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Abstract

We investigate the relationship between probabilistic and nondeterministic complexity
classes PP, BPP, NP and coN P for the ordered read-once branching programs (OB-
DDs).

We exhibit two explicit boolean functions ¢,, r, such that:

1. ¢, :{0,1}" — {0, 1} belongs to BPP \ (NP UcoN P) in the context of OBD Ds;
2. r, :{0,1}" — {0, 1} belongs to PP\ (BPPUN PUcoN P) in the context of OBD Ds.

Both of these functions are not in AC?.

1 Preliminaries

Ordered (or oblivious) variants of read-once branching programs become an important tool in
the field of digital design and hardware verification (see, for example, [B92] and [W94]). They
are also known as “OBDDs” (ordered binary decision diagrams). There are some important
boolean functions which are hard to compute by deterministic OBDDs. An interesting open
problem was whether randomization can help OBDDs in computing these functions. In this
paper we investigate two complexity classes PP and BP P based on probabilistic OBDDs and
compare them with another known class NP, coN P, and the class AC°. AC? is the class of
boolean functions computable by polynomial size unbounded fanin circuits of constant depth
(cf., [BS90]). In [JRSWOT] the complexity classes NP and coNP for read-once branching

programs were compared with the class AC®.
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We recall some basic definitions ([R91]).

A deterministic branching program P is a directed acyclic multi-graph with a source node
and two distinguished sink nodes: accepting and rejecting. The outdegree of of each nonsink
(internal) node is exactly 2 and the two outgoing edges are labeled by x; = 0 and ; = 1 for a
variable x; associated with the node. Call such a node an z;-node. The label “z; = 6” indicates
that only inputs satisfying x; = § may follow this edge in a computation. A branching program
P computes a boolean function h,, : {0,1}* — {0,1} in the obvious way: for each 7 € {0,1}"
we let h, (@) = 1 iff there is a directed path starting in the source and leading to the accepting
node such that all labels x; = o, along this path are consistent with @ = oy05...0,.

A branching program becomes nondeterministic if we allow ”guessing nodes” that is nodes
with two outgoing edges being unlabeled. A nondeterministic branching program P computes
a function h,, in the obvious way; that is, h, (o) = 1 iff there exists (at least one) computation
on @ starting in the source node and leading to the accepting node.

A probabilistic branching program has, in addition to its standard (deterministic) nodes, espe-
cially designated nodes called random (“coin-toss”) nodes. Each such a node corresponds to a
random input y; having random values from {0,1}. An output of such a program is a random
variable.

We say that a probabilistic branching program b-computes a function h if it outputs 1 with a
probability at least b for an input & such that h(7) = 1. We say that a probabilistic branching
program (a,b)-computes a function h if it outputs 1 with probability at least b for an input
@ such that h(7) = 1 and it outputs 1 with probability at most « for an input @ such that
h() = 0. A probabilistic is called randomizedif it (¢, 1 —€)-computes the function h for € < 1/2.
The size (complexity) of a deterministic or nondeterministic branching program is its number
of internal nodes.  The size of a randomized branching program is the sum of numbers of its
internal and random nodes.

Since branching programs are a nonuniform model of computation, asymptotic statements
about the size refer to the families of branching programs containing one program for each
input size.

A read-once branching program is a branching program in which for each path each variable is
tested no more than once. An ordered read-once branching program is a read-once branching
program which respects certain fixed ordering 7 of the variables, i.e. if an edge leads from an
x;-node to an x;-node the condition 7(i) < 7(7) has to be fulfilled. In the area of circuits veri-
fication, the ordered read-once branching programs are also known as ordered binary decision
diagrams (OBD Ds).

Following definitions of [S97] we denote the class of boolean functions computable by polynomial
size nondeterministic branching programs by NP—BP. The class coNP—BP contains all
boolean functions with the negations computable by polynomial size nondeterministic branching

programs.

Definition 1 We say functions h, belongs to a set PPy, y—BP for some sequence of numbers



{pn} iff for any natural number n there is a polynomial size probabilistic branching program B,

with n deterministic inputs which p,-computes the function h, of n variables.

Let PPy —BP = PP,—BP if p, = p for any n.

For an (a,b)-computation with @ < b we use a different notation.

Let BPP.—BP be the class of sequences of functions which are (1/2 — ¢,1/2 4 ¢)-computable
by polynomial size probabilistic branching programs. We call such probabilistic branching

programs randomized. Furthermore, let

BPP-BP:= | ) BPP-BP.
0<e<1/2

We define analogous classes for OB D Ds using “-OBDD” as suffixes.

We shall consider read-once branching programs with and without restriction on the order of
reading inputs. Because BPP = coBPP and PP = coP P there are 8 complexity classes of our
interest: NP, coNP, BPP, PP and analogous classes for OBDDs. What is the relationship
between these classes 7 It is also interesting to compare these classes with the class AC®.

In 1996, Ablayev and Karpinski [AK96a] found a function f, which belongs to BPP—OBDD
(and the same time to coN P—OBDD) but did not belong to NP-OBDD. In 1997, Ablayev
found a function in the class NP-OBDD\ BPP-OBDD . These results are valid for complexity
classes based on ordered branching programs. In 1997 Sauerhoff [S97] showed that a function
PERM corresponding to permutation matrix is in (BPP-OBDDNcoN P-OBDD)\ N BP-BP1
(BP1 stands for read-once branching programs). For an overview of known upper and lower

bounds on randomized OBDDs and read-k-times branching programs see Karpinski [IK98].

2 Probabilistic branching programs

We consider probabilistic branching programs (without restrictions on reading inputs) in this
section. This general case is interesting because of the following. For an arbitrary family of
probabilistic branching programs, it is not easy to find different numbers a, b which determine
a randomized (a,b)-computation. On the other hand, any probabilistic branching program B
with n deterministic inputs and a number p, 0 < p < 1, determines a boolean function f such
that f(o) = 1 iff the probability p(7) that B outputs 1 on 7 is at least p.

The following property is obvious

Property 1
PP—BP = coNP—BP,NP—BP = coPP,—BP.

Let
PP ;—BP = PP-BP.



Theorem 1 Given any p,0 < p < 1. The following holds
PP,—~BP C PP—BP.

Proof. Let a family of functions {h,} be in PP,—BP. We construct a probabilistic branch-
ing program B? which 1/2-computes h,. For any natural number n there is a probabilistic
branching program B, which p-computes h,. Let @ be an input sequence such that f,(7) =1
and the probability p(7) of accepting @ by B, is min{p(@)|h,(@) = 1}. Then p(7) = p’ > p.
The input sequence 7 gives in a natural way an ”only-random” branching program B, (7) with
the probability of leading accepting node p’. Denote B! (&) a branching program B, (7) where
accepting (rejecting) nodes are replaced by rejecting (accepting) nodes.

B? is the following probabilistic branching program. Source node corresponds to a random
input yo. Two arcs labeled by 'yo = 0" and ‘yo = 1’ follow from the source to B! (7) and B,.
The probability function p;(x) of leading accepting node for B? has following properties.

For an input sequence @ such that f,(@) =1, p1(a@) = 1/2(1—p")+1/2p(@) = 1/2(1—p'+p(@)) >
1/2.

For an input sequence @ such that f,(@) =0, pi(a@) = 1/2(1 —=p")+1/2p(@) < 1/2(1 —=p'+p') =
1/2. I

Theorem 2
PP, ,—BP = PP-BP
for any sequence of numbers {p,|(1/2)P?) < p, <1 — (1/2)pelv(),

Proof. We need to prove if a family {f,} € PP—BP then for any natural number n, there is
a polynomial size probabilistic branching program B, which p,-computes f,. For any natural
number n there is a probabilistic branching program B! which 1/2-computes f, and has the
accepting probability function p(x).

Let €, be a number such that 1/2 — ¢, = max{p(7)|f.(¢) = 0,|5] = n}. Obviously, ¢, >
(1/2)r°() We have to investigate two posibilities: p, < 1/2 and p, > 1/2. For both
these cases, we take an ”only-random” branching program B! where the probability of lead-
ing accepting node is p/. For the first case, 2p, < p/ < 2p,/(1 — 2¢,), for the second one,
2p, — 1 < pl < (2pn — 14 2€,) /(1 + 2¢,).

B? is a probabilistic branching program consisting of two parts. The first part of B? is the
branching program B!. The second part is a probabilistic branching program B,: its source
node is identified with the accepting node of B! for p, < 1/2 and with the rejecting node for
p, > 1/2. The probabilistic branching program B? p,-computes f,.

Indeed, if pi(x) is the probability function of B} then

1. if p, < 1/2,

(a) for an input sequence 7 such that f,,(7) =1, p1(T) = plp(T) > 1/2p!, > py;



(b) for an input sequence & such that f,(7) =0, p1(7) < pl(1/2 — €,) < pu;
2. if py > 1/2,

(a) for an input sequence @ such that f,(o) = 1, p1(e) = pl, + (1 — p/)p(T) > 1/2 +
1/2p}, = pa;

(b) for an input sequence @ such that f,(7) =0, p1(7) < p' + (1 — p')(1/2 — €,) < pn.

[
If guessing nodes of nondeterministic branching programs will be replaced by random ones
one obtains a probabilistic branching program p,,-computing the same function. Therefore the

following is true.

Corollary 1 NP—-BP C PP—-BP.

3 Functions and results

Results of the previous section do not depend on the number of inputs reading. Therefore all

these results are valid for OB D Ds. Thus we can state the following.
Property 2 NP-OBDD C PP-OBDD.

Firstly, we exhibit an explicit boolean function ¢, : {0,1}" — {0, 1} such that 1) ¢, is easy for
randomized OBDD (ROBDD for short) and 2) ¢,, and its negation are hard for nondeterminstic
OBDD. We use the function f, from [AK98] for construction of ¢,. The boolean function f, of
n = 4l variables is specified as follows. We say that even bit ;, ¢ € {2,4,...,4l}, has type 0 (1)
if corresponding odd bit z;_; is 0 (1). For a sequence & € {0,1}*, denote 3° (') subsequence
of & that consists of all even bits of type 0 (1).

The function f, : {0,1}" — {0,1} is defined as follows: f,(7) =1 iff 3° = 7.

Let [ > 1, n = 4l. We define the boolean function ¢, of 2n variables as follows

Gl T1y ooy @on) = falwe, oo 2n) & fr(@ng, oy T20).

Theorem 3 For n = 41, ¢(n) € (0,1/2), the function ¢z, is (¢(n),1 — e(n))-computable by a
ROBDD of size

n® n
O log® .
(53<n> ® e
Any nondeterministic OBDD that computes the function qg, or the function —qq, has the size
at least 2.



Proof. Tt is shown in [AK98] that the function f,, can be (£(n), 1)-computed by a randomized

read-once ordered branching program of size

o (S )

The same construction as in [AK98] can be used for branching program B that computes gg,,.

The first part of B is a randomized branching program B; that (¢, 1)-computes the function
fal1, .. 2,). Then, the accepting sink node of B; is identified with a source node of a
branching program Bj that (¢, 1)-computes f,(2n41,...,%2,). Finally, we change the places
of the sink nodes of B,.

The program B outputs 1 with probability at most ¢ for an input @ such that ¢.,(7) = 0. The
error can occur only for @ such that f,(o1,...,0,) =0 and f.(0nt1,...,02,) = 0.

The program B outputs 1 with probability at least 1 — ¢” for an input & such that ¢2,(7) = 1.
If ¢ =€ =¢e(n) then B is an ROBDD as needed.

It follows from [AK98] that any nondeterministic ordered read-once branching program that
computes the function f,,n =4[, has the size at least 2!,

We give here a simpler proof than in [AK98] that nondeterministic ordered read-once branching
program B’ computing fy has size at least 2!.. We shall use this construction also later. Let
B’ have an ordering 7 of variables. For ordering 7 denote by 7% = {iy,19,...,4;} a subsequence
of T that consists of first [ even numbers of 7. Respectively, denote by 7! = {j1,72,..., 5} a
subsequence of 7 that consists of last [ even numbers of 7.

Call a sequence @ € f'(1) 7-hard if all its even bits a;, 1 € 79, are of “type” 0 and all its even

bits o;, j € ', are of “type” 1. Denote
X" ={7¢€{0,1}" : 7 is 7-hard}.

The cardinality of X7 is equal to 2'. Let Q be a set of nodes of B’ in a case exactly [ even
bits are read by B’. Every sequence of X7 corresponds to at least one node of ) and different
sequences correspond to different nodes. Therefore the cardinality of Q is not less than 2.
Obviously gan(@1,. .., 20, 1,1, .0 1) = fu(ar, ..., 2,).

If folor,...,0n) =1 then =qon(01, .-, Oy Tty ooy Tan) = falTnity ooy Tan). I
Corollary 2 ¢, € BPP-OBDD \ (NP-OBDD UcoNP-OBDD).

We exhibit now an explicit boolean function r, : {0,1}" — {0, 1}, which can be computed by
polynomial size probabilistic OB DD but which is hard for nondeterminstic and randomized
OBDDs. We use for the construction of r, the function f, from [AK98] and the function g,
from [A97], [SZ96a]. Let n be an integer and let p[n] be the smallest prime greater or equal
to n. Then, for every integer s, let w,(s) be defined as follows. Let j be the unique integer
satisfying j = s mod p[n] and 1 < 7 < p[n]. Then, w,(s) = 7,if 1 < j < n, and w,(s) =1

otherwise.



For every n, the boolean function ¢, : {0,1}" — {0,1} is defined as ¢,(7) = o;, where
J = wa(Xisy 107).
It is shown in [A97] that the function g, is in NP—-OBDD \ BPP-OBDD.

Let [ > 1, n = 4l. Define boolean function r, of n variables as follows
7"4[(0'1, ceey 0'4[) = f4[(0’1, ceey 0'4[)& gl(EO)
Theorem 4 r, € PP-OBDD \ (BPP-OBDD U NP-OBDD,).

Proof. The probabilistic OBDD B computes ry as follows: it starts with the probability 1/2,
a probabilistic OBDD By, and it starts with probability 1/2, a probabilistic OBDD B;.
Because of Property 2, and the construction of a nondeterministic branching program comput-
ing g,, there is a probabilistic OBDD B; which 1/2-computes g,,, and reads the variables in
the prescribed order (1,2,...,n). An ROBDD B; which (¢, 1)-computes the function f, reads
the variables in the prescribed order too.

The following proves that the OBDD B probabilisticaly 3/4-computes the function ry;.

If for an input @ the function ry(oy,...,04) = 1 then fy(oy,...,0u) = ¢(3°) = 1. The OBDD
B computes 1 with probability at least

1/2-141/2-1/2=3/4.
If for an input @ the function ry(oy,...,04) = 0 then there are three possibilities
L. fuloi,...,04) =0, (") = 1. Then the OBDD B computes 1 with probability at most

1/2-c4+1/2-1<3/4,

2. fulor,...,on) =1, ¢(3°) = 0. Then the OBDD B computes 1 with probability at most

1/2-141/2-1/2 < 3/4;

3. fulor,...,ou) =0, ¢(3°) = 0. Then the OBDD B computes 1 with probability at most

1/2-c4+1/2-1/2 < 1/2.

Therefore because of Theorem 1 and Property 2, r, is in PP—OBDD.
Because the function ¢, does not belong to BPP—OBDD the function ry does not belong to
BPP—OBDD either. Indeed, if for: =1,...,1

1. O4;-3 — 0 5
2. T4;,-1 = 1,

3. Oaig = 04,



then T4[(0'1, ) 0-41) = 91(0-27 06y eey T4i—2y -y 0-41—2)-
To show that the function ry; does not belong to NP—OBDD we use the set

Y™ = {7 € {0, 1}4l .7 i1s T-hard and gl(EO) =1}
in the construction in the proof of Theorem 1, instead of
X" = {7 € {0, 1}41 : @ is 7-hard}.

Analogously to the idea of the proof of Theorem 1 the size of nondeterministic OBDD com-
puting ry; is not less than the cardinality of V7.

To evaluate the cardinality of Y7 we use the method of [A97].

We use the following result (see [DH94] and [SZ96b))

Lemma 1 For every n large enough, if p(n) is the smalest prime greater than equal to n,
then the following is true. If A C {0,1,2,...,p(n) — 1} and |A| > 3/n, then for every
1,0 <t <p(n)—1, there is a subset B C A such that the sum of the elements of B is equal to
t.

Let m = [3V/1]. For any @ € {0, 1}~ there is a 3 € {0,1}™ such that ¢/(a@, 3) = 1.
Indeed, if @ = 0 then 3 = 0.

If there is a ¢ such that a; = 1 and Zﬁ;gn 1o; = s then because of the Lemma 1 there is a
B € {0,1}™ such that for 7 = (@, 3), wn(2§:l_m+1 joj + s) =t. Therefore g/(7) = 1.
Thus |Y7| > |{@: @ € {0,117} = 20-[3V1], |

Using the function PERM [S97] instead of f, we prove the following.

Theorem 5 Ther are explicit boolean functions that belong to the following complexity classes:
1. BPP-OBDD \ (NP-BP1UcoNP—BP1);

2. PP-OBDD \ (BPP-OBDD U NP-BP1UcoNP—-BP1)

In the conclusion we prove that the functions ¢,,r, do not belong to AC®.
Property 3 ([AK98]) f. & ACY .

Proof. To prove that f, € ACP it is enough to show that PARITY (zy, xa,...,xy) is AC-
reducible to the function f, for some n'.

Let n = 4l. Denote by f!, 0 <t < n/2 = 2[, a subfunction of the function f,4|,_4 obtained
by setting all even input bits of f, 4.4 to 0, and the last |n/2 — 2| odd input bits to 1, if
n > 4t, and otherwise to 0. Obviously, if the rest of odd bits form a sequence {oy,09,...,09}

then

fé(O’l,O'Q, . .,0'2[) = 1



if and only if this sequence contains exactly ¢ bits equal to 1. Therefore

l
PAR[TY(J?l, Loyenny 1’21) == \/ les(l’l, Loyenny 1’21).
s=1

Corollary 3 ¢, ¢ AC°

Proof. Indeed ¢, (21,... 25, 1,1,...,1) = fu(ar,...,2,). I

Corollary 4 ry ¢ AC°.

Proof. Use in the construction of the function fif(z1, xa,...,xq) (proof of Proposition 3), the
function 744 |4—ss instead of fyq|ai—ss|- I
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