Introduction to Complexity Theory — Lecture Notes

Oded Goldreich
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, ISRAEL.
Email: oded@wisdom.weizmann.ac.il

July 31, 1999

©Copyright 1999 by Oded Goldreich.

Permission to make copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that new copies
bear this notice and the full citation on the first page. Abstracting with credit is permitted.

11

Preface

Complexity Theory is a central field of Theoretical Computer Science, with a remarkable list of
celebrated achievements as well as a very vibrant present research activity. The field is concerned
with the study of the intrinsic complexity of computational tasks, and this study tend to aim at
generality: 1t focuses on natural computational resources, and the effect of limiting those on the
class of problems that can be solved.

These lecture notes were taken by students attending my year-long introductory course on
Complexity Theory, given in 1998-99 at the Weizmann Institute of Science. The course was aimed
at exposing the students to the basic results and research directions in the field. The focus was on
concepts and ideas, and complex technical proofs were avoided. Specific topics included:

e Revisiting NP and NPC (with emphasis on search vs decision);

e Complexity classes defined by one resource-bound — hierarchies, gaps, etc;
e Non-deterministic Space complexity (with emphasis on NL);

e Randomized Computations (e.g., ZPP, RP and BPP);

e Non-uniform complexity (e.g., P/poly, and lower bounds on restricted circuit classes);
e The Polynomial-time Hierarchy;

e The counting class #P, approximate-#P and uniqueSAT;

e Probabilistic proof systems (i.e., IP, PCP and ZK);

e Pseudorandomness (generators and derandomization);

e Time versus Space (in Turing Machines);

e Circuit-depth versus TM-space (e.g., AC, NC, SC);

e Average-case complexity;

It was assumed that students have taken a course in computability, and hence are familiar with
Turing Machines.

Most of the presented material is quite independent of the specific (reasonable) model of com-
putation, but some (e.g., Lectures 5, 16, and 19-20) depends heavily on the locality of computation
of Turing machines.

111

v

State of these notes

These notes are neither complete nor fully proofread, let alone being far from uniformly well-written
(although the notes of some lectures are quite good). Still, I do believe that these notes suggest a
good outline for an introduction to complexity theory course.

Using these notes

A total of 26 lectures were given, 13 in each semester. In general, the pace was rather slow, as
most students were first year graduates and their background was quite mixed. In case the student
body is uniformly more advanced one should be able to cover much more in one semester. Some
concrete comments for the teacher follow

e Lectures 1 and 2 revisit the P vs NP question and NP-completeness. The emphasis is on
presenting NP in terms of search problems, on the fact that the mere existence of NP-complete
sets is interesting (and easily demonstratable), and on reductions applicable also in the domain
of search problems (i.e., Levin reductions). A good undergraduate computability course
should cover this material, but unfortunately this is often not the case. Thus, I suggest to
give Lectures 1 and 2 if and only if the previous courses taken by the students failed to cover
this material.

e There is something anal in much of Lectures 3 and 5. One may prefer to shortly discuss
the material of these lectures (without providing proofs) rather than spend 4 hours on them.
(Note that many statements in the course are given without proof, so this will not be an
exception.)

e One should be able to merge Lectures 13 and 14 into a single lecture (or at most a lecture and
a half). T failed to do so due to inessential reasons. Alternatively, may merge Lectures 13-15
into two lectures.

e Lectures 21-23 were devoted to communication complexity, and circuit depth lower bounds
derived via communication complexity. Unfortunately, this sample fails to touch upon other
important directions in circuit complexity (e.g., size lower bound for ACO circuits). I would
recommend to try to correct this deficiency.

e Lecture 25 was devoted to Computational Learning Theory. This area, traditionally associ-
ated with “algorithms”, does have a clear “complexity” flavour.

e Lecture 26 was spent discussing the (limited in our opinion) meaningfulness of relativization
results. The dilemma of whether to discuss something negative or just ignore it is never easy.

e Many interesting results were not covered. In many cases this is due to the trade-off between
their conceptual importance as weighted against their technical difficulty.

Bibliographic Notes
There are several books which cover small parts of the material. These include:

1. Garey, M.R., and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman and Company, New York, 1979.

2. O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithms
and Combinatorics series (Vol. 17), Springer, 1998. Copies have been placed in the faculty’s
library.

3. J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Computa-
tion, Addison-Wesley, 1979.

4. M. Sipser. Introduction to the Theory of Computation, PWS Publishing Company, 1997.

However, the presentation of material in these lecture notes does not necessarily follow these sources.
Each lecture is planned to include bibliographic notes, but this intension has been only partially
fulfilled so far.

VI

Acknowledgments

I am most grateful to the students who have attended the course and partipiated in the project
of preparing the lecture notes. So thanks to Sergey Benditkis, Reshef Eilon, Michael Elkin, Amaiel
Ferman, Dana Fisman, Danny Harnik, Tzvika Hartman, Tal Hassner, Hillel Kugler, Oded Lachish,
Moshe Lewenstein, Yehuda Lindell, Yoad Lustig, Ronen Mizrahi, Leia Passoni, Guy Peer, Nir
Piterman, Ely Porate, Yoav Rodeh, Alon Rosen, Vered Rosen, Noam Sadot, Il’'ya Safro, Tamar
Seeman, Ekaterina Sedletsky, Reuben Summer, Yael Tauman, Boris Temkin, Erez Waisbard, and
Gera Weiss.

I am grateful to Ran Raz and Dana Ron who gave guess lectures during the course: Ran gave
Lectures 21-23 (on communication complexity and circuit complexity), and Dana gave Lecture 25
(on computational learning theory).

Thanks also to Paul Beame, Ruediger Reischuk and Awvi Wigderson who have answered some
questions I've had while preparing this course.

VII

VIII

Lecture Summaries

Lecture 1: The P vs NP Question. We review the fundamental question of computer science,
known as the P versus NP question: Given a problem whose solution can be verified efficiently
(i.e., in polynomial time), is there necessarily an efficient method to actually find such a solution?
Loosely speaking, the first condition (i.e., efficient verification) is captured in the definition of NP,
and the second in that of P. The actual correspondence relies on the notion of self-reducibility,
which relates the complexity of determining whether a solution exists to the complexity of actually
finding one.

Notes taken by Eilon Reshef.

Lecture 2: NP-completeness and Self Reducibility. We prove that any relation defining an
NP-complete language is self-reducible. This will be done using the SAT self-reducibility (proved
in Lecture 1), and the fact that SAT is NP-Hard under Levin Reductions. The latter are Karp
Reductions augmented by efficient transformations of NP-witnesses from the original instance to the
reduced one, and vice versa. Along the way, we give a simple proof of the existence of NP-Complete
languages (by proving that Bounded Halting is NP-Complete).

Notes taken by Nir Piterman and Dana Fisman.

Lecture 3: More on NP and some on DTIME. In the first part of this lecture we discuss two
properties of the complexity classes P, NP and NPC: The property is that NP contains problems
which are neither NP-complete nor in P (provided NP # P), and the second one is that NP-relations
have optimal search algorithms. In the second part we define new complexity classes based on exact
time bounds, and consider some relations between them. We point out the sensitivity of these classes
to the specific model of computation (e.g., one-tape versus two-tape Turing machines).

Notes taken by Michael Elkin and Ekaterina Sedletsky.

Lecture 4: Space Complexity. We define “nice” complexity bounds; these are bounds which
can be computed within the resources they supposedly bound (e.g., we focus on time-constructible
and space-constructible bounds). We define space complexity using an adequate model of compu-
tation in which one is not allowed to use the area occupied by the input for computation. Before
dismissing sub-logarithmic space, we present two results regarding it (contrasting sub-loglog space
with loglog space). We show that for “nice” complexity bounds, there is a hierarchy of complexity
classes — the more resources one has the more tasks one can perform. One the other hand, we
mention that this increase in power may not happen if the complexity bounds are not *“nice”.

Notes taken by Leia Passoni and Reuben Sumner.

IX

X

Lecture 5: Non-Deterministic Space. We recall two basic facts about deterministic space
complexity, and then define non-deterministic space complexity. Three alternative models for mea-
suring non-deterministic space complexity are introduced: the standard non-deterministic model,
the online model and the offline model. The equivalence between the non-deterministic and online
models and their exponential relation to the offline model are proved. We then turn to investi-
gate the relation between the non-deterministic and deterministic space complexity (i.e., Savitch’s
Theorem).

Notes taken by Yoad Lustig and Tal Hassner.

Lecture 6: Non-Deterministic Logarithmic Space We further discuss composition lemmas
underlying previous lectures. Then we study the complexity class 'L (the set of languages decid-
able within Non-Deterministic Logarithmic Space): We show that directed graph connectivity is
complete for A'L. Finally, we prove that A'L = coN'L (i.e., N'L class is closed under complemen-
tation).

Notes taken by Amiel Ferman and Noam Sadot.

Lecture 7: Randomized Computations We extend the notion of efficient computation by al-
lowing algorithms (Turing machines) to toss coins. We study the classes of languages that arise from
various natural definitions of acceptance by such machines. We focus on probabilistic polynomial-
time machines with one-sided, two-sided and zero error probability (defining the classes RP (and
coRP), BPP and ZPP). We also consider probabilistic machines that uses logarithmic spaces
(i.e., the class RL).

Notes taken by Erez Waisbard and Gera Weiss.

Lecture 8: Non-Uniform Polynomial Time (P/Poly). We introduce the notion of non-
uniform polynomial-time and the corresponding complexity class P/poly. In this (somewhat ficti-
tious) computational model, Turing machines are provided an external advice string to aid them
in their computation (on strings of certain length). The non-uniformity is expressed in the fact
that an arbitrary advice string may be defined for every different length of input. We show that
P/poly “upper bounds” the notion of efficient computation (as BPP C P/poly), yet this upper
bound is not tight (as P/poly contains non-recursive languages). The effect of introducing uni-
formity is discussed, and shown to collapse P/poly to P. Finally, we relate the P/poly versus
NP question to the question of whether NP-completeness via Cook-reductions is more powerful
that NP-completeness via Karp-reductions. This is done by showing, on one hand, that NP is
Cook-reducible to a sparse set iff NP C P/poly, and on the other hand that AP is Karp-reducible
to a sparse set iff NP = P.

Notes taken by Moshe Lewenstein, Yehuda Lindell and Tamar Seeman.

Lecture 9: The Polynomial Hierarchy (PH). We define a hierarchy of complexity classes
extending NP and contained in PSPACE. This is done in two ways, shown equivalent: The first by
generalizing the notion of Cook reductions, and the second by generalizing the definition of N'P.
We then relate this hierarchy to complexity classes discussed in previous lectures such as BPP and
P /Poly: We show that BPP is in PH, and that if NP C P/poly then PH collapses to is second
level.

Notes taken by Ronen Mizrahi.

XI

Lecture 10: The counting class #P. The class NP captures the difficulty of determining
whether a given input has a solution with respect to some (tractable) relation. A potentially
harder question, captured by the class #P, refers to determining the number of such solutions.
We first define the complexity class #P, and classify it with respect to other complexity classes.
We then prove the existence of #P-complete problems, and mention some natural ones. Then we
try to study the relation between #P and NP more exactly, by showing we can probabilistically
approximate #P using an oracle in N'P. Finally, we refine this result by restricting the oracle to
a weak form of SAT (called uniqueSAT).

Notes taken by Oded Lachish, Yoav Rodeh and Yael Tauman.

Lecture 11: Interactive Proof Systems. We introduce the notion of interactive proof systems
and the complexity class IP, emphasizing the role of randomness and interaction in this model. The
concept is demonstrated by giving an interactive proof system for Graph Non-Isomorphism. We
discuss the power of the class IP, and prove that coNP C ZP. We discuss issues regarding the
number of rounds in a proof system, and variants of the model such as public-coin systems (a.k.a.
Arthur-Merlin games).

Notes taken by Danny Harnik, Tzvika Hartman and Hillel Kugler.

Lecture 12: Probabilistically Checkable Proof (PCP). We introduce the notion of Prob-
abilistically Checkable Proof (PCP) systems. We discuss some complexity measures involved, and
describe the class of languages captured by corresponding PCP systems. We then demonstrate the
alternative view of NP emerging from the PCP Characterization Theorem, and use it in order to
prove non-approximability results for the problems max3SAT and maxCLIQUE.

Notes taken by Alon Rosen and Vered Rosen.

Lecture 13: Pseudorandom Generators. Pseudorandom generators are defined as efficient
deterministic algorithms which stretch short random seeds into longer pseudorandom sequences.
The latter are indistiguishable from truely random sequences by any efficient observer. We show
that, for efficiently sampleable distributions, computational indistiguishability is preserved under
multiple samples. We related pseudorandom generators and one-way functions, and show how to
increase the stretching of pseudorandom generators. The notes are augmented by an essay of Oded.

Notes taken by Sergey Benditkis, [I’'ya Safro and Boris Temkin.

Lecture 14: Pseudorandomness and Computational Difficulty . We continue our discus-
sion of pseudorandomness and show a connection between pseudorandomness and computational
difficulty. Specifically, we show how the difficulty of inverting one-way functions may be utilized
to obtain a pseudorandom generator. Finally, we state and prove that a hard-to-predict bit (called
a hard-core) may be extracted from any one-way function. The hard-core is fundamental in our
construction of a generator.

Notes taken by Moshe Lewenstein and Yehuda Lindell.

XII

Lecture 15: Derandomization of BPP. We present an efficient deterministic simulation of
randomized algorithms. This process, called derandomization, introduce new notions of pseudoran-
dom generators. We extend the definition of pseudorandom generators and show how to construct
a generator that can be used for derandomization. The new construction differ from the generator
that constructed in the previous lecture in it’s running time (it will run slower, but fast enough for
the simulation). The benefit is that it is relying on a seemingly weaker assumption.

Notes taken by Erez Waisbard and Gera Weiss.

Lecture 16: Derandomizing Space-Bounded Computations. We consider derandomiza-
tion of space-bounded computations. We show that BPL C DSPACE(log?n), namely, any
bounded-probability Logspace algorithm can be deterministically emulated in O(log? n) space. We
further show that BPL C SC, namely, any such algorithm can be deterministically emulated in
O(log? n) space and (simultaneously) in polynomial time.

Notes taken by Eilon Reshef.

Lecture 17: Zero-Knowledge Proof Systems. We introduce the notion of zero-knowledge
interactive proof system, and consider an example of such a system (Graph Isomorphism). We
define perfect, statistical and computational zero-knowledge, and present a method for constructing
zero-knowledge proofs for NP languages, which makes essential use of bit commitment schemes.
We mention that zero-knowledge is preserved under sequential composition, but is not preserved
under the parallel repetition.

Notes taken by Michael Elkin and Ekaterina Sedletsky.

Lecture 18: NP in PCP[poly,O(1)]. The main result in this lecture is NP C PCP (poly, O(1)).
In the course of the proof we introduce an N'PC language “Quadratic Equations”, and show it to be
in PCP(poly,O(1)). The argument proceeds in two stages: First assuming properties of the proof
(oracle), and then testing these properties. An intermediate result that of independent interest is
an efficient probabilistic algorithm that distinguishes between linear and far-from-linear functions.

Notes taken by Yoad Lustig and Tal Hassner.

Lecture 19: Dtime(t) contained in Dspace(t/logt). We prove that Dtime(t(-)) C Dspace(t(-)/logt(-)).
That is, we show how to simulate any given deterministic multi-tape Turing Machine (TM) of time
complexity ¢, using a deterministic TM of space complexity ¢/logt. A main ingrediant in the
simulation is the analysis of a pebble game on directed bounded-degree graphs.

Notes taken by Tamar Seeman and Reuben Sumner.

Lecture 20: Circuit Depth and Space Complexity. We study some of the relations between
Boolean circuits and Turing machines. We define the complexity classes N'C and AC, compare their
computational power, and point out the possible connection between uniform-AC and “efficient”
parallel computation. We conclude the discussion by establishing a strong connection between
space complexity and depth of circuits with bounded fan-in.

Notes taken by Alon Rosen and Vered Rosen.

XIIT

Lecture 21: Communication Complexity. We consider Communication Complexity — the
analysis of the amount of information that needs to be communicated betwen two parties which
wish to reach a common computational goal. We start with some basic definitions, considering
both deterministic and probabilistic models for the problem, and annotating our discussion with
a few examples. Next we present a couple of tools for proving lower bounds on the complexity
of communication problems. We conclude by proving a linear lower bound on the communication
complexity of probabilistic protocols for computing the inner product of two vectors, where initially
each party holds one vector.

Notes taken by Amiel Ferman and Noam Sadot.

Lecture 22: Circuit Depth and Communication Complexity. The main result presented
in this lecture is a (tight) nontrivial lower bound on the monotone circuit depth of s-t-Connectivity.
This is proved via a series of reductions, the first of which is of significant importance: A connection
between circuit depth and communication complexity. We then get a communication game and
proceed to reduce it to other such games, until reaching a game called FORK. We conclude that a
lower bound on the communication complexity of FORK, to be given in the next lecture, will yield
an analogous lower bound on the monotone circuit depth of s-t-Connectivity.

Notes taken by Yoav Rodeh and Yael Tauman.

Lecture 23: Depth Lower Bound for Monotone Circuits (cont.). We analyze the FORK
game, introduced in the previous lecture. We give tight lower and upper bounds on the commu-
nication needed in a protocol solving FORK. This completes the proof of the lower bound on the
depth of monotone circuits computing the function st-Connectivity.

Notes taken by Dana Fisman and Nir Piterman.

Lecture 24: Average-Case Complexity. We introduce a theory of average-case complexity
which refers to computational problems coupled with probability distributions. We start by defining
and discussing the classes of P-computable and P-samplable distributions. We then define the class
DistNP (which consists of NP problems coupled with P-computable distributions), and discuss the
notion of average polynomial-time (which is unfortunately more subtle than it may seem). Finally,
we define and discuss reductions between distributional problems. We conclude by proving the
existence of a complete problem for DistNP.

Notes taken by Tzvika Hartman and Hillel Kugler.

Lecture 25: Computational Learning Theory. We define a model of automoatic learning
called probably approximately correct (PAC) learning. We define efficient PAC learning, and
present several efficient PAC learning algorithms. We prove the Occam’s Razor Theorem, which
reduces the PAC learning problem to the problem of finding a succinct representation for the values
of a large number of given labeled examples.

Notes taken by Oded Lachish and Eli Porat.

XIV

Lecture 26: Relativization. In this lecture we deal with relativization of complexity classes.
In particular, we discuss the role of relativization with respect to the P vs. NP question; that is,
we shall see that for some oracle A4, P4 = NP4, whereas for another A (actually for almost all
other A’s) P4 # NPA. However, it also holds that ZP* # PSPACE? for a random A, whereas
IP =PSPACE

Notes taken by Leia Passoni.

Contents

Preface
Acknowledgments
Lecture Summaries

1 The P vs NP Question

1.1 Introduction o e e e e
1.2 The Complexity Class NP s e
1.3 Search Problems e
1.4 Self Reducibility e e e e
Bibliographic Notes e
2 NP-completeness and Self Reducibility
2.1 Reductions e e e e
2.2 All N'P-complete relations are Self-reducible
2.3 BoundedHaiting is NP—complete
2.4 CircuitSatis fiability 15 NP—complete
2.5 Rgar is NP—complete
Bibliographic Notes L e

Appendix: Details for the reduction of BH to CS

More on NP and some on DTIME

3.1 Non-complete languages in NP oo oo
3.2 Optimal algorithms for NP
3.3 General Time complexity classes

3.3.1 The DTime classes o 0 i i e

3.3.2 Time-constructibility and two theorems
Bibliographic Notes e
Appendix: Proof of Theorem 3.5, via crossing sequences« . oo oo oo ..

Space Complexity

4.1 On Defining Complexity Classes
4.2 Space Complexity L e
4.3 Sub-Logarithmic Space Complexity o
4.4 Hierarchy Theorems e
4.5 Odd Phenumena (The Gap and Speed-Up Theorems)
Bibliographic Notes e

I11

VII

IX

11
13
14
17
18
18

23
23
25
27
27
29
31
31

XVI CONTENTS
5 Non-Deterministic Space 43
5.1 Preliminarieso 43
5.2 Non-Deterministic space complexity 44
5.2.1 Definition of models (online vs offline) 45

5.2.2 Relations between NSPACE,, and NSPACE,;; 47

5.3 Relations between Deterministic and Non-Deterministic space 53
5.3.1 Savitch’s Theorem e 53

5.3.2 A translation lemma oL oL 54
Bibliographic Notes e 56

6 Inside Non-Deterministic Logarithmic Space 57
6.1 The composition lemma L 57
6.2 A complete problem for N.L 59
6.2.1 Discussion of Reducibility 59

6.2.2 The complete problem: directed-graph connectivity 61

6.3 Complements of complexity classes 64
6.4 Immerman Theorem: NL=coNL 65
6.4.1 Theorem 6.9 implies NL=coNL 66

6.4.2 Proof of Theorem 6.9 68
Bibliographic Notes e e 71

7 Randomized Computations 73
7.1 Probabilistic computations. e 73
7.2 The classes RP and coRP — One-Sided Error 75
7.3 The class BPP — Two-Sided Error, 79
7.4 Theclass PP o e e e e e 83
7.5 The class ZPP — Zero error probability. L. 86
7.6 Randomized space complexity 87
7.6.1 Thedefinitiono 87

7.6.2 Undirected Graph Connectivity isin RL 89
Bibliographic Notes e 90

8 Non-Uniform Polynomial Time (P/Poly) 91
8.1 Imtroduction e 91
8.1.1 The Actual Definition 92

8.1.2 P/poly and the P versus NP Question 93

8.2 The Power of P/poly 93
8.3 Uniform Families of Circuits 95
8.4 Sparse Languages and the P versus NP Question. 95
Bibliographic Notes e 99

9 The Polynomial Hierarchy (PH) 101
9.1 The Definition of the class PH oo, 101
9.1.1 First definition for PH: via oracle machines 101

9.1.2 Second definition for PH: via quantifiers 104

9.1.3 Equivalence of definitions 105

9.2 Easy Computational Observations 107
9.3 BPPiscontainedin PH 109

CONTENTS XVII

9.4 If NP has small circuits then PH collpases 111
Bibliographic Notes e e 112
Appendix: Proof of Proposition 9.2.3 113
10 The counting class #P 115
10.1 Defining #P . . .« o o e e e e 115
10.2 Completeness in #P e 117
10.3 How close is #P to NP 7 o 122
10.3.1 Various Levels of Approximation 123
10.3.2 Probabilistic Cook Reduction o .. 126
10.3.3 Gapg#SAT Reduces to SAT e 127

10.4 Reducing to uniqueSAT o 130
Bibliographic Notes e 133
Appendix A: A Family of Universaly Hash Functions 133
Appendix B: Proof of Leftover Hash Lemma 134
11 Interactive Proof Systems 135
11.1 Imtroduction L e e e e 135
11.2 The Definition of TP o 136
11.2.1 Comments. oo v i e e e e 137
11.2.2 Example — Graph Non-Isomorphism (GNI) 138

11.3 The Power of IP o . . L 140
11.3.1 IPis contained in PSPACE 140
11.3.2 coNP iscontained in IP o 142

11.4 Public-Coin Systems and the Number of Rounds 145
11.5 Perfect Completeness and Soundness L oL 146
Bibliographic Notes e 148
12 Probabilistically Checkable Proof Systems 149
12.1 Introduction L e e e 149
12.2 The Definition 0 . e 150
12.2.1 The basic model L 150
12.2.2 Complexity Measures e 150
12.2.3 Some Observations e 151

12.3 The PCP characterization of NP oL 152
12.3.1 Importance of Complexity Parameters in PCP Systems 152
12.3.2 The PCP Theorem 152
12.3.3 The PCP Theorem gives rise to “robust” A'P-relations 154
12.3.4 Simplifying assumptions about PCP(log, O(1)) verifiers 155

12.4 PCP and non-approximability 156
12.4.1 Amplifying Reductions o 156
12.4.2 PCP Theorem Rephrased 157
12.4.3 Connecting PCP and non-approximability 159

Bibliographic Notes e 163

XVIII CONTENTS

13 Pseudorandom Generators 165
13.1 Instead of an introduction e 165
13.2 Computational Indistinguishability 0oL 165

13.2.1 Two variants o e e e e e e e e 166
13.2.2 Relation to Statistical Closeness 166
13.2.3 Computational indistinguishability and multiple samples 167
13.3 PRG: Definition and amplification of the stretch function 168
13.4 On Using Pseudo-Random Generators 171
13.5 Relation to one-way functions L Lo 172
Bibliographic Notes e e 175
Appendix: Anessay by O.G. L 176
13.6.1 Introduction e e e 176
13.6.2 The Definition of Pseudorandom Generators. 177
13.6.3 How to Construct Pseudorandom Generators 180
13.6.4 Pseudorandom Functions 182
13.6.5 The Applicability of Pseudorandom Generators 183
13.6.6 The Intelectual Contents of Pseudorandom Generators 184
13.6.7 A General Paradigmo 185
References e e e e 185

14 Pseudorandomness and Computational Difficulty 189
14.1 Introduction L e e e e e 189
14.2 Definitions e e e e e e 190
14.3 A Pseudorandom Generator based on a 1-1 One-Way Function 192
14.4 A Hard-Core for Any One-Way Function 194
Bibliographic Notes e 197

15 Derandomization of BPP 199
15.1 Introduction e e e e e 199
15.2 New notion of Pseudorandom generator 201
15.3 Construction of non-iterative pseudorandom generator 202

15.3.1 Parameters e e e e e 203
15.3.2 Tool 1: An unpredictable predicate 203
15.3.3 Tool 2: A design L 204
15.3.4 The construction itself 205
15.4 Constructions of a design L L 208
15.4.1 First construction: using GF(l) arithmetic 208
15.4.2 Second construction: greedy algorithm 209
Bibliographic Notes e 211

16 Derandomizing Space-Bounded Computations 213
16.1 Introduction o e e e e e 213
16.2 The Model e e e 213
16.3 Execution Graphs L 214
16.4 Universal Hash Functions 216
16.5 Construction Overview L L e e e e 217
16.6 The Pseudorandom Generator, 217

16.7 Analysis oL e e 219

CONTENTS XIX

16.8 Extensions and Related Results o oL 223
16.8.1 BPLCSC . . . o o 223
16.8.2 Further Results o 224

Bibliographic Notes L e 224

17 Zero-Knowledge Proof Systems 225

17.1 Definitions and Discussions L e 225

17.2 Graph Isomorphism is in Zero-Knowledge 230

17.3 Zero-Knowledge Proofs for NP o 235
17.3.1 Zero-Knowledge NP-proof systems 235
17.3.2 NP CZK (OVerview) v o v v v v ittt i et e e e e e e 236
17.3.3 Digital implementation oo oL 240

17.4 Various comments L. e e e e e e 244
17.4.1 Remark about parallel repetition 244
17.4.2 Remark about randomness in zero-knowledge proofs 245

Bibliographic Notes e e 245

18 NP in PCP|[poly,O(1)] 247

18.1 Imtroduction L oL 247

18.2 Quadratic Equations e e e e 248

18.3 The main strategy and a tactical maneuver 249

18.4 Testing satisfiability assuming a nice oracle 251

18.5 Distinguishing a nice oracle from a very ugly one 253
18.5.1 Tests of linearity e 253
18.5.2 Assuming linear 7 testing n’s coefficients structure 255
18.5.3 Gluing it all togethero oL 258

Bibliographic Notes e 258

Appendix A: Linear functions are far apart 259

Appendix B: The linearity test for functions far from linear 260

19 Dtime vs Dspace 263

19.1 Imtroduction L oL 263

19.2 Main Result oL o 264

19.3 Additional Proofs 267
19.3.1 Proof of Lemma 19.2.1 (Canonical Computation Lemma) 267
19.3.2 Proof of Theorem 19.4 (Pebble Game Theorem) 268

Bibliographic Notes e e 270

20 Circuit Depth and Space Complexity 271

20.1 Boolean Circuits o e 271
20.1.1 The Definition e 271
20.1.2 Some Observationso 272
20.1.3 Families of Circuits o o e 272

20.2 Small-depth circuits L 273
20.2.1 The Classes NC and AC ittt 274
20.2.2 Sketch of the proof of ACOC NC' 275
20.2.3 NC and Parallel Computation 277

20.3 On Circuit Depth and Space Complexity 278

XX

Bibliographic Notes

21 Communication Complexity

21.1 Introduction
21.2 Basic model and some examples.,
21.3 Deterministic versus Probabilistic Complexity
21.4 Equality revisited and the Input Matrix
21.5 Rank Lower Bound o o
21.6 Inner-Product lower bound L.
Bibliographic Notes

22 Monotone Circuit Depth and Communication Complexity

22.1 Introduction e
22.1.1 Hard Functions Exist
22.1.2 Bounded Depth Circuits

22.2 Monotone Circuits L L

22.3 Communication Complexity and Circuit Depth

22.4 The Monotone Case v
22.4.1 The Analogous Game and Connection
22.4.2 An Equivalent Restricted Game

22.5 Two More Games o i i i

Bibliographic Notes

23 The FORK Game

23.1 Introduction
23.2 The FORK game — recalling the definition
23.3 An upper bound for the FORK game
23.4 A lower bound for the FORK game
23.4.1 Definitionso e
23.4.2 Reducing the density oL
23.4.3 Reducing thelength
23.4.4 Applying the lemmas to get the lower bound
Bibliographic Notes L

24 Average Case Complexity

24.1 Introductiono
24.2 Definitionso
24.2.1 Distributions Lo L
24.2.2 Distributional Problems
24.2.3 Distributional Classes
24.2.4 Distributional-NPo o000
24.2.5 Average Polynomial Time
24.2.6 Reductions o
24.3 DistNP-completeness oL
Bibliographic Notes
Appendix A : Failure of a naive formulation
Appendix B : Proof Sketch of Proposition 24.2.4

CONTENTS

CONTENTS

25 Computational Learning Theory
25.1 Towards a definition of Computational learning
25.2 Probably Approximately Correct (PAC) Learning
25.3 Occam’s Razor e
25.4 Generalized definition of PAC learning algorithm
25.4.1 Reductions among learning taskso oL
25.4.2 Generalized forms of Occam’s Razor
25.5 The (VC) Vapnik-Chervonenkis Dimension
25.5.1 An example: VC dimension of axis aligned rectangles
25.5.2 General boundso
Bibliographic Notes e
Appendix: Filling-up gaps for the proof of Claim 25.2.1

26 Relativization
26.1 Relativization of Complexity Classes,
26.2 The P = NP question Relativized
26.3 Relativization with a Random Oracle.
26.4 Conclusions e e e e e e e e e e
Bibliographic Notes e e

XXI

327
327
329
332
336
336
337
338
339
340
342
342

Lecture 1

The P vs NP Question

Notes taken by Eilon Reshef

Summary: We review the fundamental question of computer science, known as P ZNP:
given a problem whose solution can be verified efficiently (i.e., in polynomial time), is
there necessarily an efficient method to actually find such a solution? First, we de-
fine the notion of NP, i.e., the class of all problems whose solution can be verified
in polynomial-time. Next, we discuss how to represent search problems in the above
framework. We conclude with the notion of self-reducibility, relating the hardness of
determining whether a feasible solution exists to the hardness of actually finding one.

1.1 Introduction

Whereas the research in complexity theory is still in its infancy, and many more questions are open
than closed, many of the concepts and results in the field have an extreme conceptual importance
and represent significant intellectual achievements.

Of the more fundamental questions in this area is the relation between different flavors of a
problem: the search problem, i.e., finding a feasible solution, the decision problem, i.e., determining
whether a feasible solution exists, and the wverification problem, i.e., deciding whether a given
solution is correct.

To initiate a formal discussion, we assume basic knowledge of elementary notions of computabil-
ity, such as Turning machines, reductions, polynomial-time computability, and so on.

1.2 The Complexity Class NP

In this section we recall the definition of the complexity class NP and overview some of its basic
properties. Recall that the complexity class P is the collection of all languages L that can be
recognized “efficiently”, i.e., by a deterministic polynomial-time Turing machine. Whereas the
traditional definition of A'P associates the class NP with the collection of languages that can be
efficiently recognized by a non-deterministic Turning machine, we provide an alternative definition,
that in our view better captures the conceptual contents of the class.

Informally, we view AP as the class of all languages that admit a short “certificate” for mem-
bership in the language. Given this certificate, called a witness, membership in the language can
be verified efficiently, i.e., in polynomial time.

2 LECTURE 1. THE P VS NP QUESTION

For the sake of self-containment, we recall that a (binary) relation R is polynomial-time decidable
if there exists a polynomial-time Turing machine that accepts the language {E(z,y) | (z,y) €
R}, where E(z,y) is a unique encoding of the pair (z,y). An example of such an encoding is
E(o1 - 0n,T1 Tm) 2 G101 Onon0lTITL - TTh.

We are now ready to introduce a definition of N'P.

Definition 1.1 The complezity class NP is the class of all languages L for which there exists a
relation Ry C {0,1}* x {0,1}*, such that

e Ry is polynomial-time decidable.

e There exists a polynomial by, such that x € L if and only if there exists a witness w, |w| <

br.(|z|) for which (x,w) € Ry,.

Note that the polynomial bound in the second condition is required despite the fact that Ry, is
polynomial-time decidable, since the polynomiality of Ry, is measured with respect to the length of
the pair (x,y), and not with respect to |z| only.

It is important to note that if z is not in L, there is no polynomial-size witness w for which
(z,w) € Rr. Also, the fact that (z,y) ¢ Rr does not imply that ¢ L, but rather that y is not a
proper witness for x.

A slightly different definition may sometimes be convenient. This definition allows only polynomially-
bounded relations, i.e.,

Definition 1.2 A relation R is polynomially bounded if there exists a polynomial p(-), such that
for every (z,y) € R, |y| < p(|z]).

Since a composition of two polynomials is also a polynomial, any polynomial in p(|z|), where
p is a polynomial, is also polynomial in |z|. Thus, if a polynomially-bounded relation R can be
decided in polynomial-time, it can also be decided in time polynomial in the size of first element
in the pair (z,y) € R.

Now, definition 1.1 of AP can be also formulated as:

Definition 1.3 The complezity class NP is the class of all languages L for which there exists a
polynomially-bounded relation Ry C {0,1}* x {0,1}*, such that

e Ry is polynomial-time decidable.
e x € L if and only if there exists a witness w, for which (z,w) € Rp.

In this view, the fundamental question of computer science, i.e., P Z NP can be formulated as
the question whether the ezistence of a short witness (as implied by membership in A"P) necessarily
brings about an efficient algorithm for finding such a witness (as required for membership in P).

To relate our definitions to the traditional definition of NP in terms of a non-deterministic
Turning machine, we show that the definitions above indeed represent the same complexity class.

Proposition 1.2.1 NP (as in definition 1.1) = NP (as in the traditional definition).

Proof: First, we show that if a language L is in NP according to the traditional definition, then
it is also in AP according to definition 1.1.

Consider a non-deterministic Turing machine M, that decides on L after at most pr(|z|) steps,
where pr, is some polynomial depending on L, and x is the input to M. The idea is that one can

1.3. SEARCH PROBLEMS 3

encode the non-deterministic choices of My, and to use this encoding as a witness for membership
in L. Namely, M, can always be assumed to first make all its non-deterministic choices (e.g., by
writing them on a separate tape), and then execute deterministically, branching according to the
choices that had been made in the first step. Thus, M, is equivalent to a deterministic Turning
machine M accepting as input the pair (z,y) and executing exactly as M on z with a pre-
determined sequence of non-deterministic choices encoded by y. An input z is accepted by M, if
and only if there exists a y for which (x,y) is accepted by M.

The relation Ry, is defined to be the set of all pairs (z,y) accepted by M.

Thus, z € L if and only if there exists a y such that (x,y) € R, namely if there exists an
accepting computation of My,. It remains to see that Ry is indeed polynomial-time decidable and
polynomially bounded. For the first part, observe that Ry can be decided in polynomial time
simply by simulating the Turing machine My, on (z,y). For the second part, observe that M
is guaranteed to terminate in polynomial time, i.e., after at most pz(|z|) steps, and therefore the
number of non-deterministic choices is also bounded by a polynomial, i.e., |y| < pr(|z|). Hence,
the relation Ry, is polynomially bounded.

For the converse, examine the witness relation Ry, as in definition 1.1. Consider the polynomial-
time deterministic Turing machine M, that decides on Ry, i.e., accepts the pair (z,y) if and only
if (x,y) € Rr. Construct a non-deterministic Turning machine M, that given an input z, guesses,
non-deterministically, a witness y of size bz (|z|), and then executes My, on (z,y). If x € L, there
exists a polynomial-size witness y for which (z,y) € Ry, and thus there exists a polynomial-time
computation of My, that accepts z. If ¢ L, then for every polynomial-size witness v, (x,y) & Ry,
and therefore M 1, always rejects z. W

1.3 Search Problems

Whereas the definition of computational power in terms of languages may be mathematically con-
venient, the main computational goal of computer science is to solve “problems”. We abstract a
computation problem II by a search problem over some binary relation Rp: the input of the problem
at hand is some 2 and the task is to find a y such that (x,y) € Ry (we ignore the case where no
such y exists).

A particularly interesting subclass of these relations is the collection of polynomially verifiable
relations R for which

e R is polynomially bounded. Otherwise, the mere writing of the solution cannot be carried
out efficiently.

e R is polynomial-time recognizable. This captures the intuitive notion that once a solution to
the problem is given, one should be able to verify its correctness efficiently (i.e., in polynomial
time). The lack of such an ability implies that even if a solution is provided “by magic”, one
cannot efficiently determine its validness.

Given a polynomially-verifiable relation R, one can define the corresponding language L(R) as
the set of all words = for which there ezists a solution y, such that (z,y) € R, i.e.,

L(R) 2 {z | 3y (x,y) € R}. (1.1)

By the above definition, NP is exactly the collection of the languages L(R) that correspond to
search problems over polynomially verifiable relations, i.e.,

NP 2 {L(R) | R is polynomially verifiable}

4 LECTURE 1. THE P VS NP QUESTION

Thus, the question PZNP can be rephrased as the question whether for every polynomially
verifiable relation R, its corresponding language L(R) can be decided in polynomial time.
Following is an example of a computational problem and its formulation as a search problem.

ProBLEM: 3-Coloring Graphs
INPUT: An undirected graph G = (V, E).
Task: Find a 3-coloring of G, namely a mapping ¢ : V' — {1,2,3} such that no adjacent vertices
have the same color, i.e., for every (u,v) € E, o(u) # o(v).

The natural relation R3cor that corresponds to 3-Coloring is defined over the set of pairs (G, ¢),
such that (G, ¢) € R3cor if

e ¢ is indeed a mapping ¢ : V' — {1,2,3}.

e For every (u,v) € E, ¢p(u) # p(v).

Clearly, with any reasonable representation of (, its size is polynomial in the size of G. Further,
it is easy to determine in polynomial time whether a pair (G, ¢) is indeed in R3cor.-

The corresponding language L(Rscoyr) is the set of all 3-colorable graphs, i.e., all graphs G
that have a legal 3-coloring.

Jumping ahead, it is NP-hard to determine whether such a coloring exists, and hence, unless
P = NP, no efficient algorithm for this problem exists.

1.4 Self Reducibility

Search problems as defined above are “harder” than the corresponding decision problem in the
sense that if the former can be carried out efficiently, so can the latter. Given a polynomial-time
search algorithm A for a polynomially-verifiable relation R, one can construct a polynomial-time
decision algorithm for L(R) by simulating A for polynomially many steps, and answering “yes” if
and only if A has terminated and produced a proper y for which (z,y) € R.

Since much of the research in complexity theory evolves around decision problems, a fundamen-
tal question that naturally arises is whether an efficient procedure for solving the decision problem
guarantees an efficient procedure for solving the search problem. As will be seen below, this is not
known to be true in general, but can be shown to be true for any NP-complete problem.

We begin with a definition that captures this notion:

Definition 1.4 A relation R is self-reducible if solving the search problem for R is Cook-reducible
to deciding the corresponding language L(R) = {z | Jy (z,y) € R}.

Recall that a Cook reduction from a problem II; to IIs allows a Turing machine for II; to use
15 as an oracle (polynomially many times).

Thus, if a relation R is self-reducible, then there exists a polynomial-time Turing machine that
solves the search problem (i.e., for each input x finds a y such that (z,y) € R), except that the
Turning machine is allowed to access an oracle that decides L(R), i.e., for each input 2’ outputs
whether there exists a ¢’ such that (2',y") € R. For example, in the case of 3-colorability, the search
algorithm is required to find a 3-coloring for an input graph G, given as an oracle a procedure that
tells whether a given graph G’ is 3-colorable. The search algorithm is not limited to ask the oracle
only about G, but rather may query the oracle on a (polynomially long) sequence of graphs G’,
where the sequence itself may depend upon answers to previous invocations of the oracle.

We consider the example of SAT.

1.4. SELF REDUCIBILITY 5

PrOBLEM: SAT
INpUT: A CNF formula ¢ over {zi,...,z,}.
Task: Find a satisfying assignment o, i.e., a mapping o : {1,...,n} — {T,F}, such that
o(o(1),...,0(n)) is true.

The relation Rgar corresponding to SAT is the set of all pairs (¢, o) such that o is a satisfying
assignment for . It can be easily verified that the length of ¢ is indeed polynomial in n and that
the relation can be recognized in polynomial time.

Proposition 1.4.1 Rgar s self-reducible.

Proof: We show that Rgar is self-reducible by showing an algorithm that solves the search
problem over Rg 7 using an oracle A for deciding SAT 2 L(Rgr). The algorithm incrementally
constructs a solution by building partial assignments. At each step, the invariant guarantees that
the partial assignment can be completed into a full satisfying assignment, and hence when the
algorithm terminates, the assignment satisfies . The algorithm proceeds as follows.

e Query whether ¢ € SAT. If the answer is “no”, the input formula ¢ has no satisfying

assignment.

e For i ranging from 1 to n, let ¢;(zit1,...,2n) 2 o(o1,y ..y 0i-1,1,%i41,...,2,). Using the
oracle, test whether p; € SAT. If the answer is “yes”, assign o; « 1. Otherwise, assign
o; « 0. Clearly, the partial assignment o(1) = o1,...,0(i) = o; can still be completed into

a satisfying assignment, and hence the algorithm terminates with a true assignment.

Consequently, one may deduce that if SAT is decidable in polynomial time, then there exists
an efficient algorithm that solves the search problem for Rga7. On the other hand, if SAT is not
decidable in polynomial time (which is the more likely case), there is no efficient algorithm for
solving the search problem. Therefore, research on the complexity of deciding SAT relates directly
to the complexity of searching Rgar.

In the next lecture we show that every N'P-complete language has a self-reducible relation.
However, let us first discuss the problem of graph isomorphism, which can be easily shown to be
in NP, but is not known to be N"P-hard. We show that nevertheless, graph isomorphism has a
self-reducible relation.

PrROBLEM: Graph Isomorphism
INPUT: Two simple! graphs G; = (V,E}), G = (V,E). We may assume, without loss of
generality, that none of the input graphs has any isolated vertices
Task: Find an isomorphism between the graphs, i.e. a permutation ¢ : V — V, such that
(u,v) € Ey if and only if (¢(u), p(v)) € Es.

The relation Rgr corresponding to the graph isomorphism problem is the set of all pairs
((G1,G9),) for which ¢ is an isomorphism between G and G5.

Proposition 1.4.2 Rgy is self-reducible.

Proof: To see that graph isomoprphism is self-reducible, consider an algorithm that uses a graph-
isomorphism membership oracle along the lines of the algorithm for SAT. Again, the algorithm
fixes the mapping ¢(-) vertex by vertex.

'Such graphs have no self-loops and no parallel edges, and so each vertex has degree at most |V| — 1.

6 LECTURE 1. THE P VS NP QUESTION

At each step, the algorithm fixes a single vertex w in GG, and finds a vertex v such that the
mapping ¢(u) = v can be completed into a graph isomorphism. To find such a vertex v, the
algorithm tries all candidate mappings ¢(u) = v for all unmapped v € V, using the oracle to
tell whether the mapping can still be completed into a complete isomorphism. If there exists an
isomorphism to begin with, such a mapping must exist, and hence the algorithm terminates with
a complete isomorphism.

We now show how a partial assignment can be decided by the oracle. The trick here is that
in order to check if u can be mapped to v, one can “mark” both vertices by a unique pattern, say
by rooting a star of |V leaves at both v and v, resulting in new graphs G}, GY. Next, query the
oracle whether there is an isomorphism ¢ between G and G). Since the degrees of u and v are
strictly larger than the degrees of other vertices in G and GY%, an isomorphism ¢’ between G| and
G, would exist if and only if there exists an isomorphism ¢ between G and G that maps u to v.

After the mapping of u is determined, proceed by incrementally marking vertices in V' with
stars of 2|V leaves, 3|V| leaves, and so on, until the complete mapping is determined. W

A point worth mentioning is that the definition of self-reducibility applies to relations and not to
languages. A particular language L € NP may be associated with more than one search problem,
and the self-reducibility of a given relation R (or the lack thereof) does not immediately imply
self-reducibility (or the lack thereof) for a different relation R’ associated with the same language
L.

It is believed that not every language in NP admits a self-reducible relation. Below we present
an example of a language in NP for which the “natural” search problem is believed not to be
self-reducible. Consider the language of composite numbers, i.e.,

Leoyp 2{N | N=ni-ny ni,ng > 1}

The language Looarp is known to be decidable in polynomial time by a randomized algorithm.
A natural relation Rcopp corresponding to Looarp is the set of all pairs (N, (n1,n2)) such that
N = nq - ng, where ny,ny > 1. Clearly, the length of (n1,mn2) is polynomial in the length of N, and
since Roonp can easily be decided in polynomial time, Looap is in NP.

However, the search problem over Rooarp requires finding a pair (nq,ng) for which N = ny -
ngy. This problem is computationally equivalent to factoring, which is believed not to admit any
(probabilistic) polynomial-time algorithm. Thus, it is very unlikely that Rcoarp is (random) self-
reducible.

Another language whose natural relation is believed not to be self-reducible is Lgg, the set
of all quadratic residues. The language Lgr contains all pairs (N,) in which z is a quadratic
residue modulo N, namely, there exists a y for which y?> = 2 (mod N). The natural search problem
associated with Lgg is Rgg, the set of all pairs ((V,z),y) such that y?> = 2 (mod N). It is well-
known that the search problem over Rgp is equivalent to factoring under randomized reductions.
Thus, under the assumption that factoring is “harder” than deciding Lgg, the natural relation
Rgr is not (random) self-reducible.

Bibliographic Notes
For a historical account of the “P vs NP Question” see [2].

The discussion regarding Quadratic Residiousity is taken from [1]. This paper contains also
further evidence to the existence of NP-relations which are not self-reducible.

1.4.

SELF REDUCIBILITY

M. Bellare and S. Goldwasser, “The Complexity of Decision versus Search”, SIAM Journal
on Computing, Vol. 23, pages 97-119, 1994.

Sipser, M., “The history and status of the P versus NP problem”, Proc. 24th ACM Symp.
on Theory of Computing, pages 603-618, 1992.

LECTURE 1. THE P VS NP QUESTION

Lecture 2

NP-completeness and Self
Reducibility

Notes taken by Nir Piterman and Dana Fisman

Summary: It will be proven that the relation R of any NP—complete language is
Self-reducible. This will be done using the SA7T self reducibility proved previously and
the fact that SA7 is NP—hard (under Levin reduction). Prior to that, a simpler proof
of the existence of N’P—complete languages will be given.

2.1 Reductions

The notions of self reducibility and N/P—completeness require a definition of the term reduction.
The idea behind reducing problem II; to problem Ily, is that if IIs is known to be easy, so is II; or
vice versa, if II; is known to be hard so is Il

Definition 2.1 (Cook Reduction):
A Cook reduction from problem Il to problem Il is a polynomial oracle machine that solves problem
I1y on input x while getting oracle answers for problem 1ls.

For example:

Let II; and II; be decision problems of languages L and L respectively and X1, the characteristic
1 r €L

0 x¢L

Then II; will be Cook reducible to Iy if exists an oracle machine that on input x asks query g,
gets answer X'1,(¢) and gives as output X'z, (x) (May ask multiple queries).

function of L defined to be X1(z) =

Definition 2.2 (Karp Reduction):
A Karp reduction (many to one reduction) of language Ly to language Lo is a polynomial time
computable function f:X* — X* such that © € Ly if and only if f(z) € Ls.

Claim 2.1.1 A Karp reduction is a special case of a Cook reduction.

Proof: Given a Karp reduction f(-) from L; to Ly and an input z to be decided whether x belongs
to Ly, define the following oracle machine:

1. On input 2 compute the value f(x).

10 LECTURE 2. NP-COMPLETENESS AND SELF REDUCIBILITY

2. Present f(x) to the oracle of L,.
3. The oracle’s answer is the desired decision.

The machine runs polynomial time since Step 1 is polynomial as promised by Karp reduction and
both Steps 2 and 3 require constant time.
Obviously M accepts z if and only if z isin L;. [

Hence a Karp reduction can be viewed as a Cook reduction.

Definition 2.3 (Levin Reduction):
A Levin reduction from relation Ry to relation R is a triplet of polynomial time computable functions
f,g and h such that:

1. x € L(Ry) < f(z) € L(Ry)
2. V(xay) € R, (f(x),g(x,y)) € Ry
3. Vz,z (f(z),z) € Ry = (x,h(x,2)) € Ry

Note: A Levin reduction from R; to Ry implies a Karp reduction of the decision problem (using
condition 1) and a Cook reduction of the search problem (using conditions 1 and 3).

Claim 2.1.2 Karp reduction is transitive.

Proof: Let f; : ¥* — X* be a Karp reduction from L, to L; and fy : ¥* — X* be a Karp
reduction from Lj to L,
The function fy o fo(+) is a Karp reduction from L, to L.:

e rcl, — fl(w) €Ly, <— fg(fl(x)) € L.

e f; and fy are polynomial time computable, so the composition of the functions is again
polynomial time computable.

Claim 2.1.3 Levin reduction is transitive.

Proof: Let (f1,91,h1) be a Levin reduction from R, to Ry and (f2,g2,h2) be a Levin reduction
from Ry to R.. Define:

A
o f3(x) = fa(fi(z))
A
o g3(z,y) = 92(f1(2), 91(z, y))
A
o h3(z,y) = h(z, he(f1(2),y))
We show that the triplet (fs, g3, hs) is a Levin reduction from R, to R.:

e r € L(R,) < f3(x) € L(R,)
Since:

z € L(R)) < fi(z) € L(Ry) <= fa(fi(2)) € L(R:) < f3(x) € L(R.)

2.2. ALL NP-COMPLETE RELATIONS ARE SELF-REDUCIBLE 11

i V(l’,y) € Ra) (f?,(l'),g?,(l',y)) € Rc
Since:
(7,y) € Ry = (f1(2),91(z,y)) € Ry = (fa(f1(2)), 92(f1(2), 91(x,y))) € R =
(f3($),g3(x,y)) € Rc

o Vr,z (fs(x),2) € Re = (x,h3(x,2)) € R,
Since:
(f3(x),2) € Re = (fo(f1(2)),2) € Re = (f1(2), ha(f1(2),2)) € Ry =>
(z, hi(x, ho(f1(x),2))) € Ry = (x,h3(x,2)) € R,

Theorem 2.4 If 1y Cook reduces to 11y and Iy € P then 11y € P.

Here class P denotes not only languages but also any problem that can be solved in polynomial
time.

Proof: We shall build a deterministic polynomial time Turing machine that recognizes II;:

As II; Cook reduces to Ily, there exists a polynomial oracle machine M; that recognizes II; while
asking queries to an oracle of Il,.

As II, € P, there exists a deterministic polynomial time Turing machine M; that recognizes Ils.
Now build a machine M, recognizer for II; that works as following:

e On input x, emulate M; until it poses a query to the oracle.

Present the query to the machine M, and return the answer to Mj.

Proceed until no more queries are presented to the oracle.

The output of Mj is the required answer.

Since the oracle and M> give the same answers to the queries, correctness is obvious.

Considering the fact that M; is polynomial, the number of queries and the length of each query
are polynomial in |z|. Hence the delay caused by introducing the machine My is polynomial in |z|.
Therefore the total run time of M is polynomial. [l

2.2 All NP-complete relations are Self-reducible

Definition 2.5 (NP—complete language):
A language L is N'P-complete if:

1. LENP

2. For every language L' in NP, L' Karp reduces to L.

These languages are the hardest problems in NP, in the sense that if we knew how to solve an

NP —complete problem efficiently we could have efficiently solved any problem in N"P. N"P—completeness
can be defined in a broader sense by Cook reductions. There are not many known NP —complete
problems by Cook reductions that are not N’P—complete by Karp reductions.

12 LECTURE 2. NP-COMPLETENESS AND SELF REDUCIBILITY

Definition 2.6 1. R is a NP relation if L(R) € NP

2. A relation R is N'P-hard under Levin reduction if any NP relation R' is Levin reducible
to R.

Theorem 2.7 For every NP relation R, if L(R) is N'P—complete then R is Self-reducible.

Proof: To prove the theorem we shall use two facts:
1. SAT is Self-reducible (was proved last lecture).
2. Rsar is N'P—hard under Levin reduction (will be proven later).

Given an NP relation R of an N'P—complete language, a Levin reduction (f,g,h) from R to
Rsar, a Karp reduction k from SAT to L(R) and z, the following algorithm will find y such that
(z,y) € R (provided that = € L(R)).

The idea behind the proof is very similar to the self reducibility of Rsa7:
1. Ask L(R)’s oracle whether = € L(R).
2. On answer 'no’ declare: z ¢ L(R) and abort.

3. On answer 'yes’ use the function f, that preserves the property of belonging to the language,
to translate the input z for L(R) into a satisfiable CNF formula ¢ = f(z).

4. Compute (o1, ..., 0,,) a satisfying assignment for ¢ as follows:
(a) Given a partial assignment o1, ..., o; such that @;(Z;11, ..., Tn) = @(O1, oy Tiy Tit1, Tigt 2y eery Tn) €
SAT, where 241, ..., %, are variables and oy, ..., 0; are constants.
(b) Assign x;,11 =1 and compute @; (1,219, ..., Tn) = P(O1, ey Tiy 1, Ti19y ony Tpy)
(c) Use the function £ to translate the CNF formula ¢;(1,z; 9, ...,2,) into an input to the
language L(R). Ask L(R)’s oracle wheather k(p;(1,z;t2,...,2,)) € L(R).

(d) On answer 'yes’ assign 0,11 = 1, otherwise assign ;11 = 0.

(e) Iterate until i =n — 1.

5. Use the function h that translates a pair = and a satisfying assignment o4, ..., 0, to ¢ = f(x)
into a witness y = h(z, (o1, ...,0,)) such that (x,y) € R.

Clearly (z,y) ¢ R. N

Note: The above argument uses a Karp reduction of SAT to L(R) (guaranteed by the NP-
completeness of the latter). One may extend the argument to hold also for the case one is only
given a Cook reduction of SAT to L(R). Specifically in stage 4(c) instead of getting the answer
to whether ¢;(1,x;y2,...,x,) is in SAT by quering on whether k(p;) is in L(R), we can get the
answer by running the oracle machine given in the Cook reduction (which makes queries to L(R)).

2.3. BounpepHarring IS NP—-COMPLETE 13

2.3 BoundedHalting is NP—complete

In order to show that indeed exist problems in N’P—complete (i.e. the class N'P—complete is not
empty) the language BH will be introduced and proved to be N'P—complete.

Definition 2.8 (Bounded Halting):
that accepts input x within t steps.

1. BH2 {((M},m,lt)

(M) is the description of a non-deterministic machine }

2. BH 2 {((M},m,lt)

(M) is the description of a deterministic machine and exists y whose
length is polynomial in |x| such that M accepts (z,y) within t steps.

The two definitions are equivalent if we consider the y wanted in the second as the sequence of non
deterministic choices of the first. The computation is bounded by ¢ hence so is y’s length.

A

Definition 2.9 Rpy 2 {(((M),a:, 1), 9) (M) is the description of a deterministic machine }

that accepts input (x,y) within t steps.

Once again the length of the witness y is bounded by ¢, hence it is polynomial in the length of the
input ((M),z,1%).

Directly from NP’s definition: BH € N'P.
Claim 2.3.1 Any language L in NP, Karp reduces to BH

Proof:
Given a language L in NP, implies the following:

e A witness relation Rj, exists and has a polynomial bound by (+) such that:
V(z,y) € Ri, [y| < br(|z])

e A recognizer machine My, for Ry, exists and its time is bounded by another polynomial pr(+).

=

The reduction maps x to f(z) = ((My), z, 1Pr(#1+0c(2D))) " which is an instance to BH by Version

2 of Definition 2.8 above.

Notice that the reduction is indeed polynomial since (M) is a constant string for the reduction
from L to BH. All the reduction does is print this constant string, concatenate the input x to it
and then concatenate a polynomial number of ones.

We will show now that = € L if and only if f(x) € BH:

z €L <=

Exists a witness y whose length is bounded by by (|z|) such that (z,y) € Ry <~

Exists a computation of My, with ¢ 2 Pr(|z| + br(|z|)) steps accepting (z,y) <=

((M),z,1!) € BH

|

Note: The reduction can be easily transformed into Levin reduction of Ry, to Ry with the identity

function supplying the two missing functions.
Thus BH € N'P—complete.

Corollary 2.10 There exist N'P—complete sets.

14 LECTURE 2. NP-COMPLETENESS AND SELF REDUCIBILITY

2.4 CircuitSatisfiability is NP—Complete

Definition 2.11 (Circuit Satisfiability):

1. A Circuit is a directed a-cyclic graph G = (V, E)) with vertices labeled:

output, /\7 \/7 Ty ey T,y 0,1
With the following restrictions:

e q vertex labeled by — has in-degree 1.

a vertex labeled by x; has in-degree 0 (i.e. is a source).

a vertex labeled by 0 (or 1) has in-degree 0.
e there is a single sink (vertex of out-degree 0), it has in-degree 1 and is labeled ’output’.

e in-degree of vertices labeled N\,\/ can be restricted to 2.

Given an assignment o € {0,1}™ to the variables x1, ..., 2y, C(o) will denote the value of
the circuit’s output. The value is defined in the natural manner, by setting the value of each
vertex according to the boolean operation it is labeled with. For example, if a vertex is labelled
N\ and the vertices with a directed edge to it have values a and b, then the vertexr has valu

al\b.

2. Circuit Satisfiability
cs £ {C: C is a circuit and exists o, an input to circuit C' such that C (o) = 1}

A
3. Res ={(C,0):C(0) =1}
The relation defined above is indeed an NP relation since:

1. o contains assignment for all variables z1,xo, ...,z appearing in C and hence its length is
polynomial in |C].

2. Given a couple (C, o) evaluating one gate takes O(1) (since in-degree is restricted to 2) and
in view that the number of gates is at most |C|, total evaluation time is polynomial in |C|.

Hence CS € N'P.
Claim 2.4.1 CircuitSatisfiability 18 NP—COmplete

Proof: As mentioned previously CS € N'P.

We will show a Karp reduction from BH to C'S, and since Karp reductions are transitive and BH
is N'P—complete, the proof will be completed. In this reduction we shall use the second definition
of BH as given in Definition 2.8.

Thus we are given a triplet ((M),z,1"). This triplet is in BH if exists a y such that the determin-
istic machine M accepts (z,y) within ¢ steps. The reduction maps such a triplet into an instance
of CS.

The idea is building a circuit that will simulate the run of M on (z,y), for the given z and a generic
y (which will be given as an input to the circuit). If M does not accept (x,y) within the first ¢
steps of the run, we are ensured that ((M),z,1%) is not in BH. Hence it suffices to simulate only
the first ¢ steps of the run.

Each one of these first ¢ configurations is completely described by the letters written in the first ¢
tape cells, the head’s location and the machine’s state.

2.4. CIRCUITSATISFIABILITY IS NP—COMPLETE 15

Hence the whole computation can be encoded in a matrix of size ¢ x t. The entry (4,7) of the
matrix will consist of the contents of cell j at time ¢, an indicator whether the head is on this cell
at time ¢ and in case the head is indeed there the state of the machine is also encoded. So every
matrix entry will hold the following information:

e a;; the letter written in the cell
e h;; an indicator to head’s presence in the cell
e ¢; ; the machine’s state in case the head indicator is 1 (0 otherwise)

The contents of matrix entry (7, j) is determined only by the three matrix entries (i—1,5—1), (i—1,5)
and (i —1,7+1). If the head indicator of these three entries is off, entry (7, j) will be equal to entry
(1 —1,7).

The following constructs a circuit that implements the idea of the matrix and this way emulates
the run of machine M on input z. The circuit consists of ¢ levels of ¢ triplets (a; ;, ki j, i ;) where
0<i<t 1< 5 <t Leveliof gates will encode the configuration of the machine at time 7. The
wiring will make sure that if level ¢ represents the correct configuration, so will level ¢ + 1.

The (i, j)-th triplet, (a; ;, ki j, g; j), in the circuit is a function of the three triplets (i — 1,7 — 1), (i —
1,7) and (i — 1,5 +1).

Every triplet consists of O(log n) bits, where n 2 |((M),z,1")]:

e Let GG denote the size of M’s alphabet. Representing one letter requires log G many bits:
log G = O(log n) bits.

e The head indicator requires one bit.

e Let K denote the number of states of M. Representing a state requires log K many bits:
log K = O(log n) bits.

Note that the machine’s description is given as input. Hence the number of states and the size of
the alphabet are smaller than input’s size and can be represented in binary by O(log n) many bits
(Albeit doing the reduction directly from any NP language to C'S, the machine My, that accepts
the language L wouldn’t have been given as a parameter but rather as a constant, hence a state or
an alphabet letter would have required a constant number of bits).

Every bit in the description of a triplet is a boolean function of the bits in the description of three
other triplets, hence it is a boolean function of O(log n) bits.

Claim 2.4.2 Any boolean function on m wvariables can be computed by a circuit of size m2™

Proof: Every boolean function on m variables can be represented by a (m 4+ 1) x 2™ matrix.
The first m columns will denote a certain input and the last column will denote the value of the
function. The 2™ rows are required to describe all different inputs.

Now the circuit that will calculate the function is:

For line [in the matrix in which the function value is 1 (f(I) = 1), build the following circuit:

G=(C N v ANC AN -u)

input y;=1 input y;=0
Now take the OR of all lines (value 1):
cC= V
F=1

The circuit of each line is of size m and since there are at most 2™ lines of value 1, the size of the
whole circuit is at most m2™. |

16 LECTURE 2. NP-COMPLETENESS AND SELF REDUCIBILITY

So far the circuit emulates a generic computation of M. Yet the computation we care about
refers to one specific input. Similarly the initial state should be gy and the head should be located
at time 0 in the first location. This will be done by setting all triplets (0,) as following:

Let = x12923...2,m and n 2 |((M), x,1")| the length of the input.

o an. = Ti 1 <7 <m constants set by input =
077 yj—m m<j <t these are the inputs to the circuit

o 1 57=1
'h‘“‘{o j#1

I qgo j =1 where qg is the initial state of M
0,5 0] 7& 1

The y elements are the variables of the circuit. The circuit belongs to C'S if and only if there exists
an assignment o for y such that C(o) = 1. Note that y, the input to the circuit plays the same
role as the short witness y to the fact that ((M),z,1") is a member of BH. Note that (by padding
y with zeros), we may assume without loss of generality that |y| =¢ — |z|.

So far (on input y) the circuit emulates a running of M on input (z,y), it is left to ensure that
M accepts (z,y). The output of the circuit will be determined by checking whether at any time
the machine entered the 'accept’ state. This can be done by checking whether in any of the ¢ x ¢
triplets in the circuit the state is ‘accept’.

Since every triplet (7, 7) consists of O(log n) bits we have O(log n) functions associated with each
triplet. Every function can be computed by a circuit of size O(n log n), so the circuit attached to
triplet (i,) is of size O(n log® n).

There are t x t such triplets so the size of the circuit is O(n? log? n).

Checking for a triplet (4, j) whether g; ; is 'accept’ requires a circuit of size O(log n). This check is
implemented for ¢ x ¢ triplets, hence the overall size of the output check is O(n? log n) gates.
The overall size of the circuit will be O(n3 log? n).

Since the input level of the circuit was set to represent the right configuration of machine M
when operated on input (z,y) at time 0, and the circuit correctly emulates with its i** level the
configuration of the machine at time ¢, the value of the circuit on input y indicates whether or not
M accepts (z,y) within ¢ steps. Thus, the circuit is satisfiable if and only if there exists a y so that
M accepts (z,y) within ¢ steps, i.e. ((M),z,1") is in BH.

For a detailed description of the circuit and full proof of correction see Appendix.

The above description can be viewed as instructions for constructing the circuit. Assuming that
building one gate takes constant time, constructing the circuit following these instructions will be
linear to the size of the circuit. Hence, construction time is polynomial to the size of the input
(M), z,1").

|

Once again the missing functions for Levin reduction of Rpy to Rcg are the identity functions.

2.5. Rsar IS NP-COMPLETE 17

2.5 Rsur is N'P—complete

Claim 2.5.1 Rsa7 is N'P—hard under Levin reduction.

Proof: Since Levin reduction is transitive it suffices to show a reduction from Rgg to Rsat:
The reduction will map a circuit C' to an C/NF expression ¢, and an input y for the circuit to an
assignment 3’ to the expression and vice versa.

We begin by describing how to construct the expression ¢, from C.

Given a circuit C' we allocate a variable to every vertex of the graph. Now for every one of the
vertices v build the C N F' expression ¢, that will force the variables to comply to the gate’s function:

1. For a — vertex v with edge entering from vertex wu:

o Wiite py(0,u) = (0}) A~V)
e It follows that ¢,(v,u) =1 if and only if v = —u

2. For a \/ vertex v with edges entering from vertices u, w:

o Write oy (v,u,w) = (uVwV-v) A(uV-wVv) A(~uVwVo) A(~uV -wVwv))
e It follows that ¢, (v,u,w) =1 if and only if v = u \/ w

3. For a A vertex v with edges entering from vertices u, w:

e Similarly write v, (v, u,w) = (v VwV) A(wV ~wV —v) A(-uV wV —wv) A(-u —w\ v))
e It follows that o, (v,u,w) =1 if and only if v = u A w

4. For the vertex marked output with edge entering from vertex w:
Write Qoutput(u) = u

We are ready now to define o, = A ¢y, where V is the set of all vertices of in-degree at least one
veV
(i.e. the constant inputs and variable inputs to the circuit are not included).

The length of ¢, is linear to the size of the circuit. Once again the instructions give a way to build
the expression in linear time to the circuit’s size.

We next show that C' € C'S if and only if ¢, € SAT. Actually, to show that the reduction is a
Levin-reduction, we will show how to efficiently transform witnesses for one problem into witnesses
for the other. That is, we describe how to construct the assignment y’ to ¢, from an input y to
the circuit C' (and vice versa):

Let C' be a circuit with m input vertices labeled z1, ..., z,, and d vertices labeled \/, A and — namely,
V1, ..., Uq. An assignment y = y1, ..., ¥ to the circuit’s input vertices will propagate into the circuit
and set the value of all the vertices. Considering that the expression ¢, has a variable for every
vertex of the circuit C, the assignment 3’ to the expression should consist of a value for every one
of the circuit vertices. We will build 4" = 5, s ¥z, > Yo, s Yp» -5 Yo, as following:

e The variables of the expression that correspond to input vertices of the circuit will have the
same assignment: y, = yp, 1 <h <m.

e The assignment y;l to every other expression variable v; will have the value set to the corre-
sponding vertex in the circuit, 1 <[< d.

18 LECTURE 2. NP-COMPLETENESS AND SELF REDUCIBILITY

Similarly given an assignment to the expression, an assignment to the circuit can be built. This
will be done by using only the values assigned to the variables corresponding to the input vertices
of the circuit. It is easy to see that:

C € CS < exists y such that C(y) =1 <= ¢ (V) =1<= ¢, € SAT 11

Corollary 2.12 SAT is N'P—complete

Bibliographic Notes

The initiation of the theory NP-completeness is attributed to Cook [1], Levin [4] and Karp [3]: Cook
has initiated this theory in the West by showing that SAT is NP-complete, and Karp demonstrated
the wide scope of the phenumena (of NP-completeness) by demonstrating a wide variety of NP-
complete problems (about 20 in number). Independently, in the East, Levin has shown that half a
dozen different problems (including SAT) are NP-complete. The three types of reductions discussed
in the lecture are indeed the corresponding reductions used in these papers. Whereas the Cook—
Karp exposition is in terms of decision problems, Levin’s exposition is in terms of search problems —
which explains why he uses the stronger notion of reduction.

Currently thousands of problems, from an even wider range of sciences and technologies, are
known to be NP-complete. A partial (out-dated) list is provided in Garey and Johnson’s book [2].

Interestingly, almost all reductions used to establish NP-completeness are much more restricted
than allowed in the definition (even according to Levin). In particular, they are all computable in
logarithmic space (see next lectures for definition of space).

1. Cook, S.A., “The Complexity of Theorem Proving Procedures”, Proc. 3rd ACM Symp. on
Theory of Computing, pp. 151-158, 1971.

2. Garey, M.R., and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman and Company, New York, 1979.

3. Karp, R.M., “Reducibility among Combinatorial Problems”, Complexity of Computer Com-
putations, R.E. Miller and J.W. Thatcher (eds.), Plenum Press, pp. 85-103, 1972.

4. Levin, L.A., “Universal Search Problems”, Problemy Peredaci Informacii 9, pp. 115-116,
1973. Translated in problems of Information Transmission 9, pp. 265-266.

Appendix: Details for the reduction of BH to CS

We present now the details of the reduction from BH to C'S. The circuit that will emulate the run
of machine M on input = can be constructed in the following way:

Let ((M),z,t) be the input to be determined whether is in BH, where z = z1z3...2,, and n 2
|((M}), z,t)| the length of the input.

We will use the fact that every gate of in-degree r can be replaced by r gates of in-degree 2. This
can be done by building a balanced binary tree of depth log 7. In the construction ‘and’,’ or’ gates
of varying in-degree will be used. When analyzing complexity, every such gate will be weighed as
its in-degree.

The number of states of machine M is at most n, hence log n bits can represent a state. Similarly
the size of alphabet of machine M is at most n, and therfore log n bits can represent a letter.

2.5. Rsar IS NP-COMPLETE 19

1. Input Level

y is the witness to be entered at a later time (assume y is padded by zeros to complete length
t as explained earlier).

o an.—d i 1 <7 <m constants set by input =
0.0~ Yj—m m < j <t these are the inputs to the circuit

1 j=1
* hoj = { 0 j#1
go j =1 where qp is the initial state of M

As said before this represents the configuration at time 0 of the run of M on (z,y).
This stage sets O(n log n) wires.

2. For 0 <i<t, hjy1,; will be wired as shown in figure 1:

hit1,

Vv

hij—1 hi hij+1

C Vo ((gij-1=q) N aij-1 = a) C Vo (@i =q) N aij1 = a@
(g,0)€R) (q,0)€eL

20

LECTURE 2. NP-COMPLETENESS AND SELF REDUCIBILITY

The definition of groups R, S, L is:

R={(q.a):q€KAac{0,1}\8(g,a) = (+, R)}
S = {(g.0): g€ K Na € {0,1} Ab(q,a) = (,%,5)}
L2 {(g.a):q€ KNae{0,1}\b(g.a) = (x,% L)}

The equations are easily wired using an 'and’ gate for every equation.

The size of this component:

The last item on every entry in the relation ¢ is either R,L or S. For every one of these
entries there is one comparison above. Since § is bounded by n there are at most n such
comparisons. A comparison of the state requires O(log n) gates. Similarly a comparison of
the letter requires O(log n) gates. Hence the total number of gates in figure 1 is O(n log n)

3. For 0 <i<t, gi+1,; will be wired as shown in figure 2:

qt+1,J

/ ,] 1 ,] hi,j-l—l
((gij—1 = @) N(aij—1 = a) A D) \/ ((Qi,j-i-l = q) N(aij+1 =a) \p)
(q,ayp)ER (g,a,p)€

((gi; = @) Naij = a) Ap)
(¢,a ,p)

figure 2

The definition of groups R, S, L in:
A

R={(¢,a,p) : ¢;p € K\Na € {0,1} A6(q,a) = (p,*, R)}
AN

S={(g,a,p) : ¢;p € KN\a €{0,1} Aé(g,a) = (p,%,5)}

L2 ((g.00) s .0 € K Ao € (0.1} AG(a,0) = (9, 1)
Once again every comparison requires O(log n) gates. Every state is represented by log(n)
bits so the figure has to be multiplied for every bit.
Overall complexity of the component in figure 2 is O(n log? n).

2.5. Rsar IS NP-COMPLETE 21

4. For 0 <i <t, aj41,; will be wired as shown in figure 3:

Ai+1,5

N\

(g,a,t)€T

i h; j V(g = q) Naij = a) /\@ hi

figure 3

ThAe definition of T is:

T2 {(ga,t): g€ K Nat € {0,1} Ab(g,a) = (+,1,4)}

Once again all entries of the relation § have to be checked, hence there are O(n) comparisons
of size O(log n).

Since the letter is represented by O(log n) bits, the overall complexity of the component in
figure 3 is O(n log? n).

5. Finally the output gate of the circuit will be a check whether at any level of the circuit the
state was accept. This will be done by comparing ¢; j, 1 <j <t, 0 <47 <t to accept’. There
are t x t such comparisons, each of them takes O(log n) gates. Taking an OR on all these
comparisons costs O(n? log n) gates.

For every cell in the ¢ x ¢t matrix we used O(n3) gates. The whole circuit can be built with O(n®)
gates. With this description, building the circuit is linear to circuit’s size. Hence, this can be done
in polynomial time.

Correctness: We will show now that ((M),z,1") € BH if and only if Cy,zp) € CS

Claim 2.5.2 Gates at level i of the circuit represent the exact configuration of M at time i on
input (x,y).

Proof: By induction on time i.
e =0, stage 1 of the construction ensures correctness.

e Assume C’s gates on level i correctly represent M’s configuration at time ¢ and prove for
1+ 1:
Set j as the position of the head at time i (h; ; = 1).

— The letter contents of all cells (i + 1,k),k # j does not change. Same happens in the
circuit since (a; 5 A(—hik)) = a; -

— Likewise the head can not reach cells (i + 1,k) where £ < (j —1) or £ > (j + 1).
Respectively h; = 0 since h; x—1 = hij = h;g4+1 = 0.

22 LECTURE 2. NP-COMPLETENESS AND SELF REDUCIBILITY

— The same argument shows that state bits for all gates of similar k£’s will be reset to zero.

Let 6(gij, aij) = (¢,a,m)
We shall look into what happens when machine’s head stays in place, i.e. m = S. The other
two posibilities for movement of the head are similar.

— Cell (i,7) on the tape will change into a. Since h; ; = 1 and correspondingly (¢;; =
¢ N\aij=a;; \a) will return a
— The head stays in place and respectively:
1. hit1,j—1 = 0 since h; j = 1 but 6(g; ;,ai ;) is not (x,*, L).
2. hjy1,j = 1since h; ; =1 and one 6(g; j,a; ;) = (,*,S5) returns 1.
3. hiy1,j+1 = 0 since h; ; =1 but 6(g; ;,a; ;) is not (x,*, R).
— The machine’s next state is ¢, and respectively:
1. Similarly ¢;4+1,;—1 and g;41 41 will be reset to zero.

2. ¢i+1,; will change into ¢ since h; ; = 1 and (qm' =qjNai; = a;; \ q) will return g.

So at any time 0 <14 < t, gate level ¢ correctly represents M’s configuration at time .

Lecture 3

More on NP and some on DTIME

Notes taken by Michael Elkin and Ekaterina Sedletsky

Summary: In this lecture we discuss some properties of the complexity classes P,
NP and NPC (theorems of Ladner and Levin). We also define new complexity classes
(DTime;), and consider some relations between them.

3.1 Non-complete languages in NP

In this lecture we consider several items, that describe more closely the picture of the complexity
world. We already know that P C NP and we conjecture that it’s a strict inequality, although
we can’t prove it. Another important class that we have considered is NP — complete (NPC)
problems, and as we have already seen, if there is a gap between P and NP then the class of NPC
problems is contained in this gap (NPC C NP\P).

The following theorem of Ladner tells us additional information about this gap NP\ P, namely
that NPC is strictly contained in NP\P.

Formally,

Theorem 3.1 If P # NP then there exists a language L € (NP\P)\NPC.

That is, NP (or say SAT) is not (Karp) reducible to L. Actually, one can show that SAT is not
even Cook-reducible to L.

Oded'’s Note: Following is a proof sketch.

We start with any B € NP\P, and modify it to B' = BN S, where S € P, so that
B' is neither NP-complete nor in P. The fact that S is in P implies that B’ is in NP.
The “seiving” set S will be constructed to to foil both all possible polynomial-time
algorithms for B’ and all possible reductions. At the extreme, setting S = {0,1}*, foil
all algorithms since in this case B’ = B ¢ P. On the other hand, setting S = (), foils
all possible reductions since in this case B' = () and so (under P # NP) cannot be
NP-complete (as reducing to it gives nothing). Note that the above argument extends
to the case S (resp., S) is a finite set.

The “seiving” set S is constructed iteratively so that in odd iterations is fails machines
from a standard enumeration of polynomial-time machines (so that in iteration 2i—1 we
fail the it machine). (Here we don’t need to emulate these machines in polynomial-time

23

24 LECTURE 3. MORE ON NP AND SOME ON DTIME

in length of their inputs.) In even iterations we fail oracle-machines from a standard
enumeration of such machines (which correspond to Cook-reductions of B to B') so
that in iteration 2i we fail the i*" oracle-machine.

The iteration number is determined by a deciding algorithm for S which is operates
as follows. For simplicity, the algorithm puts z in S iff it puts 1l in S. The decision
whether to put 1" in S is taken as follows. Starting with the first iteration, and using a
time-out mechanism with a fixed polynomial bound b(n) (e.g., b(n) = n? or b(n) = logn
will do), we try to find a input z € {0,1}* so that the first polynomial-time algorithm,
Ay, fails on z (i.e., Ai1(z) # xB(2)). In order to decide xp(z) we run the obvious
exponential-time algorithm, but z is expected to be much shorter than n (or else we halt
by time-out before). We scan all possible z’s in lexicographic order until reaching time-
out. Once we reach time-out while not finding such bad z, we let 1™ € S. Eventually,
for a sufficiently large n we will find a bad z within the time-out. In such a case we let
1™ € S and continue to the second iteration, where we consider the first polynomial-
time oracle-machine, My. Now we try to find an input z for B on which My, with
oracle S. Note that we know the value n' < n so that 1" was the first string not
put in S. So currently, S is thought of as containing only strings of length smaller
than n'. We emulate M, while answering its queries to B' = BN S accordingly, using
the exponential-time algorithm for deciding B (and our knowledge of the portion of S
determined so far). We also use the exponential-time algorithm for B to check if the
recuction of z to B’ is correct for each z. Once we reach time-out while not finding such
bad z, we let 1™ ¢ S. Again, eventually, for a sufficiently large n we will find a bad z
within the time-out. In such a case we let 1™ € S and continue to the third iteration,
where we consider the second polynomial-time algorithm, and so on.

Some implementation details are provided below. Specifically, the algorithm T below
computes the number of iterations completed wrt input x € {0,1}".

Proof: Let B € NP\P. Let Ag, Aj,... be the enumeration of all polynomial time bounded
Turing machines, that solve decision problems and My, My, ... be the enumeration of polynomial
time bounded oracle Turing machines. Let L(A;) denote the set recognized by A; and for every set
S let L(M?) to be the set recognized by machine M; with oracle S.

We construct a polynomial time bounded Turing machine 7" with range {1}* in such a way
that, for B’ = {z € B : |T(z)| is even}, both B’ ¢ P and B ¢ B’ (i.e., B is not Cook reducible to
B'). Tt follows that B' ¢ PUNPC.

We show that for any such T, B’ < B (B’ is Karp reducible to B) and B’ € NP follows, since
diciding B’ can be done by deciding B and B € NP.The Karp-reduction (of B’ to B), denoted
f, is defined as follows. Let zyp ¢ B. (We assume that B # ¥*, because otherwise B € P). The
function f will compute |T'(x)| and if |T'(x)| is even it will return = and otherwise it will return .
Now if x € B’, then x € B and |T(z)| is even, hence f(z) = x € B. Otherwise x ¢ B’ and then
there are two possibilities.

1. If z ¢ B, then for even |T'(x)| holds f(x) =z, and for odd |T'(z)| holds f(z) = xy, and so for
any x holds f(z) ¢ B.

2. If z € B and |T'(x)| is odd, then f(z) =xz¢ ¢ B.

(Recall that = ¢ B’ rules out “z € B and even |T'(x)|”)
To complete the construction we have to build a Turing machine 7" such that

3.2. OPTIMAL ALGORITHMS FOR NP 25

(1) B e {x € B:|T(x)|is even} # L(A4;), for any i =0,1,2,... (and so B’ ¢ P)
(2) L(MP') # B, for any i = 0,1,2,... (and so B % B’).

A machine T that satisfies these conditions may be constructed in the following way:

On input A (empty string), 7 prints A\. On an input x of length n where = # 0™ (unary), T
prints T'(0™). It remains to say what 7' does on inputs of the form 0™ where n > 1.

On input 0™ where n > 1, T does the following:

1. For n moves, try to reconstruct the sequence T'(\),7(0),T(0%),.... Let T(0™) be the last
number of this sequence that is computed.

2. We consider two cases depending on the parity of |7(0")|. We associate B with an exponential-
time algorithm decoding B (by scanning all possible NP-witnesses).

Case(i): |T(0™)] is even. Let i = |T'(0™)|/2. For n moves, try to find a z such that B'(z) #
A;i(z). This is done by successively simulating B and T (to see what B’ is) and A;, on
inputs A, 0,1,00,01,.... If no such z is found, print 12**; otherwise, print 12*+1,

Case(ii): |T(0™)] is odd. Let i = (|7°(0™)| — 1)/2. For n moves, try to find a z such that
B(z) # MP'(z). This is done by simulating an algorithm B and the procedure M;
successively on inputs A,0,1,00,01,.... In simulating M; on some input, whenever M;
makes a query of length at most m, we answer it according to B’ determined by B and
the values of T' computed in Step (1). In case the query has lengths exceeding m, we
behave as if we have already completed n steps. (The moves in this side calculation are

counted among the n steps allowed.) If no such z is found, print 12**!; otherwise, print
12*i+2.

Such a machine can be programmed in a Turing machine that runs in polynomial time. For this
specific machine 7" we obtain that B’ = {x € B : |T'(z)| is even}, satisfies: B’ € NP\P and
B¢cB'=— B'¢ NPC = B' ¢ (NP\P)\NPC. 1

The set B’ constructed in the above proof is certainly not a natural one (even in case B is). We
mention that there are some natural problems conjectured to be in (NP\P)\NPC: For example,
Graph Isomorphism (the problem of whether two graphs are isomorphic).

3.2 Optimal algorithms for NP

The following theorem, due to Levin, states an interesting property of the class NP. Informally,
Levin’s Theorem tells us that exists optimal algorithm for any NP search problem.

Theorem 3.2 For any NP-relation R there exist a polynomial Pgr(-) and an algorithm Ag(-)
which finds solutions whenever they exist, so that for every algorithm A which finds solutions and
for any input

timea, () < O(timea(z) + Pr(|x])), (3.1)

where timea(x) is the running time of the algorithm A on input x.

This means that for every algorithm A exists a constant ¢ such that for any sufficiently long x

timea,(z) < cx (timea(z) + Pr(|z])).

26 LECTURE 3. MORE ON NP AND SOME ON DTIME

This ¢ is not a universal constant, but an algorithm-specific one (i.e., depends on A). The algorithm
Ap is optimal in the following sense: for any other algorithm A there exists a constant ¢ such that
for any sufficiently long =

time (x) > 1 « time, (z) — Qr(|z)),

where Qr(|z|) = ¢ * Pr(|z]).

The algorithms we are talking about are not TM’s. For proving the theorem, we should define
exactly the computational model we are working with. Either it will be a one-tape machine or
two-tape one and etc. Depending on the exact model the constant ¢ may be replaced by some
low-n function like logn. A constant may be achieved only in more powerful/flexible models of
computation that are not discussed here.

We observe also that although the proof of Levin’s Theorem is a constructive one, it’s completely
impractical, since as we’ll see it incorporates a huge constant in its running time. On the other
hand, it illustrates an important asymptotic property of the NP class.

Proof: The basic idea of the proof is to have an enumeration of all possible algorithms. This set
is countable, since the set of all possible deterministic TM’s is countable. Using this enumeration
we would like to run all the algorithms in parallel. It’s, of course, impossible since we can’t run a
countable set of TM’s in parallel, but the solution to the problem is to run them in different rates.

There are several possible implementations of this idea. One of the possibilities is as following.
Let us divide the execution of the simulating machine into rounds. The simulating machine runs
machine 4 at round r if and only if r = 0 (mod i?). That is, we let i’th machine to make ¢ steps
during i2 * ¢ rounds of the simulating machine. Also the number of steps made in these r = i? ¢
rounds is 37~ [gz| <.

Such a construction would fail if some of these machines would provide wrong answers. To solve
this difficulty we ”force” the machines to verify the validity of their outputs. So, without loss of
generality, we assume that each machine is augmented by a verifying component that checks the
validity of machine’s output. Since the problem is in NP, verifying the output takes polynomial
amount of time. When we estimate the running time of the algorithm Ap, we take into account
this polynomial amount of time and it is the reason that Pg arises in Eq. (3.1). So, without loss of
generality, the outputs of the algorithms are correct.

Another difficulty, is that some of these machines could not have sufficient amount of time to
halt. On the other hand, since each of the machines solves the problem, it is sufficient for us that
one of them will halt.

Levin’s optimal algorithm Apg is this construction running interchangeably all these machines.

We’ll claim the following property of the construction.

Claim 3.2.1 Consider A that solves the problem. Let ¢ be the position of A in the enumeration of
all the machines. Let timey(-) be the running time of A. It is run in Ag in % rate. Then Ag

runs at most f(i)xtimey(-).

We took f(i) = (i + 1)2, but that is not really important: we observe that i is a constant (and
thus, so is f(i)). Of course, it’s a huge constant, because each machine needs millions of bits to be
encoded (even the simplest deterministic TM that does nothing needs several hundreds of bits to
be encoded) and the index of machine M in the enumeration (i.e. i) is i ~ 2/l where |M| is the
number of bits needed to encode machine M and then f(i) will be (i + 1)2 = (2™l 4 1)2. (This
constant makes the algorithm completely impractical.) i

3.3. GENERAL TIME COMPLEXITY CLASSES 27

3.3 General Time complexity classes

The class P was introduced to capture our notion of efficient computation. This class has some
“robustness” properties which make it convenient for investigation.

1. P is not model-dependent: Remain the same if we consider one tape TM or two tape TM.
This remains valid for any ”reasonable” and ”general” enough model of computation.

2. P is robust under ”"Reasonable” changes to an algorithm: Closed classes under “reasonable”
changes of the algorithm, like flipping the output and things like that. This holds for P, but
probably not for NP and NPC. The same applies also for (3) and (4).

3. Closed under serial composition: Concatenation of two (efficient) algorithms from a class will
produce another (efficient) algorithm from the same class.

4. Closed under subroutine operation: Using one algorithm from a class as a subroutine of
another algorithm from the same class provides an algorithm from the class (the class is set
of problems and when we are talking about an algorithm from the class we mean an algorithm
for solving a problem from the class and the existence of this algorithm is evidence that the
problem indeed belongs to this class).

None of these nice properties holds for classes that we will now define.

3.3.1 The DTime classes

Oded’s Note: DTime denotes the class of languages which are decideable within a specific
time-bound. Since this class specifies one time-bound rather than a family of such
bounds (like polinomial-time), we need to be soecific with respect to the model of
computation.

Definition 3.3 DTime; (t(-)) is the class of languages decidable by a deterministic i-tape Turing
Machine within t(-) steps. That is, L € DTime; (t(-)) if there exists a deterministic i-tape Turing
Machine M which accepts L so that for any x € {0,1}*, on input x machine M makes at most
t(|z]) steps.

Usually, we consider i = 1 or ¢ = 2 talking about one- and two-tape TM’s respectively. When we’ll
consider space complexity we’ll find it very natural to deal with 3-tape TM. If there is no index in
DTime, then the default is ¢ = 1.

Using this new notation we present the following theorem:
Theorem 3.4 For every function t(-) that is at least linear
DTimes(t(-)) € DTimey (t(-)?)

The theorem is important in the sense that it enables us sometimes to skip the index, since with
respect to polynomial-time computations both models (one-tape and two-tape) coincide. The proof
is by simulating the two-tape TM on a one-tape one.

Proof: Consider a language L € DTimey(t(-)). Therefore, there exists a two-tape TM M; which
accepts L in O(t(-)). We can imagine that the tape of a one-tape TM as divided into 4 tracks. We

28 LECTURE 3. MORE ON NP AND SOME ON DTIME

can construct Mo, a one-tape TM with 4 tracks, 2 tracks for each of M;’s tapes. One track records
the contents of the corresponding tape of M; and the other is blank, except for a marker in the cell
that holds the symbol scanned by the corresponding head of M;. The finite control of My stores
the state of My, along with a count of the number of head markers to the right of Ms’s tape head.

Each move of M; is simulated by a sweep from left to right and then from right to left by the
tape head of My, which takes O(#(-)) time. Initially, Ms’s head is at the leftmost cell containing
a head marker. To simulate a move of M;, My sweeps right, visiting each of the cells with head
markers and recording the symbol scanned by both heads of M;. When M crosses a head marker,
it must update the count of head markers to the right. When no more head markers are to the
right, My has seen the symbols scanned by both of M;’s heads, so My has enough information to
determine the move of M;. Now M, makes a pass left, until it reaches the leftmost head marker.
The count of markers to the right enables Mj to tell when it has gone far enough. As Mj passes
each head marker on the leftward pass, it updates the tape symbol of My ”scanned” by that head
marker, and it moves the head marker one symbol left or right to simulate the move of M;. Finally,
Ms changes the state of M; recorded in Mj’s control to complete the simulation of one move of
M. If the new state of M is accepting, then My accepts.

Finding the mark costs O(#(+)), and as there are not more than ¢(-) moves, totally the execution
costs at most O(t2(-)). W

The next theorem is less important and brought from elegancy considerations, and says that in
general one cannot do a better simulation than one in Theorem 3.
We recall the definition of ”O”, ”Q” and ”0” notations:

e f(n) =0(g(n)) means that exists ¢ such that for any sufficiently large n f(n) < c* g(n).

e f(n) =Q(g(n)) means that exists ¢ > 0 such that for any sufficiently large n f(n) > cxg(n).

e f(n) =0(g(n)) means that for any c exists IV such that for all n > N it holds f(n) < cxg(n).
Theorem 3.5 DTimes(O(n)) is not contained in DTime;(o(n?)).

We note that it’s much harder to prove that some things are ”impossible” or ”"can not be done”,
than the opposite, because for the latter, constructive proofs can be used.

There are several possible ways to prove the theorem. The following one uses the notion of
communication complexity.

Proof: Define language L = {zz : x € {0,1}*}. This language L is clearly in DTimes(O(n)).
We will show that L ¢ DTime;(o(n?)) by “reduction” to a communication complexity problem.

Introduce, for the sake of proof, computational complexity model: two parties A and B have
two strings, A has o € {0,1}" and B has § € {0,1}", respectively. Their goal is to calculate
f(a, B), where f is a function from {0,1}" % {0,1}" to {0,1}. At the end of computation both
parties should know f(«, 3).

Let us also introduce a notation Ry(f) to be the minimum expected cost of a randomized
protocol, that computes f with zero error.

In our case it is sufficient to consider Equality (EQ) function defined by

EQ(«a, B) Cf it a = B and 0 otherwise.

We state without proof a lower bound on the randomized zero-error communication complexity

of EQ.

3.3. GENERAL TIME COMPLEXITY CLASSES 29

Ry(EQ) = (n), (3.2)

The lower bound can be proven by invoking the lower bound on the “nondeterministic communica-
tion complexity” of E(Q, and from the observation that nondeterminism is generally stronger than
(zero-error!) randomization: Intuitively, if a randomized algorithm reaches the solution with some
non-zero probability, then there is a sequence of values of flipped coins that causes the randomized
algorithm to reach the solution. The nondeterministic version of the same algorithm could just
guess correctly all these coins’ values and to reach the solution as well.

We now get back to the proof. Suppose for contradiction, that there exists a one-tape Turing
machine M which decides L in o(n?) time. Then we will build a zero-error randomized protocol IT
that solves EQ in expected complexity o(n), contradicting Eq. (3.2).

This protocol 1I, on input « and S each of length n simulates the Turing machine on input
«0™B0™ in the following way. They output 1 or 0 depending on whether the machine accepts or
rejects this input. They first choose together, uniformly at random, a location at the first 0-region
of the tape. The party A simulates the machine whenever the head is to the left of this location,
and the party B whenever the head is to the right of this location. Each time the head crosses this
location only the state of the finite control (O(1) bits) need to be sent. If the total running time of
the machine is o(n?), then the expected number of times it crosses this location (which has been
chosen at random among n different possibilities) is at most o(n), contradicting Eq. (3.2).

Therefore, we have proved that a one-tape Turing machine which decides L runs Q(n?) time.

An alternative way of proving the theorem, a direct proof, based on the notion of a crossing
sequence, is given in the Appendix.

3.3.2 Time-constructibility and two theorems

Definition 3.6 A function f: N — N 1is time-constructible if there exists an algorithm A st. on
input 1™, A runs at most f(n) steps and outputs f(n) (in binary).

One motivation to the definition of time-constructible function is the following: if the machine’s
running time is this specific function of input length, then we can calculate the running time within
the time required to perform the whole calculation. This notion is important for simulating results,
when we want to ”efficiently” run all machines which have time bound #(-). We cannot enumerate
these machines. Instead we enumerate all machines and run each with time bound #(-). Thus, we
need to be able to compute #(-) within time ¢(-). Otherwise, just computing ¢(-) will take too much
time.

n

For example, n?, 2", n™ are all time-constructible functions.

Time Hierarchy: A special case of the Time Hierarchy Theorem asserts that

for every constant ¢ € N, for any i € {1,2}
DTime;(n®) C DTime;(n°t")

(where A C B denotes that A is strictly contained in B)

30 LECTURE 3. MORE ON NP AND SOME ON DTIME

That is, in this case there is no ”complexity gaps” and the set of problems that can be solves grows
whewn allowing more time: There are computational tasks that can be done in O(n°t!), but can

not be done in O(n¢). The function n°*! (above) can be replaced even by ne*ts ete. The general
case of the Time Hierarchy Theorem is

Theorem 3.7 (Time Hierarchy): For every time-constructible functions t1,ts : N — N such that

i t1(n) = log ta(n)

=0
n—oo t2 (n)

then
DTime;(t1(n)) C DTime;(t2(n)).

The proof for an analogous space hierarchy is easier, and therefore we’ll present it first, but in
following lectures.

Linear Speed-up: The following Linear Speed-up Theorem allows us to discard constant factors
in running-time. Intuitively, there is no point in holding such an accurate account when one does
not specify other components of the algorithm (like the size of its finite control and work-tape
alphabet).

Theorem 3.8 (Linear Speed-up): For every function t : N — N and for every i
| t)
DTime;(t(n)) C Dszei(T + O(n)).

The proof idea is as following: let I' be the original work alphabet. We reduce the time

complexity by a constant factor by working with larger alphabet I'y = '« I' % ... * T, which enables
k times

us to process adjacent symbols simultaneously. Then we construct a new machine with alphabet

['k. Using this alphabet, any k& adjacent cells of the original tape are replaced by one cell of the

new tape.

So the new input will be processed almost k times faster, but dealing with the input will produce
O(n) overhead.

Let M; be an i-tape t(n) time-bounded Turing machine. Let L be a language accepted by Mj.

Then L is accepted by a i-tape (@ + O(n)) time-bounded TM M.
Proof: A Turing machine My can be constructed to simulate M; in the following manner. First
M5 copies the input onto a storage tape, encoding 16 symbols into one. From this point on, Ms
uses this storage tape as the input tape and uses the old input tape as a storage tape. My will
encode the contents of My’s storage tape by combining 16 symbols into one. During the course of
the simulation, My simulates a large number of moves of M; in one basic step consisting of eight
moves of Ms. Call the cells currently scanned by each of Ms’s heads the home cells. The finite
control of M, records, for each tape, which of the 16 symbols of M; represented by each home cell
is scanned by the corresponding head of Mo.

To begin a basic step, Ms moves each head to the left once, to the right twice, and to the left
once, recording the symbols to the left and right of the home cells in its finite control. Four moves
of My are required, after which Mj has returned to its home cells.

Next, My determines the contents of all of M;’s tape cells represented by the home cells and their
left and right neighbors at the time when some tape head of M; first leaves the region represented

3.3. GENERAL TIME COMPLEXITY CLASSES 31

by the home cell and its left and right neighbors. (Note that this calculation by My takes no
time. It is built into the transition rules of Ms.) If M; accepts before some tape head leaves the
represented region, My accepts. If M; halts, My halts. Otherwise My then visits, on each, the
two neighbors of the home cell, changing these symbols and that of the home cell if necessary. My
positions each of it heads at the cell that represents the symbol that M;’s corresponding head is
scanning at the end of the moves simulated. At most four moves of Ms are needed.

It takes at least 16 moves for M to move a head out of the region represented by a home cell
and its neighbors. Thus in eight moves, M, has simulated at least 16 moves of M. [l

Bibliographic Notes

For a detailed proof of Ladner’s Theorem, the reader is referred to the original paper [3]. The
existence of an optimal algorithm for any NP-problem (referred to above as Levin’s Theorem) was
proven in [4].

The separtion of one-tape Turing machines from two-tape ones (i.e., DTimey(O(n)) is NOT
contained in DTime;(o(n?))) can be proved in various ways. Our presentation follows the two-step
proof in [2], while omitting the second step (i.e., proving a lower bound on the error-free randomized
communication complexity of equality). The alternative (direct) proof, presented in the appendix
to this lecture, is adapted from Exercise 12.2 (for which a solution is given) in the textbook [1].

1. J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Computa-
tion, Addison-Wesley, 1979.

2. E. Kushilevitz and N. Nisan. Communication Complexity, Cambridge University Press, 1996.

3. R.E. Ladner, “On the Structure of Polynomial Time Reducibility”, Jour. of the ACM, 22,
1975, pp. 155-171.

4. Levin, L.A., “Universal Search Problems”, Problemy Peredaci Informacii 9, pp. 115-116,
1973. Translated in problems of Information Transmission 9, pp. 265—266.

Appendix: Proof of Theorem 3.5, via crossing sequences

Consider one-tape T'M M with transition function §, input w of length m, such that M accepts w
and an integer i, 0 < i < m.

Denote by w;, 0 < j < m, the 5’th symbol of the word w.

Consider the computation of the machine M on input w. This computation is uniquely deter-
mined by the machine description and the input, since the machine is deterministic.

The computation is a sequence of ID’s (instantaneous descriptions), starting with gowy...w, and
ending with w;...w,p for some p € F (accepting or rejecting state).

Denote the elements of the computation sequence by (I.D;)7_; for some finite r.

Consider a sequence (Lj)g;% of pairs L; = (ID;,IDj1;). For some 0 < i < m let (L;)i_;
t <r —1 be the subsequence of (Lj);;% of elements (IDj,,ID;,11) of the form:

either

ID;, = wy...w;—1pw;...w, and IDj, 41 = wy...w;qw;y1...wy, for some p,q € Q and this specific 4,

or

ID;, = wi...w;pwit1.. w, and IDj, 1 = wy...w;—1qw;...w,, for some p,q € Q and this specific i.

32 LECTURE 3. MORE ON NP AND SOME ON DTIME

By definition of Turing machine computation IDj, = ID; 1 and therefore in the first case
6(p,w;) = (¢, w;+1, R) and in the second case 6(p,w;+1) = (¢, w;, L).

For every 1 <1 < t, let ¢; be the state recorded in IDj, , where ID;_, are as above. Then
the sequence (g;)!_, is defined to be the crossing sequence of the triple (M, w,i) (machine M on
input w in the boundary 7).

Consider

L ={wcw:w e {0,1}"},

where c is a special symbol.

Clearly, a 2-tape TM will decide the language in O(n) just by copying all the symbols before ¢
to another tape and comparing symbol by symbol.

Let’s prove that 1-tape TM will need Q(n?) steps to decide this language.

Forw € {0,1}™,and 1 < i <m—1, let [, ; be the length of the crossing sequence of (M, wew, 7).
Denote by s the number of states of M.

Denote the average of [, ; over all m-long words w by p(i).

Then from counting considerations, at least for half of w’s it holds l,,; < 2 * p(%).

Let N = 2™.So there are at least 2! words w for which holds lw,i < 2% p(i).

The number of possible crossing sequences of length < 2 % p(i) is

2xp(1)
§ < s?*p(i)+l,

=0

where s is the number of states of M.

So there is at least % words w of length m with the same crossing sequence for boundary
(i,i41) (by pigeonhole principle). We are interested in such words w with the same suffix (i+1, ..., m
symbols). The number of such different suffixes is 2™~%. Therefore if for some i holds

2m—1

W/Zmiz >]., (3.3)

then by pigeonhole principle there are two different w’s with the same suffix and the same crossing
sequence between ¢ and ¢ + 1 positions. We’ll show that this leads to contradiction.

Denote the differing i-prefixes by a7 and ay and the common (m — i)-bit suffix by 3. Consider
the input word oy Scay 8 and the input word asfBcay 8. Since the crossing sequence between oy and
B is the same as the one between as and [, the machine will not be able to distinguish between
the two cases, and will accept the second word too, contradiction.

So Eq. (3.3) can not hold for any 7 and therefore for every 4 it holds

2m—1

92xp(i)+19m—i S
and so
implying
i—1<2x%xp(i)+1,

and

3.3. GENERAL TIME COMPLEXITY CLASSES 33

(3.4)

follows.
Denote by T}, (w) the time needed to machine M to accept the word wew. Let us compute the
average time Avys(w) needed for M to accept wew for an m-long word w.

Avpy(w) = %ZTM(w) > %Zzlw,ia

w =1

because the running time of a TM on input w is the sum of lengths of the crossing sequences
of (M,w,i) for 0 < i < m. We have inequality here since there are crossing sequences for i > m in
the word wcw. Now, we have

FE i =X T = 2000
and so, by Eq. (3.4),
Avar(w) 2 Y (i) 2 Y- 7 = 0m?)
i=1 =1

So the average running time of M on wecw is Q(m?) implying that there exists an input wcw of
length 2% m + 1 on which M runs Q(m?) steps.

Therefore, we have proved a lower bound of the worst case complexity of the language-decision
problem for L = {wcw : w € {0,1}*} on one-tape Turing machine. This lower bound is Q(m?) for
O(m)-long input. On the other hand, this problem is decidable in O(m) time by two-tape T M.
Therefore

DTimey(0(n)) € DTime;(o(n?)).
And so Theorem 3 is tight in the sense that there are functions #(-) such that

DTimes(O(t(-))) € DTime; (o(t(-))).

34

LECTURE 3. MORE ON NP AND SOME ON DTIME

Lecture 4

Space Complexity

Notes taken by Leia Passoni and Reuben Sumner

Summary: In this lecture we introduce space complexity and discuss how a proper
complexity function should behave. We see that properly choosing complexity functions
yields as a result well-behaved hierarchies of complexity classes. We also discuss space
complexity below logarithm.

4.1 On Defining Complexity Classes

So far two main complexity classes have been considered: NP and P. We now consider general
complexity measures. In order to specify a complexity class, we first have to set the model of
computation we are going to use, the specific resource we want to bound — time or space — and
finally the bound itself, that is the function with respect to which we want complexity to be
measured.

What kind of functions f : N — N should be considered appropriate in order to define “ade-
quate” complexity classes? Such functions should be computable within a certain amount of the
resource they bound, and that amount has to be a value of the function itself. In fact, choosing
a too complicated function as a complexity function could give as a result that the function itself
is not computable within the amount of time or space it permits. These functions are not good
in order to understand and classify usual computational problems: even though we can use any
such function in order do formally define its complexity class, strange things can happen between
complexity classes if we don’t choose these functions properly. This is the reason why we have
defined time constructible functions when dealing with time complexity. For the same reason we
will here define space constructible functions.

4.2 Space Complexity

In space complexity we are concerned with the amount of space that is needed for a computation.
The model of computation we will use is a 3-tape Turing Machine. We use this model because it
is easier to deal with it. We remind that any multi-tape TM can be simulated by an ordinary TM
with a loss of efficiency that is only polynomial. For the reminder of this lecture notes, “ Turing
Machine” will refer to a 3-tape Turing Machine. The 3 tapes are:

1. input tape. Read-only

35

36 LECTURE 4. SPACE COMPLEXITY

2. output tape. Write-only. Usually considered unidirectional: this assumption is not essen-
tial but useful. For decision problems, as considered below, one can omit the output-tape
altogether and have the decision in the machine’s state.

3. work tape. Read and write. Space complexity is measured by the bounds on the machine’s
position on this tape.

Writing is not allowed on the input tape: this way space is measured only on the worktape.
If we allowed writing on the input tape then the length of the input itself should be taken into
account when measuring space. Thus we could only measure space complexities which are at least
linear. In order to consider also sublinear space bounds we restrict the input tape to be read-only.
Define Wy/(x) to be the index of the rightmost cell on the worktape scanned by M on input x.
Define Sy(n) = maz|y—, Wn(z). For any language L define x(z) so that if z € L then yr(z) =1
otherwise xr(x) =0

Definition 4.1 (Dspace):
Dspace(s(n)) = {L|3a Turing machine M, M (z) = xr(z)and Vn Sy (n) < s(n)}

We may multiply s(-) by logy |I'as| where 'y is the alphabet used by M. Otherwise, we could always
linearly compress the number of space cells using a bigger alphabet. We may also add log,(|z|) to
s(+), where z is the input. (However, this convention disallow treatment of sub-logarithmic space,
and therefore will not be done when discussing such space bounds.) This is done in order to have
a correspondence to the number of configurations.

Definition 4.2 (Configuration) : A configuration of M is an instantaneous representation of the
computation carried on by M on a given input z. Therefore if |x| = n a configuration gives
information about the following:

e state of M (O(1) bits)
e contents of the work tape (s(n) bits)
e head position in the input tape (log(n) bits)

e head position in the work tape (log(s(n)) bits)

4.3 Sub-Logarithmic Space Complexity

Working with sublogarithmic space is not so useful. One may be tempted to think that whatever
can be done in o(log(n)) space can also be done in constant space. Formally this would mean

Dspace(o(log(n))) € Dspace(O(1))

and since obviously Dspace(O(1)) C Dspace(o(log(n))), we may also (incorrectly) argue that in
fact
Dspace(o(log(n))) = Dspace(O(1))

This intuition comes from the following imprecise observation: if space is not constant, machine M
must determine how much space to use. Determining how much space to use seems to require the
machine counting up to at least |z| = n which needs O(log(n)) space. Therefore any M that uses
less than O(log(n)) cells, is forced to use constant space. It turns out that this intuition is wrong
and the reason is that the language itself can help in deciding how much space to use.

4.3. SUB-LOGARITHMIC SPACE COMPLEXITY 37

Oded'’s Note: This should serve as warning against making statements based on vague
intuitions on how a “reasonable” algorithm should behave. In general, trying to make
claims about “reasonable” algorithms is a very dangerous attitude to proving lower
bounds and impossibility results. It is rarely useful and quite often misleading.

Note: It is known that Dspace(O(1)) equal the set of regular languages. This fact will be used
to prove the following

Theorem 4.3 Dspace(o(log(n))) is a proper superset of Dspace(O(1)).

Proof: We will show that Dspace(o(log(n))) D Dspace(loglog(n)) is not contained in Dspace(O(1)).
In fact there is a language L so that L € Dspace(loglog(n)) but L ¢ Dspace(O(1)). For simplicity,
we define a language, L, over the alphabet {0, 1, $}:

the [-th substring of w delimited by $ has
L=<w=0---0%0---01%0---010%---$1---1$ |Vk € N length k and is the binary representation
of the number [— 1, where 0 <[< 2F

It can be easily shown that L is not regular using standard pumping lemma techniques. We then
prove that L € Dspace(loglog(n)). Note that L = {x} : k € N}, where

7, = 07205 7201$0210$0F 2118 ... $1%$

First consider a simplified case where we only measure space when in fact x = xp € L, |xi| =
(k +1)2%, but we need to check if 2 € L. We have to

1. Check the first block is all 0’s and the last block is all 1’s

2. For any two consecutive intermediate blocks in xj, check that the second is the binary incre-
ment by 1 of the first one.

Step (1) can be done in constant space. In Step (2) we count the number of 1’s in the first block,
starting from the right delimiter $ and going left until we reach the first 0. If the number of 1’s
in the first block is ¢, we then check that in the second block there are exactly ¢ 0’s followed by
1. Then we check the remaining k£ — ¢ — 1 digits in the two consecutive blocks are the same. On
input g, step 2 can be done in O(log(k)) space, which in terms of n = |zy| = (k + 1)2¥, means
O(loglog(n)) space.

Handling the case where z ¢ L while still using space O(loglog(n)) is slightly trickier. If
we only proceeded as above then we might be tricked by an input of the form “0"$” into using
space O(log(n)). We think of = being “parsed” into blocks separated by $, doing this requires
only constant space. We avoid using too much space by making k£ passes on the input. On the
first pass we make sure that the last bit of every block is 0 then 1 then 0 and so on. On the
second pass we make sure that the last two bits of every block are 00 then 01 then 10 then 11 and
then back to 00 and so on. In general on the ith pass we check that the last ¢ bits of each block
form an increasing sequence modulo 2°. If we ever detect consecutive blocks of different length
then we reject. Otherwise, we accept if in some (i.e., i'h) pass, the first block is of length 4, and
the entire sequence is increasing mod 2°. This multi-pass approach, while requiring more time, is
guaranteed never to use too much space. Specifically, on any input x, we use space O(1 + logi),
where i = O(log |z|) is the index of the last pass performed before termination. [l

38 LECTURE 4. SPACE COMPLEXITY

Going further on, we can consider Dspace(o(loglog(n)) and Dspace(O(1)). We will show that
these two complexity classes are equivalent. The kind of argument used to prove their equivalence
extends the one used to prove the following simpler fact.

Theorem 4.4 For any s(n) : s(n) > log(n) Dspace(s(n)) C Dtime(2°¢("))

Proof: Fix an input z : || = n and a deterministic machine M that accepts z in space s(n). Let
be C the number of possible configurations of M on input z. Then an upper bound for C is:

C<|Qul|-n-sn)- 90(s(n))

where Qpsis the set of states of M, n is the number of possible locations of the head on the input
tape, s(n) is the number of possible locations of the head on the worktape and 2°(5) ig the number
of possible contents in the work tape — the exponent is o(s) because the alphabet is not necessarily
binary. We can write s(n) - 2°¢5(%) = 20(s(")) and since s is at least logarithmic , n < 2°(("),
Therefore

C < 20(s(n)

M cannot run on input z for a time #(n) > 25(*). Otherwise, M will go through the same config-
uration at least twice, entering an infinite loop and never stop. Then necessarily M has to run in
time t(n) < 2°¢). 1

Theorem 4.5 Dspace(o(log, logy(n)) = Dspace(O(1))

Proof: Consider a s(-)-bounded machine M on the alphabet {0,1}.

Claim: given input = : || = n such that M accepts z, then M can be on every cell on the
input tape at most k = 2°(") . s(n) - |Qu| = O (25(”)) times. The reason being that if M were to
be on the cell more than k£ times then it would be in the same configuration twice, and thus never
terminate.

We define a semi-configuration as a configuration with the position on the input tape replaced
by the symbol at the current input tape position. For every location ¢ on the input tape, we consider
all possible semi-configurations of M when passing location 4. If the sequence of such configurations
is C' = Ci,...,C! then by the above claim its length is bounded: r < O (23(")). The number of
possible different sequences of semi-configurations of M, associated with any position on the input
tape, is bounded by

(2s(n)) (22() _ 2000
Since s(n) = o(logylogyn) then 22°“™” = o(n) and therefore there exists ng € N such that
Vn > ng, 22777 < 3. We then show that Vn > ng, s(n) = s(ng). Thus L € Dspace(s(ng)) =
Dspace(O(1)) proving the theorem.

Assume to the contrary that there exists an n’ such that s(n') > s(ng). Let n1 = ming)spny {War(z) > s(no)}
and let z; € {0,1}™ be such that Wys(z1) > s(ng). That is, z; is the shortest input on which M
uses space more than s(ng).

The number of sequences of semi-configurations at any position in the input tape is < %-. So
labelling n; positions on the input tape by at most - sequences means that there must be at least
three positions with the same sequence of semi-configurations. Say z; = aafBayac. Where each of
the positions with symbol a has the same sequence of semi-configurations attached to it.

4.4. HIERARCHY THEOREMS 39

Claim: The machine produces the same final semi-configuration with either Sa or va eliminated
from the input. For the sake of argument consider cutting 3 leaving 2} = aayao. On 2} the machine
proceeds on the input exactly as with 1 until it first reaches the a. This is the first entry in our
sequence of semi-configurations. Locally, M will make the same decision to go left or right on z}
as it did on xp since all information stored in the machine at at the current read head position
is identical. If the machine goes left then its computation will proceed identically on 2} as on x4
because it still hasn’t seen any difference in input and will either terminate or once again come to
the first a. On the other hand consider the case of the machine going right. Say this is the ith
time at the first a. We now compare the computation of M to what it did following the 7th time
going past the second a (after the now nonexistent). Since the semi-configuration is the same
in both cases then on input z; the machine M also went right on the sth time seeing the second
a. The machine proceeded and either terminated or came back for the 7 4+ 1st time to the second
a. In either case on input z} the machine M is going to do the same thing but now on the first
a. Continuing this argument as we proceed through the sequence of semi-configurations (arguing
each time that on z{ we will have the same sequence of semi-configurations) we see that the final
semi-configuration on x} will be same as for z;. The case in which ~a is eliminated is identical.

Now consider the space usage of M on x1. Let z9 = aafac and x3 = aavyao. If peak space
usage processing z; was in aa or o then Wys(xo) = Wyr(xs) = Wyr(z1). If peak space usage was in
Ba then Wy (x3) < War(z9) = Wiy(x1). If peak space usage was in ya then Wy (o) < Wis(x3) =
Whas(z1). Choose 2 € {zg,x3} to maximize Wys(x}). Then Wy(x)) = War(z1) and |2)] < |z1].
This contradicts our assumption that x; was a minimal length string that used more than s(ng)
space. Therefore no such zy exists. W

Discussion: Note that the proof of Theorem 4.4 actually establishes Dspace(O(loglogn)) #
Dspace(O(1)). Thus, combined with Theorem 4.5 we have a separation between Dspace(O(loglogn))
and Dspace(o(loglogn)).

The rest of our treatment focuses on space complexity classes with space bound which is at least
logarithmic. Theorem 4.5 says that we can really dismiss space bounds below double-logarithmic
(alas Theorem 4.4 says there are some things beyond finite-automata that one may do with sub-
logarithmic space).

4.4 Hierarchy Theorems

As we did for time, we give now

Definition 4.6 (Space Constructible Function): A space constructible function s a function s : N —
for which there exists a machine M of space complexity at most s(-) such that ¥Vn M(1") = s(n)

For sake of simplicity, we consider only machines which halt on every input. Little generality is
lost by this —

Lemma 4.4.1 For any space bounded Turing Machine M wusing space s(n), where s(n) is at least
log(n) and space constructible we can construct M' € Dspace(O(s(n))) such that L(M') = L(M)
and machine M' halts on all inputs.

Proof: Machine M’ first calculates a time bound equal to the number of possible configurations
of M which is 25 - s(n) - n - |Qar|. This takes space s(n), and same holds for the counter to be

40 LECTURE 4. SPACE COMPLEXITY

maintained in the sequel. Now we simulate the computation of M on input z and check at every
step that we have not exceeded the calculated time bound. If the simulated machine halts before
reaching its time bound we accept or reject reflecting the decision of the simulated machine. If
we reach the time bound before the simulated machine terminates that we are assured that the
simulated machine will never terminate, in particular never accept, and we reject the input. [

Theorem 4.7 (Space Hierarchy Theorem): For any space-constructible s3 : N — N and every at
least logarithmic function s1 : N — N so that s1(n) = o(sa(n)), the class Dspace(si(n)) is strictly
contained in Dspace(sg(n)).

We prove the theorem only for machines which halt on every input. By the above lemma, this
does not restrict the result in case s; is space-constructible. Alternatively, the argument can be
extended to deal also with non-halting machines.

Proof: The idea is to construct a language L in Dspace(s2(n)) such that any machine M using
space s; will fail recognizing L. We will enumerate all machines running in space s; and we will
use a diagonalization technique.

e Compute the allowed bound on input z: for instance let it be -5sa(|z).
e Write the language:

x is of the form (M)01* and such that
L={ze{0,1}"] - (M)| < {5s2(Ja)
- on input z, M rejects x while using at most space %32(|m|)

Here (M) is a binary encoding of the machine M, so we can see z € L as a description of M
itself.

e Show that L € Dspace(sz(n)) and L ¢ Dspace(si(n)).

To see that L € Dspace(sa(n)), we write an algorithm that recognizes L:

On input x:
1. Check if z is of the right form
2. Compute the space bound S — s5(|z)
3. Check the length of (M) is correct: [(M)| < 5sa(|z]).

4. Emulate the computation of machine M on input z. If M exceeds the space bound then
x ¢ L so we reject.

5. If M rejects x then accept. Else, reject.

The computation in Step (1) can be done in O(1) space. The computation of S in Step (2) can
be done in space sa(|z|) because sy is space constructible. Step (3) needs log(S) space. In Step(4)
we have to make sure that (# cells M scans) x (log, [I'as]) < S. Checking that M does not exceed
the space bound needs space S. As for the implementation of Step(4), on the work tape we first
copy the description (M) and then mark a specific area in which we are allowed to operate. Then
it is possible to emulate the behavior of M going back and forth on the work tape from (M) to the

4.4. HIERARCHY THEOREMS 41

simulated machine’s work area, stopping when we are out of space. The algorithm then is running
in Dspace(so(n)).

Note: Since we want to measure space, we are not concerned on how much time is “wasted” going
back and forth on the worktape from the description of M to the operative area.

Now we have to see that L ¢ Dspace(si(n)).
We will show that for every machine M of space complexity sy, L(M) # L.

There exists 7 : 51(n) < 1552(n) since s1(n) = o(s2(n)). We then consider M : [(M)| < 5s2(n)
and see how M acts on input z of the form z = (M)01*~({M)I+1) _ note that it is always possible
to find inputs of the above form for any sufficiently large n. There are two cases:

1. if M accepts x, then (by definition of L) = ¢ L.

2. if M rejects x, then since [(M)| < t5s2(n) and M(z) uses at most s1(|z]) < 5sa2(|z|) space,
x € L.

In either case L(M) # L. Therefore any M using space s; cannot recognize L. [l

Theorem 4.8 (Time Hierarchy Theorem): For any time-constructible to : N — N and every at
least linear function t1 : N — N so that lim,, W = 0, the class Dtime(ty) is strictly
contained in Dtime(ts).

Proof: It is analogous to the previous one used for space. The only difference is in the definition
of the language L:

x is of the form (M)01* and such that
L=z e{0,1}*| - (M)] < 15 log(t2(]x]))
- on input z, M rejects 2 while using at most time mtgﬂﬂ)

Dealing with time, we require |(M)| < log(t2(]z|)). The reason for requiring a small description for
M is that we cannot implement Step (4) of the algorithm as it has been done with space: scanning
(M) and going back and forth from (M) to the operative area would blow up time. In order to
save time we copy (M) in the operative area on the worktape, shifting (M) while moving on the
worktape to the right. If [(M)| < log(t2(]z|)) it takes then time logta(|z|) to copy (M) when
needed and time log(t2(|x|)) to scan it. In Step (4) each step of the simulated machine takes time
O(log(ta2(]x]))) so the total execution time will be

ta(]z])
10 - log(t2(|=[))
The logarithmic factor we have to introduce in Step (4) for the simulation of M is thus the

reason why in Time Hierarchy Theorem we have to increase the time bound by a logarithmic factor
in order to get a bigger complexity class.

log(t2(|[)) - = O(t2(|]))

The Hierarchy Theorems show that increasing the time-space bounding functions by any small
amount, gives as a result bigger time-space complexity classes — which is what we intuitively would
expect: given more resources, we should be able to recognize more languages.

However, it is also clear that the complexity classes hierarchy is strict only if we use proper
time/space bounding functions, namely time and space constructible functions. This is not the case
if we allow any recursive function for defining complexity classes, as it can be seen in the following
theorems.

42 LECTURE 4. SPACE COMPLEXITY

4.5 0Odd Phenumena (The Gap and Speed-Up Theorems)
The following theorems are given without proofs, which can be found in [1].

Theorem 4.9 (Borodin’s Gap Theorem): For any recursive function g : N — N with g(n) > n,
there exists a recursive function s1 : N — N so that for sa(n) = g(s1(n)), the class Dspace(si(n)
equals Dspace(sa(n)).

Theorem 4.9 is in a sense the opposite of the Space Hierarchy Theorem: between space bounds
s1(n) and g(s1(n)) there is no increase in computational power. For instance, with g(n) = n? one
gets g(s1(n)) = s1(n)2. The idea is to choose si(n) that grows very fast and such that even if

g(s1(n)) grows faster, no language can be recognized using a space complexity in between.

Oded's Note: The proof can be extended to the case where g : N x N +— N and sy(n) =
g(n,s1(n)). Thus, one can have so(n) = n - s1(n), answering a question raised in class.

Theorem 4.10 (Blum’s Speed-up Theorem): For any recursive function g : N — N with g(n) > n,
there exists a recursive language L so that for any machine M deciding L in space s : N — N there
exists a machine M’ deciding L in space s’ : N +— N with s'(n) = g (s(n)).

So there exist languages for which we can always choose a better machine M recognizing them.

Oded's Note: Note that an analogous theorem for time-complexity (which holds too),
stands in some contrast to the optimal algorithm for solving NP-search problems pre-
sented in the previous lecture.

Bibliographic Notes

Our presentation is based mostly on the textbook [1]. A proof of the hierarchy theorem can also
be found in [4]. The proofs of Theorems 4.9 and 4.10 can be found in [1]. Theorem 4.3 and 4.5 are
due to [2] and [3] respectively.

1. J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Computa-
tion, Addison-Wesley, 1979.

2. Lewis, Stearns, Hartmanis, “Memory bounds for recognition of context free and context
sentitive languages”, in proceedings of IEEE Switching Circuit Theory and Logical Design
(old FOCS), 1965, pages 191-202.

3. Stearns, Lewis, Hartmanis, “Hierarchies of memory limited computations”, in proceedings of
IEEE Switching Circuit Theory and Logical Design (old FOCS), 1965, pages 179-190.

4. M. Sipser. Introduction to the Theory of Computation, PWS Publishing Company, 1997.

Lecture 5

Non-Deterministic Space

Notes taken by Yoad Lustig and Tal Hassner

Summary: We recall two basic facts about deterministic space complexity, and then
define non-deterministic space complexity. Three alternative models for measuring non-
deterministic space complexity are introduced: the standard non-deterministic model,
the online model and the offline model. The equivalence between the non-deterministic
and online models and their exponential relation to the offline model are proved. After
the relationships between the non-deterministic models are presented we turn to inves-
tigate the relation between the non-deterministic and deterministic space complexity.
Savitch’s Theorem is presented and we conclude with a translation lemma.

5.1 Preliminaries

During the last lectures we have introduced the notion of space complexity, and in order to be able
to measure sub-linear space complexity, a variant model of a Turing machine was introduced. In
this model in addition to the work tape(s) and the finite state control, the machine contains two
special tapes : an input tape and an output tape. These dedicated tapes are restricted each in it’s
own way. The input tape is read only and the output tape is write only and unidirectional (i.e. the
head can only move in one direction).

In order to deal with non-deterministic space complexity we will have to change the model again,
but before embarking on that task, two basic facts regarding the relations between time and space
complexity classes should be reminded.

To simplify the description of asymptotic behaviour of functions we define :

Definition 5.1 Given two functions f : N — N and g : N — R

f is at least g if there exists an ng € N s.t. for all n > ng f(n) > [g(n)].

f is at least linear if there exists a linear function g s.t. f is at least g (there exists a constant
c¢>0 s.t. fis atleast cn).

Fact 5.1.1 For every function S(-) which is at least log(-) DSPACE(S) C DTIM E(2°9(9),

Proof: Given a Turing machine M, a complete description of it’s computational state on a fixed
input at time ¢t can be given by specifying :

43

44 LECTURE 5. NON-DETERMINISTIC SPACE

e The contents of the work tape(s).

e The location of the head(s) on work tape(s).
e The location of the head on the input tape.
e The state of the machine.

Denote such a description a configuration of M. (Such a configuration may be encoded in many
ways, however in the rest of the discussion we will assume a standard encoding was fixed, and would
not differentiate between a configuration and it’s encoding. For example we might refer to the space
needed to hold such a configuration. This is of course the space needed to hold the representation
of the configuration and therefore this is a property of the encoding method, however from an
asymptotic point of view the minor differences between reasonable encoding methods make little
difference). A complete description of an entire computation can be made simply by specifying the
configuration at every time ¢ of the computation.

If during a computation at time ¢, machine M reached a configuration in which it has already

been in at time #; < ¢, (i.e. the configurations of M at times ¢; and t are identical), then there is
a cycle in which the machine moves from one configuration to the next ultimately returning to the
original configuration after ¢ — #; steps. Since M is deterministic such a cycle cannot be broken
and therefore M’s computation will never end.
The last observation shows that during a computation in which M stops, there are no such cycles
and therefore no configuration is ever reached twice. It follows that the running time of such a
machine is bounded by the number of possible configurations, so in order to bound the time it is
enough to bound the number of possible configurations.

If a machine M never uses more than s cells, then on a given input x, the number of configu-
rations is bounded by the number of possible contents of s cells (i.e. |I'pz|*, where 'y is the tape
alphabet of machine M),times the number of possible locations of the work head (i.e. s), times
the number of possible locations of the input head (i.e. |z|), times the number the possible states
(i.e. |Saml). If the number of cells used by a machine is a function of the input’s length the same
analysis holds and gives us a bound on the number of configurations as a function of the input’s
length.

For a given machine M and input z, denote by #conf(M,x) the number of possible configurations
of machine M on input . We have seen that for a machine M that works in space S(-) on input
2, econf(M,x) = [Dar|S0D - S(|al) - [a] - |Say| = 2005eD) . |gf

Therefore in the context of the theorem (i.e. S(|z|) = Q(log(]z|))) we get that on input x the

time of M’s computation is bounded by : #conf(M,z) = 200)) 1

Fact 5.1.2 For every function T(-) DTIME(T) C DSPACE(T).

Proof: Clearly no more then T'(|z|) cells can be reached by the machine’s head in T'(|z|) steps.
|

Note : In the (far) future we will show a better bound (i.e. DTIME(T) C DSPACE(-1=))
which is non-trivial.

5.2 Non-Deterministic space complexity

In this section we define and relate three different models of non-deterministic space complexity.

5.2. NON-DETERMINISTIC SPACE COMPLEXITY 45

5.2.1 Definition of models (online vs offline)

During our discussion on NP we noticed that the idea of a non-deterministic Turing machine can
be formalized in two approaches, the first approach is that the transition function of the machine is
non-deterministic (i.e. the transition function is a multi-valued function), in the second approach
the transition function is deterministic but in addition to the input the machine gets an extra
string (viewed as a guess): the machine is said to accept input z iff there exists a guess y s.t. the
machine’s computation on (x,y) ends in an accepting state. (In such a case y is called a witness for
In this section we shall try to generalize these approaches and construct a model suitable for
measuring non-deterministic space complexity. The first approach can be applied to our standard
turing machine model.
Put formally, the definition of a non-deterministic Turing machine under the first approach is as
follows :

Definition 5.2 (non-deterministic Turing machine): A non deterministic Turing machine is a Tur-
ing machine with a non-deterministic transition function, having a work tape, a read-only input
tape, and a unidirectional write-only output tape. The machine is said to accept input x if there
erists a computation ending in an accepting state.

Trying to apply the second approach in the context of space complexity a natural question arises :
should the memory used to hold the guess be metered?

It seems reasonable not to meter that memory as the machine does not “really” use it for compu-
tation. (Just as the machine does not “really” use the memory that holds the input). Therefore a
special kind of memory (another tape) must be dedicated to the guess and that memory would not
be metered. However if we do not meter the machine for the guess memory, we must restrict the
access to the guess tape, just as we did in the case of the input tape. (surely if we allow the machine
to write on the guess tape without being metered and that way get “free” auxiliary memory that
would be cheating).

It is clear that the access to the guess tape should be read only.

Definition 5.3 (offline non-deterministic Turing machine): An offline non-deterministic Turing ma-
chine s a Turing machine with a work tape, a read-only input tape, a two-way read-only guess
tape, and a unidirectional write-only output tape, where the contents of the guess tape is selected
non-deterministically. The machine is said to accept input x if there exists contents to the guess
tape (a guess string y) s.t. when the machine starts working with x in the input tape and y in the
guess tape it eventually enters an accepting state.

As was made explicit in the definition, there is another natural way in which access to the guess
tape can be farther limited: the tape can be made unidirectional (i.e. allow the head to move only
in one direction).

Definition 5.4 (online non-deterministic Turing machine): An online non-deterministic Turing ma-
chine s a Turing machine with a work tape,a read-only input tape, a unidirectional read-only guess
tape (whos contents are selected non-deterministicly), and a unidirectional write-only output tape.
Again, the machine is said to accept x if there exists a guess y s.t. the machine working on (z,y)

46 LECTURE 5. NON-DETERMINISTIC SPACE

will eventually enter an accepting state.

An approach that limits the guess tape to be unidirectional seems to correspond to an online guess-
ing process — a non-deterministic machine works and whenever there are two (or more) possible
ways to continue the machine guesses (online) which way to choose. If such a machine “wants” to
“know” which way it guessed in the past, it must record it’s guesses (use memory). On the other
hand, the approach that allows the guess tape to be two-way corresponds to an offline guessing
process i.e. all the guesses are given before hand (as a string) and whenever the machine wants to
check what was guessed at any stage of the computation, it can look at the guesses list.

It turns out that the first non-deterministic model and the online model are equivalent. (Al-
though the next claim is phrased for language decision problems, it holds with the same proof for
other kinds of problems).

Claim 5.2.1 For every language L there exists a non-deterministic Turing machine My that iden-
tifies L in time O(T) and space O(S) iff there exists an online Turing machine My, that identifies
L in time O(T) and space O(S).

Proof: Given My it can be easily transformed to an online machine M,, in the following way:
M.y, simulates My and whenever My has several options for a next move (it must choose non-
deterministicaly which option to take), M,, decides which option to take according to the content
of the cell scanned at the guess tape, then move the guess tape head one cell to the right.

In some cases we may want to restrict the alphabet of the guess (for example to {0,1}). In
those cases there is a minor flaw in the above construction as the number of options for Mpy’s
next move may be bigger than the guess alphabet thus the decision which option to take cannot
be made according to the content of a single guess tape cell. This is only an apparent flaw since
we can assume with out loss of generality that My has at most two options to choose from. Such
an assumption can be made since a choice from any number of options can be transformed to a
sequence of choices from two options at a time by building a binary tree with the original options
as leaves. This kind of transformation can be easily implemented on My by adding states that
correspond to the inner nodes of the tree. The time of the transformed machine has increased at
most by a factor of the height of the tree which is constant in the input size.

The transformation from an online machine M,,, to a non-deterministic machine is equally easy:
If we would have demanded that the guess head of M,, must advance every time, the construction
would have been trivial i.e. at every time M,, moves according to it’s state and the contents of the
cells scanned by the input-tape, work-tape and guess-tape heads, if the contents of the guess cell
scanned are not known there may be several moves possible (one for each possible guess symbol),
My could have simply choose non-deterministically between those. However as we defined it, the
guess tape head may stay in place, in such a case the non-deterministic moves of the machine are
dependendent (are fixed by the same symbol) untill the guess head moves again. This is not a real
problem, all we have to do is remember the current guess symbol, i.e. My states would be Sy, X X
where Sy is M/ s states and X is the guess alphabet, (My being in state (s,a) corresponds to
M,,, being in state s while it’s guess head scans a). The transition function of My is defined in
the natural way. Suppose My is in state (s,a) and scans symbols b and ¢ in it’s work and input
tapes, this correspond to M,, being in state s while scanning a,b and c. In this case M,, transition
function is well defined, (denote the new state by s’), My will move the work and input heads as
M,, moves it’s heads, if the guess head of M,, stays fixed then the new state of My is (s',a),

5.2. NON-DETERMINISTIC SPACE COMPLEXITY 47

otherwise M,, reads a new guess symbol, so My chooses non-deterministically a new state of the
form (s',a’) (i.e. guesses what is read from the new guess tape cell). W

These models define complexity classes in a natural way. In the following definitions M (z,y) should
be read as “the machine M with input x and guess y”.

Definition 5.5 (NSPACE,,,): For any function T : N — N
There exists an online Turing machine My, s.t. for any input x € X*
NSPACE,,(T) el C X*| there exists a witness y € X* for which My, (xz,y) accepts iff x € L,
and that for any y € ¥* Moy, uses at most T'(|z|) space.

Definition 5.6 (NSPACE,;r): For any function T : N — N
There exists an offline Turing machine M,ss s.t. for any input v € X*
L C¥*| there exists a witness y € X* for which Myss(x,y) accepts iff x € L,
and that for any y € ¥* Myrp uses at most T'(|x|) space.

NSPACE,;;(T) ¥

5.2.2 Relations between NSPACE,, and NSPACE,;
In this section the exponential relation between NSPACE,, and NSPACE,; will be established.

Theorem 5.7 For any function S : N — N so that S s at least logarithmic and log S is space
constructible,

NSPACE,,(S) C NSPACE,;(log(S)).

Given an online machine M,, that works in space bounded by S we shall construct an offline ma-
chine M,y which recognizes the same language as M,,, and works in space bounded by O(log(S)).
We will see later (Theroem 8) the opposite relation i.e. given an offline machine M,;; that works
in space S, one can construct an online machine M,, that recognizes the same language and works
in space 20(5)

The general idea of the proof is that if we had a full description of the computation of M,,
on input z, we can just look at the end of the computation and copy the result (many of us are
familiar with the general framework from our school days). The problem is that M,s; does not
have a computation of M,, however it can use the power of non-determinism to guess it. This is
not the same as having a computation, since M, ;s cannot be sure that what was guessed is really
a computation of M,, on x. This has to be checked before copying the result. (The absence of the
last stage caused many of us great troubles in our school days).

To prove the theorem all we have to show is that checking that a guess is indeed a computation of
a space S(-)-online machine can be done in log(S(|z|)) space. To do that we will first need a technical
result concerning the length of computations of such a machine M,,, this result is obtained using
a similar argument to the one used in the proof of Fact 5.1.1 (DSPACE(S) C DTIME(2°0(9))).

Proof: (Theorem 5.7: NSPACE,,(S) C NSPACE,;(log(S))):
Given an online machine M,, that works in space bounded by S we shall construct an offline
machine M, s which recognize the same language as M,,, and works in space bounded by O(log(S)).
Using claim 2.1, there exists a non-deterministic machine My equivalent to M,,, so it is enough
to construct M,r to be equivalent to My.

As in the proof of Fact 5.1.1 (DSPACE(S) C DTIME(2°(%)) we would like to describe the
state of the computation by a configuration. (As My uses a different model of computation we

48 LECTURE 5. NON-DETERMINISTIC SPACE

must redefine configuration to capture the full description of the computation at a given moment,
however after re-examination we discover that the state of the computation in the non-deterministic
model is fully captured by the same components i.e. the contents of the work tape, the location of
the work and input tape heads and the state of the machine, so the definition of a configuration
can remain the same).

Claim 5.2.2 If there exists an accepting computation of My on input x then there exists such a
computation in which no configuration appears more than once.

Proof: Suppose that cp,c1,...,c, is a description of an accepting computation as a sequence
configurations in which some configuration appear more than once. We can assume, without loss
of generality that both ¢y and ¢, appear only once. Assume for 0 < k <[< n, ¢ = ¢;. We claim
that cg,...,ck,Cre1,-..,C, is also a description of an accepting computation. To prove that, one
has to understand when is a sequence of configurations a description of an accepting computation,
This is the case if the following hold :

1. The first configuration (i.e. ¢p) describes a situation in which My starts a computation with
input z (initial state, the work tape empty).

2. Every configuration ¢; is followed by a configuration (i.e. ¢;y1) that is possible in the sense
that, My may move in one step from c; to c;i1.

3. The last configuration (i.e. ¢,) describes a situation in which the My accepts.

When ¢g1,...,¢ (the cycle) is removed properties 1 and 3 do not change as ¢y and ¢, remain the
same. Property 2 still holds since ¢;41 is possible after ¢; and therefore after c.
€Oy .-+ ChyClil,y---,Cn is a computation with a smaller number of identical configurations and clearly

one can iterate the process to get a sequence with no identical configurations at all. |l

Remark : The proof of the last claim follows a very similar reasoning to the proof of Fact 5.1.1
(DSPACE(S) C DTIME(2°(9)), but with an important difference. In the context of non-
determinism it is possible that a computation of a given machine is arbitrarily long (the machine
can enter a loop and leave it non-deterministicaly). The best that can be done is to prove that
short computations exist.

We saw that also arbitrarily long computations may happen, these computations do not add
power to the model since the same languages can be recognized if we forbid long computations. A
similar question may rise regarding infinite computations. A machine may reject either by halting
in a rejecting (non-accepting) state, or by entering an infinite computation, it is known that by
demanding that all rejecting computations of a turing machine will halt, one reduces the power
of the model (the class R as opposed to RE), the question is is the same true for space bounded
machines 7 It turns out that this is not the case (i.e. we may demand with out loss of generality
that every computation of a space bounded machine halts). By Claim 5.2.2 machine that works
in space S works in time 29(%), we can transform such a machine to a machine that always halts
by adding a time counter that counts untill the time limit has passed and then halts in a rejecting
state (time out). Such a counter would only cost log(20(5)) = O(S) so adding it does not change
the space bound significantly.

Now we have all we need to present the idea of the proof.
Given input x machine M,s; will guess a sequence of at most #conf(M,x) of configurations
of My, and then check that it is indeed an accepting computation by verifying properties 1-3 (in

5.2. NON-DETERMINISTIC SPACE COMPLEXITY 49

the proof of Claim 5.2.2). If the guess turns out to be an accepting computation, M, will accept
otherwise reject.

How much space does M,y need to do the task?

The key point is that in order to verify these properties M, ;s need only look at 2 consecutive
configurations at a time and even those are already on the guess tape, so the work tape only keeps
a fixed number of counters (pointing to the interesting cell numbers on the guess and input tapes).

M, treats it’s guess as if it is composed of blocks, each contains a configuration of M,,.

To verify property 1, all M,ss has to do is check that the first block (configuration) describes an
initial computational state i.e. check that My is in the initial state and that the work tape is
empty. That can be done using O(1) memory.

To verify property 2 for a specific couple of consecutive configurations M,s; has to check that the
contents of the work tape in those configurations is the same except perhaps the cell on which Mpy’s
work head was, that the content of the cell the head was on, the state of the machine and the new
location of the work head are the result of a possible move of My. To do that M, checks that
these properties hold for every two consecutive blocks on the guess tape. This can be done using
a fixed number of counters (each capable of holding integers upto the length of a single block) +
O(1) memory.

To verify property 3 all M has to do is to verify the last block (configuration) describes an accepting
configuration. That can be done using O(1) memory.

All that is left is to calculate the space needed to hold a counter. This is the maximum between
log the size of a configuration and log(|z|). A configuration is composed of the following parts :

e The contents of the work-tape — O(S(|z|)) cells

e The location of the work head — log(O(S(|z|))) cells
e The state of the machine My — O(1) cells

e The location of the input head — O(log(|x])) cells

Since S is at least logaithmic, the length of a configuration is O(S(]z|)), and the size of a counter
which points to location in a configuration is O(1) + log(S(|z|)))-

Comment: Two details which were omitted are (1) the low-level implementation of the verification
of property 2, and (2) dealing with the case that the guess is not of the right form (i.e., does not
consists of a sequence of configurations of M,,). W

Theorem 5.8 For any space constractable function S : N — N which is at least logarithmic.
NSPACE,;;(S) C NSPACE,, (209).

As in the last theorem, given a machine of one model we would like to find a machine of the other
model accepting the same language. This time an offline machine M, is given and we would like
to construct an online machine M,,.

In such a case the naive approach is simulation, i.e. trying to build a machine M,,, that simulates
M,r¢. This approach would not give us the space bound we are looking for, however, trying to
follow that approach will be instructive, so that is what we will do.

The basic approach is to try and simulate M,;; by an online machine M,, (in the previous
theorem we did even better than that by guessing the computation and only verifying it’s correctness

50 LECTURE 5. NON-DETERMINISTIC SPACE

(that way the memory used to hold the computation was free). This kind of trick will not help
us here because the process of verification involves comparing two configurations and in an online
machine that would force us to copy a configuration to the work tape. Since holding a configuration
on the work tape costs O(S(|z|)) space we might as well try to simulate M,ss in a normal way).

Since we only have an online machine which cannot go back and forth on the guess tape, the
straightforward approach would seem to be : guess the content of a guess tape for M,;; then copy
it to the work tape of the online machine M,,. That gives M,, two way access to the guess and
now M,, can simulate M,y in a straight forward way. The only question remains how much space
would be needed 7 (clearly at least as long as the guess)

The length of the guess can be bounded using a similar analysis to the one we saw at Fact 5.1.1
(DSPACE(S) C DTIME(2°(9))), only this time things are a bit more complicated.

If we look on M, s’s guess head during a computation it moves back and forth thus it’s movement
forms a “snake like path” over the guess tape.

NN RN
t

C

Figure 5.1: The guess head movement

The guess head can visit a cell on the guess tape many times, but we claim the number of times
a cell is visited by the head can be bounded. The idea is, as in Fact 5.1.1, that a machine cannot
be in the exact same situation twice without entering an infinite loop.

To formalize the last intuition we would need a notion of configuration (a machine’s exact
situation) this time for an offline machine. To describe in full the computational state of an offline
machine one would have to describe all we described in a deterministic model (contents of work
tape, location of work and input head and the machine state) and in addition the contents of the
guess tape and the location of the guess head. However we intend to use the configuration notion
for a very specific purpose, in our case we are dealing with a specific cell on the guess tape while the
guess is fixed. Therefore denote by CWG (configuration without guess) of M, its configuration
without the the guess tape contents and the guess head location. (exactly the same components as
in the non-deterministic configuration). Once again the combinatorial analysis shows us that the
number of possible CWGs is |T'|5(=DS(|z|)|Sas|log(|z]) which is equal to #conf (M,).

Claim 5.2.3 The number of times during an accepting computation of Myr; in which the guess
tape head visits a specified cell is lesser or equal to #conf(M,x)y = 20(5)

Proof: If M,y visits a single cell twice while all the parameters in the CWG (contents of work
tape, location of work and input head and state of the machine) are the same then the entire
computation state is the same, because the contents of the guess tape and the input remains fixed
throughout the computation. Since M,s’s transition function is deterministic this means that
M,y is in an infinite loop and the computation never stops.

Since M,y uses only S(|z|) space there are only #conf(M,x) possible CWGs and therefore
#conf(M,x) bounds the number of times the guess head may return to a specified cell. |l

Now we can (almost) bound the size of the guess.

5.2. NON-DETERMINISTIC SPACE COMPLEXITY 51

Claim 5.2.4 If for input x there exists a guess y s.t. the machine Mys; stops on x with guess y,
then there exists such a guess y satisfying |y| < |T| - #conf (M, z)#conf(Mz) — 9208z

Proof: Denote the guess tape cells cocy ... ¢y and their content y = g,...¢g),. Given a com-
putation of M,;; and a specified cell ¢; the guess head may have visited c¢; several times during
the computation, each time M,;; was in another CWG. We can associate with every cell ¢; the
sequence of CWGs M,y was in when it visited ¢;, denote such a sequence by wvisiting sequence of
¢;. (Thus the first CWG in the visiting sequence of ¢; is the CWG M, ;¢ was in the first time the
guess head visited c;, the second CWG in the visiting sequence is the CWG M,y was in the second
time the guess head visited ¢; and so on). By the last claim we get that the length of a visiting
sequence is between 0 and #conf (M, z).

Suppose that for & < [, ¢, and ¢; both have the same visiting sequence and the same content i.e.
gr = gi- Then the guess go, ..., gk, git1,---,9)y| 15 also a guess that will cause M,y to accept input
. The idea is the same as we saw in the proof of Claim 5.2.2, i.e. if there are two points in the
computation in which the machine is in the exact same situation, then the part of the computation
between these two points can be cut off and the result would still be a computation of the machine.
To see that this is the case here, we need just follow the computation, when the machine first tries
to move from cell ¢ to cell ¢4 (denote this time t¥) it’s CWG is the same CWG that describes the
machine’s state when first moving from cell ¢; to ¢;1; (denote this time ¢}) therefore we can “skip”
the part of the computation between t¥ and) and just put the guess head on ¢, and still have a
“computation” (the reason for the quatation marks is that normal computations do not have guess
head teleportations). By similar reasoning whenever the machine tries to move from ¢;y; to ¢ (or
from ¢ to cii1) we can just put the guess head on ¢ (respectively ¢;y1) and “cut off” the part
of the computation between the time it moved from ¢;4 to the correponding time it arrived at cg
(respectively ¢ and ¢;41). If we would have done exactly that i.e. always “teleporting” the head
and cutting the middle part of the computation, we would get a “computation” in which the guess
head never entered the part of the guess tape between c; and ¢;41 so actually we would have a real
computation (this time with out the quotation marks) on the guess gogi - - grgi+191+2 - - - gjy|-

Since we can iterate cut and paste process until we get a guess with no two cells with identical
visiting sequences and content, we can assume the guess contains no two such cells.

There are #conf(M,x) possible CWGs therefore #conf(M,z)" sequences of n CWGs. Each

visiting sequence is a sequence of CWGs of length at most #conf(M,x) so over all there are
#conf(M,z))
H#eonf(M,z) < #conf(M,z) - #conf(M,z)#orf M) — deon f(M, z)#eonf(Mz)+1 —
=1
9205z possibilities for a visiting sequence. Multiplied by the |I'| possibilities for the guess itself

at each guess tape cell, this bounds the length of our short guess. [l

We have succeeded in bounding the length of the guess and therefore the space needed to sim-
ulate M,s in an online machine using a straightforward approach. Unfortunately the bound is a
double exponential bound and we want better. The good news is that during the analysis of the
naive approach to the problem we have seen almost all that is necessary to prove Theorem 5.8.

Proof: (Theorem 5.8: NSPACE,;;(S) C NSPACE,,(2°9).):
Given an offline machine M, ;s we shall construct an online machine M,, that accepts the same
language.

In the proof of the last claim (bounding the length of the guess) we saw another way to describe
the computation. If we knew the guess, instead of a configuration sequence (with time as an index),
one can look at a sequence of visiting sequences (with the guess tape cells as index). Therfore if

52 LECTURE 5. NON-DETERMINISTIC SPACE

we add the contents of the guess cell to each visiting sequence, the sequence of the augumented
visiting sequences would describe the computation.

Our online machine M,, will guess an M,r; computation described in the visiting sequences
form and check whether indeed the guess is an accepting computation of M,z (accept if so, reject
otherwise). The strategy is very similar to what was done in the proof of Theorem 5.7 (where an
offline machine guessed a computation of an online machine and verified it).

To follow this strategy we need to slightly augment the definition of a visiting sequence.
Given a computation of M,¢; and a guess tape cell ¢; denote by directed visiting sequence (DVS)

of ¢; :

e The content of the guess cell ¢;
e The visiting sequence of ¢;

e For every CWG in the visiting sequence, the direction from which the guess head arrived to
the cell (either R, L or S standing for Right, Left or Stay)

We shall now try to characterize when a string of symbols represents an accepting computation
in this representation.

A DVS has the reasonable returning direction property if : whenever according to a CWG and
cell content the guess head should move right, then the direction associated with the next CWG
(returning direction) is left. (respectively the returning direction from a left head movement is
right, and from staying is stay).

An ordered pair of DVSs is called locally consistent if they appear as if they may be consecutive
in a computation i.e. whenever according to the CWG and the guess symbol in one of the DVSs the
guess head should move to the cell that the other DVS represents then the CWG in the other DVS
that corresponds to the consecutive move of M, is indeed the CWG M, ;s would be in according
to the transition function. (The corresponding CWG is well defined because we can count how
many times did the head leave the cell of the first DVS in the direction of the cell of other DVS
and the corresponding CWG can be found by counting how many time sthe head arrived from that
direction). In addition to that, both DVSs must be first entered from the left, and both must have
the reasonable returning property.

What must be checked in order to verify a candidate string is indeed an encoded computation
of M,ss on input = ?

1. The CWG in the first DVS is describing an initial configuration of M,;.
2. Every two consecutive DVSs are locally consistent.
3. In some DVS the last CWG is describing an accepting configuration.

4. In the last (most right) DVS, there is no CWG that according to it and the symbol on the
guess tape the guess head should move to the right.

M,,, guesses a sequence of DVSs and checks the properties 1-4. To do that, M,, never has to
hold more then two consecutive DVSs + O(1) memory. Since by Claim 5.2.4 the space needed for
a DVS is log(227“1"") = 20(5(=)_ a1, works in space 2065(2)).

The online model is considered more natural for measuring space complexity (and is equiv-
alent to the first formulation of a non-deterministic Turing machine), therefore it is considered
the standard model. In the future when we say “non-deterministic space” we mean as measured

in the online model. Thus, we shorthand NSPACE,, by NSPACE. That is, for any function

S:N = N, we let NSPACE(S) ¥ NSPACE,.(S).

5.3. RELATIONS BETWEEN DETERMINISTIC AND NON-DETERMINISTIC SPACE 53

5.3 Relations between Deterministic and Non-Deterministic space

The main thing in this section is Savitch’s Theorem asserting that non-deterministic space is at
most quadratically stronger than deterministic space.

5.3.1 Savitch’s Theorem

In this section we present the basic result regarding the relations between deterministic and non
deterministic space complexity classes. It is easy to see that for any function S : N — N,

DSPACE(S) C NSPACE(S) as deterministic machines are in particular degenerated non-deterministic
machines. The question is how much can be “gained” by allowing non-determinism.

Theorem 5.9 (Savitch): For every space constractable function S(-) which is at least logarithmic
NSPACE(S) C DSPACE(S?).

For any non-deterministic machine My that accepts L in space S, we will show a deterministic
machine M that accepts L in space S2.

Definition 5.10 (M’s configuration graph over x) : Given a machine M which works in space S
and an input string x, M's configuration graph over x, G, is the directed graph in which the set of
vertices is all the possible configurations of M (with input x) and there exists a directed edge from
s1 to so iff it 1s possible for M, being in comfiguration si, to change to configuration ss.

Using this terminology, M is deterministic iff the out degree of all the vertices in G, is one.

Since we can assume without loss of generality that M accepts only in one specific configuration
(assume M clears the work tape and move the head to the initial position before accepting), denote
that configuration by acceptys and the initial configuration by startas. The question whether there
exists a computation of M that accepts x can now be phrased in the graph terminology as “is there
a directed path from startys to acceptyr in G3,”.

Another use of this terminology may be in formulating the argument we have repeatedly used
during the previous discussions : if there exists a computation that accept = then there exists such
a computation in which no configuration appears more than once. Phrased in the configuration
graph terminology this reduces to the obvious statement that if there exists a path between two
nodes in a graph then there exists a simple path between them. If M works in space S(|z|) then
the number of nodes in G, is |V}| = #conf(M,x) therefore if there exists a path from startys to
acceptpr then there is one of length at most |Viy|.

We reduced the problem of whether M accepts x to a graph problem of the sort “is there a
directed path in G from s to ¢t which is at most [long ?7”. This kind of problem can be solved
in O(log(]l|) - log(|G])) space. (The latter is true assuming that the graph is given in a way that
enables the machine to find the vertices and the vertices neighbors in a space efficient way, this is
the case in G7;).

Claim 5.3.1 Given a graph G = (V, E), two vertices s,t € V and a number [, in a way that solving
the question of whether there ezists an edge between two vertices can be done in O(S) space, the
question “is there a path of length at most | from s to t” can be answered in space O(S -log(l)).

Proof: If there is a path from s to ¢ of length at most [either there is an edge from s to ¢ or
there is a vertex u s.t. there is a path from s to u of length at most [I/2] and a path from w to ¢

54 LECTURE 5. NON-DETERMINISTIC SPACE

of length at most [I/2]. It is easy to implement a recursive procedure PATH(a,b,l) to answer the
question.

1 boolean PATH(a,b,1)

2 if there is an edge from a to b then return TRUE
3 (otherwise continue as follows :)

4 for every vertex v

5 if PATH(a,v, [1/2]) and PATH(v,b, |1/2])

6 then return TRUE

7 otherwise return FALSE

How much space does PATH(a,b,l) use?

When we call PATH with parameter [it uses O(S) space to store a, b and [, check whether
there is an edge from s to ¢, and handle the for-loop control variable (i.e. v). In addition it invokes
PATH twice with parameter [/2, but the key point is that both invocations use the same space (or
in other words, the second invocations re-uses the space used by the first). Letting W (l) denote
the space used in invoking PATH with parameter [, we get the recursion W (l) = O(S) + W (l/2),
with end-condition W (1) = O(S). The solution of this relation is W (I) = O(S - log(l)).

(The solution is obvious because we add O(S), log(l) times (halving [at every iteration, it will
take log(l) iterations to get to 1). The solution is also easily verified by induction, denote by ¢y
the constant from the O(S) and ¢y = 2¢;, the induction step : W(l) < 15 + S - log(l/2) =
1S + caSlog(l) — caS = caSlog(l) + (c1 — ¢2)S and for ¢y > ¢ we get W (L) < c2Slog(1/2)). N

Now the proof of Savitch’s theorem is trivial.

Proof: (Theorem 5.9 (Savitch’s theorem): NSPACE(S) C DSPACE(S?)) :

The idea is to apply Claim 5.3.1 by asking “is there a path from startys to acceptyr in G5, 77 (we
saw that this is equivalent to “does M accept x”). It may seem that we cannot apply Claim 5.3.1
in this case since G, is not given explicitly as an input, however since the deterministic machine
M get z as the input, it can build G3; so G7, is given implicitly. Our troubles are not over since
storing all G, is too space consuming, but there is no need for that, our deterministic machine
can build G, on the fly i.e. build and keep in memory only the parts it needs for the operation
it performs now then reuse the space to hold other parts of the graph that may be needed for the
next operations. This can be done since the vertices of G, are configurations of My and there is
an edge from v to w iff it is possible for My being in configuration v to change for configuration
u, and that can easily be checked by looking at the transition function of Mpy. Therefore If M
works in O(S) space then in G%, we need O(S) space to store a vertex (i.e. a configuration), and
log(O(S)) space to check if there is an edge between two stored vertices, all that is left is to apply
the Claim 5.3.1. B

5.3.2 A translation lemma

Definition 5.11 (NL) The complezity class Non-Deterministic logarithmic space, denoted N'L, is
defined as NSPACE(O(log(n))).

Sometimes Savitch’s theorem can be found phrased as:

NL C DSPACE(log(n)?).

5.3. RELATIONS BETWEEN DETERMINISTIC AND NON-DETERMINISTIC SPACE 55

This looks like a special case of the theorem as we phrased it, but is actually equivalent to it.
What we miss in order to see the full equivalence is a proof that containment of complexity classes
“translates upwards”.

Lemma 5.3.2 (Translation lemma): Given Sy, So, f space constractable functions s.t. Sa(f) is also
space constractible and Sa(n) > log(n), f(n) > n then if NSPACE(S1(n)) € DSPACE(Ss(n))
then NSPACE(S,(f(n))) C DSPACE(Ss(f(n))).

Using the translation lemma, it is easy to derive the general Savitch’s therorem from the re-
stricted case of NL: Given that 'L C DSPACE(log(n)?), given a function S(-) choose Si(-) =
log(+), S3(-) = log(-)? and f(-) = 250) (f would be constractible if S was) now, applying the
translation lemma, we get that NSPACE(log(2°)) C DSPACE(log(2%)?) which is equivalent to
NSPACE(S) C DSPACE(S?).

Proof: Given L € NSPACE(S1(f(n))) we must prove the existence of a machine M that works
in space S2(f(n)) and accepts L.

The idea is simple, transform our language L of non-deterministic space complexity Si(f) to a
language LP%? of non-deterministic space complexity S; by enlarging the input, this can be done
by padding. Now we know that LP?® is also of deterministic space complexity Sy. Since the words
of LP%* are only the words of L padded, we can think of a machine that given an input pads it and
then checks if it is in LP®. The rest of the proof is just carrying out this program carefully while
checking that we do not step out of the space bounds for any input.

There exists M; which works in space S1(f(n)) and accepts L. Denote by LP* the language

pad &f {2$'|z € L and M; accpets = in Si(|z| + i) space.} where $ is a new symbol.

We claim now that LP%? is of non-deterministic space complexity S;. To check whether a
candidate string s is in LP%¢ we have to check that it is of form 2$’ for some j (that can be done
using O(1) space). Ifso (i.e. s = 2$7), we have to check that M; accepts x in S1(f(|z|+7)) space and
do that without stepping out of the S; space bound on the original input (i.e. Si(|s|) = Si(Jz|+7)).
This can be done easily by simulating M; on x while checking that M; does not step over the space
bound (the space bound S;(|z|+7) can be calculated since S; is space constructable). (The resulting
machine is referred to as My.)

Since LP* is in NSPACE(S;) it is also in DSPACFE(Ss); i.e., there exists a deterministic
machine M3 that recognizes LPed in S, space.

Given the deterministic machine M3 we will construct a deterministic machine M, that accepts
the original L in space Sy(f) in the following way:

On input z, we simulate M3 on x$/ for j = 1,2,... as long as our space permits (i.e., using
space at most Sa(f(|z|)), including all our overheads). This can be done as follows: If the head of
M3 is within x, M,’s input head will be on the corresponding point in the input tape, whenever
the head of Mj leaves the x part of the input, My keeps a counter of M3’s input head position (and
supplies the simualted M3 with either $ or black as appropriate). Recall that we also keep track
that M3 does not use more that So(f(|z|)) (for that reason we need Sy(f) to be constractible), and
if M3 tries to step out of this bound we will treat it as if M3 rejected. If during our simulations
M3 accept so does M, otherwise M, rejects.

Basicly My is trying to find a right 7 that will cause M3 to accept, if x is not in L then neither
is 87 in LP* (for any j) and therefore M3 will not accept any such string untill My will eventually
reject x (which will happen when j is sufficiently large so that log j superseeds S»(f(|x|)) which
is our own space bound). If on the other hand x is in L than M;j accepts it in Si(f(]z|)) space
therefore Mjz accepts x$/ for some j < f(|z|) — |=| (since to hold f(|z|) — |=| one needs only a

56 LECTURE 5. NON-DETERMINISTIC SPACE

counter of size log(f(|x|) and Sy is bigger then log this counter can be kept within the space bound
of So(f(|z])) and My will get to try the right z$* and will eventually accept). [l

Remark: In thelast proof thre was no essential use of the model deterministic or non-deterministic,
so by similar argument we can prove analogous results (for example, DSPACE(S1) C DSPACE(Ss)
implies DSPACE(S1(f)) C DSPACE(Sy(f))).

By a similar argument we may also prove analogous results regarding time complexity classes.
In this case we cannot use our method of searching for the correct padding since this method
(while being space efficient) is time consuming. On the other hand, under suitable hypothesis,
we can can compute f directly and so do not need to search for the righ padding. We define
bt = {28/(=D=lel ;. & € L} and now My can compute f(|z|) and run Ms on z$/(=D=1zl in one
try. There are two minor modifications that have to be done. Firstly, we assume all the functions
involved Sy, So, f > n (this is a reasonable assumption when dealing with time-complexity classes).
Secondly, My has to check whether the input z$7 is indeed z$/(*D=1=l; this is easy if it can compute
f(Jz|) within it’s time bounds (i.e., S1(|z$7|)), but may not be the case if the input $’ is much
shorter than f(]z|). To solve that, M, only has to time itself while computing f(|z|) and if it fails
to compute f(|z|) within the time bound it rejects.

Bibliographic Notes

Oded’'s Note: To be done — find the references for the relationship between the two
definitions of non-deterministic space.

Savitch’s Theorem is due to [1]; its proof can be found in any standard textbook (e.g., see
textbooks referred to in the previous lecture).

1. W.J. Savitch, “Relationships between nondeterministic and deterministic tape complexities”,
JCSS, Vol. 4 (2), pages 177-192, 1970.

Lecture 6

Inside Non-Deterministic
Logarithmic Space

Notes taken by Amiel Ferman and Noam Sadot

Summary: We start by considering space complexity of (decision and search) problems
solved by using oracles with known space complexities. Then we study the complexity
class V'L (the set of languages decidable within Non-Deterministic Logarithmic Space);
We show a problem which is complete for /'L, namely the Connectivity problem (De-
ciding for a given directed graph G = (V, E') and two vertices u,v € V whether there is a
directed path from u to v). Then we prove the somewhat surprising result: 'L = coN L
(i.e., NL class is closed under complementation).

6.1 The composition lemma

The following lemma was used implicitly in the proof of Savitch’s Theorem:

Lemma 6.1.1 (composition lemma — decision version): Suppose that machine M solves problem
IT while using space s(-) and having oracle access to decision tasks Iy, ..., II;. Further suppose that
for every i, the task I1; can be solved within space s;(-). Then, II can be solved within space s'(-),

where s'(n) e s(n) + max;{s;(exp(s(n)))}.

Proof: Let us fix a certain input = of length n for the machine M. First, it is clear from the
definition of M that a space of length at most s(n) is used on M’s work-tape for the computation
to be carried out. Next, we must consider all possible invocations of the decision tasks which M
has oracle access to. Let M; be (a determinstic) Turing Machine, computing decision task II;.
Since at each step of its computation, M may query some oracle M;, it is clear that the contents
of each such query depends on the different configurations that M went through until it reached
the configuration in which it invoked the oracle. In this sense, the input to M; is a query that M
“decided on”. We may deduce that an input to an oracle is bounded by the size of the set of all
configurations of machine M on the (fixed) input x (this is the maximal length of a such a query).
Let us bound the maximal size of such a query: It is the number of all different configurations of
M on input of size n: |Sy/[*™ x s(n) x n, where we multiply the number of all possible contents
of the work-tape (whose length is bounded by s(n)) with the number of possible positions (of the

57

58 LECTURE 6. INSIDE NON-DETERMINISTIC LOGARITHMIC SPACE

head) on the work-tape and with the number of possible positions on the input-tape (whose length
is n) respectively (2j; is the work alphabet defined for the machine M).

Since the number of configurations of the machine M on input of length n is exp(s(n)), it is
clear that the simulation of M; would require no more than s;(exzp(s(n))). Since we do not need to
store the contents of the work-tape after each such simulation, but rather invoke each M; whenever
we need it and erase all contents of the work-tape related to that simulation, it is clear that in
addition to the space s(n) of work-tape mentioned above, we need to consider the maximum space
that a certain M; would need during its simulation, hence the result. W

We stress that the above lemma refers to decision problems, where the output is a single bit.
Thus, in the simulation of the M;’s the issue of storing parts of the output of M; does not arise.
Things are different if we compose search problems. (Recall that above and below we refer to
deterministic space-bounded computations)

Lemma 6.1.2 (composition lemma — search version): Suppose that machine M solves problem
IT while using space s(-) and having oracle access to search tasks IIy,...,II;. (As we shall see, it
does not matter if machine M has a one-way or two-way access to the oracle-reply tape.) Further
suppose that all queries of machine M have length bounded by exp(s(n)) and that the answers are
also so bounded." Further suppose that for every i, the task II; can be solved within space s;(-).

Then, I1 can be solved within space s'(-), where s'(n) e s(n) + max;{s;(exp(s(n)))}.

The emulation of the oracles here is more complex than before since these oracles may return
strings rather than single bits. Furthermore, the replies to different oracles II;’s may be read
concurrently. In the emulation we cannot afford to run M; on the required query and store the
answer, since storing the answer would use too much space. In order to avoid this, every time we
need any bit in the answer to II;(¢), (where ¢ is a query) we need to run M; again on ¢ and fetch
the required bit from the on-line generated output, scanning (and omitting) all other bits; i.e., the
answer that would be received from the oracle would be written on the output one bit at a time
and by using a counter, the machine could tell when did it reach the desired bit of the answer
(this process would halt since the length of the answer is bounded). Note that this procedure
is applicable regardless if M has one-way or two-way access to the oracle-reply tape. Note that
unlike in Lemma 6.1.1, here we cannot bound the length of the query by the number of possible
configurations since this number is too large (as it includes the number of possible oracle answers).
Instead, we use the hypothesis in the lemma.

Anallagous, but much simpler, result holds for the time complexity:

Lemma 6.1.3 (composition lemma — time version): Suppose that machine M solves problem I
while using time t(-) and having oracle access to decision tasks Ily, ..., 1. Further suppose that for
every i, the task II; can be solved within time t;(-). Then, I can be solved within time t'(-), where

#'(n) ¥ t(n) x max;{t;(¢(n))}.

Proof: Similarly to the proof regarding Space, we shall fix a certain input = of length n for the
machine M. First, it is clear from the definition of M that time ¢(n) is suffices for the computation
of M on z to be carried out. Next, we must consider all possible invocations of the decision tasks
which M has oracle access to. Here at each step of the computation M could invoke an oracle
M; and so it is clear that the time complexity of the computation would be #(n) multiplied by the

1Without this assumption, we cannot bound the number of configurations of machine M on a fixed input, as the
configuration depends on the location of M’s head on the oracle-reply tape.

6.2. A COMPLETE PROBLEM FOR N L 59

maximal time complexity of an oracle. In order to find the time complexity of some oracle M;, we
have to consider the possible length of a query to M;; since there are #(n) time units during the
computation of M on z, the size of the query to M; could be at most t(n).

We deduce that the time complexity of some oracle M; which is invoked at some point of the
computation of M on x, could be at most ¢;(¢(n)). According to what was said above, the time
complexity of M on 2 would be the number of time units of its computation - ¢(n) - multiplied by
the maximal time complexity of some oracle M; (1 < i < k), hence the result. [l

6.2 A complete problem for N L

The complexity class N'L is defined to be simply NSPACE(O(log(n))). More formally we have:

Definition 6.1 NL: A language L belongs to N'L if there is a nondeterminstic Turing machine
M that accepts L and a function f(n) = O(log(n)) such that for every input x and for every
computation of M at most f(|x|) different work-tape cells are used.

Our goal in this section and the following one would be to study some properties of the class
NL. To that end we define the following:

Definition 6.2 A log-space reduction of Ly to Ly 1s a log-space computable function f such that
Ve, x € L1 & f(x) € Ly

Note that a log-space reduction is analagous to a Karp-reduction (where space corresponds to
time and the logarithmic number of cells correspond to polynomial number of steps). Actually,
since each function that can be computed in space s(-), can also be computed in time exp(s(-)), we
have that a log-space reduction is a special case of a polynomial time reduction. The next definition
would define a notion analagous to NP-completeness (as we will see, this would prove useful in
proving a proposition about N'L which is analagous to a proposition in N'P):

Definition 6.3 L is N'L-Complete if:
(1) Le NL; and
(2) VL' e NL, L' is log-space reducible to L.

6.2.1 Discussion of Reducibility

As implied from the definitions above, our goal would be to find a problem which is complete for the
class N L. Prior to that, we must make sure that the concept of completness is indeed meaningful
for the class N'L. The following propositions ensure exactly that.

Proposition 6.2.1 If L is log-space reducible to L' and L' is solvable in log-space then L is solvable
in log-space.

Proof: Since L' is solvable in logarithmic space, there exists a machine M’ which decides L’ using
logarithmic space. Furthermore, since L is log-space reducible to L', there exists a function f(-)
computable in log-space, such that x € L < f(x) € L' and so there exists a machine M such that
for every input x would first compute f(z) and then would simulate M’ in order to decide on f(z),
both actions demanding log-space (as lg(|f(x)|) < lg(exp(lg(|x|))) = O(lg(]z|))) and ensuring that
M would accept z iff t € L. W

Interestingly, such reduction also preserve non-deterministic space:

60 LECTURE 6. INSIDE NON-DETERMINISTIC LOGARITHMIC SPACE
Proposition 6.2.2 If L is log-space reducible to L' and L' € NL than L € NL

Instead of proving the last proposition, we will prove a related proposition regarding Non-
Deterministic Time:

Proposition 6.2.3 If L if Karp-Reducible to L' and L' € N'P then L € N'P

Proof: Since L is Karp-Reducible to L', there is a many-to-one function f(-), computable in
polynomial time, such that: z € L < f(z) € L. Furthermore, since L' is in NP, there is a
Non-Deterministic Turing machine M’ that can guess a witness y for an input z (the length of y
is a polynomial in the size of z) in polynomial time such that Ry/(z,y) holds (where Ry is the
relation that defines the language L' in N'P). We will construct a Non-Determinstic machine M for
deciding L in the following way: For a given input x € L, M will compute f(z) (deterministically
in polynomial time) and then would just simulate M’ (mentioned above) on input f(z) to find a
witness y (non-deterministically in polynomial time) such that Ry (f(z),y) would hold. Thus, M
defines a relation Ry such that for every input = € L, it guesses a witness y (non-determinstically
in polynomial time) such that Ry (z,y) holds (i.e., Ry (x,y) = Ry (f(x),y)). So by definition, L is
inNP. B

We can use the proof of Proposition 6.2.3 to prove Proposition 6.2.2: Instead of a function
f(-) computable in polynomial time, we are guarnteed to have a function f(-) which is computed
in logarithmic space. Furthermore we may presume the existence of a machine M’ deciding the
language L’ in logarithmic space (instead of non-determinstic polynomial time). It is now clear, that
one may construct a non-deterministic machine M which may decide the language L in logarithmic
space (which is analagous to the machine M which decided L in non-deterministic polynomial
time).

Note that requiring the existence of a Cook-Reduction instead of a Karp-Reduction in Proposi-
tion 6.2.3 would probably make this proposition false: This stems from the fact that if a language
L is Cook-Reducible to a language L' € NP it does not necessarily mean that L € N'P. In par-
ticular, any coA P language is Cook-Reducible to its complement. Still, if NP # coNP we have
that SAT ¢ NP (and yet SAT is reducible to SAT). We conclude that if AP # coNP then Cook
reductions are strictly more powerful than Karp reductions (since the class of languages which are
Cook-reducible to A/P contains coN P, whereas the languages which are Karp-reducible to NP are
exactly A'P). A more trivial example of this difference in power is the fact that any language in P
is Cook-reducible to the empty set, whereas only the empty set is Karp-reducible to the empty set.

However, in the next proposition, as well as in Proposition 6.2.1, a Cook-reduction would do:

Proposition 6.2.4 If L is polynomial-time reducible to L' and L' € P then L € P

In this last proposition, if L would be Cook-Reducible to L’ then it is clear that the machine
that emulates the oracle machine and answeres the queries by simulating the macine that decides
L’ (and runs in polynomial time), would be a polynomial-time machine that decides L (here the
use of the oracle on L' and its actual simulation didn’t make a difference in the running time). An
analouge argument applies to Proposition 6.2.1. That is, if there exists a log-space oracle machine
which deecides L by making polynomially-bounded queries to L', and L' is solvable in log-space
then so is L (actually this follows from Lemma 6.1.1).

6.2. A COMPLETE PROBLEM FOR N L 61

6.2.2 The complete problem: directed-graph connectivity

The problem that we will study would be graph connectivity (denoted as CONN) which we define
next:

Definition 6.4 (directed connectivity — CONN): CONN s the is defined as a set of triples,
(G,v,u), where G = (V| E) is a directed graph, v,u € V are two vertices in the graph so that there
s 18 a directed path from v to u in G

As we shall see, the problem CONN is a natural problem to study in the context of space
complexity. Intuitively, a computation of a Turing machine (deterministic or not) on some fixed
input, could allways be pictured as a graph with nodes realting to the machine configurations and
edges relating to transitions between configurations. Thus the question of whether there exists a
certain accepting computation in the machine reduces to the question of the existence of a certain
directed path in a graph: that path which connects the node which corresponds to the initial
configuration and the node which corresponds to an accepting configuration (on a certain input).
We note that in a deterministic machine the out-degree of each node in the graph would be exactly
one, while in a non-determinstic machine the out-degree of each node could be any non-negative
number (because of the possibilty of the non-determinstic machine to move to any one of a certain
configurations), however in both cases the out-degree of each node is constant (depending only on
the machine). Continuing this line of thought, it’s not hard to see that CONN could be proved to
be complete for the class N'L, i.e. it is itself in 'L and every machine in A'L could be reduced to
it. The details are proved in the following:

Theorem 6.5 CONN is N L-Complete.

Oded'’s Note: The following proofis far too detailed to my taste. The basic ideas are very
simple. Firstly, it is easy to design a non-deterministic log-space machine which accepts
CONN by just guessing an adequate directed path. Secondly, it is easy to reduce any
language L € N'L to CONN by just considering the directed graph of configurations of a
log-space machine (accepting L) on the given input, denoted x. Each such configuration
consists of a location on the input-tape, a location of the work-tape, the contents of the
work-tape and the state of the machine. A directed edge leads from one configurations
to another iff they are possible consequetive configuration of a computation on input x.
The key point is that the edge relation can be determined easily by examining the two
configurations and the relevant bit of 2 (pointed to in the first configuration).

Proof: First we show that CONN € N'L (see Definition 6.3). We will build a machine M that
would decide for the input G = (V, E) and v,u € V whether there exists a path in G from v to
u. Of course, M would do so non-determinstically in O(log(n)) space where n is the size of the
input. The outline of the algorithm is as follows: We start with the node v (given at the input)
and a counter which is initialized to the number of nodes in GG. At each step we decrement the
counter and guess a node which is adjacent to the current node we have (initially v). If the node
we have guessed is not adjacent to the node we hold, we just reject. No harm is done since this
is a non-deterministic computation: it suffices that there will be some computation that would
accept. This procedure concludes when either the counter reaches 0 (the path shold not be longer
than the number of nodes) or the last node we have guessed is u (the other node specified in the
input). The actual guessing of a node could be done in several ways, one would be to implement
a small procedure that would non-deterministically write on the work tape symbols that would

62 LECTURE 6. INSIDE NON-DETERMINISTIC LOGARITHMIC SPACE

encode some node (by scanning the list of edges or adjacency matrix which are part of the input).
Then, it will just check wheather the node it had written is adjacent to the current node we hold.
Correctness and complexity analysis follow the formal specification of the algorithm:

Input: G = (V,E), v,u eV
Task: Find whether there exists a directed path from v to v in G.

1.z «— v

2. counter «— |V|

3. repeat

4. decrement counter by 1

5. guess a node y € V s.t. (z,y) € E
6. if y #u then z «—y

7. until ¥y = u or counter = 0

8. if y = u then accept, else reject

First we will prove the correctness of this algorithm: On the one hand, suppose that the algorithm
accepts the input G = (V, E),v,u € V. This implies that during the repeat-until loop, the algorithm
has guessed a sequence of nodes such that each one of them had a directed edge to its successor and
that the final node in this sequence is u and the initial node is v (from the first line and the check
that is made in the last line). Clearly, this implies a directed path from v to u in G (Note that
from the existence of the counter, the number of steps in this computation is bounded by O(n)).
On the other hand, suppose that there is a directed path in G from v to u. This path is a sequence
{v,21,..., 2k, u} where £ < (n — 2) and there is a directed edge from each node in this sequence
to its successor. In this case it is clear that the computation of the algorithm above in which it
guesses each one of the nodes in the sequence starting from v (from the first line of the algorithm)
and ending with u (from the last line of the computation) is an accepting computation, and thus
the algorithm would accept the input G = (V, E),v,u € V.

We conclude that there is an accepting computation of the algorithm above on the input G =
(V, E),v,u € V iff there is a directed path in G from v to u.

All that is left to be shown is that the implementation of such an algorithm in a non-determinstic
machine would require no more than a logarithmic space in the size of the input: First, it is clear
that each one of the variables required to represent a node in the graph need not be represented in
more than logarithmic number of cells in the size of the input (for example, in order to represent
a number n in binary notation, we need no more than lg(n) bits). The same argument applies to
the counter which has to count a number which is bounded by the size of the input. Secondly,
all other data besides the variables may be kept at a constant number of cells of the work-tape
(for example a bit that would indicate whether y = u etc.). As was specified above regarding the
implementation of step 5 (the guessing of the node), the actuall guessing procedure, which would be
done non-determinstically, uses number of cells which is equal exactly to the length required to the
representation of a node (which is again logarithmic in the size of the input). We conclude that the
implementation of the algorithm above on a non-determinstic machine M requires a logarithmic

6.2. A COMPLETE PROBLEM FOR N L 63

space in the size of the input, and so we may conclude that the machine M decides CONN in
non-deterministic logrithmic space, i.e., CONN € N L.

Now we need to show that every language L € N L is log-space reducible to CONN. Let L be
a language in N L, then there is a non-deterministic logarithmic space machine M that decides
L. We will show that for every input z, we can build in nondeterministic logarithmic space an
input (G = (V, E), start € V,end € V') (which is a function of machine M and input) such that
there is a path in G from start to end if and only if M accepts input x. The graph G we will
construct would simply be the graph of all possible configurations of M given x as an input. That
is, the nodes denote different configurations of M while computing on input z, and the arcs denote
possible immediate transitions between configurations.
The graph is constructed (deterministic) log-space as follows;

Input: An input string = (the machine M is fixed)

Task: Output a graph G = (V, E) and two nodes v,u € V such that there is a path from v to u in
the graph iff « is accepted by M.

1. compute n, the number of different configurations of M while computing input z
2. fori=1ton
3. forj=1ton

4. if there is a transition (by a single step of M) from configuration number 7 to configu-
ration number j ouput 1 otherwise output 0

5. output 1 and n

First we will show that this procedure indeed outputs the representation of a graph and two
nodes in that graph such that there exists a directed path between those two nodes iff the input z
is accepted by machine M. In the first line we compute the number of all possible configurations
of machine M while computing on input . Then, we consider every ordered pair of configurations
(represented by numbers between 1 and n) and output 1 iff there is indeed a directed transition
between those two configurations in the computation of M on z. Our underlying assumption is
that 1 represents the initial configuration and n represents the (only) accepting configuration (if
there were several accepting configurations we define a new one and draw edges from the previous
accepting configurations to the new one). Thus, the output of the above procedure is simply an
adjacency matrix of a graph in which each of its nodes correspond to a unique configuration of
M while computing on input z , and a directed edge exists between two nodes ¢ and j iff there
is a (direct) transition in M between the configuration represented by z and the configuration
represented by y. It is now clear that a directed path from the first node (according to our
enumeration) to the last node in the graph would correspond to an accepting computation of
machine M on input x, and that such a path would not exists should there be no such accepting
computation.

Next, we must show that the above procedure could indeed be carried out using no more than
a logarithmic space in the length of the input (i.e., the input z). In order to do that, we will
show that the number of different configurations of M while computing x is polynomial in the
length of . This would imply that in order to count these configurations we need no more than
a logarithmic space in the length of x. So, we will count the number of possible configurations

64 LECTURE 6. INSIDE NON-DETERMINISTIC LOGARITHMIC SPACE

of M while computing on a given input z. That number would be the number of possible states
(a constant determined by M) multiplied by the number of possible contents of the work-tape
which is |2p7|9009(") where X is the alphabet of M and is also a constant determined by M
(let us remember that since M is log-space bounded, the number of used work-tape squares could
not surpass O(log(n))), multiplied by the number of different positions of the reading head on the
input tape which is n and finally, mutiplied by the number of different possible positions of the
reading head on the work-tape which is O(log(n)). All in all, the number of different configurations
of M while computing input z is: |Statesy| x [Sar|?F09) x n x O(log(n)) = O(nF) (where k
is a constant). That is, the number of different configurations of M while computing input z is
polynomial in the length of x.

We may conclude now that the initial action in the procedure above, that of counting the number
of different configurations of M while computing on input x could be carried out in logarithmic
space in the length of z.

Secondly, we show that the procedure of checking whether there exists a (direct) transition
between two configurations represented by two integers can be implemented as well in logarithmic
space: We show that there is a machine M" that receives as inputs two integers and would return
a positive answer if and only if there is a (direct) transition of M between the two configurations
which are represented by those integers. Note first that integers correspond to strings over some
convinient alphabet and that such strings correspond to configurations. (The correspondance is by
trivial computations.) Thus, all we need to determine is whether the fixed machine M can pass
in one (non-deterministic) step, on input z, between a given pair of configurations. This depends
only on the transition function of M, which M" has hard-wired, and on a single bit in the input
x; that is, the bit the location of which is indicated in the first of the two given configurations.
That is, suppose that the first configuration is of the form (i, j,w, s), where 7 is a location on the
input-tape, j a location on the work-tape, w the contents of the work-tape and s the machine’s
state. Same for the second configuration, denoted (', 5/, w’, s"). Then we check if M when reading
symbol z; (the i*"! bit of z) from its input tape, and w; (the j'™ symbol of w) from its work-tape can
make a single transition resulting in the configuration (7', j’,w’, s'). In particular, it must hold that
i'e{i—1,i,i+1}, 5 € {j—1,7,7+ 1}, and w' differs from w at most on location j. Furthermore,
these small changes must depend on the transition function of M. Since there is a constant number
of possible transitions (in M’s transition function), we may just check all of them.

We have shown that the above procedure outputs a representation of a graph and two nodes
in that graph for a machine M and input z, such that there is a directed path between the nodes
iff there is an accepting computation of M on z. Furthermore we have shown that this procedure
may be implemented requiring no more than a log-space in the size of the input (the input string
x) which concludes the proof. [l

6.3 Complements of complexity classes

Definition 6.6 (complement of a language): Let L C {0,1}* be a language. The complement of a
language L, denoted L is the language {0,1}*\L.

To make this definition more accurate, we assume that every word in {0,1}* represents an
instance of the problem.

Example 6.7 : CONN s the following set: {(G,u,v): G is a directed graph, u,v € V(G), there
is no directed path from u to v in G }.

6.4. IMMERMAN THEOREM: N'L = CONL 65

Definition 6.8 (complement of class): Let C be a complexity class. The complement of the class C
is denoted coC and is defined to be {L : L € C}

It is immediately obvious that if C is a deterministic time or space complexity class, then
coC = C, in particular, P = coP. This is true, since we can change the result of the derministic
machine from ’yes’ to 'no’ and vice versa.

However, in non-deterministic complexity classes, this method does not work. Let M be a
Turing Machine that accepts a language L non-deterministicly. If € L, then there is at least one
successful computation of M on z (i.e., there is a succinct verification that x € L). We denote
by M the non-deterministic Turing Machine that does the same as M, but replaces the output
from “yes” to “no” and vice versa. Hence, if the new machine M accepts an input z, there is one
accepting computation for M on z, i.e. non-accepting computation in M (by definition). In other
words, M will accept z, if M has some unsuccessful guesses to prove that z € L. This, however,
does not mean that M accepts L, since z could possibly be in L by other guesses of the machine M.
For example we don’t know whether coNP is equal to A"P. The conjecture is that NP # coN'P

Yet, in the particular case of nondeterministic space equality does hold. It can be proven that
any non-deterministic space NSPACE(s(n)) for s(n) > log(n) is closed under complementation.
This result which was proven by Neil Immerman in 1988, is going to be proven here for the case
NL. By the following proposition, it suffices to show that CONN € coNL (or equivalently
CONN e N L.

Proposition 6.3.1 : If for an N L-complete language L it holds that L € coN L then N'L = coN L.

Proof: Let L' be a language in A'L. Since L € N L-complete, we have a log-space reduction f
from L' to L (see Definition 6.2). The function f satisfies:

rell & f(z)eL
Taking the opposite direction, we get:
rell & f(r)el

By the definition of the reduction, f is also a reduction from L’ to L. By proposition 6.2.2 we
know that since L € N'L (because by hypothesis L € coN'L) then L' € N'L (i.e. L' € coNL). We
conclude that for every L' e NL, L'’ e NL, thus NL=coNL. W

6.4 Immerman Theorem: N L = coNL

In this section, we are going to prove a surprising theorem, which claims that non-deterministic
log-space is closed under complementation. Due to the proof in Theorem 6.5 that CONN € N L-
complete, and using proposition 6.3.1, we only need to prove that CONN € N L, where CONN is
the complementary problem of CONN as defined in Example 6.7. Formally, The decision problem
of the language CON N, is obtained as the following:

Input: a directed graph G = (V, E) and two nodes u,v € V(G).

Question: Is there no directed path from v to u 7

In order to show that CONN € N'L , we use the following theorem, which will be proven later:

66 LECTURE 6. INSIDE NON-DETERMINISTIC LOGARITHMIC SPACE

Theorem 6.9 Given a directed graph G = (V,E) and a node v € V(G), the number of nodes
reachable from v in G can be computed by a non-deterministic Turing Machine within log-space.

A non-deterministic Turing Machine that computes a function f of the input, as in the theorem
above, is defined as follows:

Definition 6.10 (non-deterministic computation of functions): A non-deterministic Turing Ma-
chine M 1is said to compute a function f if on any input z, the following two conditions hold:

1. either M halts with the right answer f(x), or M halts with output “failure”; and

2. at least one of the machine computations halts with the right answer.

6.4.1 Theorem 6.9 implies N'L = coN L
Lemma 6.4.1 Assuming Theorem 6.9, CONN € NL

Assuming Theorem 6.9, we have a non-deterministic Turing Machine denoted CR (CR L Count

Reachable) that counts all the nodes that are reachable in a directed graph G from a single node v
in non-deterministic log-space. The idea of the proof is that once we know to compute using CR
the number of nodes reachable from v in G, we can also non-deterministically scan all the vertices
reachable from v, using this value. This is done non-deterministically by guessing connected paths
to each of the reachable nodes from v. Once the machine discovered all reachable nodes from v (i.e.
the number of reachable nodes it found equals the output of CR) and the node u isn’t reachable,
it can decide that there is no connected path between v and u in G.

Proof: Let x = (G, u,v) be an input for the problem CONN. We fix (G,v) and give it as an input
to the machine C'R, which is the non-deterministic machine that enumerates all the nodes in the
graph G reachable from the node v as was assumed before to work in non-deterministic log-space.
In other words, we use C'R, as a “black box”.

We construct a non-deterministic machine here that uses the following simulation that solves
this problem:

e Firstly, it simulates CR on the input (G, v). If the run fails, the machine rejects. Otherwise,
we denote the answer by V.

e For each vertex w in the graph, it guesses whether w is reachable from v and if yes, it guesses
non-deterministicly a directed path from v to w, by guessing at most n — 1 vertices (we know
by a simple combinatorial fact, that each two connected nodes in a grpah G = (V, E) are
connected within path of length less than or equal to n — 1) and verifies that it is a valid
path. For each correct path, it increments a counter.

e If w = u, and it founds a valid path then it rejects.

e If counter # N then the machine rejects the input, otherwise the machine accepts the in-
put. (counter # N means that not all reachable vertices were found and verified, whereas
counter = N means that all were examined. If none of these equals u then we should indeed
accept).

Formally, we have the following algorithm:

Input: G = (V, E), v,u € V(G)
Task: Find whether there is no connected path between v and v.

6.4. IMMERMAN THEOREM: N'L = CONL 67

1. Simulating CR. If CR fails, the algorithm rejects, else N «— CR((G,v)).
2. counter < 0
3. for w =1 to n do (w is a candidate reachable vertex)

4. guess if w is reachable from v. If not, proceed to next iteration of step 3.
(we continue in steps 5-17 only if we guessed that w is reachable from v)

5. p— 0 (counter for path length)
6. V] — (vy s initially v)
7. repeat (guess and verify a path from v to w)
8. p—p+1
9. guess a node vy (v1 and vy are the last and the current nodes)
10. if (v1,v2) ¢ FE then reject
11. if v9 # w then vy <« vy
12. until (v9 =w) or (p=n-—1)
13. if (v = w) then (counting all reachable w # u)
14. begin
15. counter < counter + 1
16. if w = u then reject
17. end

18. if N # counter then reject, else accept.

We know that C'R works in O(log(|G|)). In each step of the simulation, our algorithm uses only
6 variables in addition of those of C R, namely the counters counter,w,p, the representations of
the nodes w9, v; and N. the counters, and N are bounded by the number of vertices, n. Every new
change of one of this variables will be written again on the work tape by reusing space. Therefore,
they can be implemented in O(log(n)) space. The nodes, clearly, are represented in O(log(|G]))
space. Thus, we use no more then O(log(|G|)) space in the work tape in this machine (where x is
the input). The correctness is proved next:

To show correctness we need to show that it has a computation that accepts the input if and
only if there is no direct path from v to w in G.

Consider first the case that the machine accepts. A necessary condition (for this event) is that
counter = N (line 18); that is, the number of vertices that were found to be reachable is exactly
the correct one (i.e., N). This means that every possible vertex that is reachable from v was
counted. But, if u was found to be one of them the machine should have rejected before (in line
16). Therefore, u cannot be reachable from v by a directed path.

Suppose, on the other hand, that there is no directed path between u and v in G. Then if
all guesses made are correct then the machine will necessarily accept. Specifically, we look at a

68 LECTURE 6. INSIDE NON-DETERMINISTIC LOGARITHMIC SPACE

computation in which (1) the machine correctly guesses (in line 4) for each vertex w whether it is
reachable from v; (2) for each reachable vertex w it guesses well a directed path from v; and (3)
machine C'R did not fail (and thus N equals the number of vertices reachable from v). In this case
N = counter, and since u is not connected to v the machine accepts.

Therefore, we proves the lemma. W

Using this result (under the assumption that Theorem 6.9 is valid), we obtain V'L = co/N L.
Theorem 6.11 (Immerman 88’): N'L = coN L

Proof: We proved in Theorem 6.5 that CONN € N L-complete. In Lemma 6.4.1, we proved that
CONN € NL (or CONN € coN L). Using Proposition 6.3.1, we get, that NL=coNL. N

An extension of this theorem can show that for any s(n) > log(n), NSPACE(s(n)) = coNSPACE(s(n)).

6.4.2 Proof of Theorem 6.9

To conclude this proof we are only left with the proof of Theorem 6.9, i.e. the existness of a machine
CR, that computes the number of nodes reachable from a vertex v in a directed graph G = (V, E).
We use the following notations for a fixed point v in a fixed directed graph G = (V, E):

Definition 6.12 R; is the set of vertices which are reachable from v by a path of length less than
or equal to j. In addition, N; is defined to be the number of nodes in R;, namely |R;|.

It can be seen that,
fv}=RyCRC---CR, 1=R

where n denotes the number of nodes in G, and R denotes the set of vertices reachable from v.

There is a strong connection between R; and R;_; for j > 1, since any path of length j is a path
of length 7 — 1 with an additional edge. The following claim will be used later in the development
of the machine CR:

Claim 6.4.2 The following equation holds:

R — {Rj_lu{u:w ERj_l,(’UJ,U) EE(G)} if 7 >1
7 v} ifj=0

Proof: For j = 0: Clear from definition.

For j > 1: R;j_; C R;j by definition. {u:w € Rj_1,(w,u) € E(G)} represents all the nodes which
are adjacent to R;_1, i.e. have length at most j —1+41 = j. This set is also contained in R;. Thus,
R;_1U {u tw € Rj_q, (w,u) € E(G)} C R;.

In the opposite direction, every node u € R;, which is not v, is reachable from v along a path
with length less or equal to j. Thus, its predecessor in this path has length less or equal to 7 — 1.
Thus, R; C {u:w € Rj_1,(w,u) € E(G)} U{v} C Rj_1U{u:w € Rj_1,(w,u) € E(G)} (since
{v} CR;_; for any j > 1).

Therefore, the claim follows. [

Corollary 6.13 For any j > 1, a node w € Rj, if and only if there is a node r € R;_1 such that
r=wor (r,w) € E(G). N

6.4. IMMERMAN THEOREM: N'L = CONL 69

We now construct a non-deterministic Turing Machine, C'R, that counts the number of nodes in a
directed graph G, reachable from a node in the graph v.

Our purpuse in this algorithm is to compute N, _; where n is the number of nodes in G, to
find the number of all reachable nodes from v. This recursive idea in Claim 6.4.2 is the main idea
behind the following algorithm, which is build iteratively. In each stage, the algorithm computes
Nj by using N;_q. It has an initial value Ny, which we know to be [{v}| = 1. The itrations use the
non-deterministic power of the machine.

The high-level description of the algorithm is as follows:

e For each j from 1 to n — 1, it tries to calculate recursively N; from N;_;. This is done from
No to Ny, _1, which is the desired output. Here is how N; is computed.
— For each node w in the graph,

* For each node r in the graph, it guesses if » € R;_; and if the answer is yes, it
guesses a path with length less than or equal to 5 — 1, from v to r. It verifies that
the path is valid. If it is, it knows that r is a node in R;_;. Otherwise, it rejects.
It counts each node r, such that r € R;_;, by counter;_;. The machine checks
whether w = r or (r,w) € E(G). If it is, (by using Corrolary 6.13), w € R;, and
then it indicates by a flag, flag,, that w is in R;. (flag, is initially 0).

— It counts the number of vertices r in R;_; we found, and verifies that it is equal to N;_1.
Otherwise, it rejects. If the machine does not reject, we know that every node r € R;_;
was found. Therfore using Corrolary 6.13, the membership of w in R; is decided properly
(i.e. flag, has the right value).

— At the end of this process it sums up the flags, flag,’s into a counter, counter; (i.e.
counts the number of nodes that were found to be in R;).

o It stores the value of counter; for N; to begin a new iteration (or to give the result in case
we reach j =n —1).

We stress that all counters are implemented using the same space. That is, the only thing which
passes from iteration j — 1 to iteration j is N;_i.

The detailed code follows:

Input: G = (V,E), v € V(G)

Task: Find the number of reachable nodes from v in G.
1. Computing n = |V(G)|
2. Ny — 1 =|Ry|

3. forj=1ton—1do

4. counter; < 0

5. for w=1 to n do (lines 5-24 compute N;)

6. counterj_; «— 0 (w is a potential member in R;)
7. flagy, =0

70 LECTURE 6. INSIDE NON-DETERMINISTIC LOGARITHMIC SPACE

8. for r =1 to n do (We try to enumerate R; 1 using N;_1)

9. guess if r € R;_;. If not, proceed to next iteration of step 8.
(we continue in steps 10-21 only if we guessed that r € R;_1)

10. V] — (v1 is initially v)

11. p+—0

12. repeat (guess and verify a path from v to r, such that r € R;_1)
13. p—p+1

14. guess a node vy (v1 and vy are the last and current nodes)
15. if (v1,v2) ¢ E then halt(failure)

16. if v9 # r then vy «— v

17. until (ve =7)or (p=j5-1)

18. if v9 # r then halt(failure)

19. counter;_y < counterj_y + 1

20. if (r =w) or ((r,w) € E(G)) then (check that w € R;)
21. flagy, =1

22. if counterj_; # N;_; then halt(failure)

23. counter; < counter; + flag,

24. N; = counter;

25. output N, 1
Lemma 6.4.3 The machine CR uses O(log(n)) space.

Proof: Computing the number of nodes (line 1) can be made in at most O(log(n)), by sim-
ply counting the number of nodes with a counter on the input tape. In each other step of the
running of the machine, it only needs to know at most ten variables, i.e. the counters for the
"for’ loops: j,w,r,p, the value of N;_; for the current j, the two counters for the size of the sets
counter;, counter;j_1, two nodes of the guessing part vs,v1, and the indicating flag flag.,.

Oded’s Note: The proof might be more convincing if the code was modified so that
Nprev is used instead of Nj_i, countercyrr instead of counter;j, and counterprpv
instead of counter;_;. In such a case, line 24 will prepare for the next iteration by
setting Nprpy < countercyrr- Such a description will better emphasise the fact that
we use only a constant number of variables, and that their storage space is re-used in
the iterations.

6.4. IMMERMAN THEOREM: N'L = CONL 71

Whenever is needed to change information, like increasing a counter, or changing a variable,
it reuses the space it needs for this goal. Every counter we use counts no more than the number
of nodes in the graph, hence we can implement each one of them in O(log(n)) space. Each node
is assumed to take O(log(n)) to store, i.e. its number in the list of nodes. And the flag,, clearly
takes only 1 bit. Therefore, to store these variables, it is enough to use O(log(n)) space.

Except for these variables, we don’t use any additional space. All that is done is comparing
nodes with the input tape, and checking whether two nodes are adjacent in the adjecancy matrix
that represents the graph. These operations can be done only by scanning the input tape, and take
no more then O(log(n)) space, for counters that scan the matrix.

Therefore, this non-deterministic Turing Machine uses only O(log(n)) or O(log(]z|)) where
x = (G,v) is the input to the machine.

Lemma 6.4.4 If the machine CR outputs an integer, then it correctly gives the result of N, 1.

Proof: We’ll prove it by induction on the iteration of computing N;:

For 7 = 0: It is obviously correct.

If it computes correctly N;_1, and it did not halt while computing N;, then it computes correctly
N; as well: By the assumption of the induction we have a computation that computes /N;_y, that
is stored correctly. All we have to prove is that counter; is incremented if and only if the current
w is indeed in R; (line 23), since then N; will have correctly the number of nodes in R;. Since
the machine didn’t failed till now, counter;_; has to be equal to N;_; (line 22), by the assumption
of the induction. This means that the machine indeed found all r € R;_1, since counter;_; is
incremented for each node that is found to be in R; ; (line 19). Therefore, using Corrolary 6.13,
we know that the machine changes the flag, flag., of a node w if only if w € R;. And this flag is
the value that is added to counter; (line 23). Therefore, the counter is incremented if and only if
w € Rj. [|

Corollary 6.14 Machine CR satisfies Theorem 6.9.

Proof: We have shown in Lemma 6.4.4 that if the machine doesn’t fail, it gives the right result.
It is left to prove that there exists a computation in which the machine doesn’t fail.

The correct computation is done as follows. For each node r ¢ R;_;, the machine guesses well
in line 9 that indeed r ¢ R;_; and stops working on this node. For each node » € R;_;, the
machine guesses in line 9 so, and in addition it guesses correctly the nodes that form the directed
path from v to r in line 14. In this computation, the machine will not fail. In lines 15 and 18, there
is no failure, since only 7 € R;j_1 nodes get to these lines, and in these lines it guesses corectly the
connected path from v. Therefore, in line 22, all nodes » € R;_; were counted, since the machine
guesses them corectly, and the machine will not halt either. Thus, the machine doesn’t fail on the
above computation.

Using Lemma 6.4.3, we know that the machine uses O(log(n)) space. Therefore, CR is a
non-deterministic machine that satisfies Theorem 6.9. [l

Bibliographic Notes

The proofs of both theorems (i.e., NL-completeness of CONN and NL=coNL) can be found in [2].
The latter result was proved independently by Immerman [1] and Szelepcsenyi [3].

72

LECTURE 6. INSIDE NON-DETERMINISTIC LOGARITHMIC SPACE

1. N. Immerman. Nondeterministic Space is Closed Under Complementation. SIAM Jour. on
Computing, Vol. 17, pages 760778, 1988.

2. M. Sipser. Introduction to the Theory of Computation, PWS Publishing Company, 1997.

3. R. Szelepcsenyi. A Method of Forced Enumeration for Nondeterministic Automata. Acta
Informatica, Vol. 26, pages 279284, 1988.

Lecture 7

Randomized Computations

Notes taken by Erez Waisbard and Gera Weiss

Summary: In this lecture we extend the notion of efficient computation by allowing
algorithms (Turing machines) to toss coins. We study the classes of languages that
arise from various natural definitions of acceptance by such machines. We will focus on
polynomial running time machines of the following types:

1. One-sided error machines (RP, coRP).
2. Two-sided error machines (BPP).
3. Zero error machines (ZPP)

We will also consider probabilistic machines that uses logarithmic spaces (RL).

7.1 Probabilistic computations

The basic thought underlying our discussion is the association of efficient computation with prob-
abilistic polynomial time Turing machines. We will consider efficient only algorithms that run in
time that is no more than a fixed polynomial in the length of the input.

There are two ways to define randomized computation. One, that we will call online is to enter
randomized steps, and the second that we will call offline is to use an additional randomizing input
and evaluate the output on such random input.

In the fictitious model of non-deterministic machines, one accepting computation was enough
to include an input in the language accepted by the machine. In the randomized model we will
consider the probability of acceptance rather than just asking if the machine has an accepting
computation.

Then he saitd, “May the Lord not be angry, but let me speak just once more. What if
only ten can be found there?” He answered, “For the sake of ten, I will not destroy it.”
[Genesis 18:32].

As God didn’t agree to save Sedom for the sake of less then ten peoples, we will not consider an
input to be in the accepted language unless it has a noticeable probability to be accepted.

Oded’s Note: The above illustration is certainly not my initiative. Besides some reser-
vations regarding this specific part of the bible (and more so the interpretations given

73

74 LECTURE 7. RANDOMIZED COMPUTATIONS

to it during the centuries), I fear that 10 may not strick the reader as “many” but
rather as closer to “existence”. In fact, standard interpretations of this passage stress
the minimalistic nature of the challenge — barely above unique existence...

The online approach: One way to look at a randomized computation is to allow the Turing
machine to make random moves. Formally this can be modeled as letting the machine to choose
randomly among the possible moves that arise from a nondeterministic transition table. If the
transition table maps one (< state >, < symbol >) pair to two different (< state >, < move >, <
symbol >) triples then the machine will choose each transition with equal probabilities.

Syntactically, the online probabilistic Turing machine will look the same as the nondeterministic
machine. The difference is at the definition of the accepted language. The criterion of an input to be
accepted by a regular nondeterministic machine is that the machine will have at least one accepting
computation when it is invoked with this input. In the probabilistic case, we will consider the
probability of acceptance. We would be interested in how many accepting computation the machine
has (or rather what is the probability of such computation). We postulate that the machine choose
every step with equal probability, and so get a probability space on possible computations. We look
at a computation as a tree, where a node is a configuration and it’s children are all the possible
configurations that the machine can pass to in a single step. The tree is describing the possible
computations of the machine when running on a given input. The output of a probabilistic Turing
machine on an input z is not a string but a random variable. Without loss of generality we can
consider only binary tree because if the machine has more than two possible steps, it is possible to
build another machine that will simulate the given machine with two step transition table. This is
possible even if the original machine had steps with probability that has infinite binary expansion.
Let say, for example, that the machine has a probability of % to get from step A to step B. Then
we have a problem when trying to simulate it by unbiased binary coins, because there is the binary
expansion of % is infinite. But we can still get as close as we want to the original machine, and this
is good enough for our purposes.

The offline approach: Another way to consider nondeterministic machines is, as we did before,
to use an additional input as a guess. For NP machines we gave an additional input that was used
as a witness. The analogous idea is to view the outcome of the internal coin tosses as an auxiliary
input. The machine will receive two inputs, the real input, z, and the guess input, r. Imagine that
the machine receives this second input from an external ‘coin tossing device’ rather than toss coins
internally.

Notation: We will use the following notation to discuss various properties of probabilistic ma-
chines:

Prob,[M(z,r) = 2]
Sometimes, we will drop the r and keep it implicitly like in the following notation:
Prob[M(x) = z|

By this notations we mean the probability that the machine M with real input = and guess input
r, distributed uniformly, will give an output z. The probability space is that of all possible r
taken with uniform distribution. This statement is more confusing than it seems to be because the
machine may use different number of guesses for different inputs. It may also use different number
of guesses on the same input, if the computation depends on the outcome of previous guesses.

7.2. THE CLASSES RP AND CORP — ONE-SIDED ERROR 75

Oded’s Note: Actually, the problem is with the latter case. That is, if on each input all
computations use the same number of coin tosses (or “guesses”), denoted I, then each
such computation occurs with probability 2=. However, in the general case, where
the number of coin tosses may depend on the outcome of previous tosses, we may
just observe that a halting computation with coin outcome sequence r occurs with
probability exactly 27",

Oded’s Note: An alternative approach is to modify the randomized machine so that it
does use the same number of coin tosses in each computation on the same input.

7.2 The classes RP and coRP — One-Sided Error

The first two classes of languages that arise from probabilistic computations that we consider are
the one-sided error (polynomial running time) computable languages. If there exist a machine that
can decide the language with good probability in polynomial time it is reasonable to consider the
problem as relatively easy. Good probability here means that the machine will be sure only in one
case and will give the right answer in the other case but only with good probability (the cases are
when = € L and when = ¢ L).

From here on, a polynomial probabilistic Turing machine means a probabilistic machine that always
(no matter what coin tosses it gets) halts after a polynomial (in the length of the input) number
of steps.

Definition 7.1 (Random Polynomial-time — RP): The complezity class RP is the class of all
languages L for which there exist a probabilistic polynomial-time Turing machine M, such that

x € L = Prob[M(z) =1] >

z ¢ L = Prob[M(z)=1] =0.

Definition 7.2 (Complementary Random Polynomial-time — coRP): The complexity class coRP
18 the class of all languages L for which there exist a probabilistic polynomial-time Turing machine
M, such that

x € L= Prob[M(z)=1] =1.

x ¢ L = Prob[M(z)=0] >

One can see from the definitions that these two classes complement each other. If you have a
machine that decides a language L with good probability (in one of the above senses), you can use
the same machine to decide the complementary language in the complementary sense.

That is, an alternative (and equivalent) way to define coRP is:

coRP ={L: L € RP}

76 LECTURE 7. RANDOMIZED COMPUTATIONS

Comparing NP to RP: It is instructive to compare the definitions of RP and NP. In both
classes we had the offline definition that used an external witness (in N P) or randomization (in RP).

Given an RP machine, M, since the machine run in polynomial-time, the size of the guesses
that it can use is bounded by a polynomial in the size of z. For every given integer n € N we
consider the relation:

Ry € {(2,7) € {0,1}" x {0,170 : M(z,7) =1}
which consists of all accepted inputs of length n and their accepting coin tosses (i.e r).
The same is also applicable for N P machines, which run also in polynomial-time and can only

use witnesses that are bounded by a polynomial in the length of the input. So, for NP machine
M, we consider the relation:

Ry = {(z,9) € {0,1}" x {0,1}7) : M(z,y) =1}

which consist of all accepted inputs of length n and their witnesses (i.e y).

In both cases we will use the relation: -
R=|J R,
n=1
which consists of all the accepted inputs and their witness/coin-tosses.

Using this relation we can compare Definition 7.1 to the definition of NP in the following table:

\ NP [RP |
x €L = 3Ty, (x,y) € R | z € L =Prob, [(z,r) € R| 2%
x¢ L=Vy, (r,y) ¢ R x¢L=Vr, (z,r)¢ R

From this table, it is seems that these two classes are close. The witness in the nondeterministic
model is replaced by the coin-tosses and the criteria for acceptance has changed. The difference is
that, in the nondeterministic model, one witness was enough for us to say that an input is accepted,
and in the probabilistic model we are asking for many coin-tosses. Clearly,

Proposition 7.2.1 NP DO RP

Proof: Let L be an arbitrary language in RP. If x € L then there exist a Turing machine M and
a coin-tosses y such that M(z,y) = 1 (more than 3 of the coin-tosses are such). So we can use this
y as a witness (considering the same machine as a nondeterministic machine with the coin-tosses
as witnesses). If z ¢ L then Prob,[M(z,r) = 1] = 0 so there is no witness. i

Notice that there is a big difference between nondeterministic Turing machines and probabilistic
Turing machines. The first is a fictitious concept that is invented to explore the properties of search
problems, while the second is a realistic model that describe machines that one can really build.We
use the nondeterministic model to describe problems like a search problem with an efficient verifi-
cation, while the probabilistic model is used as an efficient computation.

It is fair to ask if a computer can toss-coins as an elementary operation. We answer this
question positively based on our notion of randomness and the ability of computers to use random-
generating instrumentation like reading unstable electric circuits. The question is whether this
random operation gives us more power than we had with the regular deterministic machines.

7.2. THE CLASSES RP AND CORP — ONE-SIDED ERROR 7

RP is one-sided error: The definition of RP does not ask for the same behavior on inputs that
are in the language as it asks for inputs that are in the language.

o If 2 ¢ L then the answer of the machine must be correct no matter what guesses we make.
In this case, the probability to get a wrong answer is zero so the answer of the machine is
right for every r.

e But, if x € L, the machine is allowed to make mistakes. In this case, we have a non-zero
probability that the answer of the machine will be wrong (still this probability is not “too
big”).

The definition favors one type of mistake while in practice we don’t find very good reason to favor
it. We will see later that there are different families of languages that do not favor any type of
error. We will call these languages two-sided error languages.

It was reasonable to discuss one-sided errors when we where developing N P, because verification
is one-sided by nature, but it is less useful for exploring the notion of efficient computation.

Invariance of the constant and beyond: Recall that for L € RP

x € L = Prob,[M(x,r)=1] >

DN | =

The constant % in the definition of RP is arbitrary. We could choose every constant strictly
threshold between zero and one, and get the same complexity class. Our choice of % is somewhat
appealing because it says that at least half of the witnesses are good.

If you have, for example, a machine that can decide some language L with a greater probability
than % to say “YES” for an input that is in the language, you can build another machine that will
invoke the first machine three times on every input and return the “YES” if one of them answered
“YES”. Obviously this machine will answer correctly on inputs that are not in the language (be-
cause the first machine will always say “NO”), and it will say “YES” on inputs that are in the
language with higher probability than before. The original probability of not getting the correct
answer when the input is in the language was smaller than %, when repeating the computation for

3
three time this probability falls down to less than (%) = % meaning that we now get the correct

answer with probability greater than %—9{ (which is greater than %)

So we could use % instead of % without changing the class of languages. This procedure of
amplification can be used to show the same result for every constant, but we will prove further that
one can even use thresholds that depend on the length of the input.

We are looking at two probability spaces: one when = ¢ L and one when = € L, and defined a
random variable (representing the decision of the machine) on each of this spaces. In case x ¢ L
the latter random variable is identically zero (i.e., “reject”), whereas in case x € L the random
variable may be non-trivial (i.e., is 1 with probability above some given threshold and 0 otherwise).

Moving from one threshold to a higher one amount to the following: In case = € L, the fraction
of points in the probability space assigned the value 1 is lower bounded by the first threshold. Our
aim is to hit such a point with probability lower bounded by a higher threshold. This is done
by merely making repeated independent samples into the space, where the number of the trials is
easily determined by the relation between the two thresholds. We stress that in case z ¢ L all
points in the probability space are identically assigned (the value 0) and so it does not matter how
many times we try (we’ll always see zeros).

78 LECTURE 7. RANDOMIZED COMPUTATIONS

We will show that one can even replace the constant % by either m or 1 — 27702 where p(-)
is any fixed polynomial, and get the same family of languages. We take these two margins, because
once we will show the equivalence of these two thresholds, it will follow that every threshold that
one might think of in between will do. Consider the following definitions:

Definition 7.3 (RP1): L is in RP1 if there exist a polynomial running-time Turing machine M
x € L = Prob,[M(z,r)=1] > p(|113|)
x ¢ L= Prob,[M(z,r)=0]=1

and a polynomial p(-) such that

Definition 7.4 (RP2): L is in RP2 if there exist a polynomial running-time Turing machine M
. x € L = Prob,[M(x,7) =1] > 1 — 2772}
d [Ip(- h that ’ -
and a polynomial p(-) such tha 5 ¢ L= ProbM(zr) =0] =1
These definitions seems very far from each other, because in RP1 we ask for a probabilistic
algorithm (Turing machine) that answer correctly with a very small probability (but not negligible),
while in R2 we ask for an efficient algorithm (Turing machine) that we can almost ignore the
probability of it’s mistake. However, these two definition actually define the same class (as we will
prove in the next paragraph). This implies that having an algorithm with a noticeable probability
of success implies existence of and efficient algorithm with negligible probability of error.

Proposition 7.2.2 RPI=RP2
Proof:

RP1 D RP2
This direction is trivial because if |z| is big enough then the bound in Definition 7.3 (i.e m) is

smaller than the bound in Definition 7.4 (i.e 1 — 27P(2D) 50 being in RP2 implies being in RP1
for almost all inputs. The finitely many inputs for which this does not hold can be incorporated in
the machine of Definition 7.3. Thus RP1 D RP2.

RP1 C RP2

We will use a method known as amplification:

We will try the weaker machine (of RP1) enough times so that the probability of giving a wrong
answer will be small enough. Assume that we have a machine M; such that

Vo € L : Prob.[My(xz,r) =1] >

p(l=])

We will define a new machine My, up to a function ¢(|z|) that we will determine later, as follows:

invoke Mj(z) t(|x|) times with dif ferent randomly selected r's
My(z) def if some of these invocations returned 'Y ES' return 'Y ES'
else return 'NO'

Let t = t(]z|). Then for x € L

PTOb[MQ(x) = 0] = (Prob[Ml(x) = 0])t(|1}|) < (1 B 1)t(|1‘|)

7.3. THE CLASS BPP — TWO-SIDED ERROR 79

To find the desired t(|z|) we can solve the equation:

1)t(lrl) B
1 — —— <2 p(|x))
< p(|z]) -

-1
t(|z[) > p(|z|) - log, (1 - ;ﬁ) B

Where e =~ 2.7182818... is the natural logarithm base.

So by letting (|z|) = p(|z|)? in the definition of My we get a machine that run in polynomial
time and decides L with probability greater than 1 — 277(=) to give right answer for z € L (and
always correct onz ¢ L). W

And obtain)
p(lz])
log, e

7.3 The class BPP — Two-Sided Error

One may argue that RP is too strict because it ask that the machine has to give 100% correct
answer for inputs that are not in the language.

We derived the definition of RP from the definition of NP, but NP didn’t reflect an actual
computational model for search problems but rather a model for verification. One may find that
looking at a two-sided error is more appealing as a model for search problem computations.

We want a machine that will recognize the language with high probability, where probability
refers to the event “The machine answers correctly on an input = regardless if z € L or z ¢ L”. This
will lead us to two-sided error version of the randomized computation. First recall the notation:

def | 1 z €L
xi(@) = 0 z¢L

Definition 7.5 (Bounded-Probability Polynomial-time — BPP): The complezity class BPP is the
class of all languages L for which there exist a probabilistic polynomial-time Turing machine M,
such that

Vz : Prob[M(z) = xr(z)] >

[SCRN]

That means that:
If x € L then Prob[M(x) =1] >

Wl = Wl

If x ¢ L then Prob[M(z)=1] <

The phrase “bounded-probability” means that the success probability is bounded away from
failure probability.

The BPP machine is a machine that makes mistakes but returns the correct answer most of the
time. By running the machine a large number of times and returning the majority of the answers
we are guaranteed by the law of large numbers that our mistake will be very small.

The idea behind the BPP class is that M accept by majority with a noticeable gap between the
probability to accept inputs that are in language and the probability to accept inputs that are not
in the language, and it’s running time is bounded by a polynomial.

80 LECTURE 7. RANDOMIZED COMPUTATIONS

Invariance of constant and beyond: The % is, again, an arbitrary constant. Replacing the
2

3 in the definition by any other constant greater than % does not change the class defined. If, for
example we had a machine, M that recognize some language L with probability p > %, meaning
that Prob[M(z) = xi(x)] > p, we could easily build a machine that will recognize L with any given
probability ¢ > p by invoking this machine sufficiently many times and returning the majority of the
answers. This will clearly increase the probability of giving correct answer to the wanted threshold,
and run in polynomial time.

In the RP case we had two probability spaces that we could distinguish easily because we had
a guarantee that if z ¢ L then the probability to get one is zero, hence if you get M(x) = 1 for
some input z, you could say for sure that x € L.
In the BPP case, the amplification is less trivial because we have zeroes and ones in both probability
spaces (the probability space is not constant when = € L nor when = ¢ L).
The reason that we can apply amplification in the BPP case (despite the above difference) is
that invoking the machine many times and counting how many times it returns one gives us an
estimation on the fraction of ones in the whole probability space. It is useful to get an estimator
for the fraction of the ones in the probability space because when this fraction is greater than % we
have that = € L, and when this fraction is less than % we have that x ¢ L (this fraction tells us in
which probability space we are in).

If we rewrite the condition in Definition 7.5 as:

If x € L then Prob[M(xz)=1] > -+

N | =
=

If x ¢ L then Prob[M(z) = 1] <%——.

| =

We could consider the following change of constants:
If z € L then Prob[M(z) =1] > p+e.

If ¢ L then Prob|[M(z)=1] <p—e.

for any given p € (0,1) and 0 < € < min{p,1 — p}.

If we had such a machine, we could invoke the machine many times and get increasing probability
to have the fraction of ones in our innovations to be in an € neighborhood of the real fraction of
ones in the whole space (by the law of large numbers). After some fixed number of iterations (that
does not depend on z), we can get that probability to be larger than %

This means that if we had such a machine (with p and € instead of % and %), we could build another
machine that will invoke it some fixed number of times and will decide the same language with
probability greater than %

The conclusion is that the % + % is arbitrary in Definition 7.5, and can be replaced by any p+ ¢
such that p € (0,1) and 0 < € < min{p,1 — p}. But we can do more than that and use threshold
that depend on the length of the input as we will prove in the following claims:

The weakest possible BPP definition: Using the above framework, we’ll show that for every
polynomial-time computable threshold, denoted f below, and any “noticeable” margin (represented
by 1/poly), we can recover the “standard” threshold (of 1/2) and the “safe” margin of 1/6.

7.3. THE CLASS BPP — TWO-SIDED ERROR 81

Claim 7.3.1 L € BPP if and only if there exist a polynomial-time computable function f : N —
[0,1], a positive polynomial p(-) and a probabilistic polynomial-time Turing machine M, such that:

Vo€ L: Prob{M(z) = 1] > f(|z]) + p(iﬂ)
Va ¢ L: Prob[M(z) = 1] < f(|z]) - m

Proof:
It is easy to see that by choosing f(|z|) = % and p(|z|) = 6 we get the original definition of BPP
(see Definition 7.5), hence every BPP language satisfies the above condition.

Assume that we have a probabilistic Turing machine, M, with these bounds on the proba-
bility to get 1. Then, for any given input x, we look at the random variable M(x), which is a
Bernoulli random variable with unknown parameter p = Exp[M (z)]. Using a well known fact that
the expectation of a Bernoulli random variable is exactly the probability to get one we get that
p = Prob[M(z) = 1].

So by estimating p we can say something about whether z € L or ¢ L. The most natural esti-
mator is to take the mean of n samples of the random variable (i.e the answers of n independent
invocations of M (x)).

Then we will use the known statistical method of confidence intervals on the parameter p. The
confidence interval method gives a bound within which a parameter is expected to lie with a cer-
tain probability. Interval estimation of a parameter is often useful in observing the accuracy of an
estimator as well as in making statistical inferences about the parameter in question.

In our case we want to know with probability higher than % if pe [O,f(|ac|) — m] or p €
[f(|ac|) + m, 1]. This is enough because p € [0,f(|x|) — m] =z ¢ Landp € [f(|ac|) + m, 1]

1

x € L (note that p € (f(|a:|) — m, f(lz]) + m) is impossible). So if we can get a bound of size
1

) within which p is expected to lie within a probability greater than %, we can decide L(M)
with this probability (and hence L(M) € BPP by Definition 7.5).

We define the following Turing machine (up to an unknown number n that we will compute later)

Invoke M(x) n times (call the result of the i'th invocation t;).
M'(x) L Compute p — L.yn ¢
if p > f(|z]) say 'YES' else say 'NO'

Note that p is exactly the mean of a sample of size n taken from the random variable M (x).
This machine do the normal statistical process of estimating a random variable by taking samples
and using the mean as an estimator for the expectation. If we will be able to show that with an
appropriate n the estimator will not fall too far from the real value with a good probability, it will
follow that this machine answers correctly with the same probability.

To resolve n we will use Chernoff’s inequality which states that for any set of n independent
Bernoulli variables {X7, Xs,..., X,,} with the same expectations p < 1 and for every 6,0 < § <

2
p(p — 1), we have

2

=

" 2. ef2n-§2

-]

oo X, &2 . -
Prob Hu—p‘>6} <2-e¢ 2P0 <2 ¥
n

82 LECTURE 7. RANDOMIZED COMPUTATIONS

1
So by taking 6 = m and n = —121_1—6% we get that our Turing machine M’ will decide L(M)

with probability greater than 2 suggesting that L(M) € BPP.

The strongest possible BPP definition: On the other hand, one can reduce the error proba-
bility of BPP machines to an exponentially vanishing amount.

Claim 7.3.2 For every L € BPP and every positive polynomial p(-) there exist a probabilistic
polynomial-time Turing machine M, such that:

Va : Prob[M(z) = y(z)] > 1 — 277D

Proof:
If this condition is true for every polynomial, we can choose p(|z|) = 2 and get M such that:

Vz : Prob[M(z) = xr(z)] >1-272 =

]
= Vz : Prob[M(z) = xi(x)
= L e BPP

v
wlro
NI

Let L be a language in BPP and let M be the machine guaranteed in Definition 7.5. We can
amplify the probability of right answer by invoking M many times and taking the majority of it’s
answers. Define the following machine (again up to the number n that we will find later):

Invoke M(x) n times (call the result of the i'th invocation t;).
M'(x) L Compute p — L.yn ¢
if p > % say 'YES' else say '"NO'

From Definition 7.5, we get that if we know that Exp[M(z)] is greater than half it follows
that z € L and if we know that Exzp[M (x)] is smaller than half it follows that = ¢ L (because
Exp[M(z)] = Prob[M(x) =1])

But Definition 7.5 gives us more. It says that the expectation of M (x) is bounded away from % S0
we can use the confidence interval method.

From Chernoff’s inequality we get that

]. n
Prob ||M'(z) — Exp[M(z)]| < G >1—-2.¢ 18

But if |M'(z) — Exp[M(z)]| is smaller than § we get from Definition 7.5 that the answer of

M’ is correct, because it is close enough to the the expectation of M (z) which is guaranteed to be

above % when x € L and bellow % when = ¢ L. So we get that:

&l

Prob[M'(z) = xr(z)] 21-2-¢
Thus, for every polynomial p(-), we can choose n, such that
or(lz)) > 9. o~ 1§
and get that:
Prob [M'(z) = xp(z)] > 1— opr(|z[)

So M’ satisfies the claimed condition. [

7.4. THE CLASS PP 83

Conclusion: We see that a gap of @ and a gap of 1 — 277D which look like “weak” and

“strong” versions of BPP are the same. As shown above the “weak” version is actually equivalent
to the “strong” version, and both are equivalent to the original definition of BPP.

Some comments about BPP:

1. RP C BPP
It is obvious that one-sided error is a special case of two-sided error.

2. We don’t know if BPP C NP. It might be so but we don’t get it from the definition like we
did in RP.

3. If we define coBPP % {L: L € BPP} we get, from the symmetry of the definition of BPP,

that coBPP = BPP.

7.4 The class PP

The class PP is wider than what we have seen so far. In the BPP case we had a gap between
the number of accepting computations and non-accepting computations. This gap enabled us to
determine with good probability (using confidence intervals) if x € L or = ¢ L.

The gap was wide enough so we could invoke the machine polynomially many times and notice the
difference between inputs that are in the language and inputs that are not in the language. The
PP class don’t put the gap restriction, hence the gap may be very small (even one guess can make
a difference).

Running the machine polynomially many times may not help. If we have a machine that answers
correctly with probability more than %, and we want to get another machine that answers correctly
with probability greater than % + € (for a given 0 < € < %) we can’t always do it in polynomial
time because we might not have the gap that we had in Definition 7.5.

There exist a polynomial time
Definition 7.6 PP < { L C {0,1}* | Turing machine M s.t

Va, Prob|M(z) = xr(x)] > %

Note that it is important that we define > and not >, since otherwise we can simply “flip a
coin” and completely ignore the input (we can decide to say 'Y ES’ if we get head and 'NO' if we
get tail and this will satisfy the definition of the machine) and there is no use for a machine that
runs a lot of time and gives no more knowledge than what we already have (assuming one knows
how to flip a coin). However the actual definition of PP gives very little as well: The difference
between what happens in case z € L and in case x ¢ L is negligible (rather than “noticeable” as
in the definition of BPP). We abuse this weak requirement in the proof of Item 3 (below).

From the definition of PP we get a few interesting facts:

1. PP C PSPACE
Let L be a language in PP, let M be the probabilistic Turing machine that exists according
to Definition 7.6. Let p(-) be the polynomial bounding it’s running time. We will build a new
machine M’ that decides L in a polynomial space. Given an input z, the new machine will
run M on z using all possible coin tosses with length p(|z|) and decides by majority (i.e if M

84

LECTURE 7. RANDOMIZED COMPUTATIONS

accepted the majority of it’s invocations then M’ accepts z, else it rejects x).

Every invocation of M on x requires a polynomial space. And, because we can use the same
space for all invocations, we see that M’ uses polynomial space (the fact that we run it
exponentially many times does not matter). The answer of M’ is correct because M is a PP
machine that answers correctly for more than half of the guesses.

. Small Variants

We mentioned that, in Definition 7.6, we can’t take > instead of of > because this will give
us no information. But what about asking for > when = ¢ L and > when = € L (or the
other way around) ? We will show, in the next claim, that this will not change the class of
languages. A language has such a machine if and only if it has a PP machine.

Consider the following definition:

There exist a polynomial time

Turing machine M s.t
Definition 7.7 PP1 %< { L C {0,1}*| 2 € L = Prob[M(z) = 1] >
x ¢ L = Prob[M(x)=0] >

B | =0 —

The next claim will show that this relaxation will not change the class defined:
Claim 7.4.1 PP1=PP

Proof:

PP C PP1:

If we have a machine that satisfies Definition 7.6 it also satisfies Definition 7.7, so clearly
L e PP= L e PP1.

PP D PP1:

Let L be any language in PP1. If M is the machine guaranteed by Definition 7.7, and p(-)
is the polynomial bounding it’s running time (and thus the number of coins that it uses), we
can define another machine M’ as follows:

. def [if a1 =02 = ... =ap()11 =0 then return 'NO'
M (x, (a1,a2,...,ap(\w\)+1,b1,bQ,...,bp(Irl))) = { else return M (x, (blab27---7bp(|a:|)))

M’ chooses one of two moves. One move, which happens with probability 2~ (e(zD)+1) - will
return 'NO'. The second move, which happens with probability 1 — 2=®(zD+1) will invoke
M with independent coin tosses.

This gives us that

Prob|M'(z) = 1] = Prob[M(z) = 1] - (1 — 2—(p(\w\)+1))

and
Prob[M'(x) = 0] = Prob[M(z) = 0] - (1 — 2~ @ID+1)) 4 o= (e(leD+1)

7.4. THE CLASS PP 85

The trick is to shift the answer of M towards the ' NO’ direction with a very small probability.
This shift is smaller than the smallest probability difference that M could have. So if M (x)
is biased towards the 'Y ES’, our shift will keep the direction of the bias (it will only lower
it). But if there is no bias (or bias towards NO), our shift will give us a bias towards the
'NO'" answer.

If v € L then Prob[M(z) = 1] > 1, hence Prob[M(z) = 1] > 1 + 2-P()) (because the

difference is at least one computation which happens with probability 2*7’("”')), S0:

ProbM'(z) =1 > (% + 2—p<w>> (1= 270D D)

1

= 5ol oGl e) _ymplEh D) 1

If x ¢ L then Prob[M(z) = 0] > 1, hence

Prob[M'(z)=0] > =- (1 _ 2*(P(|€13|)+1)) 1 o~ (lzD+1)

_ 9=l +2) 4 9l +1) S

NN R

And, as a conclusion, we get that in any case
y 1
Prob[M'(x) = xr(z)] > 3
So M’ satisfies Definition 7.6, and thus L € PP. [

3. NP C PP
Suppose that L € NP is decided by a nondeterministic machine M with a running-time that
is bounded by the polynomial p(|x|). The following machine M’ then will decide L by means
of Definition 7.6:

e) # {2 e)

M’ uses it’s random coin-tosses as a witness to M with only one toss that it does not pass
to M'. This toss is used to choose it’s move. One of the two possible moves gets it to the
ordinary computation of M with the same input (and the witness is the random input). The
other choice gets it to a computation that always accepts.

Consider a string z.

If M doesn’t have an accepting computation then the probability that M’ will answer 1 is

exactly % (it is the probability that the first coin will fall on one). On the other hand, if M

has at least one accepting computation then the probability that M’ will answer correctly is
1

greater than 5.

So we get that:

86 LECTURE 7. RANDOMIZED COMPUTATIONS

z€L= ProbM'(z)=1] >

r ¢ L= Prob[M'(x)=0]>
By Definition 7.7, we conclude that L € PP1, and by the previous claim (PP = PP1), we
get that L € PP.

B[=0 =

4. coNP C PP
Easily seen from the symmetry in the definition of PP.

7.5 The class ZPP — Zero error probability.

RP definition is asymmetric and we can’t say whether RP = coRP. It would be interesting to
examine the properties of RP () coRP which is clearly symmetric. It seems that problems which
are in RP(\coRP can benefit from the accurate result of RP deciding Turing machine (if ¢ L)
and of coRP deciding Turing machine (if z € L).

Another interesting thing to consider is to let the machine say “I don’t know” for some inputs. We
will discuss machines that can return this answer but answer correctly otherwise.

We will prove that these two ideas give rise to the same class of languages.

Definition 7.8 (ZPP): L € ZPP if there exist a probabilistic polynomial-time Turing machine
M, such that:

Ve, Prob[M(x) =1] <
Va, ProbM(z)= xr(x) or M(z)=1]=1

Where we denote the unknown answer sign as L.

Again the value % is arbitrary and can be replaced like we did before to be anything between

2-2(z) o 1 — m. If we have a ZPP machine that doesn’t know the answer with probability
half, we can run it p(|z|) times and get a machine that doesn’t know the answer with probability
27P(2]) because this is the probability that none of our invocation know the answer (the other way
is obvious because 2P(2)) is smaller than % for all but final inputs). If we have a machine that
know the answer with probability m, we can use it to build a machine that know the answer

with probability 1 by invoking it p(Jz|) times (the other way is, again, trivial).
Proposition 7.5.1 ZPP = RP(\coRP

Proof: Take L € ZPP. Let M be the machine guaranteed in Definition 7.8. We will show
how to build a new machine M’ which decides L according to Definition 7.1 (this will imply that
ZPP C RP).

b— M(x)
M'(z) ot if b=L1 then output 0
else output b itsel f

By doing so, if x ¢ L then by returning 0 when M (z) =L we will always answer correctly
(because in this case M(z) #1= M'(z) = xr(z) = M'(z) = 0).
If x € L, the probability of getting the right answer with M’ is greater than % because M will
return a definite answer (M (z) #L) with probability greater than 3 and M’s definite answers are

7.6. RANDOMIZED SPACE COMPLEXITY 87

always correct (it never return a wrong answer because it returns L when it is uncertain).
In the same way it can be seen that ZPP C coRP (the machine that we will build will return 1
when M is uncertain), hence we get that ZPP C RP () coRP.

Assume now that L € RP () coRP. Let Mgp be the RP machine and M.,gp the coRP machine
that decides L (according to Definition 7.1 and Definition 7.2). We define M'(x) using Mgp and
M ,rp as follows:

run Mgp(x), if it says 'Y ES' then return 1
M'(x) L run Meorp(x), if it says 'NO' then return 0
otherwise return L

If Mrp says 'YES' then, by Definition 7.1, we are guaranteed that = € L. Notice that it can
happen that z € L and Mrp(x) = 0 but not the other way around (There are 1’s in the probability
space M (xz) when = € L, but the probability space M (z) when z ¢ L is all zeroes. So if M (z)
returns 'Y E'S’, we know that the first probability space is the case).

In a similar way, if M. ,gp says "NO' then, by Definition 7.2, we are guaranteed that 2 ¢ L. Thus
we never get a wrong answer.

If x € L then, by Definition 7.1, we will get a 'Y ES” answer form Mgp and hence from M’
with probability greater than 3. If z ¢ L than, by Definition 7.2, we will get a 'NO’ answer form
M._.,rp and hence from M’ with probability greater than %

So in either cases we can be sure that M’ returns a definite (not 1) and correct answer with prob-
ability greater than %

The conclusion is that M’ is indeed a ZPP machine so RP () coRP C ZPP and, together with
the previous part, we conclude that RP(coRP = ZPP. [

Summing what we have seen so far we can write the following relations
PCZPP CRPCBPP

It is believed that BPP = P so there is no real help that randomized computations can contribute
when trying to solve search problems. Also if the belief is true then all the distinctions between
the above classes are of no use.

7.6 Randomized space complexity

Like we did with NL, we also define randomized space classes. Here also, it is possible to consider
both the online and off-line models and we will work with the online model.

7.6.1 The definition
Definition 7.9 For any function S : N — N

(There exists a randomized Turing machine M)

s.t. for any input x € {0,1}*

x €L = Prob[M(z)=1] > 1

x ¢ L= Prob[M(z)=0]=0

and M uses at most S(|z|) space

L and exp(S(|z|)) time.)

RSPACE(S) ¥ { L C {0,1}*

88 LECTURE 7. RANDOMIZED COMPUTATIONS

We are interested in the case where the space is logarithmic. The class which put the logarithmic
space restriction is RL.

Definition 7.10 RL % RSPACE(log)

The time restriction is very important. Let us see what happens if we don’t put the time
restriction in Definition 7.9.

Definition 7.11 For any function S : N — N

There exists a randomized Turing machine M)
s.t. for any input x € {0,1}*

x € L= Prob[M(z)=1] > §

x ¢ L= Prob[M(zx)=0]=0

and M wuses at most S(|z|) space

L (no time restrictions!) J

def

badRSPACE(S) ¥ { L C {0,1}*

Proposition 7.6.1 badRSPACE(S) = NSPACE(S)

Proof: We start with the easy direction. Let L € bad RSPACE(S). If x € L then there are many
witnesses but one is enough. On the other hand for x ¢ L there are no witness.

The other direction is the interesting one. Suppose L € NSPACE(S). Let M be the Non-
deterministic Turing machine which decides L in space S(|z|). Recall that for every « € L there
exists an accepting computation of M on input which halts within exp(S(|z|)) steps (see previous
lectures!). Then if x € L there exist r of length exp(S(|z|)), so that M (z,r) = 1 (here r denotes
the offline non-deterministic guesses used by M). Thus, selecting r uniformly among the strings
of length exp(S(|z])), the probability that M (z,r) = 1 is at least 2-°®P(3(2)), So if we repeatedly
invoke M(z,.) on random r’s, we can expect that after 2¢7P(S(I2])) tries we will see an accepting
computation (assuming all the time that = € L).

Oded’s Note: Note that the above intuitive suggestion already abuses the fact that
badRSPACE has no time bounds. We plan to run in expected time which is double
exponential in the space bound; whereas the good definition of RSPACE allows only
time exponential in the space bound.

So we want to run M on x and a newly randomly selected r (of length exp(S(|z|))) for about

2¢2P(3(I2])) times and accept iff M accepts in one of these tries. A naive implementation is just to

do so. But this requires holding a counter capable of counting upto ¢ def 2¢2p(S(12)) which means

using space exp(S(|z|)) (which is much more than we are allowed). So we have the basic idea which
is good but still have a problem how to count. The solution will be to use a “randomized counter”
that will only use S(|z|) space.

The randomized counter is implemented as follows. We “flip” k = log, ¢ coins. If all are heads
then we will stop otherwise we go on. The expected number of tries is 27% = ¢, exactly the number
of tries we wanted to have. But this randomized counter requires only a real counter capable of
counting upto k, and so can be implemented in space log, k = logy logst = S(|z]). W

Clearly,

Claim 7.6.2 LC RLCNL

7.6. RANDOMIZED SPACE COMPLEXITY 89

7.6.2 Undirected Graph Connectivity is in RL

In the previous lecture we saw that directed connectivity is NL-Complete. We will now show in
brief that undirected connectivity is in RL. The problem is defined as follows.

Input: An undirected graph G and two vertices s and ¢.

Task: Find if there is a path between s and ¢ in G.

Claim 7.6.3 Let n denote the number of vertices in the graph. Then, with probability at least %,
a random walk of length 8n? starting from s wvisits all vertices in the connected component of s.

By a random walk, we mean a walk which iteratively selects at random a neighbour of the current
vertex and moves to it.

Proof sketch: In the following, we consider the connected component of vertex s, denoted G' =
(V',E'). For any edge, (u,v) (in E'), we let T}, be a random variable representing the number
of steps taken in a random walk starting at u until v is first encountered. It is easy to see that
E[T.] < 2|E’|. Also, letting cover(G’) be the expected number of steps in a random walk starting
at s and ending when the last of the vertices of V' is encountered, and C' be any directed cycle
which visits all vertices in G’, we have

cover(G') < Z E[T, .
(u,w)eC

< |C]-2|F|

Letting C be a traversal of some spanning tree of G', we conclude that cover(G') < 4-|E'|-|V'|.
Thus, with probability at least 1/2, a random walk of length 8 - [E'| - |V'| starting at s visits all
vertices of G'.

The algorithm for deciding undirected connectivity is now obvious: Just take a “random walk” of
length 8n? starting from vertex s and see if ¢ is encountered. The space requirement is merely a
register to hold the current vertex (i.e., log n space) and a counter to count upto 8n3 (again (logn)
space). Furthermore, the use of a counter guarantees that the running time of the algorithm is
exponential in its (logarithmic) space bound. The implementation is straightforward

1. Set counter =0 and v = s. Compute n (the number of vertices in the graph).
2. Uniformly select a neighbour u of v.

3. If u =t then halt and accept, else set v = u and counter = counter + 1.

4. If counter = 8n? then halt and reject, else goto Step (2).

Cleraly, if s is connected to t then, by the above claim, the algorithm accepts with probability
at least 1/2. On the other hand, the algorithm alwas rejects if s is not connected to ¢. Thus,
UNdirected graph CONNectivity (UNCONN) is in RL.

Note that the straightforward adaptation of the above algorithm to the directed case (i.e., directed
graph connectivity considered in previous lecture) fails: Consider, for example, a directed graph
consisting of a directed path 1 — 2 — ... — n augmented by directed edges going from every
vertex ¢ > 1 to vertex 1. An algorithm which tries to take a directed random walk starting from

90 LECTURE 7. RANDOMIZED COMPUTATIONS

vertex 1 is highly unlikely to reach vertex m in poly(n) many steps. Loosely speaking, this is the
case since in each step from a vertex i > 1, we move towards vertex n with probability 1/2, but
otherwise return to vertex 1. The fact that the above algorithm fails should not come as a great
surprise, as the directed connectivity problem is NL-complete and so placing it in RL will imply
NL =RL.

Oded’s Note: NL = RL is not considred as unlikely as NP = RP, but even if NL = RL
proving this seems very hard.

Bibliographic Notes

Probabilistic Turing Machines and corresponding complexity classes (including BPP, RP, ZPP
and PP) were first defined by Gill [2]. The proof that NSPACE equals badRSPACE (called
RSPACE in [2]), as well as the techinque of a randomized counter is from [2].

The robusteness of the various classes under various thresholds was established above using
straightforward amplifications (i.e., running the algorithm several times with independent random
choices). Randomness-efficient amplification methods have been extensively studied since the mid
1980’s. See Section 3.6 in [3].

The random-walk algorithm for deciding undirected connectivity is due to Aleliunas et. al. [1].
Other examples of randomized algorithms can be found in Appendix B.1 of [3]. We specifically
recommend the following examples

e Testing primality (B.1.5): This BPP algorithm is different from the famous coRP algorithm
for recognizing the set of primes.

e Finding a perfect matching (B.1.2): This algorithm is arguably simpler than known deter-
ministic polynomial-time algorithms.

e Finding minimum cuts in graphs (B.1.7): This algorithm is arguably simpler than known
deterministic polynomial-time algorithms.

A much more extensive treatment of randomized algorithm is given in [4].

1. R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovasz and C. Rackoff. Random walks, universal
traversal sequences, and the complexity of maze problems. In 20th FOCS, pages 218-223,
1979.

2. J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on Com-
puting, Vol. 6(4), pages 675-695, 1977.

3. O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithms
and Combinatorics series (Vol. 17), Springer, 1998. Copies have been placed in the faculty’s
library.

4. R. Motwani and P. Raghavan. Randomized Algorithms, Cambridge University Press, 1995.

Lecture 8

Non-Uniform Polynomial Time
(P/Poly)

Notes taken by Moshe Lewenstein, Yehuda Lindell and Tamar Seeman

Summary: In this lecture we introduce the notion of non-uniform polynomial time
and the corresponding complexity class P/poly. In this computational model, Turing
machines are provided an external advice string to aid them in their computation. The
non-uniformity is expressed in the fact that a different advice string may be defined
for every different length of input. We show that P/poly upper bounds efficient com-
putation (as BPP C P/poly), yet even contains some non-recursive languages. The
effect of introducing uniformity is discussed (as an attempt to rid P/poly of its ab-
surd intractable languages) and shown to reduce the class to be exactly P. Finally,
we show that, among other things, P/poly may help us separate P from NP. We
do this by showing that trivially P C P/poly, and that under a reasonable conjecture
NP & P/poly.

8.1 Introduction

The class of P/poly, or non-uniform polynomial time, is the class of Turing machines which receive
external advice to aid computation. More specifically for all inputs of length n a Turing machine
is supplemented with a single advice string a, of polynomial length . Alternatively we may view a
non-uniform machine as an infinite series of Turing machines {M,, }, where M; computes for inputs
of length 4. In this case the advice is “hardwired” into the machine.

The class of P/poly provides an upper bound on what is considered to be efficient computation.
This upper bound is not tight; for example, as we shall show later, P/poly contains non-recursive
languages. However, the upper bound ensures that every efficiently computable language is con-
tained in P/poly.

An additional motivation in creating the class of P/poly is to help separate the classes of P
and N'P. This idea is explained in further detail below.

91

92 LECTURE 8. NON-UNIFORM POLYNOMIAL TIME (P/POLY)

8.1.1 The Actual Definition

We now define the class of P/poly according to two different definitions, and then show that these
two definitions are in fact equivalent. Recall that:

1, ifx e L;
0, otherwise.

(@) = {

Definition 8.1 (standard): L € P /poly if there exists a sequence of circuits {C,,}, where for each
n, Cp has n inputs and one output, and there exists a polynomial p(.) such that for all n, size(Cy,)
< p(n) and C,(z) = xr(x) for all x € {0,1}"™.

A series of polynomial circuits {C,,} as defined above is called a non-uniform family of circuits.
The non-uniformity is expressed in the fact that there is not necessarily any connection between a
circuit of size n and n + 1. In fact for every n we may define a completely different “algorithm”.

Note that the circuits in the above definition can be simulated in time linear to their size. Thus
although time is not explicitly mentioned in the definition, it is implicit.

Definition 8.2 (alternative): L € P /poly if there exists a polynomial-time two-input machine M,
a polynomial p(.), and a sequence {a,} of advice strings, where length(a,) < p(n), such that for all
n and for all x € {0,1}", M (ap,) = xr(z).

If exponentially long advice were allowed in the above definition, then a, could be a look-up
table containing y(z) for any language L and every input z of length n. Thus every language
would trivially be in such a class. However, this is not the case as a, is polynomially bounded.
Restricting the length of the advice defines a more meaningful class, but as we have mentioned,
some intractable problems still remain “solvable”.

Proposition 8.1.1 The two definitions of P /poly are equivalent.

Proof:

(=): Assume L € P/poly by Definition 1, i.e. there exists a family {C,} of circuits deciding
L, such that size(C),) is polynomial in n. Let desc(C,,) be the description of C, according to a
standard encoding of circuits. Consider the universal Turing machine M such that for all n, and
all z of length n, M (desc(C),),x) simulates Cy,(z). Then define the sequence {a,} of advice strings
such that for every n, a,, = desc(C),). Thus L € P/poly by Definition 2.

(«<): Assume L is in P/poly by Definition 2, i.e. there exist a Turing machine M and a sequence of
advice {a,} deciding L. We look at all possible computations of M (a,,) for n-bit inputs. M (ay,-)
is a polynomial time-bounded deterministic Turing machine working on m-length inputs. In the
proof of Cook’s Theorem, in Lecture 2, we showed that Bounded Halting is Levin-reducible to
Circuit Satisfiability. Given an instance of Bounded Halting (< M(-,-) >,x,1") the reduction is
comprised of constructing a circuit C' which on input y outputs M(x,y). The situation here is
identical since for M(ay,-) a circuit may be constructed which on input x outputs M(a,,z). In
other words we build a sequence {C,,} of circuits, where for each n, C,, is an encoding of M (ay,).
Thus L is in P/poly by Definition 1. i

It should be noted that in Definition 2, M is a finite object, whereas {a, } may be an infinite se-
quence (as is the sequence {C,,} of circuits according to Definition 1). Thus P/poly is an unrealistic
mode of computation, since such machines cannot actually be constructed.

8.2. THE POWER OF P/POLY 93

8.1.2 7P/poly and the P versus NP Question

As mentioned above, one of the motivations in defining the class of P/poly is to separate P from
NP. The idea is to show that there is a language which is in A/P but is not in P/poly, and thus
not in P. In this way, we would like to show that P # ANP. To do so, though, we must first
understand the relationship of P/poly to the classes P and AN'P. Trivially, P C P/poly because
the class P may be viewed as the set of P/poly machines with empty advice, i.e. a, = A for all n.

At first glance, Definition 2 of P/poly appears to resemble that of NP. In NP, x € L iff there
exists a witness w, such that M (z,w,) = 1. The witness is somewhat analogous to the advice in
P /poly. However, the definition of P/poly differs from that of NP in two ways:

1. For a given n, P/poly has a universal witness a,, as opposed to NP where every z of length
n may have a different witness.

2. In the definition of NP, for every x ¢ L, for every witness w, M(x,w) = 0. In other words,
there do not exist false witnesses. However, this is not true for P/poly. We do not claim that
there are no bad advice strings for Definition 2 of P/poly; we merely claim that there exists
a good advice string.

We therefore see that the definitions of NP and P/poly differ from each other; this raises the
possibility that there may be a language which is in A”P but not in P/poly. As we shall show later
this seems to be likely since a sufficient condition for the existence of such a language is based upon
a reasonable conjecture. Since P is contained in P/poly, finding such a language is sufficient to
fulfill our goal. In fact, the original motivation for P/poly was the belief that one may be able to
prove lower bounds on sizes of circuits computing certain functions (e.g., the characteriztic function
of an NP-complete language). So far, no such bounds are known (except if one restricts the circuits
in various ways; as we’ll discuss in next semester).

8.2 The Power of P/poly

As we have mentioned, P/poly is not a realistic mode of computation. Rather, it provides an
upper bound on what we consider efficient computation (that is, any language not in P /poly should
definitely not be efficiently computable). In the last lecture we defined probabilistic computation
and reevaluated our view of efficient computation to be BPP, rather than P. We now show
that BPP C P/poly and therefore that P/poly also upper bounds our “new” view of efficient
computation.

However, we will also show that P/poly contains far more than BPP. This actually yields a
very high upper bound. In fact P/poly even contains non-recursive languages. This containment
should convince anyone that P/poly does not reflect any level of realistic computation.

Theorem 8.3 : P /poly contains non-recursive languages.

Proof: This theorem is clearly implied from the following two facts:
1. There exist unary languages which are non-recursive, and

2. For every unary language L, L € P/poly.

94 LECTURE 8. NON-UNIFORM POLYNOMIAL TIME (P/POLY)

We remind the reader that L is a unary language if L C {1}*.

Proof of Claim 1:

Let L be any non-recursive language. Define L' = {1"4*(*) | z € L} where index(z) is the
position of z in the standard enumeration of binary strings (i.e. we view the string as a binary
number). Clearly L' is unary and non-recursive (any Turing machine recognizing L' can trivially
be used to recognize L).

Proof of Claim 2:
For every unary language L, define

o — 1, if1" e L;
" 10, otherwise.

A Turing machine can trivially decide L in polynomial (even linear) time given x and aj,, by simply
accepting iff = is unary and a|, = 1. Therefore, L € P/poly. N

The ability to decide intractable languages is a result of the non-uniformity inherent in P /poly.
There is no requirement that the series {a,} is even computable.

Note that this method of reducing a language to its unary equivalent cannot help us with
polynomial classes as the reduction itself is exponential. However, for recursive languages we are
interested in computability only.

Theorem 8.4 : BPP C P /poly.

Proof: Let L € BPP. By means of amplification, there exists a probabilistic Turing machine M
such that for every z € {0,1}" : Prob,. ¢ (g 1ypety(m) [M(z,r) = xr(x)] > 1 —2"", (the probabilities
are taken over all possible choices of random strings).

Equivalently, M is such that Prob,[M(z,r) # xr(x)] < 2°™. We therefore have:

Prob,[3x € {0,1}" : M(z,r) # xr(x)] < Z Prob,[M(x,r) # xp(r)] <2"-27" = 1.
ze{0,1}"

The first inequality comes from the Union Bound, that is, for every series of sets {A;} and every
random variable X: . .
Prob(X € | J 4;) < > Prob(X € A;).
i=1 i=1
and the second inequality is based on the error probability of the machine.

Note that if for every random string r, there is at least one x such that M (z,r) # xr(x), then
the above probability would equal 1. We can therefore conclude that there is at least one string
r such that for every x, M(x,r) = xr(x). We therefore set a,, = r (note that r is different for
different lengths of input n, but this is fine according to the definition of P/poly). Our P/poly
machine simulates M, using a, as its random choices. i

This method of proof is called the probabilistic method. We do not know how to find these
advice strings and the proof of their existence is implicit. We merely argue that the probability
that a random string is not an adequate advice is strictly smaller than 1. This is enough to obtain
the theorem.

8.3. UNIFORM FAMILIES OF CIRCUITS 95

8.3 Uniform Families of Circuits

As we have mentioned earlier, circuits of different sizes belonging to a non-uniform family may have
no relation to each other. This results in the absurd situation of having families of circuits deciding
non-recursive languages.

This leads us to the following definition which attempts to define families of circuits which do
match our expectations of realistic computation.

Definition 8.5 (uniform circuits): A family of circuits {C,} is called uniform if there exists a
deterministic polynomial time Turing machine M such that for every n, M(1™) = desc(C,,), where
desc(Cy,) is a standard encoding of circuits.

Thus a uniform family of circuits has a succinct (finite) description (or equivalently for a series
of advice strings). Clearly, a uniform family of circuits cannot recognize non-recursive languages.
Actually, the restriction of uniformity is far greater than just this.

Theorem 8.6 : A language L has a uniform family of circuits {Cy} such that for all n and for
all z € {0,1}" Cp(z) = xr(z) if and only if L € P.

Proof:
(=) Let {C,} be a uniform family of circuits deciding L, and M the polynomial time Turing
machine which generates the family. The following is a polynomial time algorithm for deciding L:

On input x:
o Oy — M (1l#])

e Simulate C|,(z) and return the result.

Since M is polynomial-time bounded and the circuits are of polynomial size, the algorithm clearly
runs in polynomial time. Therefore L € P.

(<) L € P. Therefore, there exists a polynomial time Turing machine M deciding L. As in the
proof of Cook’s Theorem, a polynomial size circuit deciding L on strings of length n may be built
from M in time polynomial in n. The Turing machine M’ that constructs the circuits may then be
taken as M in the definition of uniform circuits. That is, given x, M’ calculates |z| and builds the
appropriate circuit.

Alternatively, by Definition 2, no advice is necessary here and we may therefore take a, = A
for every n. W

8.4 Sparse Languages and the P versus NP Question

In this section we will see why P/poly may help us separate between P and N'P. We will first
define sparse languages.

Definition 8.7 (sparse languages): A language S is sparse if there exists a polynomial p(-) such
that for every n |SN{0,1}"| < p(n).

Example: Trivially, every unary language is sparse (take p(n) =1).

96 LECTURE 8. NON-UNIFORM POLYNOMIAL TIME (P/POLY)

Theorem 8.8 : NP C P /poly if and only if for every L € NP, the language L is Cook-reducible
to a sparse language.

As we conjecture that no N"P-Complete language can be sparse, we have that NP contains lan-
guages not found in P/poly.

Proof: It is enough for us to prove that SAT € P/poly if and only if SAT is Cook-reducible to
some sparse language.

(=) Suppose that SAT € P/poly. Therefore there exists a series of advice strings {a,} and a
Turing machine M as in Definition 2, where Vn |a,| < ¢(n) for some polynomial ¢(-).

Define s = 0°='104")~% and define S = {1"0s? : for n > 0 where bit i of a, is 1 }.

Clearly § is sparse since for every n |S N {0,1}" MW+ < |a,| < ¢(n).

We now show a Cook-reduction of SAT to S:
Input: ¢ of length n

1. Reconstruct a,, by ¢(n) queries to S. Specifically, the queries are: 1"0s,1"0s%, ..., 1"032(n).
2. Run M(ay,¢) thereby solving SAT in (standard) polynomial time.

We therefore solve SAT with a polynomial number of queries to an S-oracle, i.e. SAT Cook-reduces
to S.

(<) Suppose that SAT Cook-reduces to some sparse language S. Therefore, there exists a polyno-
mial time bounded oracle machine M* which solves SAT. Let ¢(-) be M’s (polynomial) time-bound.
Then, on input z, machine M makes queries of length at most ¢(|z|).

Construct a, in the following way: concatenate all strings of length at most t(n) in S. Since S is
sparse, there exists some polynomial p(-) such that Vn |S N {0,1}"| < p(n). The length of the list
of strings of lengths exactly 4 in a,, is then less than or equal to ¢ - p(i) (i.e. at most p(i) different
strings of length 7 each). Therefore:

t(n)
|an] <D i p(i) < H(n)? - p(t(n))
=1

So, an is polynomial in length. Now, given a,, every oracle query to S can be “answered” in
polynomial time. For a given string z, we check if x € S by simply scanning a,, and seeing if =
appears or not. Therefore, M*° may by simulated by a deterministic machine with access to ay.
This machine takes at most ¢(n) - |a,| time (each lookup may take as long as scanning the advice).
Therefore SAT € P/poly. W

As we have mentioned, we conjecture that there are no sparse N'P-Complete languages. This
conjecture holds for both Karp and Cook reductions. However for Karp-reductions, the ramifica-
tions of the existence of a sparse AN/P-Complete language would be extreme, and would show that
P = N'P. This is formally stated and proved in the next theorem. It is interesting to note that
our belief that NP ¢ P/poly is somewhat parallel to our belief that P # AP when looked at in
the context of sparse languages.

Theorem 8.9 P = NP if and only if for every language L € NP, the language L is Karp-
reducible to a sparse language.

8.4. SPARSE LANGUAGES AND THE P VERSUS NP QUESTION 97

Proof:
(=): Let L € N'P. We define the following trivial function as a Karp-reduction of L to {1}:

1, ifxe€L;
flz)= {0, otherwise.

If P = NP then L is polynomial-time decidable and it follows that f is polynomial-time
computable. Therefore, L Karp-reduces to the language {1}, which is obviously sparse.

(«): For sake of simplicity we prove a weaker result for this direction. However the claim is true

as stated. Beforehand we need the following definition:

Definition 8.10 (guarded sparse languages): A sparse language S is called guarded if there exists
a sparse language G in P such that S C G.

The language that we considered in the proof of theorem 8: S = {1"0s? : for n > 0, where bit ¢
of a,, is 1} is an example of a sparse guarded language. It is obviously sparse and it is guarded by
G = {1"0s? : Vn> 0 and 1 <i < ¢(n)}. Note that any unary language is also a guarded sparse
language since {1" : n > 0} is sparse and trivially in P.

The slightly weaker result that we prove for this direction is as follows.

Proposition 8.4.1 If SAT is Karp-reducible to a guarded sparse language then SAT € P.

Proof: Assume that SAT is Karp-reducible to a sparse language S that is guarded by G. Let f
be the Karp-reduction of SAT to S. We will show a polynomial-time algorithm for SAT.

Input: A Boolean formula ¢ = ¢(x1,...,xy,).

Envision the binary tree of all possible assignments. Each node is labelled « = ajas...a; €

{0, 1}* which corresponds to an assignment of (’s first i variables. Let 0o (Zit1, s Tn) = @(Q1, oey Uiy Tifp 1, -

be the CNF formula corresponding to a. We denote z, = f(pq) (recall that ¢, € SAT < z, € S).

The root is labelled A, the empty string, where) = ¢. Each node labelled a has two sons, one
labelled a0 and the other labelled a1 (note that the sons have one variable less in their corresponding
formulae). The leaves are labelled with n-bit strings corresponding to full assignments, and therefore
to a Boolean constant.

Yo = @(0,12, vy Ty

The tree of assignments.

98 LECTURE 8. NON-UNIFORM POLYNOMIAL TIME (P/POLY)

The strategy we will employ to compute ¢ will be a DFS search on this tree from root to leaves
using a branch and bound technique. We backtrack from a node only if there is no satisfying
assignment in its entire subtree. As soon as we find a leaf satisfying ¢, we halt returning the
assignment.

At a node a we consider z,. If 2, ¢ G (implying that z, ¢ S), then ¢, is not satisfiable. This
implies that the subtree of a contains no satisfying assignments and we can stop the search on this
subtree. If z, € G, then we continue searching in «’s subtree.

At a leaf o we check if the assignment « is satisfiable (note that it is not sufficient to check that
Zo € G since f reduces to S and not to G). This is easy as we merely need to evaluate a Boolean
expression in given values.

The key to the polynomial time-bound of the algorithm lies in the sparseness of G. If we visit a
number of nodes equal to the number of strings in G of appropriate length, then the algorithm will
clearly be polynomial. However, for two different nodes o and §, it may be that z, = 3 € G and
we search both their subtrees resulting in visiting too many nodes. We therefore maintain a set
B such that B C G — S remains invariant throughout. Upon backtracking from a node « (where
ZTo € G), we place z, in B. We then check for every node «, that x, ¢ B before searching its
subtree, thus preventing a multiple search.

Algorithm: On input ¢ = p(z1, ..., 2y).
1. B—10
2. Tree-Search(\)
3. In case the above call was not halted, reject ¢ as non-satisfiable.

In the following procedure, returning from a recursive call on « indicates that the subtree rooted
in « contains no satisfying assignment (or, in other words, ¢, is not satisfiable). In case we reach
a leaf associated with a satisfying assignment, the procedure halts outputting this assignment.

Procedure Tree-Search(«)
1. determine ©o (Tit1y ooy Tr) = P(QALy vey Qy Tig 1y vy Ty

2. iflof =n: /* at a leaf - ¢, is a constant */
if oo, =T then output the assignment o and halt
else return

3. if o] <n:

(a) compute z, = f(pqa)

(b) if x4 ¢ G /* checkable in poly-time, because G € P */
then return /¥ 20 § G=>20 ¢S = @o ¢ SAT */

(c) if z4 € B then return

(d) Tree-Search(0)
Tree-Search(al)

(e) /* We reach here only if both calls in the previous step fail. */
if , € G then add z, to B

(f) return

8.4. SPARSE LANGUAGES AND THE P VERSUS NP QUESTION 99

End Algorithm.

Correctness: During the algorithm B maintains the invariant B C G — S. To see this note that
Zq is added to B only if x4, € G and we are backtracking. Since we are backtracking there are no
satisfying assignments in o’s subtree, so z, ¢ S.

Note that if zo € S then z, € G (S C G) and z, ¢ B (because B maintains B C G — 5).
Therefore, if ¢ is satisfiable then we will find some satisfying assignment since for all nodes « on
the path from the root to the appropriate leaf, z, € S, and its sons are developed.

Complexity: To show that the time complexity is polynomial it is sufficient to show that only a
polynomial portion of the tree is “developed”. The following claim will yield the desired result.

Claim 8.4.2 Let a and (3 be two nodes in the tree such that (1) neither is a prefiz/ancestor of the
other and (2) xo = xg. Then it is not possible that the sons of both nodes were developed (in Step
3d).

Proof: Assume we arrived at « first. Since « is not an ancestor of 8 we arrive at (3 after
backtracking from «. If 2, ¢ G then xg ¢ G since g = x, and we will not develop either.
Otherwise, it must be that x, € B after backtracking from o. Therefore x5 € B and its sons will
not be developed (see Step 3c). W

Corollary 8.4.3 Only a polynomial portion of the tree is “developed”.

Proof: There exists a polynomial ¢(.) that time-bounds the Karp-reduction f. Since every z,, is
obtained by an application of f, x4 € Uj<q(n)10, 1}, Yet G is sparse so |G'N (Uicqm)10, 13| < p(n)
for some polynomial p(-).

Consider a certain level of the tree. Every two nodes a and [on this level are not ancestors of
each other. Moreover on this level of the tree there are at most p(n) different o’s such that z, € G.
Therefore by the previous claim the number of z,’s developed forward on this level is bounded by
p(n). Therefore the overall number of nodes developed is bounded by n-p(n). W

SAT € P and the proof is complete. W

Bibliographic Notes

The class P/poly was defined by Karp and Lipton as part of a general formulation of “ma-
chines which take advise” [3]. They have noted the equivalence to the traditional formulation
of polynomial-size circuits, the effect of uniformity, as well as the relation to Cook-reducibility to
sparse sets (i.e., Theorem 8.8).

Theorem 8.4 is atrriburted to Adleman [1], who actually proved RP C P/poly using a more
involved argument. Theorem 8.9 is due to Fortune [2].

1. L. Adleman, “Two theorems on random polynomial-time”, in 19th FOCS, pages 75-83, 1978.

2. S. Fortune, “A Note on Sparse Complete Sets”, STAM J. on Computing, Vol. 8, pages 431-433,
1979.

3. R.M. Karp and R.J. Lipton. “Some connections between nonuniform and uniform complexity
classes”, in 12th STOC, pages 302-309, 1980.

100 LECTURE 8. NON-UNIFORM POLYNOMIAL TIME (P/POLY)

Lecture 9

The Polynomial Hierarchy (PH)

Notes taken by Ronen Mizrahi

Summary: In this lecture we define a hierarchy of complexity classes starting from
NP and yet contained in PSPACE. This is done in two ways, the first by generalizing
the notion of Cook reductions, and the second by generalizing the definition of N'P. We
show that the two are equivalent. We then try to make some observations regarding the
hierarchy, our main concern will be to learn when does this hierarchy collapse, and how
can we relate it to complexity classes that we know already such as BPP and P/Poly.

9.1 The Definition of the class PH

In the literature you may find three common ways to define this class, two of those ways will be
presented here. (The third, via “alternating” machines is omitted here.)

9.1.1 First definition for PH: via oracle machines

Intuition

Recall the defintion of a Cook reduction, the reduction is done using a polynomial time machine
that has access to some oracle. Requiring that the oracle will belong to a given complexity class
C, will raise the question:

What is the complexity class of all those languages that are Cook reducable to some
language from C'?

For example:

Let us set the complexity class of the oracle to be NP, then for Karp reduction we know
that every language L, that is Karp reducable to some language in NP (say SAT), will
also be in N"P. However it is not clear what complexity class will a Cook reduction (to
NP) yield.

Perliminary definitions

Definition 9.1 (the language L(M?)): The language L(M™) is the set of inputs accepted by
machine M given access to oracle A.

101

102 LECTURE 9. THE POLYNOMIAL HIERARCHY (PH)

Notations:

e M# : The orcale machine M with access to oracle A.

e M4(x) : The output of the orcale machine M4 on input z.
We note the following interesting cases for the above definition:

1. M is a deterministic polynomial time machine. Then M is a Cook reduction of L(M%) to A.

2. M is a probabilistic polynomial time machine. Then M is a randomized Cook reduction of
L(M4) to A.

3. M is a non-deteministic polynomial time machine (note that the non determinism is related
only to M, A is an oracle and as such it always gives the right answer). When we define the
polynomial hierarchy we will use this case.

Observe that given one of the above cases, knowing the complexity class of the oracle, will define
another complexity class which is the set of languages L(M%), where A is an oracle from the given
comlexity class. The resulting complexity class may be one that is known to us (such as P or N'P),
or a new class.

Definition 9.2 (the class M©): Let M be an oracle machine. Then MY is the set of languages
obtained from the machine M given access to an oracle from the class of languages C. That 1is,

MCY LMYy A€y

For example:

o MNP = [L(M*): Aec NP}
Note: we do not gain much by using A'P, rather than any N'P-complete language (such as

SAT). That is, we know that any language, A, in NP is Karp reducable to SAT', by using
this reduction we can alter M, and obtain a new machine M, such that L(M%) = L(MSAT),

In the following definition we abuse notation a little. We write C; %2 but refer to machines natually
associated with the class C4, and to their natural extension to orale machines. We note that not
every class has a natural enumeration of machines associated with it, let allow a natural extension
of such machines to oracle machines. However, such associations and extensions do hold for the
main classes we are interested in such as P, NP and BPP.

Definition 9.3 (the class C1“? — a fuzzy framework): Assume that C, and Cy are classes of
languages, and also that for each language L in Ci, there exists a machine My, such that L =
L(Myp). Furthermore, consider the extension of My, into an oracle machine M so that given access
to the empty oracle M behaves as My, (i.e., L(My) = L(M")). Then C,“? is the set of languages
obtained from such machines My, where L € Cy, given access to an oracle for a language from the
class of languages Co. That is,

192 = {L(M™): L(M") € Cy & A € Cy)}

9.1. THE DEFINITION OF THE CLASS PH 103

The above framework can be properly instantiated in some important cases. For example:
o P¢ = {L(M%): M is deterministic polynomial-time oracle machine & A € C}
o NPY = {L(M*) : same as above but M is non-deterministic}

o BPPY = {L(M*) : same as above but M is probabilistic}

Here we mean that with probability at least 2/3, machine M on input x and oracle aceess to
A € C correctly decides whether z € L(M*4).

Back to the motivating question: Observe that saying that L is Cook-reducible to SAT (i.e.,
L x¢ SAT) is equivalent to writing L € PNP . We may now re-address the question regarding the
power of Cook reductions. Observe that NPUcoNP C PNP | this is because:

e NP C PpNP holds, because for L € NP we can take the oracle A to be an oracle for the
language L, and the machine M € P to be a trivial machine that takes its input asks the
oracle about it, and outputs the oracle’s answer.

e coNP C PNP holds, because we can take the same oracle as above, and a different (yet
still trivial) machine M € P that asks the oracle about its input, and outputs the boolean
complement of the oracle’s answer.

We conclude that under the assumption that NP # coNP, Cook-reductions to N/P give us more
power than Karp-reductions to the same class.

Oded’s Note: We saw such a result already, but it was quite artificial. I refer to that fact
that P is Cook-reducible to the class of trivial langugaes (i.e., the class {0,{0,1}*}),
whereas non-trivial languages can not be Karp-reduced to trivial ones.

Actual definition

Definition 9.4 (the class ¥;): X; is a sequence of sets and will be defined inductively:

o ¥ ¥ AP

L] Ei+1 déf NPZZ

Notations:

def
o II, = coX;

def

o Ay = P

Definition 9.5 (The hierarchy — PH): PH o ue, X,

The arbitrary choice to use the 3;’s (rather than the II;’s or A;’s) is justified by the following
observations.

104 LECTURE 9. THE POLYNOMIAL HIERARCHY (PH)

Almost syntaxtic observations
Proposition 9.1.1 >;Ull; C Ay €3 NIy,
Proof: We prove each of the two containments:
1. ;UL € Ay = P
The reason for that is the same as for NPUcoNP C PNP = A, (see above)
2. P¥ C X NIy,

PE C NP = Y41 is obvious. Since P is closed under complementation, L € P*i implies
that L € P> C Y41 and so L € Il;4.

Proposition 9.1.2 P> = Pl gnd NP> = NP,

Proof: Given a machine M and an oracle A, it is easy to modify M to M such that: L(M4) =
L(MA). The way we build M is by taking M and flipping every answer obtained from the oracle.
In particular, if M is deterministic (resp. non-deterministic) polynomail-time then so is M. Thus,
for such M and any class C the classes M€ and M€ are identical. W

9.1.2 Second definition for PH: via quantifiers
Intuition

The approach taken here is to recall one of the definitions of NP and try to generalize it.

Definition 9.6 (polynomially-bounded relation): a k-ary relation R is called polynomially bounded
if there exists a polynomial p(.) such that:

V(xy,...,xk), [(1,...,21) € R = (Vi) |z;]| < p(|z1])]

Note: our definition requires that all the elements of the relation are not too long with regard to the
first element, but the first element may be very long. We could even require a stronger condition:
ViVj|z;| < p(|x;]), this will promise that every element of the relation is not too long with regard
to every one of the others. We do not make this requirement because the above definition will turn
out to be satisfactory for our needs, this is because in our relations the first element is the input
word, and we need the rest of the elements in the relation to be bounded in the length of the input.
Also the complexity classes, that we will define using the notion of a polynomially bounded k-ary
relation, will turn out the same for both the weak and the strong definition of the relation.

We now state again the definition of the complexity class N'P:

Definition 9.7 (N'P): L eN'P if there exists a polynomially bounded and polynomial time recog-
nizable binary relation Ry such that:

x € L iff Jy s.t. (z,y) € R,

The way to generalize this definition will be to use a k-ary relation instead of just a binary one.

9.1. THE DEFINITION OF THE CLASS PH 105

Actual definition

What we redefine is the sequence of sets ¥; such that ¥; will remain AP. The definition for PH
remains the union of all the ¥;’s.

Definition 9.8 (X;): L €Y; if there exists a polynomially bounded and polynomial time recognizable
(i+1)-ary relation Ry, such that:

x € L iff Fy1VyoJys ... Qivi, s.t. (x,y1,...,v;) € R
e Q; =V ifi 1s even

e (); = 1 otherwise

9.1.3 Equivalence of definitions

We have done something that might seem a mistaken; that is, we have given the same name for
an object defined by two different definitions. However, we now intend to prove that the classes
produced by the two definitions are equal. A more conventional way to present those two definitions
is to state one of them as the definition for PH, and then prove an ”if and only if” theorem that
characterizes PH according to the other definition.

Theorem 9.9 : The above two definitions of PH are equivalent. Furthermore, for every i, the
class X; as in Definition 9.4 is identical to the one in Definition 9.8.

Proof: We will show that for every ¢, the class ¥; by the two definitions is equal. In order
to distinguish between the clases produced by the two definitions we will introduce the following
notation:

e ¥!is the set X; produced by the first definition.
e Y2 is the set 3; produced by the second definition.
e II! is the set II; produced by the first definition.
e 112 is the set II; produced by the second definition.
Part 1: We prove by induction on i that Vi, ¥? C X1
e Base of induction: 3 was defined to be NP in both cases so there is nothing to prove.

e We assume that the claim holds for ¢ and prove for : +1: suppose L € E%H then by definition
it follows that there exists a relation Ry such that:

€ L iff JyiVyoTJys ... QiviQit1Yi+1, st (T,91,- -+, ¥, ¥iv1) € RL
In other words this means that:
x e L iff Jyi, s.t. (x,y1) € L;

where L; is defined as follows:

def
Li = {(«",y) : VyoJys ... QiyiQi1¥is1, st (2,9, yi,yiy1) € R}

106

LECTURE 9. THE POLYNOMIAL HIERARCHY (PH)

We claim that L; € II2, this is by complementing the definition of X?. If we do this comple-
mentation for L € ¥? we get:

x € L iff 3y Vys ... Qiys, st (2,91,...,15) € Ry,

v €L iff Vyr3ys...Quyi, st (z,y1,...,u:) & RL

This is almost what we had in the definition of L; except for the “¢ R.” as opposed to
“e Rr”. Remember that deciding membership in Ry, is polynomial time recognizable, and
therefore its complement, is also so. Now that we have that L; € TI?, we can use the inductive
hypothesis I1? C II!. So far we have managed to show that:

x € L iff Jyq, s.t. (z,y1) € L;

Where L; belongs to II}. We now claim that L € NPU | this is true because we can write a
non-deterministic, polynomial-time machine, that decides membership in L, by guessing y1,
and using an oracle for L;. Therefore we can further conclude that:

1 1
Le NPT = NP =51, .

Part 2: We prove by induction on i that Vi, X} C X%

e Base of induction: as before.

e Induction step: suppose L € 2214—1 then there exists a non-deterministic polynomial time

machine M such that L € L(Mzzl) which means that:
3L e 3}, st.,L=L(M")
From the definition of ML" it follows that:
z e L iff dy,q1,a1,...,q,as.t. :

1. Machine M, with non-determinstic choices y, interacts with its oracle in the following
way':

— 1% query = ¢; and 1%' answer = a;

— '™ query = ¢; and " answer = a,

2. forevery 1 <j <t
~(gj=1)=yq el
(=0 =g ¢ L

where y is a description of the non-determinstic choices of M.

Let us view the above according to the second definition, that is, according to the definition
with quantifiers, then the first item is a polynomial time predicate and therefore this poten-
tially puts L in A’P. The second item involves L’. Recall that L' € ¥} and that by the
inductive hypothesis £} C 2, and therefore we can view membership in L' according to the
second definition, and embed this result within what we have above. This will yield that for
every 1 <j <t

9.2. EASY COMPUTATIONAL OBSERVATIONS 107

— (a; =1) = P Qi st (g5,90Y, .4y € Ry
— (a; =0) =>Vy§”2)3y§]’2 ---Qiyi]’Q (qj,y? 2y e Ry

Let us define:

— wy is the concatenation of:
5 .
Y, q1, a1, ... ,qt, at, and yg) for all js.t. (a; =1).

— wg is the concatenation of:
y§7’2) for all j s.t. (a; =0), and y(J’) for all j s.t. (a; =1).

— w; is the concatenation of:
) for all j s.t. (a; =0), and y(J’) for all j s.t. (a; =1).
— w;41 is the concatenation of:

yz(j’Q) for all j s.t. (a; =0).

Ry, will be the (i + 1)-ary relation defined in the following way: (w1,...,w;+1) € Ry iff for
every 1 < j <t:

o (aJ = 1) (q]’ (J,l)a o ,y,(J’l)) € RLI
o (a] :0) (QJ7 (]7)7"'7?/2(3 2)) ERL’
where the w;’s are parsed analogously to the above.

Since Ry and Ry where polynomially bounded, and polynomial time recognizable, so is Ry,.

Altogether we have:
x € L iff Jwy,Vws,... Qit+1Wit1, s.t. (wl, - ,wi-}-l) € Ry,
It now follows from the definition of £%,; that L € X2, as needed.

9.2 Easy Computational Observations

Proposition 9.2.1 PH C PSPACE

Proof: We will show that ¥; C PSPACE for all i. Let L € ¥;, then we know by the definition
with quantifiers that:

v € L iff IyiVyoTys... Qiwi, st (z,y1,...,4:) € R

Given x we can use ¢ variables to try all the possibilities for y1,...,y; and make sure that they meet
the above requirement. Since the relation Ry, is polynomially bounded, we have a polynomial bound
on the length of each of the y;’s that we are checking. Thus we have constructed a deterministic
machine that decides L.

This machine uses i variables, the length of each of them is polynomially bounded in the length
of the input. Since ¢ is a constant, the overall space used by this machine is polynomial. [l

108 LECTURE 9. THE POLYNOMIAL HIERARCHY (PH)

Proposition 9.2.2 NP = coN'P implies PH C N'P (which implies PH = N'P).

Intuitively the extra power that non-deterministic Cook reductions have over non-deterministic
Karp reductions, comes from giving us the ability to complement the oracle’s answers for free.
What we claim here is that if this power is meaningless then the whole hierarchy collapses.

Proof: We will show by induction on 7 that Vi, ¥; = N'P:
1. ¢ = 1: by definition ¥; = N'P.

2. Induction step: by the inductive hypothesis it follows that ¥; = NP so what remains to be
shown is that NPNP = A"P. Containment in one direction is obvious so we focus on proving
that NVPNP C NP. Let L € NPVP then there exist a non-deterministic, polynomial-time
machine M, and an oracle A € NP, such that L = L(M%). Since NP = coN'P it follows
that A € NP too. Therefore, there exist relations R4 and Ry (AP relations for A and A
respectively) such that:

e g€ A iff Jw, s.t. (q,w) € Ry.
e g A iff Jw, s.t. (¢,w) € Ry
Using these relations, and the definition of N’ PNP we get:
xz € L iff Jy,q1,a1,...,q,as, such that, for all 1 <7 <+t
o 4 =1 = ¢q; € A<= Jwj,(gj,w;) € Rxy
e aj =0 <= g¢; € A <= Fwj,(g;,w;) € Ry.

Define:

e w is the concatenation of: y,q1,a1,...,q:, g, wi, ..., w

e R; is a binary relation such that:
(r,w) € Ry iff forall 1 <j <t
—a; = 1= (qj,wj) €E Ry
—aj= 0 = (qj,wj) € RZ'
Since M is a polynomial-time machine, ¢ is polynomial in the length of z. Combining

this fact with the fact that both R4 and R are polynomial-time recognizable, and
polynomially bounded, we conclude that so is Ry,.

All together we get that there exists an NP relation Ry such that :
x € L iff Jw, s.t. (x,w) € Ry,
Thus, L € NP.

Generalizing Proposition 9.2.2, we have
Proposition 9.2.3 For every k > 1, if I, = Xy, then PH = Y.

A proof is presented in the appendix to this lecture.

9.3. BPP IS CONTAINED IN PH 109

9.3 BPP is contained in PH

Not knowing whether BPP is contained in NP, it is of some confort to know that it is contained
in the Polynomial-Hierarchy (which extends N'P).

Theorem 9.10 (Sipser and Lautemann): BPP C ¥,.

Proof: Let L € BPP then there exists a probabilistic polynomial time machine A(z,r) where z
is the input and r is the random guess. By the definition of BPP, with some amplification we get,
for some polynomial p(.):

1
3p(n)

Vo € {0,1}", s.t. P, o 13o0m [A(2,7) # X(2)] <

where x(z) =1if x € L and x(z) = 0 otherwise.

Oded’s Note: A word about the above is in place. Note that we do not assert that
the error decreases as a fast fixed function of n, where the function is fixed before we
determine the randomness complexity of the new algorithm. We saw result of that kind
in Lecture 7; but here we claim something different. That is, that the error probability
may depend on the randomness complexity of the new algorithm. Still, the dependency
required here is easy to achieve. Specifically, suppose that the original algorithm uses
m = poly(n) coins. Then by running it t times and ruling by majority we decrease the
error probability to exp(—S(t)). The randomness complexity of the new algorithm is
tm. So we need to set t such that exp(—Q(t)) < 1/3mt, which can be satisfied with
t = O(logm) = O(logn).

The key observation is captured by the following claim

Claim 9.3.1 Denote m = p(n) then, for every x € L N{0,1}", there exist s1,...,8m € {0,1}™
such that

vr e {0,1}", \/ A(z,r @ s;) =1 (9.1)
=1

Actually, the same sequence of s;’s may be used for all x € LN {0,1}" (provided that m > n which
holds without loss of generality). However, we don’t need this extra property.

Proof: We will show existence of such s;’s by the Probabilistic Method: That is, instead of showing
that an object with some property exists we will show that a random object has the property with
positive probability. Actually, we will upper bound the probability that a random object does not
have the desired property. In our case we look for existence of s;’s satisfying Eq. (9.1), and so we
will upper bound the probability, denoted P, that randomly chosen s;’s do not satisfy Eq. (9.1):

P € Pr, o cnonyn[o¥r € {0,137\ (Az,r @ 5;) = 1)]
=1
= Pry sner{oiyn[Fr € {0,137, /\(A(a:,r @ s;) = 0)]
=1
< Z Prsl,...,smGR{O,l}m [/\ (A(l’, r D Si) =)]

Il
_

re{0,1}m 7

110 LECTURE 9. THE POLYNOMIAL HIERARCHY (PH)

where the inequality is due to the union bound. Using the fact that the events of choosing s;’s
uniformly are independent, we get that the probability of all the events happening at once equals
to the multiplication of the probabilities. Therefore:

P < Z H PrSiER{O,l}m [A(ma r D si) = 0]
re{0,1}m i=1

Since in the above probability r is fixed, and the s;’s are uniformly distributed then (by a property
of the @ operator), the s; @ r’s are also uniformly distributed. Recall that we consider an arbitrary
fixed z € LN {0,1}". Thus,

P

IN

2m . PrsER{O,l}m [A(l‘, S) = O]m

1 m
om . [— 1
<3m> <

IA

The claim holds. [}

Claim 9.3.2 For any x € {0,1}" \ L and for all s1,...,8m € {0,1}™, there exists r € {0,1}" so
that \/7*y A(x,r ®s;) = 0.

Proof: We will actually show that for all sy,...,s,, there are many such r’s. Let s1,...,8m, €
{0,1}™ be arbitrary.

m m

Pr,eqo [\ Az, 7 ® s;) = 0] =1 = Preqoiym[\ Alz,7 @ 5;) = 1]
i—1 i—1

However, since = ¢ L and Pr,cqo 1ym[A(z,7) = 1] < 1/3m, we get

Procionym [V Az, r @) =1 < Y Procgoym[A(z,r @) = 1]
=1 =1
. 11
= "My T3

and so,

7 2
Pr,cqo [\ Alz,r & s;) = 0] > 3
i=1

Therefore there exist (many) such r’s and the claim holds. [l

Combining the results of the two claims together we get:
x €L iff Is1,...5m € {0, V7 \/ A(z,r & 5;) =1
i=1
This assertion corresponds to the definition of X9, and therefore L € X9 as needed. [l

Comment: The reason we used the & operator is because it has the property that given an
arbitrary fixed r, if s is uniformly distributed then r & s is also uniformly distributed. Same for
fixed s and random r. Any other efficient binary operation with this property may be used as well.

9.4. IF NP HAS SMALL CIRCUITS THEN PH COLLPASES 111

9.4 1If NP has small circuits then PH collpases

The following result shows that an unlikely event regarding non-uniform complexity (i.e., the class
P /poly) implies an unlikely event regarding uniform complexity (i.e., PH).

Theorem 9.11 (Karp & Lipton): If NP C P/poly then Iy = X9, and so PH = Xs.

Proof: We will only prove the first implication in the theorem. The second follows by Proposition
9.2.3. Showing that X9 is closed under complementation, gives us that IIy = ¥s. So what we will
actually prove is that IIy C Y.

Let L be an arbitrary language in Ils, then there exists a trinary polynomially bounded, and
polynomial time recognizable relation Rj, such that:

x € L iff Vy3zs.t.,(x,y,2) € Ry,

Let us define:
L' {(a',y) : 3z, st (¢4, 2) € Ry}

Then we get that:
e z €L iff Vy,(xz,y) e L'
o ' e NP
Consider a Karp reduction of L’ to 3SAT, call it f:

x e L iff Yy, f(z,y) € 3SAT

Let us now use the assumption that NP C P/Poly for 3SAT, then it follows that 3SAT has small
circuits {Cy, }m, where m is the length of the input. We claim that also 3SAT has small circuits
{C!},, where n is the number of variables in the formula. This claim holds since the length of a
3SAT formula is of O(n®) and therefore {C},} can use the larger sets of circuits Ci, ..., Co(,s). Let

us embed the circuits in our statement regarding membership in L, this will yield:

ze L iff 3(Cy,...,CL) (n o mazy{#var(f(z,y))}) s.t.:

e C},...,C] correctly computes 3SAT, for formulas with a corresponding number of variables.

* Vy, C;%&Uar(f(m7y))(f(xay)) =1

The second item above gives us that L € Yo, since the quantifiers are as needed. However it is
not clear that the first item is also bahaving as needed. We will restate the first item as follows:

n

Voi,...,0n, [/\ Cl(¢p;) = (C!_1(gh) vV Cl_1(9!)) /\ C| operates correctly] (9.2)
=2
Where:
¢i(x1,...,x;) is any formula over i variables.
¢;~(1‘1, e ,wi_l) déf ¢i(x1, ey i1, 0)

def
(21, zic1) = Gi(w1, ... i1, 1)

112 LECTURE 9. THE POLYNOMIAL HIERARCHY (PH)

A stupid technicality: Note that assigning a value to one of the variables, gives us a formula
that is not in CNF as required by 3SAT (as its clauses may contain constants). However this can
easily be achieved, by iterating the following process, where in each iteration one of the following
rules is applied:

e 2V 0 should be changed to x.

e 2V 1 should be changed to 1.

2 A 0 should be changed to 0.
e 2 A1l can be changed to z.

e —1 can be changed to 0.

e =0 can be changed to 1.

If we end-up with a formula in which some variables do not appear, we can augment it by adding
clauses of the form z A —z.

Oded’s Note: An alternative resolution of the above technicality is to extend the defini-
tion of CNF so to allow constnats to appear (in clauses).

Getting back to the main thing: We have given a recursive definition for a correct computation
of the circuits (on 3SAT). The base of the recursion is checking that a single variable fromula is
handled correctly by Cf, which is very simple (just check if the single variable formula is satisfiable
or not, and compare it to the output of the circuit). In order to validate the (i 4+ 1) circuit, we
wish to use the i*" circuit, which has already been validated. Doing so requires us to reduce the
number of variables in the formula by one. This is done by assigning to one of the variables both
possible values (0 or 1), and obtaining two formulas upon which the i*" circuit can be applied.
The full formula is satisfiable iff at least one of the reduced formulas is satisfiable. Therefore we
combine the results of applying the i*! circuit on the reduced formulas, with the V operation. It
now remains to compare it to the value computed by the (i 4 1)*® circuit on the full formula. This
is done for all formula over 7 + 1 variables (by the quantification V¢ 1).

So all together we get that:

x EL iﬁ‘ 3(017"'707,7,)’ S‘t‘ vy’ (¢17""¢n)7 (x’ (C{"“’C’:'L)7(y’¢17"'7¢n)) ERL

where Ry is a polynomially-bounded 3-ary relation defined using the Karp reduction f, Eq. (9.2)
and the simplifying process above. Specifically, the algorithm recognizing Ry, computes the formula
f(z,y), determines the formulas ¢, and ¢} (for each i), and evaluates circuits (the description of
which is given) on inputs which are also given. Cleraly, this algorithm can be implemented in
polynomial-time, and so it follows that L € ¥9 as needed.

Bibliographic Notes

The Polynomial-Time Hierarchy was introduced by Stockmeyer [6]. The third equivalent formula-
tion via “alternating machines” can be found in [1].

The fact that BPP is in the Polynomial-time hierarchy was proven independently by Laute-
mann [4] and Sipser [5]. We have followed Lautemann’s proof. The ideas underlying Sipser’s proof

9.4. IF NP HAS SMALL CIRCUITS THEN PH COLLPASES 113

found many applications in complexity theory, and will be presented in the next lecture (in the
approximation procedure for #P). Among these applications, we mention Stockmeyer’s approx-
imation procedure for #P (cf., citel9:S83), the reduction of SAT to uniqueSAT (cf. [8] and next
lecture), and the equivalence between public-coin interactive proofs and general interactive proofs
(cf. [2] and Lecture 11).

The fact that NP C P/poly implies a collapse of the Polynomial-time hierarchy was proven by
Karp and Lipton [3].

1. A.K. Chandra, D.C. Kozen and L.J. Stockmeyer. Alternation. JACM, Vol. 28, pages 114-133,
1981.

2. S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive Proof Systems.
Advances in Computing Research: a research annual, Vol. 5 (Randomness and Computation,
S. Micali, ed.), pages 73-90, 1989. Extended abstract in 18th STOC, pages 59-68, 1986.

3. R.M. Karp and R.J. Lipton. “Some connections between nonuniform and uniform complexity
classes”, in 12th STOC, pages 302-309, 1980.

4. C. Lautemann. BPP and the Polynomial Hierarchy. IPL, 17, pages 215217, 1983.

5. M. Sipser. A Complexity Theoretic Approach to Randomness. In 15th STOC, pages 330-335,
1983.

6. L.J. Stockmeyer. The Polynomial-Time Hierarchy. Theoretical Computer Science, Vol. 3,
pages 1-22, 1977.

7. L. Stockmeyer. The Complexity of Approximate Counting. In 15th STOC, pages 118-126,
1983.

8. L.G. Valiant and V.V. Vazirani. NP Is as Easy as Detecting Unique Solutions. Theoretical
Computer Science, Vol. 47 (1), pages 85-93, 1986.

Appendix: Proof of Proposition 9.2.3

Recall that our aim is to prove the claim:
For every k > 1, if Iy = Xy then PH = Y.
Proof: For an arbitrary fixed k, we will show by induction on ¢ that Vi > k, ¥; = ¥:
1. Base of induction: when ¢ = k, there is nothing to show.

2. Induction step: by the inductive hypothesis it follows that 3; = 3, so what remains to be
shown is that AP¥* = ¥;. Containment in one direction is obvious so we focus on proving
that NP>+ C Xy

Let L € NP**, then there exist a non-deterministic, polynomial-time machine M, and an
oracle A € Xy, such that L = L(M*). Since II;, = ¥, it follows that A € ¥j too. Therefore,
there exist relations R4 and R+ (k + l-ary relations, polynomially bounded, and polynomial
time recognizable, for A and A respectively) such that :

e g € A iff Jwy,Yws,...,Qrwy s.t. (¢, w1,...wg) € Ra.

114 LECTURE 9. THE POLYNOMIAL HIERARCHY (PH)

o g€ A iff Jwi,Yws, ..., Qrwy s.t. (g, w1,...wi) € R.

Using those relations, and the definition of NP¥* we get:
z €L iff dy,q1,a1,...,q,ar 8.t forall 1 <j <t

1 1 1 1 1
0 =1<=¢qg;€ A= Elng),ng]),...,ka,(€) s.t. (qj,ng),...w,(g)) € Ry.
- ,0 j,0 j,0 ,0 ,0
¢ a;=0+=¢q; € A= Elng),ngj),...,ka,(€) s.t. (qj,ng),...w,(g)) € R.
Define:
e w; is the concatenation of: y,qq,a1,...,q:, at,wgl’o), ... ,wgt’o),wgl’l), ... ,wgt’l) .
e wy is the concatenation of: w,(el’o), . ,w,(:’o),w,(:’l), . ,w,(:’l)

e Ry is a k+ l-ary relation such that:
(x,wy,...,wg) € Ry iff forall 1 <j <t
—a;=1 = (qj,ng’l),...w,(cj’l)) € R4.
.70 .70
-0 =0 = (qj,ng),...w,(g)) € Ry

Since M is a polynomial machine, then ¢ is polynomial in the length of z. R4 and Ry
are polynomial time recognizable, and polynomially bounded relations.
Therefore Ry, is also so.

All together we get that there exists a polynomially bounded, and polynomial time recogniz-
able relation R, such that :

x € L iff Jwy,Ywy,...,Qrwy s.t. (x,wy,...,w,) € R,
By the definition of ¥, L € Y.
[

Lecture 10

The counting class #7P

Notes taken by Oded Lachish, Yoav Rodeh and Yael Tauman

Summary: Up to this point in the course, we’ve focused on decision problems where
the questions are YES/NO questions. Now we are interested in counting problems.
In NP an element was in the language if it had a short checkable witness. In #7P
we wish to count the number of witnesses to a specific element. We first define the
complexity class #P, and classify it with respect to other complexity classes. We then
prove the existence of #P-complete problems, and mention some natural ones. Then
we try to study the relation between #P and NP more exactly, by showing we can
probabilistically approximate #P using an oracle in A'P. Finally, we refine this result
by restricting the oracle to a weak form of SAT (called uniqueSAT).

10.1 Defining #P

We used the notion of an N'P-relation when defining AN"P. Recall:

Definition 10.1 (NP relation) : An NP relation is a relation R C X* x ¥* such that:
e R s polynomial time decidable.

e There exists a polynomial p(-) such that for every (z,y) € R, it holds that |y| < p(|z]).

Given an N P-relation R we defined:

Definition 10.2 Ly & {r € £* | Jy s.t. (x,y) € R}

We regard the y’s that satisfy (x,y) € R as witnesses to the membership of z in the language Lp.
The decision problem associated with R, is the question: Does there exist a witness to a given z?
This is our definition of the class A'P. Another natural question we can ask is: How many witnesses

are there for a given 2?7 This is exactly the question we capture by defining the complexity class
#P. We first define:

Definition 10.3 For every binary relation R C ¥* x ¥*, the counting function fr : ¥* — N, is
defined by:

fr@) € |{y | (z,y) € R}

115

116 LECTURE 10. THE COUNTING CLASS #P

The function fr captures our notion of counting witnesses in the most natural way. So, we define
#P as a class of functions. Specifically, functions that count the number of witnesses in an N P-
relation.

Definition 10.4 #P = {fr: R is an N'P relation}

We encounter some problems when trying to relate #P to other complexity classes, since it is a
class of functions while all classes we discussed so far are classes of languages. To solve this, we
are forced to give a less natural definition of #P, using languages. For each N'P-relation R, we
associate a language #pr. How do we define #x 7 Our first attempt would be:

Definition 10.5 (Counting language — first attempt) : #r = {(z,k) : {y : (z,y) € R}| = k}

First observe that given an oracle to fg, it is easy to decide #pr. This is a nice property of #r,
since we would like it to closely represent our other formalism using functions. For the same reason
we also want the other direction: Given an oracle to # g, we would like to be able to calculate fgr
efficiently (in polynomial time). This is not as trivial as the other direction, and in fact, is not even
necessarily true. So instead of tackling this problem, we alter our definition:

Definition 10.6 (Counting language — actual definition) : #r = {(z,k) : {y : (z,y) € R}| > k}.
In other words, (z,k) € #r iff k< fr(z).

We choose the last definition, because now we can prove the following:
Proposition 10.1.1 For each N'P-relation R :
1. #pg is Cook reducible to fr

2. fr is Cook reducible to #pg

We denote the fact that problem P Cook reduces to problem @ by P a. Q.
Proof:

1. (#r is Cook reducible to fr): Given (z, k), we want to decide whether (z,k) € #r. We use
our oracle for fg, by calling it with parameter z. As an answer we get : | = |{y : (z,y) € R}|.
If | > k then we accept, otherwise reject.

2. (fr is Cook reducible to #pr): Given z, we want to find fr(x) = [{y: (z,y) € R}| using our
oracle. We know fg(z) is in the range {0, ...,2P® where p(-) is the polynomial bounding
the size of the witnesses in the definition of an N P-relation. The oracle given is exactly what
we need to implement binary search.

BIN ARY (z, Lower,Upper) :

e if (Lower = Upper) output Lower.

o Middle = w

o if (x, Middle) € #g output BINARY (x, Middle,Upper)
e else output BINARY (x, Lower, Middle)

Where the branching in the third line is because if (x, Middle) € #pr, then fr(x) > Middle,
so we need only search for the result in the range [Middle, Upper|. A symmetric argument
explains the else clause.

The output is: fr(z) = BINARY (x,0,2P(2D). Binary search in general, runs in time loga-
rithmic in interval it searches in. In our case : O(log(2P(*D)) = O(p(|z|)). We conclude, that
the algorithm runs in polynomial time in |z|.

10.2. COMPLETENESS IN #P 117

Notice that we could have changed our definition of #p, to be:

#r={(z,k) : {y : (z,y) € R)}[<k}

The proposition would still hold. We could have also changed it to a strict inequality, and gotten
the same result.

(From now on we will use the more natural definition of #P : as a class of functions. This
doesn’t really matter, since we showed that in terms of cook-reducibility, the two definitions are
equivalent.

It seems that the counting problem related to a relation R should be harder than the corre-
sponding decision problem. It is unknown whether it is strictly harder, but it is certainly not
weaker. That is,

Proposition 10.1.2 For every N'P-relation R, the corresponding language Ly Cook reduces to
[R-

Proof: Given z € ¥*, use the oracle to calculate fr(z). Now, z € Lg if and only if fr(z) > 1.
|

Corollary 10.7 NP Cook reduces to #P

On the other hand we can bound the complexity of #P from above:
Claim 10.1.3 #P Cook reduces to PSPACE

Proof: Given z, we want to calculate fr(x) using polynomial space. Let p(:) be the polynomial
bounding the length of the witnesses of R. We run over all possible witnesses of length < p(|z|).
For each one, we check in polynomial time whether it is a witness for x, and sum the number of
witnesses. All this can be done in space O(p(|z|) + ¢(|x])), where ¢(-) is the polynomial bounding
the running time (and therefore space) of the witness checking algorithm. Such a polynomial exists
since R is an N'P-relation. W

10.2 Completeness in #P

When one talks about complexity classes, proving the existence, and finding complete problems in
the complexity class, is of great importance. It helps reason about the whole class using only one
specific problem. Therefore, we are looking for an NP-relation R, s.t. for every other N'P-relation
@, there is a Cook reduction from fg to fr. Formally:

Definition 10.8 (#P-complete) : f is #P-complete if
1. f is in #P.
2. For every g in #P, g Cook reduces to f.

With Occam’s Razor in mind, we’ll try to find a complete problem, such that all other problems
are reducible to it using a very simple form of reduction. Note that by restricting the kind of
reductions we allow, we may rule out candidates for #P-complete problems. We take a restricted
form of a Levin reduction ¢ from fg to fg:

Vr € % : fo(z) = fr(g(z))

118 LECTURE 10. THE COUNTING CLASS #P

By allowing only this kind of reduction, we can find out several things about our candidates for
#P-complete problems. For example:

fo(x) > 1 & fr(d(x)) >1

In other words :
l’ELQ{Z}d)(l‘) € Lg

Which means that ¢ is a Karp reduction from L¢g to L. This implies that the decision problem
related to R must be N'P-complete. Moreover, we require that the reduction preserves the number
of witnesses for every input z. We capture this notion in the following definition:

Definition 10.9 (Parsimonious) : A reduction ¢ : X* — ¥*, is Parsimonious w.r.t. N'P-relations
Q and R if for every x - [{y : (z,y) € Q} = [{y : (¢(2),y) € R}.

Corollary 10.10 if R is an N P-relation, and for every N'P-relation Q there exists ¢¢g : ¥ — L*
s.t. ¢g 1s parsimonious w.r.t. Q) and R then fr is #P-complete.

As we’ve said, a parsimonious reduction from fg to fr must be a Karp reduction from Lg to
Lpg. Therefore, we’ll try to prove that the Karp reductions we used to prove SAT is N"P-complete,
are also parsimonious, and thereby #SAT is #P-complete.

Definition 10.11

Rgar = {(%T)

Y 18 a boolean formula on variables V(1))
T s a truth assignment for V(¢) 1 (1) =1

We have proved SAT def LR, is N'P-complete by a series of Karp reductions. All we need to

show is that each step is in fact a parsimonious reduction.

Theorem 10.12 #SAT def fRgar 15 #P-complete.

Proof: (outline)
1. Obviously #SAT is in #P, since Rgar is an N P-relation.

2. e The reduction from a generic N'P-relation R to Bounded-Halting, is parsimonious be-
cause the correspondence between the witnesses is not only one-to-one, it is in fact the
identity.

e The reduction from Bounded-Halting to Circuit-SAT consists of creating for each time
unit a set of variables that can describe each possible configuration uniquely. Since
a successful run is a specific list of configurations, and corresponds to one witness of
Bounded-Halting, we get the same witness translated into one unique representation in
binary variables.

e In the reduction from Circuit-SAT to SAT we add extra variables for each internal gate
in the circuit. Each satisfying assignment to the original circuit uniquely determines all
the values in the internal gates, and therefore gives us exactly one satisfying assignment
to the formula.

10.2. COMPLETENESS IN #P 119

|
Notice that we actually proved that the counting problems associated with Bounded-Halting,
Circuit-SAT, and SAT are #P-complete. Not only did we prove #SAT to be #P-complete, we
also showed that for every f in #P, there exists a parsimonious reduction from f to #SAT.
The reader might have gotten the impression that every N P-relation R, such that fr is #P-
complete implies Lg is N'P-complete. But the following theorem shows the contrary:

Theorem 10.13 There exists an N'P-relation R s.t. fr is #P-complete, and Lg is polynomial
time decidable.

Notice that such a #P-complete function, does not have the property that we showed #SAT has:
Not all other functions in #P have a parsimonious reduction to it. In fact it cannot be that every
#P problem has a Karp reduction to fg, since otherwise Lr would be AN'P-complete.

The idea in the proof is to modify a hard to calculate relation by adding easy to recognize
witnesses to every input, so that the question of existence of a witness becomes trivial, yet the
counting problem remains just as hard. Clearly, the #P-hardness will have to be proven by a
non-parsimonious reduction (actually even a non-Karp reduction).

Proof: We define :
(p(r) =1 A(0c=1)
Rsar =1 (¢, (7,0)) v
oc=10

Obviously LR'SAT = X¥*, so it is in P. But fR'SAT is #P-complete, since for every ¢ : ¢’s witnesses
in R, are:
{(r,1) = o(r) =1} U{(7,0)}
Which means:
#SAT(¢) + 2|Variables(¢)\ — fR'

SAT

(¢)

So given an oracle to erSAT we can easily calculate #SAT, meaning that fR'SAT is #P-complete.

We proved the above theorem by constructing a somewhat unnatural N P-relation. We will now
find a more natural problem that gives the same result (i.e., which is also #P-complete).

Definition 10.14 (Bipartite Graph) : G = (V3 U Vs, E) is a Bipartite Graph if
e VNV, =10
e FECVI xV,

Definition 10.15 (Perfect Matching) : Let G = (V4 U Vo, E) be a bipartite graph. A Perfect
Matching is a set of edges M C E, that satisfies:

1. every vi i Vi appears in exactly one edge of M.

2. every vy in Vo appears in exactly one edge of M.

Definition 10.16 (Perfect Matching — equivalent definition) : Let G = (V1 U Vs, E) be a bipartite
graph. A Perfect Matching is a one-to-one and onto function f : Vi — Vy s.t. for every v in Vi,

(v, f(v)) € E.

Proof: (equivalence of definitions) :

120 LECTURE 10. THE COUNTING CLASS #P

e Assume we have a subset of edges M C FE that satisfies the first definition. Define a function
f:Vi—=V2
f(v1) =vy <= (v1,v12) € M
f is well defined, because each vy in Vi appears in exactly one edge of M. It is one-to-one

and onto because each v9 in V5 appears in exactly one edge of M. Since M C F, f satisfies
the condition that for all vy in Vi : (vq, f(v1)) is in E.

e Assume we have a one-to-one and onto function f : V3 — V5 that satisfies the above condition.
We construct a set M C E :

M = {(v1, f(v1)) 1 v1 € Vi}

M C FE because for every vy in V; we know that (vy, f(v1)) is in E. The two conditions are
also satisfied:
1. Since f is a function, every v; in V; appears in exactly one edge of M.

2. Since f is one-to-one and onto, every vs in V5 appears in exactly one edge of M.

|
Definition 10.17 Rpy; = {(G, f) : G is a bipartite graph and f is a perfect matching of G }
Fact 10.2.1 Lg,,, is polynomial time decidable.

The idea of the algorithm is to reduce the problem to a network-flow problem which is known
to have a polynomial time algorithm. Given a bipartite graph G = (V3 U V5, E), we construct a
directed graph G' = (V1 UV, U {s,t}, E'), so that:

E'=EU{(s,v1) :v1 € Vi} U{(v2,t) : v € V3}

where F is viewed as directed edges from V; to V5. What we did, is add a source s and connect
it to one side of the graph, and a sink ¢ connected to the other side. We transform it to a flow
problem by setting a weight of 1 to every edge in the graph. There is a one to one correspondence
between partial matchings and integer flows in the graph: Edges in the matching correspond to
edges in F having a flow of 1. Therefore, there exists a perfect matching iff there is a flow of size
V1] = [Val.

Theorem 10.18 fg,,, is #P-complete.

This result is proved by showing that the problem of computing the permanent of a {0,1} matrix
is #P-complete. We will show the reduction from counting the number of perfect matchings
to computing the permanent of such matrices. In fact, the two problems are computationally
equivalent.

Definition 10.19 (Permanent) : The permanent of an n X n matriz A = (ai,j)?jﬂ is:

Perm(A) = Z H @ (i)

TESy 1=1

Where S, = {7 : w is a permutation of {1,...,n}}.

10.2. COMPLETENESS IN #P 121

Note that the definition of the permanent of a matrix closely resembles that of the determinant of
a matrix. In the definition of determinant, we have the same sum and product, except that each
element in the sum is multiplied by the sign € {—1,1} of the permutation w. Yet, computing the
determinant is in P, while computing the permanent is #P-complete, and therefore is believed not
to be in P. The main result in this section is the (unproven here) theorem:

Theorem 10.20 Perm is #P-complete.
To show the equivalence of computing fr,,, and Perm, we use:

Definition 10.21 (Bipartite Adjacency Matrix) : Given a bipartite graph G = (ViU Vs, E), where
Vi ={1,...,n}, and Vo = {1,...,m}, we define the Bipartite Adjacency Matrix of the graph G,
as an n X m matriz B(G), where :

o 1 (l,]) e F
B(G)ij = { 0 otherwise

Proposition 10.2.2 Given a bipartite graph G = (V1 U Vy, E) where |Vi| = |Va|,

[Rpy (G) = Perm(B(G))

Proof:
Perm(B(G)) = |{m € Sn: I biny = 11
= [{reSu:Vie{l,...,n},bru) =1}
= {reS,:Vie{l,...,n},(i,n(i)) € E}|
= |{m € S, : 7 is a perfect matching in G}|
= [rpu(G)
|

We just showed that the problem of counting the number of perfect matchings in a bipartite
graph Cook reduces to the problem of calculating the permanent of a {0,1} matrix. Notice that
the other direction is also true by the same proof: Given a {0,1} matrix, create the bipartite graph
that corresponds to it.

Now we will show another graph counting problem, that is equivalent to both of these:

Definition 10.22 (Cycle Cover) : A Cycle Cover of a directed graph G, is a set of vertex disjoint
simple cycles that cover all the vertices of G. More formally: C C E is a cycle cover of G if
for every connected component Vi of G' = (V,C), there is an ordering Vi = {vg,...vq_1} s.t.
(vi,vj) € C & j =i+ 1(mod d)

Notice that there is no problem with connected components of size 1, because we allow self loops.

Definition 10.23 #Cycle(G) = number of cycle covers of G.

Definition 10.24 (Adjacency Matrix) : The Adjacency Matrix of a directed graph G = ({1,...,n}, E)
is an n X n matriz A(G) :

o 1 (Z,j) e F
A(G)iy _{ 0 otherwise

Proposition 10.2.3 For every directed graph G, Perm(A(G)) = #Cycle(G)

122 LECTURE 10. THE COUNTING CLASS #P

In proving this proposition we use the following:

Claim 10.2.4 C s a cycle cover of G if and only if every v € V has an out-degree and in-degree
of 1 in G'=(V,C).

Proof: (Claim)

e (=) Every vertex appears in exactly one cycle of C, because the cycles are disjoint. Also,
since the cycles are simple, every vertex has an in-degree and out-degree of 1.

e (<=) For every connected component Vj of G', take a vertex vy € Vj, and create the directed
path : vg,v1,...,, where for every i, (v;,v; 1) € C. Since the out-degree of every vertex is 1
in G', this path is uniquely determined, and:

1. There must exist a vertex v; that appears twice : v; = v;. Because V is finite.
2. We claim that the least such ¢ is 0. Otherwise, the in-degree of v; is greater than 1.
3. All the vertices of Vj appear in our path because it is a connected component of G'.

Thus each Vj induces a directed cycle, and so G’ is a collection of disjoint directed cycles
which cover all V.

|
Proof: (Proposition) We’ll define:

Q¥ (res,:Vie{l,...,n},(i,7(i) € E}

It is easy to see that Perm(A(G)) = |€2|. Every m € Q defines
Cr={(,m(1)):1€{1,...,n}} CFE
and since 7 is a 1-1 and onto {1,...,n}, the out-degree and in-degree of each vertex in C is 1. So

Cy is a cycle cover of G. On the other hand, every cycle cover C' C G defines a mapping: 7o (i) = j
s.t. (i,7) € C, and by the above claim, this is a permutation. [l

10.3 How close is #P to NP ?

The main purpose of this lecture, is to study the class #P, and classify it as best as we can among
other complexity classes we’ve studied. We’ve seen some examples of #P complete problems. We
also gave upper and lower complexity bounds on #P :

NP a. #P a. PSPACE

We will now try to refine these bounds by showing that #7P is not as far from NP as one might
suspect. In fact, a counting problem in #P can be probabilistically approximated in polynomial
time using an N P oracle.

10.3. HOW CLOSE IS #P TONP ? 123

10.3.1 Various Levels of Approximation

We will start by introducing the notion of a range problem. A range problem is a relaxation of
the problem of calculating a function. Instead of requiring one value for each input, we allow a full
range of answers for each input.

Definition 10.25 (Range Problem) : A Range Problem II is defined by two functions II
(I, 11,,). I, IO, : ¥* — N. s.t. on input x € X*, the problem is to find t € (Ij(x), 1, (x
or in other words, return an integer t, s.t. Ij(x) <t < I, ().

),

Note that there is no restriction on the functions II; and II,, they can even be non-recursive. Since
we are going to use range problems to denote an approximation to a function, we define a specific
kind of range problems that are based on a function:

Definition 10.26 (Strong Range) : For f : ¥* — N, and a polynomial p(-), we define the range
problem StrongRange,(f) = (I,u) where:

l(z) = f(z)- (1 - p(z \))
u(z) = f(x)-(1+ p(|1;|))
Strong range captures our notion of a good approximation. We will proceed in a series of reductions

that will eventually give us the desired result. The first result we prove, is that it is enough to
strongly approximate #SAT.

Proposition 10.3.1 If we can approximate #SAT strongly we can just as strongly approrimate
any f in #P. In other words : For every f in #P, and every polynomial p(-),

StrongRangey(f) a. StrongRange,(#SAT)

Proof: As we’ve seen, for every f in #7P, there is a parsimonious reduction ¢y w.r.t. f and
#SAT. Meaning, for all z : f(z) = #SAT(¢¢(x)). We may assume that |¢s(z)| > |z|, because we
can always pad ¢s(x) with something that will not change the number of witnesses:

¢f($)/\21/\22/\.../\z‘m‘
We now use our oracle to StrongRangeP(#SAT) on ¢¢(x), and get a result ¢, that satisfies :

(1) #SAT(¢f())

t)
1+)f()

N m

We now wish to define a weaker form of approximation:

Definition 10.27 (Constant Range) : For f: X* — N, and a constant ¢ > 0, we define the range
problem ConstantRange.(f) = (I,u) where:

We want to show that approximating #SAT up to a constant suffices to approximate #SAT
strongly. We’ll in fact prove a stronger result: that an even weaker form of approximation is
enough to approximate #SAT strongly.

124 LECTURE 10. THE COUNTING CLASS #P

Definition 10.28 (Weak Range) : For f : ¥* — N, and a constant € > 0, we define the range
problem WeakRange.(f) = (I,u) where:

1—e
i) = (' f(2)
u(w) =217 f ()
It is quite clear that ConstantRange is a stronger form of approximation than WeakRange:

Claim 10.3.2 For every 0 < e <1 and ¢ > 0:
WeakRange(#SAT) a. ConstantRange.(#SAT)

Proof: Simply because for large enough n:

1

(32" (20

where we use (3, 2)""" to denote the range ((%)”176, 7). N

Now we prove the main result:
Proposition 10.3.3 For every polynomial p(-), and constant 0 < € < 1,
StrongRange,(#SAT) o, WeakRange(#SAT)

Proof: Given ¢, a boolean formula on variables #. Define a polynomial ¢(n) > (2n - p(n))l

build ¢' :

, and

q(|9))

/\W

Where each zi is a distinct copy of the variables #. Obviously #SAT(¢') = (#SAT(¢))e9D,
Notice |¢'| < 2|4] - q(|¢|). Now, assuming we have an oracle to WeakRange.(#SAT), we call it on
¢ to get:
(5: 217" #SAT(¢)

1 €
% 2)2el-a(lo) ™ . (#SAT(¢))2(¢D

Our result would be s = ¢40¢D . And we have :

s € (%,2)% #SAT(¢)
C (%,2)2|¢|;L(\¢\) #SAT ()
= (%,2)p(|¢|).#5AT(¢)
C (1#) - #SAT(¢)

where the last containment follows from :
Vach:(l—l)rg1
x 2 x
|

After a small diversion into proving a stronger result than needed, we conclude that all we have
to do is to find a constant ¢ > 0, such that we can solve ConstantRange.(#SAT).

We still have a hard time solving the problem directly, so we’ll do yet another reduction into
a relaxed form of decision problems, called promise problems. While machines that solve decision
problems are required to give an exact answer for every input, promise problems are only required
to do so on a predefined ’promise’ set.

10.3. HOW CLOSE IS #P TONP ? 125

Definition 10.29 (Promise Problem) : A Promise Problem II = (IIy, Iy), where Iy, Iy C X*,
and Iy NIy = 0, is the question: Given x € Promise(II) def IIy Ully, decide whether x € Ily.

Notice that if x ¢ Promise(II), there is no requirement. Also, promise problems are a generalization
of decision problems, where in decision problems Promise(Il) = ¥*, so no promise is made.

Definition 10.30 (Gaps#SAT) The promise problem Gaps#SAT = (Gaps#SATy,Gaps#SATy),
where:

Gaps#SATy = {(¢,K): #SAT(¢) > 8K}

Gaps#SATy = {(¢,K): #SAT(¢) < 5K}

We now continue in our reductions. For this we choose ¢ = 64, and show we can solve
ConstantRangegs(#SAT) using an oracle to Gapg#SAT.

Proposition 10.3.4 ConstantRangegs(#SAT) Cook reduces to Gaps#SAT
Proof: We run the following algorithm on input ¢:
e ;=20
e While (Gaps#SAT answers Y ES on (¢,8')) doi=i+1
.1
e return 82
Denote o = logg(#SAT(¢)). The result 8’“7%, satisfies : @ —2 < k — 3 < a + 2, because :

e Foralli < a—1, #SAT(¢) > 8- 8, so (4,8") € Gapg#SATy. Therefore, we are promised
that in such a case the algorithm will increment such an ¢, and not stop. So, £k > a—1 follows.

e Foralli >a+ 1, #SAT(¢) < % -8, 50 (¢,8") € Gaps#SATy. Meaning that the algorithm
must stop at the first such ¢ or before. The first such ¢ that satisfies i« > « + 1 also satisfies
1 < a+ 2. Therefore k < o + 2.

Now :

We conclude: .
k=3 ¢ (57:64) - #SAT(9)

So far we’ve shown the following reductions:

StrongRangepoly(#P) e StrongRangepory (#SAT) o, WeakRange(#SAT)
a. ConstantRangegs(#SAT) o Gaps#SAT

Since Cook reductions are transitive, we get :
StrongRangepoly (#P) o Gaps#SAT

We will show how to solve Gapg#SAT using an oracle to SAT, but with a small probability of
error. So we will show, that in general, if we can solve a problem P using an oracle to a promise

126 LECTURE 10. THE COUNTING CLASS #P

problem @), then if we have an oracle to @ that makes little mistakes, we can solve P with high
probability.
Comment : (Amplification) : For every promise problem P, and machine M that satisfies:

2

for every x € Promise(P) : Prob|M(x) = P(x)] > 3

If on input x that is in Promise(P), we run M on z, O(n) times, then the majority of the results
will equal P(z) with probability greater than 1 —27".

This we proved when we talked about BPP, and the proof stays exactly the same, using

Chernoff’s bound. Note that we do not care if machine M has an oracle or not, and if so how this

oracle operates, as long as different runs of M are independent.

Proposition 10.3.5 Given a problem P and a promise problem @, such that P Cook reduces to
Q, if we have a probabilistic machine Q' that satisfies:

for every x € Promise(Q) : Prob|Q'(z) = Q(x)] > g

then for every polynomial p(-), we have a probabilistic polynomial time machine M that uses an
oracle to Q', and satisfies:

Prob[M® (y) is a solution of P on input y] > 1 — 27P(¥D

Proof: We start by noticing that since the reduction from P to @ is polynomial, there exists a
polynomial ¢(-), such that the oracle @ is called less than ¢(|y|) times. Since we use Q' and not
(2 as an oracle, we have a probability of error. If each one of these calls had a probability of error

less than : q(\1y|) -27P(¥D) then by using the union bound we would get that the probability that at

least one of the oracle calls was incorrect is less than 272, The probability of M being correct,
is at least the probability that all oracle calls are correct, therefore in this case it is greater than
1 — 9-»p(yl).

Using the comment about amplification, we can amplify the probability of success of each oracle
call to 1 — mZ_p(‘yD, by calling it O(p(Jy|) - log ¢(|y|)) number of times, which is polynomial in
the size of the input. [l

In conclusion, all we have to do is show that we can solve Gaps#SAT with a probability of
error < % Then, we showed that we can find a solution to #SAT, that is very close to the real
solution (StrongRange,(#SAT)), with a very high probability of success.

10.3.2 Probabilistic Cook Reduction

In the next sections, we extensively use the notion of probabilistic reduction. Therefore, we’ll define
it formally, and prove some of it’s properties.

Definition 10.31 (Probabilistic Cook Reduction) : Given promise problems P and Q, we say that
there is a Probabilistic Cook Reduction from P to Q@ denoted P agr Q, if there is a probabilistic
polynomial time oracle machine M that uses @ as an oracle, and satisfies:

2
for every x € Promise(P) : Prob[M®(z) = P(z)] > 3
where M@ (z) denotes then operation of machine M on input x when given oracle access to Q.
Whenever a query to @Q satisfies the promise of @Q, the answer is correct, but when the query

violates the promise the answer may be arbitrary.

10.3. HOW CLOSE IS #P TONP ? 127

Notice that in the definition, the oracle has no probability of error. We now show that this restriction
does not matter, and we can do the same even if the oracle is implemented with bounded probability
of error.

Proposition 10.3.6 If P probabilistically Cook reduces to @Q, and we have a probabilistic machine
Q' that satisfies

for every x € Promise(Q) : Prob|Q'(z) = Q(x)] > g

then we have a probabilistic polynomial time oracle machine M that uses Q' as an oracle, and

satisfies :

/ 2
for every y € Promise(P) : Prob|M® (y) = P(y)] > 3

Proof: By the definition of a probabilistic Cook reduction, we have a probabilistic polynomial
time oracle machine N that satisfies:

3
for every y € Promise(P) : Prob[N9(y) = P(y)] > 1

Where we changed % to %, using the comment about amplification. Machine N runs in polynomial

time, therefore it calls the oracle a polynomial p(]y|) number of times. We can assume Q' to be
correct with a probability > § - m, by calling it each time instead of just once, O(log(p(|y|)))
times, and taking the majority. Using the union bound, the probability that all oracle calls (to this
modified Q') are correct is greater than %.

When all oracle calls are correct, machine N returns the correct result. Therefore with proba-

bility greater than % . % = % we get the correct result. [l

We list some properties of probabilistic cook reductions:

e Deterministic Cook reduction is a special case (i.e., P a, Q@ = P agr Q).

o Transitivity : P agr Q@ ag R — P ar R

10.3.3 Gaps#SAT Reduces to SAT

Our goal, is to show that we can approximate any problem in #P using an oracle to SAT. So far
we’ve reduced the problem several times, and got:

StrongRangepoly (#P) o Gaps#SAT

Now we’ll show:
Gaps#SAT arp SAT

And using the above properties of probabilistic Cook reductions, this will mean that we can ap-
proximate #P very closely, with an exponentially small probability of error.

Reminder: Gaps#SAT is the promise problem on input pairs (¢, k), where ¢ is a boolean
formula, and k is a natural number. Gapg#SAT = (Gaps#SATy,Gaps#SATy), where:

Gaps#SATy = {(¢,k): #SAT(¢) > 8k}
Gaps#SATNy = {(¢,k): #SAT(¢) < £k}

How do we approach the problem? We know, that there is either a very large or a very small

number of truth assignment in comparison to the input parameter k. So if we take a random %

128 LECTURE 10. THE COUNTING CLASS #P

fraction of the assignments, with high probability in the first case at least one of them is satisfying,
and in the second, none are. Assume that we have a way of restricting our formula to a random
fraction of the assignments S that satisfies : each assignment 7 is in the set with probability %
independently of all other assignments. We set ¢/'(1) = ¢(7) A (7 € S). Then we simply check
satisfiability of ¢/. First notice:

Probs[¢' € SAT] = 1— Probg[Vrst. ¢(r)=1: 7¢S] = 1— (5L)#54T0)
Therefore:

If #SAT(¢) > 8k then Probs[¢/ € SAT] > 1—(’“—;1)81’6 ~ 1-% > 2

If #SAT(¢) < gk then Probg[¢’ € SAT] < 1-(51)sF = 1—5% < 3

The problem is, we don’t have an efficient procedure to choose such a random S. So we weaken our
requirements, instead of total independence, we require only pairwise independence. Specifically,
we use the following tool:

Definition 10.32 (Universaly Hashing) : A family of functions, Hy, »,, mapping {0,1}" to {0,1}™
is called Universaly if for a uniformly selected h in Hy ,, the random variables {h(e)}ecfo,13n are
pairwise independent and uniformly distributed over {0,1}™. That s, for every x # y € {0,1}",
and a,b € {0,1}™,

Probuem, . [h(z) = a & h(y) = 0] = (27™)

An efficient construction of such families is required to have algorithms for selecting and evaluating
functions in the family. That is,

1. selecting: There exists a probabilistic polynomial-time algorithm that on input (17,1™),
outputs a description of a uniformly selected function in H, ,,.

2. evaluating: There exists a polynomial-time algorithm that on input: a description of a func-
tion h € Hy, , and a domain element 2 € {0,1}"™ outputs the value h(z).

A popular example is the family of all affine transformations from {0,1}" to {0,1}™. That is, all
functions of the form h 4 p(z) = Az +b, where A is an m-by-n 0-1 matrix, b is an m-dimensional 0-1
vector, and arithmetic is modulo 2. Clearly, this family has an efficient construction. In Appendix
A, we will show that this family is Universals.

Lemma 10.3.7 (Leftover Hash Lemma): Let Hy, », be a family of Universaly Hash functions map-
ping {0,1}" to {0,1}™, and let € > 0. Let S C {0,1}" be arbitrary provided that |S| > ¢=3 . 2™.
Then: s

Proby[|{e € S:h(e) =0"} € (1xe)- u] >1—c¢

2m

The proof of this lemma appears in Appendix B.
We are now ready to construct a probabilistic Cook reduction from Gapg#SAT to SAT, using
a Universaly family of functions. Specifically we will use the family of affine transformations.

Theorem 10.33 Gaps#SAT ar SAT

Proof: We construct a probabilistic polynomial time machine M which is given oracle access to
SAT. On input (¢,2™), where ¢ has n variables, M operates as follows:

10.3. HOW CLOSE IS #P TONP ? 129

1. Select uniformly h € Hy, ,, = {Affine transformations from {0, 1}" to {0,1}" }. The function
h is represented by a {0,1} matrix A,,xn = (@;;)i=1,.... and a {0,1} vector b = (b;)i=1, ..m

7j=1,...n

2. We construct a formula v, on variables xy,...,zn, 91, ..., 4, so that for every z € {0,1}"

h(x) = 0™ iff there exists an assignment to the y;’s so that ¢y (21, ..., Tn, Y1, ..., y¢) is true. Fur-
thermore, in case h(z) = 0™, there is a unique assignment to the y;’s so that ¢ (1, ..., Tn, Y1, .y Yt)
is true.
The construction of v can be presented in two ways. In the abstract way, we just observe
that applying the standard Cook-reduction to the assertion h(z) = 0™, results in the desired
formula. (The claimed properties have to be verified indeed.) A more concrete way is to start
by the following observations

h(zy,...x,) =0"
im1 (2?21 a;jr; =b; (mod 2))

AV ((bi © 1) © D7 (aij A %’))

Introducing auxiliary variables, as in the construction of the standard reduction from Circuit—
Satisfiability to 3SAT, we obtain the desired formula 1. For example, introducing variables
Y1y -3 Yns Y115 -, Ym,n, the above formula is satisfied for a particular setting of the x;’s iff the
following formula is satisfyiable for these z;’s (and furthermore for a unique setting of the

yi's):
A Gie1®y) A /\ EB?/z,J AN N Wi = aij A
=1 =1 i=1j5=1
So all that is left is to write a CNF for @j:1 Yij, by using additional auxiliary variables.

To write a CNF for @7 _, z;, we look at a binary tree of depth £ def logy n which computes
the XOR in the natrual way. We introduce an auxiliary variable for each internal node, and

obtain _
-1 2t

n
wor A N\ N (Wi = wit12j-1 @ wir1,25) /\ wej = %)
i=0j=1 j=1

3. Define ¢' = ¢ A)y,. Use our oracle to SAT on ¢', and return the result.
The validity of the reduction is established via the following two claims.
Claim 1: If (¢,2™) € Gapg#SATy then ¢' € SAT with probability > %
Claim 2: If (¢,2™) € Gapg#SATN then ¢' € SAT with probability < %.

Before proving these claims, we note that the gap in the probabilities in the two cases (i.e., (¢,2™) €
Gaps#SATy and (¢,2™) € Gapg#SATyN) can be “amplified” to obtain the desired probabilities
(i.e., ¢' € SAT with probability at least 2/3 in the first case and at most 1/3 in the second).

Proof Claim 1: We define Sd> {ac : ¢(x) = 1}. Because (¢,2™) € Gaps#SATy, we know that
|S¢| > 8-2™ Now:

Proby|¢' € SAT]

Proby[{z : ¢(x) =1 & h(z) = 0™} # ()
= Proby[{z € Sy : h(z) = 0™} # (]

Probp[[{z € Sy : h(x) = 0"} € (15)‘SM] > 3

Y

130 LECTURE 10. THE COUNTING CLASS #P

The last inequality is an application of the Leftover Hash lemma, setting ¢ = %, and the claim
follows. O

Proof Claim 2: As (¢,2™) € Gaps#SATy, we have |Sy| < £ - 2™.

Prob,[¢) € SAT] = Proby[{z € Sy : h(z) =0m} # (]
Proby[(Uges, {2 h(z) = 0™}) # 0]
Y wes, Proby[h(z) = 0™]

% . 2m . 2_m =

ANRVAN|

ool

The last inequality uses the union bound, and the claim follows. O

Combining the two claims (and using amplification), the theorem follows. [l
In conclusion, we have shown:
Strong Appropely (#P) o Gaps#SAT ar SAT

Which is what we wanted.

10.4 Reducing to uniqueSAT

We’ve introduced the notion of promise problems as a means to prove that we can approximate
#SAT using SAT. But promise problems are interesting by their own right, so we will try to
investigate them a bit more. We’ve shown that using an oracle to SAT we can solve Gapg#SAT.
The converse is also true, because we’ve shown we can approximate (deterministically) #SAT
using Gapg#SAT, so all we have to do is approximate well enough, to differentiate 0 from positive
results, and thus, solve SAT. We will try to refine this result, by showing that a more restricted
version of Gaps#SAT is enough to solve SAT (and even approximate #SAT).

Definition 10.34 Gapg#SAT' is the promise problem on input pairs (¢, k) defined by:

Gaps#SAT!, = {(¢,k): 8k < #£SAT(¢) < 32k}
Gaps#SATYy = {(¢,k) : #SAT(9) < Lk}

Claim 10.4.1 SAT Cook reduces to Gapg#SAT’

Proof: Given ¢, first we will create formula ¢/, s.t. #SAT(¢') = 15- #SAT(¢p). Take 4 variables
{z1, 9, 23,24} not appearing in ¢. and define:

Yo = (1‘1\/1’2\/1‘3\/1‘4)

¢ = NP

Observe that #SAT (1)) = 15, and since the variables of 1) do not appear in ¢, the above equality
holds. So we know that :

#SAT(¢') > 15 < ¢ € SAT

#SAT(¢) =0 <— ¢ ¢ SAT

For every 0 < i < |Variables(¢')|, we call our oracle: Gapg#SAT'(¢',2"). We claim : One of the
answers is YES iff ¢ € SAT.

10.4. REDUCING TOUNIQUESAT 131

e Suppose that ¢ ¢ SAT. Then #SAT(¢') = 0 < %k for all k& > 0, therefore for all 7,
(¢,2) € Gaps#SATY),, so we are promised to always get a NO answer.

e Suppose ¢ € SAT, so as we showed, #SAT(¢') > 15. Therefore, logy(#SAT(¢')) >
log,(15) > 3. There exists an integer i > 0 s.t.

i < logy(#SAT(¢')) —3 <i+2
4
23 < #SAT(¢) < 2075
4
8.2 < #SAT(¢') < 32 -2

And for that i, we are guaranteed to get a Y ES answer.

The reader may wonder why we imposed this extra restriction on Gaps#SAT. We want to
show that we can solve SAT using weak oracles. For example Gaps#SAT’ is a weak oracle. But
we wish to continue in our reductions, and our next step is:

Definition 10.35 fewSAT is the promise problem defined by:

fewSATy = {¢:1<#SAT() <100} C SAT
fewSATN = {¢:#SAT(¢) =0} = SAT

Proposition 10.4.2 Gapg#SAT' probabilistically Cook reduces to fewSAT

Proof: We will use the same reduction we used when proving Gaps#SAT ar SAT, except we now
have Gaps#SAT'. Recall, we uniformly select h € Hy, ,,,, and construct ¢'(z) = ¢(z)A(h(z) = 0™).
We make analogous claims to the ones stated in the former proof:

o claim 1: If (¢,2™) € Gaps#SATY, then ¢ € fewSAT with probability >

N[—

o claim 2: If (¢,2™) € Gaps#SAT) then ¢' € fewSAT with probability <

ool

1. Since (¢,2™) € Gaps#SATy,, we have:

8-2™ < |9y Y {x:¢/(x) =1} <3227

So now:
Proby|¢' € fewSAT| = Proby[0 < |{z: ¢(x) =1 & h(xz) = 0™}| < 100]
= Prob,[0 < |{z € Sy : h(x) =0™}| < 100]
> Proby[(1—13)-8<|{z € Sy:h(z) =0"} < (1+1)-32]
> Proby[|{z € Sy: h(z) =0m} € (1+ L)) 5 1

2. In the original proof we showed: if (¢, 2™) € Gaps#S ATy then ¢’ is not satisfiable with prob-
ability greater than %. Notice :Gaps#SATN = Gaps#SATY, so if (¢,2™) € Gaps#SAT)
then ¢' is not satisfiable with probability greater than %, and in that case, it’s in fewSATy,

8
so we are guaranteed to get a NO answer.

132 LECTURE 10. THE COUNTING CLASS #P

As a last step in this endless crusade to understand the complexity of SAT promise problems,
we will show that the weakest SAT related promise problem, is in fact as strong as the others.

Definition 10.36 uniqueSAT is the promise problem on input ¢ defined by:

uniqueSATy = {¢:#SAT(p) =1} C SAT
uniqueSATNy = {¢:#SAT(¢) =0} = SAT

Proposition 10.4.3 fewSAT Cook reduces to uniqueSAT

Proof: Given a formula ¢, we want to solve fewSAT. For each 1 < i < 100 we construct a
formula ¢;, s.t. :

e 0 & SAT = ¢; & SAT.
e ¢; has a unique satisfying assignment if ¢ has exactly ¢ satisfying assignments.

If we can do this, we can check all these ¢;’s, with our oracle to uniqueSAT. If all of them are NO,

then we return VO, otherwise we answer Y E'S. This is correct because if 0 < k def #SAT(¢) < 100,

then ¢ has exactly one satisfying assignment, and therefore uniqueSAT returns Y ES on ¢. Also,
if ¢ ¢ SAT, then all for all ¢ : ¢; € uniqueS ATy, so all the answers must be NO.
All that is left is to construct ¢;: We create ¢ copies of ¢, each on a separate set of variables:

1/)2' = A;’:ld)(lea s 717%,)

First notice, that if ¢ ¢ SAT, then so is 1);. Now assume #SAT(¢) = i. Every satisfying assignment
of 1;, corresponds to ¢ satisfying assignments of ¢. But we want to force them to be different, so
we would require that the assignments are different and add this requirement to ;. But then, we
will have exactly ¢! satisfying assignments to the new ;. To solve this, instead of just requiring
that they are different, we will impose a lexicographical ordering of the solutions, which will fix one
satisfying assignment from the i! possible.

i—1
¢i = 1/)1 A /\ (xj <lex xj+1)
j=1
|

Just for the heck of it, we’ll list all the reductions in order:

StrongRangepory (#P) ae
StrongRangepoly (#SAT) a
WeakRange(#SAT) .
ConstantRangegs(#SAT) .
Gaps#SAT ap
SAT o
Gapg#SAT' ap
fewSAT a.
uniqueSAT

Some collapsing gives us:

StrongRangepoly(#P) o Gaps#SAT ap uniqueSAT

10.4. REDUCING TOUNIQUESAT 133

Bibliographic Notes

The counting class #P was introduced by Valiant [4], who proved that computing the permanent
of 0-1 matrices is #P-complete. Valiant’s proof first establishes the #7P-hardness of computing
the permanent of integer matrices (the entries are actually restricted to {—1,0,1,2,3}), and next
reduces the computation of the permanent of integer matrices to the the permanent of 0-1 matrices.
A de-constructed version of Valinat’s proof can be found in [1].

The approximation procedure for #P is due to Stockmeyer [3], following an idea of Sipser [2].
Our exposition follows further developments in the area. The randomized reduction of SAT to
uniqueSAT is due to Valiant and Vazirani [5]. Again, our exposition is a bit different.

1. A. Ben-Dor and S. Halevi. Zeo-One Permanent is #P-Complete, A Simpler Proof. In 2nd
Israel Symp. on Theory of Computing and Systems (ISTCS93), ITEEE Computer Society
Press, pages 108-117, 1993.

2. M. Sipser. A Complexity Theoretic Approach to Randomness. In 15th STOC, pages 330-335,
1983.

3. L. Stockmeyer. The Complexity of Approximate Counting. In 15th STOC, pages 118-126,
1983.

4. L.G. Valiant. The Complexity of Computing the Permanent. Theoretical Computer Science,
Vol. 8, pp. 189-201, 1979.

5. L.G. Valiant and V.V. Vazirani. NP Is as Easy as Detecting Unique Solutions. Theoretical
Computer Science, Vol. 47 (1), pages 85-93, 1986.

Appendix A: A Family of Universal, Hash Functions

In this appendix we show that the family of affine transformations from {0,1}" to {0,1}™ is
efficiently constructible and is Universals.

1. selecting: Simply selecting uniformly and independently each bit of A and b, will output a
uniformly selected affine transformation. This runs in O(nm + m) time, which is polynomial
in the length of the input.

2. evaluating: Calculating Ax takes O(mn) time, and the addition of b adds O(m) time. All in
all, polynomial in the size of the input.

Proposition: The family of affine transformations from {0,1}" to {0,1}™ is Universaly.

Proof: Given z1 # x9 € {0,1}", and y1,y2 € {0,1}™. If z; = 0", then

Probaplh(z1) =y1 & h(xa) =y2] = Probap[b=1y1 & Axy + b= y]
= PTObA,b[b =y & Azs = yo — yl]
= Proba[Azy =y — y1] - Proby[b = y1]
= 9 —m.9-m _ (27m)2

Where Prob[Axzs = y2 — y1] = 27, because for a given vector x # 0™, a uniformly chosen linear
transformation A, maps z9 uniformly into {0,1}™. If z9 = 0 the same argument holds. Assume

134 LECTURE 10. THE COUNTING CLASS #P

both are different than 0™. Since we choose among the linear transformations uniformly, it does
not matter in what base we represent them. Since x1,z9 # 0, and they are both in {0,1}", they
must be linearly independent. So we may assume they are both base vectors in the representation
of A, meaning one column in 4 : column gy in A represents the image of z1, and a different column
as represents the image of xs.

P’I“ObAVb[h(xl) =1 & h(xg) = yg] = P’I“ObAVb[Axl +b=1y & Axg + b= yg]
= Probg, a,pla1 +b=y1 & ay +b = yy]
= Probg, a,Ja1 =y1 —b & ay = ya — b] (for every b)

= Probg,, [ay = y1 — b] - Probg,las = y2 —b] (for every b)
— 9 —m . 9-m _ (zfm)2

Appendix B: Proof of Leftover Hash Lemma

In this appendix, we prove the Leftover Hash Lemma (Lemma 10.3.7). We first restate the lemma.

The Leftover Hash Lemma: Let H, ,, be a family of Universaly Hash functions mapping
{0,1}" to {0,1}™, and let € > 0. Let S C {0,1}" be arbitrary provided that |S| > €¢=3-2™. Then:

Proby[|{e € S:h(e) =0"} € (1+e)- |2£|] >1—c¢

m

Proof: We define for each e € {0,1}" a random variable X, :

_J 1 h(e)=0m
Xe = { 0 otherwise

For each e; # ey € {0,1}", we claim that X, , X, are stochastically independent, because they
are functions of the independent random variables h(e;) and h(ez) respectively. That is, we use
the known fact by which if X and Y are independent random variables then, for every function f,
f(X) and f(Y) are also independent random variables.
We compute :

E(z.) = Prob[X.=1] = 5

VAR(X.) = Prob[X,=1]-(1- Prob[X,=1]) = 5=(1— 5=)
We define a new random variable Y = Y~ ¢ X.. In other words : ¥ = [{e € S : h(e) = 0™}|. Since
the X,’s are pairwise independent we get:

E(Y) = YoesB(Xe) =5
VAR(Y) = Y,es VAR(X.) = (1 — 5h) = (1 — 5k) - B(Y)

We will now use the Chebychev inequality to prove:
Probl[{e € S: h(e) = 0m}| € (1) - 5]

ProblY € (1+¢)- E(Y)]
Prob]|lY —EY| <e-E(Y)]

| _ VARY) _ 4 (==)-E(Y)
= 7 (¢EX)? T 5 EEN))?

(15)2
= 1-"Fg2l-e(l-gm)>1-c¢

\Y

Lecture 11

Interactive Proof Systems

Notes taken by Danny Harnik, Tzvika Hartman and Hillel Kugler

Summary: We introduce the notion of interactive proof systems and the complexity
class IP, emphasizing the role of randomness and interaction in this model. The concept
is demonstrated by giving an interactive proof system for the graph non-isomorphism
language. We discuss the power of the class IP and prove that coN’P C ZP. We discuss
issues regarding the number of rounds allowed in a proof system and introduce the class
AM capturing languages recognized by Arthur-Merlin games.

11.1 Introduction

A proof is a way of convincing a party of a certain claim. When talking about proofs, we consider
two parties: the prover and the wverifier. Given an assertion, the prover’s goal is to convince the
verifier of it’s validity, whereas the verifier’s objective is to accept only a correct assertion. In
mathematics, for instance, the prover provides a fixed sequence of claims and the verifier checks
that they are truthful and that they imply the theorem. In real life, however, the notion of a
proof has a much wider interpretation. A proof is a process rather than a fixed object, by which
the validity of the assertion is established. For instance, a job interview is a process in which the
candidate tries to convince the employer that she should hire him. In order to make the right
decision, the employer carries out an interactive process. Unlike a fixed set of questions, in an
interview the employer can adapt her questions according to the answers of the candidate, and
therefore extract more information, and lead to a better decision. This example exhibits the power
of a proof process rather than a fixed proof. In particular it shows the benefits of interaction
between the parties.

In many contexts, finding a proof requires creativity and originality, and therefore attracts
most of the attention. However, in our discussion of proof systems, we will focus on the task of the
verifier — the verification process. Typically the verification procedure is considered to be relatively
easy while finding the proof is considered a harder task. The asymmetry between the complexity
of verification and finding proofs is captured by the complexity class NP.

We can view NP as a proof system, where the only restriction is on the complexity of the
verification procedure (the verification procedure must take at most polynomial-time). For each
language L €NP there exists a polynomial-time recognizable relation R, such that:

L={z:3yst. (x,y) € Ry}

135

136 LECTURE 11. INTERACTIVE PROOF SYSTEMS

and (x,y) € Ry, only if |y| < poly(|z|). In a proof system for an NP language L, a proof for the claim
“r € L” consists of the prover sending a witness y, and the verifier checking in polynomial-time
whether (z,y) € Rr. Such a witness exists only if the claim is true, hence, only true assertions can
be proved by this system. Note that there is no restriction on the time complexity of finding the
proof (witness). A good proof system must have the following properties:

1. The verifier strategy is efficient (polynomial-time in the NP case).
2. Correctness requirements:

e Completeness : For a true assertion, there is a convincing proof strategy (in the case of
NP, if z € L then a witness y exists).

e Soundness : For a false assertion, no convincing proof strategy exists (in the case of NP,
if z ¢ L then no witness y exists).

In the following discussion we introduce the notion of interactive proofs. To do so, we generalize
the requirements from a proof system, adding interaction and randomness.

Roughly speaking, an interactive proof is a sequence of questions and answers between the
parties. The verifier asks the prover a question 3; and the prover answers with message «;. At the
end of the interaction, the verifier decides based the knowledge he acquired in the process whether
the claim is true or false.

Prover Verifier

A

A

aq

B2

A

B

Qi

Y

11.2 The Definition of IP
Following the above discussion we define

Definition 11.1 (interactive proof systems): An interactive proof system for a language L is a
two-party game between a verifier and a prover that interact on a common input in a way satisfying
the following properties:

11.2. THE DEFINITION OF IP 137

1. The verifier strategy is a probabilistic polynomial-time procedure (where time is measured in
terms of the length of the common input).

2. Correctness requirements:

e Completeness : There exists a prover strategy P, such that for every x € L, when in-
teracting on the common input x, the prover P convinces the verifier with probability at
least 2 .

3

e Soundness : For every x ¢ L, when interacting on the common input x, any prover
strateqy P* convinces the verifier with probability at most % .

Note that the prover strategy is computationally unbounded.

Definition 11.2 (The IP Hierarchy): The complexity class IP consists of all the languages having
an interactive proof system.

We call the number of messages exchanged during the protocol between the two parties, the
number of rounds in the system.

For every integer function r(-), the complexity class IP(r(-)) consists of all the languages that
have an interactive proof system in which, on common input x, at most r(|x|) rounds are used.

For a set of integer functions R, we denote

IP(R) = |J IP(r("))
reER

11.2.1 Comments

e Clearly, NP C IP (actually, NP CIP(1)).
Also, BPP =ZP(0).

e The number of rounds in IP cannot be more than a polynomial in the length of the common
input, since the verifier strategy must run in polynomial-time. Therefore, if we denote by
poly the set of all integer polynomial functions, then ZP = ZP(poly).

e The requirement for completeness, can be modified to require perfect completeness (accep-
tance probability 1). In other words, if z € L, the prover can always convince the verifier.
These two definitions are equivalent. Unlike this, if we require perfect soundness, interactive
proof systems collapse to NP-proof systems. These results will be shown in Section 11.5.

e Much like in the definition of the complexity class BPP, the probabilities % and % in the
completeness and soundness requirements can be replaced with probabilities as extreme as
1 —2770) and 2770) for any polynomial p(-). In other words the following claim holds:

Claim 11.2.1 Any language that has an interactive proof system, has one that achieves error
probability of at most 27P0) for any polynomial p(-).

Proof: We repeat the proof system sequentially for k£ times, and take a majority vote. Denote
by z the number of accepting votes. If the assertion holds, then z is the sum of k£ independent
Bernoulli trials with probability of success at least % An error in the new protocol happens
if 2 < k.

2

138

LECTURE 11. INTERACTIVE PROOF SYSTEMS

Using Chernoff’s Bound :
52E(2)

Priz< (1-6)E(z)]| <e 2

We choose k = O(p(-)) and ¢ = } and note that E(z) = 2k (so that 2 - 2 = 1) to get:
1 ()
Pr |z < 3 k|l <27P

The same argument holds for the soundness error (as due to the sequential nature of the
interaction we can assert that in each of the k iterations, for any history of prior interactions,
the success probability of any cheating strategy is bounded by 1/3). I

The proof above uses sequential repetition of the protocol to amplify the probabilities. This
suffices for showing that the class IP is invariant under the various definitions discussed.
However, this method increases the number of rounds used in the proof system. In order to
show the invariance of the class IP(r(-)), an analysis of the parallel repetition version should
be given. (Such an argument is given in Appendix C.1 of [3].)

e Introducing both interaction and randomness in the IP class is essential.

— By adding interaction only, the interactive proof systems collapse to NP-proof systems.
Given an interactive proof system for a prover and a deterministic verifier, we construct
an NP- proof system. The prover can predict the verifier’s part of the interaction and
send the full transcript as an NP witness. The verifier checks that the witness is a valid
and accepting transcript of the original proof system. An alternative argument uses the
fact that interactive proof systems with perfect soundness are equivalent to NP-proof
systems (and the fact that a deterministic verifier necessarily yields perfect soundness).

— By adding randomness only, we get a proof system in which the prover sends a witness
and the verifier can run a BPP algorithm for checking its validity. We obtain a class IP(1)
(also denoted MA) which seems to be a randomized (and perhaps stronger) version of
NP.

11.2.2 Example — Graph Non-Isomorphism (GNTI)

Two graphs Gy = (Vi, E1) and Gy = (Va, E9) are called isomorphic (denoted G = G5) if there
exists a 1-1 and onto mapping 7 : Vi — V3 such that (u,v) € Ey < (w(u),n(v)) € Ey. The mapping
m, if existing, is called an isomorphism between the graphs. If no such mapping exists then the
graphs are non-isomorphic (denoted G1 % Go).

GNTI is the language containing all pairs of non-isomorphic graphs. Formally :

GNI = {(G1,G3) : G1 2 Go}

An interactive proof system for GNI:

e (1 and G5 are given as input to the verifier and the prover. Assume without loss of generality

that V1 =V, ={1,2,...,n}

e The verifier chooses i € {1,2} and 7 €r S, (S, is the group of all permutations on

(1,2,..,n}).

11.2. THE DEFINITION OF IP 139

He applies the mapping 7 on the graph G; to obtain a graph H
H = ({1,2,..,n}, Eg) where Eyg = {(7(u), 7(v)) : (u,v) € E;}
and sends the graph H to the prover.
e The prover sends j € {1,2} to the verifier.

e The verifier accepts iff j = i.

Motivation : if the input graphs are non-isomorphic, as the prover claims, then the prover should
be able to distinguish (not necessarily by an efficient algorithm) isomorphic copies of one graph
from isomorphic copies of the other graph. However, if the input graphs are isomorphic, then a
random isomorphic copy of one graph is distributed identically to a random isomorphic copy of
the other graph and therefore, the best choice the prover could make is a random one. This fact
enables the verifier to distinguish between the two cases. Formally:

Claim 11.2.2 The above protocol is an interactive proof system for GNI.

Comment: We show that the above protocol is an interactive proof system with soundness
probability at most % rather than % as in the formal definition. However, this is equivalent by an
amplification argument (see Claim 11.2.1).

Proof: We have to show that the above system satisfies the two properties in the definition of
interactive proof systems:

e The verifier’s strategy can be easily implemented in probabilistic polynomial time. (The
prover’s complexity is unbounded and indeed, he has to check isomorphism between two
graphs, a problem not known to be solved in probabilistic polynomial time.)

e — Completeness : In case G| 2 G, every graph can be isomorphic to at most one of G; or
G2 (otherwise, the existence of a graph isomorphic to both G; and G5 implies G1 = Gs).
It follows that the prover can always send the correct j (i.e. a j such that j = i), since
H = Gl and H % Gg_i.

— Soundness : In case Gi =2 G5 we show that the prover convinces the verifier with
probability at most % (the probability ranges over all the possible coin tosses of the
verifier, i.e. the choice of i and 7). Denote by H the graph sent by the verifier. G1 2 G
implies that H is isomorphic to both G; and G5. For k£ = 1,2 let

SGk:{O'ESn|O'Gk:H}

This means that when choosing ¢ = k, the verifier can obtain H only by choosing
T E SGk-

Assume 7 € S, is an isomorphism between Gy and G, i.e. G; = 7G3y. For every o € Sg,
it follows that o7 € Sg, (because 067Gy = 0G1 = H). Therefore, 7 is a 1-1 mapping
from Sg, to Sg, (since S, is a group). Similarly, 77! is a 1-1 mapping from Sg, to Sq,.
Combining the two arguments we get that |Sq,| = |Sq,|- Therefore, given that H was
sent, the probability that the verifier chose i = 1 is equal to the probability of the choice
1 = 2. It follows that for every decision the prover makes he has success probability %

and therefore, his total probability of success is %

The above interactive proof system is implemented with only 2 rounds. Therefore,

Corollary 11.3 GNI € IP(2).

140 LECTURE 11. INTERACTIVE PROOF SYSTEMS

11.3 The Power of IP

We have already seen that NPC IP. The above example suggests that the power of IP is even greater.
Since GNI is not known to be in NP we conjecture that NPC IP (strict inclusion). Furthermore,
the class of languages having interactive proof systems is shown to be equivalent to the powerful
complexity class PSPACE. Formally,

Theorem 11.4 ZP = PSPACE.

We will only give a partial proof of the theorem. We’ll only show that coNP C TP C PSPACE.

11.3.1 IP is contained in PSPACE

We start by proving the less interesting direction of the theorem (i.e., IP C PSPACE). This is
proven by showing that (for every fixed verifier), an optimal prover strategy exists and can be
implemented in polynomial-space.

The Optimal Prover: Given a fixed verifier strategy, there exists an optimal prover strategy;
that is, for every common input z, the optimal strategy has the highest possible probability of
convincing the verifier. Note that an optimal prover strategy is well-defined, as for every input x
and fixed prover strategy, the probability that the prescribed verifier accepts is well-defined (and
the number of prover’s strategies for input x is finite). A more explicit way of arguing the existence
of an optimal prover strategy yields an algorithm for computing it. We first observe that given
the verifier strategy and the verifier’s coin tosses, we can simulate the whole interaction and it’s
outcome for any prover strategy. Now, the optimal prover strategy may enumerate all possible
outcomes of the verifier’s coin tosses, and count how many times each strategy succeeds. The
optimal strategy for each input, is one that yields the highest number of successes. Furthermore,
this can be done in polynomial-space:

Claim 11.3.1 The optimal prover strategy can be computed in polynomial-space.

Proof: We assume without loss of generality that the verifier tosses all his coins before the
interaction begins. We also assume that the verifier plays first. Let 3; be the i** message sent by
the verifier and «; be the i message sent by the prover. Let r be the outcome of all the verifier’s
coin tosses. Let Rg, a1, .a; ;3 De the set of all 7’s (outcome of coin tosses) that are consistent
with the interaction (1, a1, ..., @;_1, G;.

Let F(fBy,a1,...,ai-1,0;) be the probability that an interaction (between the optimal prover
and the fixed verifier) beginning with £y, aq,...,a;_1, §; will result in acceptance. The probability
is taken uniformly over the verifier’s relevant coin tosses (only r such that r € Rg, a1 ,...a; 1.8,)-

Suppose an interaction between the two parties consists of 31, aq,...,a;_1, 8; and it is now the
prover’s turn to play. Using the function F', the prover can find the optimal move. We show
that a polynomial-space prover can recursively compute F(f;, a1, ..., «;_1, ;). Furthermore, in the
process, the prover finds an «; that yields this probability and hence, an «; that is an optimal move
for the prover.

The best choice for «; is one that gives the highest expected value of F(fy, a1, ..., a;, Bi11) over
all of the possiblities of verifier’s next message (f;+1). Formally :

(]-) F(ﬁlaala "'7057:71752') = H&%X‘Eﬁi—%l[F(ﬁl)al) "'7ai7ﬂi+1)]

11.3. THE POWER OF IP 141

Let V(r,aq, ..., ;) be the message (3; 11 that the verifier sends after tossing coins r and receiving
messages 1, ..., ; from the prover.

The probability for each possible message (;+1 to be sent by after 5, aq,...,q; is the portion
of possible coins r € Rg, o, .a;_,, that yield the message ;1 (i.e. Bir1 =V (r,n,...,;)). This
yields the following equation for the expected probability :

1

(2) Eﬂi+1[F(ﬂ1,a1,...,ai,ﬁi_'_l)] = ﬁ Z F(ﬁl,al,...,ai,V(r,al,...,ozi))
Br,01,...,54 rE€RS, oy, p:
Combining (1) and (2) we get the recursion formula
1
F(ﬂl,al,...,ai_l,ﬁi) =maxX ————— Z F(ﬁl,al,...,ai,V(r,al,...,ozi))

o; |Rﬁ1,a1,---ﬂi| r€RB, oy

We now show how to compute the function F in polynomial-space:
For each potential a;, we enumerate all possible values of r. For each r, all of the following can be
done in polynomial-space:

o Checking if 7 € Rg, q,,... 5, by simulating the verifier in the first ¢ interactions (when given r
the verifier strategy is polynomial).

e Calculating 8;+1 = V(r,aq, ..., ;) again by simulating the verifier.

e Recursively computing F(f1, a1, ..., &, Bit1)-

In order for the recursion to be polynomial-space computable, we need to show that the
recursion stops after polynomially many stages, and that the last stage can be computed in
polynomial-space. The recursion stops when reaching a full transcript of the proof system.
In such a case the prover can enumerate r and find the probability of acceptance among all
consistent r by simulating the verifier. Clearly, this can be done in polynomial-space. Also
the depth of the recursion must be at most polynomial, which is obviously the case here, since
it is bounded by the number of rounds.

Using polynomial-size counters, we can sum the probabilities for all consistent r, and find the
expected probability for each «;. By repeating this for all possible «; we can find one that maximizes
the expectation. Altogether, the prover’s optimal strategy can be calculated in polynomial-space.

Note: All the probabilities are taken over the verifier’s coin tosses (no more than a polynomial
number of coins). This enables us to use polynomial-size memory for calculating all probabilities
with exact resolution (by representing them as rational numbers — storing the numerator and
denominator separately). [l

Corollary 11.5 IP C PSPACE

Proof: If L € IP then there exists an interactive proof system for L and hence there exists a
polynomial-space optimal prover strategy. Given input z and the verifier's coin tosses, we can
simulate (in polynomial-space) the interaction between the optimal prover and the verifier and

determine this interaction’s outcome. We enumerate over all the possible verifier’s coin tosses and
accept only if more than % of the outcomes are accepting. Clearly, we accept if and only if x € L

and this can be implemented in polynomial-space. W

142 LECTURE 11. INTERACTIVE PROOF SYSTEMS

11.3.2 coNNP is contained in IP

As mentioned above, we will not prove that PSPACE C IP. Instead, we prove a weaker theorem
(i.e., coN'P C IP), which by itself is already very interesting. The proof of the weaker theorem
presents all but one ingrediant of the proof PSPACE C ZP (and the missing ingrediant is less
interesting).

Theorem 11.6 coNP CIP

Proof: We prove the theorem by presenting an interactive proof system for the coNP-complete
problem 3SAT (the same method can work for the problem SAT as well). 3SAT is the set of
non-satisfiable 3CNF formulae: Given a 3CNF formula ¢, it is in the set if no truth assignment
to it’s variables satisfies the formula.

The proof uses an arithmetic generalization of the boolean problem, which allows us to apply
algebraic methods in the proof system.

The Arithmetization of a Boolean CNF formula: Given the formula ¢ with variables
x1, ..., L, we perform the following replacements:

Boolean Arithmetic

T — positive integers
F — 0

x; — x

z; — (1-)

\% — +

A —

d)(xla"')mn) - q)(mla"'axn)

Every boolean 3CNF formula ¢ is transformed into a multi-variable polynomial ®. It is easy
to see that for every assignment zy, ..., x,, we have

d(x1y .y y) = F <= O(x1,...;2,) =0
Summing over all possible assignments, we obtain an equation for the non-satisfiability of ¢:

¢ is unsatisfiable <= Z Z D(x1,.yy) =0
z1=0,1 x,=0,1

Suppose ¢ has m clauses of length three each, thus any 0-1 assignment to xi,...,2z, gives
®(xq,...,x,) < 3™. Since there are 2" different assignments, the sum above is bounded by 2™ - 3™.
This fact allows us to move our calculations to a finite field, by choosing a prime ¢ such that
g > 2" - 3™, and working modulo this prime. Thus proving that ¢ is unsatisfiable reduces to

Z Z &(x1y.0sxy) =0 (mod q)

x1=0,1 r,=0,1

proving that

We choose ¢ to be not much larger than 2™ - 3™ (this is possible due to the density of the prime
numbers). Thus, we obtain that all calculations over the field GF(q) can be done in polynomial-
time (in the input length). Working over a finite field will later help us in the task of uniformly
selecting an element in the field.

The interactive proof system for 3SAT:

11.3. THE POWER OF IP 143

e Both sides receive the common boolean formula ¢. They perform the arithmetization proce-
dure and obtain .

e The prover picks a prime ¢ such that ¢ > 2™ - 3™, and sends q to the verifier. The verifier
checks that ¢ is indeed a prime. If not he rejects.

e The verifier initializes vy = 0.

e The following is performed n times (i runs from 1 to n):

— The prover sends a polynomial P;(-) of degree at most m to the verifier.

— The verifier checks whether P;(0) + P;(1) = v; 1 (mod ¢) and that the polynomial’s
degree is at most m.

If not, the verifier rejects.

Otherwise, he uniformly picks r; € GF(q), calculates v; = P;(r;) and sends 7; to the
prover.

e The verifier accepts if ®(ry,...r,) = v, (mod ¢) and rejects otherwise.

Motivation: The prover has to find a sequence of polynomials that satisfies a number of re-
strictions. The restrictions are imposed by the verifier in the following interactive manner: after
receiving a polynomial from the prover, the verifier sets a new restriction for the next polynomial
in the sequence. These restrictions guarantee that if the claim holds (¢ is unsatisfiable), such a
sequence can always be found (we call it the “Honest prover strategy”). However, if the claim is
false, any prover strategy has only a small probability of finding such a sequence (the probability is
taken over the verifier's coin tosses). This yields the completeness and soundness of the suggested
proof system. The nature of these restrictions is fully clarified in the proof of soundness, but we
will first show that the verifier strategy is efficient.

The verifier strategy is efficient: Most steps in the protocol are calculations of polynomials of
degree m in n variables, these are easily calculated in polynomial-time. The transformation to an
arithmetic field is linear in the formula’s length.

Checking primality is known to be in BPP and therefore can be done by the verifier. Fur-
thermore, it can be shown that primality testing is in NP, so the prover can send the verifier an
NP-witness to the fact that ¢ is a prime, and the verifier checks this witness in polynomial-time.

Finally, picking an element r € g GF(q) can be done in O(log ¢) coin tosses, that is polynomial
in the formula’s length.

The honest prover strategy: For every 7 define the polynomial:

Pi(z) = Z Z D(T1y eeey Ti1y 2y Tit 1y ery Tny)

z;4+1=0,1 zn,=0,1

Note that rq,...,7;_1 are constants set by the verifier in the previous stages and known to the prover
at the i*" stage, and z is the polynomial’s variable.
The following facts are evident about P;:

e Calculating P may take exponential-time, but this is no obstacle for a computationally
unbounded prover.

e The degree of P is at most m. Since there are at most m clauses in ¢, the highest degree of

any one variable is m (if it appears in all clauses).

144 LECTURE 11. INTERACTIVE PROOF SYSTEMS

Completeness of the proof system: When the claim holds, the honest prover always succeeds
in convincing the verifier. For ¢ > 1:

(3.1) PO+ P 1) = > Pa)=a) >, -« D @11, Tio1, Ty, Tn)

z;=0,1 z;=0,1 x,=0,1

=@2) P1(ri-1) =@y vi-1 (mod q)

Equality (1) is due to the definition of P*. Equality (2) is due to the definition of P} ;. Equality
(3) is the definition of v; ;.
Also for ¢ = 1, since the claim holds we have:

Pr(0) + Pr(1 Z Py (z1) Z Z O(z1,...,z,) =vp (mod q)

z1=0,1 x1=0,1 zn=0,1

And finally: v, = P}(r,) = ®(r1,..., 7).
We showed that the polynomials of the honest prover pass all of the verifier’s tests, obtaining
perfect completeness of the proof system.

Soundness of the proof system: If the claim is false, an honest prover will definitely fail after
sending Py, thus a prover must be dishonest.

Roughly speaking, we will show that if a prover is dishonest in one round, then with high
probability he must be dishonest in the next round as well. In the last round, his dishonesty is
revealed. Formally:

Lemma 11.3.2 If PF(0)+ P(1) Zv;_1 (mod q) then either the verifier rejects in the it" round,
or P¥(r;) # v; (mod q) with probability at least 1 — %, where the probability is taken over the
verifier’s choices of r;.

We stress that P is the polynomial of the honest prover strategy (as defined above), while P; is

the polynomial actually sent by the prover (v; is set using F;).
Proof: (of lemma) If the prover sends P; = P, we get:

Pi(0) + P,(1) = PX(0) + PX(1) #viei (mod q)

and the verifier rejects immeadiately.

Otherwise the prover sends P, # P*. We assume P; passed the verifier’s test (if not the verifier
rejects and we are done). Since P; and P are of degree at most m, there are at most m choices of
r; € GF(q) such that

P (r;) = Pi(ri) (mod q)

For all other choices:
Py (ri) # Pi(ri) = v; (mod q)

Since the verifier picks r; €gr GF(q), we get P*(r;) =v; (mod ¢) with probability at most %, [|

Suppose the verifier does not reject in any of the n rounds. Since the claim is false (¢ is
satisfiable), we have P;(0) + P (1) # vy (mod ¢). Applying alternately the lemma and the
following equality: for every ¢ > 2 P* ,(r;,_1) = P*(0) + P/(1) (due to equation 3.1) , we get that
Py (rn) # vp (mod g) with probability at least (1—")". But Pj(rn) = ®(r1,...,ry) so the veriﬁer’s
last test fails and he rejects. Altogether the verifier fails with probability (1 — —) >1-— m > 3
(by the choice of ¢). W

11.4. PUBLIC-COIN SYSTEMS AND THE NUMBER OF ROUNDS 145

11.4 Public-Coin Systems and the Number of Rounds

An interesting question is how the power of interactive proof systems is affected by the number
of rounds allowed. We have already seen that GNI can be proved by an interactive proof with 2
rounds. Despite this example of a coNP language, we conjecture that coNP ¢ IP(O(1)). Together
with the previous theorem we get:

Conjecture 11.7
IP(O(1)) C IP(poly) (strict containment)

A useful tool in the study of interactive proofs, is the public coin variant, in which the verifier can
only ask random questions.

Definition 11.8 (public-coin interactive proofs — AM): Public coin proof systems (known also as
Arthur-Merlin games) are a special case of interactive proof systems, in which, at each round, the
verifier can only toss coins, and send their outcome to the prover. In the last round, the verifier
decides whether to accept or reject.

For every integer function r(-), the complexity class AM(r(-)) consists of all the languages that
have an Arthur-Merlin proof system in which, on common input x, at most r(|z|) rounds are used.

Denote AM = AM(2).

We note that the definition of AM as Arthur-Merlin games with two rounds is inconsistent with
the notation IP= IP(poly)). (Unfortunately, that’s what is found in the literature.)

The difference between the Arthur-Merlin games and the general interactive proof systems can be
viewed as the difference between asking tricky questions, versus asking random questions. Surpris-
ingly it was shown that these two versions are essentially equivalent:

Theorem 11.9 (Relating ZP(-) to AM(-)):

vr(-) ZIP(r(-) S AM(r(-) +2)

The following theorem shows that power of AM(r(-)) is invariant under a linear change in the
number of rounds:

Theorem 11.10 (Linear Speed-up Theorem):
vr() =2 AMQ2r()) = AM(r()))
The above two theorems are quoted without proof. Combining them we get:
Corollary 11.11 Vr(-) > 2 ZIP(2r(-)) =IP(r(-)).
Corollary 11.12 (Collapse of constant-round IP to two-round AM):

TP(O(1)) = AM(2)

146 LECTURE 11. INTERACTIVE PROOF SYSTEMS

11.5 Perfect Completeness and Soundness

In the definition of interactive proof systems we require the existence of a prover strategy that for
x € L convinces the verifier with probability at least % (analogous to the definition of the complexity
class BPP). One can consider a definition requiring perfect completeness; i.e., convincing the verifier
with probability 1 (analogous to coRP). We will now show that the definitions are equivalent.

Theorem 11.13 If a language L has an interactive proof system then it has one with perfect
completeness.

We will show that given a public coin proof system we can construct a perfect completeness public
coin proof system.

We use the fact that public coin proof systems and interactive proof systems are equivalent (see
Theorem 11.9), so if L has an interactive proof system it also has a public coin proof system. We
define:

AM°(r(:)) = {L| L has perfect completeness r(-) round public coin proof system}

So given an interactive proof system we create a public coin proof system and using the following
lemma convert it to one with perfect completeness. Thus, the above theorem which refers to arbi-
trary interactive proofs follows from the following lemma which refers only to public-coin interactive
proofs.

Lemma 11.5.1 If L has a public coin proof system then it has one with perfect completeness
AM(r() € AM°(r(-) +1)

Proof: Given an Arthur-Merlin proof system, we construct an Arthur-Merlin proof system with
perfect completeness and one more round. We use the same idea as in the proof of BPP C PH.

Assume, without loss of generality, that the Arthur-Merlin proof system consists of 2¢ rounds,
and that Arthur sends the same number of coins m in each round (otherwise, ignore the redundant
coins). Also assume that the completeness and soundness error probabilities of the proof system
are at most z—. This is obtained using amplification (see Section 11.2.1).

We denote the messages sent by Arthur (the verifier) rq,...,7; and the messages sent by Merlin
(the prover) aq,...,a;. Denote by (P,V).(r1,...,m¢) the outcome of the game on common input
x between the optimal prover P and the verifier V in which the verifier uses coins rq,...,7¢
(P,V)z(ri,...,re) = 0 if the verifier rejects and (P, V), (r1,...,r:) = 1 otherwise.

We construct a new proof system with perfect completeness, in which Arthur and Merlin play
tm games simultaneously. Each game is like the original game except that the random coins are
shifted by a fixed amount. The tm shifts (one for each game) are sent by Merlin in an additional
round at the beginning. Arthur accepts if at least one of the games is accepting. Formally,
we add an additional round at the beginning in which Merlin sends the shifts S!,..., S where
St = ({,...,Sﬁ),S;- € {0,1}™ for every i between 1 and ¢m. Like in the original proof system
Arthur sends messages 71, ...,7; , where r; €g {0,1}". For game ¢ and round j, Merlin considers
the random coins to be r; @ S} and sends as a message o’ where o is computed according to

J J

(ri®S%,...,r; @S;-). The entire message in round j is ajl-, ceey ozz-m. At the end of the protocol Arthur

accepts if at least one out of the tm games is accepting.

11.5. PERFECT COMPLETENESS AND SOUNDNESS 147

In order to show perfect completeness we will show that for every = € L there exist S, ..., S'™
such that for all rq,...r; at least one of the games is accepting. We use a probabilistic argument to
show that the complementary event occurs with probability strictly smaller than 1.

tm
Prgi _gem lEIrl, e NPV)o(ri @ Sy, e @ Sf) = 0)]
=1

tm
S(l) Z PI‘S17___Stm [/\((P, Vie(ri ® Sy, ...,ry ©S)) = 0)]
r1,..r¢€{0,1}™ 1=1

< th-(iym < 1
=) 3tm

Inequality (1) is obtained using the union bound. Inequality (2) is due to the fact that the r; & S;:
are independent random variables so the results of the games are independent, and that the optimal
prover fails to convince the verifier on a true assertion with probability at most ﬁ

We still have to show that the proof system suggested satisfies the soundness requirement. We
show that for every ¢ L and for any prover strategy P* and choices of shifts S',...,S"™ the

probability that one or more of the tm games is accepting is at most %

tm

Pry, ., [\/((P*,V>m(7“1 DSt . ®SH=1)
=1

tm
S(l) ZPI‘TL...,H |:<P*, V)a:('l“l D Si, ey Tt &) S)%) =]_:|
=1

tm 1 1
< — = =
= Le3tm T3

Inequality (1) is obtained using the union bound. Inequality (2) is due to the fact that any prover
has probability of at most &Lm of success for a single game (because any strategy that the prover
can play in a copy of the parallel game can be played in a single game as well). Wi

Unlike the last theorem, requiring perfect soundness (i.e. for every x ¢ L and every prover
strategy P*, the verifier always rejects after interacting with P* on common input) reduces the
model to an NP-proof system , as seen in the following proposition:

Proposition 11.5.2 If a language L has an interactive proof system with perfect soundness then

L e NP.

Proof: Given an interactive proof system with perfect soundness we construct an NP proof system.
In case z € L, by the completeness requirement, there exists an accepting transcript. The prover
finds an outcome of the verifier’s coin tosses that gives such a transcript and sends the full transcript
along with the coin tosses. The verifier checks in polynomial time that the transcript is valid and
accepting and if so - accepts. This serves as an NP-witness to the fact that z € L. If x ¢ L then
due to the perfect soundness requirement, no outcome of verifier’s coin tosses yields an accepting
transcript and therefore there are no NP-witnesses. [l

148 LECTURE 11. INTERACTIVE PROOF SYSTEMS

Bibliographic Notes

Interactive proof systems were introduced by Goldwasser, Micali and Rackoff [5], with the explicit
objective of capturing the most general notion of efficiently verifiable proof systems. The original
motivation was the introduction of zero-knowledge proof systems, which in turn were supposed to
provide (and indeed do provide) a powerful tool for the design of complex cryptographic schemes.

First evidence that interactive proofs may be more powerful than NP-proofs was given by Gol-
dreich, Micali and Wigderson [4], in the form of the interactive proof for Graph Non-Isomorphism
presented above. The full power of interactive proof systems was discoved by Lund, Fortnow,
Karloff, Nisan, and Shamir (in [7] and [8]). The basic technique was presented in [7] (where it was
shown that coNP C ZP) and the final result (PSPACE = ZP) in [8]. Our presentation follows [8].
For further discussion of credits, see [3].

Public-coin interactive proofs (also known as Arthur-Merlin proofs) were introduced by Babai [1].
The fact that these restricted interactive proofs are as powerful as general ones was proved by Gold-
wasser and Sipser [6]. The linear speed-up (in number of rounds) of public-coin interactive proofs
was shown by Babai and Moran [2].

1. L. Babai. Trading Group Theory for Randomness. In 17th STOC, pages 421-429, 1985.

2. L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof System and a Hierarchy
of Complexity Classes. JCSS, Vol. 36, pp. 254-276, 1988.

3. O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithms
and Combinatorics series (Vol. 17), Springer, 1998.

4. O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity or
All Languages in NP Have Zero-Knowledge Proof Systems. JACM, Vol. 38, No. 1, pages
691-729, 1991. Preliminary version in 27th FOCS, 1986.

5. S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SICOMP, Vol. 18, pages 186208, 1989. Preliminary version in 17th STOC, 1985.
Earlier versions date to 1982.

6. S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive Proof Systems.
Advances in Computing Research: a research annual, Vol. 5 (Randomness and Computation,
S. Micali, ed.), pages 73-90, 1989. Extended abstract in 18th STOC, pages 59-68, 1986.

7. C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for Interactive Proof
Systems. JACM, Vol. 39, No. 4, pages 859-868, 1992. Preliminary version in 31st FOCS,
1990.

8. A. Shamir. IP = PSPACE. JACM, Vol. 39, No. 4, pages 869-877, 1992. Preliminary version
in 31st FOCS, 1990.

Lecture 12

Probabilistically Checkable Proof
Systems

Notes taken by Alon Rosen and Vered Rosen

Summary: In this lecture we introduce the notion of Probabilistically Checkable Proof
(PCP) systems. We discuss some complexity measures involved, and describe the class
of languages captured by corresponding PCP systems. We then demonstrate the alter-
native view of NP emerging from the PCP theorem, and use it in order to prove two
non-approximability results for the problems max3SAT and mazxCLIQUE.

12.1 Introduction

Loosely speaking, a probabilistically checkable proof system (PCP) for a language consists of a
probabilistic polynomial-time verifier having direct access to individual bits of a binary string.
This string (called oracle) represents a proof, and typically will be accessed only partially by the
verifier. Queries to the oracle are positions on the bit string and will be determined by the verifier’s
input and coin tosses (potentially, they might be determined by answers to previous queries as
well). The verifier is supposed to decide whether a given input belongs to the language.

If the input belongs to the language, the requirement is that the verifier will always accept
(i.e. given access to an adequate oracle). On the other hand, if the input does not belong to the
language then the verifier will reject with probability at least %, no matter which oracle is used.

One can view PCP systems in terms of interactive proof systems. That is, one can think of
the oracle string as being the prover and of the queries as being the messages sent to him by the
verifier. In the PCP setting however, the prover is considered to be memoryless and thus cannot
adjust his answers based on previous queries posed to him.

A more appealing interpretation is to view PCP systems as a possible way of generalizing N'P.
Instead of conducting a polynomial-time computation upon receiving the entire proof (as in the
case of N'P), the verifier is allowed to toss coins and query the proof only at locations of his choice.
This either allows him to inspect very long proofs (looking at no more than polynomially many
locations), or alternatively, look at very few bits of a possible proof.

Most surprisingly, PCP systems have been used to fully characterize the languages in N'P.
This characterization has been found to be useful in connecting the hardness involved in the ap-
proximation of some N P-hard problems with the P # NP question. In other words, very strong

149

150 LECTURE 12. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

non-approximability results for various classical optimization problems have been established using
PCP systems for NP languages.

12.2 The Definition

12.2.1 The basic model

In the definition of PCP systems we make use of the notion of a probabilistic oracle machine. In
our setting, this will be a probabilistic Turing machine which, in addition to the usual features,
will have direct access (counted as a single step) to individual bits of a binary string (the oracle).
JFrom now on, we denote by M™(x) the output of machine M on input x, when given such oracle
access to the binary string .

Definition 12.1 (Probabilistically Checkable Proofs - PCP) A probabilistic checkable proof sys-
tem for a language L is a probabilistic polynomial-time oracle machine (called verifier), denoted M,
satisfying

e Completeness: For every x € L there exists an oracle w, such that:
Pr[M™(z)=1]=1
e Soundness: For every x & L and every oracle :

Pr(M™(z) =1] <

N | =

where the probability s taken over M ’s internal coin tosses.

12.2.2 Complexity Measures

When considering a randomized oracle machine, some complexity measures other than time may
come into concern. A natural thing would be to count the number of queries made by the verifier.
This number determines what is the portion of the proof being read by the verifier. Another
concern would be to count the number of coins tossed by the randomized oracle machine. This in
turn determines what is the total number of possible executions of the verifier (once an oracle is
fixed).

It turns out that the class of languages captured by PCP systems varies greatly as the above
mentioned resources of the verifier are changed. This motivates a quantitative refinement of the
definition of PCP systems which captures the above discussed concept.

Definition 12.2 (Complexity Measures for PCP) Let r,q : N — N be integer functions (in par-
ticular constant). The complexity class PCP(r(-),q(:)) consists of languages having a probabilistic
checkable proof system in which it holds that:

e Randomness Complexity: On input x € {0,1}*, the verifier makes at most r(|z|) coin tosses.
e Query Complexity: On input x € {0,1}*, the verifier makes at most q(|x|) queries.

For sets of integer functions R and Q, we let

PCP(R, Q)Y |J PCP(r(),q(-))

reR,qeQ

12.2. THE DEFINITION 151

In particular, we denote by poly the set of all integer functions bounded by a polynomial
and by log the set of all integer functions bounded by a logarithmic function (e.g. f € log iff
f(n) = O(logn)). From now on, whenever referring to a PCP system, we will also specify its
corresponding complexity measures.

12.2.3 Some Observations

e The definition of PCP involves binary queries to the oracle (which is itself a binary string).
These queries specify locations on the string whose binary values are the answers to the
corresponding queries. From now on, when given a query ¢ to an oracle 7 the corresponding
binary answer will be denoted m,. Note that an oracle string can possibly be of exponential
length (since one can specify an exponentially far location on the string using polynomially
many bits).

e A PCP verifier is called non-adaptive if its queries are determined solely based on its input
and the outcome of its coin tosses. (A general verifier, called adaptive, may determine its
queries also based on answers to previously received oracle answers). From now on, whenever
referring to a PCP verifier it will be assumed to be adaptive (unless otherwise specified).

e A possible motivation for the introduction of PCP systems would be to provide an alternative
view of AP, one that will rid us of the “rigidity” of the conventional view. In this regard
randomness seems to be a most important ingredient, it provides us the possibility to be
“imprecise” in the acceptance of false instances. This is best seen when taking the probability
bound in the soundness condition to be zero. This will cause that no probability is involved
in the definition and will make it collapse into N'P. To see this, notice that in the above case,
the output of the verifier does not vary with the outcome of its coin tosses. This means that
in order to determine the verifier’s decision on some input, it suffices to examine only one of
its possible executions (say, when using the all zero coin sequence). In such an execution only
a polynomial portion of the PCP proof is being read by the verifier. It is easy to see, that in
this case, the PCP and NP definitions coincide (just treat the relevant portion of the PCP
proof as an N'P-witness).

Note that in order to be consistent with the NP definition we require perfect completeness
(i.e. a true instance is always accepted).

e The definition of PCP requires that for every x in L there exists a proof m, for which it holds
that Pr[M™ (z) = 1] = 1. This means that 7, is potentially different for every z. However,
we can assume w.l.o.g., that there exists a proof = which is common to all z’s in L. This
7 will simply be the concatenation of all 7,’s (according to some ordering of the z’s in L).
Since the verifier is polynomial we can assume that all 7,’s are at most exponentially long
(the verifier cannot access more than an exponentially long prefix of his proof). Therefore,
the location of 7, within 7 will not be more than exponential in |z| away, and so can be
accessed in poly(|z|) time.

e The oracle in a PCP system is viewed in a somewhat different manner than previously. We
demonstrate this by comparing a PCP system to the mechanism of a Cook-reduction. Recall
that a language L; is Cook-reducible to Lo if there exists an oracle machine M such that for
all z € {0,1}* it holds that M'2(x) = x1,(x). Note that the oracle in the Cook-reduction
mechanism is the language Ly, and is supposed to exist for all x € {0,1}* (regardless of
the question whether z is in L or not). In contrast, in the case of PCP systems the oracle

152 LECTURE 12. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

7 is supposed not to exist whenever x is not in L. That is, every oracle would cause the
verifer to reject & with probability at least % Therefore, in the PCP case (as opposed to the
Cook-reduction case) there is a lack of “symmetry” between the positive instances of L and
the negative ones.

12.3 The PCP characterization of NP

12.3.1 Importance of Complexity Parameters in PCP Systems

As was already mentioned in subsection 12.2.2, the class of languages captured by PCP systems
varies greatly as the appropriate parameters r(-) and ¢(-) are modified. This fact is demonstrated
by the following assertions:

o If VP C PCP(o(log),o(log)) then N'P =P
o PCP(poly,poly) = NEXP (= NTIME(2PY))

By taking either one of the complexity measures to zero the definition of PCP collapses into
one of the following degenerate cases:

e PCP(poly,0) = coRP
e PCP(0,poly) = NP

When looking at the above degenerate cases of the PCP definition we do not really gain any
novel view on the complexity classes involved (in this case, coRP and A'P). Thus, the whole point
of introducing the PCP definition may be missed. What we would like to see are more delicate
assertions involving both non-zero randomness and query complexity. In the following subsection
we demonstrate how PCP systems can be used in order to characterize the complexity class NP in
such a non-degenerate way. This characterization will lead to a new perspective on /P and enable
us to further investigate the languages in it.

12.3.2 The PCP Theorem

As already stated, the languages in the complexity class NP are trivially captured by PCP systems
using zero randomness and a polynomial number of queries. A natural question arises: can the two
complexity measures be traded off, in a way that still captures the class NP? Most surprisingly,
not only the answer to the above question is positive, but also a most powerful result emerges.
The number of queries made by the verifier can be brought down to a constant while using only a
logarithmic number of coin tosses. This result is known as the PCP theorem (it will be cited here
without a proof).

Our goal is to characterize NP in terms of PCP systems. We start by demonstrating how AP
upper bounds a fairly large class in the PCP hierarchy. This is the class of languages having a PCP
system whose verifier makes a polynomial number of queries while using a logarithmic number of
coin tosses.

Proposition 12.3.1 PCP(log,poly) C NP

Proof: Let L be a language in PC P(log, poly). We will show how to use its PCP system in order
to construct a non-deterministic machine M which decides L in polynomial-time. This will imply
that L is in N'P.

12.3. THE PCP CHARACTERIZATION OF NP 153

Let M’ be the probabilistic-polynomial time oracle machine in the above PCP(log, poly) system
for L. We are guaranteed that on input x € {0,1}*, M’ makes poly(|z|) queries using O(log(|x|))
coin tosses. For the sake of simplicity, we prove the claim for a non-adaptive M’ (in order to adjust
the proof to the adaptive case, some minor modifications are required).

Denote by (r1,...,7y,) the sequence of all m possible outcomes of the coin tosses made by M’
(note that |r;| = O(log(|z])) and m = 290ee(z]) = poly(|z|)). Denote by (¢t,... ,) the sequence
of n; queries made by M when using the coin sequence r; (note that n; is potentially different for
each 4, and is polynomial in |z|). Since M’ is non-adaptive, its queries are determined as a function
of the input z and the coin sequence r;, and do not depend on answers to previous queries.

By the completeness condition we are guaranteed that for every x in L there exists a PCP proof
7z, such that the verifier M’ always accepts & when given access to m,. A natural candidate for an
NP-witness for x would be m,. However, as already stated in subsection 12.2.3, 7, might be of
exponential size in |z|, and therefore unsuitable to be used as an N'P-witness. We will therefore
use a “compressed” version of m,, this version corresponds to the portion of the proof which is
actually being read by the verifier M’.

We now turn to the construction of a witness w, given & € L and a corresponding oracle m, (for
the sake of simplicity we denote it by 7). Consider all possible executions of M’ on input z given
access to the oracle string 7 (each execution depends on the coin sequence r;). Take the substring

of 7 containing all the bits examined by M’ during these executions (i.e. {(qu, . ,wq;i)}zl). En-
code each entry in this substring as (index, Ti,qe.) (that is, (query, answer)), denote the resulting
encoded string by w] (note that now |w]| is polynomial in |z|).

We now describe the non-deterministic machine M which decides L in polynomial time. Given
input z, and w on the guess tape, M will simulate the execution of M’ on input z for all possible
r;’s. Every query made by M’ will be answered by M according to the corresponding answers
appearing in w (by performing binary search on the indices in w). The machine M will accept if
and only if M’ would have accepted x for all possible r;’s.

Since M simulates the execution of M’ exactly m times (which is polynomial in |z|), and since
M' is a polynomial time machine, then M is itself a polynomial-time machine, as required. It
remains to be seen that L(M) indeed equals L:

e Vz € L, we show that there exists w such that M(z,w) = 1. By the perfect completeness
condition of the PCP system for L, there exists an oracle m such that Pr[M'"(z) = 1] = 1.
Therefore, it holds that for all coin sequences r;, the machine M’ accepts = while accessing
m. It immediately follows by definition that M (z,w?) = 1, where w7 is as described above.

e Vz ¢ L, we show that for all w’s it holds that M (z,w) = 0. By the soundness condition of
the PCP system for L, for all oracles 7 it holds that Pr[M'"(x) = 1] < % Therefore, for at
least % of the possible coin sequences r;, M does not accept = while accessing 7. Assume, for
the sake of contradiction, that there exists a witness w for which it holds that M (z,w) = 1.
By the definition of M this means that for all possible coin tosses M’ accepts x when given
answers from w. We can therefore use w in order to construct an oracle, 7%, for which it
holds that Pr [M”rw (x) = 1] =1, in contradiction to the soundness condition. (the oracle 7"
can be constructed as follows: for every index ¢ that appears in w, define 7’ to be the binary
answer corresponding to ¢. Define the rest of 7% arbitrarily.)

Consider now the case of an adaptive M’. In this case, we can construct w? adaptively. Given an
input € L and a corresponding oracle w, run M'™ on x for every random string r;, and see what

154 LECTURE 12. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

are the queries made by M’ (which depend on z, r; and answers to previous queries). Then take
wX to be the substring of 7 that is defined by all these queries, as before. W

The essence of the above proof, is that given a PCP proof (of logarithmic randomness) for some
2z in L we can efficiently “pack” it (compress it into polynomial size) and transform it into an
NP-witness for z. This is due to the fact that the total portion of the proof used by the verifier
(in all possible runs, i.e. over all possible coin sequences) is bounded by a polynomial. In light of
the above, any result of the type

NP CPCP(log,q())

would be interesting, since it implies that for every x € L, we can construct a witness with the
additional property, that enables a “lazy” verifier to toss coins, and decide membership in L, based
only on a tiny portion of the A"P-witness (as will be further discussed in subsection 12.3.3).

It turns out that the polynomial ¢(-) bounding the number of queries in a result of the above
kind can be taken to be a constant. This surprising result is what we refer to as the PCP theorem.

Theorem 12.3 (The PCP Theorem)
NP C PCP(log,O(1))

The PCP theorem is a culmination of a sequence of works, each establishing a meaningful and
increasingly stronger statement. The proof of the PCP theorem is one of the most complicated
proofs in the theory of computation and it is beyond our scope to prove it here. We state as a side
remark, that the smallest possible number of queries for which the PCP theorem has been proven
is currently 5 (whereas with 3 queries one can get arbitrarily close to soundness error 1/2).

The conclusion is that AP is ezactly the set of languages which have a PCP verifier that asks
a constant number of queries using a logarithmic number of coin tosses.

Corollary 12.4 (The PCP Characterization of N'P)
NP =PCP(log,O(1))

Proof: Combining Theorem 12.3 with Proposition 12.3.1, we obtain the desired result. [l

12.3.3 The PCP Theorem gives rise to “robust” NP-relations

Recall that every language L in /P can be associated with an N'P-relation Ry, (in case the language
is natural, so is the relation). This relation consists of all pairs (x,y) where z is a positive instance
of L and y is a corresponding NP-witness. The PCP theorem gives rise to another (unnatural)
relation R} with some extra properties. In the following subsection we briefly discuss some of the
issues regarding the relation R’ .

Since every L € NP has a PCP(log,O(1)) system we are guaranteed that for every z in L
there exists a PCP proof 7., such that the corresponding verifier machine M always accepts x
when given access to m,. In order to define our relation we would like to consider pairs of the form
(z, 7). However, in general, 7, might be of exponential size in |z|, and therefore unsuitable to be
used in an A/P-relation. In order to “compress” it into polynomial size we can use the construction
introduced in the proof of Proposition 12.3.1 (i.e. of a witness w for the non-deterministic machine
M). Denote by 7, the resulting “compressed” version of m,. We are now ready to define the
relation:

12.3. THE PCP CHARACTERIZATION OF NP 155

Ry, € {(z,7}) | Pr[M™(z) = 1] = 1}

By the definition of PCP it is obvious that x € L if and only if there exists w, such that
(z,ml) € R}. It follows from the details in the proof of proposition 12.3.1 that R} is indeed
recognizable in polynomial-time.

Although not stated in the theorem, the proof of the PCP theorem actually demonstrates how
to efficiently transform an NP-witness y (for an instance = of L € A'P) into an oracle proof 7y,
for which the PCP verifier always accepts . Thus, there is a Levin-reduction between the natural
N'P-relation for L and R} .

We conclude that any NP-witness of Ry can be efficiently transformed into an N P-witness of
R’ (i.e. an oracle proof) which offers a trade-off between the portion of the A'P-witness being read
by the verifier and the amount of certainty it has in its answer. That is, if the verifier is willing to
tolerate an error probability of 27%, it needs to inspect O(k) bits of the proof (the verifier chooses
k random strings ri, ..., 7, uniformly among {0, 1}0(1°g). It will be convinced with probability 2—%
that the input x is in L, if for every ¢, M accepts x using randomness r; and given oracle access to
the appropriate O(1) queries).

12.3.4 Simplifying assumptions about PCP(log, O(1)) verifiers

When considering a PCP(log, O(1)) system, some simplifying assumptions about the corresponding
verifier machine can be made. We now turn to introduce two of them:

1. Any verifier in a PCP(log, O(1)) system can be assumed to be non-adaptive (i.e. its queries
are determined as a function of the input and the random tape only, and do not depend on
answers to previous queries). This is due to the fact that any adaptive PCP(log, O(1)) verifier
can be converted into a non-adaptive one by modifying it in such a way that it will consider
all possible sequences of {0, 1} answers given to its queries by the oracle. This certainly costs
us in an exponential blowup in the query complexity, but, since the number of queries made
by the original (adaptive) verifier is constant, so will be the query complexity of the modified
(non-adaptive) verifier after the blowup. Note that in general, adaptive verifiers are more
powerful than non-adaptive ones (in terms of quantitative results). There are constructions
in which adaptive verifiers make less queries than non-adaptive ones while achieving the same
results.

2. Any verifier in a PCP(log, O(1)) system can be assumed to always make the same (constant)
number of queries (regardless of the outcome of its coin tosses). Take any verifier in a
PCP(log,0(1)) system not satisfying the above property. Let ¢ be the maximal number of
queries made in some execution of the above verifier (over all possible outcomes of the coin
tosses). For every possible outcome of the coin tosses, modify the verifier in such a way that
it will ask a total number of ¢ queries, make him ignore answers to the newly added queries.
Clearly, such a verifier will be consistent with the original one, and will still make only a
constant number of queries (which is t).

From now on, whenever referring to PCP(log, O(1)) systems, free use of the above assumptions will
be made (without any loss of generality).

156 LECTURE 12. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

12.4 PCP and non-approximability

Many natural optimization problems are known to be N"P-hard. However, many times an approx-
imation to the exact value of the solution could be sufficient for our needs. In this section we will
investigate the existence (or rather, the inexistence) of efficient approximation algorithms for two
NP-complete problems, namely, max3SAT and maxCLIQUE.

An algorithm for a given problem is considered a C-approximation algorithm if for every instance
it generates an answer that is off the correct answer by a factor of at most C. The question
of interest, is given an N'P-complete problem II, what is the best C for which there is a C-
approximation algorithm for II.

The PCP characterization of NP provides us an alternative view of languages in N'P. This
view is not as rigid as the original one, and thus creates a framework which is apparently more
insightful for the study of approximability.

We start by rephrasing the PCP theorem in an alternative way. This in turn will be used in
order to derive an immediate non-approximability result for maxz3SAT. While rephrasing the PCP
theorem, a new type of polynomial-time reductions, which we call amplifying, emerges.

12.4.1 Amplifying Reductions

Consider an unsatisfiable 3C NF formula'. It may be the case that the formula is very “close” to
being satisfiable. For example, there exist unsatisfiable formulae such that by removing only one
of their clauses, they suddenly become satisfiable.

In contrast, there exist unsatisfiable 3CNF formulae which are much “farther” from being
satisfiable than the above mentioned formulae. These formulae may always have a constant fraction
of unsatisfied clauses (for all possible truth assignments). As a consequence, they offer us the (most
attractive) feature of being able to probabilistically check whether a certain truth assignment
satisfies them or not (by randomly sampling their clauses and picking with constant probability a
clause which is unsatisfied by this assignment). Not surprisingly, this resembles the features of a
PCP system.

Loosely speaking, amplifying reductions of 3SAT 2 to itself are Karp-reductions, which, in
addition to the conventional properties, have the property that they map unsatisfiable 3SCNF
formulae into unsatisfiable 3C NF formulae which are “far” from being satisfiable (in the above
sense).

Definition 12.5 (amplifying reduction) An amplifying reduction of 3SAT to itself is a polynomial-
time computable function f mapping the set of SCNF formulae to itself such that for some constant
e > 0 it holds that:

o [maps satisfiable 3SCNF' formulae to satisfiable 3SCNF formulae.

e f maps non-satisfiable 3CNF formulae to (non-satisfiable) SCNF formulae for which every
truth assignment satisfies at most an 1 — € fraction of the clauses.

An amplifying reduction of a language L in N'P to 3SAT, can be defined analogously.

'Recall that a t-CNF formula is a boolean formula consisting of a conjunction of clauses, where each clause is a
disjunction of up to ¢ literals (a literal is a variable or its negation).
23SAT is the problem of deciding whether a given 3CNF formula has a satisfying truth assignment.

12.4. PCP AND NON-APPROXIMABILITY 157

12.4.2 PCP Theorem Rephrased

Amplifying reductions seem like a suitable tool to be used in order to construct a PCP system
for every language in A/P. Not only they are efficiently computable, but they enable us to map
negative instances of any language in A"P into negative instances of 3SAT which we may be able
to reject on a probabilistic basis (analogously to the soundness condition in the PCP definition).

It turns out that the converse is also true, given a PCP system for a language in NP we are
also able to construct an amplifying reduction of 3SAT to itself.

Theorem 12.6 (PCP theorem rephrased) The following are equivalent:
1. NP CPCP(log,O(1)). (The PCP Theorem).

2. There exists an amplifying reduction of 3SAT to itself.

Proof: We start with the ((1) = (2)) direction. Consider any language L € N'P. By the PCP
theorem L has a PCP(log,O(1)) system, we will now show how to use this system in order to
construct an amplifying reduction from L to 3SAT. This will in particular hold for I, = 3SAT
(which is itself in A'P), and the claim will follow.

Let M be the probabilistic polynomial-time oracle machine in the above PCP(log, O(1)) system
for L. We are guaranteed that on input z € {0,1}*, M makes t = O(1) queries using O(log(|z|))
coin tosses.

Denote by (ry,...,r,) the sequence of all m possible outcomes of the coin tosses made by M
(note that |r;| = O(log(|z|)) and m = 200ee(lzD) = poly(|x|)).
Denote by (q{, ... ,q,f) the sequence of ¢ queries made by M when using the coin sequence ;.

As mentioned in subsection 12.3.4, we can assume that M is non-adaptive, therefore its queries are
determined as a function of the input x and the coin sequence r;, and do not depend on answers
to previous queries (although not evident from the notation q§, the queries do not depend only on
i, but on z as well).

We now turn to the construction of the amplifying reduction. Given z € {0,1}*, we construct
for each r; a (constant size) 3C' N F boolean formula, ¢¥, describing whether M would have accepted
the input z (i.e. describing all possible outputs of M on input z, using the coin sequence ;). We

associate to each query ¢; a boolean variable Zgi whose value should be the answer M gets to the

corresponding query. Again, since M is assumed to be non-adaptive, when given its input and coin
tosses, M’s decision is completely determined by the answers it gets to its queries. In other words,

M’s decision depends only on the values of (zqi, . ’zqi>‘
In order to construct ¢¥, begin by computing the following truth table: to every possible
sequence <Zq§’ ... ’zqi> assign the corresponding boolean decision of M (i.e. the output of M on

input z, using the coin sequence r;, and given answers z,; to queries q;) Clearly, this can be
J

computed in polynomial-time (by simulating M’s execution). Therefore, the whole table can be
computed in polynomial-time (since the number of possible assignments to <Zq§’ e Zq;'> is 2¢, which
is a constant). We can now build a 3CNF boolean formula, ¢f, which is consistent with the above
truth table, this is done in the following way:

1. Construct a t-CNF formula ¢ = 1/;f(zq§, e ,zqé) which is consistent with the truth table.

2. Using a constant number of auxiliary variables, transform it to 3C NF' (denoted ¢¥).

158 LECTURE 12. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

Since the table size is constant, the above procedure can be executed in constant time. Note
that in the transformation of --C'NF formulae into 3CNF formuae, each clause with ¢ literals is
substituted by at most ¢ clauses of 3 literals. Since ¥ consists of exactly 2" clauses we conclude
that the number of clauses in ¥ is bounded by ¢ - 2¢.

Finally, given ¢ for i = 1,...,m, we let our amplifying reduction f map x € {0,1}* into the
3CNF boolean formula:

Since for every i = 1,...,m the (constant size) formula ¢ can be computed in polynomial-time
(in |z|), and since m = poly(|z|), it follows that the mapping f : = +— ¢ is polynomial-time
computable, and |¢*| is polynomial in |z| (note also that the number of clauses in ¢ is bounded
by m - t-2'). It remains to be verified that f is indeed an amplifying reduction:

e Vx € L, we now show that ©® is in 3SAT, this happens if and only if the corresponding t-C N F

formula ¢ o Nty 1/;f(zqi, e ,zqz-) is in t-SAT (recall that ¢ was introduced in the con-

struction of p7). Since L € PCP, then there exists an oracle 7 such that Pr[M7(z) = 1] = 1.

Therefore, it holds that for every coin sequence r;, the machine M accepts z while access-

ing m. Since 97 is consistent with the above mentioned truth table it follows that for all

i=1,...,m, it holds that wg”(wqi, . ,qu) = 1, and thus 9® is in t-SAT. We conclude that

©® is in 3SAT, as required 3.

e Vo ¢ L, we now show that every truth assignment satisfies at most an 1 — € fraction of ¢®’s
clauses. Since L € PCP, then for all oracles m it holds that Pr [M™(z) = 1] < 3. Therefore, for
at least % of the possible coin sequences r;, machine M does not accept x while accessing 7.
Put in other words, for each truth assignment (which corresponds to some 7) at least % of
the ¢f’s are unsatisfiable. Since every unsatisfiable boolean formula always has at least one
unsatisfied clause, it follows that for every truth assignment ¢ has at least 5 unsatisfied
clauses. Since the number of clauses in ¢® is bounded by m - t - 2!, by taking € to be the
constant ﬁ we are guaranteed that every truth assignment satisfies at most an 1 —e fraction
of ©™’s clauses.

We now turn to the ((2) = (1)) direction. Under the assumption that there exists an amplifying
reduction of 3SAT to itself we will show that the PCP theorem holds. Consider any language
L € N'P. Since L is Karp-reducible to 3SAT, it is sufficient to show that 3SAT € PCP(log, O(1)).

Let f : 3CNF — 3CNF be an amplifying reduction of 3SAT to itself. And let e be the constant
guaranteed by Definition 12.5. We now show how to use f in order to construct a PCP(log, O(1))
system for 3SAT. We start by giving an informal description of the verifier machine M. Given a
certain 3C'NF formula ¢, M computes ¢’ = f(¢). It then tosses coins in order to uniformly choose
one of the clauses of ¢'. By querying the oracle string (which should be a possible truth assignment
for ') M will assign truth values to the chosen clause’s variables. M will accept if and only if
the clause is satisfied. The fact that f is an amplifying reduction implies that whenever M gets
a negative instance of 3SAT, with constant probability the chosen clause will not be satisfied. In
contrast, this will never happen when looking at a positive instance.

We now turn to a more formal definition of the PCP verifier machine M. On input ¢ € 3SCNF
and given access to an oracle string 7/, M is defined in the following way:

®Note that all ©?’s have disjoint sets of auxiliary variables, hence transforming a satisfying assignment of 1® into
a satisfying assignment of p” causes no inconsistencies.

12.4. PCP AND NON-APPROXIMABILITY 159

def

= f(p).

o' = /\;1’1 c; where ¢; denotes a clause with 3 literals.

1. Find the 3CNF formula ¢ = ¢'(21,...,2,)

2. Select a clause ¢; of ¢ uniformly.
Denote by (z;,,i,, ;) the three variables whose literals appear in ¢;.
3. Query the values of (m] , 7},) separately, and assign them to (x; ,;,,x;,) accordingly.
Verify the truth value of ¢; = ¢;(z;,, Ti,, Tis)-

™

4. Repeat stages 2,3 for [2] times independently (note that [1] is constant).

€

5. Output 1 if and only if in all iterations the truth value of ¢; was 1.

Clearly, M is a polynomial-time machine. Note that f is computable in polynomial-time (this
also implies that n’,;m’ = poly(|¢|)). In addition, the number of iterations executed by M is
constant, and in each iteration a polynomial amount of work is executed (depending on n’,m’
which are, as already mentioned, polynomial in |g|).

We turn to evaluate the additional complexity measures involved. In terms of randomness, M
needs to uniformly choose [£] numbers in the set {1, ...,m’}. This involves O(log(m’)) = O(log(|¢|))
coin tosses, as required. In terms of queries, the number of queries asked by M is exactly % which
is constant, again as required. It remains to examine the completeness and soundness of the above
PCP system:

e completeness: If o € 3SAT, then ¢’ € 3SAT (since f is an amplifying reduction). Therefore
there exists a truth assignment, 7', such that ¢/(7') = 1. Now, since every clause of ¢’ is
satisfied by 7/, it immediately follows that:

Pr [M”,(go) = 1} =1

e soundness: If o ¢ 3SAT then any truth assignment for ¢ satisfies at most an 1 — € fraction
of the clauses. Therefore for any possible truth assignment (oracle) #’ it holds that

rel
! c;. 1s satisfied by (11 1 1
= = J < — el < — —
Pr [M ((P) 1] Pr j/\l{ the assignment =’ } - (1 6) T e < 2
where the probability is taken over M’s internal coin tosses (i.e. over the choice of iy,... ,i(l]).

Corollary 12.7 There exists an amplifying reduction of 3SAT to itself.

Proof: Combining the PCP Theorem with Theorem 12.6, we obtain the desired result. [

12.4.3 Connecting PCP and non-approximability

The characterization of NP using probabilistic checkable proof systems enabled the area of ap-
proximability to make a significant progress.

In general, PCP systems for NP yield strong non-approximability results for various classical
optimization problems. The hardness of approximation is typically established using the notion

160 LECTURE 12. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

of gap problems, which are a particular case of promise problems. Recall that a promise problem
consists of two sets (A, B), where A is the set of YES instances and B is the set of NO instances.
A and B need not be complementary, that is, an instance = € {0,1}* is not necessarily in either A
or B. We demonstrate the notion of a gap problem using the promise problem gapCLIQUFE as an
example.

Denote by maxCLIQU E(G) the size of the maximal clique in a graph G. Let gapCLIQUE, g
be the promise problem (A, B) where A is the set of all graphs G with maxCLIQUE(G) > «, and
B is the set of all graphs G with maxCLIQUE(G) < (3. The gap is defined as /(. Typically, a
hardness result will specify a value C of the gap for which the problem is N'P-hard. This means
that there is no efficient algorithm that approximates the maxCLIQU E size of a graph G within
a factor of C' (unless N'P = P).

The gap versions of various other optimization problems are defined in an analogous way. In
this subsection we bring two non-approximability results concerning the problems maxz3SAT and
maxCLIQUFE that will be defined in the sequel.

An immediate non-approximability result for max3SAT

Definition 12.8 (maz3SAT): Define maz3SAT to be the following problem: Given a 3CNF boolean
formula ¢ find the mazimal number of clauses that can be simultaneously satisfied by any truth as-
signment to the variables of .

mar3SAT is known to be N'P-hard. Therefore, approximating it would be desirable. This
motivates the definition of the corresponding gap problem:

Definition 12.9 (gap3SAT,) : Let o, 3 € [0,1] such that, o > .
Define gap3SAT, g to be the following promise problem.:

e The YES instances are all SCNF formulae o, such that there exists a truth assignment which
satisfies at least an a-fraction of the clauses of .

e The NO instances are all 3CNF formulae @, such that every truth assignment satisfies less
than a B-fraction of the clauses of .

Note that gap3SAT; ; is an alternative formulation of 3SAT (the decision problem).

The following claim states that, for some 3 < 1, it is N'P-hard to distinguish between satisfiable
3CNF formulae and 3C N F formulae for which no truth assignment satisfies more than a g-fraction
of its clauses. This result implies that there is some constant C' > 1 such that max3SAT could not
be approximated within C' (unless NP = P). The claim is an immediate result of Corollary 12.7.

Claim 12.4.1 There ezists a constant § < 1, such that the promise problem gap3SAT; g is N'P-
hard.

Proof: Let L € N'P. We want to manifest that L is Karp-reducible to gap3S AT g.

3SAT is N'P-complete, therefore there exists a Karp-reduction f; from L to 3SAT. By Corol-
lary 12.7 there exists an amplifying reduction fo (and a constant € > 0) from 3SAT to itself. Now,
take any 1 —e < f < 1:

e For x € L, ¢ = f2(fi(x)) is satisfiable, and is therefore a YES instances of gap3SAT 3.

e For v ¢ L, p = fo(f1(z)) is not satisfiable. Furthermore, for every truth assignment, the
fraction of satisfied clauses in ¢ is at most 1 —e. Therefore, ¢ is a NO instance of gap3S AT 3.

12.4. PCP AND NON-APPROXIMABILITY 161

Recently, stronger results were proven. These results show that for every 5 > 7/8, the problem
gap3S AT g is N'P-hard. This means that it is infeasible to come with an efficient algorithm that
approximates maz3SAT within a factor strictly smaller than 8/7. On the other hand, gap3S AT 7/g
is known to be polynomially solvable, and therefore the 8/7-approximation ratio is tight.

MaxCLIQUE is non-approximable within a factor of two
We briefly review the definitions of the problems maxCLIQUE and gapCLIQUE,, g:

Definition 12.10 (maxCLIQUE): Define maxCLIQUE to be the following problem: Given a graph
G, find the size of the mazimal clique of G (a clique is a set of vertices such that every pair of
vertices share an edge).

maxCLIQUE is known to be N'P-hard. Therefore, approximating it would be desirable. This
motivates the definition of the corresponding gap problem:

Definition 12.11 (gapCLIQUE,p) : Let a, 3 : N — N be two functions, satisfying o(n) > B(n)
for every n. For a graph G, denote |G| to be the number of vertices in G.
Define gapCLIQUE, g to be the following promise problem:

e The YES instances are all the graphs G, with max clique greater than or equal to o(|G]).

e The NO instances are all the graphs G, with maxz clique smaller than or equal to 5(|G]).

We conclude our discussion on PCP systems by presenting a nice theorem which demonstrates
the hardness of approximating maxCLIQU E. The theorem implies that it is an infeasible task to
approximate maxCLIQU E within a constant smaller than two (unless NP = P).

Note, however, that this is not the strongest result known. It has been shown recently that
given a graph G of size N, the value of maxCLIQUE is non-approximable within a factor of N1=¢
(for every € > 0). This result is tight, since an N'=°()_approximation algorithm is known to exist
(the latter is scarcely better than the trivial approximation factor of N).

Theorem 12.12 There exists a function a: N — N, such that the promise problem gapCLIQUE, o />
is N'P-hard.

Proof: Let L € NP be some language. We want to show that L is Karp-reducible to the language
gapCLIQUE,)2 (for some function @ : N — N which is not dependent on L, rather it is common
to all L’s).

Loosely speaking, given input z € {0,1}* we construct in an efficient way a graph G, having
the following property: If x is in L then G, is a YES instance of gapCLIQU E, whereas, if x is not
in L then G is a NO instance of gapCLIQUE.

We now turn to a formal definition of the above mentioned reduction. By the PCP-theorem,
L has a PCP(O(log),O(1)) system. Therefore, there exists a probabilistic polynomial-time oracle
machine M, that on input z € {0,1}* makes t = O(1) queries using O(log(|x|)) random coin tosses.

Again, we let (ry,...,7,) be the sequence of all m possible outcomes of the coin tosses made
by M (note that m = poly(|z|)).
Let (¢}, ..., q;) denote the t queries made by M when using the coin tosses r;, and let (a},...,a})

be a possible sequence of answers to the corresponding queries. We now turn to define a graph G/,
that corresponds to machine M and input x:

162 LECTURE 12. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

vertices: For every possible r;, the tuple

(ria (qlla a’li)a) (qi;a a?&))

is a vertex in G', if and only if when using r;, and given answers a;~ to queries q;, M accepts .
Note that since M is non-adaptive, once r; is fixed then so are the queries (¢},...,q}). This
implies that two vertices having the same r;, also have the same q;-’s. Therefore, the number
of vertices corresponding to a certain r; is smaller or equal to 2!, and the total number of
vertices in G’ is smaller or equal to m - 2.

edges: Two vertices v = (rj, (qil, ai),..., (qit, al)) and u = (r5, (a). a{), o, (al, al)) will not have
an edge between them if and only if they are not consistent, that is, v and u contain the same
query and each one of them has a different answer to this query.

Note that if w and v contain the same randomness (i.e. 7; is equal to r;) they do not share
an edge, since they cannot be consistent (as mentioned earlier, vertices having the same
randomness have also the same queries, so v and v must differ in the answers to the queries).

Finally, modify G/, by adding to it (m - 2" — |G.]) isolated vertices. The resulting graph will
have exactly m - 2¢ vertices and will be denoted G,. Note that since the above modification does
not add any edges to G, it does not change the size of any clique in G/, (in particular it holds that
maxCLIQUE(G,) = maxCLIQUE(G)).

The above reduction is efficient, since the graph G, can be constructed in polynomial time:
There are at most m - 2t vertices in G’,(which is polynomial in |z| since ¢ is a constant), and to
decide whether (rj, (qil, al),..., (qi, al)) is a vertex in G’,, one has to simulate machine M on input
z, randomness r;, queries {q; }3:1 and answers {aé. }3:1 and see whether it accepts or not. This is,
of course, polynomial, since M is polynomial. Finally, deciding whether two vertices share an edge

can be done in polynomial time.

Let a(n) & n/2t. Since |Gy = m - 2¢, it holds that a(|Gy|) = m. It is therefore sufficient

to show a reduction from the language L to gapCLIQUE,, /5, this will imply that the promise
problem gapCLIQUE, /5 is N'P-hard.

e For x € L, we show that G, contains a clique of size m. By the PCP definition there
exists a proof m such that for every random string r, machine M accepts x using randomness
r and given oracle access to m. Look at the following set of m vertices in the graph G,:
S = {(r;, (qil,wqi), el (qit, qu)) for 1 <4 < m}. It is easy to see that all the vertices in S are
indeed legal vertices, because 7 is a proof for x. Also, all the vertices in S must be consistent,
because all their answers are given according to m, and therefore, every two vertices in S
share an edge. This entails that S is an m-clique in G, and therefore G, is a YES instance
of gapCLIQUE,, ..,/

e For x ¢ L, we show that G, does not contain a clique of size greater than m/2. Suppose,
in contradiction, that S is a clique in G of size greater than m/2. Define now the following
proof m: For every query and answer (¢, a) in one of the vertices of S define m, = a. For every
other query (which is not included in either of the vertices of S) define 7, to be an arbitrary
value in {0,1}. Since S is a clique, all its vertices share an edge and are therefore consistent.
Note that 7 is well defined, the consistency requirement implies that same queries have same
answers (for all queries and answers appearing in some vertex in S). Therefore, it cannot be
the case that we give two incosistent values to the same entry in 7 during its construction.
Now, since all the vertices of S have different r;’s and |S| is greater than m/2, it holds that

12.4. PCP AND NON-APPROXIMABILITY 163

% of the possible coin sequences r;, machine M accepts z while accessing 7. In

other words, Pr[M™(z) = 1] > 1/2, in contradiction to the soundness condition. We conclude
that indeed G, does not have a clique of size greater than m/2, and is therefore a NO instance
of gapCLIQUE,, .., 5.

for more than

Bibliographic Notes

The PCP Characterization Theorem is attributed to Arora, Lund, Motwani, Safra, Sudan and
Szegedy (see [2] and [1]). These papers, in turn, built on numerous previous works; for details see
the papers themselves or [4]. In general, our presentation of PCP follows follows Section 2.4 of [4],
and the interested reader is referred to [4] for a survey of further developments and more refined
considerations.

The first connection between PCP and hardness of approximation was made by Feige, Gold-
wasser, Lovasz, Safra, and Szegedy [3]: They showed the connection to maxClique (presented
above). The connection to max3SAT and other “MaxSNP approximation” problems was made
later in [1].

We did not present the strongest known non-approximability results for max3SAT and max-
Clique. These can be found in Hastad’s papers, [6] and [5], respectively.

1. S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Verification and Intractabil-
ity of Approximation Problems. JACM, Vol. 45, pages 501-555, 1998.

2. S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characterization of NP. JACM,
Vol. 45, pages 70-122, 1998.

3. U. Feige, S. Goldwasser, L. Lovdsz, S. Safra, and M. Szegedy. Approximating Clique is almost
NP-complete. JACM, Vol. 43, pages 268-292, 1996.

4. O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithms
and Combinatorics series (Vol. 17), Springer, 1998.

5. J. Hastad. Clique is hard to approximate within n'~¢. To appear in ACTA Mathematica.
Preliminary versions in 28th STOC (1996) and 37th FOCS (1996).

6. J. Hastad. Getting optimal in-approximability results. In 29th STOC, pages 1-10, 1997.

164 LECTURE 12. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

Lecture 13

Pseudorandom Generators

Notes taken by Sergey Benditkis, Boris Temkin and II’ya Safro

Summary: Pseudorandom generators are defined as efficient deterministic algorithms
which stretch short random seeds into longer pseudorandom sequences. The latter are
indistiguishable from truely random sequences by any efficient observer. We show that,
for efficiently sampleable distributions, computational indistiguishability is preserved
under multiple samples. We related pseudorandom generators and one-way functions,
and show how to increase the stretching of pseudorandom generators.

13.1 Instead of an introduction

Oded’s Note: See introduction and motivation in the Appendix. Actually, it is recom-
mended to read the appendix before reading the following notes, and to refer to the
notes only for full details of some statements made in Sections 13.6.2 and 13.6.3 of the
appendix.

Oded’s Note: Loosely speaking, pseudorandom generators are defined as efficient de-
terministic algorithms which stretch short random seeds into longer pseudorandom se-
quences. We stress three aspects: (1) the efficiency of the generator; (2) the stretching
of seeds to longer strings; (3) the pseudorandomness of output sequences. The third
aspect refers to the key notion of computational indistinguishability. We start with a
definition and discussion of the latter.

13.2 Computational Indistinguishability

We have two things which are called ”probability ensembles”, and denoted by {X,},.N and
{Yo},en- We are talking about infinite sequences of distributions like we talk about the lan-
guage and each distribution seats on some final domain. Typicaly the distribution X,, will have as
a support strings of length polynomial of n, not more and not much less.

Definition 13.1 (probability ensembles): A probability ensemble X is a family X = {X,,}, -, such
that X, ©s a probability distribution on some finite domain. -

What is to say that these ensembles are computational indistinguishable? We want to look at
the particular algorithm A and want to ask what is the probability of the event: when you give to A

165

166 LECTURE 13. PSEUDORANDOM GENERATORS

an input X,, then it says 1 (or 1 is just arbitrary) and look at the difference of the probabilities for
answers of execution this algorithm A for two inputs {X,,},.n and {Y,}, cn- And if this difference
is negligible, when you look at n as the parameter then we will say that we can not distinguish the
first ensamble from the second one.

Definition 13.2 (negligible functions): The function f : N — [0,1] is negligible if for all polyno-
mials p, and for all sufficiently large n’s, f(n) < 1/p(n).

Suppose we have two probability ensambles { X, },cN and {Yy}, N, where X, and Y,, are dis-
tributions over some finite domain.

Definition 13.3 (indistinguishability by a specific algorithm): Consider some probabilistic algo-
rithm A. We will say that {X,,} and {Y,} are indistinguishable by A if

[Pr(A(X,) = 1)~ Pr(A(Y,) = 1)] < ——~

for every polinomial p() and for every sufficiently large n.

13.2.1 Two variants

Our main focus will be on indistinguishability by any probabilistic polynomial-time algorithm.
That is,

Definition 13.4 (canonic notion of computational indistinguishability): Two probability ansam-
bles {Xn},enN and {Y,}, N are computationally indistinguishable if they are indistinguishable by any
probabilistic polynomaial-time algorithm. That 1s, for every probabilistic polynomial-time algorithm
A, and every polinomial p() there exists N s.t. for alln > N

IPr(A(X,) = 1) — Pr(A(Y,) = 1)| < ——

Another notion that we talk about is indistinguhability by circuits.

Definition 13.5 Two probability ensembles {X,},.N and {Y,},cN are indistinguishable by small
circuits if for all families of polynomial-size circuits {Cy,}

| [Pr(Cr(Xn) = 1) = Pr(Cp(Ys) = 1)]|
18 neglibible.
13.2.2 Relation to Statistical Closeness

Oded’s Note: This subsection was rewritten by me.

The notion of Computational Indistinguishability is a relaxation of the notion of statistical closeness
(or statistical indistinguishability).

13.2. COMPUTATIONAL INDISTINGUISHABILITY 167

Definition 13.6 (statistical closeness): The statistical difference (or variation distance) between
two distributions, X and Y, is defined by

A(X é— Z|Pr =a| — Pr[Y = q]|

Two probability ensembles {X,},cN and {Y,},cN are statistical close if A(Xy,,Y,) is a negligible
function of n. That is, for all polynomial p() there exists N s.t. for alln > N A(X,,Y,) < 1/p(n).

An equivalent definition of A(X,,,Y,,), is the maximum over all subsets, S, of Pr[X,, € S]—Pr[Y,, €
S]. (A set S which obtains the maximum is the set of all z’s satisfying Pr[X,, = z] > Pr[Y,, = 2],

which proves the equivalence.) Yet another equivalent definition of A(X,,,Y},) is the maximum over
all Boolean f’s of Pr[f(X,,) = 1] — Pr[f(Y,,) = 1]. Thus,

Proposition 13.2.1 If two probability ensembles are statistical close then they are computationally
indistinguishable.

We note that there are computationally indistinguishable probability ensembles which are not
statistical close.

13.2.3 Computational indistinguishability and multiple samples

Oded’s Note: We show that under certain conditions, computational indistinguishability
is preserved under multiple samples.

Definition 13.7 (constructability of ensembles): The ensemble {Z,}, N is probabilistic polynomial-
time constructable if there exists a probabilistic polynomial time algorithm S such that for every n,
S(1y,) = Zy,.

Theorem 13.8 Let {X,,} and {Y,} computationally indistinguishable (i.e., indistinguishable by
any probabilistic polynomial time algorithm). Suppose they are both probabilistic polynomial time
constructable. Let t() be a positive polinomial. Define {X,}nen and {Y,}nen in the following way:

X,=X'oX?0 .. o X" Y,=Y!oY2?0 .. oY/

The X! ’s (resp. Y,!’s) are independent copies of X, (Yn). Then {X,} and {Y,,} are Probabilistic
Polynomial Time indistinguishable.

Proof: Suppose, there exists a distinguisher D, between {X,} and {Y,}.

Oded’s Note: We use the “hybrid technique”: We define hybrid distributions so that the
extreme hybrids coincide with {X,,} and {Y, }, and link distinguishability of neighboring
hybrids to distinguishability of {X,,} and {Y,,}.

Then define
Hr(f) = (Xy(Ll) o X7(L2) o ... Xr(f) o Yé”l) o ... Y(t(n)))

n
It is easy to see that 7Y =7, , m™ — X

Oded’s Note: Also note that Hy(f) and Hr(fﬂ) differ only in the distribution of the i+ 15
component, which is identical to Y,, in the first hybrid and to X,, in the second. The idea
is to distinguish Y,, and X,, by pluging them in the i + 15* component of a distribution.
The new distribution will be distributed identically to either Hy(l) or H(Z+) , respectively.

168 LECTURE 13. PSEUDORANDOM GENERATORS

Define algorithm D’ as follows:

Begin Algorithm Distinguisher

Input o, (taken from X,, or Y},)

(1) Choose icg{l .. t(n)} (i.e., uniformly in {1,...,%(n)})

(2) Construct Z = (XT(ZI) o XT(LQ) o ... XT(f_l) oo Y(H_l) Yn(t(”)))
Return D(Z)

end.
1 . .
Pr[D/(X,)=1] =) ;Pr [DED o XP o . X[V o X, 0 VT o v () = 1]
= Z Pr [D(H®) }
whereas
1) . .
Pr[D'(Y,) =1] = @ 2 Pr [D(X,(}) o XWo . XD oy, oy ith o | yHm)y = 1]
= ZPr [D(H(D)] .
Thus,

[Pr [D'(X)= 1] = Pr[D'(Ys) = 1] |

- % ZPr =1 - ZPr HGDYy =1]
= % . ‘PY[D(Hy(f("))) =1] — Pr[D(HWD) = 1]‘
- 1
— @.IPr[D(Xn)Zl] — Pr[D(Y,) =1]| > ORI

for some p() and for infinitely many n’s

Oded’s Note: One can easily show that computational indistinguishability by small
circuits is preserved under multiple samples. Here we don’t need to assume probabilistic
polynomial-time constructability of the ensembles.

13.3 PRG: Definition and amplification of the stretch function

Intuitively, a pseudo-random generator takes a short, truly-random string and stretches it into a
long, pseudorandom one. The pseudorandom string should look “random enough” to use it in place
of a truly random string.

13.3. PRG: DEFINITION AND AMPLIFICATION OF THE STRETCH FUNCTION 169

Definition 13.9 (PseudoRandom Generator — PRG): The function G : {0,1}* — {0,1}* with
stretch function l(n) is a pseudo-random generator if:

e G is a polynomial time algorithm
o for every x, |G(x)| = I(|x]) > [z]

o {G(Upn)} and {Uyn)} are computational indistinguishable, where Uy, denotes the uniform
distribution over {0,1}™.

Oded'’s Note: The above definition is minimalistic regarding its stretch requirement. A
generator stretching n bits into n + 1 bits seems to be of little use. However, as shown
next, such minimal stretch generators can be used to construct generators of arbitrary
stretch.

Theorem 13.10 (amplification of stretch function): Suppose we have a Pseudo-Random Genera-
tor Gy with a stretch function n + 1. Then for all polynome I(n) there exists a Pseudo-Random
Generator with stretch function l(n).

Proof:

Construct G as follows: We take the input seed x (|z| = n) and feed it through G;. Then we
save the first bit of the output of G; (denote it by 1), and feed the rest of the bits as input to a
new invocation of G;. We repeat this operation [(n) times, in the i-th step we invoke G on input
determined in the previous step, save the first output bit as y; and use the rest n bits as an input
to step ¢ + 1. The output of G is y = 192 ... Yy(n). See Figure 1.

n 1 n 1 n [(n) times
— | E—— R | I R
X
yl y2
Figure 1.

We claim that G is a Pseudo-Random Generator. The first two requirements for Pseudo-
Random Generator are trivial (by construction/definition of G). We will prove the 3rd one. The
proof is by contradiction, again using the hybrid method.

Suppose there exists a distinguisher A : {0,1}* — {0,1}*™) such that exists polynomial p() and for
infinitely namy n’s

1

| Pr[AGU))=1] = Pr[A(Uym) =1] | > -

Let us make the following construction . Define sequence of functions ¢(:

g(o) is empty

O = [Gi(@)]; 0 8D (C1®)yniry)

Where [y]; is the notation of i-th bit of y and [y]5.(n41) denotes substring of y from the second
bit up to n 4 1-th bit. It is easy to see that /™) = G(z).

170 LECTURE 13. PSEUDORANDOM GENERATORS

Construct the class of hybrid distributions {Hz}i(:nl)
H' = Uy~ © ' (Un)

One can obeserve that H* = G(U,,), and H™ = Ul(n)-
Now we construct the distinguisher D as follows:

Begin Algorithm Distinguisher

Input o, |a] = n+1 (taken from G1(U,) on U,41)

(1) Choose icg{l .. I(n)}

(2) Choose Z ~ Uyny—;

(3) Construct y = Z oo ogl1(S), where o is first bit of & and S its n-bit suffix
Return A(y)

end.

We denote by Pr[A|i] the conitional probability of event A if particular ¢ was choosen in step (1)
of algorithm D. We see that

Pr[D(G1(Un)) = 1] — Pr[D(Uns1) =1]

I(n)
= o5 (P DGUU) =1 [] =Pr[D) = 11). ()

i=1

Note that

Pr[D(G1(Un)) =1[i] = Pr [A(Zy_(1(n)—i) © [G1(Un)]; © g(i_l)([Gl(Un)](z.nH)) =]
= Pr[A(Hi):1]
and
Pr[D(Up41) =1[i] = Pr [A(Zy (my—iy © Uns1]y © 9D ([Ungaly i) =1 }
= Pr|AHT)=1]

So equation (k) is
S b agry =1] — P A =1])
l(n) =
= o (Pe[A =1] —pe[A =1])
_ ﬁ (PrlAGU) =1] = Pr[AU =1])

P D(GA(UW) = 1] = Pr[DTr) =1] > s

13.4. ON USING PSEUDO-RANDOM GENERATORS 171

13.4 On Using Pseudo-Random Generators

Suppose we have a probabilistic polynomial time algorithm A, which on input of length n uses
m(n), random bits. Algorithm A may solve either search problem for some relation or decision
problem for some language L. Our claim will be that for all € > 0 there exists a probabilistic
polynomial time algorithm A’ that uses only n° random bits and “behaves” in the same way that
A does.

The construction of A’ bases on assumption that we are given pseudo-random generator G :
{0,1}™ — {0,1}™™). Recall that A(z, R) that A is running on input = with coins R.

Algorithm A’

Input z € {0,1}"

Choose S €p {0,1}™

R — G(s) (generate the coin tosses)

Return A(z, R) (run A on input z using coins R)
end.

Proposition 13.4.1 (imformal): It is infeasible given 1" to find x € {0,1}"™, such that the “be-
haviour” of A'(x) is substantially diferent from A(x).

The meaning of this proposition depends on the computational problem solved by A. In case A
solves some NP-search problem, the proposition asserts that it is hard (i.e., feasible only with
negligable probability) to find large z’s such that A can find the solution for z, and A’(x) will fail
to do so. In case A computes some function the proposition applies too.

Oded’s Note: But the proposition may not hold if A solves a search problem in which
instances have many possible solutions and are not efficiently verifiable (as in NP-search
problems).

Below we prove the proposition for the case of decision problems (and the proof actually extends
to any function computation). We assume that A gives the correct answer with probability bounded
away from 1/2.

Proof: Suppose we have a finder F', which works in polynomial time , F(1") = x € {0,1}", such

that)

Pr[4(x) = Xo(o)] < 3
where X7, is the characteristic function of a language decideable by A (i.e., Pr[A(z) = X (z)] > 2/3
for all z’s). Construct a distinguisher D as follows:

Begin Algorithm D

Input o € {0,1}™")

x— F(1™)

v «— X (z) with overwhelmingly high probability (i.e., invoke A(x) polynomially many times and
take a majority vote).

w — Az, a)

Ifv=w Then Returnl

Else Return 0

172 LECTURE 13. PSEUDORANDOM GENERATORS

end.

D is contradicts the pseudorandomness of G because

|} Xp(z), wp. > %, @ ~ Upyn)
Al = { Xp(a) = A(2), wp. <3, o~ G(U) (13.1)

Furthermore, with probability at least 0.99, the value v found by D(z) equals X, (z). Thus,

Pr[D(Upmy) =1 > 0.66 —0.01 = 0.65
Pr[D(G(Uy)) =1] < 0.5+0.01 < 0.55

which provides the required gap. W

Oded’'s Note: Note that for a strong notion of pseudorandom generators, where the
output is indistinguishable from random by small circuits we can prove a stronger
result; that is, that there are only finitely many x’s on which A’ behaves differently
than A. Thus, in case of decision algorithms, by minor modification to A, we can make
A" accept the same language as A.

13.5 Relation to one-way functions

An important property of a pseudo-random generator G(S) that it turns the seed into the sequence
x = G(S5) in polynomial time. But the inverse operation of finding the seed S from G(S) would
be hard (or else pseudorandomness is violated as shown below). A pseudo-random generator is
however, not just a function that hard to invert it also stretches the input into the larger sequence
that look random. Still pseudo-random generators can be related to functions which are “only”
easy to compute and hard to invert, as defined next.

Definition 13.11 (One-way functions — OWF): A function f : {0,1}* — {0,1}* such that
Vz |f(x)| = |z| is one-way if :

e there is exists polynomial time algorithm A, such that Vx A(x) = f(x)

e for all probabilistic polynomial time A’ and for all polynome p() and for all sufficiently large
n’s :
1

l — _lo
Pr [A'(f(Un) = F™ o f(U)] < p(n)

In other words this function must be easy computed and hard inverted. Note an important
feauture: the inversion algotihm must fail almost always. But the probability distribution used
here is not uniform over all f(x); rather, it is the distribution f(z) when z is choosen uniformly.

Oded'’s Note: The requirement that the function be length preserving (i.e., |f(x)| = |z|
for all z’s) may be relaxed as long as the length of f(x) is polynomially related to |z|. In
contrast a function like f(x) e |z| would be “one-way” for a trivial and useless reason
(on input n in binary one cannot print an n-bit string in polynomial (in logn) time).

13.5. RELATION TO ONE-WAY FUNCTIONS 173

Comment: A popular candidate to be one-way function is based on the conjectured intractability
of the integer factorization problem. The length of input and output to the function will not be
exactly n, only polynomial in n:

The factoring problem. Let z,y > 1 be n-bit integers. Define

flxy) =z xy
When z,y are n-bit primes, it is believed that finding z,y from z * y is computationaly difficult.

Oded’s Note: So the above should be hard to invert in these cases which occur at density
~ 1/n%. This does not satisfy the definition of one-wayness which requires hardness of
inversion almost everywhere, but suitable amplification can get us there. Alternatively,
we can redefine the function f so that f(x,y) = prime(z) x prime(y), where prime()
is a procedure which uses the input string to generate a large prime so that when the
input is a random n-bit string the output is a random n/O(1)-bit prime. Such efficient
procedures are known to exist. Using less sophisticated methods one can easily construct
a procedure which uses n-bits to produce a prime of length /n/O(1).

Theorem 13.12 Pseudo-Random Generators exist if and only if One-Way Functions ezist.

So the computational hardness and pseudorandomness are strongly connect each other. If we
have the created randomness we can create the hardness, and vice versa. Let us prove one part of
the theorem and give hints to special case of other.

PRG = OWF: Consider pseudo-random generator G : {0,1}" — {0,1}?". Let us define
function f : {0,1}2" — {0,1}?" as follows:

fley) =G(x) (2] = |yl = n).

We claim, that f is one-way function, and the proof is by contradiction :
Suppose probabilistic polynomial time algorithm A’ inverts f with success probability greater

than ﬁ, where p(n) is polynom.

Consider a distinguisher D :
input: o, a € {0,1}2"

xy — A'(a)

if f(zy) = « return 1
otherwise return 0.

Pr[D(G(U,)) =1] = Pr[D(f(U,)) =1]
= Pr[f(A(f(Un)) = f(U,)]
= Pr[A(f(U) € F7F(U)]
1
o)

where the last inequality is due to the contradiction hypothesis. On the other hand, there are at
most 2" strings of length 2n which have a preimage under G' (and so under f). Thus, a uniformly

174 LECTURE 13. PSEUDORANDOM GENERATORS

selected random string of length 2n has a preimage under f with probability at most 2"/22". It
follows that

Pr[D(Upn) =1 = Pr[f(A'(Uzn)) = Uan]
< Pr[Usy, is in the image of f]
on)
< 2@ =
Thus,
Pr[D(G(Uy)) =1| — Pr[D(Uz,) = 1] > BEEN > L

p(n) 2"~ q(n)

For some polynome ¢()

OWF — PRG:

Oded’s Note: The rest of this section is an overview of what is shown in detail in the
next lecture (i.e., Lecture 14).

Let us demonstrate the other direction and build an Pseudo-Random Generator if we have OWF
of special form. Suppose the function f : {0,1}" — {0,1}"™ is not only OWF but it is also 1 — 1.
So it is a permutation of strings of length n. Assume that we can get a random bit b from the
input, such that b will be hard to “predict” from the output of f. In this case we can construct a
Pseudo-Random Generator as a concatenation of f(z) and b.

Definition 13.13 (Hardcore):
Let f be one-way function, b : {0,1}* — {0,1} is a hardcore of f if:

e 3 polinomial time algorithm A, such that VtA(t) = b(t)

e V probabilistic polynomial time algorithm A' Y polynom p(.) V sufficiently large n's

Pr[A/((U) = WU)] < 5+~

In other words this function must be easy to compute and hard to predict out of f(x).

The following theorem can be proven:

Theorem 13.14 1f f is OW, f/(x.y) = f(x)oy, (jz] = |y))
then b(z,y) = >.1y z;y; (mod 2) is a hardcore of f.

This theorem would be proven in next lecture. Now we can construct a Pseudo-Random Gen-
erator G as follows:

G(s) = f(5)ob(s)

The two first properties of G (poly-time and stretching) are trivial. The pseudorandomness of
G follows from the fact that its first n output bits are uniformly distributed and the last bit is
unpredictable. Unpredictability translates to indistinguishability, as will be shown in the next
lecture.

13.5. RELATION TO ONE-WAY FUNCTIONS 175

Bibliographic Notes

The notion of computational indistinguishability was introduced by Goldwasser and Micali [4]
(within the context of defining secure encryptions), and given general formulation by Yao [6].
Our definition of pseudorandom generators follows the one of Yao, which is equivalent to a prior
formulation of Blum and Micali [1]. For more details regarding this equivalence, as well as many
other issues, see [2]. The latter source presents the notion of pseudorandomness discussed here as
a special case (or archetypical case) of a general paradigm.

The discovery that computational hardness (in form of one-wayness) can be turned into a
pseudorandomness was made in [1]. Theorem 13.12 (asserting that psedorandom generators can
be constructed based on any one-way function) is due to [5]. It uses Theorem 13.14 which is due
to [3].

1. M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits. SICOMP, Vol. 13, pages 850-864, 1984. Preliminary version in 23rd FOCS,
1982.

2. O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithms
and Combinatorics series (Vol. 17), Springer, 1998.

3. O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st
STOC, pages 25-32, 19809.

4. S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No. 2, pages 270-299,
1984. Preliminary version in 14th STOC, 1982.

5. J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom Gener-
ator from any One-Way Function. To appear in SICOMP. Preliminary versions by Impagli-
azzo et. al. in 21st STOC (1989) and Hastad in 22nd STOC (1990).

6. A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS, pages 80-91, 1982.

176 PSEUDORANDOM GENERATORS

Oded’'s Note: Being in the process of writing an essay on pseudorandomness, it feels
a good idea to augment the notes of the current lecture by a draft of this essay. The
lecture notes actually expand on the presentation in Sections 13.6.2 and 13.6.3. The
other sections in this essay go beyond the lecture notes.

Appendix: An essay by O.G.

Summary: We postulate that a distribution is pseudorandom if it cannot be told apart from the
uniform distribution by an efficient procedure. This yields a robust definition of pseudorandom
generators as efficient deterministic programs stretching short random seeds into longer pseudoran-
dom sequences. Thus, pseudorandom generators can be used to reduce the randomness-complexity
in any efficient procedure. Pseudorandom generators and computational difficulty are strongly
related: loosely speaking, each can be efficiently transformed into the other.

13.6.1 Introduction

The second half of this century has witnessed the development of three theories of randomness,
a notion which has been puzzling thinkers for ages. The first theory (cf., [4]), initiated by Shan-
non [21], is rooted in probability theory and is focused at distributions which are not perfectly
random. Shannon’s Information Theory characterizes perfect randomness as the extreme case in
which the information content is maximized (and there is no redundancy at all). Thus, perfect
randomness is associated with a unique distribution — the uniform one. In particular, by definition,
one cannot generate such perfect random strings from shorter random seeds.

The second theory (cf., [16, 17]), due to Solomonov [22], Kolmogorov [15] and Chaitin [3],
is rooted in computability theory and specifically in the notion of a universal language (equiv.,
universal machine or computing device). It measures the complexity of objects in terms of the
shortest program (for a fixed universal machine) which generates the object. Like Shannon’s the-
ory, Kolmogorov Complexity is quantitative and perfect random objects appear as an extreme case.
Interestingly, in this approach one may say that a single object, rather than a distribution over ob-
jects, is perfectly random. Still, Kolmogorov’s approach is inherently intractable (i.e., Kolmogorov
Complexity is uncomputable), and — by definition — one cannot generate strings of high Kolmogorov
Complexity from short random seeds.

The third theory, initiated by Blum, Goldwasser, Micali and Yao [12, 1, 24], is rooted in
complexity theory and is the focus of this essay. This approach is explicitly aimed at providing
a notion of perfect randomness which nevertheless allows to efficiently generate perfect random
strings from shorter random seeds. The heart of this approach is the suggestion to view objects as
equal if they cannot be told apart by any efficient procedure. Consequently a distribution which
cannot be efficiently distinguished from the uniform distribution will be considered as being random
(or rather called pseudorandom). Thus, randomness is not an “inherent” property of objects (or
distributions) but rather relative to an observer (and its computational abilities). To demonstrate
this approach, let us consider the following mental experiment.

Alice and Bob play “head or tail” in one of the following four ways. In all of them
Alice flips a coin high in the air, and Bob is asked to guess its outcome before the coin
hits the floor. The alternative ways differ by the knowledge Bob has before making
his guess. In the first alternative, Bob has to announce his guess before Alice flips the
coin. Clearly, in this case Bob wins with probability 1/2. In the second alternative,

APPENDIX: AN ESSAY BY O.G. 177

Bob has to announce his guess while the coin is spinning in the air. Although the
outcome is determined in principle by the motion of the coin, Bob does not have accurate
information on the motion and thus we believe that also in this case Bob wins with
probability 1/2. The third alternative is similar to the second, except that Bob has
at his disposal sophisticated equipment capable of providing accurate information on
the coin’s motion as well as on the environment effecting the outcome. However, Bob
cannot process this information in time to improve his guess. In the fourth alternative,
Bob’s recording equipment is directly connected to a powerful computer programmed
to solve the motion equations and output a prediction. It is conceivable that in such a
case Bob can improve substantially his guess of the outcome of the coin.

We conclude that the randomness of an event is relative to the information and computing resources
at our disposal. Thus, a natural concept of pseudorandomness arises — a distribution is pseudo-
random if no efficient procedure can distinguish it from the uniform distribution, where efficient
procedures are associated with (probabilistic) polynomial-time algorithms.

13.6.2 The Definition of Pseudorandom Generators

Loosely speaking, a pseudorandom generator is an efficient program (or algorithm) which stretches
short random seeds into long pseudorandom sequences. The above emphasizes three fundamental
aspects in the notion of a pseudorandom generator:

1. Efficiency: The generator has to be efficient. We associate efficient computations with those
conducted within time which is polynomial in the length of the input. Consequently, we
postulate that the generator has to be implementable by a deterministic polynomial-time
algorithm.

This algorithm takes as input a seed, as mentioned above. The seed captures a bounded
amount of randomness used by a device which