle for polynomial runtime in

expectation. While the optimal solution x∗ of (5.3) cannot be computed explicitly,

the random variable rpoiss(x
∗) can be sampled in expected polynomial time. The key

idea is the following: sampling the random variable rpoiss(x
∗) rarely requires precise

knowledge of x∗. Depending on the coin flips of rpoiss, we decide how accurately we

need to solve convex program (5.3) in order compute rpoiss(x
∗). Roughly speaking, we

show that the probability of requiring a (1−ǫ)-approximation falls exponentially in 1
ǫ
.

As a result, we can sample rpoiss(x
∗) in expected polynomial time. We implement this

plan in Section B.1.2 under the simplifying assumption that convex program (5.3)

is well-conditioned – i.e. is “sufficiently concave” everywhere. In Section B.1.3, we

show how to remove that assumption by slightly modifying our algorithm.

191
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B.1.1 Approximating the Convex Program

Claim B.1.1. There is an algorithm for Combinatorial Auctions with MRS valuations

in the lottery-value oracle model that takes as input an instance of the problem and

an approximation parameter ǫ > 0, runs in poly(n,m, log(1/ǫ)) time, and returns a

(1− ǫ)-approximate solution to convex program (5.3).

It suffices to show that the four conditions of Fact A.2.3 are satisfied in our

setting. The first three are immediate from elementary combinatorial optimization

(see for example [56]). It remains to show that the first-order oracle, as defined in

Fact A.2.3, can be implemented in polynomial time in the lottery-value oracle model.

The objective f(x) of convex program (5.3) can, by definition, be written as

f(x) =
∑

i

Gvi(xi),

where vi is the valuation function of player i, xi is the vector (xi1, . . . , xim), and and

Gvi is as defined in (5.6). By definition, Gvi(xi) is the outcome of querying the lottery-

value oracle of player i with (1−e−xi1 , . . . , 1−e−xim) . Therefore, we can evaluate f(x)

using n lottery-value query, one for each player. It remains to show that we can also

evaluate the (multi-variate) derivative ▽f(x) of f(x). Using definition (5.6), we take

the partial derivative corresponding to xij . By rearranging the sum appropriately, we

get that

∂f

∂xij
(x) = e−xij

(
Fvi

(
(1− e−xi1 , . . . , 1− e−xim) ∨ 1j

)

− Fvi

(
(1− e−xi1 , . . . , 1− e−xim) ∧ 0j

))
,

where Fvi is as defined in Equation (5.1). Here, ∨ and ∧ denote entry-wise minimum

and maximum respectively, 1j denotes the vector with all entries equal to 0 except

for a 1 at position j, and 0j denotes the vector with all entries equal to 1 except for a

0 at position j. It is clear that this entry of the gradient of f can be evaluated using

two lottery-value queries. Therefore, ▽f(x) can be evaluated using 2n lottery-value

queries, 2 for each player. This completes the proof of Claim B.1.1.
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B.1.2 The Well-Conditioned Case

In this section, we make the following simplifying assumption: The objective function

f(x) of convex program (5.3), when restricted to any line in the feasible set P, has

a second derivative of magnitude at least λ =
∑n

i=1 vi([m])

2poly(n,m) everywhere, where the

polynomial in the denominator may be arbitrary. This is equivalent to requiring

that every eigenvalue of the Hessian matrix of f(x) has magnitude at least λ when

evaluated at any point in P. Under this assumption, we prove Lemma B.1.2.

Lemma B.1.2. Assume the magnitude of the second derivative of f(x) is at least

λ =
∑n

i=1 vi([m])

2poly(n,m) everywhere. Algorithm 4.1, instantiated for combinatorial auctions

with r = rpoiss, can be simulated in time polynomial in n and m in expectation.

Let x∗ be the optimal solution to convex program (5.3). Algorithm 4.1 allocates

items according to the distribution rpoiss(x
∗). The Poisson rounding scheme, as de-

scribed in Algorithm 5.1, requires making m independent decisions, one for each item

j. Therefore, we fix item j and show how to simulate this decision. It suffices to do

the following in expected polynomial time: flip uniform coin pj ∈ [0, 1], and find the

minimum index a(j) (if any) such that
∑

i≤a(j)(1−e−x∗ij) ≥ pj. For most realizations

of pj , this can be decided using only coarse estimates x̃ij to x∗
ij . Assume we have an

estimation oracle for x∗ that, on input δ, returns a δ-estimate x̃ of x∗: Specifically,

x̃ij − x∗
ij ≤ δ for each i. When pj falls outside the “uncertainty zones” of x̃, such

as when |pj −
∑

i′≤i(1 − e−x̃i′j )| > δn for each i ∈ [n], it is easy to see that we can

correctly determine a(j) by using x̃ in lieu of x. The total measure of the uncertainty

zones of x̃ is at most 2n2δ, therefore pj lands outside the uncertainty zones with

probability at least 1− 2n2δ. The following claim shows that if the estimation oracle

for x∗ can be implemented in time polynomial in log(1/δ), then we can simulate the

Poisson rounding procedure in expected polynomial time.

Claim B.1.3. Let x∗ be the optimal solution of convex program (5.3). Assume access

to a subroutine B(δ) that returns a δ-estimate of x∗ in time poly(n,m, log(1/δ)).

Algorithm (4.1) with r = rpoiss can be simulated in expected poly(n,m) time.

Proof. It suffices to show that we can simulate the allocation of an item j by Al-

gorithm (5.1) on input x∗. The simulation proceeds as follows: Draw pj ∈ [0, 1]
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uniformly at random. Start with δ = δ0 =
1

2n2 . Let x̃ = B(δ). While |pj −
∑

i′≤i(1−
e−x̃i′j )| ≤ δn for some i ∈ [n] (i.e. pj may fall inside an “uncertainty zone”) do the

following: let δ = δ/2, x̃ = B(δ) and repeat. After the loop terminates, we have a

sufficiently accurate estimate of x∗ to calculate a(j) as in Algorithm (5.1).

It is easy to see that the above procedure is a faithful simulation of Algorithm (5.1)

on x∗. It remains to bound its expected running time. Let δk = 1
2k+1n2 denote

the value of δ at the kth iteration. By assumption, the kth iteration takes time

polynomial in n, m and log(1/δk), which by definition of δk is polynomial in n, m,

and k. The probability this procedure does not terminate after k iterations is at most

2n2δk = 1/2k. Taken together, these two facts and a simple geometric summation

imply that the expected runtime is polynomial in n and m.

It remains to show that the estimation oracle B(δ) can be implemented in time

polynomial in n, m, and log(1/δ). At first blush, one may expect that the ellipsoid

method can be used in the usual manner here. However, there is one complication:

we require an estimate x̃ that is close to x∗ in solution space rather than in terms of

objective value. Using our assumption on the curvature of f(x), we will reduce finding

a δ-estimate of x∗ to finding an 1−ǫ(δ) approximate solution to convex program (5.3).

The dependence of ǫ on δ will be such that ǫ ≥ poly(δ)/2poly(n,m), thereby we can

invoke Claim B.1.1 to deduce that B(δ) can be implemented in poly(n,m, log(1/δ))

time.

Let ǫ = ǫ(δ) = δ2λ
2
∑

i vi([m])
. Plugging in the definition of λ, we deduce that ǫ ≥

δ2/2poly(n,m), which is the desired dependence. It remains to show that if x̃ is (1− ǫ)-

approximate solution to (5.3), then x̃ is also a δ-estimate of x∗.

Using the fact that f(x) is concave, and moreover its second derivative has magni-

tude at least λ, it a simple exercise to bound distance of any point x from the optimal

point x∗ in terms of its sub-optimality f(x∗)− f(x), as follows:

f(x∗)− f(x) ≥ λ

2
||x− x∗||2. (B.1)
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Assume x̃ is a (1− ǫ)-approximate solution to (5.3). Equation (B.1) implies that

||x̃− x∗||2 ≤ 2

λ
ǫf(x∗) =

δ2∑
i vi([m])

f(x∗) ≤ δ2,

where the last inequality follows from the fact that
∑

i vi([m])) is an upper-bound on

the optimal value f(x∗). Therefore, ||x − x∗|| ≤ δ, as needed. This completes the

proof of Lemma B.1.2.

B.1.3 Guaranteeing Good Conditioning

In this section, we propose a modification r+poiss of the Poisson rounding scheme rpoiss.

We will argue that r+poiss satisfies all the properties of rpoiss established so far, with one

exception: the approximation guarantee of Lemma 5.4.2 is reduced to 1−1/e−2−2mn.

Then we will show that r+poiss satisfies the curvature assumption of Lemma B.1.2,

demonstrating that said assumption may be removed. Therefore Algorithm 4.1, in-

stantiated with r = r+poiss for combinatorial auctions with MRS valuations in the

lottery-value oracle model, is (1−1/e−2−2mn) approximate and can be implemented

in expected poly(n,m) time. Finally, we show in Remark B.1.4 how to recover the

2−2mn term to get a clean 1− 1/e approximation ratio, as claimed in Theorem 5.3.1.

Let µ = 2−2mn. We define r+poiss in Algorithm B.1. Intuitively, r+poiss at first makes a

tentative allocation using rpoiss. Then, it cancels said allocation with small probability

µ. Finally, with probability β it chooses a random “lucky winner” i∗ and gives him

all the items. β is defined as the fraction of items allocated in the original tentative

allocation. The motivation behind this seemingly bizarre definition of r+poiss is purely

technical: as we will see, it can be thought of as adding “concave noise” to rpoiss.

We can write the expected welfare as follows. We use linearity of expectations

and the fact that β is independent of the choice of i∗ to simplify the expression.

E[w(r+poiss(x))] = E[(1− µ)w(rpoiss(x)) + µβvi∗([m])]

= (1− µ)E[w(rpoiss(x))] + µE[β]E[vi∗([m])]

= (1− µ)E[w(rpoiss(x))] + µE[β]

∑
i vi([m])

n
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Input: Fractional allocation x with
∑

i xij ≤ 1 for all j, and 0 ≤ xij ≤ 1 for all i, j.

Output: Feasible allocation (S1, . . . , Sn).

1: Let (S1, . . . , Sn) ∼ rpoiss(x).

2: Let β =
∑

i |Si|

m
.

3: Draw q1 ∈ [0, 1] uniformly at random.

4: if q1 ∈ [0, µ] then

5: Let (S1, . . . , Sn) = (∅, ∅, . . . , ∅).
6: Draw q2 ∈ [0, 1] uniformly at random.

7: if q2 ∈ [0, β] then

8: Choose a player i∗ uniformly at random.

9: Let Si∗ = [m], and Si = ∅ for all i 6= i∗.

10: end if

11: end if

Algorithm B.1: The modified Poisson rounding scheme r+poiss.

Observe that rpoiss allocates an item j with probability
∑

i(1− e−xij ). Therefore,

the expectation of β is
∑

ij(1−e−xij )

m
. This gives:

E[w(r+poiss(x))] =(1− µ)E[w(rpoiss(x))] +
µ

mn

∑

i

vi([m])
∑

i,j

(1− e−xij ). (B.2)

It is clear that the expected welfare when using r = r+poiss is within 1−µ = 1−2−2mn

of the expected welfare when using r = rpoiss in the instantiation of Algorithm 4.1.

Using Lemma 5.4.2, we conclude that r+poiss is a (1−1/e−2−2mn)-approximate round-

ing scheme. Moreover, using Lemma 5.4.1, as well as the fact that (1 − e−xij ) is a

concave function, we conclude that r+poiss is a convex rounding scheme. Therefore,

this establishes the analogues of Lemmas 5.4.2 and5.4.1 for r+poiss. It is elementary to

verify that our proof of Lemma B.1.2 can be adapted to r+poiss as well.

It remains to show that r+poiss is “sufficiently concave”. This would establish that

the conditioning assumption of Section B.1.2 is unnecessary for r+poiss. We will show

that expression (B.2) is a concave function with curvature of magnitude at least
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λ =
∑n

i=1 vi([m])

emn22mn everywhere. Since the curvature of concave functions is always non-

positive, and moreover the curvature of the sum of two functions is the sum of their

curvatures, it suffices to show that the second term of the sum (B.2) has curvature

of magnitude at least λ. We note that the curvature of
∑

ij(1− e−xij ) is at least e−1

over x ∈ [0, 1]n×m. Therefore, the curvature of the second term of (B.2) is at least

µ

mn

(
∑

i

vi([m])

)
e−1 = λ

as needed.

Remark B.1.4. In this section, we sacrificed 2−2mn in the approximation ratio in

order to guarantee expected polynomial runtime of our algorithm even when convex

program (5.3) is not well-conditioned. This loss can be recovered to get a clean 1−1/e

approximation as follows. Given our (1 − 1/e − 2−2mn)-approximate MIDR algo-

rithm A, construct the following algorithm A′: Given an instance of combinatorial

auctions, A′ runs A on the instance with probability 1 − e2−2mn, and with the re-

maining probability solves the instance optimally in exponential time O(22mn). By

Lemma 3.4.2, a random composition of MIDR mechanisms is MIDR, therefore A′

is MIDR. The expected runtime of A′ is bounded by the expected runtime of A plus

e2−2mn · O(22mn) = O(1). Finally, the expected approximation of A′ is the weighted

average of the approximation ratio of A and the optimal approximation ratio 1, and

is at least (1− e2−2mn)(1− 1/e− 2−2mn) + e2−2mn ≥ 1− 1/e.

B.2 Solving The Convex Program of Chapter 6

In this section, we show how to solve the convex program of Chapter 6. We follow

the general outline of Appendix B.1, modifying the proofs throughout to handle the

additional technical difficulties specific to CPP. We show in Section B.2.1 that, in the

bounded-lottery-value oracle model, the four conditions for “solvability” of convex

programs (Fact A.2.3) are easily satisfied for convex program (6.2). However, as in

Appendix B.1, the additional challenge of solving our convex program exactly remains.
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As in Appendix B.1, we overcome this challenge by allowing our algorithm to run

in expected polynomial time. The key idea is the same: While the optimal solution x∗

of (6.2) cannot be computed explicitly, the random variable rk(x
∗) can be sampled in

expected polynomial time. Depending on the coin flips of rk, we decide how accurately

we need to solve convex program (6.2) in order compute rk(x
∗). Roughly speaking,

we show that the probability of requiring a (1− ǫ)-approximation falls exponentially

in 1
ǫ
. As a result, we can sample rk(x

∗) in expected polynomial time. We implement

this plan in Section B.2.2 under the simplifying assumption that convex program (6.2)

is well-conditioned — i.e. is “sufficiently concave” everywhere. In Section B.2.3, we

show how to remove that assumption by slightly modifying our algorithm.

B.2.1 Approximating the Convex Program

Claim B.2.1. There is an algorithm for Combinatorial Public Projects with MRS

valuations in the bounded-lottery-value oracle model that takes as input an instance

of the problem and an approximation parameter ǫ > 0, runs in poly(n,m, log(1/ǫ))

time, and returns a (1− ǫ)-approximate solution to convex program (6.2).

It suffices to show that the four conditions of Fact A.2.3 are satisfied in our setting.

The first three are immediate from elementary combinatorial optimization (see for

example [56]). It remains to show that the first-order oracle, as defined in Fact A.2.3,

can be implemented in polynomial time in the bounded-lottery-value oracle model.

We let f(x) denote the objective function of convex program (6.2). This objective

can, by definition, be written as follows.

f(x) = E
S∼rk(x)

[
∑

i

vi(S)

]
=
∑

i

Gvi
k (x)

where vi is the valuation function of player i and Gvi
k is as defined in (6.4). By

definition, Gvi
k (x) is the outcome of querying the bounded-lottery-value oracle of vi

with bound k and marginals x/k. Therefore, we can evaluate f(x) using n bounded-

lottery-value queries, one for each player. It remains to show that we can also evaluate

the (multi-variate) derivative ▽f(x) of f(x). Using definition (6.4) and Claim 6.5.3,
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we take the partial derivative of Gvi
k with respect to xj and simplify the resulting

expression.

∂Gvi
k

∂xj

(x) =
∑

S⊆[m]

−1|S|vi(S)
∑

R⊆S\{j}

−1|R|+1
(
1− xR

k

)k−1

=
∑

S⊆[m]\{j}

−1|S| (vi(S ∪ {j})− vi(S))
∑

R⊆S

−1|R|
(
1− xR

k

)k−1

=
∑

S⊆[m]

−1|S| (vi(S ∪ {j})− vi(S))
∑

R⊆S

−1|R|
(
1− xR

k

)k−1

=
∑

S⊆[m]

vi(S ∪ {j})Pr

[
rk−1

(
k − 1

k
x

)
= S

]

−
∑

S⊆[m]

vi(S)Pr

[
rk−1

(
k − 1

k
x

)
= S

]
. (B.3)

The second equality follows by grouping the terms of the summation by the projection

of S onto [m]\{j}. The third equality follows from the observation that v(S∪{j})−
v(S) = 0 when S includes j. The fourth equality follows by a simple re-arrangement

and application of Claim 6.5.3.

Inspect the final form (B.3) in light of the definition of bounded-lottery-value

oracles (Definition 6.2.1) and the definition of rk (Section 6.4). Notice that the first

term is the expected value of vi over the (k−1)-bounded-lottery with marginals k−1
k
x

and promise {j}. The second term is the expected value of vi over the same lottery

without the promise. Therefore, we can evaluate
∂G

vi
k

∂xj
(x) using two queries to the

bounded-lottery-value oracle of player i. This completes the proof of Claim B.2.1.

B.2.2 The Well-Conditioned Case

In this section, we make the following simplifying assumption: The objective function

f(x) of convex program (6.2), when restricted to any line in the feasible set P, has

a second derivative of magnitude at least λ =
∑n

i=1 vi([m])

2poly(n,m) everywhere, where the
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polynomial in the denominator may be arbitrary. This is equivalent to requiring

that every eigenvalue of the Hessian matrix of f(x) has magnitude at least λ when

evaluated at any point in P. Under this assumption, we prove Lemma B.2.2.

Lemma B.2.2. Assume the magnitude of the second derivative of f(x) is at least

λ =
∑n

i=1 vi([m])

2poly(n,m) everywhere. Algorithm 4.1, instantiated with r = rk, can be simulated

in time polynomial in n and m in expectation.

Let x∗ be the optimal solution to convex program (6.2). Algorithm 4.1 outputs

a set of projects distributed as rk(x
∗). The k-bounded-lottery rounding scheme,

as described in Algorithm 6.1, requires making k independent decisions: for ℓ ∈
{1, . . . , k}, we draw pℓ uniformly from [0, 1] and decide which interval Ij , if any, pℓ falls

into. In other words, we find the minimum index jℓ (if any) such that
∑

j≤jℓ
x∗
j/k ≥ pℓ.

Fix ℓ. For most realizations of pℓ, we can calculate jℓ using only coarse estimates x̃j

to x∗
j . Assume we have an estimation oracle for x∗ that, on input δ, returns a δ-

estimate x̃ of x∗: Specifically, x̃j − x∗
j ≤ δ for each j ∈ [m]. If pℓ falls outside the

“uncertainty zones” of x̃, such as when |pℓ −
∑

j′≤j x̃j′/k| > δm/k for each j ∈ [m],

it is easy to see that we can correctly determine jℓ by using x̃ in lieu of x. The total

measure of the uncertainty zones of x̃ is at most 2m2δ, therefore pℓ lands outside the

uncertainty zones with probability at least 1−2m2δ. The following claim shows that if

the estimation oracle for x∗ can be implemented in time polynomial in log(1/δ), then

we can simulate the k-bounded-lottery rounding procedure in expected polynomial

time.

Claim B.2.3. Let x∗ be the optimal solution of convex program (6.2). Assume access

to a subroutine B(δ) that returns a δ-estimate of x∗ in poly(n,m, log(1/δ)) time.

Algorithm 4.1, instantiated with r = rk, can be simulated in expected poly(n,m) time.

Proof. Fix ℓ ∈ {1, . . . , k}. Draw pℓ ∈ [0, 1] uniformly at random as in the k-bounded-

lottery rounding scheme in Algorithm 6.1. We will show how to find, in expected

poly(n,m) time, the minimum index jℓ (if any) such that
∑

j≤jℓ
x∗
j/k ≥ pℓ.

The algorithm proceeds as follows: Start with δ = δ0 =
1

2m2 . Let x̃ = B(δ). While

|pℓ −
∑

j′≤j x̃j′/k| ≤ δm/k for some j ∈ [m] (i.e. pℓ may fall inside an “uncertainty
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zone”) do the following: let δ = δ/2, x̃ = B(δ) and repeat. After the loop terminates,

we have a sufficiently accurate estimate of x∗ to calculate jℓ.

It is easy to see that the above procedure is a faithful simulation of Algorithm (6.1)

on x∗. It remains to bound its expected running time. Let δt =
1

2t+1m2 denote the value

of δ at iteration t. By our initial assumption, iteration t takes time polynomial in n, m,

and log(1/δt), which by definition of δt is polynomial in n, m, and t. The probability

this procedure does not terminate after t iterations is at most 2m2δt = 1/2t. Taken

together, these two facts and a simple geometric summation imply that the expected

runtime is polynomial in n and m.

It remains to show that the estimation oracle B(δ) can be implemented in time

polynomial in n, m and log(1/δ). At first blush, one may expect that the ellipsoid

method can be used in the usual manner here. However, there is one complication:

we require an estimate x̃ that is close to x∗ in solution space rather than in terms of

objective value. Using our assumption on the curvature of f(x), we will reduce finding

a δ-estimate of x∗ to finding an 1−ǫ(δ) approximate solution to convex program (6.2).

The dependence of ǫ on δ will be such that ǫ ≥ poly(δ)/2poly(n,m), thereby we can

invoke Claim B.2.1 to deduce that B(δ) can be implemented in poly(n,m, log(1/δ))

time.

Let ǫ = ǫ(δ) = δ2λ
2
∑

i vi([m])
. Plugging in the definition of λ, we deduce that ǫ ≥

δ2/2poly(n,m), which is the desired dependence. It remains to show that if x̃ is (1− ǫ)-

approximate solution to (6.2), then x̃ is also a δ-estimate of x∗.

Using the fact that f(x) is concave, and moreover its second derivative has magni-

tude at least λ, it a simple exercise to bound distance of any point x from the optimal

point x∗ in terms of its sub-optimality f(x∗)− f(x), as follows:

f(x∗)− f(x) ≥ λ

2
||x− x∗||2. (B.4)

Assume x̃ is a (1− ǫ)-approximate solution to (6.2). Equation (B.4) implies that

||x̃− x∗||2 ≤ 2

λ
ǫf(x∗) =

δ2∑
i vi([m])

f(x∗) ≤ δ2,



APPENDIX B. OMITTED PROOFS 202

where the last inequality follows from the fact that
∑

i vi([m]) is an upper-bound on

the optimal value f(x∗). Therefore, ||x − x∗|| ≤ δ, as needed. This completes the

proof of Lemma B.2.2.

B.2.3 Guaranteeing Good Conditioning

In this section, we propose a modification r+k of the k-bounded-lottery rounding

scheme rk. We will argue that r+k satisfies all the properties of rk established so

far, with one exception: the approximation guarantee of Lemma 6.4.2 is reduced to

1 − 1/e − 2−2mn. Then we will show that r+k satisfies the curvature assumption of

Lemma B.2.2, demonstrating that said assumption may be removed. Therefore Al-

gorithm 4.1, instantiated with r = r+k for combinatorial public projects with MRS

valuations in the bounded-lottery-value oracle model, is (1 − 1/e − 2−2mn) approx-

imate and can be implemented in expected poly(n,m) time. Finally, we show in

Remark B.2.4 how to recover the 2−2mn term to get a clean 1 − 1/e approximation

ratio, as claimed in Theorem 6.3.1.

Let µ = 2−2nm. We define r+k in Algorithm B.2. Intuitively, r+k first chooses a

tentative set S ⊆ [m] of projects using rk. Then it cancels its choice with small

probability µ. Finally, with probability β it chooses a random project j∗ ∈ [m] and

lets S = {j∗}. β is defined as the fraction of projects included in the original tentative

choice of S. The motivation behind this seemingly bizarre definition of r+k is purely

technical: as we will see, it can be thought of as adding “concave noise” to rk.

We can write the expected welfare ES∼r+
k
(x)[
∑

i vi(S)] as follows.

E
S∼rk(x)

[
(1− µ)

∑

i

vi(S) + µβ
∑

i

vi(j
∗)

]
.

Using linearity of expectations and the fact that β is independent of the choice of j∗

to simplify the expression, we get that ES∼r+
k
(x)[
∑

i vi(S)] is equal to

(1− µ) E
S∼rk(x)

[
∑

i

vi(S)

]
+ µE[β]

∑m
j=1

∑n
i=1 vi({j})
m

.
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Input: Fractional solution x ∈ Rm with
∑

j xj ≤ k, and 0 ≤ xj ≤ 1 for all j.

Output: Feasible solution S ⊆ [m] with |S| ≤ k

1: Let S = rk(x)

2: Let β = |S|
m

3: Draw q1 ∈ [0, 1] uniformly

4: if q1 ∈ [0, µ] then

5: Let S = ∅
6: Draw q2 ∈ [0, 1] uniformly

7: if q2 ∈ [0, β] then

8: Choose project j∗ ∈ [m] uniformly at random.

9: Let S = {j∗}
10: end if

11: end if

Algorithm B.2: The modified k-bounded-lottery rounding scheme r+k .

Observe that rk chooses a project j with probability 1 − (1 − xj/k)
k. Therefore,

the expectation of β is
∑

j 1−(1−xj/k)
k

m
. This gives:

E
S∼r+

k
(x)

[
∑

i

vi(S)

]
= (1− µ) E

S∼rk(x)

[
∑

i

vi(S)

]

+
µ

m2

(
m∑

j=1

n∑

i=1

vi({j})
)(

m∑

j=1

1− (1− xj/k)
k

)
. (B.5)

It is clear that the expected welfare when using r = r+k is within 1−µ = 1−2−2nm

of the expected welfare when using r = rk in the instantiation of Algorithm 4.1.

Using Lemma 6.4.2, we conclude that r+k is a (1−1/e−2−2nm)-approximate rounding

scheme. Moreover, using Lemma 6.4.1, as well as the fact that 1 − (1 − xj/k)
k is a

concave function, we conclude that r+k is a convex rounding scheme. Therefore, this

establishes the analogues of Lemmas 6.4.2 and 6.4.1 for r+k . It is elementary to verify

that our proof of Lemma B.2.2 can be adapted to r+k as well.

It remains to show that r+k is “sufficiently concave”. This would establish that

the conditioning assumption of Section B.2.2 is unnecessary for r+k . We will show
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that expression (B.5) is a concave function with curvature of magnitude at least

λ =
∑n

i=1 vi([m])

em222nm everywhere. Since the curvature of concave functions is always non-

positive, and moreover the curvature of the sum of two functions is the sum of their

curvatures, it suffices to show that the second term of the sum (B.5) has curvature of

magnitude at least λ. We note that the curvature of
∑

j

(
1− (1− xj/k)

k
)
is at least

e−1 over x ∈ [0, 1]m. Therefore, the curvature of the second term of (B.5) is at least

µ

m2

(
∑

i

vi([m])

)
e−1 = λ

as needed.

Remark B.2.4. In this section, we sacrificed 2−2nm in the approximation ratio in

order to guarantee expected polynomial runtime of our algorithm even when convex

program (6.2) is not well-conditioned. This loss can be recovered to get a clean 1−1/e

approximation. The argument is identical to that employed for combinatorial auctions

in Remark B.1.4, and is omitted.
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