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Abstract

The random-query model was introduced by Raz and Zhan at ITCS 2020 as a new model
of space-bounded computation. In this model, a branching program of length T and width 2S

attempts to compute a function f : {0, 1}n → {0, 1}. However, instead of receiving direct access
to the input bits (x1, . . . , xn), the input is given in pairs of the form (ij , xij ) ∈ {1, . . . , n} ×
{0, 1} for j = 1, 2, . . . ,T, where the indices i1, . . . , iT are chosen at random from a pre-fixed
distribution.

Raz and Zhan proved that any branching program in the random-query model with the
independent distribution (where {ij}j=1,...,T are uniform and independent) that computes a
function f with sensitivity k satisfies T · (S+log n) ≥ Ω(n ·k). This gives a quadratic time-space
lower bound for many natural functions which have sensitivity Ω(n), such as XOR and Majority.
The bound was proved in the zero-error regime, where for each input, the branching program
is required to output a value with high probability, and given that a value is output, it must be
correct with probability 1.

Furthermore, Raz and Zhan conjectured that (up to logarithmic factors in n) a quadratic
time-space lower bound still holds for the XOR function in the more conventional bounded-error
regime, where for each input, the output must be correct with high probability.

In this paper, we prove this conjecture. More generally, let f : {0, 1}n → {0, 1} have average
sensitivity (or total influence) I[f ]. We prove that any branching program in the random-query
model with the independent distribution that computes f in the bounded-error regime satisfies
T · S ≥ Ω̃(n) · I[f ] (where Ω̃ hides logarithmic factors in n). Moreover, we prove a quadratic
time-space lower bound for the Majority function, even though its total influence is Θ(

√
n).

Our proof is based on a reduction from a communication complexity problem.
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1 Introduction

The study of time-space tradeoffs aims to understand what can be computed efficiently with limited
space. At ITCS 2020 [RZ20], Raz and Zhan introduced the random-query model for studying time-
space tradeoff lower bounds. In the main use-case, the goal of a branching program (which models
a non-uniform algorithm1) is to compute a function f : {0, 1}n → {0, 1} with minimal time T (i.e.,
length, measured in queries to input bits) using space limited to S bits (i.e., width 2S) at any stage
of the computation. However, the branching program does not have direct access to the input
x = (x1, . . . , xn) ∈ {0, 1}n, but rather at each stage of the computation j = 1, . . . ,T, it receives a
pair (ij , xij ) ∈ [n]×{0, 1} (where [n] = {1, . . . , n}), such that ij is a query index chosen at random
according to a pre-defined distribution.

Raz and Zhan described several motivations for the random-query model. First, it is a natural and
interesting model of computation in its own right. Moreover, the model is related to the recent line
of works on proving time-space lower bounds for learning [SVW16, MM18, BGY18, GRT19, Raz19].
Specifically, the goal of a branching program in this model is to distinguish between the input sets
{x | f(x) = 0} and {x | f(x) = 1}, where the query indices i1, . . . , iT are selected from the
independent distribution, namely, they are mutually independent uniform random variables, viewed
as samples. Another distribution considered in [RZ20] is the recurring distribution, in which the
only dependencies among i1, . . . , iT are equalities. As shown by Raz and Zhan, under the recurring
distribution, the random-query model is closely related to the standard model of oblivious branching
programs. Proving slightly super-linear time-space tradeoff lower bounds for oblivious branching
programs is a long standing open problem (see [BNS89] for the best-known result), providing
additional motivation for studying the random-query model.

The main technical result of [RZ20] is a proof that any branching program in the random-query
model with the independent distribution that computes a function f : {0, 1}n → {0, 1} with
(maximal) sensitivity2 k using space S and time T satisfies T · (S+ logn) ≥ Ω(n · k). In particular,
this gives a quadratic time-space lower bound for many natural functions which have maximal
sensitivity Ω(n) (such as XOR and Majority). Yet, the result was proved in the zero-error regime,
where for every input, the branching program is allowed not to output a (Boolean) value with
probability at most 1/2, but given that a value is output, it must be correct with probability 1.
On the other hand, proving time-space lower bounds in the more standard bounded-error regime
(where for every input, the output must be correct with high probability) was left open.

As noted in [RZ20], the zero-error regime is in general substantially different from the bounded-
error regime in the random-query model. For example, it is possible to compute the AND function
using S ≤ O(1) and T ≤ O(n) simply be outputting 1 if and only if xij = 1 for all j = 1, . . . ,T.
Yet, the maximal sensitivity of AND is n, and thus in the zero-error regime, T · (S+log n) ≥ Ω(n2).
In contrast, computing the XOR function with a small amount of space still seems to be hard in
the bounded-error regime. Consequently, Raz and Zhan made the following conjecture.

Conjecture 1 ([RZ20]). Under the random-query model with the independent distribution, any
branching program of length T (time T) and width 2S (space S) which computes x1⊕ . . .⊕xn with

1See Section 2 for a formal definition of branching programs.
2The sensitivity of f on x is the number of pivotal coordinates of x, namely sensf (x) = |{j | f(x1, . . . , xn) 6=

(x1, . . . , xj−1, xj ⊕ 1, xj+1, . . . , xn)}|. The maximal sensitivity is maxx{sensf (x)}.
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error 1/3 must satisfy T · S = Ω̃(n2).

Here, Ω̃ hides logarithmic factors in n.

Remark 1. There is a branching program that computes the XOR function with T·S = Õ(n2). For
example, if S = Õ(1), then it computes the XOR by considering the input bits in order x1, x2, . . . , xn,
waiting an average of O(n) time until each (i, xi) arrives. Therefore, proving Conjecture 1 would
establish an essentially tight time-space tradeoff for XOR in the bounded-error regime.

Remark 2. Proving a (slightly) super-quadratic time-space tradeoff lower bound for some function
f : {0, 1}n → {0, 1} in the random-query model would resolve the long standing open problem
of proving a (slightly) super-linear time-space tradeoff lower bound for arbitrary (non-oblivious)
branching programs (see [BSSV03] for the best-known result). This follows since any query of a
branching program to an input bit can be simulated using O(n) queries on average in the random-
query model. In other words, barring a significant breakthrough, a quadratic time-space lower
bound (as in Conjecture 1) is essentially the best we can hope to prove for any function.

1.1 Our Results

In this paper, we consider a function f : {0, 1}n → {0, 1} with total influence I[f ] (which is equal
to its average sensitivity). We prove the following theorem (see Theorem 2 for the formal version).

Theorem 1 (Informal). Under the random-query model with the independent distribution, any
branching program of length T (time T) and width 2S (space S) which computes f : {0, 1}n → {0, 1}
with constant error δ < 1/2 must satisfy

T · S ≥ Ω̃(n) · I[f ].

Moreover, if I[f ] ≥ Ω(n) then
T · S ≥ Ω(n2).

Since the XOR function has total influence n, then Conjecture 1 is a special case of the theorem.

Theorem 1 can be considered as an analog of the main result of [RZ20] in the zero-error regime,
which is parameterized on the maximal sensitivity of f . The theorem is tight since the partial XOR
function f(x1, . . . , xn) = x1 ⊕ . . . ⊕ xk for k ∈ [n] has total influence k, while there is a branching
program that computes it with T · S ≤ k · Õ(n). We further note that any non-constant function
f requires T ≥ Ω(n) to compute with bounded-error. Hence, when I[f ] ≤ o(1), the theorem is not
tight, but the trivial tradeoff formula T · S ≥ Ω̃(n) which is independent of the influence is trivially
tight for some function with total influence I[f ] ≤ o(1) (e.g. an AND of an appropriately chosen
number of bits).

While Theorem 1 gives a tight time-space lower bound for many natural functions, it does not seem
to be tight for others. A notable example is the Majority function, which has total influence of
Θ(

√
n) [O’D14, Example 2.30]. Yet, for this function, we improve the general result of Theorem 1

and show an essentially tight bound of T · S ≥ Ω(n2).
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1.2 Our Techniques

Raz and Zhan obtained their results by directly analyzing the properties of branching programs
in the zero-error regime. Specifically, they devised a reduction to computing a function f from
a variant of the coupon collector problem, where the goal of the branching problem is to declare
when it has seen all indices of [n] in i1, i2, . . ..

We take a different approach and prove Theorem 1 by a reduction from communication complexity.
Below, we give an informal overview of our proof.

1.2.1 The Missing-Element communication problem.

Consider the following number-in-hand multiparty communication problem, which we call the
Missing-Element problem. For k ≫ 2, there are k players, where player i ∈ [k] receives input
vector Xi ∈ {0, 1}n, viewed as an indicator of a subset of [n]. The vectors X = X1, . . . , Xk are
distributed as follows. With probability 1/2, each Xi is independently uniformly distributed. On
the other hand, with probability 1/2, there is some common zero entry (element) j ∈ [n] in all
vectors, namely, for all i ∈ [k], Xi

j = 0, while the remaining n− 1 bits are independently uniformly
distributed. We think of j ∈ [n] as uniformly chosen. The goal of the players is to distinguish be-
tween these two distributions with high probability by writing (communicating) a minimal number
of bits on a shared blackboard.

Remark 3. The goal of the players in the Missing-Element problem is to distinguish between
two specific distributions with intersecting supports, rather than to compute a specific function of
their inputs. The definition of these distributions is tailored towards our reduction to computing a
function in the random-query model with the independent distribution.

Remark 4. One can view the Missing-Element problem as a “communication analog” of the coupon
collector problem, since the players are trying to decide whether they can jointly “collect all the
coupons” in [n].

We prove that regardless of the value of k, any protocol that solves the Missing-Element problem
with high probability must communicate Ω(n) bits for some input. The proof uses a variant of
the information complexity technique [CSWY01, BJKS04], which is a standard method for proving
communication complexity lower bounds, particularly for the classical (multiparty) Set-Disjointness
problem. In fact, the Missing-Element problem is closely related to the multiparty Set-Disjointness
problem, since if all players flip the bits of their inputs, their goal would be to detect whether they
have a common element, as in Set-Disjointness. Yet, the Missing-Element problem is defined for a
specific distribution. As far as we know the result that we prove for the specific distribution of the
Missing-Element problem has not been established before.

We stress that our goal is to analyze the distributional communication complexity of the Missing-
Element problem, namely, the error probability is taken over the random coins of the players, as well
as the random choice of input under the distribution. This stands in contrast to several related works
such as [BJKS04, Gro09, Jay09, BEO+13] that analyze the randomized communication complexity
of (multiparty) Set-Disjointness, where the error probability is taken over the random coins of the
players, but is worst-case over the input. Specifically, these works aim to prove that any protocol
whose communication cost is too small fails with high probability on some particular input (even
if the probability of obtaining this input under the analyzed distribution is minuscule).
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Our setting is more related to the model of stochastic streams studied in [CMVW16] (and more
recently in [LZ23]), where the elements of a data-stream are identically and independently dis-
tributed. However, the parameters of the distributions studied in these works differ from the ones
considered in the Missing-Element problem. Specifically, in setting of [LZ23], every element (except
one) appears in the stream at most once (with high probability), whereas in the distributions we
consider every element (except one) appears in the stream many times (with high probability).

1.2.2 Proving time-space lower bounds in the random-query model.

Next, we reduce the problem of computing f : {0, 1}n → {0, 1} in the random-query model with
the independent distribution in the bounded-error regime from the Missing-Element problem. For
simplicity, assume first that f is the XOR function.

Suppose that there is a branching program P that computes the XOR function with high probability
on every n-bit input in the random-query model. The goal of the k parties is to use P in order
to solve the Missing-Element problem. Towards achieving this goal, each player i ∈ [k] uses the
n-bit input Xi to generate a subset of Θ(n) uniformly distributed query indices in [n] (assuming
there is no missing index), which will be fed to P. It remains to define the actual input to P,
which must be consistent across all players. For this purpose, we crucially observe that the Ω(n)
communication lower bound for the Missing-Element problem remains almost the same even for
public-coin protocols. Namely, we may assume that the players share a common random string
which is chosen independently of the input, but can essentially be ignored when calculating the
total communication cost. This is somewhat similarly to Newman’s classical result [New91].

In our reduction, the players share an n-bit string chosen uniformly at random and denoted by
(R1, . . . , Rn) ∈ {0, 1}n. This string serves as the input to P, which should return ⊕n

i=1Ri.

The reduction protocol works as follows. The first player uses X1 to generate Θ(n) query indices
and the corresponding “answers” using (R1, . . . , Rn) and feeds them to P. Player 1 then writes the
resultant intermediate state on the blackboard using S bits. Next, the second player continues the
execution of P using the generated query indices from X2 and their answers, and so forth. Finally,
the last player finishes the execution of P and computes its output. In the uniform distribution (with
no missing element), P is executed in the random-query model with the independent distribution
and thus returns ⊕n

i=1Ri with high probability. On the other hand, in the distribution where there
is a missing element j ∈ [n], we have no formal guarantee about the behaviour of P. Yet, P is
clearly independent of the uniform bit Rj , and thus outputs ⊕n

i=1Ri with probability 1/2. The
constant gap between the success probabilities of P (depending on the input distribution of the
players) allows the players to solve the Missing-Element problem with high probability.

The total communication of the protocol is Θ(k · S), and thus by our proof regarding the hardness
of the Missing-Element problem k · S ≥ Ω(n), or S ≥ Ω(n)/k. Moreover, the number of query
indices generated by the players and fed to P is T ≥ Ω(n) · k. Therefore, T · S ≥ Ω(n2) for the
XOR function, as claimed in Theorem 1.

For arbitrary f , the gap between the success probabilities of P (depending on the input distribution
of the players) is a function of I[f ]. Our general reduction protocol obtains constant success prob-
ability for the Missing-Element problem using a careful composition of amplification procedures,
resulting in the essentially tight time-space lower bound of Theorem 1. This bound avoids the
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standard quadratic loss associated with amplification using the Chernoff bound.3

For the Majority function, we define a non-uniform distribution on (R1, . . . , Rn) which increases
the gap in the success probabilities of P compared to the uniform distribution, and allows to obtain
an essentially tight time-space lower bound.

Remark 5. It follows from the proof that our time-space lower bounds hold even if the space
(width) of the branching program is bounded only in time intervals of (sufficiently small) length
Θ(n).

Overall, the main technical contributions of this paper include defining the Missing-Element com-
munication problem and establishing the link between this problem and the random-query model
via a reduction. The reduction itself makes non-standard use of public coins (shared randomness).
We believe that some of our techniques are of independent interest and could be useful for estab-
lishing additional lower bounds for problems in models related to the random-query model (such
as the data-stream model).

1.3 Paper Structure

We give preliminaries in Section 2. In Section 3 we define and analyze the Missing-Element mul-
tiparty communication problem, while in Section 4 we use this analysis to prove time-space lower
bounds. We conclude and list open problems in Section 5.

2 Preliminaries

Unless stated otherwise, the parameters of the protocols and branching programs we consider are
functions of the instance size, parameterized by n. We use capital letters to denote random variables
and lower case letters to denote values they attain.

For a positive integer n, let [n] = {1, 2, . . . , n}.
We use the following (special case of) Hoeffding’s inequality.

Proposition 1 (Hoeffding’s inequality). Let Z1, . . . , Zt ∈ {0, 1} be independent random variables
and M =

∑t
i=1 Zi. Then, for any α ≥ 0,

Pr[M − E[M ] > α] ≤ exp(−2α2/t).

2.1 Boolean Functions

We review several basic notions in analysis of Boolean function. More details can be found
in [O’D14].

Let f : {0, 1}n → {0, 1} be a Boolean function. We say that a coordinate j ∈ [n] is pivotal for f
on input x = (x1, . . . , xn) if f(x) 6= f(x⊕j), where x⊕j = (x1, . . . , xj−1, xj ⊕ 1, xj+1, . . . , xn). The
sensitivity of f at x (denoted sensf (x)) is the number of pivotal coordinates of f on input x.

3In the formal version of Theorem 1 (Theorem 2), the time-space tradeoff lower bound decays quasi-linearly in
I[f ].
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The influence of coordinate j on f is Infj [f ] = PrX [f(X) 6= f(X⊕j)]. The total influence of f is
I[f ] =

∑n
j=1 Infj [f ].

Proposition 2.

I[f ] = n · Pr
J,X

[J is pivotal for f on X].

Proof. We have

I[f ] =n · E
J
[InfJ [f ]]

=n · E
J
[Pr
X
[f(X) 6= f(X⊕J)]]

=n · E
J,X

[ f(X) 6=f(X⊕J )]

=n · Pr
J,X

[J is pivotal for f on X].

�

Furthermore, by a similar argument I[f ] = EX [sensf (X)].

2.2 Models of Computation

We define the branching program model of computation and the random-query model with the
independent distribution, as defined in [RZ20].

A branching program of length T and width 2S is a directed graph with vertices arranged in T+ 1
layers, each containing at most 2S vertices. In layer 0 there is one vertex, called the start vertex.
In the last layer (layer T) each vertex has out-degree 0, and is called a leaf. For every i < T, the
outgoing edges from every non-leaf vertex in layer i only go to vertices in layer i+ 1.

In a branching program for computing a function f : {0, 1}n → {0, 1}, every non-leaf vertex has
2n outgoing edges, labeled once with each element in [n] × {0, 1}. Every leaf v in the program is
labeled with an output f̃v ∈ {0, 1}. Given an input x ∈ {0, 1}n and indices i1, . . . , iT ∈ [n], the
computation path in the branching program starts from the start vertex, and at step j follows the
edge labeled with (ij , xij ) until reaching a leaf v, and outputs f̃v.

In the random-query model with the independent distribution, the indices i1, . . . , iT are chosen
independently and uniformly at random.

We say that the branching program computes f : {0, 1}n → {0, 1} with error δ, if for every
x ∈ {0, 1}n, the probability that the output of the branching program satisfies f̃v = f(x) is at least
1− δ. In the random-query model, the probability is taken over the choice of the random variables
I1, . . . , IT.

2.3 Communication Complexity

We consider a number-in-hand multiparty communication model in which the input is partitioned
amongst several players, and their goal is to compute some function by exchanging messages via a
shared blackboard. For a protocol Π and input x we call the concatenation of all messages written
on the blackboard the transcript of Π on x, and denote it by Π(x). At the end of the protocol an
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output function Πout is applied to Π(x) and the execution of the protocol succeeds if it correctly
computes the function. We remark that in this paper we allow the function to depend on variables
that are not given as input to the players.

In a private-coin randomized protocol, each player has private access to random coins, while in a
public-coin randomized protocol, the players also have access to a shared public random string,
written on the blackboard. For randomized protocols, Π(x) is a random variable, and we denote
by Πx its distribution. We further note that we allow Πout to be randomized. The communication
cost of a protocol Π is defined as the maximum length of Π(x) over all valid inputs x and over the
random coins.

For a public-coin protocol Π, we also define the quantity C−(Π) as the maximum length of Π(x)
over all valid inputs x and over the random coins, excluding the shared public random string. For
this purpose, we think of the shared string as written on a separate blackboard, which is not taken
into account when calculating C−(Π).

In this paper we will generally be interested in the error probability of protocols, where the proba-
bility is taken over both the input (whose distribution is defined according to the specific problem),
as well as the independent randomness used by the players.

2.4 Information Theory

We review some definitions and facts from information theory. More details can be found in [CT06].

Let X,Y, Z be random variables. Given that X is defined on domain Ω, we denote by H(X) =
∑

ω∈Ω Pr[X = ω] log 1
Pr[X=ω] its Shannon entropy, and by

H(X | Y ) = E
y
[H(X | Y = y)]

the conditional entropy of X given Y .

The mutual information between X and Y is defined as

I(X;Y ) = H(X)−H(X | Y ) = H(Y )−H(Y | X).

The conditional mutual information between X and Y conditioned on Z is

I(X;Y | Z) = H(X | Z)−H(X | Y, Z) = E
z
[I(X;Y | Z = z)].

We state several basic properties that we use. First, conditioning cannot increase entropy, namely
H(X | Y ) ≤ H(X), with equality if and only if X and Y are independent. This implies that the
(conditional) mutual information is always non-negative.

For random variables X1, . . . , Xn, Y , the chain rule for mutual information asserts that

I(X1, . . . , Xn;Y ) =
n
∑

i=1

I(Xi;Y | X<i),

where X<i = X1, . . . , Xi−1 (if i = 1 the sequence is empty).
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2.5 Hellinger Distance

The Hellinger distance between distributions P and Q on domain Ω is defined as

h(P,Q) =
1√
2

√

∑

ω∈Ω

|
√

P (ω)−
√

Q(ω)|2.

We state several useful properties of the Hellinger distance. These are taken from [BJKS04], and
we adapt them to our purpose.

Proposition 3 ([BJKS04], Lemma 6.5). Let P0, P1 be two distributions. Assume that XZ is
generated by first picking Z ∈ {0, 1} uniformly at random and then sampling from PZ . Then,

I(Z;XZ) ≥ h2(P0, P1).

Proposition 4 ([BJKS04], Lemma 6.2). Let δ0, δ1 > 0 be parameters. Let Π be a protocol and
let x, y be inputs to Π such that there exists an output z for which Pr[Π(x) = z] ≥ 1 − δ0 and
Pr[Π(y) = z] ≤ δ1. Then,

h2(Πx,Πy) ≥ 1−
√

2(δ0 + δ1).

Proposition 5 ([BJKS04], Lemma 6.3). Let Π be a k-party private-coin protocol and let x =
(x1, . . . , xk), y = (y1, . . . , yk) be inputs to Π. Let x′ = ((x′)1, . . . , (x′)k), y′ = ((y′)1, . . . , (y′)k) be
obtained from x, y by performing “cut-and-paste”, namely, for each i ∈ [k], either (x′)i = xi and
(y′)i = yi, or (x′)i = yi and (y′)i = xi. Then,

h(Πx,Πy) = h(Πx′ ,Πy′).

Proposition 6 ([BJKS04], Lemma 6.4). Let Π be a k-party private-coin protocol and let x =
(x1, . . . , xk), y = (y1, . . . , yk) be inputs to Π. Let s ⊂ [k]. Let x′ = ((x′)1, . . . , (x′)k) be obtained
from x, y, s by setting (x′)i = xi for all i ∈ s and (x′)i = yi for all i /∈ s. Let y′ = ((y′)1, . . . , (y′)k)
be generated from x, y, s by setting (y′)i = yi for all i ∈ s and (y′)i = xi for all i /∈ s. Then,

h2(Πx,Πx′) + h2(Πy′ ,Πy) ≤ 2h2(Πx,Πy).

We remark that propositions 5 and 6 were proved in [BJKS04] only for k = 2, but their general-
ization to k > 2 is straightforward.

3 The Missing-Element Communication Problem

3.1 The Unit Missing-Element Communication Problem

The multiparty (unit) Missing-Element communication problem (MEk) is a problem with k players.
The input to the problem is denoted X = (X1, . . . , Xk) ∈ {0, 1}k, where each player i ∈ [k] gets
input bit Xi ∈ {0, 1}. At the beginning of the game a bit B ∈ {0, 1} is chosen uniformly at random.
B determines the input distribution as follows.

• If B = 0, then Xi = 0 for all i ∈ [k].

8



• If B = 1, each Xi is selected independently and uniformly at random.

Let Π be a protocol for the MEk problem. We define several types of error probabilities.

• For b ∈ {0, 1}, let δb(Π) = Pr[Πout(Π(X)) 6= b | B = b].

• The overall error probability of Π is δ(Π) = EB[δB(Π)] = (δ0(Π) + δ1(Π))/2.

We stress that the error probabilities are taken over all the random variables defined, including the
input X. Note that for any protocol Π for MEk, δ(Π) > 0 as the input (0, . . . , 0) is obtained in
case B = 1 with probability 2−k.

The next proposition lower bounds the information that the transcript Π(X) reveals about the
input X to an external observer, as a function of the error probability δ(Π).

Proposition 7 (Information lower bound for MEk). Let Π be a private-coin protocol for the MEk

problem. Then,

I(X;Π(X) | B = 1) ≥ 1

2
(1− 2

√

δ(Π) + 1/(2k+1 − 2)) ≥ 1

2
(1− 2

√

δ(Π) + 1/6).

Proof. Denote ~1k = (1, . . . , 1) ∈ {0, 1}k and ~0k = (0, . . . , 0) ∈ {0, 1}k. For x ∈ {0, 1}k, denote
x̄ = x⊕~1k.

Partition all 2k possible inputs x = (x1, . . . , xk) ∈ {0, 1}k into 2k−1 ordered pairs of the form (x, x̄),
where x1 = 0. Define the random variable W , distributed as a uniform pair (X, X̄). For a pair
w = (x, x̄), denote w0 = x and w1 = x̄.

Since the input X determines W , then

I(X;Π(X) | B = 1) = I(W,X;Π(X) | B = 1)

= I(W ;Π(X) | B = 1) + I(X;Π(X) | W,B = 1)

≥ I(X;Π(X) | W,B = 1)

= E
w
[I(X;Π(X) | W = w,B = 1)],

(1)

where the second equality is by the chain rule of mutual information.

Given W = w and assuming B = 1, we have X ∈ {w0, w1} with uniform probability. Hence, by
Proposition 3, we obtain for each w

I(X;Π(X) | W = w,B = 1) ≥ h2(Πw0
,Πw1

). (2)

Combining (1) and (2), by an averaging argument over w, there exists a specific pair of inputs
(x′, x̄′) such that

I(X;Π(X) | B = 1) ≥ h2(Πx′ ,Πx̄′).

Moreover, by Proposition 5,

h2(Πx′ ,Πx̄′) = h2(Π~0k
,Π~1k

).

Combining, we obtain

I(X;Π(X) | B = 1) ≥ h2(Π~0k
,Π~1k

). (3)
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Remark 6. If Π(~1k) errs with small probability (close to δ1(Π)), then we can use Proposition 4 to
complete the proof. However, since we only have an average-case guarantee about Π, its behaviour
on ~1k is undetermined. Thus, we continue by finding and analyzing a non-zero input on which Π

errs with small probability.

For any x ∈ {0, 1}k, by Proposition 6,

h2(Π~0k
,Πx) + h2(Πx̄,Π~1k

) ≤ 2h2(Π~0k
,Π~1k

).

Therefore, for any x ∈ {0, 1}k,

h2(Π~0k
,Π~1k

) ≥ 1

2
h2(Π~0k

,Πx). (4)

Combining (3) and (4), we deduce that for any input x ∈ {0, 1}k,

I(X;Π(X) | B = 1) ≥ h2(Π~0k
,Π~1k

) ≥ 1

2
h2(Π~0k

,Πx). (5)

Specifically, let x∗ 6= ~0k be an input such that

Pr[Πout(Π(x
∗)) = 0] ≤ δ1(Π) + 1/(2k − 1)

(such an input exists by an averaging argument over all x 6= ~0k). On the other hand, Pr[Πout(Π(~0k)) =
0] ≥ 1− δ0(Π). Consequently, combining (5) for x∗ with Proposition 4, we obtain

I(X;Π(X) | B = 1) ≥ 1

2
h2(Π~0k

,Πx∗)

≥ 1

2
(1−

√

2(δ0(Π) + δ1(Π) + 1/(2k − 1)))

=
1

2
(1− 2

√

δ(Π) + 1/(2k+1 − 2))

≥ 1

2
(1− 2

√

δ(Π) + 1/6),

where the final inequality follows since k ≥ 2. �

3.2 The Multi-Dimensional Missing-Element Problem Communication Prob-

lem

The general (multi-dimensional) multiparty Missing-Element communication problem (MEk,n) is
a problem with k players which is a generalization of the unit Missing-Element problem to n
dimensions (namely, MEk ≡ MEk,1). The input to the problem is denoted X = (X1, . . . , Xk) ∈
{0, 1}k·n, where each player i ∈ [k] gets a vector Xi ∈ {0, 1}n whose distribution is defined as
follows. At the beginning of the game a bit B ∈ {0, 1} is chosen uniformly at random and an index
j ∈ [n] is chosen independently and uniformly at random (yet, the specific distribution in which j
is chosen will not be a factor in our analysis, and we will mostly not treat it as a random variable).
B and j determine the input distribution in the following way.

• If B = 0, then Xi
j = 0 for each i ∈ [k] (i.e., Xj = (X1

j , . . . , X
k
j ) = (0, . . . , 0)), while for all

ℓ 6= j, Xi
ℓ is chosen independently uniformly at random.
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• If B = 1, each Xi ∈ {0, 1}n is chosen independently uniformly at random.

Let Π be a protocol for the MEk,n problem. We define the following types of error probabilities.

• For b ∈ {0, 1} and j ∈ [n], let δb,j(Π) = Pr[Πout(Π(X)) 6= b | B = b, J = j].

• The error probability of Π on index j ∈ [n] is δj(Π) = EB[δB,j(Π)] = (δ0,j(Π) + δ1,j(Π))/2.

• The overall error probability of Π is δ(Π) = maxj∈[n]{δj(Π)}.
• For b ∈ {0, 1}, we further define δb,∗(Π) = maxj∈[n]{δb,j(Π)}.

The next proposition lower bounds the information that the transcript Π(X) in the MEk,n problem
reveals about the input X to an external observer, as a function of the error probability δ(Π). It
uses a direct sum technique for information complexity [CSWY01, BJKS04].

Proposition 8 (Information lower bound for MEk,n). Let Π be a private-coin protocol for the
MEk,n problem. Then,

I(X;Π(X) | B = 1) ≥ n

2
· (1− 2

√

δ(Π) + 1/6).

Proof. We have

I(X;Π(X) | B = 1) =
n
∑

j=1

I(Xj ;Π(X) | B = 1, X<j)

=
n
∑

j=1

(H(Xj | B = 1, X<j)−H(Xj | Π(X), B = 1, X<j))

=
n
∑

j=1

(H(Xj | B = 1)−H(Xj | Π(X), B = 1, X<j))

≥
n
∑

j=1

(H(Xj | B = 1)−H(Xj | Π(X), B = 1))

=
n
∑

j=1

I(Xj ;Π(X) | B = 1),

where the first equality is by the chain rule for mutual information, the third equality uses the fact
that given B = 1, Xj and X<j are independent, and the inequality holds since conditioning cannot
increase entropy. Therefore, by an averaging argument there exists j ∈ [n] such that

I(Xj ;Π(X) | B = 1) ≤ 1
nI(X;Π(X) | B = 1). (6)

Fix such j. Given Π we design a protocol Π′ for the (unit) MEk problem as follows. On input
Y ∈ {0, 1}k (where player i ∈ [k] is given Y i), each player i ∈ [k] sets Xi

j = Y i (i.e., we have

Xj = Y ) and picks Xi
−j ∈ {0, 1}n−1 uniformly at random using private coin tosses (where Xi

−j =

(Xi
1, . . . , X

i
j−1, X

i
j+1, X

i
n)). The players then run Π(X) on X ∈ {0, 1}k·n.

11



Note that the players perfectly simulate the input distribution of the MEk,n problem with B = B′,
and hence δ(Π′) = δj(Π). Moreover Π′(Y ) = Π(X). Therefore,

I(Xj ;Π(X) | B = 1) = I(Y ;Π′(Y ) | B′ = 1)

≥ 1

2
(1− 2

√

δ(Π′) + 1/6)

=
1

2
(1− 2

√

δj(Π) + 1/6)

≥ 1

2
(1− 2

√

δ(Π) + 1/6),

where the first inequality is by Proposition 7. Combining with (6), we obtain

I(X;Π(X) | B = 1) ≥ n

2
(1− 2

√

δ(Π) + 1/6).

�

Proposition 9 (Private-coin to public-coin reduction). If there is a public-coin protocol Π for
the MEk,n problem with δ(Π) = δ, then there is a private-coin protocol Π′ for the problem with
δ(Π′) ≤ 2δ1/2 and communication cost at most C−(Π) + ⌈logn⌉.
Proof. For a string r and j ∈ [n], denote by δrj (Π) the value of δj(Π) conditioned on r being the
public random string of Π. Let R denote a random variable for the public string of Π. For every
j ∈ [n],

δ ≥ δj(Π) =
∑

r

Pr[R = r] · δrj (Π) = E
R
[δRj (Π)],

hence EJ,R[δ
R
J (Π)] ≤ δ. Therefore, there exists a public string r′ such that EJ [δ

r′

J (Π)] ≤ δ. By
Markov’s inequality,

Pr
J
[δr

′

J (Π) > δ−1/2 · δ] ≤ δ1/2.

The private-coin protocol Π′ has r′ embedded. The first player that communicates in Π
′ initially

draws V ∈ [n] uniformly at random and writes it on the shared blackboard. Then, the players run
Π with the public string r′, where each player i ∈ [k] rotates the input Xi by V positions, namely,
defines the new input to Π

′ as Y i
ℓ = Xi

ℓ+V mod n for all ℓ ∈ [n].

Since V can be encoded using ⌈logn⌉ bits, the communication cost of Π′ is at most C−(Π)+⌈log n⌉
as claimed. Due to the randomization of the input, δj(Π

′) is independent of j for every j ∈ [n] and
bounded as

δj(Π
′) ≤ δ1/2 · Pr

V
[δr

′

j+V mod n(Π) ≤ δ1/2] + 1 · Pr
V
[δr

′

j+V mod n(Π) > δ1/2] ≤ δ1/2 + δ1/2 = 2δ1/2.

Hence δ(Π′) ≤ 2δ1/2. �

Proposition 10 (C−(Π) lower bound for small constant error). Any public-coin protocol Π for
the MEk,n problem with δ(Π) = δ satisfies

C−(Π) ≥ n

2
· (1− 2

√

2δ1/2 + 1/6)− ⌈logn⌉.
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In particular, if δ ≤ 1/40, then

C−(Π) ≥ n

60
− ⌈logn⌉ ≥ Ω(n).

Proof. Let Π be a public-coin protocol for the MEk,n problem with δ(Π) = δ. By Proposition 9,
there is a private-coin protocol Π′ for the MEk,n problem with δ(Π′) ≤ 2δ1/2 and communication
cost C′ such that C′ ≤ C−(Π) + ⌈logn⌉.
By Proposition 8,

I(X;Π′(X) | B = 1) ≥ n

2
· (1− 2

√

δ(Π′) + 1/6) ≥ n

2
· (1− 2

√

2δ1/2 + 1/6).

Since
H(Π′(X) | B = 1) ≥ I(X;Π′(X) | B = 1),

there exists an input x (in case B = 1) for which the length of Π
′(x) (for some choice of the

private coins of the players) is at least H(Π′(X) | B = 1) ≥ n
2 · (1 − 2

√

2δ1/2 + 1/6). Hence,
n
2 ·(1−2

√

2δ1/2 + 1/6) ≤ C′ ≤ C−(Π)+⌈log n⌉. Therefore, C−(Π) ≥ n
2 ·(1−2

√

2δ1/2 + 1/6)−⌈logn⌉.
�

We now prove the main result about the MEk,n problem.

Proposition 11 (C−(Π) lower bound for error approaching 1/2). Let γ = γ(n) be a function such
that 0 < γ(n) < 1/2 for all sufficiently large n. Assume that there is public-coin protocol Π for the
MEk,n problem such that for sufficiently large n,

δ0,∗(Π) ≤ 1− γ and δ1,∗(Π) ≤ γ/200.

Then, C−(Π) ≥ γ · Ω(n).
Proof. Given Π, we construct below a public-coin protocol Π′ for the MEk′,n problem with k′ =
⌊5γ−1⌋ · k, C−(Π′) ≤ ⌊5γ−1⌋ · C−(Π), and δ(Π′) ≤ 1/40 (for n sufficiently large). Therefore, by
Proposition 10, C−(Π′) ≥ Ω(n), hence C−(Π) ≥ γ · C−(Π′)/5 ≥ γ · Ω(n), as claimed.

Denote t = ⌊5γ−1⌋. The protocol Π′ partitions the k′ = t · k players into t groups of size k. It
runs Π independently for each group after (independently) randomizing the input for each group
by shifting the input. Specifically, for each group of size k, before running Π, each player i applies
an independent uniform shift V to the input by defining Y i

ℓ = Xi
ℓ+V mod n for all ℓ ∈ [n]. The shift

of each group is specified in the common shared random string. The output of Π′ is defined to be
1 if all t = ⌊5γ−1⌋ executions of Π output 1, and 0 otherwise.

Clearly, C−(Π′) ≤ ⌊5γ−1⌋ · C−(Π). It remains to upper bound δ(Π′). By a union bound over the
⌊5γ−1⌋ executions,

δ1(Π
′) ≤ ⌊5γ−1⌋ · γ/200 ≤ 1/40.

On the other hand, in case B = 0, Π′ errs only if all the ⌊5γ−1⌋ independent executions of Π err.
Therefore, for sufficiently large n,

δ0(Π
′) ≤ (1− γ)⌊5γ

−1⌋ ≤ e−5/(1− γ) ≤ 2e−5,

since γ < 1/2. Thus, we indeed have δ(Π′) ≤ (1/40 + 2e−5)/2 < 1/40. �
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4 Time-Space Lower Bounds for Computing Functions in the Random-

Query Model

In this section we use Proposition 11 to prove time-space tradeoff lower bounds under the random-
query model with the independent distribution in the bounded-error regime.

Proposition 12 (Reduction from MEk,n to computing f in the random-query model). Let f :
{0, 1}n → {0, 1} be a Boolean function such that there is a branching program of length T < n2/4
and width 2S that computes f with error δ < 1/2 for sufficiently large n under the random-query
model with the independent distribution. Then, for sufficiently large n, there is public-coin protocol
Π for the MEk,n problem with k = ⌈4T/n⌉, C−(Π) ≤ S · (k − 1) + 1 = S · (⌈4T/n⌉ − 1) + 1, and

δ0,∗(Π) ≤ 1 + 2−n/20 − 1

2n
I[f ] and δ1,∗(Π) ≤ δ + 2−n/20.

Proof.

The protocol. Let P be the branching program assumed in the propsition. We construct a
public-coin protocol Π with the desired parameters. In order to avoid confusion between the
input to the branching program P and the input to the protocol Π, throughout the proof we use
somewhat different terminology and notation for P than described in Section 2.2. Specifically, the
input indices to P are referred to as “queries”, while the input bits are referred to as “answers”.

Denote m = ⌈n/4⌉. First, we describe how each player i ∈ [k] generates m query-answer pairs to
P, denoted by (Qi

1, A
i
1), . . . , (Q

i
m, Ai

m). Assuming that the queries Qi
1, . . . , Q

i
m have been generated

(as described below), the corresponding answers Ai
1, . . . , A

i
m are generated using the first n bits of

the random public string R by defining Ai
ℓ = RQi

ℓ
for each ℓ ∈ [m]. Thus, the input to P (the

answers to the queries) is a uniform n-bit string.

The queries Qi
1, . . . , Q

i
m are generated as follows. On input Xi ∈ {0, 1}n, player i first verifies that

the Hamming weight of Xi is at least m (otherwise, the player defines the queries arbitrarily and
we assume the protocol fails). Then, the input is treated as a subset of [n] of size at least m. The
player uniformly permutes (reorders) the elements of this set (using private coins) and considers
the sequence of the first m elements, denoted (E1, E2, . . . , Em), where Eℓ ∈ [n] for ℓ ∈ [m]. Then,
the player shifts each element by V ∈ [n], where V is an independent uniform public value that
is common to all players, defined in the public random string. Concretely, the player defines
(G1, . . . , Gm) = (E1 + V mod n, . . . , Em + V mod n).

Note that (G1, . . . , Gm) (and (E1, . . . , Em)) are selected from [n] without replacement, but the
queries in the random-query model need to be drawn with replacement. For this purpose, player i
repeats the following process to generate the next query, until m queries are generated. Let ℓ be
the index of the last element read from (G1, . . . , Gm) (initially ℓ = 0). With probability ℓ

n , set the
next query to be Gℓ′ where ℓ′ ∈ [ℓ] is chosen uniformly at random. Otherwise (with probability
1− ℓ

n), set the next query to be Gℓ+1 and increment ℓ.

The protocol Π begins by the first player feeding the query-answer pairs (Q1
1, A

1
1), . . . , (Q

1
m, A1

m) to
P and writing an encoding of the vertex reached on the blackboard. The second player continues
the execution of P from the previous state using (Q2

1, A
2
1), . . . , (Q

2
m, A2

m) and so forth.
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Finally, the last player finishes the execution after feeding P with at most m query-answer pairs (as
indeed k ·m = ⌈4T/n⌉ · ⌈n/4⌉ ≥ T), and computes the output of P which we denote by W ∈ {0, 1}.
The last player then computes the true value of f on the input to P, W ′ = f(R1, . . . , Rn), and
writes the output of Π on the blackboard, defined as 1 if W = W ′, and 0 otherwise.

Analysis. Since the width of P is 2S, each of the (at most) k− 1 vertex encodings written on the
blackboard by the first k− 1 players has length of S bits. Including the final bit written by the last
player, we indeed have C−(Π) ≤ S · (k − 1) + 1.

We now analyze the error probability of Π. We denote by E1 the event that all players have inputs
with Hamming weight at least m. Recall that the input of each player is an n-bit Boolean vector
which is uniformly distributed in case B = 1, or has n − 1 uniformly distributed entries in case
B = 0.

By a standard Chernoff bound, the probability that the Hamming weight of each player’s input is
less than m = ⌈n/4⌉ is most 2−n/10 for sufficiently large n (even if B = 0). By a union bound over
the k < n players,

Pr[¬E1] ≤ k · 2−n/10 < n · 2−n/10 < 2−n/20

for sufficiently large n, independently of B.

If B = 1, conditioned on E1, the T queries of Π are uniform and independent elements of [n],
as in the random-query model with the independent distribution. Hence, by the properties of P,
W 6= W ′ (and Π errs) with probability δ, implying δ1,∗(Π) ≤ δ + 2−n/20, as claimed.

If B = 0, there is a missing index j ∈ [n]. We upper bound δ0,∗(Π) = Pr[W = W ′ | B = 0] by
conditioning on two events. The first event is E1, defined above. The second event (denoted E2) is
that the shifted missing index J ′ = j+V mod n is pivotal for f on input (R1, . . . , Rn) (the answers
given to P), and thus W ′ = f(R1, . . . , Rn) 6= f(R1, . . . , RJ ′−1, RJ ′ ⊕ 1, RJ ′+1, . . . , Rn).

By Proposition 2,

Pr[E2 | B = 0] = Pr
J ′,R1,...,Rn

[J ′ is pivotal for f on (R1, . . . , Rn)] =
1

n
I[f ].

In addition,
Pr[W = W ′ | E1 ∧ E2, B = 0] = 1/2,

where the probability is taken over the uniform choice of RJ ′ (which is never given to P as an
answer). Combining these calculations, for sufficiently large n,

δ0,∗(Π) = Pr[W = W ′ | B = 0]

≤ Pr[W = W ′ | E1 ∧ E2, B = 0] · Pr[E1 ∧ E2 | B = 0] + Pr[¬E1 ∨ ¬E2 | B = 0]

≤ 1

2
· Pr[E2 | B = 0] + Pr[¬E1 | B = 0] + Pr[¬E2 | B = 0]

≤ 1 + 2−n/20 − 1

2n
I[f ].

�
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Remark 7. In the reduction, rather than limiting each player to generating ⌈n/4⌉ query-answer
pairs and feeding them to P, we could allow the players to fully use their inputs for this purpose.
However, this has a (limited) penalty in communication, since in this alternative reduction each
player needs to write on the blackboard the number of levels of P it has executed, so the next
player can continue the execution from the correct level.

Proposition 13 (Amplifying success probability for branching programs). Assume that there is a
branching program of length T and width 2S that computes f : {0, 1}n → {0, 1} with constant error
δ < 1/2 under the random-query model with the independent distribution. Let δ′ = δ′(n) > 0.
Then, there is a branching program of length O(log(1/δ′)) · T and width O(log(1/δ′)) · 2S that
computes f with error δ′ under the random-query model with the independent distribution.

Proof. Denote by P the assumed branching program. We construct a branching program P ′ with
the desired parameters as follows. Let t = t(n) be an odd integer parameter to be chosen later. P ′

runs t independent executions of P sequentially, and outputs a majority vote on the t outputs.

Calculating the majority votes across the t outputs (with 2t + 1 possible outcomes) requires in-
creasing the width by a multiplicative factor of at most 2t+1. The length of P ′ is t ·T. It remains
to show that we can choose t ≤ O(log(1/δ′)) to obtain the desired error probability δ′.

Denote the input to P ′ by x. Let Z1, . . . , Zt ∈ {0, 1} be (independent) random variables such that
Zi = 1 if the output of the i’th execution of P is incorrect, namely Zi 6= f(x). By the properties of
P, for any i ∈ [t], Pr[Zi = 1] ≤ δ. Denote Pr[Zi = 1] = α. We have α ≤ δ < 1/2. Let M =

∑t
i=1 Zi.

Then E[M ] = t · α. By Proposition 1,

Pr[P ′ errs] ≤ Pr[M > t/2]

= Pr[M − t · α > t(1/2− α)] ≤ exp(−2t(1/2− α)2) ≤ exp(−2t(1/2− δ)2).

Therefore, choosing t ≥ ln(1/δ′)
2(1/2−δ)2

= Θ(log(1/δ′)) suffices. �

We can now prove the formal version of Theorem 1.

Theorem 2 (Time-space tradeoff for computing f in the random-query model). Assume that there
is a branching program of length T and width 2S that computes f : {0, 1}n → {0, 1} with constant
error δ < 1/2 under the random-query model with the independent distribution. Then,

T · (S + log log(500nI[f ] )) · log(
500n
I[f ] ) ≥ Ω(n) · I[f ].

In particular,
T · (S + log log n) ≥ Ω(n/ log n) · I[f ],

and if I[f ] ≥ Ω(n), then
T · S ≥ Ω(n2).

Proof. We assume that I[f ] ≥ Ω(1/n), as otherwise there is nothing to prove.

Denote by P the assumed branching program. Define β = β(n) = 1
500n I[f ]. By Proposition 13

there is a branching program P ′ of length T′ ≤ O(log(1/β)) · T and width 2S
′ ≤ O(log(1/β)) · 2S

that computes f with error β under the random-query model with the independent distribution.
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If T′ ≥ n2/4, then the claim holds trivially. Hence, assume that T′ < n2/4. Then, by Proposition 12,
for sufficiently large n, there is public-coin protocol Π for the MEk,n problem with k = ⌈4T′/n⌉,
C−(Π) ≤ S′ · (⌈4T′/n⌉ − 1) + 1, and

δ0,∗(Π) ≤ 1 + 2−n/20 − 1

2n
I[f ] and δ1,∗(Π) ≤ β + 2−n/20.

We would now like to apply Proposition 11 to Π. For this purpose, define γ = γ(n) = 1
2n I[f ]−2−n/20,

thus δ0,∗(Π) ≤ 1− γ. Moreover, for sufficiently large n (recalling that I[f ] ≥ Ω(1/n)),

δ1,∗(Π) ≤ β + 2−n/20 =
1

500n
I[f ] + 2−n/20 ≤ (

1

2n
I[f ]− 2−n/20)/200 = γ/200.

Hence, we can indeed apply Proposition 11 to Π and conclude that

S′ · (⌈4T′/n⌉ − 1) + 1 ≥ C−(Π) ≥ γ · Ω(n),

or S′ · T′ ≥ Ω(n) · I[f ]. Substituting S′ and T′ we obtain

T · (S + log log(500nI[f ] )) · log(
500n
I[f ] ) ≥ Ω(n) · I[f ].

�

Theorem 3 (Time-space tradeoff for computing Majority in the random-query model). Assume
that there is a branching program of length T and width 2S that computes Majority(x1, . . . , xn)
with constant error δ < 1/2 under the random-query model with the independent distribution.
Then,

T · S ≥ Ω(n2).

Proof. The proof is similar to that of Theorem 2, but with I[f ] replaced with n/2. This is possible
as we will show how to replace the bound on the error probabilities in Proposition 12 by a stronger
bound for δ0,∗(Π), specifically,

δ0,∗(Π) ≤ 3/4 + 2−n/20 and δ1,∗(Π) ≤ β + 2−n/20,

where now we choose β = 1
500n · n/2 = 1/1000. Plugging these bounds into the proof of Theorem 2

gives the claimed result. It remains to modify the reduction protocol of Proposition 12 and analyze
the error probabilities.

We assume that n is odd, so the majority is well-defined. The only difference in the reduction
protocol is in the way that the first n bits of the random public string R are chosen. Instead
of picking them uniformly at random, they are picked by first choosing U ∈ {0, 1} uniformly. If
U = 0, then (R1, . . . , Rn) is picked as a uniform vector of Hamming weight (n − 1)/2. If U = 1,
then (R1, . . . , Rn) is picked as a uniform vector of Hamming weight (n + 1)/2. Next, we redo the
error probability analysis.

The analysis in case B = 1 remains identical to Proposition 12, hence δ1,∗(Π) ≤ β + 2−n/20.

In case B = 0, there is a missing index j ∈ [n]. Define the events E1 and E2 as in the proof of
Proposition 12. The only difference from Proposition 12 is in the analysis of E2. Recall that E2
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occurs if the shifted missing index J ′ = j + V mod n is pivotal for f on input (R1, . . . , Rn), and
thus W ′ = f(R1, . . . , Rn) 6= f(R1, . . . , RJ ′−1, RJ ′ ⊕ 1, RJ ′+1, . . . , Rn).

For Majority we have
Pr[E2 | B = 0] = n+1

2n > 1/2

regardless of U , since all (n+ 1)/2 bits of (R1, . . . , Rn) that agree with the majority are at pivotal
indices. In addition,

Pr[W = W ′ | E1 ∧ E2, B = 0] = 1/2,

which follows by the observation that if E1 ∧ E2 occurs then RJ ′ = U is uniformly distributed (and
never given to P as an answer). Combining, for sufficiently large n,

δ0,∗(Π) = Pr[W = W ′ | B = 0]

≤ Pr[W = W ′ | E1 ∧ E2, B = 0] · Pr[E1 ∧ E2 | B = 0] + Pr[¬E1 ∨ ¬E2 | B = 0]

≤ 1

2
· Pr[E2 | B = 0] + Pr[¬E1 | B = 0] + Pr[¬E2 | B = 0]

≤ 3/4 + 2−n/20.

�

5 Conclusions and Open Problems

The random-query model was introduced by Raz and Zhan [RZ20] as a natural model of com-
putation that is related to recent results on time-space lower bounds for learning. In this work,
we proved the first time-space lower bounds for bounded-error computation in the random-query
model with the independent distribution. In particular, we proved an essentially optimal quadratic
lower bound for the XOR function, resolving the conjecture by Raz and Zhan.

Our results do not extend to the recurring distribution since the lower bound proof for the Missing-
Element problem crucially relies on the independence of the query indices. Since our proof is
based on a reduction from communication complexity, it is possible to modify it and obtain time-
space lower bounds for certain “communication-efficient patterns of equalities” between i1, . . . , iT.
An example of such a pattern is a sequence of independently and uniformly chosen indices that
repeat multiple times, similarly to multi-pass streaming. On the other hand, proving time-space
lower bounds with arbitrary equalities seems out of reach, which is expected given the relation
established in [RZ20] between the recurring distribution and oblivious branching programs.

Perhaps a more feasible open problem is use an alternative characterization of Boolean functions to
refine our time-space tradeoffs. These tradeoffs are currently parameterized by the total influence
and are not tight for many functions. In particular, our proof for the Majority function is somewhat
ad-hoc and obtaining a unified proof that gives tight results for a larger class of Boolean functions
(including Majority) is an interesting open problem.

References

[BEO+13] Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod Vaikun-
tanathan. A Tight Bound for Set Disjointness in the Message-Passing Model. In FOCS
2013, pages 668–677. IEEE Computer Society, 2013. 3

18



[BGY18] Paul Beame, Shayan Oveis Gharan, and Xin Yang. Time-Space Tradeoffs for Learn-
ing Finite Functions from Random Evaluations, with Applications to Polynomials. In
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