
Exponential Lower Bounds for Sums of ROABPs

Prerona Chatterjee∗1, Deepanshu Kush2, Shubhangi Saraf†2,3, and Amir Shpilka‡1

1Blavatnik School of Computer Science, Tel-Aviv University
2Department of Computer Science, University of Toronto

3Department of Mathematics, University of Toronto

December 25, 2023

Abstract

In this paper, we prove the first super-polynomial and, in fact, exponential lower bound for the
model of sum of read-once oblivious algebraic branching programs (ROABPs). In particular, we give an
explicit polynomial such that any sum of ROABPs (equivalently, sum of ordered set-multilinear branching
programs, each with a possibly different ordering) computing it must have exponential size. This result
generalizes the seminal work of Nisan (STOC 1991), which proved an exponential lower bound for a
single ROABP. It also strengthens the work of Arvind and Raja (Chic. J. Theor. Comput. Sci., 2016),
as well as the work of Bhargav, Dwivedi, and Saxena (2023), both of which established lower bounds
against certain restricted versions of this model, and strongly answers an open question from both papers
that asked to prove super-polynomial lower bounds for the corresponding unrestricted model.

The significance of our lower bounds is underscored by the recent work of Bhargav, Dwivedi, and
Saxena (2023), which showed that super-polynomial lower bounds against a sum of ordered set-multilinear
branching programs – for a polynomial of sufficiently low degree – would imply super-polynomial lower
bounds against general ABPs, thereby resolving Valiant’s longstanding conjecture that the permanent
polynomial can not be computed efficiently by ABPs. More precisely, their work shows that if one could
obtain such lower bounds when the degree is bounded by O(logn/ log logn), then it would imply super-
polynomial lower bounds against general ABPs. In this paper, we show super-polynomial lower bounds
against this model for a polynomial whose degree is as small as ω(logn). Prior to our work, showing
such lower bounds was open irrespective of the assumption on the degree.

1 Introduction

1.1 Background on Algberaic Complexity

In his seminal work ([Val79]) in 1979, Valiant proposed an algebraic framework to study the computational
complexity of computing polynomials. Algebraic Complexity Theory is this study of the complexity of compu-
tational problems which can be described as computing a multivariate polynomial P (x1, . . . , xN) over some
elements x1, . . . , xN lying in a fixed field F. Several fundamental computational tasks such as computing
the determinant, permanent, matrix product, etc., can be represented using this framework. The natural
computational models that we investigate in this setting are models such as algebraic circuits, algebraic
branching programs, and algebraic formulas.

An algebraic circuit over a field F for a multivariate polynomial P (x1, . . . , xN) is a directed acyclic
graph (DAG) whose internal vertices (called gates) are labeled as either + (sum) or × (product), and leaves
(vertices of in-degree zero) are labeled by the variables xi or constants from F. A special output gate (the

∗Research supported by the Azrieli International Postdoctoral Fellowship, the Israel Science Foundation (grant number
514/20) and the Len Blavatnik and the Blavatnik Family foundation.

†Research partially supported by a Sloan research fellowship and an NSERC Discovery Grant.
‡Research leading to these results has received funding from the Israel Science Foundation (grant number 514/20) and from

the Len Blavatnik and the Blavatnik Family foundation.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 212 (2023)

root of the DAG) represents the polynomial P . If the DAG happens to be a tree, such a resulting circuit
is called an algebraic formula. The size of a circuit or formula is the number of nodes in the DAG. We also
consider the product-depth of the circuit, which is the maximum number of product gates on a root-to-leaf
path. The class VP (respectively, VF) is then defined to be the collection of all polynomials having at most
polynomially large degree which can be computed by polynomial-sized circuits (respectively, formulas).

The class VP is synonymous to what we understand as efficiently computable polynomials. The class
VNP, whose definition is similar to the boolean class NP, is in some sense a notion of what we deem as explicit.
Much like the problem of proving circuit size lower bounds for explicit boolean functions, the problem of
proving them for explicit polynomials (i.e., showing VP ̸= VNP) has also remained elusive for many decades.
However, because the latter only deals with formal symbolic computation as opposed to modelling semantic
truth-table constraints, it is widely believed to be easier to resolve than its boolean counterpart. In fact, it
is even known to be a pre-requisite to the P ̸= NP conjecture in the non-uniform setting ([Bür00]).

An algebraic branching program (ABP) is a layered DAG with two special nodes in it: a start-node and
an end-node. All edges of the ABP go from layer ℓ − 1 to layer ℓ for some ℓ (say start-node is the unique
node in layer 0 and end-node is the unique node in the last layer) and are labeled by a linear polynomial.
Every directed path γ from start-node to end-node computes the monomial Pγ , which is the product of all
labels on the path γ. The ABP computes the polynomial P =

∑
γ Pγ , where the sum is over all paths γ from

start-node to end-node. Its size is simply the number of nodes in the DAG, its depth is the length of the
longest path from the start-node to the end-node, and width is the maximum number of nodes in any layer.
The class VBP is then defined to be the collection of all polynomials (with polynomially-bounded degree)
which can be computed by polynomial-sized branching programs. ABPs are known to be of intermediate
complexity between formulas and circuits; in other words, we know the inclusions VF ⊆ VBP ⊆ VP ⊆ VNP.

It is conjectured that all of these inclusions are strict, and resolving any of these conjectures would rep-
resent a dramatic advancement in algebraic complexity theory, and even more broadly, in circuit complexity
overall. Valiant’s original hypothesis in [Val79] pertains to showing a super-polynomial separation between
the complexity of computing the determinant and the permanent polynomials. This is known to be equivalent
to the VBP ̸= VNP conjecture, i.e., showing super-polynomial size lower bounds against ABPs computing
explicit polynomials. At present, the best known lower bound against ABPs is only quadratic ([CKSV22]),
and it appears as though we are quite distant from addressing this conjecture. On the other hand, as we now
elaborate, while not directly improving upon this quadratic bound, this paper makes significant progress
towards a different line of attack aimed at resolving Valiant’s conjecture.

1.2 Set-Multilinearity: A Key Syntactic Restriction

One key advantage that algebraic models offer over their boolean counterparts is that of syntactic restrictions.
A recurring theme in algebraic complexity theory is to first efficiently convert general models of computation
(such as circuits or formulas) to special kinds of syntactically-restricted models, show strong lower bounds
against these restricted models, and then recover non-trivial lower bounds against the original general models
owing to the efficiency of this conversion. This phenomenon is termed hardness escalation. In this subsection,
we describe one crucial example of a syntactic restriction in detail (i.e., that of set-multilinearity), highlight
some known hardness escalation results, and in particular, set the stage for how our results in this paper
make progress towards resolving Valiant’s conjecture via such a hardness escalation route.

A polynomial is said to be homogeneous if each monomial has the same total degree and multilinear
if every variable occurs at most once in any monomial. Now, suppose that the underlying variable set is
partitioned into d sets X1, . . . , Xd. Then the polynomial is said to be set-multilinear with respect to this
variable partition if each monomial in P has exactly one variable from each set. Note that a set-multilinear
polynomial is both multilinear and homogeneous, and has degree precisely d if it is set-multilinear over
d sets. Next, we define different models of computation corresponding to these variants of polynomials
classes. An algebraic formula/branching program/circuit is set-multilinear with respect to a variable partition
(X1, . . . , Xd) if each internal node in the formula/branching program/circuit computes a set-multilinear
polynomial.1 Multilinear and homogeneous formulas/branching programs/circuits are defined analogously.

1Of course, a non-root node need not be set-multilinear with respect to the entire variable partition. Nevertheless, here we
demand that it must be set-multilinear with respect to some subset of the collection {X1, . . . , Xd}.

2

We now describe several important hardness escalation results, each reducing general models to corre-
sponding set-multilinear models:

• Raz in [Raz13] showed that if an N -variate set-multilinear polynomial of degree d has an algebraic
formula of size s, then it also has a set-multilinear formula of size poly(s) · (log s)d. In particular,
for a set-multilinear polynomial P of degree d = O(logN/ log logN), it follows that P has a formula
of size poly(N) if and only if P has a set-multilinear formula of size poly(N). Thus, having Nωd(1)

set-multilinear formula size lower bounds for such a low degree would imply super-polynomial lower
bounds for general formulas. A recent line of work ([KS22, KS23]) can be viewed as an attempt to
prove general formula lower bounds via this route.

• The recent celebrated breakthrough work of Limaye, Srinivasan, and Tavenas ([LST21]) establishes
super-polynomial lower bounds for general algebraic circuits for all constant-depths, a problem that
was open for many decades. In order to show this, it is first shown that general low-depth algebraic
formulas can be converted to set-multilinear algebraic formulas of low depth as well, and without much
of a blow-up in size (as long as the degree is small). Subsequently, strong lower bounds are established
for low-depth set-multilinear circuits (of small enough degree), which when combined with the first
step yields the desired lower bound for general constant-depth circuits.

• Even more recently, in the context of ABPs, the work of Bhargav, Dwivedi, and Saxena ([BDS23])
reduces the problem of showing lower bounds against ABPs to showing lower bounds against a set-
multilinear class (also as long as the degree is small enough), namely

∑
smABP – short for “a sum of

ordered set-multilinear branching programs”. Ordered set-multilinear ABPs are, in fact, historically
well-studied models; despite their apparent simplicity, the work [BDS23], in essence, implies that
understanding their sums – a model that is far less studied – is at the forefront of understanding
Valiant’s conjecture. We state their result formally as Theorem 1.6 in Section 1.3. But first, as this
is also the main model considered in this paper, we begin by defining this set-multilinear model and
outlining its importance in historical work.

Definition 1.1 (Ordered smABP). Given a variable partition (X1, . . . , Xd), we say that a set-multilinear
branching program of depth d is said to be ordered with respect to an ordering (or permutation) σ ∈ Sd if
for each ℓ ∈ [d], all edges of the ABP from layer ℓ − 1 to layer ℓ are labeled using a linear form over the
variables in Xσ(ℓ). It is simply said to be ordered if there exists an ordering σ such that it is ordered with
respect to σ.

Remark 1.2. This notion of ordered set-multilinear branching programs turns out to be equivalent to
the more commonly used notions of (i) “read-once oblivious algebraic branching programs (ROABPs)”, as
well as (ii) “non-commutative algebraic branching programs” (see, for example, [FS13]). This equivalence,
especially with the former model, is described in more detail later in Section 1.5.

Remark 1.3. At this point, it is essential to take note of the terminology in this context: in this paper, a
general (or “unordered”) set-multilinear branching program refers to an ABP for which each internal node
computes a polynomial that is set-multilinear with respect to some subset of the global partition, whereas
an ordered set-multilinear branching program is more specialized and has the property that any two nodes
in the same layer compute polynomials that are set-multilinear with respect to the same partition.

Definition 1.4 (
∑

smABP). Given a polynomial P (X) that is set-multilinear with respect to the variable
partitionX = (X1, . . . , Xd), we say that

∑t
i=1 Ai is a

∑
smABP computing P if indeed

∑t
i=1 Ai(X) = P (X),

and each Ai is an ordered set-multilinear branching program i.e., each Ai is ordered with respect to some
σi ∈ Sd. We call t (i.e., the number of summands in a

∑
smABP) its support size and define its max-

width and total-width to be the maximum over the width of each Ai and the sum of the width of each Ai,
respectively.

We have known exponential width lower bounds against a single ordered set-multilinear ABP since some
early foundational work of Nisan. In [Nis91], he showed that there are explicit polynomials (in fact, in
VP) which require any ordered set-multilinear ABP computing them to be of exponentially large width.

3

Viewed differently, this work even shows that in the non-commutative setting, VBP ̸= VP2. More crucially
however, this work introduced a powerful technique – a notion known as the partial derivative method –
that has been instrumental in the bulk of the major advancements in algebraic complexity theory over the
past three decades (such as [NW97, Raz06, RY09, Kay12, KST16, KLSS17, KS17, LST21, TLS22], see also
[SY10, Sap15]).

Despite the considerable development of the partial derivative technique over the course of these works
(and many more) for proving strong lower bounds against various algebraic models, we do not have any non-
trivial lower bounds for a general sum of ordered set-multilinear ABPs – a simple and direct generalization
of the original model considered by Nisan. The best known lower bounds in the literature towards this goal
require additional structural restrictions on either the max-width or the support size: the work [AR16] of
Arvind and Raja shows that any

∑
smABP of support size t computing the n × n permanent polynomial

requires max-width (and therefore, total-width) at least 2Ω(n/t). Note that for this bound to be super-
polynomial, the support size needs to be heavily restricted i.e., t must be sub-linear. Apart from this, the
work [BDS23] also shows a super-polynomial lower bound in this context: it implies that no

∑
smABP

of polynomially-bounded total-width can compute the iterated matrix multiplication (IMM) polynomial.
However, their work requires the additional assumption that the max-width of such an

∑
smABP is no(1),

that is sub-polynomial in the number of variables.

1.3 Our Results

In this paper, we prove the first super-polynomial lower bound against an unrestricted sum of ordered
set-multilinear branching programs. In fact, we even give an explicit polynomial (with polynomially-large
degree) such that any

∑
smABP computing it must require exponential total-width. This strongly answers

a question left open in both [AR16] and [BDS23]. Furthermore, as alluded to in Section 1.2, it follows from
the results in [BDS23] that proving such super-polynomial lower bounds would be especially momentous for
a polynomial with sufficiently small degree, as that would imply general ABP lower bounds. While we are
presently unable to completely match this small degree demand, we manage to push it all the way down to
a function that is only mildly larger than the demand.

We first state our exponential lower bounds in the high-degree setting:

Theorem 1.5 (Exponential Lower Bounds for
∑

smABP). There is a set-multilinear polynomial Fn,n in
VP, in Θ(n2) variables and of degree Θ(n), such that any

∑
smABP computing Fn,n requires total-width

exp(Ω(n1/3)).

Next, we formally state the aforementioned hardness escalation result of [BDS23]. In words, it shows that
the task of showing super-polynomial lower bounds for general ABPs computing an explicit set-multilinear
polynomial P – whose degree is at most about logarithmic in the number of variables – can be reduced to the
task of showing lower bounds for any

∑
smABP computing P . Subsequently, we state our result which shows

a super-polynomial lower bound for any
∑

smABP computing an explicit set-multilinear polynomial, whose
degree is barely super-logarithmic in the number of variables. In this sense, it approaches the resolution of
Valiant’s conjecture.

Theorem 1.6 (Hardness Escalation of [BDS23]). Let n, d be growing parameters such that d = O(log n/ log log n).
Let Pn,d be a set-multilinear polynomial in VP (respectively, VNP) of degree d. If Pn,d cannot be computed
by a

∑
smABP of total-width poly(n), then VBP ̸= VP (respectively, VBP ̸= VNP).

Theorem 1.7 (“Low”-Degree
∑

smABP Lower Bounds). Let d ≤ n be growing parameters satisfying d =
ω(log n). There is a Θ(dn)-variate degree d set-multilinear polynomial Fn,d in VP such that Fn,d cannot be
computed by a

∑
smABP of total-width poly(n).

Theorem 1.5 and Theorem 1.7 are also true when Fn,d (as defined in Section 2.4) is replaced by the
appropriate Nisan-Wigderson polynomial NWn,d (as defined in Section 2.3), which is known to be in VNP.
In fact, we first indeed established them for the Nisan-Wigderson polynomial, and then used some of the
ideas presented in a recent work by Kush and Saraf ([KS23]) to make the hard polynomial lie in VP.

2We briefly explain the connection between ordered set-multilinear ABPs and non-commutative computation in Section 1.5.

4

With additional effort, and building upon the machinery3 of [KS23] (which, in turn, uses the techniques
developed in [DMPY12]), we can almost recover the same lower bounds as in Theorem 1.5 and Theorem 1.7
for a set-multilinear polynomial even in VBP. We preferred to first state Theorem 1.5 and Theorem 1.7 in
the manner above because (i) the proof is less intricate and in fact, even serves as a prelude to the proof
of the latter, and (ii) to draw a direct comparison and contrast with the hardness escalation statement
(Theorem 1.6). We now state these results for when the hard polynomial is the VBP polynomial and then
describe two intriguing consequences.

Theorem 1.5’. There is a fixed constant δ ≥ 1/100 and a set-multilinear polynomial Gn,n in VBP, in Θ(n2)
variables and of degree Θ(n), such that any

∑
smABP computing Gn,n requires total-width exp(Ω(nδ)).

Theorem 1.7’. Let d ≤ n be growing parameters satisfying d = ω(log n). There is a Θ(dn)-variate, degree
Θ(d) set-multilinear polynomial Gn,d in VBP such that Gn,d cannot be computed by a

∑
smABP of total-width

poly(n).

The first intriguing consequence of proving the statements above is that we are able to show that the
ABP set-multilinearization process given in [BDS23] is nearly tight, as Gn,d is known to have a small set-
multilinear branching program and yet, any

∑
smABP computing it must have large total-width. To make

this point effectively, we first state the following key ingredient in the proof of Theorem 1.6, and subsequently
state our tightness result.

Lemma 1.8 (ABP Set-Multilinearization in [BDS23]). Let Pn,d be a polynomial of degree d that is set-
multilinear with respect to the partition X = (X1, . . . , Xd) where |Xi| ≤ n for all i ∈ [d]. If Pn,d can be
computed by an ABP of size s, then it can also be computed by a

∑
smABP of max-width s and total-width

2O(d log d)s.

Theorem 1.9 (Near-Tightness of ABP Set-Multilinearization). For large enough integers ω(log n) = d ≤ n,
there is a polynomial Gn,d(X) which is set-multilinear over the variable partition X = (X1, . . . , Xd) with
each |Xi| ≤ n, and such that:

• it has a branching program of size poly(n),

• but any
∑

smABP of max-width poly(n) computing Gn,d requires total-width 2Ω(d).

The second intriguing consequence is the fact that Theorem 1.9 can also be viewed as an exponential
separation between the model of (general) small-width set-multilinear branching programs and the model
of sums of small-width ordered set-multilinear branching programs. Moreover, we can improve this bound
much further in the case of a single ordered set-multilinear branching program: More precisely, in Theorem
1.10 below, we answer a question posed in [KS23] about the relative strength of an unordered and (a single)
ordered set-multilinear branching program, by obtaining a near-optimal separation. A priori, as is shown in
[KS23], if these two models coincided (i.e., if a general set-multilinear ABP could be simulated by a small
and ordered one), then it would have led to super-polynomial lower bounds for general algebraic formulas.

Theorem 1.10 (Near-Optimal Separation between Ordered and Unordered smABPs). There is a polynomial
Gn,d(X) which is set-multilinear over the variable partition X = (X1, . . . , Xd) with each |Xi| ≤ n, and such
that:

• it has a set-multilinear branching program of size poly(n, d),

• but any ordered set-multilinear branching program computing Gn,d requires width nΩ(d).

Note that Gn,d has at most nd monomials and so, it trivially has an ordered set-multilinear ABP of width
nd. Therefore, the lower bound above is essentially optimal.

3This is explained in more detail in Section 1.4.

5

1.4 Proof Overview

The organization of this subsection is as follows: we first describe the basics of the partial derivative method
and summarize its typical application in proving lower bounds against a generic set-multilinear model of
computation. Next, we briefly describe Nisan’s original partial derivative method from [Nis91] to prove
lower bounds specifically against a single ordered set-multilinear branching program. We then describe an
alternative approach that yields a slightly weaker bound for the same model, but nevertheless is versatile
enough that we can generalize it considerably more in order to prove Theorems 1.5 and 1.7. Finally, we
describe the additional ideas needed in order to situate the hard polynomial in these theorems in VBP and
in the process, establish the tightness result for ABP set-multilinearization (Theorem 1.9).

Partial Derivative Measure Basics: The high-level idea is to work with a measure that we show to be
“small” for all polynomials computed by a specified model of computation – the model against which we
wish to prove lower bounds. If we can also show that there is a “hard” polynomial for which the measure
is in fact “large”, then it follows that this polynomial cannot be computed by the specified model. These
partial derivative measures, after the initial work ([Nis91]) by Nisan, were further developed by Nisan and
Wigderson in [NW97], who used them to prove some constant-depth set-multilinear formula lower bounds.
Since then, variations of these measures have also been used to prove various other stronger set-multilinear
formula lower bounds (e.g., [LST21, TLS22, LST22, BDS22, KS22, KS23]).

Given a variable partition (X1, . . . , Xd), the idea is to label each set of variables Xi as ‘+1’ or ‘−1’
according to some rule (called a “word”) w ∈ {−1, 1}d. Let Pw and Nw denote the set of positive and
negative indices (or coordinates) respectively, and let MP

w and MN
w denote the sets of all set-multilinear

monomials over Pw and Nw respectively. For a polynomial f that is set-multilinear over the given variable
partition (X1, . . . , Xd), the measure then is simply the rank of the “partial derivative matrix” Mw(f),
whose rows are indexed by the elements ofMP

w and columns indexed byMN
w , and the entry of this matrix

corresponding to a row m1 and a column m2 is the coefficient of the monomial m1 ·m2 in f .
For a subset S ⊆ [d], let wS denote the sum of those coordinates of w that lie in S. In other words, |wS |

measures the amount of “bias” that the rule w exhibits when restricted to the S coordinates. Note that the
rank of Mw(f) can never exceed n(d−|w[d]|)/2. Furthermore, we have that the rank measure is multiplicative:
if f and g are polynomials that are set-multilinear over disjoint subsets of the global partition (X1, . . . , Xd),
then the rank of Mw(f · g) is the product of the ranks of Mw(f) and Mw(g). These two observations,
combined with the sub-additivity of rank, provide a recipe for showing lower bounds against any given set-
multilinear model of computation: the overall idea is to carefully split up the original model into smaller,
multiplicatively disjoint parts and then argue the existence of a rule for which enough of these parts exhibit
high bias. This process allows us to prove that the measure is small for the model of computation. Therefore,
one can conclude that any explicit polynomial for which the measure is provably high – which needs to
established separately – can not be computed by this model. It is known ([KS22, KS23]) that there is a
set-multilinear polynomial NWn,d in VNP (see Section 2.3) as well as a set-multilinear polynomial Fn,d in
VP (see Section 2.4) for which the matricesMw(NWn,d),Mw(Fn,d), have full-rank, whenever |Pw| = |Nw|.

Nisan’s original lower bound: Let us first summarize how Nisan’s original partial derivative method
from [Nis91], as alluded to in Section 1.2, can be applied in this context to obtain lower bounds against the
size of a single ordered set-multilinear ABP (ordered smABP) computing the aforementioned “full-rank”
polynomials. Given any set-multilinear branching program A ordered with respect to some permutation
σ ∈ Sd computing Fn,d, the idea is to pick a word w such that the +1 labels in w precisely correspond to
the “left half” of the ordering σ, and the −1 labels correspond to the “right half”. One can then observe
that the rank ofMw(Fn,d) =Mw(A) serves as a lower bound on the number of nodes s in the middle layer
of the ABP, yielding a near-optimal nΩ(d) lower bound: this is because the matrixMw(A) is easily seen to
be the product of an nd/2 × s and an s× nd/2 matrix.

We now sketch an alternate proof: rather than constructing a word dependent on the ordering of variable
sets Xi in the ordered smABP A as above, choose a uniformly random4 word w from {−1, 1}d. We demon-

4We also need to suitably condition on the event that the word w is symmetric (i.e., |Pw| = |Nw|) in order to use the
full-rank property of the hard polynomial – the probability of this event is Θ(1√

d
). For ease of exposition, we omit the technical

details in this sketch.

6

strate that, with positive probability, the rank ofMw(A) is bounded by s ·nd/2−Ω(
√
d), where s is the width

of the middle layer in A: Standard anti-concentration bounds imply that, with at least constant probability,
the bias in the left and right halves of A is Ω(

√
d). Since A can be expressed as a sum of s polynomials fi · gi

for i ∈ [s], where each fi and gi are ordered smABPs with respect to disjoint subsets of the global partition,

we encounter a loss of a factor of nΩ(
√
d) in the rank of the product polynomialMw(fi · gi) due to the bias

of w. This, combined with the sub-additivity of rank, shows the desired bound of s · nd/2−Ω(
√
d) on the rank

ofMw(A). Finally, we exploit the full-rank property of Fn,d with respect to such words to establish a lower

bound of nΩ(
√
d) on the width s of a single ordered smABP computing Fn,d. Notably, this bound is indeed

slightly worse than what one can obtain by manually defining a rule w deterministically, which ensures a
maximal bias of d/2 in each half of A as described in the paragraph above.

Generalization of the alternative argument: The alternative argument described above yields an
exponential lower bound even for a sum of ordered smABPs, assuming the number of summands is small.
Consider a

∑
smABP of the form

∑t
i=1 Ai, of max-width s, computing Fn,d. For each summand Ai, the

analysis above provides an upper bound of s · nd/2−Ω(
√
d) on the rank ofMw(Ai) with constant probability.

If the number of summands t is a small enough constant, the union bound ensures the existence of a word w

such that the rank ofMw(
∑

Ai) is at most t · s · nd/2−Ω(
√
d). Thus5, we obtain an exponential lower bound

on t · s since this
∑

smABP computes a full-rank polynomial. However, because of the use of the union
bound in this manner, this method faces an inherent limitation – it is unable to handle more than a very
small number of summands, even if we lower the bias demand from each half (e.g., from Ω(

√
d) to Ω(4

√
d) or

a smaller polynomial in d). In fact, one can construct a sum of d ordered smABPs (by starting with a single
smABP ordered arbitrarily and considering the d cyclic shifts of this ordering) such that any unbiased word
w (i.e., w[d] = 0) has the property that for at least one of the summands, the left and right halves will have
no bias! Evidently then, in order to prove lower bounds against an unrestricted number of summands, we
need another method to analyze the rank of the summands. Nonetheless, a conceptual takeaway from the
exercise above is that selecting a rule w that is oblivious to the orderings of individual summands (and in
particular, a random rule) still lets us derive strong lower bounds for the sum of multiple ordered smABPs.

Suppose instead of slicing an ordered smABP A down the middle, we slice it into three roughly equal
pieces. Then, it is possible to write the polynomial computed by A as a sum over s2 terms, each of the form
fi · gi · hi where for each i, each of fi, gi, hi depends on d/3 disjoint variable sets of the global partition. We
can then perform a similar analysis as above to show enough bias across these 3 pieces, thereby obtaining
a rank deficit. More precisely, we can conclude that for a single ordered smABP A, again with a constant

probability, the rank ofMw(A) is at most s2 ·nd/2−Ω(
√
d). When we slice the ABP into 3 pieces in this way,

it is not immediately clear where the gain is. In fact, for a single ordered smABP, this method actually gives
a worse lower bound on s due to the presence of the factor of s2. Where we gain is in the magnitude of
the probability with which we can guarantee that a single ordered smABP has a rank deficit – we will now
describe how this observation allows us to take a union bound over many more summands.

In order to illustrate this trade-off more clearly, we will partition the ordered smABP A into many more
pieces. Suppose we slice it into q ≈

√
d pieces, each of size roughly r = d/q ≈

√
d (this is just one setting of

parameters; q and r are suitably optimized in the final proof). Thus, the polynomial that A computes can be
written as a sum of at most sq−1 terms, where each term is a product of q polynomials – each set-multilinear
over a disjoint subset of the global partition, where each piece has size r. When a word w is chosen randomly,
each such piece again exhibits a bias of about Ω(

√
r) with constant probability. The crucial observation then

is that by known concentration bounds, it can be shown that with probability exponentially close to 1, the
sum of the biases across all the q pieces is Ω(q

√
r) = poly(d). For a single ordered smABP A, this shows

that the rank ofMw(A) is at most sq · n−Ω(q
√
r), which is still enough to show an exponential lower bound

on s, even though it is worse than what we obtained by slicing into fewer pieces.
The key advantage in implementing this analysis is that it provides a way to argue that for a random

word w, Mw(A) has low rank for a single ordered smABP A – with probability exponentially close to 1.
In particular, this allows us to union bound over exponentially many ordered smABPs and show that even
if we have an

∑
smABP computing Fn,d of exponential support size, with high probability, each summand

5See footnote 4.

7

will have a rank deficit. Then, again using the sub-additivity of rank, we can conclude that the sum has a
rank deficit as well.

This method of analyzing the rank of an ordered smABP by partitioning it into numerous pieces and
tactfully using concentration bounds is novel, and conceptually the most essential aspect of the proof. As
we demonstrated above, this method of analysis indeed gives a worse bound for a single smABP. However,
while mildly sacrificing what we can prove about the rank of a single ordered smABP, we are able to leverage
it to still prove something meaningful about the rank of a sum with a much larger number of summands.

Our partial derivative measure draws inspiration from previously known lower bounds in the context of
multilinear and set-multilinear formulas ([Raz06, KS22]). One noteworthy distinction lies in the analysis of
the measure: whereas the partitioning is present intrinsically in those formula settings, in our setting of ABPs,
we deliberately introduce the partitioning at the expense of a notable increase in the number of summands
or the total-width (and therefore, in the number of events we union bound over). The substantial advantage
gained in utilizing this partitioning for rank analysis justifies the tolerable increase in the total-width.

Tightness of ABP set-multilinearization: In order to make the hard polynomial in Theorems 1.5 and
1.7 lie in VBP, one might wonder if we can get away with using the same rank measure (i.e., rank of the
matrix Mw(·) for a uniformly random word w ∈ {−1, 1}d) that was used in the analysis above for the VP
polynomial Fn,d. However, as far as we know, full-rank polynomials (in the sense described above) may also
require super-polynomial sized set-multilinear ABPs. Thus, in order to prove a separation between (general)
set-multilinear ABPs and (sums of) ordered set-multilinear ABPs, we seek a property that is weaker than
being full-rank and yet is still useful enough for proving lower bounds against our model. For this, we rely
upon the arc-partition framework that is developed in [KS23] in order to prove near-optimal set-multilinear
formula lower bounds (building upon the initial ingenious construction given in [DMPY12] for the multilinear
context), tailor the framework to our

∑
smABP model, and use a more delicate concentration bound analysis

in order to prove our results.
An arc-partition is a special kind of symmetric word w from {−1, 1}d: we will now describe a distribution

over {−1, 1}d; the words that will have positive probability of being obtained in this distribution will be
called arc-partitions. The distribution is defined according to the following (iterative) sampling algorithm.
Position the d variable sets on a cycle with d nodes so that there is an edge between i and i+ 1 modulo d.
Start with the arc [L1, R1] = {1, 2} (an arc is a connected path on the cycle). At step t > 1 of the process,
maintain a partition of the arc [Lt, Rt]. “Grow” this partition by first picking a pair uniformly at random
out of the three possible pairs {Lt−2, Lt−1}, {Lt−1, Rt+1}, {Rt+1, Rt+2}, and then choosing a labelling
(or partition) Π on this pair i.e., assigning one of them ‘+1’ and the other ‘−1’ uniformly at random. After
d/2 steps, we have chosen a partition (i.e., a word w from {−1, 1}d) of the d variable sets into two disjoint,
equal-size sets of variables P and N . It is known from [KS23] that there exist set-multilinear polynomials
Gn,d (as defined in Section 2.5) that are arc-full-rank i.e., Mw(Gn,d) is full-rank for every arc-partition w.
Analogous to the proofs of Theorems 1.5 and 1.7, we establish our

∑
smABP lower bounds by showing

that with high probability, every
∑

smABP has an appropriately large rank deficit with respect to the arc-
partition distribution. However, as we now briefly explain, this analysis turns out to be significantly more
intricate.

Similar to the analysis as in the VP case, we partition an ordered smABP A into q pieces of size r each,
and write the polynomial that it computes as a sum of at most sq terms. Again, the task is to show that an
arc-partition w exhibits a large total bias across the q pieces: more precisely, we show that if the pieces are
labelled as S1, . . . , Sq, then with probability exponentially close to 1, the sum

∑q
i=1 |wSi | (i.e., the total bias

of w across these pieces) is Ω(qrε), which is polynomially large in d for an appropriate setting of q, r. This
then yields the desired rank deficit similar to the VP analysis (albeit with mildly worse parameters).

The bias lower bound is established in the following sequence of steps:

• View the partition (S1, . . . , Sq) of [d] as a fixed “coloring” of the latter. We say that a pair – as
sampled in the construction of an arc-partition described above – “violates” a color S if exactly one of
the elements of the pair is colored by the set S. Then, we show that with probability exponentially close
to 1, “many” colors must have “many” violations: more precisely, that at least a constant fraction of the
colors (i.e., Ω(q) many) have at least r2ε many violations each (for some small constant ε > 0). Such a
“many violations” lemma is also established in [KS23] in the context of proving set-multilinear formula

8

lower bounds. We show that this lemma, in fact, holds for a much wider range of parameters than was
previously known; this extension is indeed necessary for our use. The proof of this strengthened many
violations lemma is deferred to the appendix.

• We then use the strengthened many violations lemma to argue that even though w is not chosen
uniformly at random and as such, its coordinates are not truly independent, it possesses “enough”
inherent independence that a similar concentration bound as in the VP analysis is applicable. More
precisely, we show that with high probability, there is an ordering of a set of Ω(q) colors such that
each such color has at least r2ε violations and a more nuanced application of standard concentration
bounds shows that w exhibits a total bias of at least Ω(qrε).

1.5 The ROABP Perspective

One can also view all of our results described in Section 1.3 through the lens of another well-studied model in
algebraic complexity theory, namely the titular read-once oblivious algebraic branching programs (ROABPs).

Definition 1.11 (ROABP). For integers n, d and a permutation σ ∈ Sn, an ABP over the variables
x1, . . . , xn is said be a read-once oblivious algebraic branching program (ROABP) in the order σ of in-
dividual degree d if for each ℓ ∈ [n], all edges from layer ℓ− 1 to ℓ are labelled by univariate polynomials in
xσ(i) of degree at most d.

ROABPs were first introduced in this form by Forbes and Shpilka in [FS13], where it is also noted that
ordered set-multilinear ABPs (as in Definition 1.1) and ROABPs are equivalent in the following sense.

Suppose that f ∈ F[x1, . . . , xn] has individual degree d and is computable by an ROABP of size s in the
order σ ∈ Sn. Then the polynomial gf ∈ F[X1, . . . , Xn], with Xi = {xi,1, . . . , xi,d}, defined by

gf (X1, . . . Xn) =
∑

e∈[d]n

n∏
i=1

xi,ei · coefficient of xe

has a set-multilinear ABP of size s that is ordered with respect to σ. This is true because an set-multilinear
ABP ordered with respect to σ can be constructed using the ROABP of size s computing f by simply replacing
xei
i by xi,ei , and it is easy to check that this computes gf . Similarly, an inverse transformation allows us

to go from the ordered set-multilinear branching program model to the ROABP model. Furthermore, the
computation that an ROABP (or equivalently, an ordered set-multilinear ABP) performs can be seen to be
non-commutative. This is because the variables (or linear forms) along a path get multiplied in the same
order σ as that of the ROABP (or ordered set-multilinear ABP).

As a consequence of this equivalence, exponential lower bounds follow for a single ROABP due to the
work of Nisan ([Nis91]) (as described earlier in Section 1.4). Our work establishes the first super-polynomial,
and in fact, exponential lower bounds for the model of sum of ROABPs. As mentioned earlier, the works
of Arvind and Raja ([AR16]) and Bhargav, Dwivedi, and Saxena ([BDS23]) provide lower bounds in certain
restricted versions of this model.

Finally, we note that ROABPs have been studied extensively in the context of another central problem
in algebraic complexity theory: that of polynomial identity testing (PIT). The PIT question for a general
algebraic model M is the following: Given access to an n-variate polynomial f of degree at most d that
can be computed in the modelM of (an appropriate measure of) complexity at most s, determine whether
f ≡ 0 in poly(n, d, s) time. When one is given access to the model computing f explicitly, this flavour of
PIT is called white-box PIT, and when one is merely provided query access to f , it is called black-box PIT.

The solution to the PIT problem for ROABPs in the white-box setting follows from a result by Raz
and Shpilka ([RS05] – where it is stated in the equivalent language of non-commutative computation).
However, the corresponding problem in the black-box setting remains open to this date, with the best-
known time bound in the black-box setting still being only sO(log s) due to the work by Forbes and Shpilka
([FS13]), who additionally assumed that the ordering of the ROABP is known. This was matched later by
Agrawal Gurjar, Korwar, and Saxena ([AGKS15]) in the unknown order setting, improving upon the work
of Forbes, Saptharishi and Shpilka ([FSS14]). Guo and Gurjar improved the result further by improving
the dependence on the width [GG20]. Additionally, there have been various improvements to this result

9

in restricted settings ([GKS17, GV20, BG22]) and some other works that study PIT for a small sum of
ROABPs ([GKST17, BS21, GG20]). When the number of summands is super-constant, the question of even
white-box PIT remains wide open.

2 Preliminaries

2.1 Relative Rank and its Properties

We first describe the notation that we need to define the measures that we use to prove our results described
in Section 1.3. Instead of directly working with the rank of the partial derivative matrix, we work with the
following normalized form.

Definition 2.1. Let w = (w1, w2, . . . , wd) be a tuple (or word) of non-zero real numbers. For a subset
S ⊆ [t], we shall refer to the sum

∑
i∈S wi by wS , and by w|S , we will refer to the tuple obtained by

considering only the elements of w that are indexed by S. Given a word w = (w1, . . . , wd), we denote by
X(w) a tuple of d sets of variables (X(w1), . . . , X(wd)) where |X(wi)| = 2|wi|.6 We denote by Fsm[T] the
set of set-multilinear polynomials over the tuple of sets of variables T .

Definition 2.2 (Relative Rank Measure of [LST21]). Let X = (X1, . . . , Xd) be a tuple of sets of variables
such that |Xi| = ni and let f ∈ Fsm[X]. Let w = (w1, w2, . . . , wd) be a tuple (or word) of non-zero real
numbers such that 2|wi| = ni for all i ∈ [d]. Corresponding to a word w, define Pw := {i | wi > 0} and
Nw := {i | wi < 0}. LetMP

w be the set of all set-multilinear monomials over the subset of the variable sets
X1, X2, . . . , Xd precisely indexed by Pw, and similarly let MN

w be the set of all set-multilinear monomials
over these variable sets indexed by Nw.

Define the ‘partial derivative matrix’ matrixMw(f) whose rows are indexed by the elements ofMP
w and

columns indexed by the elements ofMN
w as follows: the entry of this matrix corresponding to a row m1 and

a column m2 is the coefficient of the monomial m1 ·m2 in f . We define

relrkw(f) :=
rank(Mw(f))√
|MP

w | · |MN
w |

=
rank(Mw(f))

2
1
2

∑
i∈[d] |wi|

.

The following is a simple result that establishes various useful properties of the relative rank measure.

Claim 2.3 ([LST21]). 1. (Imbalance) Say f ∈ Fsm[X(w)]. Then, relrkw(f) ≤ 2−|w[d]|/2.

2. (Sub-additivity) If f, g ∈ Fsm[X(w)], then relrkw(f + g) ≤ relrkw(f) + relrkw(g).

3. (Multiplicativity) Say f = f1f2 · · · ft and assume that for each i ∈ [t], fi ∈ Fsm[X(w|Si
)], where

(S1, . . . , St) is a partition of [d]. Then

relrkw(f) =
∏
i∈[t]

relrkw|Si
(fi).

We will repeatedly make use of the following.

Theorem 2.4 (Chernoff Bound, as stated in [MU05]). Suppose X1, . . . , Xn are independent random variables
taking values in {0, 1}. Let X denote their sum and let µ = E[X] denote the expected value of the sum. Then
for any δ > 0,

P[X ≥ (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
, if 0 ≤ δ,

P[X ≤ (1− δ)µ] ≤ exp

(
−δ2µ

2

)
, if 0 < δ < 1,

P[|X − µ| ≥ δµ] ≤ 2 · exp
(
−δ2µ

3

)
, if 0 < δ < 1.

6In particular, 2|wi| ∈ N.

10

2.2 Inner Product Gadget

The following observation is used crucially to construct the hard polynomials in VP as well as VBP.

Observation 2.5 ([KS23]). Let n = 2k and X1 = {x1,1, . . . , x1,n} and X2 = {x2,1, . . . , x2,n} be two disjoint
sets of variables. Then, for any symmetric word w ∈ {k,−k}2 (i.e., where w1 + w2 = 0) and for the inner
product ‘gadget’ f = X1 ·X2 =

∑n
i=1 x1,ix2,i, relrkw(f) = 1 i.e.,Mw(f) is full-rank.

2.3 A Hard Set-multilinear Polynomial in VNP

As is done in previous lower bounds using the NW polynomials (for example, see [KSS14]), we will identify
the set of the first n integers as elements of Fn via an arbitrary correspondence ϕ : [n]→ Fn. If f(z) ∈ Fn[z]
is a univariate polynomial, then we abuse notation to let f(i) denote the evaluation of f at the i-th field
element via the above correspondence i.e., f(i) := ϕ−1(f(ϕ(i))). To simplify the exposition, in the following
definition, we will omit the correspondence ϕ and identify a variable xi,j by the point (ϕ(i), ϕ(j)) ∈ Fn×Fn.

Definition 2.6 (Nisan-Wigderson Polynomials). For a prime power n, let Fn be a field of size n. For an
integer d ≤ n and the set X of nd variables {xi,j : i ∈ [n], j ∈ [d]}, we define the degree d homogeneous
polynomial NWn,d over any field as

NWn,d(X) =
∑

f(z)∈Fn[z]
deg(f)<d/2

∏
j∈[d]

xf(j),j .

Claim 2.7 ([KS22]). For an integer n = 2k and d ≤ n, let w ∈ {k,−k}d with w[d] = 0. Then relrkw(NWn,d) =
1 i.e.,Mw(NWn,d) has full rank.

Proof. Fix n = 2k and d, so that we can also write NW for NWn,d, and let n′ = d/2. The condition on w

implies that |Pw| = |Nw| = n′. Observe thatMw(NW) is a square matrix of dimension |MP
w | = |MN

w | = nn′
.

Consider a row of Mw(NW) indexed by a monomial m1 = xi1,j1 · · ·xin′ ,jn′ ∈ MP
w . m1 can be thought of

as a map from S = {j1, . . . , jn′} to Fn which sends jℓ to iℓ for each ℓ ∈ [n′]. Next, by interpolating the pairs
(j1, i1), . . . , (jn′ , in′), we know that there exists a unique polynomial f(z) ∈ Fn(z) of degree < n′ for which
f(jℓ) = iℓ for each ℓ ∈ [n′]. As a consequence, there is a unique ‘extension’ of the monomial xi1,j1 · · ·xin′ ,jn′

that appears as a term in NW , which is precisely m1 ·
∏

j∈Nw
xf(j),j . Therefore, all but one of the entries in

the row corresponding to m1 must be zero, and the remaining entry must be 1. Applying the same argument
to the columns ofMw(NW), we deduce thatMw(NW) is a permutation matrix, and so has full rank.

2.4 A Hard Set-multilinear Polynomial in VP

Let d be an even integer and let X = (X1, . . . , Xd) be a collection of sets of variables where each |Xi| = n, and
similarly, let Y = (Y1, . . . , Yd) be a distinct collection of sets of variables where each |Yi| = n. We shall refer
to the Y -variables as the auxiliary variables. For i and j ∈ {1, . . . , d}, let Xi ·Xj denote the inner-product
quadratic form

∑n
k=1 xikxjk. Here, we shall assume that Xi = {xi,1, . . . , xi,n} and Yi = {yi,1, . . . , yi,n}.

For two integers i ∈ N and j ∈ N, we denote [i, j] = {k ∈ N : i ≤ k and k ≤ j} and call such a set
an interval. For every interval [i, j] ⊆ [d], we define a polynomial fi,j(X,Y) ∈ Fsm[Xi, . . . , Xj , Yi, . . . , Yj] as
follows:

fi,j =

yi,jyj,i(Xi ·Xj) if j = i+ 1

0 if j − i is even

yi,jyj,i(Xi ·Xj) · fi+1,j−1 +
∑j−1

r=i+1 fi,rfr+1,j otherwise

These fi,j in present form were defined in [KS23], but were in turn inspired from an earlier work of Raz
and Yehudayof ([RY09]) in the multilinear context. [KS23] shows that they have the following full-rank
property that will be instrumental for us.

Lemma 2.8 ([KS23]). Let n = 2k and d ≤ n be an even integer. Over any field F of characteristic zero,
the polynomial Fn,d = f1,d ∈ Fsm[X,Y] as defined above satisfies the following: For any w ∈ {−k, k}d with
w[d] = 0, Mw(Fn,d) is full-rank when viewed as a matrix over the field F(Y), the field of rational functions
over the Y variables.

11

2.5 A Hard Set-Multilinear Polynomial in VBP

2.5.1 Arc-partition Measure Description

This subsection is adapted from Section 2 of [DMPY12]. Let n = 2k, d ≤ n be an even integer, and let
X = (X1, X2, . . . , Xd) be a collection of disjoint sets of n variables each. An arc-partition will be a special
kind of symmetric word w ∈ {−k, k}d (i.e., a one-to-one map Π from X to {−k, k}d). For the purpose of
this subsection, the reader can even choose to think of the alphabet of w as {−1, 1} (i.e., one ‘positive’ and
one ‘negative’ value) – we use k,−k only to remain consistent with Definition 2.2.

Identify X with the set {1, 2, . . . , d} in the natural way. Consider the d-cycle graph, i.e., the graph with
nodes {1, 2, . . . , d} and edges between i and i + 1 modulo d. For two nodes i ̸= j in the d-cycle, denote by
[i, j] the arc between i, j, that is, the set of nodes on the path {i, i + 1, . . . , j − 1, j} from i to j in d-cycle.
First, define a distribution DP on a family of pairings (a list of disjoint pairs of nodes in the cycle) as
follows. A random pairing is constructed in d/2 steps. At the end of step t ∈ [d/2], we shall have a pairing
(P1, . . . , Pt) of the arc [Lt, Rt]. The size of [Lt, Rt] is always 2t. The first pairing contains only P1 = {L1, R1}
with L1 = 1 and R1 = 2. Given (P1, . . . , Pt) and [Lt, Rt], define the random pair Pt + 1 (independently of
previous choices) by

Pt+1 =

{Lt − 2, Lt − 1} with probability 1/3

{Lt − 1, Rt + 1} with probability 1/3

{Rt + 1, Rt + 2} with probability 1/3

Define
[Lt+1, Rt+1] = [Lt, Rt] ∪ Pt+1.

So, Lt+1 is either Lt − 2, Lt − 1 or Lt, each value is obtained with probability 1/3, and similarly (but
not independently) for Rt+1.

The final pairing is P = (P1, P2, . . . , Pd/2). Denote by P ∼ DP a pairing distributed according to DP .

Once a pairing P has been obtained, a word w ∈ {−k, k}d is obtained by simply randomly assigning +k
and −k to the indices of any pair Pi. More formally, for every t ∈ [d/2], if Pt = {it, jt}, let with probability
1/2, independently of all other choices,

wit = +k and wjt = −k,

and with probability 1/2,
wit = −k and wjt = +k.

Denote by w ∼ D a word in {−1, 1}n that is sampled using this procedure. We call such a word an
arc-partition. For a pair Pt = {it, jt}, we refer to it and jt as partners.

Definition 2.9 (Arc-full-rank). We say that a polynomial f that is set-multilinear over X = (X1, . . . , Xd)
is arc-full-rank if for every arc-partition w ∈ {−k, k}d, relrkw(f) = 1.

2.5.2 Construction of an Arc-full-rank Polynomial

Below, we describe a simple construction of a polynomial sized ABP that computes an arc-full-rank set-
multilinear polynomial. The high-level idea is to construct an ABP in which every path between start-node
and end-node corresponds to a specific execution of the random process which samples arc-partitions. Each
node in the ABP corresponds to an arc [L,R], which sends an edge to each of the nodes [L−2, R], [L−1, R+1]
and [L,R + 2]. The edges have specially chosen labels that help guarantee full rank with respect to every
arc-partition. For simplicity of presentation, we allow the edges of the program to be labeled by degree
four set-multilinear polynomial polynomials over the corresponding subset of the variable partition. This
assumption can be easily removed by replacing each edge with a polynomial-sized ABP computing the
corresponding degree four polynomial.

Formally, the nodes of the program are even-size arcs in the d-cycle, d an even integer. The start-node
of the program is the empty arc ∅ and the end-node is the whole cycle [d] (both are “special” arcs). Let
X = (X1, . . . , Xd) be a collection of sets of variables where each |Xi| = n, and similarly, let Y = (Y1, . . . , Yd)

12

be a distinct collection of sets of variables where each |Yi| = n (we shall refer to the Y -variables as auxiliary
variables). For i and j in {1, . . . , d}, let Xi ·Xj denote the inner-product quadratic form

∑n
k=1 xikxjk. Here,

we shall assume that Xi = {xi,1, . . . , xi,n} and Yi = {yi,1, . . . , yi,n}.
Construct the branching program by connecting a node/arc of size 2t to three nodes/arcs of size 2t+ 2.

For t = 1, there is just one node [1, 2], and the edge from start-node to it is labeled y1,2y2,1(X0 ·X1). For
t > 1, the node [L,R] ⊃ [1, 2] of size 2t < d is connected to the three nodes: [L − 2, R], [L − 1, R + 1], and
[L,R+ 2]. (It may be the case that the three nodes are the end-node.) The edge labeling is:

• The edge between [L,R] and [L− 2, R] is labeled yL−2,L−1yL−1,L−2(XL−2 ·XL−1).

• The edge between [L,R] and [L− 1, R+ 1] is labeled yL−1,R+1yR+1,L−1(XL−1 ·XR+1).

• The edge between [L,R] and [L,R+ 2] is labeled yR+1,R+2yR+2,R+1(XR+1 ·XR+2).

Consider the ABP thus described, and the polynomial Gn,d it computes. For every path γ from start-
node to end-node in the ABP, the list of edges along γ yields a pairing P ; every edge e in γ corresponds to
a pair Pe = {ie, je} of nodes in d-cycle. Thus,

Gn,d =
∑
γ

∏
e={ie,je}∈γ

yie,jeyje,ie · (Xie ·Xje). (1)

where the sum is over all paths γ from start-node to end-node.

Remark 2.10. There is in fact a one-to-one correspondence between pairings P and such paths γ (this
follows by induction on t). Note that this is true only because pairings are tuples i.e., they are ordered by
definition. Otherwise, it is of course still possible to obtain the same set of pairs in a given pairing using
multiple different orderings. The sum defining Gn,d can be thought of, therefore, as over pairings P .

The following statement summarizes the main useful property of Gn,d.

Lemma 2.11 ([KS23]). Over any field F of characteristic zero, the polynomial Gn,d defined above is arc-
full-rank as a set-multilinear polynomial in the variables X over the field F(Y) of rational functions in Y .

Proof. Let w ∼ D be an arc-partition. We want to show thatMw(Gn,d) has full rank. The arc-partition w
is defined from a pairing P = (P1, . . . , Pd/2) (though as discussed in Remark 2.10, there could be multiple
such P). The pairing P corresponds to a path γ from start-node to end-node. Consider the polynomial
f that is obtained by setting every yi,j = yj,i = 0 in F such that {i, j} is not a pair in P , and setting
every yi,j = yj,i = 1 for every pair {i, j} in P . Then, it is easy to see that the only terms that survive
in Equation 1 correspond to paths (and in turn, pairings) which have the same underlying set of pairs as
P . As a consequence, f is simply some non-zero constant times a polynomial which is full-rank (recall
Observation 2.5). Mw(f) being full rank then implies that Mw(Gn,d) is also full-rank.

3 Separation between VP and
∑

smABP

In the theorem below, Fn,d refers to the polynomial defined in Section 2.4. In this section, we prove
Theorem 1.5 and Theorem 1.7 by first proving the following statement.

Lemma 3.1. Given large enough integers d ≤ n, any
∑

smABP of max-width s and support size t computing
Fn,d(X1, . . . , Xd, Y1 . . . , Yd) must satisfy at least one of the following:

• either t > ed/96,

• or t · sq ≥ n
√

dq
20 , for any integer q in the range [12 ln(2t

√
d), d/4].

Proof. Suppose that t ≤ ed/96 (so that the range in the theorem statement is indeed well-defined).
First, we observe that for any

∑
smABP computing Fn,d(X,Y), we can view each summand as an ordered

set-multilinear branching program with respect to only the X variables. In other words, by appropriately
collapsing the layers labelled using the Y variables, each summand is a set-multilinear branching program

13

over the field F(Y) ordered with respect to (Xσ(1), . . . , Xσ(d)) for some permutation σ ∈ Sd. It is easy to
see that this collapsing process does not increase the width or the size of any summand in the branching
program. The edge labels do get altered however: the coefficients of the X variables in any edge label can
now be polynomials in the Y variables (and therefore, field constants in F(Y)).

Let A be such a set-multilinear branching program of width s and depth d that is ordered with respect
to (X1, . . . , Xd)

7. Recall that this means that for each ℓ ∈ [d], all edges of the ABP from layer ℓ− 1 to layer
ℓ are labeled using a linear form in Xℓ. Given a node u in layer i and a node v in layer j > i of A, define gu,v
to be the polynomial computed by the ABP restricted to the layers i+ 1, . . . , j − 1 with the source and the
sink defined by u and v respectively. Consider an integer q in the range specified in the theorem statement
and let r be the largest integer r such that the product qr < d i.e., we must have d− qr ≤ q. Consider the
following decomposition of A:

A(X1, . . . , Xd) =
∑

u1,...,uq

q+1∏
i=1

gui−1,ui
,

where u0 and uq+1 are defined to be the source and the sink of A respectively, and for 1 ≤ i ≤ q, ui varies
over all choices of nodes in layer r · i. Note that hence, this expression contains at most sq terms. Also, note
that each gui−1,ui

is set-multilinear over the partition (Xi)i∈Si
where Si is the set {r(i− 1) + 1, . . . , ri}8 of

length exactly r for i ∈ [q], and Sq+1 = {rq + 1, . . . , d} has length at most q. We now analyze the relative
rank of each summand.

Let w ∈ {−k, k}d (where k = log n) be an arbitrary word. By Claim 2.3, we see that

relrkw

(
q+1∏
i=1

gui−1,ui

)
=

q+1∏
i=1

relrkw|Si
(gui−1,ui) ≤

q∏
i=1

relrkw|Si
(gui−1,ui) ≤

q∏
i=1

2−|wSi
|/2 = 2−

1
2 (

∑q
i=1 |wSi

|),

from which we observe that the task of upper bounding this rank can be reduced to the task of lower
bounding the sum

∑q
i=1 |wSi

|, which is established below.
Choose w from {−k, k}d (where k = log n) uniformly at random. For each i ∈ [q], let Ei denote the

(bad) event that |wSi | ≤
√
rk/4. Since Si is an interval of length r, by a standard estimation of binomial

coefficients, we obtain that P[Ei] ≤ 1/4. Then, by the Chernoff bound (Theorem 2.4), the probability that
at least half of the events Ei occur is at most e−

q
12 . Therefore, with probability at least 1− e−

q
12 ,

q∑
i=1

|wSi
| ≥ q

√
rk/8,

and therefore, by the sub-additivity of relrkw(·),

relrkw(A) ≤ sq2−
kq

√
r

16 = sqn− q
√

r
16 .

Now, let
∑t

i=1 Ai be a
∑

smABP computing Fn,d with max-width bounded by s, and such that each
Ai is ordered set-multilinear with respect to the variable partition (Xσi(1), . . . , Xσi(d)) for some permutation

σi ∈ Sd. By the union bound and the discussion above, it follows that with probability at least 1− t · e−
q
12 ,

relrkw(Fn,d) = relrkw

(
t∑

i=1

Ai

)
≤ t · sqn− q

√
r

16 .

But now, we can condition on the event that w[d] = 0 (which occurs with probability Θ(1√
d
)) to establish

the existence of a word w ∈ {−k, k}d with w[d] = 0 such that w satisfies relrkw(P) ≤ t · sqn−q
√
r. This

is because of the given bound q ≥ 12 ln(2t
√
d). Because relrkw(Fn,d) = 1 for such a w by Lemma 2.8, we

conclude that t · sq ≥ n
q
√

r
16 ≥ n

√
(d−q)q

16 ≥ n
√

dq
20 , where the last inequality follows from our choice of q.

7In general, A may be ordered with respect to an arbitrary permutation σ, but the assumption that σ is the identity
permutation in the discussion that follows is without loss of generality.

8If A is instead ordered with respect to σ, then Si is taken to be the set {r(i− 1) + 1, . . . , ri}.

14

Proof of Theorem 1.5. We invoke Lemma 3.1 with d = n. If t ≥ 2n
1/3

, then we trivially have that the

total-width is at least exp(Ω(n1/3)), so assume t ≤ 2n
1/3

. We shall show that then, s = exp(Ω(n1/3)), which
will yield the desired result.

Set q = ⌈15n1/3⌉. Then clearly, q ≤ n/4. Moreover, as t ≤ 2n
1/3

by assumption, we verify that

q = ⌈15n1/3⌉ > 12(n1/3 + ln(2
√
d)) ≥ 12 ln(2t

√
n).

Therefore, we can use Lemma 3.1 to obtain the inequality t · sq ≥ n
√

nq

20 (as t ≤ 2n
1/3

< en/96 for large
enough n). Plugging in q = ⌈15n1/3⌉, we see that

s ≥ n

√
n/q

20

t1/q
≥ n

n1/3

80

21/15
= exp(Ω(n1/3)).

Proof of Theorem 1.7. We consider cases as follows:

Case t = poly(n): Suppose there is a constant c such that t ≤ nc. Set q = 20 ln(2nc
√
d) and note that

q = Θ(log n). We see that by Lemma 3.1,

s ≥ n

√
d/q

20

t1/q
≥ n

1
20

√
d
q−

c
q .

Note that c/q < 1 and decays to zero as d becomes larger. Furthermore, as d = ω(log n) by assumption
and q = Θ(log n), d/q = ω(1). We conclude that if t is bounded by a polynomial in n, then s must be
super-polynomial in n.

Case s = poly(n): Suppose there is a fixed constant c ≥ 1 such that s ≤ nc. Assume that t < ed/96c
2

, and

set q = d/1600c2. Then q indeed lies in the range to apply Lemma 3.1. We obtain the inequality

t ≥

n

√
d/q

20

s

q

≥ n
√

dq
20 −cq = ncq = nΩ(d),

which contradicts the assumption that t < ed/96c
2

. Hence, t ≥ ed/96c
2

= 2Ω(d) which is indeed super-
polynomial in n whenever d = ω(log n).

Thus, in either case, it is shown that both s and t cannot be polynomially bounded. Hence, the total-width
of any

∑
smABP computing Fn,d cannot be polynomially bounded.

4 Tightness of ABP Set-Multilinearization

In this section, we prove Theorem 1.9 and in the process, also prove Theorem 1.5’ and Theorem 1.7’. We
first establish the following technical lemma that will be essential for these proofs.

Lemma 4.1. Let d ≤ n be growing parameters satisfying d = ω(log n). There exist fixed constants
γ, c, c1, c2 > 0 and ε ≥ 1/100 such that any

∑
smABP of max-width s and support size t computing

Gn,d(X1, . . . , Xd, Y1 . . . , Yd) must satisfy at least one of the following:

• either t ≥ 2cc2d,

• or t · sq ≥ nγq(d/q)ε , for any integer q in the range [max{c1, (log t)/c}, c2d].

Proof. First, similar to the proof of Lemma 3.1, we observe that for any
∑

smABP computing Gn,d(X,Y),
we can view each summand as an ordered set-multilinear branching program with respect to only the X
variables. In other words, by appropriately collapsing the layers labelled using the Y variables, each summand

15

is a set-multilinear branching program over the field F(Y) ordered with respect to (Xσ(1), . . . , Xσ(d)) for some
permutation σ ∈ Sd. It is easy to see that this collapsing process does not increase the width or the size of
any summand branching program. The edge labels do get altered however: the coefficients of the X variables
in any edge label can now be polynomials in the Y variables (and therefore, field constants in F(Y)).

Let A be such a set-multilinear branching program of width s and depth d that is ordered with respect
to (X1, . . . , Xd)

9. Recall that this means that for each ℓ ∈ [d], all edges of the ABP from layer ℓ− 1 to layer
ℓ are labeled using a linear form in Xℓ. Given a node u in layer i and a node v in layer j > i of A, define gu,v
to be the polynomial computed by the ABP restricted to the layers i+ 1, . . . , j − 1 with the source and the
sink defined by u and v respectively. Consider an integer q in the range specified in the lemma statement
and let r be such that10 qr = d. Consider the following decomposition of A:

A(X1, . . . , Xd) =
∑

u1,...,uq−1

q∏
i=1

gui−1,ui
,

where u0 and uq are defined to be the source and the sink of A respectively, and for 1 ≤ i ≤ q − 1, ui varies
over all choices of nodes in layer r ·i. Note that hence, this expression contains at most sq−1 ≤ sq terms. Also,
note that each gui−1,ui

is set-multilinear over the partition (Xi)i∈Si
where Si is the set {r(i−1)+1, . . . , ri}11

of length exactly r. We now analyze the relative rank of each summand.
By Claim 2.3, we see that for every appropriate word w,

relrkw

(
q+1∏
i=1

gui−1,ui

)
=

q+1∏
i=1

relrkw|Si
(gui−1,ui) ≤

q∏
i=1

relrkw|Si
(gui−1,ui) ≤

q∏
i=1

2−|wSi
|/2 ≤ 2−

1
2 (

∑q
i=1 |wSi

|),

from which we observe that the task of upper bounding this rank can be reduced to the task of lower
bounding the sum

∑q
i=1 |wSi

|, which is established below.
Choose w from the distribution D, as described in Section 2.5. We now view the partition (S1, . . . , Sq)

of [d] as a fixed “coloring” of the latter set (and in turn, the d-cycle, as described in Section 2.5) i.e., each
node i ∈ [d] is assigned the color k if and only if i ∈ Sk. For a pairing P and set Sk, define the number of
k-violations by

Vk(P) = {Pt ∈ P : |Pt ∩ Sk| = 1}.

In words, it is the set of pairs in which one color is k and the other color is different from k. For some fixed
0 < ε ≤ 1/100, denote

G(P) = {k ∈ [q] : |Vk(P)| ≥ r2ε}.

Next, we state a technical lemma that states that with probability exponentially close to 1, “many” colors
have “many” violations. The constants c1, c2 that appear in the statement below indeed define the constants
c1, c2 that are mentioned in the statement of Lemma 4.1.

Lemma 4.2 (Many Violations Lemma). Let d ≤ n be growing parameters satisfying d = ω(log n). There
exist fixed constants 0 < α, β < 1 and c1 > 0, 0 < c2 ≤ 1 such that for all integers q in the range [c1, c2d]
the following holds: Let S = (S1, . . . , Sq) be a partition of the d-cycle where each |Si| = r. Then,

P[|G(P)| ≤ αq] ≤ r−βq,

where P ∼ DP .

We now show, in the claim below, how the preceding lemma can be used to argue that with probability
exponentially close to 1, an arc-partition w exhibits large bias. The constant c that appears below defines
the constant c in the statement of Lemma 4.1.

9In general, A may be ordered with respect to an arbitrary permutation σ, but the assumption that σ is the identity
permutation in the discussion that follows is without loss of generality.

10 If q does not divide d, then we can let r be ⌊d/q⌋. In the discussion that immediately follows, we simply bound the relative
rank of the ‘last’ component by 1 and so, the remaining analysis is nearly identical.

11If A is instead ordered with respect to σ, then Si would be simply defined as the set {σ(r(i− 1) + 1), . . . , σ(ri)}.

16

Claim 4.3. There exists a fixed constant c > 0 such that

P

[
q∑

i=1

|wSi | ≤
αqrεk

64

]
≤ 2−cq,

where the probability is over the choice of w ∼ D.

Proof. Let E denote the event
∑q

i=1 |wSi
| ≤ αqrεk

64 , and A denote the event |G(P)| > αq. From the law of

total probability, it follows that P[E] ≤ P[E|A] + P[A], where A denotes the complement of A – therefore, it
suffices to bound P[E|A].

Fix a pairing P ∼ DP such that the high probability event A occurs. Consider an ordering σ of the
colors in G(P). A color ℓ is said to be bright with respect to an ordering if there are at least r2ε/2 nodes
x of color ℓ such that the partner of x is colored using a color that appears after ℓ in the ordering σ. Call
an ordering σ of the nodes in G(P) good if there are at least |G(P)|/2 bright colors with respect to σ. The
observation is that for any ordering σ of the colors, either σ itself is good, or its reverse is good. We conclude
that given any pairing P , there exists a good ordering of G(P). Fix any such good ordering and let H(P) be
the collection of bright colors with respect to this ordering. Let the colors in H(P) according to this good
ordering be ℓ1, . . . , ℓq′ .

Next, notice that if the sum
∑q

j=1 |wSj
| is at most αqrεk

64 , then so is the sum
∑

ℓ∈H(P) |wSℓ
|. Let q′ =

|H(P)| (which is at least αq/2 if |G(P)| > αq). View the sampling of w from P as happening in a specific
order, according to the order of ℓ1, ℓ2, . . . , ℓq′ : First define Π on pairs with at least one point with color ℓ1,
then define Π on remaining pairs with at least one point with color ℓ2, and so forth. When finished with
ℓ1, . . . , ℓq′ , continue to define Π on all other pairs.

Observe that if the sum
∑

ℓ∈H(P) |wSℓ
| is at most αqrεk

64 , then there exists a subset T ⊆ H(P) with half

its size, |T | = |H(P)|/2,12 such that every color ℓ in T satisfies |wSℓ
| ≤ krε/16 (otherwise, we obtain an

immediate contradiction). There are at most 2|H(P)| many choices for such T – fix such a choice T and
relabel the colors in T as ℓ1, . . . , ℓq′′ , where q

′′ = |H(P)|/2 and this order respects the order described in the
paragraph above. For every ℓj ∈ T , define Ej to be the event that |wSℓj

| ≤ krε/16. By choice, conditioned

on E1, . . . , Ej−1, there are at least r2ε/2 pairs Pt so that |Pt ∩ Sℓj | = 1 that are not yet assigned a ‘positive’
or ‘negative’ sign (with a magnitude equal to |k|). For every such Pt, the element in Pt ∩ Sℓj is assigned a
positive sign with probability 1/2, and is independent of any other Pt′ . Therefore, P[Ej] is bounded by the
probability that a binomial random variable over a universe of size r2ε/2 lies in any specific interval of size
rε/8. By a standard estimation of binomial coefficients, this probability is bounded by a constant, 1/5.

Hence, for any fixed choice of T ⊆ H(P), for all ℓj ∈ T ,

P[Ej |E1, . . . , Ej−1, P] ≤ 1/5.

Therefore, for any fixed choice of T ⊆ H(P), by the chain rule, it follows that

P[∩j∈TEj] ≤ 5−|T | = 2−(log 5)|H(P)|/2.

There are at most 2|H(P)| choices for T . We conclude that

P[E|A] ≤ 2|H(P)| · 2−(log 5)|H(P)|/2 ≤ 2−|H(P)|/7 ≤ 2−αq/14.

Finally, we note that by the many violations lemma (Lemma 4.2), P[A] ≤ r−βq ≤ 2−βq. Thus, P[E] ≤
P[E|A] + P[A] ≤ 2−αq/14 + 2−βq ≤ 2−cq for some fixed constant c > 0 which can be defined in terms of α
and β.

From the claim, it follows that with probability at least 1− 2−cq,

q∑
i=1

|wSi
| ≥ αqrεk

64
,

12We assume without loss of generality that |H(P)| is even to avoid ceilings and floors.

17

and therefore, by the sub-additivity of relrkw(·),

relrkw(A) ≤ sq2−
αkqrε

128 = sqn−αqrε

128 .

Now, let
∑t

i=1 Ai be a
∑

smABP computing Gn,d with max-width bounded by s, and such that each
Ai is ordered set-multilinear with respect to the variable partition (Xσi(1), . . . , Xσi(d)) for some permutation

σi ∈ Sd. Assume that 2cc1 < t < 2cc2d (if the second inequality does not hold, then the first item in the
lemma statement is true; and we deal with the case t ≤ 2cc1 at the end of the proof). By the union bound
and the discussion above, it follows that with probability at least 1− t · 2−cq,

relrkw(Fn,d) = relrkw

(
t∑

i=1

Ai

)
≤ t · sqn−αqrε

128 .

Since q > (log t)/c by assumption, note that 1− t · 2−cq > 0. Furthermore, since we are assuming 2cc1 < t,
we have that q ≥ c1 and therefore, Lemma 4.2 applies and so does Claim 4.3 along with the entire discussion
above. We conclude that there exists an arc-partition w ∈ {−k, k}d such that w satisfies relrkw(Fn,d) ≤
t · sqn−αqrε

128 . Because relrkw(Fn,d) = 1 for such a w by Lemma 2.11, we conclude that t · sq ≥ n
αqrε

128 .
Finally, if t is bounded by the constant 2cc1 , then we just add constantly many width-2 ordered set-

multilinear branching programs which each compute the zero polynomial so that the new support size of the

sum becomes larger than 2cc1 and the previous case applies, and we are able to conclude (t+2cc1)·sq ≥ n
αqrε

128 .
Appropriately defining the constant γ > 0 then lets us conclude the desired bound t · sq ≥ nγq(d/q)ε .

Proof of Theorem 1.5’. Set δ = ε/(1 + ε), where ε is as defined in the Lemma 4.1. If t ≥ 2n
δ

, then we

trivially have that the total-width is at least exp(Ω(nδ)), so assume t ≤ 2n
δ

(so that the second item of
Lemma 4.1 applies). We shall show that then, s = exp(Ω(nδ)), which will yield the desired result.

By Lemma 4.1, any
∑

smABP of max-width s and support size t computing Gn,n satisfies the inequality
t · sq ≥ nγq(n/q)ε , for any integer q in the range [(log t)/c, c2n]. Set q = ⌈nδ/c⌉. Then clearly, q ≥ (log t)/c
and so, q lies in the required range. Plugging in the setting for q in the inequality, we see that

s ≥ nγ(n/q)ε

t1/q
≥ nγ(cn1−δ)ε

2c
= exp(Ω(nδ)).

Proof of Theorem 1.7’. We consider cases as follows:

Case t = poly(n): Suppose there is a constant c′ such that t ≤ nc′ . Set q = ⌈(log nc′)/c⌉ = ⌈(c′ log n)/c⌉
and note that q = Θ(log n). We see that by Lemma 4.1,

s ≥ nγ(d/q)ε

t1/q
≥ nγ(d/q)ε− c′

q .

Note that c′/q < 1 and decays to zero as d becomes larger. Furthermore, as d = ω(log n) by assumption
and q = Θ(log n), d/q = ω(1). We conclude that if t is bounded by a polynomial in n, then s must be
super-polynomial in n.

Case s = poly(n): Suppose there is a fixed constant c′ ≥ 1 such that s ≤ nc′ . Define r to be the constant

max{(2c
′

γ)1/ε, 1
c2
}. Set q = d/r and assume that t < 2cq. Then q indeed lies in the range to apply Lemma 4.1:

we have q ≤ c2d because 1/r ≤ c2 by definition, and q ≥ (log t)/c because of the assumption on t. We obtain
the inequality

t ≥
(
nγ(d/q)ε

s

)q

≥
(
nγrε

nc′

)q

≥

n
2c′γ
γ

nc′

q

= nc′q = nΩ(d),

which contradicts the assumption that t < 2cq. Hence, t ≥ 2cq = 2Ω(d) which is indeed super-polynomial in
n whenever d = ω(log n).

18

Thus, in either case, it is shown that both s and t cannot be polynomially bounded. Hence, the total-width
of any

∑
smABP computing Gn,d cannot be polynomially bounded.

Finally, we observe that Theorem 1.9 follows immediately from (i) the ABP construction of Gn,d given
in Section 2.5, and (ii), the proof of the s = poly(n) case in Theorem 1.7’ above.

5 Optimal Separation between Ordered and Unordered smABPs

In this section, we prove Theorem 1.10. The result is that Gn,d(X1, . . . , Xd, Y1, . . . , Yd), as described in
Section 2.5, does not have small ordered set-multilinear branching programs with respect to any ordering
of the Xis and Yjs. More precisely, we claim that any set-multilinear branching program computing Gn,d

which is ordered with respect to some permutation of the sets in the collection S = {X1, . . . , Xd, Y1, . . . , Yd}
must have size at least nΩ(d).

Proof of Theorem 1.10. Let A be a set-multilinear branching program computing Gn,d, which is ordered
with respect to a permutation π of the sets in S. That is π : [2d]→ S is a bijective map where π(i) = Z, for
some Z ∈ S, if all edges between layer i− 1 and layer i are labelled using linear forms in the variables of Z.
Let πX : [d]→ {X1, . . . , Xd} be the ordering inherited from π by the X sets, that is πX(i) = Xj if Xj is the
i-th X-set appearing in the sequence π(1), . . . , π(2d). Define a word w ∈ {−k, k}d using πX as follows: let

wi = k if and only if π−1
X (Xi) ∈ [d/2].

That is, the edges labelled using linear forms in Xi appear on the ‘left’ half in A, when the Y sets are ignored.
Note that w is symmetric, or in other words, w[d] = 0.

Now, for i ∈ [d], define si(A) to be the size of layer π−1(πX(i)) in A. The technique used by Nisan [Nis91]
can be used directly to show the following.

Lemma 5.1 ([Nis91]). If Gn,d(X1, . . . , Xd) ∈ K[X1, . . . , Xd] is thought of as a polynomial only over the X
variables (here K = F(Y), the field of rational functions in Y), then nd/2 · relrkw(Gn,d) ≤ sd/2(A).13

Thus, in order to prove a nΩ(d) lower bound on the width of A, it suffices to lower bound relrkw(G) by
n−αd for some 0 < α < 1/2. We prove such a lower bound using the following lemma.

Lemma 5.2. Given any w ∈ {−k, k}d with w[d] = 0, there exists an arc-partition v ∈ {−k, k}d obtained
from a pairing P = (P1, . . . , Pd/2) such that w ‘splits’ a constant fraction of the pairs in P : more precisely,
there is a set S ⊂ P of size at least d/8 such that if (i, j) ∈ S, then wi + wj = 0.

Let us first prove the lower bound on relrkw(Gn,d) assuming this lemma. Consider the polynomial f that
is obtained by setting every yi,j = yj,i = 0 in Gn,d such that {i, j} is not a pair in P , and setting every
yi,j = yj,i = 1 for every pair {i, j} in P (where P is as in Lemma 5.2). Then, it is easy to see that the only
terms that survive in Equation 1 correspond to paths (and in turn, pairings) which have the same underlying
set of pairs as P . As a consequence,

f(X) = cP ·
d/2∏
t=1

(Xit ·Xjt)

for a non-zero constant cP . Next, notice that the rank of the matrix Mw(f) (over the field F) serves as a
lower bound on the rank of the matrix Mw(Gn,d) (over the field F(Y)). Indeed, if the former is r then there
is a non-vanishing r × r minor of Mw(f). But this implies that the determinant of the corresponding r × r
sub-matrix in Mw(Gn,d) must be a non-zero polynomial in F[Y] as it has a non-zero evaluation. From this
we conclude that Mw(Gn,d) also has a non-vanishing r × r minor and therefore has rank at least r. Stated
in terms of relative rank, we have showed that relrkw(f) ≤ relrkw(Gn,d).

Now, given the set S ⊂ [d/2] from Lemma 5.2, we can lower bound the relative rank of Mw(f) as follows:
first, note that if for some t ∈ [d/2], the pair Pt of P is in S, then by Observation 2.5, relrkw|Pt

(Xit ·Xjt) = 1.

13The nd/2 factor comes from using relative-rank rather than rank.

19

Secondly, if w does not split some pair Pt of P (i.e., wit = wjt), then Mw|Pt
(Xit · Xjt) is simply a one-

dimensional vector (either 1 × n2 or n2 × 1) and we trivially have relrkw|Pt
(Xit · Xjt) = 1/n. Combining,

and using the multiplicativity of relrkw(·) (third item of Claim 2.3),

relrkw(f(X)) = relrkw(f(X)/cP) =

d/2∏
t=1

relrkw|Pt
(Xit ·Xjt)

=
∏
t∈S

relrkw|Pt
(Xit ·Xjt)︸ ︷︷ ︸
=1

∏
t∈[d/2]\S

relrkw|Pt
(Xit ·Xjt)︸ ︷︷ ︸

≥1/n

≥ 1

nd/2−|S| .

Therefore, we have relrkw(Gn,d) ≥ relrkw(f) ≥ 1/nd/2−|S| and hence, by Lemma 5.1, the size of A is at
least sd/2(A) ≥ nd/2 · relrkw(Gn,d) ≥ n|S| = nΩ(d).

We now give the proof of Lemma 5.2.

Proof of Lemma 5.2. Let L+, L−, R+, R− ∈ [d] be defined as follows.

R+ =

{
i ∈
[
3,

d

2
+ 1

]
: wi > 0

}
R− =

{
i ∈
[
3,

d

2
+ 1

]
: wi < 0

}
L+ =

{
i ∈
[
d

2
+ 2, d

]
: wi > 0

}
L− =

{
i ∈
[
d

2
+ 2, d

]
: wi < 0

}
Clearly, either |R+| ≥ d

4 or |R−| ≥ d
4 . Without loss of generality, let us assume that |R+| ≥ d

4 .
Also, without loss of generality14 we can assume that w1+w2 = 0. Then |R+| = |L−|, and say |R+| = p.

Further, let

R+ = {i1, . . . , ip} with i1 < · · · < ip and L− = {j1, . . . , jp} with j1 > · · · > jp.

We can then define an initial pairing, P 0 = {(iℓ, jℓ)}ℓ∈[p]. Let us also define the set S0 = ∅. The goal is to
iteratively update P 0 such that, at the end, we have a pairing corresponding to an arc-partition. We will
also update S0 at each step so that, at the end, each pair in S are of opposite signs.

Let u0 = 2, v0 = 1. Intuitively, uℓ, vℓ are the right most and left-most points, respectively, of the partial
arc-partition, P ℓ, defined till the ℓ-th iteration. Given uℓ−1, vℓ−1, P

ℓ−1, Sℓ−1 for any ℓ ∈ [p], we will define
uℓ, vℓ, P

ℓ, Sℓ as follows. Note that the calculations are (mod d) when ℓ = 1.

Case 1: (iℓ − uℓ−1) and (vℓ−1 − jℓ) are both odd.

P ℓ = P ℓ−1 ∪ {(uℓ−1 + 1, uℓ−1 + 2), . . . , (iℓ − 2, iℓ − 1)} ∪ {(vℓ−1 − 2, vℓ−1 − 1), . . . , (jℓ + 1, jℓ + 2)}

uℓ = iℓ vℓ = jℓ and Sℓ = Sℓ−1 ∪ {(iℓ, jℓ)}

Case 2: (iℓ − uℓ−1) is even and (vℓ−1 − jℓ) is odd.

We first define

Qℓ =

(P ℓ−1 \ {(iℓ, jℓ)}) ∪ {(uℓ−1 + 1, uℓ−1 + 2), . . . , (iℓ − 1, iℓ)}

∪ {(vℓ−1 − 2, vℓ−1 − 1), . . . , (jℓ + 1, jℓ + 2}, if (iℓ − uℓ−1) > 0

(P ℓ−1 \ {(iℓ, jℓ)}) ∪ {(vℓ−1 − 2, vℓ−1 − 1), . . . , (jℓ + 1, jℓ + 2)} if (iℓ − uℓ−1) = 0,

and then define

P ℓ =

{
Qℓ ∪ {(jℓ − 1, jℓ)} if jℓ − 1 ∈ L+.

Qℓ ∪ {(iℓ + 1, jℓ)} otherwise.

14If this is not the case, then |L−| − 2 ≤ |R+| ≤ |L−| + 2 and we redefine R+, L− to be the largest possible subsets of the
originally defined R+, L−, respectively, such that |R+| = |L−|.

20

Also,

uℓ =

{
iℓ if jℓ − 1 ∈ L+

iℓ + 1 otherwise.
vℓ =

{
jℓ − 1 if jℓ − 1 ∈ L+

jℓ otherwise.

and

Sℓ =

{
Sℓ−1 ∪ {(iℓ, jℓ−1)} if (iℓ − uℓ−1) = 0

Sℓ−1 ∪ {(iℓ − 1, iℓ)} otherwise.

Case 3: (iℓ − uℓ−1) is odd and (vℓ−1 − jℓ) is even.

We first define

Qℓ =

(P ℓ−1 \ {(iℓ, jℓ)}) ∪ {(uℓ−1 + 1, uℓ−1 + 2), . . . , (iℓ − 2, iℓ − 1)}

∪ {(vℓ−1 − 2, vℓ−1 − 1), . . . , (jℓ, jℓ + 1)} if (vℓ−1 − jℓ) > 0,

(P ℓ−1 \ {(iℓ, jℓ)}) ∪ {(uℓ−1 + 1, uℓ−1 + 2), . . . , (iℓ − 2, iℓ − 1)} if (vℓ−1 − jℓ) = 0,

and then define

P ℓ =

{
Qℓ ∪ {(iℓ, iℓ + 1)} if iℓ + 1 ∈ R−.

Qℓ ∪ {(iℓ, jℓ − 1)} otherwise.

Also,

uℓ =

{
iℓ + 1 if iℓ + 1 ∈ R−

iℓ otherwise.
vℓ =

{
jℓ if iℓ + 1 ∈ R−

jℓ − 1 otherwise.

and

Sℓ =

{
Sℓ−1 ∪ {(iℓ−1, jℓ)} if (vℓ−1 − jℓ) = 0.

Sℓ−1 ∪ {(jℓ, jℓ + 1)} otherwise.

Case 4: (iℓ − uℓ−1) and (vℓ−1 − jℓ) are both even.

We first define

Qℓ =

{
(P ℓ−1 \ {(iℓ, jℓ)}) if (iℓ − uℓ−1) = 0

(P ℓ−1 \ {(iℓ, jℓ)}) ∪ {(uℓ−1 + 1, uℓ−1 + 2), . . . , (iℓ − 1, iℓ)} otherwise

and then define

P ℓ =

{
Qℓ if (vℓ−1 − jℓ) = 0

Qℓ ∪ {(vℓ−1 − 2, vℓ−1 − 1), . . . , (jℓ, jℓ + 1)} otherwise.

Also,

uℓ = iℓ vℓ = jℓ and Sℓ =

{
Sℓ−1 ∪ {(iℓ, jℓ−1)} if (iℓ − uℓ−1) = 0.

Sℓ−1 ∪ {(iℓ − 1, iℓ)} otherwise.

Note that (vp − up) must be odd. So finally, we define P = P p ∪ {(up + 1, up + 2), . . . , (vp − 2, vp − 1)} and
S = Sp. Firstly note that P corresponds to an arc-partition, since P 0 is a partial arc-partition and it is easy
to check that for each ℓ ∈ [p], P ℓ is a valid extension of P ℓ−1.

Since p ≥ d/8, S clearly has size at least d/8. The only thing left to complete the proof is to check that
S has the other required property. For any ℓ ∈ [p], let us assume that Sℓ−1 ⊂ P has the property that
if (i, j) ∈ Sℓ−1, wi + wj = 0. In Case 1, clearly, Sℓ continues to have this property. In Cases 2 and 4, if
(iℓ − uℓ−1) > 0, then again Sℓ clearly continues to have this property. When (iℓ − uℓ−1) = 0, it must mean
that iℓ = uℓ−1 = iℓ−1 +1 and so iℓ−1 +1 ̸∈ R−. That is, in the previous iteration Case 2 had been true and
(iℓ, jℓ−1) = (iℓ−1 +1, jℓ−1) had been added to P ℓ−1. Therefore Sℓ ⊂ P and, also, wiℓ +wjℓ−1

= 0. A similar
argument for Case 3 then completes the proof.

21

References

[AGKS15] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets for ROABP
and sum of set-multilinear circuits. SIAM J. Comput., 44(3):669–697, 2015.

[AR16] Vikraman Arvind and S. Raja. Some lower bound results for set-multilinear arithmetic compu-
tations. Chic. J. Theor. Comput. Sci., 2016, 2016.

[BDS22] C. S. Bhargav, Sagnik Dutta, and Nitin Saxena. Improved lower bound, and proof barrier, for
constant depth algebraic circuits. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors,
47th International Symposium on Mathematical Foundations of Computer Science, MFCS 2022,
August 22-26, 2022, Vienna, Austria, volume 241 of LIPIcs, pages 18:1–18:16. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2022.

[BDS23] C.S. Bhargav, Prateek Dwivedi, and Nitin Saxena. Lower bounds for the sum of small-size
algebraic branching programs. Preprint, 2023. https://www.cse.iitk.ac.in/users/nitin/

papers/sumRO.pdf.

[BG22] Vishwas Bhargava and Sumanta Ghosh. Improved hitting set for orbit of roabps. Comput.
Complex., 31(2):15, 2022.

[BS21] Pranav Bisht and Nitin Saxena. Blackbox identity testing for sum of special roabps and its
border class. Comput. Complex., 30(1):8, 2021.

[Bür00] Peter Bürgisser. Cook’s versus valiant’s hypothesis. Theor. Comput. Sci., 235(1):71–88, 2000.

[CKSV22] Prerona Chatterjee, Mrinal Kumar, Adrian She, and Ben Lee Volk. Quadratic lower bounds for
algebraic branching programs and formulas. Comput. Complex., 31(2):8, 2022.

[DMPY12] Zeev Dvir, Guillaume Malod, Sylvain Perifel, and Amir Yehudayoff. Separating multilinear
branching programs and formulas. In Howard J. Karloff and Toniann Pitassi, editors, Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA,
May 19 - 22, 2012, pages 615–624. ACM, 2012.

[FS13] Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-commutative
and read-once oblivious algebraic branching programs. In 54th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages
243–252. IEEE Computer Society, 2013.

[FSS14] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for multilinear read-
once algebraic branching programs, in any order. In David B. Shmoys, editor, Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 867–
875. ACM, 2014.

[GG20] Zeyu Guo and Rohit Gurjar. Improved explicit hitting-sets for roabps. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[GKS17] Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity testing for constant-width, and any-
order, read-once oblivious arithmetic branching programs. Theory Comput., 13(1):1–21, 2017.

[GKST17] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic identity testing
for sum of read-once oblivious arithmetic branching programs. Comput. Complex., 26(4):835–880,
2017.

[GV20] Rohit Gurjar and Ben Lee Volk. Pseudorandom bits for oblivious branching programs. ACM
Trans. Comput. Theory, 12(2):8:1–8:12, 2020.

[Kay12] Neeraj Kayal. An exponential lower bound for the sum of powers of bounded degree polynomials.
Electron. Colloquium Comput. Complex., TR12-081, 2012.

22

https://www.cse.iitk.ac.in/users/nitin/papers/sumRO.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/sumRO.pdf

[KLSS17] Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An exponential lower
bound for homogeneous depth four arithmetic formulas. SIAM J. Comput., 46(1):307–335, 2017.

[KS17] Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic circuits.
SIAM J. Comput., 46(1):336–387, 2017.

[KS22] Deepanshu Kush and Shubhangi Saraf. Improved low-depth set-multilinear circuit lower bounds.
In Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022, July 20-23,
2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 38:1–38:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022.

[KS23] Deepanshu Kush and Shubhangi Saraf. Near-optimal set-multilinear formula lower bounds. In
Amnon Ta-Shma, editor, 38th Computational Complexity Conference, CCC 2023, July 17-20,
2023, Warwick, UK, volume 264 of LIPIcs, pages 15:1–15:33. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023.

[KSS14] Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower bound for
regular arithmetic formulas. In David B. Shmoys, editor, Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 146–153. ACM, 2014.

[KST16] Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. An almost cubic lower bound for depth
three arithmetic circuits. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani,
and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 33:1–
33:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[LST21] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds
against low-depth algebraic circuits. In 62nd IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 804–814. IEEE, 2021.

[LST22] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. On the partial derivative method
applied to lopsided set-multilinear polynomials. In Shachar Lovett, editor, 37th Computational
Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234 of
LIPIcs, pages 32:1–32:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005.

[Nis91] Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In Cris
Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 410–418. ACM,
1991.

[NW97] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Comput. Complex., 6(3):217–234, 1997.

[Raz06] Ran Raz. Separation of multilinear circuit and formula size. Theory Comput., 2(6):121–135,
2006.

[Raz13] Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. J. ACM, 60(6):40:1–40:15,
2013.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative mod-
els. Comput. Complex., 14(1):1–19, 2005.

[RY09] Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant depth multilinear
circuits. Comput. Complex., 18(2):171–207, 2009.

[Sap15] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Github
Survey, 2015.

23

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Found. Trends Theor. Comput. Sci., 5(3-4):207–388, 2010.

[TLS22] Sébastien Tavenas, Nutan Limaye, and Srikanth Srinivasan. Set-multilinear and non-
commutative formula lower bounds for iterated matrix multiplication. In Stefano Leonardi
and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory
of Computing, Rome, Italy, June 20 - 24, 2022, pages 416–425. ACM, 2022.

[Val79] L. G. Valiant. Completeness classes in algebra. In Proceedings of the Eleventh Annual ACM
Symposium on Theory of Computing, STOC ’79, page 249–261, New York, NY, USA, 1979.
Association for Computing Machinery.

A Proof of the Many Violations Lemma

We briefly recall some notation from Section 4. Recall that w is chosen from the distribution D, as described
in Section 2.5. For a pairing P , and a set Sk, we defined the number of k-violations as

Vk(P) = {Pt ∈ P : |Pt ∩ Sk| = 1}.

In words, it is the set of pairs in which one color is k and the other color is different. We used the
following notation to denote the set of colors with “many” violations (for some fixed 0 < ε ≤ 1/100)

G(P) = {k ∈ [q] : |Vk(P)| ≥ r2ε}.

As mentioned previously, this subsection is adapted from the proof of the (weaker) many violations lemma
in [KS23], which is in turn adapted from Lemma 4.1 in [DMPY12].

Lemma. (Many Violations Lemma restated) Let d ≤ n be growing parameters satisfying d = ω(log n).
There exist fixed constants 0 < α, β < 1 and c1 > 0, 0 < c2 ≤ 1 such that for all integers q in the range
[c1, c2d] the following holds: Let S = (S1, . . . , Sq) be a partition of the d-cycle where each |Si| = r.15 Then,

P[|G(P)| ≤ αq] ≤ r−βq,

where P ∼ DP .

Proof. Set α = 1/1000. Fix a partition (or a “coloring”) S = (S1, . . . , Sq) of the d-cycle satisfying the
conditions of the lemma. Think of S as a function from the d-cycle to the set [q], assigning every node its
color in [q]. S(i) is the color of i. Use the following definition to partition the proof into cases. For a color
k, count the number of jumps in it (with respect to the partition S) to be

Jk = {j ∈ Sk : k = S(j) ̸= S(j + 1)},

the set of elements j of color k so that j + 1 has a color different from k.

Case 1: Many colors with many jumps. The high-level idea is that each color with many jumps has
many violations because pairs of the form (j, j + 1) yield violations as soon as they are constructed.

Assume that for at least q/2 colors k, |Jk| > r4ε. Denote by B ⊆ [q] the set of k’s that satisfy this
inequality. Then, for every k in B, there exists a subset Qk ⊂ Jk of size N = ⌈r4ε⌉. Let

Q :=
⋃
k∈B

Qk.

We think of the construction of the (random) pairing P as happening in epochs, depending on Q, as follows.
For t > 0, define the random variable

Q(t) = Q \ [Lt − 4, Rt + 4],

15As explained in footnote 10 we assume w.l.o.g. d = rq.

24

the set Q after removing a four-neighborhood of [Lt, Rt]. For a certain sequence of time steps t, we will
define special nodes qt which lie in this small ‘cloud’ around the arc [Lt, Rt] (i.e., within a distance of 4
on either side of the arc) - it is for these special nodes qt that the set of pairs (qt, qt+1) will provide many
violations. We now formalize this intuition.

Let τ1 ≥ τ0 := 1 be the first time t after τ0 so that the distance between [Lt, Rt] and Q(τ0) is at most
two. The distance between [Lτ0 , Rτ0] and Q(τ0) is at least five. The size of the arc [Lt, Rt] increases by two
at each time step. So, τ1 ≥ τ0 + 2. Let q1 be an element of Q(τ0) that is of distance at most two from
[Lτ1 , Rτ1]; if there is more than one such q1, choose arbitrarily. The minimality of τ1 implies that q1 is not
in [Lτ1 , Rτ1].

Let τ2 ≥ τ1 be the first time t after τ1 so that the distance between [Lt, Rt] and Q(τ1) is at most two. Let
q2 be an element of Q(τ1) that is of distance at most two from [Lτ2 , Rτ2]. Define τj , qj for j > 2 similarly,
until Q(τj) is empty. As long as |Q(τj)| ≥ 8, we have |Q(τj + 1)| ≥ |Q(τj)| − 8. This process, therefore, has
at least qN/16 steps. For 1 ≤ j ≤ qN/16, denote by Ej the event that during the time between τj and τj+1

the pair {qj , qj +1} is added to P . The pair {qj , qj +1} is violating color S(qj). At time τj , even conditioned
on all the past P1, . . . , Pτj , in at most two steps (and before τj+1) we can add the pair {qj , qj +1} to P . For
every j, therefore,

P[Ej |P1, . . . , Pτj] ≥ (1/3)(1/3) = 1/9.

Next, let N ′ = ⌈qN/960⌉. We want to show that with high probability, for at least N ′ many j, the event Ej

occurs. There are
(⌊qN/16⌋
⌈qN/960⌉

)
many ways of choosing a set of indices j of size N −N ′. Subsequently,

P[there is j1, . . . , jN ′ so that Ej1 ∩ · · · ∩ EjN′] ≥ 1−
(
⌊qN/16⌋
⌈qN/960⌉

)
·
(
8

9

)N−N ′

≥ 1−
(
960e

16

)N ′

·
(
8

9

)60N ′

≥ 1− cN
′

where 0 < c < 1 is a universal constant. Finally, we argue that if there do exist j1, . . . , jN ′ for which the
events Ej1 , . . . , EjN′ occur, then |G(P)| ≥ q/1000. To see this, note that the size of every Qk is N . So, every
color k in B can contribute at most N elements to j1, . . . , jN ′ . If |G(P)| < q/1000, then at most these many
colors can contribute more than r2ε (and up to N elements) - combined, at most qN/1000 elements. However,
there are at least q/2 − q/1000 colors which can contribute only up to r2ε elements. Again combined, this
is not sufficient to cover the N ′ elements overall (for large enough d and a small enough constant c2 that
depends only on ε), which is a contradiction. Hence,

P[|G(P)| ≥ q/1000] ≥ P[there is j1, . . . , jN ′ so that Ej1 ∩ · · · ∩ Ej′N
].

and the proof follows in this case as cN
′ ≪ r−Ω(q).

Case 2: Many colors with few jumps. The intuition is that many violations will come from pairs of
the form {Lt−1, Rt+1} in the construction of the pairing. Assume that for at least q/2 colors k, |Jk| ≤ r4ε.
Denote again by B ⊆ [q] the set of k’s that satisfy the above inequality. We say that a color k is noticeable
in the arc A if

r1−6ε ≤ |Sk ∩A| ≤ |A| − r1−6ε.

Claim A.1. There are q′ ≥ q/2− 1 disjoint arcs A1, . . . , Aq′ so that for every j ∈ [q′],

1. |Aj | = m = ⌊r1−5ε⌋ and,

2. there is a color kj in B that is noticeable in Aj .

Moreover, the colors k1, . . . , kq′ can be chosen to be pairwise distinct.

Proof. For each color k in B, there are at least r vertices of color k in the d-cycle and at most r4ε jumps
in the color k. Therefore, there is at least one k-monochromatic arc of size at least r1−4ε. Hence, on

25

the d-cycle, there are such monochromatic arcs Ik1 , . . . , Ik|B| for the colors k1, . . . , k|B| in B, in this order
(1 < 2 < · · · < D).

Consider an arc A of size m included in Ik1
. Thus |Sk1

∩ A| = m. If we “slide” the arc A until it is
included in Ik2

, then |Sk1
∩A| = 0. By continuity, there is an intermediate position for the arc A such that

r1−6ε ≤ |Sk1
∩A| ≤ m− r1−6ε. This provides the first arc A1 of the claim.

Sliding an arc inside Ik2 to inside Ik3 shows that there exists an arc A2 such that r1−6ε ≤ |Sk2 ∩ A2| ≤
m − r1−6ε. The arcs A1 and A2 are disjoint: The distance of the largest element of A1 and the smallest
element of Ik2

is at most m. The distance of the smallest element of A2 and the largest element of Ik2
is at

most m. The size of Ik2
is larger than 2m. Proceed in this way to define A3, . . . , A|B|−1.

Use Claim A.1 to divide the construction of the (random) pairing into epochs. Denote by A(0) the family
of arcs given by the claim. Let τ1 be the first time t that the arc [Lt, Rt] hits one of the arcs in A(0). Denote
by A1 that arc that is hit at time τ1 (break ties arbitrarily). Denote by k1 the color that is noticeable in
A1. Let σ1 be the first time t so that A1 is contained in [Lt, Rt]. Let A(1) be the subset of A(0) of arcs
that have an empty intersection with [Lσ1

, Rσ1
]. Similarly, let τ2 be the first time t after σ1 that the arc

[Lt, Rt] hits one of the arcs in A(1). If there are no arc in A(1), define τ2 =∞. Denote by A2 that arc that
is hit at time τ2. Denote by k2 the color that is noticeable in A2. Let σ2 be the first time t so that A2 is
contained in [Lt, Rt]. Let A

(2) be the subset of A(1) of arcs that have an empty intersection with [Lσ2 , Rσ2].
Define τj , σj , Aj , kj , A

(j) for j > 2 analogously. For every j ≥ 1, denote by Ej the event that during the time
between τj and τj+1 the number of pairs added that violate color kj ’s at most r2ε. (If Ej does not hold,
then |Vkj

(P)| ≥ r2ε and kj ∈ G(P).) The main part of the proof is summarized in the following proposition,
whose proof is deferred to Section A.1.

Lemma A.2 (Chessboard Lemma). There is an absolute constant 0 < ε′ ≤ 1/100 such that for every j ≥ 1,
and any choice of pairs P1, . . . , Pτj ,

P[Ej |P1, . . . , Pτj , |A(j−1)| ≥ 3] ≤ r−ε′ .

Given this lemma, let us finish the proof of Lemma 4.2. Define q′′ = ⌊q′/10⌋ and let T denote the event
that the number of j’s for which |A(j)| ≥ 3 is at least q′′. First, we argue that T occurs with high probability.

For any j ≥ 1, consider the evolution of the arc [Lt, Rt] between the time steps τj (when it first hits arc
Aj) and σj (when it completely engulfs it). During this epoch, let us call the evolution of [Lt, Rt] in the
‘direction’ of Aj as good (labelled ‘G’) and away from the direction of Aj as bad (‘B’). To this end, for any
time step in this epoch, we can code the three possible choices for the evolution of [Lt, Rt] as GG (when the
arc is grown in the direction of Aj), GB (when it is grown equally on either side), or BB (when it is grown
away from the direction of Aj). Consequently, the evolution of [Lt, Rt] during this epoch can be realized as
a sequence consisting of the symbols G and B.

Consider the sequence s of G’s and B’s obtained by concatenating the sequences corresponding to all the
epochs (ignoring the choices made at time steps that do not lie in such epochs, i.e., between τj and σj for
some j - as there is no corresponding notion of a ‘good’ direction outside such epochs). The intuition is that
if |A(q′′)| < 3 (i.e., if T does not occur), then there must be an extremely large number of B’s compared to
G’s (i.e., the arc [Lt, Rt] evolves disproportionately in the bad direction) in the concatenated string s, which
should occur only with a vanishingly small probability.

Consider the sub-string s′ of s that corresponds to the choices made only for the nodes in A(0) \ A(q′′).
Note that there are precisely mq′′ many G’s in s′. Suppose |A(q′′)| = 2 for concreteness (the cases |A(q′′)| = 1
and |A(q′′)| = 0 are similar). This implies that there are m(q′ − 2 − q′′) many B’s in s′. Since only up to
mq′′ many of these B’s may appear as a result of the evolution making a choice of the form GB, it follows
that the evolution of [Lt, Rt] must make a choice of the form BB at least m(q′ − 2− 2q′′)/2 times out of a
possible m(q′ − 2)/2, in order to cover the elements of A(0) \ A(q′′). Denote q1 := (q′ − 2)/2. By the union
bound, this probability is at most

P[|A(q′′)| = 2] ≤
(
mq1
mq′′

)
·
(
1

3

)m(q1−q′′)

< cmq′′

2

for some universal constant 0 < c2 < 1. Similarly, we have bounds for both P[|A(q′′)| = 1] and P[|A(q′′)| = 0]
and it follows that P[T] ≥ 1− cmq′′ for some universal constant 0 < c < 1.

26

Remark A.3. The argument above for showing that T occurs with high probability differs considerably

from [DMPY12], where the corresponding event is sketched to occur with probability only at least 1−dcm1/3

,
which is not strong enough for our purposes.

Next, note that

P[|G(P)| < q/1000] ≤ P[|G(P)| < q/1000 ∩ T] + P[¬T] ≤ P[|G(P)| < q/1000|T] + P[¬T].

If |G(P)| < q/1000, then at least q/2 − q/1000 colors in B have at most r2ε many violations. Since q′′ =
⌊q′/10⌋ < q/2− q/1000, in particular, there must exist at least q′′/2 colors within the first q′′ colors (here we
are using the ordering of colors as provided by Claim A.1) for which there are at most r2ε many violations.
We then obtain the following by conditioning on T , using the union bound.

P[|G(P)| < q/1000|T] ≤ 2q
′′

max
H={j1<···<jq′′/2}⊂[q′′]

P[Ej1 , . . . , Ejq′′/2 ||A
(q′′)| ≥ 3]

For a fixed choice of H, by the chain rule and Lemma A.2, we have

P[Ej1 ∩ · · · ∩ Ejq′′/2 ||A
(q′′)| ≥ 3] = P[Ej1 |T] · P[Ej2 |Ej1 ∩ T] · · · · · P[Ejq′′/2 |Ejq′′/2−1

∩ · · · ∩ Ej1 ∩ T]

≤ r−ε′q′′/2 ≤ r−ε′q′/20 ≤ r−q/400.

Overall, setting β appropriately, we conclude that

P[|G(P)| < αq] ≤ r−βq.

A.1 Proof of the Chessboard Lemma

To prove Lemma A.2, we use a different point of view of the random process. We begin by describing this
different view, and later describe its formal connection to the distribution on pairings. This subsection is
adapted from Section 5 of [DMPY12] and closely follows their argument, though with numerous parameter
changes to suit our demands.

The view uses two definitions. One is a standard definition of a two-dimensional random walk, and the
other is a definition of a “chessboard” configuration in the plane. The proof of the proposition will follow by
analyzing the behavior of the random walk on the “chessboard”. Let d be as above and m be as defined in
Lemma A.1. The random walk W on N2 is defined as follows. It starts at the origin, W0 = (0, 0). At every
step it move to one of three nodes, independently of previous choices,

Wt+1 =

Wt + (0, 2) with probability 1/3

Wt + (1, 1) with probability 1/3

Wt + (2, 0) with probability 1/3

At time t, the L1-distance of Wt from the origin is thus 2t.
The “chessboard” is defined as follows. Let α1 : [m] → {0, 1} and α2 : [2m] → {0, 1} be two Boolean

functions. The functions α1, α2 induce a “chessboard” structure on the board [m] × [2m]. A position in
the board ξ = (ξ1, ξ2) is colored either white or black. It is colored black if α1(ξ1) ̸= α2(ξ2) and white if
α1(ξ1) = α2(ξ2). We say that the “chessboard” is well-behaved if

1. α1 is far from constant:

r1−6ε ≤ |{ξ1 ∈ [m] : α1(ξ1) = 1}| ≤ m− r1−6ε.

2. α1 does not contain many jumps:

|{ξ1 ∈ [m− 1] : α1(ξ1) ̸= α1(ξ1 + 1)}| ≤ r4ε

27

3. α2 does not contain many jumps:

|{ξ2 ∈ [2m− 1] : α2(ξ2) ̸= α2(ξ2 + 1)}| ≤ r4ε

Consider a random walk W on top of the “chessboard” and stop it when reaching the boundary of the
board (i.e., when it tries to make a step outside the board [m]× [2m]). We define a good step to be a step
of the form (1, 1) that lands in a black block. We will later relate good steps to violating edges. Our goal is,
therefore, to show that a typical W makes many good steps.

Lemma A.4. Assume the chessboard is well-behaved. There is a constant 0 < ε′ ≤ 1/100 such that the
probability that W makes less than r4ε good steps is at most r−ε′ .

We use this lemma to show Lemma A.2.

Proof of Lemma A.2 given Lemma A.4. Recall that Aj is an arc of size |Aj | = m = ⌊r1−δ−δ′⌋ so that there
is a color kj satisfying

r1−6ε ≤ |Sk ∩A| ≤ |A| − r1−6ε. (2)

Furthermore, condition on P1, . . . , Pτj , |A(j−1)| ≥ 3. Assume without loss of generality that Rτj is in Aj

(when Lτj is in Aj , the analysis is similar). The distance of Rτj from the smallest element of Aj is at most
one (the length of “one step to the right” is between zero and two). We now grow the random interval until
σj , i.e., as long as Rt stays in Aj . At the same time, Lt performs a movement to the left. Since |A(j−1)| ≥ 3,
there are at least 2m steps for Lt to take to the left before hitting Aj . There is a one-to-one correspondence
between pairings P and random walks W using the correspondence

Pt+1 = {Lt − 2, Lt − 1} ←→Wt+1 = Wt + (0, 2),

Pt+1 = {Lt − 1, Rt + 1} ←→Wt+1 = Wt + (1, 1),

Pt+1 = {Rt + 1, Rt + 2} ←→Wt+1 = Wt + (2, 0).

Define the function α1 to be 1 at positions of Aj with color kj , and 0 at the other positions. Set the
function α2 as to describe the color kj from Lτj leftward. The “chessboard” is well-behaved by (2) and since
kj is in the set B defined in case 2 of the proof of Lemma 4.2 (so there are not many jumps for the color
kj). Finally, if W makes a good step, then the corresponding pair added to P violated color kj . So, if Ej

holds for P , then the corresponding W makes less than r4ε good steps. Formally, by Lemma 4.2,

P[Ej |P1, . . . , Pτj , |A(j−1)| ≥ 3] ≤ P[W makes less than r4ε good steps] ≤ r−ε′ .

Proof of Lemma A.4. Define three events ER, EC , ED, all of which happen with small probability, so that
every W that is not in their union makes many good steps.

Call a subset of the board of the form I × [2m] or [m]× I, where I is a sub-interval, a region. The width
of a region is the size of I. Let R be the set of regions of width at least r8ε. The size of R is at most 2m2.
For a region t in R, denote by Et the event that the number of steps of the form (1, 1) that W makes in t is
less than r4ε given that it makes at least r6ε steps in r. Denote

ER =
⋃
t∈R

Et

To estimate the probability of Et, note that we can simply apply the Chernoff bound to a sum of r6ε

Bernoulli random variables with p = 1/3. By the union bound, we conclude that there is a universal constant
0 < c < 1 such that

P[ER] ≤ cr
6ε

.

Denote by H the set of all points in the board with L1-norm at least m5/8. At time T the random walk
W is distributed along all points in N2 of L1-norm exactly T . The distribution of W on this set is the same

28

as that of a random walk on Z that is started at 0, and moves at every step to the right with probability 1/3,
stays in place with probability 1/3 and moves to the left with probability 1/3. The probability that such a
random walk on Z is at a specific point in Z at time T is at most O(T−1/2). Hence, for every point h in H,

P[W hits h] ≤ O(m−5/16).

Call a point c = (ξ1, ξ2) in the board a corner if both (ξ1, ξ2) and (ξ1 + 1, ξ2 + 1) are of the same color
κ ∈ {black,white}, but (ξ1 + 1, ξ2) and (ξ1, ξ2 + 1) are not of color κ. For a corner c, denote by ∆(c) the
r8ε-neighborhood of c in L1-metric. Denote by ∆ the union over all ∆(c), for corners c in H. Denote by
EC the event that W hits any point in ∆. Since the board is well-behaved, the number of jumps in each of
α1, α2 is at most r4ε. Therefore, the number of corners is at most r8ε. By the union bound,

P[EC] ≤ O(r8εr16εm−5/16) ≤ r−ε′ ,

where in the last step, we used m ≥ r1−5ε. Note that plugging in, say, ε = ε′ = 1/100 indeed makes the
inequality true. Next, let m′ = ⌈m5/8⌉. Define three (vertical) lines: D1 is the line {m′} × [2m], D2 is the
line {2m′} × [2m] and D3 is the line {m−m′} × [2m]. Denote by ED the event that W does not cross the
line D3 before stopped (i.e., hitting the boundary of the board). Chernoff’s bound implies that there is a
universal constant 0 < c < 1 for which

P [ED] ≤ cm.

To conclude the proof by the union bound, it suffices to show that for every W not in ER ∪ EC ∪ ED,
the walk W makes at least r4ε good steps. Fix such a walk W . Since W /∈ ED, we know that W crosses the
line D2.

We consider several cases. Define a block to be a maximal monochromatic rectangle in the board. The
board is thus partitioned into black blocks and white blocks - which is what led [DMPY12] to calling it a
“chessboard.” We now think of the board [m] × [2m] as drawn in the plane with (1, 1) at the bottom-left
corner and (m, 2m) at the upper-right corner.

Case 1: The walk W does not hit any white block after crossing D1 and before crossing D2. In this
case, all steps taken in the region whose left border is D1 and right border is D2 are in a black area. The
number of such steps is at least m5/8/2≫ r6ε. Since W /∈ ER, the claim holds.

Case 2: The walk W hits a white block after crossing D1 and before crossing D2. Let us label the blocks
as follows: we associate every block with a pair ⟨η1, η2⟩ where η1 is between 1 and the number of jumps in
α1 and η2 is between 1 and the number of jumps in α2. So, the label of the “bottom-left” is ⟨1, 1⟩, the label
of the block “above” it is ⟨1, 2⟩ and the label of the block “to its right” is ⟨2, 1⟩, etc. There are two sub-cases
to consider:

Sub-case 1: At some point after crossing D1 and before crossing D3, there are two white blocks of the
form ⟨η1, η2⟩, ⟨η1+1, η2+1⟩ so that W intersects both blocks. Let c be the corner between these two blocks
(which must exist by definition). Since W /∈ EC , we know that W does not visit ∆(c). Therefore, W must
walk in a black area around ∆(c). Every path surrounding ∆(c) has length at least r8ε. Since W /∈ ER, the
claim holds.

Sub-case 2: At all times after crossing D1 and before crossing D3, the walk never moves from a white
block ⟨η1, η2⟩ to one of the two white blocks ⟨η1 + 1, η2 + 1⟩, ⟨η1 − 1, η2 − 1⟩. Since W /∈ ED, this is indeed
the last case. The width of a combinatorial rectangle in the board is the size of its “bottom side” (i.e., the
corresponding subset of [m]). Let η be the first white block W hits after crossing D1. Let Σ be the family of
black blocks that are to the right but on the same height as η. Define Z as the maximal width of a rectangle
of the form σ ∩ [0,m−m0 − 1]× [2m] over all σ ∈ Σ. Since the board is well-behaved, it follows (from the
first condition) that the total width of the black area on the same height as η is at least r1−6ε. Also, since
we are in case 2, the left border of η is to the left of D2. Therefore, the total width of the black area to the
right of the left border of η and to the left of D3, on the same height as η is at least r1−6ε− 3m′. Therefore,
since the number of jumps is at most r4ε,

Z ≥ (r1−6ε − 3m′)/r4ε ≫ r8ε.

Since we are in this sub-case, the walk W must “go through” every black block it hits: it can go from
bottom side to upper side or from left side to right side (but not from left side to upper side or from bottom

29

side to right side). Consider the behaviour of W after it hits η: starting from a white block, because W /∈ ED,
it is guaranteed to cross D3. Therefore, the color of the block that W “exits” from from each column must
keep alternating between white and black. For each black block in Σ, therefore, there exists a black block in
the same column that W crosses horizontally. Focusing on one such black block of width Z, since W /∈ ER,
the claim holds.

30
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

