


Re�ning Randomness

Thesis submitted for the degree

Doctor of Philosophy

by

Amnon Ta�Shma

Submitted to the Senate of the Hebrew University

June ����





This work was carried out under the supervision of

Professor Noam Nisan





To my beloved parents�

Dvora and Israel





Acknowledgments

I will start with my parents who have done so much to bring me up� I don�t

know how much I �t your plans� Mum and Dad� but that�s me� I love you so very

much� This thesis is mainly for you�

The thesis itself� however� was made possible because of you� Noam� I still

remember the complexity course you gave while I was still in the army� and the

excitement it arose in me� I already knew then that I wanted you to be my advisor�

and I was never disappointed� The excitement vanished somewhere �www��� but

it was fully compensated by your striking understanding of things� All I know 	 is

yours�

And Noam 	 thanks for being so nice�

Studying complexity at the Hebrew University was a great pleasure �well� most

of the time� and I want to thank Michael Ben	Or� Sha� Goldwasser� Dror Lapidot�

Nati Linial� Muli Safra� Robert Szelepcsenyi� Avi Wigderson and David Zuckerman

for the classes I took and the discussions we had� I want to specially thank Sha�

for her course on Interactive Proofs� and Avi for his beautiful classes on complexity

theory� They had a great in
uence on me� I also want to thank Oded Goldreich for

carefully reading the thesis� and for his many excellent comments that signi�cantly

improved the thesis� Finally� I want to thank Oded Goldreich and Avi Wigderson

for encouraging me� It really helped�

It is a great pleasure to thank Ilan Kremer� Shlomo Huri� Avner Magen� Dorit

Aharonov and Roy Armoni for being friends and mates� Dorit 	 Good luck with

the Qworld� Above all� I want to thank Roy for so many exciting discussions� that



helped clarify so many things� No one can deny we succeeded with Gal�

I want to conclude with my family� I will never forget the love and support I

received from my brother and sisters even when we deeply disagreed� Nothing will

divide us�

Many warm wishes to you Deanna and Harry� I appreciate your letting us go

our way� Many times when I look at Gal I appreciate the sacri�ce you have made�

We love you very much� We wish our small world was smaller�

Finally� to the one who brought light into my lonely life� To the one with whom

I share my life� happy or sad� Dear Paula and lovely Gal� my soul and blood 	 I love

you�



Contents

� Introduction �

��� Randomness Has Lots of Structure � � � � � � � � � � � � � � � � � � � �

�� An Example� Random Walks � � � � � � � � � � � � � � � � � � � � � � �

��� Is Randomness Feasible� � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Chaos� Quantum Mechanics and Crude Randomness � � � � � �

���� Re�ning Crude Randomness � � � � � � � � � � � � � � � � � � � �

��� Derandomization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� Derandomizing algorithms � � � � � � � � � � � � � � � � � � � � �

���� Pseudo	Randomness � � � � � � � � � � � � � � � � � � � � � � � ��

��� Our Work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� New Explicit Extractors and Applications � � � � � � � � � � � ��

���� SL and RL � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Explicit Extractors ��

�� Preliminaries � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�



���� Notation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� De�nitions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Previous Work � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� The Mother of All Extractors � � � � � � � � � � � � � � � � � � �

�� Extracting Randomness From Block	wise Sources � � � � � � � ��

��� Converting an Arbitrary Random Source to a Block	wise Source ��

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� An Extractor For Any Min	Entropy� � � � � � � � � � � � � � � � � � � ��

���� An Informal Description � � � � � � � � � � � � � � � � � � � � � ��

��� Composing Two Extractors � � � � � � � � � � � � � � � � � � � ��

���� Composing Many Extractors � � � � � � � � � � � � � � � � � � � ��

���� Assuming Explicit Somewhere Random Mergers � � � � � � � � ��

���� Explicit Somewhere Random Mergers � � � � � � � � � � � � � � �

���� Putting It Together � � � � � � � � � � � � � � � � � � � � � � � � ��

�� An Extractor Using Less Truly Random Bits � � � � � � � � � � � � � � ��

���� A Better Extractor For Sources Having n����� Min	entropy � � ��

��� An Extractor For n� Min	entropy� � � � � � � � � � � � � � � � � ��

�� Applications � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� a	Expanding Graphs � � � � � � � � � � � � � � � � � � � � � � � ��

��� Superconcentrators of Small Depth � � � � � � � � � � � � � � � �

���� Deterministic Ampli�cation � � � � � � � � � � � � � � � � � � � ��



���� The Hardness of Approximating The Iterated Log of Max Clique� ��

���� Simulating BPP Using Weak Random Sources � � � � � � � � ��

� SL�coSL ��

��� An Informal Solution � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� SL�coSL � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Projections to USTCON � � � � � � � � � � � � � � � � � � � � � ��

��� Finding a Spanning Forest� � � � � � � � � � � � � � � � � � � � � ��

���� Putting It Together� � � � � � � � � � � � � � � � � � � � � � � � ��

��� Extensions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

Bibliography ��

A Explicit Extractors ��

A�� A Somewhere Random Source Has Large Min	Entropy � � � � � � � � ��

A� A Lemma For d�Block Mergers � � � � � � � � � � � � � � � � � � � � � ��

A�� Lemmas For Composing Two Extractors � � � � � � � � � � � � � � � � ���

A�� More Bits Using The Same Extractor � � � � � � � � � � � � � � � � � � ���

A�� Lemmas For The Second Extractor � � � � � � � � � � � � � � � � � � � ���

A�� The Hardness of Approximating The Iterated Log of Max Clique� � � ���



Chapter �

Introduction

��� Randomness Has Lots of Structure

When people say something behaves randomly� they usually mean they can not rec	

ognize any pattern in its behavior� Thus� gender and lottery are random� However�

random things do have many patterns after all� and everyone knows that it is very

rare to see a large family with only female children� or to see the same number

winning two di�erent lotteries�

In fact� it turns out that certain properties of random structures are very useful�

and very hard to achieve deterministically� Take for example the following problem�

A company wants to set up a telephone network between two groups of people� The

network should be dynamic� i�e� no matter who currently uses the network� if some

person A wants to speak to some person B� and A and B are not in the middle of

some other conversation� then the network should supply the link� The company

also wants the network to be small �i�e� with few wires� and shallow �i�e� with few

�



interchanges between any two people speaking�� A somewhat surprising fact is that

it is very hard to explicitly build such a network� Even more surprising is that a

random network �with the right degree and depth� will almost certainly be almost

as good as the best network possible� Thus� the best way for the company to �nd a

good network is to randomly choose one�

This brings to light an important phenomenon� Many explicit structures will al	

most always occur in a randomly chosen object� In fact� Erdos and many others after

him� used this phenomenon to develop a method� �The probabilistic method�� for

proving the existence of combinatorial objects with certain properties� The method

has been very successful� and the interested reader is referred to �AES��� A similar

very successful rule of thumb says that for many reasonable combinatorial problems�

if the �natural� randomized construction does not have the required property� this

property can not be achieved at all� In fact� this phenomenon is so widespread that

it is commonplace to use it as the only test for the existence of non	explicit con	

structions� It is as if almost all structures with simple description have the property

that if they exist� it is easy to randomly �nd an object with that structure � �

In light of all of the above� it must be clear that randomness does not mean

disorder� There are rules behind our choices and even probabilistic rules are still

rules �� Moreover� it seems that using these probabilistic rules� we can do many

things more easily or more e�ciently than what can be done using �conservative�

deterministic rules� As a consequence two natural questions arise�

� Can we build probabilistic computers� Is randomness a feasible resource� and�
�It might be instructive to compare the strong belief in this rule of thumb to the strong disbelief

that NP � BPP�
�Our world is a good example of that� as quantum theory states that things behave according

to certain probabilistic rules and still quantum theory has a lot of structure and order�





� Do we really need randomness� Or� in other words� is there a way to simulate
probabilistic algorithms deterministically�

In the next section we give an important example of a randomized algorithm�

Then in section ��� we address the feasibility question� and in section ��� we dis	

cuss derandomization� Finally� in section ��� we present our new constructions and

results�

��� An Example� Random Walks

It was already stated before that many problems have simple and e�cient random	

ized algorithms solving them� As we know that random constructions easily achieve

certain combinatorial properties� it might be suspected that the role of randomness

in the solutions is to achieve an object with a certain required combinatorial prop	

erty� However� it turns out that in many randomized algorithms you can not isolate

any simple property that su�ces to solve the problem� Thus� the solution bene�ts

from the randomness in the deepest sense possible� Randomness is not just a tool

to achieve certain constructions� randomness is the thing itself and it is too big to

be described only by some simple properties� To demonstrate this� I want to give

an important example that we will later study in Chapter �� The problem is called

the undirected s� t connectivity problem� but I prefer to present it here by a story�

Imagine that you wake up in a dark night at the middle of a deserted street of

a strange city� In your desperate condition you decide to go to a police station and

ask for help� The only problem is you have no knowledge where you are and where

the police station is� and anyway you have no map of the city� Suppose you decide

to wander around� at each intersection randomly choosing where you go next �you
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might even go back to the street where you came from�� At this point the reader

probably joins me in thinking �you poor thing� walking aimlessly in a strange city�

What chance do you have to reach the police station�� So� let us face the question�

what chance do you have�

At �rst glance� this random wandering looks like a pretty bad idea� In fact it

might even be suspected that the way the city is built will cause you �with high prob	

ability� to stay within your current neighborhood and never go out of it� However�

if you know the �AKL���� theorem you know that no matter what the topology of

the city is� with overwhelming probability it will not take too long until this random

walk will take you to the police station� Thus wandering around randomly� is indeed

a very good way to reach a destination� If you lack the knowledge 	 take a random

action�

Notice how simple and elegant the random walk algorithm is� Notice also that

the algorithm is local� taking into account only local data� and yet� it works for any

city �and even cities in higher dimensions�� Finally� though the theorem has a nice

and simple proof� the proof does not reveal any combinatorial property that su�ces

to solve the problem� The random walk algorithm makes a direct use of randomness

live and unabridged�

��� Is Randomness Feasible�

By now we should be quite convinced that randomness is a very nice tool� Let us

�rst check whether randomness is a feasible resource� We �rst discuss the possi	

ble physical devices outputting �random� bits �section ������� and then we discuss

whether these devices can be used to generate truly random bits �section ������
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����� Chaos� Quantum Mechanics and Crude Randomness

At �rst glance it seems we are surrounded with random phenomena� and so we

can throw dice� for example� to get the required randomness� However� most things

around us are not random but chaotic� Take dice for example� If you have knowledge

of all relevant data prior to the dice throw� and if you have enough computational

power� you can know the result in advance� And the same applies to lottery� Thus�

chaotic systems are not truly random but instead only �look random� to a limited

observer� Therefore� using a chaotic mechanism to output �seemingly random� bits

might end up in bits that are strangely correlated� causing the generated distribution

to be very far from uniform�

However� there is one signi�cant exception to this� In a tremendous earthquake

in the way we view our world� Quantum Theory introduced non	determinism into

our world� Certain things can not be determined� not because we do not have the

power or wits to analyze them� but because they behave non	deterministically� This

startling understanding is so provocative that Einstein refused to accept it saying

that �God does not play dice� �and here dice means random �not chaotic� behavior��

Yet� it seems that Quantum Theory is correct� and accepting that� our world does

have a source containing real randomness ��

Indeed� circuits exploiting quantum mechanics can be built �e�g� using Zener

diodes� and their output is� indeed� far from deterministic� Unfortunately� it turns

out that the generated distribution is also very far from uniform� Thus� using

�As to God� I believe it must be very boring to run a deterministic world that can be fully

predicted� What is the point in playing a game whose moves and results are known in advance� A

probabilistic world sounds like a great improvement� and the quantum world with its simple and

sophisticated mechanism seems to be an even better one� It might even be interesting to run and

watch such a system�
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such circuits we get a distribution that is truly unpredictable �i�e� it contains some

randomness�� yet is not uniform �i�e�� there are many correlations among the di�erent

output bits�� In fact� many times it is very hard to know what the generated

distribution is and the only thing that can be said is that there is some randomness

in it� In short� using quantum mechanics we can produce �crude� randomness�

What we investigate next is whether we can transform this crude randomness into

a nice uniform distribution�

����� Re�ning Crude Randomness

Let us have another look at the problem we have at hand� Assume our Zener diodes

output three bits b�� b�� b�� by uniformly choosing a string out of a set of four possible

strings� and further assume that we do not know what these four strings are� In

�gure ���� we illustrate three such distributions� In Distribution A� b� is �xed on

� and the two other bits are randomly chosen� In distribution B each pair of bits

is random �i�e� all four possible combinations appear with equal probability� and

each pair determines what is the remaining bit� In distribution C� no bit is uniform

�every bit is ��� with only probability ����� The common property shared by all

these distributions is that a string is uniformly chosen out of four possible strings�

and thus in a very basic sense there are two bits of randomness in each of these

distributions�

Can we extract even a single random bit� from such a distribution� And formally�

We look for a function f � f�� �gn �� f�� �g s�t� for any distribution X
on f�� �gn that is uniformly distributed over m strings� the distribution

f�X� is random�
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Figure ���� Three distributions over � bits with 	randomness

Taking f�b�� � � � � bn� � b�� i�e� f returns the �rst bit� is no good as X can �x the

�rst bit �as happens in distribution A�� Taking f�b�� � � � � bn� � b�� b� � � �� bn is also

not good as this sum can also be a constant �as happens in distribution B�� In fact�

it is not hard to show that for any f � f�� �gn �� f�� �g there is a distribution X that

is uniform over a set of size �n

�
s�t� f�X� is �xed ��SV����� That is� not a single bit

can be extracted if the only thing we know is that the given distribution contains a

large amount of randomness� without knowing explicitly what this distribution is�

Let us restate the core of our problem� whenever we choose a function f �

f�� �gn �� f�� �g� there is a distribution X that is bad for f � and thus no f works

well for any distribution X� We can think of it as a game against an adversary� we

pick a function f � and our adversary picks the worst distribution X for this f �

So the reason we fail is that our malicious adversary makes his choice X after

seeing our function f � But what happens if our function f uses some small amount

of truly random bits y� Notice that in this case it is possible that the adversary

will not be able to choose a distribution X that is bad for f � simply because the

adversary does not know y and therefore does not have complete knowledge of f �
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Indeed this amounts to a novel idea� keep some coins in your pocket and let

the adversary make his choice without having complete knowledge� Such techniques

have been found very successful in fooling adversaries in interactive proofs and in

many other places� Can they be useful here� Let us be more formal� In our case

the extracting function takes the following form�

We look for a function f � f�� �gn � f�� �gt �� f�� �g s�t� for any

distribution X on f�� �gn that is uniformly distributed over m � �n

�

strings� the distribution of f�x� y� when x is chosen according to the

distribution X� and y is chosen uniformly from f�� �gt� is very close to
uniform�

We call such a function an �extractor�� In chapter  we will see that using

few random bits �i�e� a very small t� we can extract almost all of the randomness

present in the source X� no matter what X is� Thus� extractors extract almost all of

the randomness �energy� from any source �fuel tank� by using few truly random bits

�some little energy�� Looking at it di�erently� extractors take crude randomness� and

by investing a little amount of extra energy re�ne it to pure uniform randomness�

In particular� extractors can take the crude randomness created by Zener diodes

and extract an almost uniform distribution from it 	 making randomness a feasible

resource�

��� Derandomization

Now we turn into the second question� �Do we really need to use randomness���

I�e� is there a natural problem easily solvable by a randomized algorithm that has

no e�cient deterministic solution� Alternatively� can we �nd a simple criterion
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such that any probabilistic algorithm satisfying this criterion can be derandomized�

yielding a matching deterministic algorithm�

In the next sections we �rst discuss derandomization of algorithms �section ������

and then derandomization of whole complexity classes �������

����� Derandomizing algorithms

In the current state of the art� algorithms can be derandomized if they do not use

randomness to its full extent� but instead only take advantage of certain properties

that can be �more� easily achieved� Let us take� for example� an algorithm that

uses a distribution over F n that need only be pair	wise independent � i�e� any two

elements are mutually independent �F is some �eld�� One possible distribution is

the uniform distribution over F n� and its size �the number of possible values� is jF jn�
It turns out that we can build much smaller distributions �of size jF j�� that have
the same property� Thus� we can reduce our sample space from jF jn to jF j�� Once
our sample space has a smaller size� we can try all the elements in the sample space�

and deterministically �nd out the result�

Two explicit constructions are extremely useful when derandomizing algorithms�

� k	wise independence

� A small sample space that is k	wise independent �any k elements are

mutually independent� �CG����

� An even smaller sample space that is almost k	wise independent �any k

elements are almost mutually independent� �NN��� AGHP���

�



� Expanders 	 explicit graphs with constant degree and strong expansion prop	
erties �Mar��� LPS����

The interested reader is referred to �Wig��� for a survey of pair	wise indepen	

dence� and �MR��� for a reading on probabilistic algorithms and derandomization�

We can also view extractors as explicit graphs with strong random properties�

As such� they can serve as a derandomization tool� Indeed� during the last few years�

many derandomization results were found using extractors � see �Nis��� for a list of

applications� or section �� for those applications improved by our new extractors��

In particular� extractors provide the best deterministic ampli�cation known today

�see �Nis�����

Thus� extractors are important not only because they allow us to use randomness

in our real world computations� but also as a tool in studying the connection between

randomized and deterministic computations�

����� Pseudo�Randomness

Wouldn�t it be nice if we could derandomize all probabilistic algorithms belonging to

a certain class C� I�e�� show that if a problem is solvable by a probabilistic algorithm

running in the class C� then it can also be solved in C without using random bits�

Wouldn�t it even be nicer if we could do that in a uniform way� I�e� if we could

�nd a function outputting a distribution that looks random to all tests that can be

done in the class C�
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De	nition ����� G � f�� �gt �� f�� �gn is a pseudo random generator that fools the

class C� if for every function f � f�� �gn �� f�� �g computable in C�

jPr�f�un� � ��� Pr�f�G�ut� � ��j � �

�

when un is chosen uniformly from f�� �gn and ut is chosen uniformly from f�� �gt�

It is clear that if we have a pseudo random generator G � f�� �gt �� f�� �gn that
fools C� then we can replace the random string given to any probabilistic algorithm

in C with the output of the generator G� Thus� any probabilistic algorithm taking

time T can be simulated by a deterministic algorithm taking time T � t �ignoring
the time needed for the generator��

In a series of brilliant papers� a tight connection between pseudo	random gener	

ators for C and �nding functions that are �hard� for C was made� On the intuitive

level� if we have a �C�hard� function we can use it to generate bits that look random

to any algorithm in C� and on the other hand if we have a pseudo	random generator

for C then the function identifying all strings generated by the generator is hard for

C�

Building on the pioneering work of Blum and Micali �BM�� and Yao �Yao���

Impagliazzo� Levin and Luby �Lev��� ILL��� HILL��� showed that pseudo	random

generators that run in polynomial time �in the seed length� and fool polynomial	

size circuits� exist� i� one	way functions exist �functions that are easy to compute

but hard to invert�� Nisan and Wigderson �NW��� BFNW��� studied the possible

existence of pseudo	random generators that run in exponential time �in the seed

length� and fool polynomial	size circuits� and showed that such functions exist i�

there exists a function solvable in exponential time that is hard for any polynomial

size circuit�
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These results show that the problem of �nding pseudo	random generators for

small circuits is closely related to that of �nding explicit functions that are hard for

the class we want to derandomize� This later question has a long and very frustrating

history� In fact� except for a single stunning success �for the class AC�� almost no

progress was made on this famous problem� Thus� the existence of pseudo	random

generators has far reaching implications which currently seem to be beyond our

reach�

However� space limited classes with a read�once random tape are a major ex	

ception to the above rule� The tests such a machine can perform to check whether

a given string is truly random or not are limited not only by the class limitations

�i�e� limited memory space�� but also by a severe read	once limitation on accessing

the tested string itself� The point is that since the machine can read each random

bit only once� and since the machine�s memory is limited� many di�erent random

strings will bring the machine to exactly the same con�guration�

At this point it is worthwhile to mention that even such limited machines can

use randomness in a highly non	trivial manner� In particular the random walk

example given in section �� can be solved by a machine using logarithmic space

and a polynomially long read	once random tape� Thus� �nding a pseudo	random

generator for RL� Random Logspace� would yield the �rst deterministic Logspace

solution to the undirected s� t connectivity problem� and many others�

Indeed� several pseudo	random generators for the class RL exist� These pseudo	

random generators use the derandomization tools listed in the previous sections�

�Nis�� uses hash functions� �INW��� use expanders and �NZ��� Arm� Zuc��� use

extractors� Still� none of these constructions is optimal� and it is a major open

problem to show that pseudo	random generators for RL exist in L �or even in P ��

�



��� Our Work

In this section we state the new results we achieved� In section ����� we describe

the new constructions of explicit extractors and some of their applications� and in

section ���� we show that SL� the class of problems reducible to the undirected s� t

connectivity problem� is closed under complement�

The results of section ����� were published in �TS���� The results of section ����

are joint work with my advisor Noam Nisan� and have appeared in �NTS��� NT����

��	�� New Explicit Extractors and Applications

This section is more technical� We will give formal de�nitions of �explicit� extractors�

Then we will state the lower bound and size of best non	explicit construction� Finally

we state what explicit extractors were known� and the new extractors we constructed�

along with some new applications� In our construction we use a new general tool�

called �a merger�� which seems to be a useful tool for dealing with random sources�

However� since it requires a lot of background� we defer its presentation to Chapter

�

Formal de	nitions

First we de�ne how we measure randomness� We say a distribution D contains m

�randomness� if no string has probability greater than �m� This measure is closely

related to the Renyi entropy �Ren���� and was suggested by Chor and Goldreich

�CG��� as the right measure for this problem�

��



De	nition ����� �Ren��� CG��	 The min�entropy of a distribution D is H��D� �

minx��log�D�x���

It is not hard to see that for any distribution X� H�X� 	 H��X�� where H���
is the entropy function� Also� if X is uniform over some set A 
 f�� �gn then
H�X� � H��X� � log��jAj��

Next we de�ne what an extractor is�

De	nition ���� E � fEn � f�� �gn � f�� �gt�t�n� �� f�� �gm��m��n�g is an �m �

m�n�� � � ��n�� extractor if for every n � N � and every distribution X on f�� �gn
with H��X� 	 m� the distribution of En�x� y� when choosing x � X and y randomly

from f�� �gt�n�� is � close to uniform�

Remark ����� This de
nition is slightly di�erent from the one in �NZ�� SZ��	� In

�NZ�� SZ��	 E is an extractor if Y � E�X�Y � is close to uniform� while we only

demand that E�X�Y � is close to uniform�

Notation ����� Instead of saying that E � fEn � f�� �gn � f�� �gt�t�n� ��
f�� �gm��m��n�g is an �m � m�n�� � � ��n�� extractor� we will say that E �

f�� �gn � f�� �gt �� f�� �gm�

is an �m� �� extractor�

Lower bound and non
explicit constructions

Nisan and Zuckerman showed a lower bound on the number of truly random bits

needed for an extractor to extract even one additional random bit� As mentioned be	

fore� Nisan and Zuckerman use a slightly di�erent de�nition of extractors� However�

slight adaptations to their proof yields the following lower bound�

��



Fact ����� �NZ�	 For any m � m�n� and � � ��n�� any �m� ���extractor E �

f�� �gn � f�� �gt �� f�� �gt��� must have t �  �log�n�m� ! log��
�
���

This lower bound matches �up to a constant factor� the non	explicit construction�

Fact ����� For every m � m�m� and � � ��n�� there are �non�explicit� �m� ��

extractors E � f�� �gn � f�� �gt �� f�� �gm� with t � O�log�n� ! log��
�
���

Previous explicit extractors

We would like to have an explicit construction�

De	nition ����� We say E is an explicit �m� �� �extractor E � f�� �gn � f�� �gt ��
f�� �gm�

� if it is an extractor and for any x � f�� �gn and y � f�� �gt� E�x� y� can be

computed in polynomial time in n ! t�

The following table summarizes the explicit extractors that were previously

known�

m min	entropy t truly random bits m� extracted randomness reference

 �n� O�log�n � log��
�
��  �m� �NZ���

 �n� O�log�n� ! log��
�
��  �m� �Zuc���

 �n������ O�log�n � log��
�
�� n�� � � � �SZ���

 �n�� O�logn� n�� � � � �SSZ���

Disperser	

any m m cm � constant c � � �SZ��� GW���

�A disperser is a weak extractor� See de�nition ����� or 	Nis
���

��



We see that all constructions require at least n� min	entropy for some constant

� � �� Also� all constructions extract much less bits than the min	entropy that

exists in the given source�

We devise two new explicit constructions that are summarized in the following

table� and shortly discussed in the next two subsections�

m min	entropy t truly random bits m� extracted randomness reference

any m polylog�n� � log��
�
� m

n� O�log�n� loglog � � � log� �z �
k

n� n� � � �
n
� � � � � �

any constant k

any m O�logn ! log��
�
�� m Lower bound

Extractor for any min
entropy

We devise a new tool for building extractors� which we call �somewhere random

mergers�� We use this tool to achieve two new extractors� The �rst extractor we

achieve is�

Theorem� For every � � ��n� and m � m�n� � n� there is an explicit �m� ���

extractor E � f�� �gn � f�� �gt�poly�log�n� �� f�� �gm��m�

That is� this extractor works for any min	entropy� small or large� and extracts

all the randomness present in the given source� These properties turn out to be very

important for some applications� most notably the following two corollaries�

Corollary� �improving �WZ�	� For any N and � � a � N there is an

explicitly constructible a�expanding graph with N vertices� and maximum degree

��



O�N
a
polyloglog�N�� 
�

Another important corollary� that solves a problem similar to the network prob	

lem presented in section ���� is�

Corollary� �improving �WZ�	� For any N there is an explicitly constructible

superconcentrator over N vertices� with linear size and polyloglog�N� depth ��

See section �� for more details on these and other applications�

Simulating random classes with sources having high min
entropy

Our second extractor is motivated by the problem of simulating BPP using only

defective sources having high min	entropy�

In section ���� we discussed whether randomized algorithms are indeed feasible�

We saw that crude randomness does exist in nature� and we looked for extractors to

extract truly random bits from it� Let us formalize the problem� For every n � N �

we are given a source X over f�� �gn with high min	entropy H��X�� We want to

simulate any algorithm in RP �probabilistic polynomial	time� one sided error� or

BPP �two sided error� using the source X as our only source of randomness� We

also want it to be a black	box simulation� i�e�� it is done by calling the original

algorithm �possibly several times� and replacing the required random strings with

new strings we compute from X �

Fact ����� �CW��	 Any polynomial time� black�box simulation of RP or BPP �

must use a source X with H��X� 	 n� for some � � ��

�See section �� for the de�nition of a�expanding graphs� The obvious lower bound is N
a
� The

previous upper bound 	WZ
�� SZ
�� was O�Na � �log�N�����o��� ��

�This improves the current upper bound of O�log�N ����	o���� due to 	WZ
�� SZ
���

��



If we have an explicit �m� �� extractor E � f�� �gn � f�� �gt �� f�� �gm�

� than by

investing t truly random bits� we can extract from sourcesX withmmin	entropy�m�

almost truly random bits� which we can use as an input to the original randomized

algorithm� It is true that we still need to invest t truly random bits� and we do

not have a source outputting truly random bits� However� instead of using t truly

random bits we can try all t possibilities and decide according to the majority�

Thus� by using the �SZ��� extractor �see the table above�� we get�

Corollary ����� �SZ��	 For any � � �� BPP can be simulated using sources with

H��X� 	 n������ in nO�log�n�� time�

�SSZ��� showed that for RP � n� min	entropy su�ces� and the simulation can be

done in polynomial time�

Corollary ����� �SSZ��	 For any � � �� RP can be simulated in polynomial time�

using sources with H��X� 	 n��

The second extractor we build� works for sources with high min	entropy �n� for

any constant � � ��� and invests only slightly more than O�log�n�� truly random

bits�

Theorem� For every constants k and � � � there is some constant � � � and

an �n�� �
n
� extractor E � f�� �gn � f�� �gO�log�n�log�k�n� �� f�� �g��n��� where log�k�n �

loglog � � � log� �z �
k

n�

Corollary� For any � � � and k � �� BPP can be simulated in time nO�log�k�n�

using a weak random source X with min�entropy at least n� �

��



��	�� SL and RL

We conclude with the s	t connectivity problem we presented in section ���

A natural complexity measure is the amount of memory required to solve a

problem� When modeling computations with Turing machines� this amounts to the

space complexity 	 the size of the memory a Turing machine needs in order to solve

the problem� Let us de�ne L as the class of log	space languages� RL its one	sided

analog and NL its non	deterministic analog� Next we give exact de�nitions of these

classes�

De	nition ����� �L� A language A 
 f�� �g� is in L i� there is a deterministic

Turing machine M s�t� �

� M can access a read�only tape whose content is the input x�

� M has a read�write tape of length O�log�n���

and x � AM�x� accepts�

That is� the machine has an input tape �which is read	only� of length n� and

�working� tape of length only O�log�n��� Now� let us strengthen this class by

allowing it to use randomness�

De	nition ����� �RL� A language A 
 f�� �g� is in RL� i� there is a deterministic

Turing machine M s�t� �

� M can access a read�only tape whose content is the input x�

� M has a polynomially long read�once tape having a random content y�

��



� M has a �read�write� working tape of length O�log�n���

and

� x � A� Pry �M�x� y� accepts� 	 �	�

� x �� A� Pry �M�x� y� accepts� � ��

There are several things to notice about this de�nition� First� notice that the

machine can use a new random bit at any time it wishes� Second� notice that the

machine can not remembermuch of these random bits� since the random tape is read�

once� and the working space is limited� Thus� algorithms that utilize the random

bits must do that in a �use and throw� way� An example for such an algorithm is

the algorithm of section ���

For completeness� we add the de�nition of the class NL� non	deterministic

Logspace�

De	nition ����� �NL� A language A 
 f�� �g� is in NL� i� there is a deterministic

Turing machine M running in Logspace s�t� there is a polynomial p�n� and for any

x � f�� �gn there is a �witness� y � f�� �gp�n� such that x � A �y M�x� y� accepts�

We can compare RL and NL in terms of the required size of the �witness set��

We say y is a �witness� if M�x� y� computes the right answer� Both in RL and NL�

if x is not in the language then all y�s are good witnesses� The situation is di�erent

when x does not belong to the language� in NL we require that there is at least one

good witness� while in RL we require that at least half of the y�s are good witnesses�

It is easy to see that L 
 RL 
 NL� It is also not hard to see that the directed

s� t connectivity problem STCON� the problem whether two vertices s and t are

connected in a given directed graph G� is complete for NL�

�



A special case of the connectivity problem for general graphs� is the connectivity

problem for undirected graph� USTCON�

De	nition ����� �USTCON�

Input � an undirected graph G � �V�E�� and two vertices s� t � V �

Output � whether s is connected to t in G�

In a beautiful paper� Aleliunas� Karp� Lipton� Lovasz and Racko� �AKL����

showed that� with a high probability� a random walk over an undirected graph

covers all the graph nodes in polynomial time� thus showing that USTCON can be

solved in RL 	 a result we already mentioned in section ���

So STCON is as hard as NL� while USTCON is not harder than RL which looks

easier than NL� That�s the time for a name for a new Class� Indeed Lewis and

Papadimitriou �LP�� de�ned a class SL� Symmetric Logspace�

De	nition ����� �SL� �LP��	 A language A 
 f�� �g� is in SL� i� there is a log�

space reduction from A to USTCON �

In fact Lewis and Papadimitriou showed that the following de�nitions to SL are

equivalent�

�� Languages which can be reduced in Logspace via a many	one reduction to

USTCON� the undirected st	connectivity problem�

� Languages which can be recognized by symmetric nondeterministic Turing

Machines that run within logarithmic space� See �LP���

�



�� Languages that can be accepted by a uniform family of polynomial size contact

schemes �also sometimes called switching networks�� See �Raz����

In particular� the Aleliunas et al� result shows that SL 
 RL� Adding this to

the former inclusions we get� L 
 SL 
 RL 
 NL� If we have to guess if these

containments are tight what would be our �rst �or second� guess� I guess �NO��

and as usually happens in complexity theory �and in life in general�� pessimism rules

until someone shows the contrary �

Thus� the proofs by Immerman and Szelepcseny �Imm��� Sze��� that NL is closed

under complement� came as a great surprise to the scienti�c community� The same

technique� inductive counting� was used by Borodin et al �BCD���� to show that

SL 
 coRL� However� this technique failed to solve the more general problem

whether the class SL is closed under complement� As a consequence� an SL hierarchy

was built �Rei�� BCD����� and turned out to contain many interesting problems�

such as 	colorability �Rei���

In a result co	authored with my advisor Noam Nisan� we develop a new technique

and show that SL � coSL� collapsing� in particular� the SL hierarchy�


But� in fact� what do we have to base our guess on� Do we have the slightest indication that

L �� NL� If we have any indications at all� they show that RL is very close to L� which turns the

L �� NL question into RL �� NL� which looks wide open�





Chapter �

Explicit Extractors

In this chapter we present the currently known techniques for building explicit ex	

tractors� In section � we present the main ideas used in previous constructions�

including the tiny hash function extractor �section ����� block	wise sources �sec	

tion ��� and two techniques for converting arbitrary random sources to block	wise

sources �section ����� In section �� we present our new technique for building ex	

plicit extractors� We use it to build a new extractor working for any min	entropy

and extracting all the randomness present in a random source� In section �� we

use these ideas to construct another new extractor� which uses less random bits�

Finally� in section �� we state some applications that were improved by our new

constructions� We start the chapter with a short preliminary section �section ����

containing notation� de�nitions and some well known facts�

�



��� Preliminaries

����� Notation

We use standard notation for random variables and distributions� If X is a distri	

bution� x � X denotes picking x according to the distribution X � If A is a random

variable we denote by A the distribution A induces� If A and B are �possibly corre	

lated� random variables then �A j B � b� is the conditional distribution of A given

that B � b� We denote by Ut the uniform distribution over f�� �gt� For a random
variable X � X� � � � � � Xn over f�� �gn we write X�i�j� as an abbreviation for the

random variable Xi �Xi�� � � � �Xj � and the same applies to instances x�i�j��

We de�ne the variation distance between two distributions X and Y as�

d�X�Y �
def
�
�


jX � Y j� def

�
�



X
a

j X�a�� Y �a� j

We say X is �	close to Y if d�X�Y � � �� We say two random variables A and B are

��close� if d�A�B� � �� We say X is � quasi	random� if it is �	close to uniform�

We list some well known properties of the variation distance�

Fact ����� Let D��D� be two distributions on "�� and let f � "� �� "� be any

function� then d�f�D��� f�D��� � d�D��D��� I�e�� distance between distributions

cannot be created out of nowhere�

Fact ����� Let A�B�C and D be any random variables� then d�A�B� �
d�A � C�B �D��

Fact ����� Let A�B and C be any random variables� then d�A �B�A � C� �P
a��A

Pr�A � a� � d��B j A � a�� �C j A � a���

�



Finally� for integers t and T � �t� denotes f�� �gt while �T � denotes ��� � � � � T ��

����� De�nitions

We restate the de�nitions given in section ����

De	nition ���� �Ren��� CG��	 The min�entropy of a distribution D is H��D� �

minx��log�D�x���

De	nition ��� E � �n� � �t� �� �m�� is an �m� ���extractor if for any distribution

X on f�� �gn with H��X� 	 m� the distribution of E�x� y� when choosing x � X

and y � Ut� is � close to Um� �

When� again� we remind the reader that �k� denotes f�� �gk�

Remark ���� This de
nition is di�erent from the one in �NZ�� SZ��	� In �NZ��

SZ��	 E is an extractor if Y � E�X�Y � is close to uniform� while we only demand

that E�X�Y � is close to uniform�

De	nition ���� We say E � �n� � �t� �� �m�� is an explicit �m� ���extractor� if it

is an extractor and for any x � f�� �gn and y � f�� �gt� E�x� y� can be computed in

polynomial time in n ! t�

Now we give a graph interpretation of de�nition ���� We can view a function

E � �n� � �t� �� �m�� as a regular bipartite graph G � ��N � n�� �M � � m�� E��

with n vertices at the left hand side� m
�

vertices at the right hand side� and edges

�x� z� � E i� there is some y such that E�x� y� � z �i�e� the graph degree is

t�� Clearly� if E is an �m� ��	extractor then for any X 
 �N � that is large enough

�



�jXj 	 m�� and any Y 
 �M ��� #�X� � fz � �M �� j �x� y z � E�x� y�g hits Y with

about the right probability �i�e� about jY j
jM �j

��

The above de�nition is very strong and requires that we hit any large enough

subset with about the right probability� A weaker requirement is that we just hit

any large enough subset� This is captured by the de�nition of a �disperser�� given

by Sipser�

De	nition ���� �Sip��	 A �multi��graph G � ��N �� �M ��� E� is a �M� ���disperser if

for any A 
 �N �� jAj 	M � j#�A�j 	 �� � ��M ��

It is clear from the above discussion that an explicit �m� �� extractor E � �n� �
�t� �� �m�� gives an explicit construction for a regular bipartite graph G � ��N �

n�� �M � � m
�

�� E� that is an �M � m� �� disperser� and has degree t�

�



��� Previous Work

����� The Mother of All Extractors

Hashing is a very well known technique in computer science� Many times� in theory

and practice� one needs to hash a small set residing in a huge domain to a much

smaller domain� with as few collisions as possible� Notice that by de�nition extrac	

tors are good hash functions� The converse is stated in the leftover hash lemma

�ILL����

De	nition ���

� Let X be a distribution� De
ne Col�X�
def
� Probx� �x��X�x� � x���

� H � fh � �N � �� �D�g is a family of hash functions with collision error �� if

for any x� �� x� � �N �� Probh�H�h�x�� � h�x��� � �
jDj
� �� ! ���

The following lemma is a variant of the leftover hash lemma �ILL����

Lemma ����� Let H be a family of hash functions from �N � to �D� with collision

error �� For any distribution X with Col�X� � �
jDj

� �h� h�x�� is quasi�random to

within � �
p
��

Corollary ����� If there exists an explicit family H of hash functions from �N � n�

to �D � d�� with �� collision error� then there exists an explicit �m � d!�log��
�
�� ���

extractor E � �n�� �t � log�jHj�� �� �m� � t! d��

Proof� If H��X� 	 m then Col�X� � �m � �
D
� ��� Since H has �� collision

error� by lemma ��� �h� h�x�� is quasi	random to within ��

�



Let�s look for small families of hash functions with small collision error� Let us

start with families of hash function with no collision error�

De	nition �� �CW��	 H � fh � �N � �� �D�g is called a universal family of hash

functions� if for any x� �� x� � �N �� and for any y�� y� � �D�� Probh�H � h�x�� �

y� � h�x�� � y� � �
�

jDj�
�

It is clear that a universal family of hash functions has in particular � collision

error� Also� it is not hard to see that there exists a universal family of hash functions

jHj of size poly�jN j� jDj� � poly�jN j�� Using this family we need to invest n truly
random bits� Can we do any better�

In �CGH���� it was shown that if we want pairwise independence� and allow no

error� we cannot do much better� However� remember that we don�t really need �

collision error� and we can a�ord some small collision error� In other words� we only

need almost pairwise independence� Amazingly� Naor and Naor �NN��� showed that

in this case we can do much better�

De	nition ��� �NN�	 A set S of n�bit vectors is �d wise 
 biased�� if for any d

indices I �i�e� I 
 f�� � � � � ng� jIj � d�� and for any d values b�� � � � � bd � f�� �g�

j �Probx�S ��i�Ixi � bi� � � �jIjj � 


Theorem� �NN�	 �see also �AGHP��	� For every integer q� d � q and every


 � �� there is an explicit set S of q�bits vectors that is d�wise� 
 biased� and of

cardinality O� �d � log�q� � �
�
�� ��

Srinivasan and Zuckerman used this in a very simple way to show�

�



Lemma ����� ��SZ��	 and independently �GW��	� There exists an explicit family

H of hash functions from �N � to �D�� with � collision error� and poly�log�jN j�� �
�
� jDj�

size�

Proof� Any function h � �N � �� �D� can be represented by writing all its values

on �N �� This representation takes q � jN j � log�jDj� bits� Take S to be a set

of q	bit vectors that is d � log�jDj� wise 
 � � �
jDj
��	biased� and of cardinality

O� �d � log�q� � �
�
�� � � poly�log�jN j�� �

�
� jDj�� Let H be the set of hash functions

corresponding to the elements in S� For any x� �� x� � �N ��

jProbh�H �h�x�� � h�x���� �

jDj j �
X
b�D

jProbh�H�h�x�� � b � h�x�� � b�� �

jDj� j � jDj


Therefore�

Probh�H�h�x�� � h�x��� � �

jDj ! jDj
 �
�

jDj ! jDj
��

jDj� �
�

jDj �� ! ���

Thus� combining this with lemma ��� we get�

Lemma ����� ��SZ��	 and independently �GW��	� There is some constant c � �

s�t� for any m �  �log�n�� there is an explicit �m� � � �m�
� extractor Am �

�n� � �t � m� �� �m� � cm��

Definition ��� Denote the constant c in lemma ����� by ctiny�

Notice that this extractor is optimal up to a constant factor whenm � $�log�n���

I�e�� it operates best on the hardest random sources�

�



����� Extracting Randomness From Block�wise Sources

The extractor presented in the previous section invests m truly random bits to

extract  �m� additional random bits� This is �ne for sources with m � $�log�n��

min	entropy� but is far too much when m is much larger�

Next we present a novel idea initiated by Zuckerman� using the randomness in

the defective source to further extract more and more randomness�

Imagine that you sit in your parked car and you want to start the engine� There

is a lot of fuel and energy down there� if only you could use it� So� what do you do�

You use a battery that starts the engine which then supplies the energy not only to

keep the engine running� but also to get moving� As the process goes on� the fuel

that is burnt supplies a larger and larger amount of energy� yet the whole process

was triggered by the feeble powers of a battery�

Unfortunately� this nice idea does not work directly for arbitrary random sources�

In fact� that is the reason for most of our work� However� for a special class of random

sources� which we call block	wise sources� it does work in a very elegant way�

Let us demonstrate the idea on two blocks�

De	nition ��� A random variable X � X� � X� is a �� �m��m��� �� block�wise

source� if

� X� is � close to some W with H��W � 	 m�

� Call x� �good� if �X� j X� � x�� is � close to some W with H��W � 	 m��

Then� Probx��X��x�is not �good�� � ��

Informally� for most x�� H��X� j X� � x�� 	 m��

��



Now� we present the algorithm extracting randomness from such sources� when

m� � ctinym��

Algorithm ��� Let Am�� Am� be the extractors from lemma ������ De
ne the

extractor E to be E�x� � x�� y� def
� Am��x� � Am��x�� y���

We start with m� truly random bits� We expect the second block to contain m�

min	entropy� and therefore by using the extractor Am� we expect to be left with

ctiny �m� � m� quasi	random bits� Then we use the randomness just extracted to

further extract randomness from X��

Lemma ����� �NZ�� SZ��	 E is an extractor�

Proof�

For the proof we need the following basic lemma�

Lemma ����� �NZ�	 Let X and Y be two correlated random variables� Let B

be a distribution� and call an x �bad� if �Y j X � x� is not � close to B� If

Probx�X�x is bad� � � then X � Y is �! � close to X �B�

Now� since X is a block	wise source� for most pre�xes x�� H��X� j X� � x�� 	
m�� Therefore� for most pre�xes x�� the distribution of �Am��x�� y� j X� � x�� is ��

close to uniform� Thus� it must be the case that X� �Am��x�� y� is �� close to the

distribution X� � U �

Hence� applying Am� on x� with the random string Am��x�� y� is only �� far from

applying Am� on x� with a truly random string� Therefore� Am��x�� Am��x�� y�� is

�� ! �� close to uniform�

Obviously� if we have more blocks we can continue the process�

��



De	nition ��� Let X � X� � X� � � � � Xk� We say x���i��� is a �good� pre
x if

�Xi j X���i��� � x���i���� is � close to some distribution W with H��W � 	 mi�

We say X is a �k� �m�� � � � �mk�� �� block�wise source� if for any � � i � k�

Probx���i���
�x���i��� is not good� � �� If m� � � � � � mk � m we say X is a �k�m� ��

block�wise source�

Lemma ����� �SZ��	 Let X � X� �X� � � � �Xk be a �k� �m�� � � � �mk�� �� block�wise

source� where mk �  �log�n�� and mi�� � ctinymi� Then there is an explicit �block�

wise� extractor BE�X�U�� using mk truly random bits and extracting  �%k
i��mi�

quasi�random bits with O����mk � ! k�� error�

Finally� we give a short discussion of the historical development of these results�

Santha and Vazirani �SV��� considered a source over n bits with the property that

each bit� even conditioned on the history� has �enough� randomness in it� This was

generalized by Chor and Goldreich �CG��� to a source with l blocks� each containing�

even conditioned on the history� enough randomness� This is almost the same as

de�nition ���� with the following changes�

� We allow the blocks to have di�erent lengths�

� We allow the blocks to have di�erent amount of randomness� mi�

� Instead of requiring that each block has mi randomness� we only require that

each block is close to a distribution with that amount of randomness�

However� all these changes are minor and almost every technique that works for

�Chor	Goldreich� sources� will also work for block	wise sources�

Chor and Goldreich presented an extractor for �their� block	wise sources� that

used one random string y to extract randomness from all the di�erent blocks� This

�



technique was later improved by Nisan and Zuckerman �NZ���� where the extracted

randomness was used to further extract more randomness� as is done in algorithm

���� Finally� Srinivasan and Zuckerman plugged the improved basic extractor of

lemma ��� into algorithm ��� to get an almost optimal block	wise extractor�
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����� Converting an Arbitrary Random Source to a Block�

wise Source

In the previous section we saw how to extract randomness from block	wise sources�

Now we check whether given a source� we can partition it into blocks that form a

block	wise source� Suppose X is a distribution over f�� �gn and that H��X� 	 m �

m�!m�!s� Is there a partition of x into two blocksX � X��X� s�t� H��X�� � m��

and for most strings x�� H��X� j X� � x�� � m��

Unfortunately� the answer is no� Take for example the following distribution X

which chooses a string uniformly from the set

f � � f�� �gm � �n�m�� � � � �n�m�� � f�� �gm g

and assume n �� m� Assume there is a good splitting point at location i� Then� to

guarantee that H��X�� 	 m�� it must be the case that i 	 n �m� � s� But then

for half of the strings x�� H��X� j X� � x�� � ��

This example illustrates both the di�culty and the way to overcome it� Although

there is no one good splitting point� each string has a good splitting point� In the

next sections we explain this� and show two methods using this idea to convert an

arbitrary source to a block	wise source�

Block Extraction

In �NZ��� Nisan and Zuckerman showed how to get a block	wise source from a

general random source� Let us say a bit is �surprising� if we expected it to be

di�erent� For example� if given the history we have probability of ��� to see ��� and

of ��� to see ���� then when we see a ��� we are surprised� The main idea is that
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if X has high min	entropy� then for most strings x� there are many bits in x that

surprised us �conditioned on their pre�x�� Of course� we do not know which bits are

surprising and which are not� but by choosing bits pairwise independently we can�

with high probability� get a block with many �surprising� bits� and this block� with

high probability� has high min	entropy�

Next� we state the Nisan and Zuckerman lemma somewhat more formally� We

do not prove the lemma� and the interested reader is referred to the original paper

�NZ���� Let X be a random source over f�� �gn� Nisan and Zuckerman construct a
function Bl�x� y� which gets x � X and a short random string y� and returns l bits�

s�t��

Lemma ����� �NZ�� SZ��	 If H��X� 	 �n� then B�X�U� is ��l������ close to a

distribution W with H��W � 	  � ��l
log������ 	  � ��l

log�n���

Now we use the above lemma to convert any random source into a block	wise

source� Let us start with a general random source X with m min	entropy� We

can extract� pairwise independently� a block B� of length l �� m �and therefore

with high probability it has  �l m
n�log�n�� min	entropy�� For most values b� of B��

H��X j B� � b�� 	 H��X��O�jB�j� � m�O�l�� hence we can extract one more

block B�� which has high min	entropy even conditioned on the history b�� Actually�

as long as jB�j ! � � � ! jBkj �� m� we can extract another block� which also has

high min	entropy even conditioned on the history� Certainly we can do that log�n�

times�

Thus we get�

Lemma ����� �NZ�� SZ��	 Let X be a distribution on f�� �gn with H��X� 	
n������ for some � � �� De
ne bi � Bl�x� yi� where l � n��� and � � i � k �

��



O�log�n��� Then� B � B� � � � � �Bk is an �k� n�� n������ block�wise source�

Notice also the inherent limitation of this method� If we start with less than

n��� min	entropy� we need the �rst block length to be at least n���� or else we do

not expect even a single random bit� But then it may happen that the �rst block

�stole� all the randomness present in X� and so the second block� given the history�

has no randomness at all� Thus� this method seems to work only for sources having

at least n��� min	entropy� In section �� we will use new tools to strengthen this

method�

The SSZ dispersers

Srinivasan� Saks and Zhou �SSZ��� showed that randomness can be extracted� in a

weak sense� from random sources having n� min	entropy� for any constant � � ��

Thus� the SSZ method breaks the n��� bound imposed by the block extraction

method� Here we are not interested in the result itself� but rather in the method�

Next� we are going to present a simpli�ed version of the SSZ method� in a rather

informal way�

Following an idea in �NZ���� Srinivasan� Saks and Zhou look at speci�c strings�

They show that for most strings x� there is a good partition of x to log�n� blocks� s�t�

for all i the distribution of Xi given the history x���i��� contains a lot of randomness�

Let us say that x �likes� the partition �� if � is good for x� Then� Srinivasan� Saks

and Zhou show that there exists a family of partitions� whose size k is polynomial

in n� s�t� most strings like some partition from the family�

This� they claim� can be used as follows� partition the universe f�� �gn to k ! �
classes� each class containing only strings that like the i�th partition �and one class
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containing all strings that like no partition�� All the small classes can be ignored�

since they are small� All the large classes are block	wise sources� when we add the

condition that we look only at strings that belong to them� We already know how to

deal with block	wise sources� Thus� when we look at the blocks extracted from each

class� with high probability one of the blocks is uniform� given the right conditioning�

Saks� Srinivasan and Zhou use this property to achieve some weak randomness�

In the following sections we are going to study and develop these ideas� By

this� we will achieve new and more general results� and we will also be able to put

the Srinivasan� Saks and Zhou result in a new context� shedding new light on the

method�
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����� Summary

We saw the fundamental �hash� extractor� using m truly random bits to extract

some additional  �m� random bits out of m min	entropy� We saw the basic idea of

using extracted randomness to further extract more randomness� and saw this work

on a special class of random random sources which we called block	wise sources�

Finally� we saw two methods to convert an arbitrary source to a block	wise source�

This results in the following extractors�

Lemma ������ �SZ��	 � Let m�n� 	 n����� for some constant � � �� For any �

there is an explicit �m�n�� �� extractor E � �n� � �O�log�n � log��
�
��� �� �m

��n�
n
��

Lemma ������ �Zuc��	 Let m�n� � $�n�� For any � there is an explicit �m�n�� ��

extractor E � �n�� �O�log�n� ! log��
�
��� �� � �n���

Lemma ������ �SSZ��	 Let m�n� 	 n� for some constant � � �� then there is

some constant � � � and an explicit �n�m�n�� O�log�n��� n�� �
	�� disperser� �

�The parameters here are simpli�ed� The real parameters appearing in 	SZ
�� are somewhat

better�

�We did not de�ne what a disperser is� The reader is referred to 	Nis
�� for a survey�
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��� An Extractor For Any Min	Entropy


����� An Informal Description

First we notice that for any source X and most strings x � X � there is some

splitting point � � i � n that splits x into x� � x� s�t� both Pr�X� � x�� and

Pr�X� � x� j X� � x�� are small�

Lemma ����� Let X be a distribution over f�� �gn with H��X� 	 m� ! m� ! s�

Call an x � X �good�� if there is some i �dependent on x� s�t�

� Pr�X���i� � x���i�� � �m� and

� Pr�X�i���n� � x�i���n� j X���i� � x���i�� � �m�

Then Prx�X �x is not good� � �s�

Proof� Let x � X� Let i be the �rst location splitting x into two blocks x���i��x�i���n�
s�t�

Pr�X���i� � x���i�� � �m� ����

Since i is the �rst such location�

Pr�X���i��� � x���i���� 	 �m� ���

Since H��X� 	 m� !m� ! s

Pr�X���n� � x���n�� � ��m��m��s� ����
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Putting this together we get�

Pr�X�i���n� � x�i���n� j X���i� � x���i�� �
Pr�X���n� � x���n��

Pr�X���i� � x���i��

�
Pr�X���n� � x���n��

Pr�X���i��� � x���i���� � Pr�Xi � xi j X���i��� � x���i����

� ��m��m��s�

�m� � Pr�Xi � xi j X���i��� � x���i����

Hence� for all strings x � X s�t� Pr�Xi � xi j X���i��� � x���i���� 	 �s� it holds that

Pr�X�i���n� � x�i���n� j X���i� � x���i�� � �m� � and x is good� In particular

Pr�x is not good� � �s�

The crucial point is that there are only n possible splitting points� If we want to

split x���n� into k blocks� there are only n
k sets of splitting points� and most strings �all

but k � �s� have a good splitting set� Therefore� we can split the universe f�� �gn to
nk!� classes� each class containing strings that are good for one particular splitting

set� and one for all strings that do not have a good splitting set�

Suppose we are only given inputs that belong to a speci�c class S� Then� what

we actually see is an input from a block	wise distribution� with the known partition

S� Therefore� we know how to extract randomness from it� It is true that given a

string x� we have no idea what is the right class �or partition set� for it� but since

there are so few classes� we can try all of them� This gives us nk output strings� one

of which is random�

Let us de�ne more precisely the type of source we achieve� We have d � nk

distributions X�� � � � �Xd� and we know there is some selector function Y � Y �x� �

that assigns each good string to a class with a right splitting set�� s�t� �Xi j Y �

i� � U � So let us de�ne�
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De	nition ���� X � X��� � ��Xd is a d�block �m� �� �� somewhere random source� if

each Xi is a random variable over f�� �gm� and there is a random variable Y � Y �X�

over ����d� s�t��

� For any i � ����d�� d��XijY � i�� Um� � ��

� Prob�Y � �� � ��

We also say that Y is an �m� �� �� selector for X�

The following lemma �proved in appendix A��� shows that any d�block �m� �� ��

somewhere random source� is close to a source with m min	entropy�

Lemma ����� ��� Any �m� �� �� somewhere random source X is � ! � close to an

�m� �� ���somewhere random source X �� ��� For any �m� �� �� somewhere random

source X� H��X� 	 m�

Thus� any extractor that extracts randomness from sources having m min	

entropy� also extracts randomness from d�block �m� �� �� somewhere random source�

However� d�block �m� �� �� somewhere random source� have an additional structure�

and we will see �section ����� that this nice and simple structure makes it much

easier to extract randomness from such sources� Let us call an extractor working

only on somewhere random sources� a somewhere random merger�

De	nition ��� M � �m�d � �t� �� �m�� is an epsilon�somewhere random merger�

if for any d�block �m� �� �� somewhere random source X� the distribution of M�x� y�

when choosing x � X and y � Ut� is � close to Um� �
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De	nition ���� We sayM � fMng � �m�d��t� �� �m�� is an explicit � �somewhere

random merger� if there is a Turing machine that given x � f�� �gdm and y � f�� �gt
outputs Mn�x� y� in polynomial time in dm! t�

We will see that it is not hard to build e�cient somewhere random mergers�

Building on that� our extractor does the following�

�� Try all nk partitions of x into k � $�log�n�� blocks�

� For each partition set i� extract the randomness as from a block	wise source�

to get a random string Bi�

�� The distributions B�� � � � � Bk form a somewhere random source� Use a merger

to merge the randomness in the somewhere random sourceinto a single almost

uniform distribution�

In the coming sections we rigorously develop the above ideas� The formal pre	

sentation di�ers from the informal ideas above in two ways� �rst� the formal con	

struction is done in polynomial time as opposed to time nO�log�n�� in the scheme

above� Second� in the formal description we will give full formal proofs� and thus

we will have to specify all the details and hard work needed to implement the ideas

above� To ease the reading� we advise the reader to keep this intuitive and informal

construction in mind�
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����� Composing Two Extractors

We already know how to extract randomness from sources X that can be �broken�

into blocks X� � X�� s�t� X� and �X� j X� � x�� contain a lot of randomness� We

would like to use this for extracting randomness from arbitrary sources� We have

already seen that even though not all random sources have such a splitting point�

most strings do have such a splitting point� The algorithm we suggest tries all

possible n splitting points� and then merges the n results�

To be more precise� given an input string x�

�� split x into two consecutive strings x� � x�� s�t� the splitting point is good for
x

� use E� to extract randomness from x�

�� use E� with the extracted randomness to further extract randomness from x�

Obviously� given a string x� we do not know what is the right splitting point� so

we try all jxj � n possible ones� This gives us a somewhere random source with n

blocks� that can be merged into a single quasi	random string by a good somewhere

random merger�

Algorithm ���� Suppose E� � �n���t�� �� �t�� is an �m�� ���extractor� E� � �n��
�t�� �� �t�� is an �m�� ���extractor� and M � �t��n � ���� �� �o�� is a ��somewhere

random merger� De
ne the function E�

M� E� as follows� Given a � f�� �gn� choose
r� uniformly from f�� �gt� � and choose r� uniformly from f�� �g�� �

�� Let qi � E��a�i�n�� r�� and zi � E��a���i���� qi�� for i � �� � � � � n�
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�� Let E� � E� � z� � � � � � zn� and E�

M� E� � M�E� � E�� r���

Theorem � Suppose E� � �n� � �t�� �� �t�� is an �m�� ���extractor� E� � �n� �
�t�� �� �t�� is an �m�� ���extractor� and M � �t��n � ���� �� �o�� is a ��somewhere

random merger� Then for every safety parameter s � �� E�

M� E� � �n���t� ! ��� ��
�o�� is an �m� !m� ! s� � ! � ! � ! �n

�s����extractor�

Proof� To prove this� assume H��X� 	 m� !m� ! s�

We will show that E��E� is an �t�� �! �� �n
�s����somewhere random source�

Thus� by lemma ��� E� � E� is � ! �� �n�s����close to a �t�� �� ���somewhere

random source� Since M is a merger� by de�nition ��� we get that E�X�U� �

M�E� � E�� is quasi	random as required�

Denote by Qi and Zi the random variables with values qi and zi respectively�

Also� let �� � �s��� �� � ��� and �� � ��� We de�ne a selector for Z � Z� �
� � � � Zn � E� � E� in two phases� �rst we de�ne a function f which is almost the

selector but has few �bad� values� then we correct f to obtain the selector Y �

Definition ���� De
ne f�w� to be the last i s�t Prob�X�i�n� � w�i�n� j X���i��� �

w���i���� � ��� � ��� � �m� �

Definition ��� De
ne w to be �bad� if f�w� � i and�

�� Probx�X�f�x� � i� � ��� or�

�� Probx�X�f�x� � i j x���i��� � w���i���� � ��� or�

� Probx�X�Xi � wi j x���i��� � w���i���� � ��
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We denote by B the set of all bad w� We denote by Bi �i � �� � �� the set of all

w satisfying condition �i��

Definition ���� Let Y be the random variable obtained by taking the input a and

letting Y � Y �a�� where�

Y �w� �

���
��
� w is bad

f�w� otherwise

It holds that Prob�w is bad� � n��� ! �� ! ��� � �n � �s�� � the proof is easy� see
appendix A���� We complete the proof by showing that �Zi j Y � i� is �! ��close

to uniform�

Claim ����� If Prob�Y � i j X���i��� � w���i���� � � then H��X�i�n� j Y �

i and X���i��� � w���i���� 	 m�

Therefore� for any such w���i���� �Qi j Y � i and X���i��� � w���i���� is ��close

to random �since E� is an extractor�� Hence by lemma ���� the distribution

�X���i��� j Y � i� � �Qi j Y � i and X���i��� � w���i���� is ��close to the distri	

bution �X���i��� j Y � i�� U � But�

Claim ����� H��X���i��� j Y � i� 	 m��

Therefore� using the extractor E� we get that �Zi j Y � i� is � ! ��close to

uniform�

Now we prove claims ���� and ����
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Proof� �of claim �����

For any w s�t� Y �w� � i�

Prob�X�i�n� � w�i�n�jX���i��� � w���i���� Y �x� � i� �

Prob� X�i�n��w�i�n� j X���i����w���i��� �

Prob�Y �x��i j X���i����w���i��� �
�

���������
�m�

Prob�Y �x��i j X���i����w���i��� �
�

����������m�

�����
� �m�

The �rst line is true since Prob�A j B� � Prob�A�
Prob�B�

� the second line since f�w� � i�

and the third follows from Claim A�����

Proof� �of claim ����

Take any w���i��� that can be extended to some w with Y �w� � i�

Prob�X���i��� � w���i���� �

Prob�X���n� � w���n��

Prob�X�i�n� � w�i�n� j X���i��� � w���i����
�

Prob�X���n� � w���n��

Prob�Xi � wijX���i����Prob�X�i���n� � w�i���n�jX���i��

However�

� Prob�X�i���n� � w�i���n�jX���i�� 	 ��� � ����m�

� Prob�Xi � wi j X���i��� � w���i���� 	 ��

� Prob�X���n� � w���n�� � ��m��m��s�
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The �rst line is true because f�w� � i� the second because w �� B�� and the third

because H��X� 	 m� !m� ! s� Thus�

Prob�X���i��� � w���i���� � �m��s

�� � ��� � ���
����

Therefore�

Prob�X���i��� � w���i��� j Y �x� � i� �

Prob� X���i����w���i����

Prob�Y �x��i�
�

��m��s

�����������Prob�Y �x��i�
�

��m��s

�� �������������������
� �m�

The �rst line is true because Prob�A j B� � Prob�A�
Prob�B�� The second follows from

Eq� ����� The third follows from Claim �A�����

��



����� Composing Many Extractors

Now we de�ne composition of many extractors by�

De	nition ���� Suppose Ei � �n�� �ti� �� �ti�� ! si��� is an �mi� i��extractor� for

i � �� � � � � k� si 	 � and s� � �� Suppose Mi � �ti�� ! si���n � ��i� �� �ti��� is a &i

�somewhere random merger� for any i � � � � � k� �� We de
ne the function Ek

Mk���
Ek��

Mk��� � � �E�

M�� E� by induction to equal Ek

Mk��� �Ek��

Mk��� � � �E�

M�� E���

Theorem � Suppose Ei�Mi are as above� then for any safety parameter s � ��

E � Ek

Mk��� Ek��

Mk��� � � �E�

M�� E�� E � �n�� �t� ! %k��
i�� �i� �� �tk��� is an

�%k
i��mi ! �k � ��s�%k

i��i ! %k��
i��

&i ! �k � ��n�s����� �extractor� If Ei�Mi are

explicit� then so is E�

Proof�

Correctness �

By induction on k� For k �  this follows from theorem �� For larger k�s this

is a straight forward combination of the induction hypothesis and Theorem ��

Running time �

We compute Ek

Mk��� Ek��

Mk��� � � � E�

M�� E� using a dynamic programming

procedure�

�� Given x � X � choose y uniformly from f�� �gt� and yj uniformly from f�� �g�j �
for j � �� � � � � k�

��



� Next� we compute the matrixM where

M �j� i� � �Ej

Mj��� Ej��

Mj��� � � � E�

M�� E���x�i�n�� y � y� � � � � � yj�

for � � i � n and � � j � k�

The entries of the �rst row ofM �M ��� i� can be �lled by evaluating E��x�i�n�� y��

Suppose we know how to �ll the j�th row ofM � We show how to �ll the j!��th

row�

� Denote ql �M �j� l� for l � i� � � � � n� and let zl � Ej���x�i�l���� ql��

� Set M �j ! �� i� �Mj�zi � � � � zn� yj��

By the de�nition of composition M �j� i� has the correct value� and clearly� the

computation takes polynomial time in n�

Remark ���� It may appear that left associativity is more e�cient in terms of the

number of truly random bits used� However� we know how to implement right asso�

ciativity composition in polynomial time �using a dynamic programming procedure�

and we do not know of such an algorithm for left associativity composition�

��



����� Assuming Explicit Somewhere Random Mergers

Assume for every m 	 &m we have a good somewhere random merger M � Then we

can let E � Am

M� � � � Ab� �m

M� Ab �m

M� A �m� where Ai is the extractor of lemma ���

and b is some constant� � � b � ctiny� to get an extractor that extracts  �m� bits

from sources having m min	entropy� Thus� good somewhere random mergers imply

good extractors�

Lemma ����� Suppose for any &m � m � &&m there is an explicit � somewhere

random mergerMm � �m�n � �t� �� �' �m�� where ' is a constant and �
ctiny

�

' � �� Then� for any &m � m � &&m there is an explicit �m� poly�n� � �� extractor
E � �n�� �O� &m � log��

�
� ! log�n� � t�� �� � �m���

Proof� Let b � ctiny � '� Clearly b is a constant� and � � b � ctiny� De�ne

mi � bi � &m � log��
�
�� and let l be the �rst integer s�t� %l

i��mi � m
�
�

De�ne E � El

Ml��� El�� � � �
M�� E�� where�

� Ei � �n� � �mi� �� �ctiny �mi� is the �mi� �mi�
��extractor Ami from lemma

���

� Mi � �ctiny �mi���
n��t� �� �b �mi��� is the ���somewhere random merger given

in the hypothesis of the lemma�

Now we use Theorem  with ti � mi and si � �ctiny � b�mi�� �and therefore

ti!si � ctiny �mi���� and we also take s �
m
�l � By Theorem � E � �n���t� ! %l��

i��t� ��
�tl��� is an �%

l
i��mi!�l���s�%l

i��
�m��
!%l��

i���!�l���n�s����� �extractor� Since
l � O�log�n�� and � 	 �s�� �otherwise the result is trivial�� E is an extractor as

required� Since Ai�Mi are explicit� so is E�

��



Just to demonstrate the above� assume for every m there is an explicit

Mm � �m�n � �polylog�n� � log��� �� �� �' �m� poly�n� � � somewhere random merger�

Then notice that by lemma ����� this implies an explicit �m� poly�n� � ���extractor
E � �n�� �polylog�n� � log��

�
�� �� � �m��� for any m�

��



����	 Explicit Somewhere Random Mergers

In this section we construct explicit somewhere random mergers� We observe that a

�block merger can be obtained from the previously designed extractors of �NZ���

SZ���� Once such a merger is obtained� any number of blocks can be merged in a

binary	tree fashion�

A �
block somewhere random merger

A d�block �m� �� ���somewhere random source X� can be viewed intuitively as a

source composed of d strings of length m� with a selector function that� for all but

an � fraction of the inputs� can �nd a block that is � quasi	random� Indeed� by

lemma ��� we know that X is �! � close to a distribution with m min	entropy�

Thus� any �m� ���extractor E � �m� � �t� �� �m��� extracts randomness from

any source X with H��X� 	 m� and in particular it extracts randomness from

any �m� �� �� somewhere random source� Therefore� by de�nition� any such E �

�m�� � �t� �� �m�� is an ��somewhere random merger�

Corollary ����� Any �m� ���extractor E � �m� � �t� �� �m�� �which can also be

viewed as E � �m�� � �t� �� �m��� is an ��somewhere random merger�

A d�block somewhere random merger

Given a d�block somewhere random source� we merge the blocks in pairs in a tree

like fashion� resulting in a single block� We show that after each level of merges

we still have a somewhere random source� and thus the resulting single block is

necessarily quasi	random�

�



Algorithm ��� Assume we can build an ��m� somewhere random mergerE �

�m��� �t�m�� �� �m� k�m��� We build Ml � �m��
l � �l � t�m�� �� �m� l � k�m��� by

induction on l�

Input � xl � xl� � � � � xl�l� where each xli � f�� �gm�

Output � Let t � t� � � � � tl� where tj is chosen uniformly from f�� �gt�m�� If l � �

output xl� otherwise�

�� Let xl��i � E�xl�i�� � xl�i � tl� � for i � �� � � � � l���
�� Let the output be Ml���x

l��
� � � � � xl���l�� � t� � � � � tl����

Theorem � Assume for every m� Em � �m�� � �t�m�� �� �m� k�m�� is an explicit

��m� somewhere random merger� for some monotone functions t� k and ���� Then

Ml � �m��
l� �%l

j��t�m�� �� �m� l � k�m�� is an explicit l � ��m� l �k�m�� somewhere

random merger�

Proof� For j � l� � � � � � denote by Zj the random variable whose value is xj �

xj� � � � � xj�j � where the input x is chosen according to X� and t is uniform� Notice

that Z l is the distribution X � and Z� is the distribution of the output�

The theorem follows immediately from the following claim�

Claim ����� Denote mj � m��l�j�k�m�� If X is an �ml� �� �� somewhere random

source� then for any � � i � j� d� �Zj
i j Y � �l�j�i � �� ! �� l�ji�� � Umj � �

�l � j� � ��m�

Proof�

��



The proof is by downward induction on j� The basis j � l simply says that for

any i � d��Xi j Y � i� � Um � � �� which is exactly the hypothesis� Suppose it is

true for j� we prove it for j � �� By the induction hypothesis�

� d� �Zj
�i�� j Y � �l�j�i� � ! �� l�j �i� ���� � Umj � � �l � j���mj�

� d� �Zj
�i j Y � �l�j�i� �� ! �� l�ji�� � Umj � � �l � j� � ��mj�

In appendix A we prove�

Lemma ����� Let A�B and Y be any random variables� Suppose that d��A j Y �
S��� Um� � � and d��B j Y � S��� Um� � � for some disjoint sets S� and S�� Then

�A �B j Y � S� � S�� is ��close to some X with H��X� 	 m�

Therefore�

� �Zj
�i�� �Zj

�i j Y � �l�j���i� �� ! �� l�j��i�� is �l� j� � ��mj� close to some W

with H��W � 	 mj�

� Since Zj��
i � E�Zj

�i�� � Zj
�i � tj�� it follows that �Z

j��
i j Y � �l�j���i� �� !

�� l�j��i�� is �l� j� � ��m� close to Emj �x� tk� where x � X and H��X� 	 mj�

Therefore� it is �l� j� � ��mj� ! ��mj� close to random� as required�

Remark ��� Notice that we use the same random string tj for all merges occurring

in the j�th layer� and that this is possible because in a somewhere random source we

do not care about dependencies between di�erent blocks� Also notice that the error

is additive in the depth of the tree of merges �i�e� in l�� rather than in the size of

the tree �l��

��



����
 Putting It Together

What we need is good somewhere random mergers for any m� We are going to

achieve this by building good 	block somewhere randommergers and using Theorem

�� Thus we need extractors working on sources with very high min	entropy� and

losing only a very small fraction of the min	entropy present in the random source�

Fortunately� a simple idea due to Wigderson and Zuckerman �WZ��� su�ces�

More of The Same

Suppose we have an extractor E that extracts randomness from any source having

at least m min	entropy� How much randomness can we extract from sources having

M min	entropy when M �� m �

The following algorithm is implicit in �WZ���� use the same extractor E many

times over the same string x� each time with a fresh truly random string ri� until you

get M �m output bits� The idea is that as long as jE�x� r�� � � � � � E�x� rk�j is less
thenM�m� with high probability �X j E�x� r��� � � ��E�x� rk�� still contains m min	

entropy� and therefore we can use the extractor E to further extract randomness from

it� Thus� we have the following two lemmas� that are proven in detail in appendix

A���

Lemma ����� Suppose that for some m there is an explicit �m� ���extractor Em �

�n� � �t� �� �m��� Then� for any M 	 m� and any safety parameter s � �� there is

an explicit �M�k�� ! �s���extractor E � �n� � �kt� �� �minfkm��M �m� sg��

Lemma ����� Suppose that for any m 	 &m there is an explicit �m� ��n���extractor

Em � �n� � �t�n�� �� � m
f�n��� Then� for any m� there is an explicit �m� log�n��� !

�t�n����extractor E � �n�� �O�f�n�log�n�t�n��� �� �m� &m��

��



Corollary ����� Suppose &m � &m�n� is a function s�t� for every m 	 &m�n�

there is an explicit � somewhere random merger M � �m�n � �t� �� �' �m��
where �

ctiny
� ' � �� Then for any m there is an explicit �m� poly�n� � ���

E � �n�� �O� &m � log�n� � log��
�
� ! log��n� � t�� �� �m��

Proof� The lemma follows from lemma ���� using lemma �����

Mergers That Do Not Lose Much�

The �SZ��� extractor of lemma ���� works for any source with H��X� 	 n������

Thus� using lemma ���� by repeatedly using the �SZ��� extractor� we can extract at

least n
�
�n����� quasi	random bits from a source having H��X� 	 n

�
� Thus� we have

a �merger that does not lose much randomness in the merging process� Applying

Theorem � we get a good n�merger� Thus�

Lemma ����� Let b � � be a constant and suppose f � f�m� � f�m�n�� is a

function s�t� f�m� � �
p
m and for every m 	 m��n� � f�m� 	 b � log�n��

Then for every m 	 m� there is an explicit log�n� � poly�m� � � somewhere random

mergerM � �m�n � �log�n� � polylog�m� � f��m� � log��
�
�� �� �m� m

b
��

Proof�

� By lemma ���� there is an explicit � m
f�m� � �� extractor E� � �m� �

�O�log�m � log��
�
��� �� � m

f��m��� extractor�

� By lemma ���� there is an explicit �m� poly�m� � �� extractor E� � �m� �
�O�f��m� � log�m � log��

�
��� �� �m� m

f�m���

��



� By Theorem � there is an explicit log�n� � poly�m� � � somewhere

random mergerM� � �m�n � �O�log�n� � polylog�m� � f��m� � log��
�
�� ��

�m� log�n� � m
f�m�

�� Since m
f�m�

� m
b�log�n�

for any m 	 m� � we have that

log�n� � m
f�m�

� m
b
�

Corollary ������ For every m 	 
p

log�n�� there is an � somewhere random merger

M �Mm � �m�n � �polylog�n� � log��� �� �� � �m���

Proof� Take f�m� � logdm for some constant d � � For any constant b�

m 	 
p

log�n� and n large enough� logdm 	 b � log�n�� and the corollary follows
lemma �����

Notice that Theorem � and corollary ����� take advantage of the simple structure

of somewhere random sources� giving us an explicit somewhere random merger that

works even for sources with very small min	entropy to which the �SZ��� extractor of

lemma ���� does not apply�

Extractors That Work For High Min
Entropy

Corollary ����� asserts the existence of good mergers form 	 
p

log�n�� and therefore

plugging this into corollary ���� we get�

Corollary ������ For every m there is an �m� poly�n� � �� extractor Bm � �n� �
�O�

p
log�n� � polylog�n� � log��

�
��� �� �m��

The extractor B in corollary ����� uses O�
p

log�n� � polylog�n� � log��
�
�� truly

random bits to extract all the randomness in the given source� Although O�
p

log�n� �

��



polylog�n� � log��
�
�� is quite a large amount of truly random bits� we can use the

�SZ��� extractor to extract n��� bits from n��� min	entropy� and then use these

n��� �� O�
p

log�n� �polylog�n��log��
�
�� bits to further extract all the remaining min	

entropy� More precisely� if B is the extractor in corollary ������ Esz the extractor

from lemma ���� and M is the merger from corollary ������ then E � B
M� Esz

extracts  �m� bits from sources having m 	 n��� min	entropy� using only polylog�n�

truly random bits� That is� we get the following lemma�

Lemma ������ Let � 	 �n
�
for some constant � � �� There is some constant

� � � s�t� for every m 	 n� there is an explicit �m� poly�n� � �� extractor E �

�n� � �polylog�n� � log��
�
�� �� � �m���

Proof� Choose � � ���
�
and � � � � �

�
� Let the extractor E be E � Bm

M� Esz

where

� Esz � �n� � �O�log�n � log��
�
��� �� �n����� is the �n�� �� �extractor of lemma

�����

� Bm is the extractor from corollary ������

� M is the merger from corollary ������

Since n���� � n� � n� �  �
p

log�n� � log��
�
��� E � Bm

M� Esz is well	de�ned�

By theorem �� for every m� E � �n� � �polylog�n� � log��
�
�� �� � �m�� is an explicit

�m ! n� ! n� � poly�n� � ���extractor� In particular if H��X� �  �n�� we extract

 �H��X�� as required�

��



The Final Result

Now that we know how to extract all the randomness from sources having  �n��

min	entropy with only polylog�n� truly random bits� by lemmas ���� and Theorem

� we have good somewhere random mergers� for every m� Thus by corollary ����

we have good extractors for every m�

Theorem � For every constant � � � � � 	 �n
�
� and every m � m�n� there is an

explicit �m� ���extractor E � �n� � �polylog�n� � log��
�
�� �� �m��

Proof�

� By lemma ����� lemma ���� implies an explicit �n� poly�n� � �� extractor
E� � �n�� �polylog�n� � log��� �� �� �n� n���

� There is some constant d �that depends only on �� s�t� for every logdn �
m � n� log�n� �m� � m

�c � where &c is some constant s�t�
�

ctiny
� � � �

�c � � �e�g�

&c � �ctiny
ctiny��

�� Therefore by Theorem �� for everym there is an explicit poly�n���
somewhere random merger M � �m�n � �polylog�n� � log��

�
�� �� �m� m

�c ��

� By corollary����� this implies an explicit �m� poly�n� � ���extractor Em �

�n� � �polylog�n� � log��
�
�� �� �m�� for any m� Plugging �� � �

poly�n� � gives

the theorem�

��



��� An Extractor Using Less Truly Random Bits

In this section we build our second extractor�

Theorem � For every constant k and � � � there is some constant � � � and

an �n�� �
n
� extractor D � �n� � �O�log�n�log�k�n�� �� � �n���� where log�k�n �

loglog � � � log� �z �
k

n�

The extractor uses two main building blocks� The �rst shows how to reduce

the number of truly random bits needed for sources having n��� min	entropy� The

second shows how to use extractors for n��� min	entropy to achieve extractors for

any n� min	entropy�

Lemma ����� Let f�n� be an arbitrary function� Assume �� � �� �� � � s�t�

there is an �m � n�� n������ extractor E � �n�� �t � log�n� � f�n�� �� �m� �  �n����

Then ��� � �� ��� � � s�t� there is an �n
�
���

�

� � � n������ extractor F � �n� �
�t � O�log�n� � log�f�n���� �� �m� �  �n�

�

���

Lemma ����� Assume

� ��� � �� ��� � � s�t� there exists an �m � n�
�

� n������ extractor E � �n� �
�t � O�log�n� � f�n��� �� �m� �  �n�

�

���

� ���� � �� ���� � � s�t� there exists an �m � n
�
k
���� � n������ extractor F �

�n� � �t � O�log�n� � f�n��� �� �m� �  �n�
��

���

Then �� � ���� � � s�t� there exists an �m � n
�

k	���� n������ extractor D �

�n� � �t � O�log�n� � f�n��� �� �m� �  �n����

��



Using these two lemmas we can prove Theorem ��

Proof� �of Thm ��

We prove the equivalent claim�

Claim� For every constant k and � � � there is some constant � � � and an

�n� � �
n
� extractor D � �n�� �O�log�n� � �log�k�n�c�� �� � �n���� where c is some �xed

constant�

By induction on k� For k � � this follows from Theorem ��

Assume for k� Denote fk���n� � log�k���n� The induction hypothesis says

that �� � �� �� � � s�t� there is an �m � n� � n������ extractor E � �n� �
�t � log�n� � O�fk	��n��� �� �m� �  �n���� extractor�

By lemma ����� ��� � �� ��� � � s�t� there is an �n�����
�

� � � n������ extractor

F � �n�� �t � O�log�n� � fk���n��� �� �m� �  �n�
�

���

All the requirements of lemma ��� are met� and therefore� using lemma ���

repeatedly a constant number of times� we get the desired extractor�

����� A Better Extractor For Sources Having n
����� Min�

entropy

In this section we prove lemma ����� We show that combining the extractor of

Theorem � with the �NZ��� block extractor� we can extract randomness from sources

having n
�
��� min	entropy using less random bits� The idea behind the construction

is the following� since the given source X has H��X� 	 n
�
���

�

� we can use the

�NZ��� block extraction to extract d � O�log�f�n��� blocks that together form a

block	wise source with each block containing some n���� min	entropy� Then� by

��



investing O�log�n�� bits� we can extract some log�n� � ��d� � log�n� � f�n� random
bits� Finally� we can use these bits in the extractor given by the hypothesis of the

lemma� to extract n���� quasi	random bits�

Proof� �of lemma �����

Consider the following algorithm�

Algorithm ���� Fix d � O�log�f�n���� l � n����

Choose y�� � � � � yd � f�� �gO�log�n��� and y � f�� �glog�n��
Given x � X�

�� Extract d blocks b� � BC�x� y��� � � � � bd � BC�x� yd�� where BC is the block

extraction operator of lemma ������

�� compute z � BE�b� � � � bd� y�� where BE is the function extracting randomness

from block�wise sources� from lemma ������

� Finally� let the output be E�b�� z�� where E is the extractor given in the hy�

pothesis�

To prove correctness� notice that�

Claim� Fix y�� � � � � yd arbitrarily� The probability that there exists an � � i �
d� s�t� H��X j B� � b�� � � � � Bi � bi� � n������� is less than ��

Proof� The total number of bits in b� � � � bi is at most d � l �� n��� � log�n�� Denote

Bad � fb� � � � � � bi j Pr�b� � � � bi� � �n���	���g

Then� Pr�Bad� � jBadj � �n���	���
�� n������ Also� for any b� � � � bi �� Bad� and

any x�

Pr�X � x j B� � b�� � � � � Bi � bi� � Pr�X � x�

Pr�B� � b�� � � � � Bi � bi�

�



� �n
���	�

�n���	���

�� �n
���	���

and therefore for most pre�xes�H��X jB� � b�� � � � � Bi � bi� 	 n������� as required�

Therefore� using the block extractor of lemma ��� we get�

Claim� B � B� � � � � �Bd is a �d� n���� n������ block	wise source�

Proof� For almost every pre�x b�� � � � � bi��� H��X j B� � b�� � � � � Bi � bi� 	
n�������� Therefore� by lemma ���� for almost every pre�x b�� � � � � bi��� �Bi j B� �

b�� � � � � Bi�� � bi��� is close to a distribution with at least n��� min	entropy�

Finally�

Claim� B� � Z is n����� close to B� � U

Proof� For most pre�xes b�� �B� � � � � � Bd j B� � b�� is a block	wise source�

Therefore� by lemma ���� �Z j B� � b�� is close to uniform� Hence� the claim

follows by lemma ����

Notice that Z is distributed over log�n� � ��d� � O�log�n� � f�n�� bits� therefore
applying the extractor E� we get  �n�

�

� quasi random bits�

����� An Extractor For n� Min�entropy�

Here we prove lemma ���� We show how given an extractor for sources with n
�
k
��

min	entropy� we can build an extractor for sources with n
�

k	��� min	entropy� The

idea is to extract d blocks� If all the blocks took their �fair share� of randomness�

then they form a block	wise source� and we can treat them as before� If they do not

��



form a block	wise source� then it must be the case that one of the blocks �stole all

the randomness� present in the source� But then this block is muchmore condensed�

and we can extract randomness from it�

Algorithm ��� Fix d � O�f�n�� and l � n��
�

k	� �

Choose r�� � � � � rd uniformly

from f�� �gO�log�n��� r�� r��� uniformly from f�� �gO�log�n��f�n�� and r�� uniformly from

f�� �gO�log�n��

Compute�

� bi � BC�x� ri� for i � �� ��� d� where BC is the block extraction operator of

lemma ������

� b�i � F �bi� r�� for i � �� ��� d � �� where F is given in the hypothesis of the

lemma�

� b�d � E�b�� BE�b�� � � � � bd� r�����

Let the output be F �b�� � � � � � b�d� r�����

Proof� �of lemma �����

Let us denote B � �B�� � � � � Bd� and B� � �B�
�� � � � � B

�
d� � where Bi �B�

i� is the

random variable with the value bi �b�i��� We will soon prove that�

Claim ����� B� is a �d�m � n����� n������ somewhere random source�

Hence� by lemma ���� B� is n�����	close to some B�� that is distributed over

N � md variables and has H��B��� 	 m� Thus� B�� is very �condensed�� i�e�

��



H��B��� 	 m �� N���� Thus� by the hypothesis� F �B�� r���� is n�����	close to the

uniform distribution�

Proof� �of claim �����

First we de�ne the selector function� Given b � B we look for a pre�x i s�t�

the min	entropy of �X j B���i� � b���i�� has dropped signi�cantly� If such an i exists�

and assume i� is the �rst such i� then it means that the i� block �stole� a lot of

randomness� and we let f�b� � i�� If no such i exists� we expect B to be a block	wise

source� and we let f�b� � d�

Now we have to quantify what �dropped signi�cantly� means� Initially�

H��X� 	 n
�

k	��� � Let us denote �� � n
�

k	��� � If no block stole randomness�

at the end we expect H��X j B���d� � b���d�� to be at least
��
�
� So let us de�ne� for

i � �� � � � � d� �� �i � �� � i
�d
��� and for b � B let the selector function f�b� be�

f�b� �

������
�����

i if H��X j B���i� � b���i�� � �i�

and this �rst happens at i

d otherwise

Now we ��x� the selector function to avoid some rare bad cases�

Definition ���� b is bad in either of the following two cases�

� f�b� � i � ����d� �� and Prob�f � i j B���i��� � b���i���� � ��

� f�b� � d and there is some � � i � d s�t� Prob�f � d j B���i��� � b���i���� � �i�

where �d � � � n����� and �i�� � ��i� for i � � � � � � d�

De�ne

��



Y �b� �

���
��
� b is bad

f�b� otherwise

We are going to prove several lemmas� First�

Lemma ����� Pr�Y � �� � d�! %i�i

Second� we will show that

Claim ����� For any � � i � d� �� H��Bi j Y � i� 	 n
�

k	��
�
� �

Therefore� H��BijY � i� 	 n
k

k	�
�
k
� k

k	�
k	�
k

�
� � l

�
k
� k	�

k
�
� � and by assumption� from

such sources F extracts randomness� Hence� �B�
i j Y � i� is n�����	close to uniform�

Finally� we will show that�

Claim ����� �B jY � d� is a �d� n���� n������ block�wise source�

Therefore� with the conditioning that Y � d� B� �BE�B� � � � � �Bd� r��� is

n����� close to B��Ulog�n���
�d�� Hence� using the extractor E� �B
�
d j Y � d� is n�����

close to uniform�

Putting it together� B� is a �d� n����� n������ somewhere random source�

So now we have to prove the above three claims� The proof does not involve any

new idea� and is a straight	forward check that indeed all the necessary things hold�

We �rst need a technical claim which we prove in appendix A���

Claim ����� For any � � i � d�

��



�� For any b���i��� that can be extended to some b with Y �b� � i�

Pr�Y � i j B���i��� � b���i���� � Pr�f � i j B���i��� � b���i���� 	 �

�� For any b���i��� that can be extended to some b with Y �b� � d�

Pr�Y � d j B���i��� � b���i���� 	 �i�� � %d
j�i �j 	 �

We prove claim ���� in appendix A��� Let us now prove claim ����

Proof� �of claim ����

Let � � i � d � �� Fix any pre�x b��		i��� that can be extended to some b� with
Y �b�� � i� Take any b with that pre�x and Y �b� � i�

Since Y �b� � i�

H��X j B���i� � b���i�� � �i

Therefore there is some x� s�t�

Prob�X � x� j B���i� � b���i�� 	 ��i

Since Y �b� � i� ��

H��X j B���i��� � b���i���� � �i��

Therefore�

��i�� 	 Prob�X � x� j B���i��� � b���i����

	 Pr�X � x� j Bi � bi and B���i��� � b���i���� � Pr�Bi � bi j B���i��� � b���i����

	 ��i � Pr�Bi � bi j B���i��� � b���i����

��



Therefore for any b with the pre�x b���i��� and Y �b� � i�

Pr�Bi � bi j B���i��� � b���i���� � �i��i�� � �
��
�d

Also� by claim ����� Prob�Y � i j B���i��� � b���i���� 	 ��

Therefore�

Pr�Bi � bi j B���i��� � b���i��� and Y � i� � Prob�Bi�bi j B���i����b���i����

Prob�Y�i j B���i����b���i����
� �

�
� ���

�d �

Since this holds for any pre�x b���i����H��Bi j Y � i� 	 ��
�d
�O�log�n�� 	 n

�
k	��

�
�

as required�

Finally� let us prove claim �����

Proof� �of claim �����

Fix an i � ����d�� We need to show that for any pre�x b���i���� �Bi j Y �

d and B���i��� � b���i���� is n
������close to a distribution W with H��W � 	 n����

Fix any b���i��� that can be extended to some b� with Y �b�� � d� Since Y �b�� � d�

no block so far �stole� too much entropy� i�e�� if we denote Z � �X j B���i��� �

b���i��� and Y � d�� then�

H��X j B���i��� � b���i���� 	 �i��

i�e�

for any x� Pr�X � x j B���i��� � b���i���� � ��i��

Also� by claim ����� Prob�Y � d j B���i��� � b���i���� 	 ��

Therefore�

Prob�X � x j B���i��� � b���i��� and Y � d� � Prob�X � x j B���i��� � b���i����

Prob�Y � d j B���i��� � b���i����
� �

�
� ��i��

��



Hence� H��Z� 	 �i�� � O�log�n�� �  ��i���� which formally states that after

the �rst i� � blocks of b there is still a lot of min	entropy in X�
By lemma ���� BC�Z� ri� � �Bi j B���i��� � b���i��� and Y � d� is O�l������ �

n����� close to a distribution W � with H��W � � l
n
�  � �i��

log�n�
� 	  �n��

�
k	� �n

�
k	�

	�

n polylog�n�
� 	

 �n�����

��



��� Applications

Extractors have many applications in computer science �see �Nis��� for a survey��

Here we list only those applications that bene�ted from our new constructions� Most

of the results are achieved by plugging in our new extractor instead of the previous

ones�

��	�� a�Expanding Graphs

De	nition ���� �Pip��	 An undirected graph is a�expanding if any two disjoint

sets of vertices of size at least a are joined by an edge�

The obvious lower bound on the degree of an a�expanding graph is N�a
a
� The

previous upper bound was O�N
a
� log�n����	o���

��WZ��� SZ���� In �WZ���� Wigderson

and Zuckerman suggest a simple construction of a�expanding graphs which they

improve using a recursive construction� Using the extractor we developed in section

�� we can use their simple construction and get�

Corollary ����� �following �WZ�	� For every N and � � a � N � there is an

e�ciently constructible a�expanding graph with N vertices� and maximum degree

O�N
a
polyloglog�N��

For completeness� we give the proof�

Proof� �based on �WZ���� Let V be a set with N � n vertices� We use an �k� �
���

extractor F � �n�� �t� �� �k�� with t � poly�log�n��� and denote K � k�T � t�

� First build a bipartite graph G� � �V ��W �� E�� where V � � V � f�� �gn�
W � � f�� �gk and �x� y� � E� �� �r � f�� �gt s�t� y � F �x� r��

��



Notice that in G� any two subsets of V � of sizeK � k have a common neighbor

in W ��

� Denote BAD � fw � W j deg�w� � �davgg where davg � N �T
K

is the average

degree of vertices in W � It is clear that jBADj � �
� jKj�

� From G� build G � �V�E� as follows� V � V � and �v�� v�� � E i� v�� v� have a

common neighbor in W nBAD�

Call an X 
 V �big� if jXj 	 K� Since F is a disperser� for any big X� j#�X�j 	
�
	 �K� Since jBADj � �

� �K we have that j#�X���W nBad�j 	 ��	� �
�� �K � �

� �K� It
follows that for every two big setsX and Y � #�X��#�Y ���W nBad� �� �� Therefore�
there is an edge going from X to Y in G� and therefore G is K�expanding� The

maximal degree of a vertex in G is at most T � �davg � O�N
K
� T ���

�Pip��� WZ��� showed that constructing good explicit a�expanding graphs has

applications to other problems� Plugging in our new extractor we get�

Corollary ����� �following �Pip��	� see �WZ�	 lemma �� There are explicit al�

gorithms for sorting in k rounds using O�n��
�
k � polyloglog�n�� comparisons� and for

selecting in k rounds using O�n
�� �

�k�� � polyloglog�n�� comparisons�

Corollary ����� �following �AKSS��	� see �WZ�	 lemma �� There are explicit al�

gorithms to 
nd all relations except O�a � nlog�n�� among n elements� in one round

and using O�n
�

a
� polyloglog�n�� comparisons�

In both cases our new construction replaces the term log
�n with the term

polyloglog�n��

��



��	�� Superconcentrators of Small Depth

De	nition ��� G � ��A�C�B�� E� is a superconcentrator if G is a layered graph

with input vertices A� output vertices B� and for any sets X 
 A�Y 
 B of size k�

there are at least k vertex�disjoint paths from X to Y �

Much research was done on �nding small explicit superconcentrators of small

depth �see �WZ��� for references�� Again� using our new extractor with the ideas

used in previous constructions we manage to reduce the size of a depth  supercon	

centrator from O�N � log�N����	o���
� to O�N � polyloglog�N���

Lemma ����� �following �WZ�	� For every N there is an e�ciently constructible

depth  superconcentrator over N vertices with size O�N � polyloglog�N���

Proof� �following the simple idea in �WZ����

We are going to use the following lemma�

Lemma ����� �Mes��	 G � ��A�C�B�� E� is a superconcentrator of depth  i� for

any � � k � n and any sets X 
 A� Y 
 B of size k� j#�X� � #�Y �j 	 k�

We are going to use an �m� �
�
� extractor Em � �n� � �t� �� �m! ��� with t �

polylog�n� log��
�
��� We build the superconcentrator as follows�

Input and output layers� The input and output layers A and C are of sizes N �

n� We identify each input�output vertex with a string in f�� �gn�

The middle layer� We let the middle layer B be the union of n disjoint sets

B�� � � � � Bn� jBmj � � � m��� Again� we describe each vertex in Bm as a

string in f�� �gm���

�



Edges going from A to B� For every x � A � f�� �gn� � � m � n and r � f�� �gt
we add an edge going from x to Em�x� r� � f�� �gm�� � Bm�

Edges going from C to B� These are the mirror images of the edges going from

A to B�

Claim ����� For any X 
 A of size m � k � m��� j#�X� �Bmj 	 �
�jBmj�

Proof� Consider the uniform distribution D over X� Clearly� H��D� 	 m�

Hence� d�E�D�Ut�� Um��� � �
�
� However� j#�X� � Bmj � �

�
jBmj implies that

d�E�D�Ut�� Um��� �
�
� 	 a contradiction�

Therefore� for any X 
 A and Y 
 C of size m � k � m��� j#�X� � #�Y � �
Bmj 	 �

� jBmj 	 k� Hence by lemma ����� our graph is a superconcentrator�

�WZ��� showed how to convert a small depth  superconcentrator� to a linear	size

superconcentrator with small depth� Plugging in the above result into their lemma�

we achieve a linear	size superconcentrator of polyloglog�N� depth� Notice that the

best previous linear construction had O�log�n�����o���� depth� so we achieved an

exponential improvement�

Corollary ����� � Following �WZ�	� lemma ��� For every N there is an explicitly

constructible superconcentrator over N vertices� with linear size and polyloglog�N�

depth�

��	�� Deterministic Ampli�cation

Our goal now is to convert a BPP algorithm that uses n random bits and has �
� � �

n

error� into one that errs with probability at most �k� We want to achieve this using

as few random bits as possible�

��



This problem� known as the �deterministic ampli�cation� problem� was exten	

sively studied by �KPS��� CG��� IZ��� CW��� and many others� Using expanders�

this can be done using only n ! O�k� random bits �AKS��� IZ��� CW���� Sipser

�Sip��� noted that the existence of explicit extractors imply stronger ampli�cation�

Theorem� Assume there is an �m � n� � � �
n
� extractor E � �n! k�� �t� �� �n��

If L is accepted by a BPTime�f�n�� algorithm using n random bits and having �
�� �

n

error� then L is also accepted by a BPTime�f�n� �t� algorithm using n!k random

bits and having �
�k

error�

Proof�

New Algorithm � Choose randomly x � A � f�� �gn�k � Denote

#�fxg� � fz � f�� �gn j �y�f���gt z � E�x� y�g

For any z � #�fxg� run M with z as the random string� and decide according

to the majority of the results�

Correctness � Denote W 
 f�� �gn the set of witnesses leading to the wrong
decision� Call an x � A �bad�� if most of its neighbors lie in W � We arrive at

the wrong result i� we choose some bad x� however since E is an extractor�

Pr�x is bad� � �n

�n	k � 
�k�

Notice that the extractor of section �� gives such a strong ampli�cation but in

quasi	polynomial time�

Corollary ����� if L is accepted by a BPP algorithm using n random bits and

having �
� � �

n
error� then L is also accepted by a gBPP algorithm using n!k random

bits and having �
�k error�

��



��	�� The Hardness of Approximating The Iterated Log of

Max Clique�

Zuckerman �Zuc��� uses extractors to show the hardness of approximating any iter	

ated log of MAX	Clique� In his constructions Zuckerman uses a non	explicit �r� �	�

extractor E � �R���t � log�R ! �� �� �r� � that can be found by choosing a random

bipartite graph with the right degree� Notice how close t is to the lower bound� If we

could explicitly �nd such extractors� we could replace the random classes in Zuck	

erman�s result with deterministic classes� and in particular this would have shown

that approximating log�MAX	Clique� to within some constant factor is NP�hard�

Unfortunately� we have explicit constructions only for t � polylog�R��

Zuckerman achieves the hardness result by amplifying the �ALM��� PCP proof

system for NP � and using the FGLSS reduction from SAT to MAX �Clique� In

the following we write down the PCP ampli�cation we achieve using the extractor

of section ��� and the hardness result we get� We do not describe what a PCP

proof system is� and how the �FGL���� reduction works� The interested read is

referred to �FGL���� BGLR��� Zuc����

Theorem� �ALM���� AS��	 NP 
 PCP �r � O�log�n���m � O���� a � O���� � �

�
�
��

The ampli�cation process we use is exactly as the one for amplifying an RP

algorithm with a good extractor� We get�

Lemma ����� �Zuc��	 If there is an �r� ����extractor F � �r ! l� � �t� �� �r�� then

PCP �r�m� a� ��� 
 PCP �r ! l� tm�a� �l��

�Actually� it is enough to use a disperser� and extractors can be replaced with dispersers through�

out all of this subsection� However� since we did not de�ne what a disperser is� we use extractors�

��



Thus�

Corollary ����� For any l 	 �� NP 
 PCP �r � O�log�n��!l�m � polylog�l�r�� a �

O���� � � �l��

Now we are going to Plug in this result into Zuckerman�s construction�

Definition ���� We denote loglog � � � log� �z �
k

n by log�k��n�� For an integer e we de
ne

Pe�k�n� by�

Pe�k�n� � �
��
elog�k�n

�	

 k �s

Notice that Pe�� � ne is polynomial� Pe�� � log
en is quasi	polynomial� and in

general Pe�k�n� is more than quasi	polynomial� but only �quasi more��

Definition ��� We denote the size of the largest clique in G by � � ��G��

Corollary ������ �following �Zuc�	� Let k 	 � be a constant� If for any con�

stant b approximating log�k�� to within a factor of b is in
S
eDTime�Pe�k�n��� thenS

eNTime�Pe�k�n�� �
S
eDTime�Pe�k�n�� �

The full proof of this corollary appears in appendix A���

��	�	 Simulating BPP Using Weak Random Sources

In section ����� we saw that any polynomial time� black	box simulation of RP or

BPP � must use a source X with H��X� 	 n� for some � � �� We mentioned that

Srinivasan� Saks and Zhou �SSZ��� showed a polynomial time� black	box simulation

��



of RP using any random source X having H��X� 	 n� � and Srinivasan and Zuck	

erman �SZ��� showed an nO�log�n�� time� black	box simulation of BPP using any

random source X having H��X� 	 n�� for � � �	�

These constructions use the following simple lemma

Lemma ������ If for any � � � there is some � � � and an �n�� ��� extractor

E � �n�� �t� �� �n
�� then for any � � �� BPP can be simulated in time poly�n� t�

using any source X with H��X� 	 n��

Proof�

Black
Box Simulation �

�� Ask for an n
�
� 	bit string x from the random source X�

� For all y � f�� �gt� let z � E�x� y�� and �nd the original algorithm�s

answer when z is its random string�

�� Answer according to the majority of the answers�

Correctness �

SinceH��X� 	 n�� if we uniformly choose y from f�� �gt� then the distribution
Z �over n bits� is quasi	uniform� and the black box simulation answers don�t

di�er much than those of the original algorithm running with truly random

bits� Finally� instead of choosing y uniformly� we check all possible values of

y� and answer according to the majority�

Plugging in the extractor of section �� into the above lemma we get an almost

polynomial time� black box simulation of BPP �

��



Corollary ������ For any � � � and k � �� BPP can be simulated in time

nO�log�k�n� using a weak random source X with min entropy at least n�� where

log�k�n � loglog � � � log� �z �
k

n�

��



Chapter �

Non�deterministic Symmetric

LogSpace

In the next section we show our proof that SL � coSL� We develop and use a new

technique for showing closure under complement� The results of this chapter are

joint work with my advisor Noam Nisan� and were published in �NTS��� NT����

��� An Informal Solution

We want to �nd a many	one LogSpace reduction from the undirected s� t non�

connectivity problem� to USTCON� the undirected s� t connectivity problem� I�e�

given �G� s� t� we want to build �in LogSpace� another undirected problem �G�� s�� t��

s�t� s is not connected to t in G i� s� is connected to t� in G��

For the time being let us consider an easier problem� given �G� s� t� we

want to build �G�� s�� t��� � � � � �Gm� sm� tm� s�t� there is some monotone function

��



f � f�� �gm �� f�� �g with the property that s is not connected to t in G i�

f�USTCON�G�� s�� t��� � � � � USTCON�G�� sm� tm�� � ��

Notice� that if we do not require that f is monotone the problem is trivial 	 just

let G� � G� s� � s� t� � t and let f � f�� �g �� f�� �g be the negation function� The
whole essence of the problem is to express the negation operator in a �monotone�

way� or� more precisely� to con�ne all the non	monotone operations to the LogSpace

construction of the graphs Gi�

So� let us consider the above problem� One thing we can do� is to choose all

vertices that have a bigger neighbor �which can clearly be done by a function of the

required form�� This� in a sense� isolates one vertex from each connected component�

and thus upper bounds the number of connected components of the graph� This is

also very much the same like taking the transitive closure of the graph� which can

be easily done if we can solve USTCON�

The other direction is the crux of the construction� We �count� the size of any

spanning forest of G� The counting is done using the simple �and well known�

observation that an edge e � �i� j� does not belong to the lexicographically �rst

spanning forest i� i is connected to j in the graph containing only the edges that

appear �in the input� before e� This gives a lower bound to the number of connected

components using the easy property that the number of connected components of G

plus the number of edges in a spanning forest of G is exactly the number of vertices

of G�

The whole essence of the algorithm is� therefore� that we can express the �non	

monotone� property of the size of the spanning forest� by a non	monotone reduction

to a monotone connectivity problem�

Finally� to �nish the construction

��



we need to translate f�USTCON�G�� s�� t��� � � � � USTCON�G�� sm� tm�� to a single

undirected s� t connectivity problem� To do that we show that in our case� not only

f is monotone but also has a small �polynomial in the input length� representation

as a monotone formulae� I�e�� f is composed of �not too many� �AND� and �OR�

operations� By showing how to take care of these two basic operations� we show

that� indeed� we can translate f�USTCON�G�� s�� t��� � � � � USTCON�G�� sm� tm��

to a single undirected s� t connectivity problem� and the proof is completed�

��� SL�coSL

We design a many	one reduction from coUSTCON to USTCON� We start by devel	

oping� in subsection ����� simple tools for combining reductions� In particular these

tools will allow us to use the AKS sorting networks in order to �count�� At this

point� the main ingredient of the reduction will be the calculation of the number of

connected components in a graph� An upper bound to this number is easily obtained

using transitive closure� while the main idea of the proof is to obtain a lower bound

by computing a spanning forest of the graph� which is done in subsection ���� In

subsection ���� everything is put together�

����� Projections to USTCON �

We will use only the simplest kind of reductions� i�e� LogSpace uniform projection

reductions �SV���� Moreover� we will only be interested in reductions to USTCON�

In this subsection we de�ne this kind of reduction and we show some of its basic

properties�

��



Notation ���� Given f � f�� �g� �� f�� �g� denote by fn � f�� �gn �� f�� �g� the

restriction of f to inputs of length n� Denote by fn�k the k�th bit function of fn� i�e�

if fn � f�� �gn �� f�� �gk�n� then fn � �fn��� � � � � fn�k�n���

Notation ��� We represent an n�node undirected graph G using
�
n
�

�
variables

�x � fxi�jg��i�j�n s�t� xi�j is � i� �i� j� � E�G�� If f��x� operates on graphs � we will

write f�G� meaning that the input to f is a binary vector of length
�
n
�

�
representing

G�

We say that f � f�� �g� �� f�� �g� reduces to USTCON�m� if we can �uniformly
and in LogSpace � label the edges of a graph of size m with f�� �� xi��xig��i�n� s�t�
fn�k�&x� � ��� there is a path from � to m in the corresponding graph� Formally�

De	nition ���� We say that f � f�� �g� �� f�� �g� reduces to USTCON�m� �m �

m�n�� if there is a uniform family of Space�log�n�� functions f�n�kg s�t� for all n

and k�

� �n�k is a projection� i�e�� �n�k is a mapping from fi� jg��i�j�m to

f�� �� xi��xig��i�n

� Given �x de
ne G�x�k to be the graph G�x�k � �f�� � � � �mg� E� where
E � f�i� j� j �n�k�i� j� � � or �n�k�i� j� � xi and xi � � or �n�k�i� j� �

�xi and xi � �g�

� fn�k��x� � ��� there is a path from � to m in G�x�k�

If � is restricted to the set f�� �� xig��i�n we say that f monotonically reduces to

USTCON�m��

�



Lemma ����� If f has uniform monotone formulae of size s�n� then f is mono�

tonically reducible to USTCON�O�s�n����

Proof� Given a formula � recursively build �G� s� t� as follows�

� If � � xi then build a graph with two vertices s and t� and one edge between

them labeled with xi�

� If � � �� � ��� and �Gi� si� ti� the graphs for �i� i � �� � then identify s� with

t� and de�ne s � s�� t � t��

� If � � �� � ��� and �Gi� si� ti� the graphs for �i� i � �� � then identify s� with

t� and s� with t� and de�ne s � s� � t� and t � s� � t��

Definition ���� Sort � f�� �gn �� f�� �gn is the boolean sorting function� i�e� it

moves all the zeroes to the beginning of the string�

Using the AKS sorting networks �AKS���� which belong to NC� � we get�

Corollary ����� Sort is monotonically reducible to USTCON�poly��

Lemma ����� If f monotonically reduces to USTCON�m�� and g reduces to

USTCON�m�� then f � g reduces to USTCON�m�
� � m�� � where � is the standard

function composition operator�

Proof� The function f monotonically reduces to a graph with m� vertices� where

each edge is labeled with one of f�� �� xig� In the composition f � g� each xi is

��



replaced by xi � gi��y� which can be reduced to a connectivity problem of size m��

Replace each edge labeled xi with its corresponding connectivity problem� There

can be m�
� edges� each replaced by a graph with m� vertices� hence the new graph

has m�
� �m� vertices�

����� Finding a Spanning Forest�

In this section we show how to build a spanning forest using USTCON� This basic

idea was already noticed by Reif and independently by Cook �Rei���

Given a graph G index the edges from � to m� We can view the indices as weights

for the edges� and as no two edges have the same weight� we know that there is a

unique minimal spanning forest F � In our case� where the edges are indexed� this

minimal forest is the lexicographically �rst spanning forest�

It is well known that the greedy algorithm �nds a minimal spanning forest� Let us

recall how the greedy algorithm works in our case� The algorithm builds a spanning

forest F which is initially empty F � �� Then the algorithm checks the edges one

by one according to their order� and for each edge e� if e does not close a cycle in F

then e is added to the forest� i�e� F � F � feg�

At �rst glance the algorithm looks sequential� however� claim ��� shows that

the greedy algorithm is actually highly parallel� Moreover� all we need to check that

an edge does not participate in the forest� is one st connectivity problem over an

easily obtainable graph�

Definition ��� For an undirected graph G� denote by LFF �G� the lexicographi�

cally 
rst spanning forest of G� Let

��



SF �G� �� f�� �g�n�� be�

SFi�j�G� �

���
��
� �i� j� � LFF �G�

� otherwise

Lemma ����� SF reduces to USTCON�poly�

Proof� Let F be the lexicographically �rst spanning forest of G� For e � E

de�ne Ge to be the subgraph of G containing only the edges fe� � E j index�e�� �
index�e�g�

Claim� e � �i� j� � F �� e � E and i is not connected to j in Ge�

Proof� Let e � �i� j� � E� Denote by Fe the forest which the greedy algorithm

built when it was checking e� So e � F �� e does not close a cycle in Fe�

���� e � F and therefore e does not close a cycle in Fe� but then e does not

close a cycle in the transitive closure of Fe� and in particular e does not close a cycle

in Ge�

���� e does not close a cycle in Ge therefore e does not close a cycle in Fe and

e � F �

Therefore SFi�j�G� � �xi�j � i is connected to j in G�i�j��

Since �xi�j can be viewed as the connectivity problem over the graph with two

vertices and one edge labeled �xi�j� it follows from lemmas ���� and ���� that SF

reduces to USTCON� Notice� however� that the reduction is not monotone�

��



����� Putting It Together�

First� we want to construct a function that takes one representative from each con	

nected component� We de�ne LIi�G� to be � i� the vertex i has the largest index

in its connected component�

Definition ���� LI�G� �� f�� �gn

LIi�G� �

������
�����

� i has the largest index

in its connected component

� otherwise

Lemma ����� LI reduces to USTCON�poly�

Proof�

LIi�G� �
Wn
j�i�� �i is connected to j in G��

So LI is a simple monotone formula over connectivity problems� and by lemmas

���� and ����� LI reduces to USTCON� This is� actually� a monotone reduction�

Using the spanning forest and the LI function we can compute the number of

connected components of G exactly� i�e�� given G we can compute a function NCCi

which is � i� there are exactly i connected components in G�

Definition ���� NCC�G� �� f�� �gn

NCCi�G� �

���������
��������

� there are exactly i

connected components

in G

� otherwise
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Lemma ����� NCC reduces to USTCON�poly�

Proof�

Let F be a spanning forest of G� It is easy to see that if G has k connected

components then jF j � n� k�

De�ne�

f�G� � Sort � LI�G�
g�G� � Sort � SF �G��

Then�

fi�G� � � �� k � i

gi�G� � � �� n� k � i �� k � n� i�

and thus� NCCi�G� � fi���G� � gn�i���G�

Therefore applying lemmas ����� ���� ����� ����� ���� proves the lemma�

Finally we can reduce the non	connectivity problem to the connectivity problem�

thus proving that SL � coSL�

Lemma ����� coUSTCON reduces to USTCON�poly�

Proof�

Given �G� s� t� de�ne G� to be the graph G � f�s� t�g�
Denote by (CC�H� the number of connected components in the undirected

graph H�

��



s is not connected to t in G ��

( CC�G�� � ( CC�G�� � ��

W
i���			�n NCCi�G� �NCCi���G���

Therefore applying lemmas ����� ����� ���� proves the lemma�

��� Extensions

Denote by L�SL the class of languages accepted by Logspace oracle Turing machines

with an oracle from SL� An oracle Turing machine has a work tape and a write	only

query tape �with unlimited length� which is initialized after every query� We get�

Corollary ����� L�SL � SL�

Proof�

Let Lang be a language in L�SL computed by an oracle Turing machine M

running in L�SL� and �x an input �x to M �

We build the �con�guration� graph G�V�E� of M � by�

� Let V contain all possible con�gurations�

� �v�w� � E with the label �q is �not� s�t connected�� if starting from con�g	

uration v the next query is q� and after the oracle answers that �q is �not�

connected� the machine moves to con�guration w�

��



Notice that we can ignore the direction of the edges� as backward edges do not

help us� The reason is that from any vertex v� there is only one forward edge leaving

v that can be traversed �i�e� whose label matches the oracle�s answer�� Therefore if

we reach v using a �backward edge� w �� v� then the only forward edge leaving v

that can be traversed is v �� w�

Now we can replace query edges labeled �q is connected� with the s�t connec	

tivity problem q� and edges labeled �q is not connected� with the s�t connectivity

problem obtained using our theorem that SL � coSL� resulting in one� not too

big� s�t connectivity problem� It is also clear that this can be done in LogSpace�

completing the proof�

As the symmetric Logspace hierarchy de�ned in �Rei�� is known to be within

L�SL� this hierarchy collapses to SL�

As can easily be seen� the above argument holds for any undirected graph with

undirected query edges� which is exactly the de�nition of SL�SL given by �BPS���

Thus� SL�SL � SL� and by induction the SL hierarchy de�ned in �BPS�� collapses

to SL�
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Appendix A

Explicit Extractors

A�� A Somewhere Random Source Has Large

Min	Entropy

Lemma A���� If X � X� � � � ��Xd is an �m� �� �� somewhere random source� then

X is ��close to an �m� �� �� somewhere random source X ��

Proof� �of lemma A�����

Let Y be an �m� �� �� selector for X� Denote p � Prob�Y � �� � �� De�ne the

distribution D by�

D�i� x� �

���
��
� If i � �
Prob� �Y�X���i�x� �

��p otherwise

It is easy to see that D is a distribution� De�ne the random variable Y � � X � as

the result of choosing �i� x� uniformly from D� i�e� Y � �X � � D� It is clear that

��



d�X�X �� � d�Y �X�Y � �X �� � p � ��

Now we want to show that Y � is an �m� �� �� selector for X �� It is clear that

Prob�Y � � �� � �� It is not hard to see that for any i � � we have� Prob�X � �

x j Y � � i� � Prob�X � x j Y � i��

Therefore� since we know that �XijY � i� is ��close to Um� we also know that

�X �
ijY � � i� is � close to Um� thus completing the proof�

Lemma A���� Let X � X� � � � � � Xd be an �m� �� ���somewhere random source�

then X is � close to an �m� �� ���somewhere random source Z�

Proof� �of lemma A����

Let Y be an �m� �� �� selector for X� Fix some i � ����d�� We know that

d��Xi j Y � i�� Um� � �� De�ne a distribution Z�i� by�

Z�i��x� �

���������
��������

�
�m � Prob�X � x j Xi � xi and Y � i� if Prob�Xi � xi and Y � i� � �

�
�m
� � if Prob�Xi � xi and Y � i� � �

and for every j �� i � xj � �m

� otherwise

It is easy to check that Z�i� is indeed a distribution� and that Z�i�
i � Um� De�ne

Y � Z to be the random variable obtained by choosing i according to Y � then

choosing z according to Z�i�� i�e�� for all i � �� �Z j Y � i� � Z�i�� Also� denote

X�i� � �X j Y � i�� Then�

Prob�Zi � zi j Y � i� � Z
�i�
i �zi� � �m

We will soon prove that�

���



Claim A���� d�X�i�� Z�i�� � ��

Thus�

d�X�Z� � d�Y �X�Y � Z� �

%i� Pr�Y � i� � d��X j Y � i�� �Z j Y � i�� �

%i� Pr�Y � i� � d�X�i�� Z�i�� � �

Hence Z satis�es the requirements of the lemma�

Proof� �of claim A�����

We need to show that for any A 
 "X� jX�i��A�� Z�i��A�j � �� It is su�cient

to show this for the set A containing all x � "X s�t� X�i��x� � Z�i��x�� This can be

easily seen� using the fact that for any x � A� Pr�Z � x j Zi � ai and Y � i� �
Pr�Z�x j Y�i�
Pr�Zi�ai j Y�i�

� Pr�X � x j Xi � ai and Y � i��

Lemma A���� Let X � X� � � � � � Xd be an �m� �� �� somewhere random source�

then H��X� 	 m�

Proof� Suppose Y is an �m� �� �� selector for X�

Prob�X � x� �

%i���		d� Prob�Y � i� � Prob�Xi � xi j Y � i� �

%i���		d� Prob�Y � i� � �m � �m

���



Combining lemmas A����� A��� and lemma A���� we get lemma ����

A�� A Lemma For d�Block Mergers

We prove lemma �����

Proof� We de�ne random variables Y �� A� �B� as follows�

� Choose Y � � i � S� � S� with� Pr�Y � � i� � Pr�Y � i j Y � S� � S���

� Choose a� � b� � �A �B j Y � i��

It is easy to prove that�

Claim� Pr�A� � a� j Y � � i� � Pr�A � a� j Y � i� and Pr�B� � b� j Y � �

i� � Pr�B � b� j Y � i��

De�ne

Z � �

���
��
� If Y � � S�

 Otherwise� i�e� Y � � S�

It is not hard to see that�

Claim A���� �A� j Z � � �� � �A j Y � S�� and �B� j Z � � � � �B j Y � S���

Hence� Z � is an �m� �� �� selector for A� �B��

Therefore by lemma ���� A� �B� is ��close to some X with H��X� 	 m�

However� it is not hard to see that�

Claim� A� �B� � �A �B j Y � S� � S���

��



Thus� �A �B j Y � S� � S�� � A� �B� is ��close to some X with H��X� 	 m�

thus completing the proof�

A�� Lemmas For Composing Two Extractors

In this section we prove some easy technical lemmas used in section ����

Claim A���� For any i and any w���i���� if Probx�X�Y �x� � i j x���i��� � w���i���� �

�� then Probx�X�Y �x� � i j x���i��� � w���i���� 	 �� � ���

Proof�

Since w���i��� can be extended to some w with Y �w� � i �� �� by de�nition ����

Prob�f�x� � i� 	 �� � and

Prob�f�x� � i j x���i��� � w���i���� 	 ��

However� this implies that for any extension w� of w���i��� with f�w
�� � i� it holds

that w� �� B� �B�� Hence�

Prob�Y �x� � i j x���i��� � w���i���� �

Prob�f�x� � i j x���i��� � w���i���� � Prob�f�x� � i and x � B j x���i��� � w���i���� �

Prob�f�x� � i j x���i��� � w���i���� � Prob�f�x� � i and x � B� j x���i��� � w���i���� 	

�� � ��

���



The last inequality uses claim A�����

Claim A���� For any i� if Probx�X�Y �x� � i� � �� then Probx�X�Y �x� � i� 	
�� � �� � ���

Proof�

Since there is some w� s�t� Y �w�� � i �� �� by de�nition ����

Prob�f�x� � i� 	 ��

This implies that for any w� with f�w�� � i� we know that w� �� B�� Hence�

Prob�Y �x� � i� �

Prob�f�x� � i� � Prob�f�x� � i and x � B� 	

Prob�f�x� � i� � Prob�f�x� � i and x � B�� � Prob�f�x� � i and x � B�� 	

�� � �� � ��

The last inequality uses claim A�����

Claim A����

�� For any i� Prob�f�x� � i and x � B�� � ��

���



�� For any i and w���i���� Prob�f�x� � i and x � B� j x���i��� � w���i���� � ��

� For any i� Prob�f�x� � i and x � B�� � ��

�� Prob�x � Bi� � n�i� for i � �� � ��

Proof�

�� If for some w���i��� Prob�f�x� � i and x � B� j x���i��� � w���i���� � � then

there is an extension w of w���i��� s�t�� f�w� � i and w � B�� and therefore�

Prob�f�x� � i j x���i��� � w���i���� � ��� Thus� for all w���i���� Prob�f�x� �

i and x � B� j x���i��� � w���i���� � ��� Therefore� Prob�f�x� � i and x �
B�� � %w���i���

Prob�x���i��� � w���i���� �Prob�f�x� � i and x � B� j x���i��� �
w���i���� � %w���i���

Prob�x���i��� � w���i���� � �� � ���

� If for some w���i��� Prob�f�x� � i and x � B� j x���i��� � w���i���� � � then

there is an extension w of w���i��� s�t�� f�w� � i and w � B�� and therefore�

Prob�xi � wi j x���i��� � w���i���� � ��� In particular� Prob�x � B� j x���i��� �
w���i���� � Prob�xi � wi j x���i��� � w���i���� � ��� Thus� for all w���i����

Prob�f�x� � i and x � B� j x���i��� � w���i���� � ���

�� Prob�f�x� � i and x � B�� � %w���i���
Prob�x���i��� � w���i���� � Prob�f�x� �

i and x � B� j x���i��� � w���i���� � %w���i���
Prob�x���i��� � w���i���� � �� � ���

�� The case i �  follows ��� since� Prob�x � B�� � %n
i��Prob�x � B� and f�x� �

i� � n��� Similarly for i � �� As for i � �� if there is an x with f�x� �

i and x � B�� then Prob�f�x� � i� � ��� Thus� Prob�x � B� and f�x� � i� �
��� and Prob�x � B�� � %n

i��Prob�x � B� and f�x� � i� � n���

���



A�� More Bits Using The Same Extractor

In this section we prove lemmas ���� and �����

Proof� �Of lemma �����

Denote by Ai the random variable with value E�X�Ri�� Denote by A���i� �

A� � � � � � Ai the random variable whose value is E�X�R�� � � � � � E�X�Ri�� and let

li � jA���i�j�

Definition A���� We say that a���i� is �s�tiny� if Prob�A���i� � a���i�� � �li�s

Claim� For any � � i � k� Prob�a���i� is s�tiny� � �s�
Proof� A���i� can have at most 

li possible values� and each tiny value has proba	

bility at most �li�s�

Claim� For any pre�x a���i� that is not s�tiny�H��X j A���i� � a���i�� 	M�li�s
Proof� For any x�

Prob�X � x j A���i� � a���i�� � Prob�X � x�

Prob�A���i� � a���i��
� �M

�li�s
� �M�li�s

Claim� If li�� �M �m� s � then A���i� is i�
�s ! �� quasi	random�

Proof� By induction on i� For i � � this follows from the properties of E� Assume

for i� and let us prove for i! ��

Since li �M�m�s � then for any pre�x a���i� that is not s�tiny� H��X j A���i� �

a���i�� 	 M � li � s 	 m� Therefore� for any non	tiny pre�x a���i�� �Ai�� j A���i� �

a���i�� is � quasi	random� Therefore by lemma ���� A���i��� is 
�s ! � close to the

distribution A���i�� U � and by induction A���i��� is �i! ���
�s ! �� quasi	random�

���



Therefore� if we take k s�t� lk � M �m� s� we invest kt random bits� and we

get km� bits that are k��s ! �� quasi	random� as required�

Proof� �of lemma �����

De�ne E�x� r� � � � � � rk� � Em��x� r�� � � � � �Emk
�x� rk�� where s � t�n�� l� � ��

mi � m�li���s� and li � li��!
mi

f�n�
� Denote by Ai the random variable Emi�X�Ri��

and let A���i� � A� � � � � Ai� Intuitively� li � jA���i�j� and mi is the amount of min	

entropy left in �X j A���i� � a���i�� with the safety parameter s � t�n��

Claim� If mi 	 &m then A���i� is i��s ! �� quasi	random�

Proof� By induction on i� For i � � this follows from the properties of E� Assume

for i� and let us prove for i! ��

For any pre�x a���i� that is not s	tiny�H��X j A���i� � a���i�� 	 m�li�s � mi�� 	
&m� Therefore� for any non	tiny pre�x a���i�� �Ai�� j A���i� � a���i�� is � quasi	random�

Therefore by lemma ���� A���i��� is 
�s ! � close to the distribution A���i�� U � and

by induction A���i��� is �i! ����s ! �� quasi	random�

How big do we need k to be� Let us denote qi � m � li� i�e�� qi is the number

of bits still missing� Notice that qi � m � li � m � �li�� !
mi

f�n�
� � qi�� �

mi

f�n� � qi�� � qi���t�n�
f�n� � Therefore� if qi��

� 	 t�n�� then qi � �� � �
�f�n��qi��� Thus�

after O�f�n�log�n�� steps� either qi�� � t�n�� or else mi � &m� In the �rst case�

qi�� � t�n�� and we can �ll all the t�n� missing bits with a truly random string�

In the second case� mi � &m� i�e�� qi�� � &m! s� so if we add s � t�n� truly random

bits� there are only &m missing bits as required�

Therefore it is su�cient to take k � O�f�n�log�n��� and let the �nal extractor

be E�x� r� � y� where y is of length t�n� and is truly random�

���



A�� Lemmas For The Second Extractor

In this section we prove some easy technical lemmas used in section ��� Let us start

with the proof of claim �����

Proof� �of claim �����

proof of ��� �

Since b���i��� can be extended to some b with Y �b� � i� any extension b� of

b���i��� with f�b
�� � i is not bad� Therefore�

Pr�Y � i j B���i��� � b���i���� � Pr�f � i j B���i��� � b���i����

Also� since b is not bad�

Pr�f � i j B���i��� � b���i���� � �

and this completes the proof of ����

proof of �� �

Pr�Y � d j B���i��� � b���i���� 	 Pr�f � d j B���i��� � b���i�����

Pr�f � d and Y � � j B���i��� � b���i����

	 �i�� � %d
j�i �j

The last inequality is from claim A�����

���



Now we state our last lemma� from which claim ���� also easily follows� First

we give a de�nition�

Definition A���� For b s�t� f�b� � d and Y �b� � � de
ne Y F �b� to be the 
rst

i � ��� d� s�t� Prob�f � d j B���i��� � b���i���� � �i� i�e�� Y F �b� indicates the reason

why b is bad�

Claim A����

�� For any � � i � d� � and any b���i����

Prb�f � i � Y � � j B���i��� � b���i���� � �

�� For any b���i��� that can be extended to b with Y �b� � d�

Prb�f � d � Y F � j j B���i��� � b���i���� � �j

� For any b���i��� that can be extended to some b with Y �b� � d�

Pr�f � d and Y � � j B���i��� � b���i���� � %d
j�i �j

Proof� �of claim A�����

proof of ��� given b���i���� f � i � Y � � implies that Prb�f � i j B���i��� � b���i���� � ��

which proves what we require�

proof of �� First of all it is clear that Prb�f � d � Y F � j j B���i��� � b���j���� � �j�

���



Now�

Prb�f � d � Y F � j j B���i��� � b���i���� �P
b�i�j���

Pr�B�i�j��� � b�i�j���jB���i��� � b���i���� � Prb�f � d � Y F � j j B���j��� � b���j���� �P
b�i�j�

Pr�B�i�j��� � b�i�j��� j B���i��� � b���i���� � �j � �j

proof of ��� Since b���i��� can be extended to some b with Y �b� � d� it must hold that

Y F �b� 	 i�

Therefore�

Pr�f � d and Y � � j B���i��� � b���i���� �

%d
j�i Pr�f � d and Y F � j j B���i��� � b���i���� � %d

j�i �j

The last inequality is by ���

A� The Hardness of Approximating The Iter	

ated Log of Max Clique�

The proof is based on a result by �AS�� ALM��� characterizing NP as the set all

languages having a �small� PCP proof system� and a result by �FGL����showing

how to translate this into hardness of approximating MAX	Clique�

First� we describe the �FGL���� result concerning the hardness of approximating

MAX	Clique�

���



Fact A���� �FGL���	 Given a language L � PCP �r�m� a� �� and some input x �
f�� �gn� we can easily build a graph with r�ma vertices s�t��

��G� �

���
��
r if x � L

� � r if x �� L

Now we prove corollary ������

Proof� �of corollary ������

Given a language L � NP �actually� we should start with L � T ime�Pe�k�n���

but for simplicity we prove for L � NP � and an input x � f�� �gn�
Take l s�t� log�k���l �  � log�k�n� Use fact A���� to translate the PCP system of

lemma ���� into a graph G� We know that�

��G� �

���
��
r if x � L

�r � poly�n� if x �� L

and that the size of G is jGj � O�m��

Notice that�

log�k����G�� �

���
��
log�k��r� 	 log�k��l� � log�k����l� � log�k��n� if x � L

log�k��poly�n�� � log�k��n� !O��� if x �� L

Thus� if we can approximate log�k����G�� to within �
�
� we can solve L in

DTime�O�m��� However� O�m� � �
polylog�l�r�

� �
�cloglog�l� � Pc� k�n�� for some

constant c�

���


