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Abstract

A locally decodable code (LDC) is an error correcting code that allows for recovery of any
desired bit in the message based on a constant number of randomly selected bits in the possibly
corrupted codeword. A relaxed LDC requires correct recovery only in case of actual codewords,
while requiring that for strings that are (only) close to the code, with constant probability,
the local decoder outputs either the correct value or a special failure symbol (but not a wrong
value).

We survey the relaxed LDC presented by Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan
(in 2004). For every constant α > 0, their code has block-length n = k1+α, whereas their
decoder makes O(1/α) queries. Unfortunately, their paper claims a O(1/α2)-query decoder, but
the inferior complexity bound is merely due to a trivial oversight. This survey was triggered by
a wish to correct the historical record.
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1 Introduction

A locally decodable code (LDC) is a (binary) error correcting code that allows for the recovery
of any desired bit in the message based on a constant number of (randomly selected) bits in the
possibly corrupted codeword.

Locally decodable codes, or rather family of such codes, have several parameters: The length
of the message, denoted k, the length of codewords, denoted n (and viewed as a function of k), the
number of queries, denoted q, and the tolerated corruption rate, denoted δ. We shall view q ∈ N
and δ > 0 as fixed constants, whereas k and n = n(k) are viewed as varying parameters. (This
regime is fundamentally different from the one in [11] (and subsequent works), where n = O(k) and
q is allowed to be a function of k.)

The conjecture that locally decodable codes require large length (e.g., nmust be super-polynomial
in k)1, which was supported by the super-linear lower bound (i.e., n = Ω(kq/(q−1))) of [9], led [2]
to suggest a relaxed notion of LDCs. In this relaxation, hereafter referred to as relaxed LDCs, the
decoder is allowed to announce failure and is required to satisfy the following two conditions (see
Definition 1):

1. When given access to a valid codeword, the local decoder always recovers the desired bit.2

2. When given access to a string that is δ-close to a valid codeword (i.e., the relative Hamming
distance between the string and the codeword is at most δ), with probability at least 2/3, the
local decoder does not err; that is, with probability at least 2/3, it outputs either the desired
bit or a special failure symbol.

As shown in [2, Sec. 4.2.1], such a relaxed LDC can be transformed into one in which a 1−O(∆(w))
fraction of the bits of the message can be correctly recovered (with probability at least 2/3) when
the local decoder is given access to a string w that is ∆(w)-close to the code. Furthermore, if
the local decoder satisfies the average smoothness condition (i.e., when the desired bit position is
uniformly distributed in [k], each of the queries of the local decoder is almost uniformly distributed
in [n]), then the original decoder correctly recovers a 1−O(∆(w)) fraction of the bits of the message
with probability at least 5/9.

More importantly, as shown in [2, Sec. 4.2.2], relaxed LDCs of polynomial length exist. Specif-
ically, for every sufficiently large constant q, one can obtain a q-query relaxed LDC of length
n = k1+O(1/q). Unfortunately, as stated in the abstract, [2, Thm. 1.5] states a weaker result (i.e.,
n = k1+O(1/

√
q)), but this is due to a trivial calculation oversight. In this note, we survey the

relevant construction and its analysis.

Organization The core of this note is Section 3, which surveys the relaxed LDC of [2]. This
section is preceded by Section 2, which provides the actual definitions, and is followed by Section 4,
which provides an alternative presentation. We end (in Section 5) with some reflections.

1It was even conjectured that n > exp(kΩ(1)), but this conjecture was refuted in [13, 4].
2This is the “one-sided error” version. In the “two sided error” version, the decoder is required to recover the

desired bit with probability at least 2/3.
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2 Formal Setting

For the sake of good order, we recall the standard definition of a relaxed locally decodable code
(relaxed LDC), while viewing δ > 0 and q ∈ N as fixed constants, whereas k and n = n(k) are
viewed as varying parameters. Still, at times we shall use notations such as O(q), which assert a
universal dependence on q.

Definition 1 (relaxed LDC): We say that C : {0, 1}k → {0, 1}n is a q-query relaxed locally decod-
able code (relaxed LDC) if for some constant δ > 0 there exists a randomized oracle machine D,
called a local decoder, that makes q queries such that the following two conditions hold.

1. For every x = (x1, ..., xk) ∈ {0, 1}k and i ∈ [k],

Pr[DC(x)(i)=xi] = 1.

(A two-sided error version only requires that Pr[DC(x)(i)=xi] ≥ 2/3.)

2. For every x ∈ {0, 1}k, every w ∈ {0, 1}n that is δ-close to C(x), and every i ∈ [k],

Pr[Dw(i)∈{xi,⊥}] ≥ 2/3

where ⊥ ̸∈ {0, 1} is a special symbol and w is δ-close to y if ∆(w, y)
def
=

|{j∈[n]:wj̸=yj}|
n ≤ δ.

The fixed parameter δ is called the decoding distance of D.

Indeed, δ is typically smaller than half the relative distance of C, and q is the query complexity
of the local decoder. The (original) non-relaxed notion of a locally decodable code is obtained by
requiring that D never outputs ⊥.

Stronger definitions are presented in [2, Sec. 4.2.1]. In particular, in [2, Def. 4.5], it is re-
quired that for a 1 − O(∆C(w)) fraction of the i’s it holds that Pr[Dw(i) = xi] ≥ 2/3, where

∆C(w)
def
= minx{∆(w,C(x))}. Note that this additional condition implies a two-sided error version

of Condition 1. On the other hand, the additional condition (essentially) follows from Condition 1
whenever the decoder satisfies the average smoothness condition, which requires that, for a uniformly
distributed i ∈ [k], each of the queries of the decoder is almost uniformly distributed in [n].3

The relaxed locally decodable code of Ben-Sasson, Goldreich, Harsha, Sudan, and
Vadhan [2]. As stated upfront, we shall survey the proof of the following result of [2].

Theorem 2 (the relaxed LDC of [2, Sec. 4.2.2]): For every constant ℓ ∈ N, there exists an O(ℓ)-
query relaxed locally decodable code C : {0, 1}k → {0, 1}n for decoding distance Ω(1/ℓ) such that
n = O(k1+(1/ℓ)+o(1)). Furthermore, the decoder satisfies the average smoothness condition.

Recall that [2, Thm. 1.5] asserts that the decoder makes O(ℓ2) queries, although it is stated in [2,
Sec. 4.2.2] that the query complexity of [2, Construction 4.14] is O(ℓ/δpcpp) and that δpcppp = Ω(1).
(The oversight in [2] is that the text that follows [2, Construction 4.14] uses δpcppp = Ω(1/ℓ) rather
than δpcppp = Ω(1).)

3The O-notation hides a factor that is proportional to the query complexity, whereas “almost uniformly (in [n])”
means a distribution in which each j ∈ [n] occurs with probability Θ(1/n), and “essentially follows” means that for
such i’s it holds that Pr[Dw(i)=xi] ≥ 5/9. The point is that, on input a uniformly distributed i ∈ [k], the view of
the q-query decoder when querying w is O(q · ∆C(w))-close to its view when querying C(x). Hence, the views are
0.1-close for a 1−O(∆C(w)) fraction of the i’s.
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3 The Relaxed Locally Decodable Code of [2, Sec. 4.2.2]

This section provides a revised presentation of [2, Sec. 4.2.2]. Our presentation differs from the
original only in low-level choices (e.g., notations, constants, and calculations) and in dealing directly
with the general case (i.e., any ℓ ∈ N).4

3.1 The code and its (relaxed) local decoder

We start by presenting the code constructed in [2, Sec. 4.2.2]. This code combines an asymptotically
good code, denoted C0 : {0, 1}k → {0, 1}n, for which encoding can be performed by (almost) linear-
size circuits, with a PCP of Proximity for CVAL (Circuit Value) that has almost linear length. That
is, viewing k and n = n(k) as varying parameters, we assume the following.

� The code C0 has constant relative distance, denoted δ0, it holds that n = O(k), and there is
an n1+o(1)-size circuit for evaluating C0 (i.e., computing the encoding function).

(Recall that expander codes can be evaluated by uniform linear-size circuits [12].)

� A PCP of Proximity (PCPP) for CVAL that utilize proof-oracles of size that is almost linear
in the circuit size.

– Recall that a PCP of Proximity for a set S [2] is given query access to an input-oracle
and to a proof-oracle. For a constant proximity parameter ϵ > 0, the verifier makes a
constant number of queries (to both oracles) and is required to always accept any input
in S (when given an adequate proof-oracle), and reject with probability at least 2/3 any
input that is ϵ-far from S (regardless of the choice of the proof-oracle).

– The set CVAL refers to a fixed uniform family of non-deterministic circuits, and the
input is a string that is supposed to satisfy the relevant circuit.

As shown in [2], CVAL has a PCP of Proximity that makes O(1/ϵ) queries and uses a proof-
oracle of length s1+o(1), where s is the size of the circuit. Furthermore, each query made
to the input-oracle (resp., proof-oracle) is almost uniformly distributed in it. We assume,
without loss of generality, that the verifier makes the same number of queries to both oracles.

Using these ingredients, the basic idea (which handles the case of ℓ = 1), is to use a code that
consists of three equal-length blocks. On input x ∈ {0, 1}k, the first block consists of an adequate
number of repetitions of the codeword C0(x), the second block consists of an adequate number of
repetitions of x itself, whereas the third block consists of k proof-oracles such that the ith proof-
oracle refers to the claim that the value provided for xi is consistent with the codeword C0(x). (The
repetitions are required because the length of each proof-oracle is n1+o(1), whereas |C0(x)| = n and
|x| < n.) On input i ∈ [k] and oracle access to a purported w, the local decoder checks that the
first block of w actually consists of repetitions of some n-bit long string, denoted w, and verifies
that the purported ith bit of x (recovered from an adequate random position in the second block) is
consisted with w. The verification is performed by invoking the PCP of Proximity while using the
ith sub-block of the third block as a proof-oracle (where the input-oracle is essentially a random
sub-block of the first block).

4Indeed, we skip Proposition 4.13 of [2, Sec. 4.2.2], and proceed directly to Construction 4.14 and Proposition 4.15.
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The general case (of arbitrary ℓ ∈ N) is handled by extending the foregoing strategy. Specifically,
in case of ℓ = 2, in addition to using copies of C0(x) and x, we use copies of C0(xi1) for every

i1 ∈ [k1/2], where x ≡ (x1, ..., xk1/2) ∈ ({0, 1}k1/2)k1/2 . Instead of directly verifying the consistence
of bits in x with C0(x), we verify the consistency of such bits with the corresponding C0(xi1)
and the consistency of the latter with C0(x). Hench, rather than having k proof-oracles that

refer to n-bit long input-oracles, we have m
def
= k1/2 proof-oracles that refer to 2n-bit long input-

oracles and k proof-oracles that refer to (2n/m)-bit long input-oracles. In general, for ℓ ≥ 2,
we use ℓ − 1 intermediate blocks, and verify consistency between adjacent blocks. This yields [2,
Construction 4.14], which is presented next.

Construction 3 (the code): For a constant parameter ℓ ∈ N, we view the message x ∈ {0, 1}k
as an ℓ-dimensional tensor (xi1,...,iℓ)i1,...,iℓ∈[m] of bits, where k = mℓ. For each j ∈ [ℓ − 1] and

(i1, ..., ij) ∈ [m]j, we view the (ℓ− j)-dimensional tensor (xi1,....,ij ,ij+1,...,iℓ)ij+1,...,iℓ∈[m] as an mℓ−j-

bit long string, and denote it by xi1,....,ij .
5 For t ∈ N to be determined below, we present the code

C(x)
def
= (C0(x)

t, (C0(xi1)
t)i1∈[m], ..., (C0(xi1,...,iℓ)

t)i1,...,iℓ∈[m], π1(x), ..., πℓ(x))

where t = |πj(x)|/n and πj(x) = (π
tj
i1,...,ij

)i1,...,ij∈[m] such that πi1,...,ij is a proof-oracle (of the PCP

of Proximity) for the claim that (C0(xi1,....,ij−1), C0(xi1,....,ij )
m) is in the set

Sj,ij
def
= {(y, z) : ∃x′1, ..., x′m ∈ {0, 1}mj

s.t. C0(x
′
1 · · ·x′m) = y & C0(x

′
ij )

m = z}.

Hence, a codeword consists of (2ℓ + 1) equal length blocks, where each block has length t · n. For
every j ∈ [ℓ + 1], the jth block contains t copies of C0(xi1,...,ij−1) for each (i1, ..., ij−1) ∈ [m]j−1.
Likewise, for every j ∈ [ℓ] and (i1, ..., ij) ∈ [m]j, the (ℓ+1+ j)th block contains tj copies of πi1,...,ij ,
where tℓ > · · · > t2 > t1 = 1.

Note that membership in Sj,ij can be decided by non-deterministic circuits of linear size. Alterna-
tively, assuming that errorless decoding for C0 can be computed by linear size circuits (see [12]), it
follows that membership in Sj,ij can be decided by (deterministic) circuits of linear size.

The length of the codewords of C is (2ℓ+ 1) · t · n, where t was set such that t · n = |π1(x)| =
|(π1, ..., πm)|, because the πh’s are the longest proof-oracles (since they refer to inputs of length 2n).
Recalling that |πh| = (2n)1+o(1), it follows that the length of the codewords of C is O(m) ·n1+o(1) =
n1+(1/ℓ)+o(1).

The relative distance of the code C is at least δ0/(2ℓ + 1), because different codewords of C
must differ on the first block, which consists of repetitions of some codeword of C0.

Construction 4 (the decoder): For ℓ ∈ N and C : {0, 1}mℓ → {0, 1}(2ℓ+1)·tn as in Construction 3,
on input i = (i1, ..., iℓ) ∈ [m]ℓ, when given oracle access to (w0, w1, ..., wℓ, p1, ..., pℓ) ∈ ({0, 1}tn)2ℓ+1,
the decoder proceeds as follows.

1. It tests that w0 is in {wt : w∈{0, 1}n}.
5The reader may envision an m-ary tree of depth ℓ with x ≡ xλ at its root, and xi1,...,ij being the ithj child of

xi1,...,ij−1 . Below, we apply C0 to mℓ−j-bit long strings, for each j ∈ {0, 1, ..., ℓ}, and rely on the fact that in each
case C0 stretches its input by a factor of n/k.
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Letting w0 = (w1, ..., wt) ∈ ({0, 1}n)t, this is done by repeating the following check O(1) times:
Select uniformly r′, r′′ ∈ [t] and s ∈ [n], and check whether the sth bit of wr′ equals the sth bit
of wr′′.

The test is performed so that tn-bit long strings that are 0.01·δ0-far from {wt : w∈{0, 1}n} are
rejected with probability at least 2/3. Such rejection leads the decoder to halt with output ⊥.
Otherwise, the decoder selects uniformly r ∈ [t] and (rj , r

′
j) ∈ [t] × [tj ] for each j ∈ [ℓ], and

proceeds to the next step.

2. For each j ∈ [ℓ], let wj = (w
(i′1,...,i

′
j)

1 , ..., w
(i′1,...,i

′
j)

t )i′1,...i′j∈[m] ∈ (({0, 1}(n/k)·mℓ−j
)m

j
)t, and let

vj = w
(i1,...,ij)
rj ; that is, vj ∈ {0, 1}(n/k)·mℓ−j

is the rthj string in the sequence of t strings

associated with (i1, ..., ij) ∈ [m]j in wj. Similarly, let pj be the r′j
th string in the sequence of

tj strings (i.e., the sequence (p
(i1,...,ij)
1 , ..., p

(i1,...,ij)
tj

)) associated with (i1, ..., ij) ∈ [m]j (within

pj = (p
(i′1,...,i

′
j)

1 , ..., p
(i′1,...,i

′
j)

tj
)i′1,...i′j∈[m]).

For every j ∈ [ℓ], the decoder invokes the PCP of Proximity for Sj,ij , with proximity parameter
0.1 · δ0, providing it with access to the input-oracle (vj−1, v

m
j )) and the proof-oracle pj, where

v0 = wr (i.e., the rth string in w0). If any of these invocations rejects, then the decoder halts
with output ⊥.

3. If vℓ = C0(σ) for some σ ∈ {0, 1}, then the decoder outputs σ. Otherwise, it outputs ⊥.

Note that the decoder makes a constant number of queries to each of the 2ℓ+1 blocks of the alleged
codeword. By adding dummy queries, we can make the decoder query each block the same number
of times. (Indeed, the dummy queries to each block can be chosen to be uniformly distributed in
the block.)

Assuming that the queries of the PCP of Proximity are each uniformly distributed in the relevant
oracle (see [2]), it follows that the queries of the decoder to each of the 2ℓ+1 blocks are uniformly
distributed in that the relevant part of that block (i.e., the part that corresponds to (i1, ..., ij−1)
in the jth and (ℓ+ j)th block). Hence, for a uniformly distributed (i1, ..., iℓ) ∈ [m]ℓ, the queries to
each block are uniformly distributed. It follows that the decoder satisfies the average smoothness
condition.

3.2 Analysis of the (relaxed) local decoder

It is easy to see that the decoder always recovers the correct bit from a valid codeword; that is, for
every x = (xi1,...,iℓ)i1,...,iℓ∈[m] and every i = (i1, ..., iℓ) ∈ [m]ℓ, on input i and oracle access to x, the
decoder always outputs xi. Hence, we focus on proving the following.

Lemma 5 (the local decoder satisfies Condition 2 of Definition 1): Let C be as in Construction 3.
Then, for every x = (xi′1,...,i′ℓ)i

′
1,...,i

′
ℓ∈[m], if w = (w0, w1, ..., wℓ, p1, ..., pℓ) is δ0/7ℓ-close to C(x), then,

for every i = (i1, ..., iℓ) ∈ [m]ℓ, on input i, with probability at least 2/3, the decoder described in
Construction 4 outputs a value in {xi,⊥}.

Note that there is a unique codeword of C that is δ0/7ℓ-close to w, because the relative distance of
C is at least δ0/(2ℓ+ 1) > 2 · δ0/7ℓ.
Proof Sketch: We consider three cases regarding w0 (i.e., the first block of w).
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Case 1: w0 = (w1, ..., wt) is 0.01 · δ0-far from {wt : w ∈ {0, 1}n}. In this case,

Er′,r′′∈[t][∆(wr′ , wr′′)] > 0.01δ0,

and Step 1 rejects (w.p. at least 2/3).

Hence, in the other cases, we may assume that, for at least a 0.9 fraction of the r’s in [t], it
holds that w0 is 0.1 · δ0-close to wt

r. In the following cases, we assume that such an r was
selected in Step 1.

Case 2: wr is 0.2 · δ0-far from a codeword of C0. In this case, for every v ∈ {0, 1}n/m, it
holds that (wr, v

m) is 0.1-far from the set S1,i1 , and Step 2 rejects (with high probability),
due to the PCPP invocation with j = 1.

Hence, we may assume that wr is 0.2 · δ0-close to a codeword of C0, denoted c, which implies
that w0 is 0.3 · δ0-close to ct (since w0 is 0.1 · δ0-close to wt

r). Using the hypothesis that w is
δ0/7ℓ-close to C(x), it follows that w0 is

2ℓ+1
7ℓ ·δ0-close to C0(x)

t, which implies that c = C0(x)

(since 2ℓ+1
7ℓ · δ0 ≤ 3

7 · δ0). Thus, wr is 0.2 · δ0-close to C0(x).

Case 3: wr is 0.2 · δ0-close to C0(x). In this case, we fix any sequence (r1, ..., rℓ) ∈ [t]ℓ, and

consider the corresponding vj ’s as defined in Step 2 (i.e., v0 = wr and vj = w
(i1,...,ij)
rj for every

j ∈ [ℓ]). If vj is 0.2 · δ0-close to C0(xi1,....,ij ) for every j = 0, 1, ..., ℓ, then Step 3 outputs either
xi1,....,iℓ or ⊥. Otherwise, we consider the smallest j ∈ [ℓ] such that vj is 0.2 · δ0-far from
C0(xi1,....,ij ), and observe that (vj−1, v

m
j ) is 0.1 · δ0-far from Sj,ij , which means that Step 2

rejects (with high probability), due to the PCPP invocation with this j.

Recalling that, with probability at least 0.9, the decoder either rejects or reaches Case 3, the claim
follows.

4 An Alternative Presentation

We discovered the calculation oversight in [2] after establishing Theorem 2 using an alternative
approach (described below).6 At that point, we realized that our approach yields a construction
that is very similar to the one in [2, Sec. 4.2.2], and wondered why [2, Thm. 1.5] claims an inferior
result. (The answer, of course, is that there is a calculation oversight in [2, Sec. 4.2.2].)

Our alternative presentation is iterative. Using C0 and PCPs of Proximity as in Section 3.1,
we consider a sequence of relaxed LDCs C1, C2, ... such that C1 is the code that corresponds to
ℓ = 1 (in Section 3.1). In general, for every ℓ ∈ N, using the O(ℓ)-query relaxed LDC Cℓ :

{0, 1}k → {0, 1}n, where n = k1+(1/ℓ)+o(1), we construct Cℓ+1 : {0, 1}k(ℓ+1)/ℓ → {0, 1}n′
, where

n′ = (k(ℓ+1)/ℓ)1+(1/(ℓ+1))+o(1). Loosely speaking, Cℓ+1(x) consists of three equal-length blocks:
The first block consists of an adequate number of repetitions of the codeword C0(x), the second
block consists of an adequate number of repetitions the codewords Cℓ(x1), ..., Cℓ(xk1/ℓ), where

x = (x1, ..., xk1/ℓ) ∈ ({0, 1}k)k1/ℓ , whereas the third block consists of k1/ℓ proof-oracles such that

6We mention that a different alternative construction was proposed in [1]. Their construction is pivoted at the
Reed-Muller code over a large finite field (i.e., ℓ-variate polynomials of total degree at most m over a finite field of
size at least 3ℓ ·m) and utilizes consistency tests that refer to a random walk among the planes in the corresponding
ℓ-dimensional hyperspace.
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the ith proof-oracle refers to the claim that the codeword Cℓ(xi) is consistent with the codeword
C0(x). On input (i, i′) ∈ [k1/ℓ]×[k] and oracle access to a purported w, the local decoder checks that
the first block of w actually consists of repetitions of some n-bit long string, denoted w, and verifies
that the purported ith codeword of Cℓ (recovered from an adequate random position in the second
block) is consisted with w. The verification is performed by invoking the PCP of proximity while
using the ith sub-block of the third block as a proof-oracle (where the input-oracle is essentially a
random sub-block of the first block). If all these checks were successful, the local tester for Cℓ+1

invokes the local tester for Cℓ on input i′, while providing it access to the foregoing purported
codeword of Cℓ. This strategy is detailed next.

Construction 6 (constructing Cℓ+1 based on Cℓ): Let m = k1/ℓ. Recall that given an O(ℓ)-query
relaxed LDC Cℓ : {0, 1}k → {0, 1}n, where n = k1+(1/ℓ)+o(1), we wish to construct a realxed LDC
Cℓ+1 : {0, 1}m·k → {0, 1}n′

, where n′ = (m · k)1+(1/(ℓ+1))+o(1).

The code: For x = (x1, ..., xm) ∈ ({0, 1}k)m, we let

Cℓ+1(x)
def
= (C0(x)

t, (Cℓ(x1), ..., Cℓ(xm))t
′
, (π1(x), ..., πm(x)))

where πj(x) = π(C0(x), j, Cℓ(xj)) is a PCP of Proximity for the claim that C0(x) is consistent
with Cℓ(xj), and t · |C(x)| = (t′/ℓ) ·m · n = m · |πj(x)|.
That is, π(y, j, z) is a proof that there exists an x = (x1, ..., xm) such that y = C0(x1, ..., xm)
and z = Cℓ(xj). Note that t′ is set so that the Cℓ codewords occupy an ℓ/(ℓ + 1) fraction of
the length of Cℓ+1.

Note that the length of the codewords of Cℓ+1 is O(m) · (2k1+(1/ℓ))1+o(1) = k1+(2/ℓ)+o(1), which
equals (k(ℓ+1)/ℓ)1+(1/(ℓ+1))+o(1).

The decoder: On input (i, i′) ∈ [m]×[k], given oracle access to ((w1, ..., wt), (u1, ..., ut′·m), (π1, ..., πm))
such that |w1| = · · · = |wt| = O(mk), |u1| = · · · = |ut′·m| = n, and |π1| = · · · = |πm|, the local
decoder proceeds as follows.

1. It tests that w1 = · · · = wt by repeating the following check O(1) times: Select uniformly
r′, r′′ ∈ [t] and s ∈ [n], and check whether the sth bit of wr′ equals the sth bit of wr′′.

The test is performed so that t ·mn-bit long strings that are 0.01 · δ0-far from {wt : w ∈
{0, 1}mn} are rejected with probability at least 2/3. Such rejection leads the decoder to
halt with output ⊥. Otherwise, the decoder selects uniformly r ∈ [t] and r′ ∈ [t′], and
proceeds to the next step.

2. It uses πi as a proof-oracle for a PCP of proximity that verifies whether there exists an
x = (x1, ..., xm) such that wr = C0(x1, ..., xm) and u(r′−1)·m+i = Cℓ(xi).

The corresponding verifier rejects if for every x = (x1, ..., xm) either wr is 0.1 · δ0-far
from C0(x) or u(r′−1)·m+i is 0.1 · δ0-far from Cℓ(xi). Such rejection leads the decoder to
halt with output ⊥. Otherwise, it proceeds to the next step.

3. It invokes the local decoder of Cℓ on input i′ in order to recover the i′th bit that is encoded
by u(r′−1)·m+i.

The local decoder rejects if either Step 1 or Step 2 rejects. Otherwise, it outputs the output
obtained in Step 3.
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Note that the query complexity of the foregoing decoder exceeds the query complexity of the
decoder for Cℓ only by an additive constant (i.e., O(1/δ0)). The error probability of the local
decoder remains upper-bounded by 1/3 (i.e., its error probability is the maximum of the error
probabilities of Steps 1–3, not their sum).

The analysis of Construction 6 is analogous to the proof of Lemma 5. The fact that Steps 1
and 2 accept with high probability implies that, with high probability, wr is 0.2 · δ0-close to some
codeword C(x1, ..., xm) and that u(r′−1)·t′+i is 0.1 · δ-close to Cℓ(xi). Hence, if this happens, then
Step 3 yields an adequate answer (per the induction hypothesis).

There is, however, a problem with the foregoing description. Specifically, this description pre-
sumes that the PCP of Proximity utilized in Step 2 uses proof-oracles that are almost linear in the
length of the assertion. What we know (see, e.g., [2]) is that these proof-oracles have almost linear
length in the size of the circuit that verifies the NP-claim (regarding consistency of codewords).
The question at hand is what is the size of circuits computing the encodings for C0 and Cℓ. Since
C0 is chosen by us, we may choose an adequate code that has linear-size encoding circuits (cf. [12]).
But what about Cℓ?

The difficulty in computing Cℓ is that it calls for computing proof-oracles for PCP of Proximity
(of claims that refer to C0 and Cℓ−1). It is quite likely that the PCPs of Proximity presented
in [2] have proof-oracles that can be computed by circuits of almost linear size, but confirming this
conjecture is beyond the scope of the current note. Alternatively, we observe that we can just as
well use proof-oracles (and consequently codes Cℓ’s) that can be computed by almost linear size
non-deterministic circuits, provided that these (valid) proof-oracles are unique (a.k.a canonical,
see [7, Sec. 5.3] and [6, Sec. 2.4]). In such a case these proof-oracles for PCPs of randomness
complexity r can be computed by a non-deterministic circuit of size Õ(2r) (and using the bound
on the randomness complexity of the PCPs of Proximity in [2] suffices). Unfortunately, verifying
that the proof-oracles for the PCPs in [2] are canonical or can be made so (while maintaining the
bound on the randomness complexity) is beyond the scope of the current note.

Recap. Note that Cℓ encodes k-bit strings by codewords of length n = k1+(1/ℓ))+o(1) and that
it has a O(ℓ)-query local decoder for decoding distance Ω(δ0/ℓ). Specifically, the ecoding distance
of Cℓ is a ℓ−1

ℓ factor of the decoding distance of Cℓ−1, which means that it is a 1/ℓ factor of the
decoding distance of C1 (which is Ω(δ0)).

Unravelling the recursion we get a sequence of C0-codewords that equals the first ℓ + 1 blocks
in Construction 3, and a sequence of corresponding proof-oracles for a PCP of proximity. However,
the latter proof-oracles refer to somewhat different claims than the proof-oracles in the last ℓ blocks
of Construction 3.

5 Reflections

We mention that Theorem 2 is quite tight: It establishes a q-query relaxed LDC of length n =

k1+O(1/q), whereas any q-query relaxed LDC must have length n ≥ k1+Ω̃(1/q)2 (see [8, 3], and a
related exposition [5]). As indicated by this note, the historical view that describes an asymptotic

improvement in the length of known q-query relaxed LDCs (from n = k1+O(1/q1/2) in [2] to n =
k1+O(1/q) in [1]) was wrong; in fact, no asymptotic improvement over the original construction of [2]
has been made in twenty years. Hence, we highlight the following
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Open Problem 7 (can the length of relaxed LDCs be improved?): For any natural number q ≥ 3,
is there a q-query relaxed locally decodable code C : {0, 1}k → {0, 1}n such that n ≤ k1+(2/q)?
Furthermore, can one achieve n ≤ k1+o(1/q)?

The furthermore challenge sounds more natural, but the main challenge is very interesting per se:
Although it would not improve asymptotically over n ≤ k1+O(1/q), it would provide a separation
between relaxed LDCs and plain LDCs. This is the case because q-query LDCs must have length

n = Ω(k/ log k)
1+ 1

⌈q/2⌉−1 > k1+(2/q) (cf. [10, Thm. 7], improving over [9]).
Indeed, an alternative route for separating relaxed LDCs and plain LDCs is to improve the

lower bound on the length of the latter. This begging and famous challenge has been with us for
almost 25 years now.
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